Sample records for krypton isotopic anomalies

  1. The identification of meteorite inclusions with isotope anomalies

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Brigham, C. A.

    1989-01-01

    Ca-Al refractory inclusions with characteristic chemical and mineralogical compositions show an enhanced occurrence of 20 pct of isotope anomalies reflecting unknown nucleosynthetic effects for O and Mg. The anomalies are characterized by large isotope fractionation in Mg, apparent deficits in Mg-26/Mg-24, and large correlated effects for isotopes of Ca, Ti, and Cr. These isotope patterns define exotic components depleted in the most neutron-rich isotopes of Ca, Ti, and Cr, or components depleted in isotopes produced in explosive O and Si burning. An opaque assemblage within one of the inclusions yields isotope anomalies in Cr similar to the bulk inclusion and must be intrinsically part of the inclusion and not a trapped, foreign grain aggregate.

  2. Use of a krypton isotope for rapid ion changeover at the Lawrence Berkeley Laboratory 88-inch cyclotron

    NASA Technical Reports Server (NTRS)

    Soli, George A.; Nichols, Donald K.

    1989-01-01

    An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.

  3. Chromium isotopic anomalies in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.

    1986-01-01

    Abundances of the chromium isotopes in terrestrial and bulk meteorite samples are identical to 0.01 percent. However, Ca-Al-rich inclusions from the Allende meteorite show endemic isotopic anomalies in chromium which require at least three nucleosynthetic components. Large anomalies at Cr-54 in a special class of inclusions are correlated with large anomalies at Ca-48 and Ti-50 and provide strong support for a component reflecting neutron-rich nucleosynthesis at nuclear statistical equilibrium. This correlation suggests that materials from very near the core of an exploding massive star may be injected into the interstellar medium.

  4. The atmosphere of Mars: detection of krypton and xenon.

    PubMed

    Owen, T; Biemann, K; Rushneck, D R; Biller, J E; Howarth, D W; Lafleur, A L

    1976-12-11

    Krypton and xenon have been discovered in the martian atmosphere with the mass spectrometer on the second Viking lander. Krypton is more abundant than xenon. The relative abundances of the krypton isotopes appear normal, but the ratio of xenon-129 to xenon-132 is enhanced on Mars relative to the terrestrial value for this ratio. Some possible implications of these findings are discussed.

  5. Barium and neodymium isotopic anomalies in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Mcculloch, M. T.; Wasserburg, G. J.

    1978-01-01

    The discovery of Ba and Nd isotopic anomalies in two inclusions from the Allende meteorite is reported. The inclusions are Ca-Al-rich objects typical of the type considered as high-temperature condensation products in the solar nebula and contain distinctive Mg and O isotopic anomalies of the FUN (mass Fractionation, Unknown Nuclear processes) type. Mass-spectrometry results are discussed which show that inclusion C1 has anomalies in Ba at masses 134 and 136, while inclusion EK1-4-1 exhibits large marked negative anomalies at 130, 132, 134, and 136, as well as a positive anomaly at 137. It is also found that inclusion EK1-4-1 shows marked negative anomalies in Nd at masses 142, 146, 148, and 150, in addition to a positive anomaly at 145. These isotopic shifts are attributed to addition of r-process nuclei rather than mass fractionation. It is suggested that an onion-shell supernova explosion followed by injection into the solar nebula is the most likely generic model that may explain the observations.

  6. Utilizing Stable Isotopes and Isotopic Anomalies to Study Early Solar System Formation Processes

    NASA Technical Reports Server (NTRS)

    Simon, Justin

    2017-01-01

    Chondritic meteorites contain a diversity of particle components, i.e., chondrules and calcium-, aluminum-rich refractory inclusions (CAIs), that have survived since the formation of the Solar System. The chemical and isotopic compositions of these materials provide a record of the conditions present in the protoplanetary disk where they formed and can aid our understanding of the processes and reservoirs in which solids formed in the solar nebula, an important step leading to the accretion of planetesimals. Isotopic anomalies associated with nucleosynthetic processes are observed in these discrete materials, and can be compared to astronomical observations and astrophysical formation models of stars and more recently proplyds. The existence and size of these isotopic anomalies are typically thought to reflect a significant state of isotopic heterogeneity in the earliest Solar System, likely left over from molecular cloud heterogeneities on the grain scale, but some could also be due to late stellar injection. The homogenization of these isotopic anomalies towards planetary values can be used to track the efficiency and timescales of disk wide mixing,

  7. Shape Evolution in Neutron-Rich Krypton Isotopes Beyond N =60 : First Spectroscopy of Kr,10098

    NASA Astrophysics Data System (ADS)

    Flavigny, F.; Doornenbal, P.; Obertelli, A.; Delaroche, J.-P.; Girod, M.; Libert, J.; Rodriguez, T. R.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Chen, S.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Giganon, A.; Gillibert, A.; Lapoux, V.; Motobayashi, T.; Niikura, M.; Paul, N.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Steppenbeck, D.; Taniuchi, R.; Uesaka, T.; Ando, T.; Arici, T.; Blazhev, A.; Browne, F.; Bruce, A.; Carroll, R.; Chung, L. X.; Cortés, M. L.; Dewald, M.; Ding, B.; Franchoo, S.; Górska, M.; Gottardo, A.; Jungclaus, A.; Lee, J.; Lettmann, M.; Linh, B. D.; Liu, J.; Liu, Z.; Lizarazo, C.; Momiyama, S.; Moschner, K.; Nagamine, S.; Nakatsuka, N.; Nita, C.; Nobs, C. R.; Olivier, L.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Rudigier, M.; Saito, T.; Shand, C.; Söderström, P. A.; Stefan, I.; Vaquero, V.; Werner, V.; Wimmer, K.; Xu, Z.

    2017-06-01

    We report on the first γ -ray spectroscopy of low-lying states in neutron-rich Kr,10098 isotopes obtained from Rb,10199(p ,2 p ) reactions at ˜220 MeV /nucleon . A reduction of the 21+ state energies beyond N =60 demonstrates a significant increase of deformation, shifted in neutron number compared to the sharper transition observed in strontium and zirconium isotopes. State-of-the-art beyond-mean-field calculations using the Gogny D1S interaction predict level energies in good agreement with experimental results. The identification of a low-lying (02+, 22+) state in Kr 98 provides the first experimental evidence of a competing configuration at low energy in neutron-rich krypton isotopes consistent with the oblate-prolate shape coexistence picture suggested by theory.

  8. NEUTRON-POOR NICKEL ISOTOPE ANOMALIES IN METEORITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, Robert C. J.; Coath, Christopher D.; Regelous, Marcel

    2012-10-10

    We present new, mass-independent, Ni isotope data for a range of bulk chondritic meteorites. The data are reported as {epsilon}{sup 60}Ni{sub 58/61}, {epsilon}{sup 62}Ni{sub 58/61}, and {epsilon}{sup 64}Ni{sub 58/61}, or the parts per ten thousand deviations from a terrestrial reference, the NIST SRM 986 standard, of the {sup 58}Ni/{sup 61}Ni internally normalized {sup 60}Ni/{sup 61}Ni, {sup 62}Ni/{sup 61}Ni, and {sup 64}Ni/{sup 61}Ni ratios. The chondrites show a range of 0.15, 0.29, and 0.84 in {epsilon}{sup 60}Ni{sub 58/61}, {epsilon}{sup 62}Ni{sub 58/61}, and {epsilon}{sup 64}Ni{sub 58/61} relative to a typical sample precision of 0.03, 0.05, and 0.08 (2 s.e.), respectively. The carbonaceousmore » chondrites show the largest positive anomalies, enstatite chondrites have approximately terrestrial ratios, though only EH match Earth's composition within uncertainty, and ordinary chondrites show negative anomalies. The meteorite data show a strong positive correlation between {epsilon}{sup 62}Ni{sub 58/61} and {epsilon}{sup 64}Ni{sub 58/61}, an extrapolation of which is within the error of the average of previous measurements of calcium-, aluminium-rich inclusions. Moreover, the slope of this bulk meteorite array is 3.003 {+-} 0.166 which is within the error of that expected for an anomaly solely on {sup 58}Ni. We also determined to high precision ({approx}10 ppm per AMU) the mass-dependent fractionation of two meteorite samples which span the range of {epsilon}{sup 62}Ni{sub 58/61} and {epsilon}{sup 64}Ni{sub 58/61}. These analyses show that 'absolute' ratios of {sup 58}Ni/{sup 61}Ni vary between these two samples whereas those of {sup 62}Ni/{sup 61}Ni and {sup 64}Ni/{sup 61}Ni do not. Thus, Ni isotopic differences seem most likely explained by variability in the neutron-poor {sup 58}Ni, and not correlated anomalies in the neutron-rich isotopes, {sup 62}Ni and {sup 64}Ni. This contrasts with previous inferences from mass-independent measurements of Ni and other

  9. Isotopically distinct reservoirs in the solar nebula: Isotope anomalies in Vigarano meteorite inclusions

    NASA Technical Reports Server (NTRS)

    Loss, R. D.; Lugmair, G. W.; Davis, A. M.; Macpherson, G. J.

    1994-01-01

    The isotopic compositions of Mg, Ca, Ti, Cr, Zn, Sr, Ba, Nd, and Sm were measured in four relatively unaltered refractory inclusions from the Vigarano carbonaceous chondrite meteorite. Three of the inclusions (USNM 1623-2, 1623-3, and 1623-8) show similar Mg, Ca, Ti, and Cr isotopic compositions to those found in most inclusions in the Allende carbonaceous chondrite. This indicates that these Vigarano inclusions sampled the same isotopic reservoirs as the majority of the Allende inclusions that isotope signatures in the latter were not significantly modified by the secondary alteration that permeates most Allende inclusions. In contrast, inclusion 1623-5 has large deficits in Mg-26, Ca-48, and Ti-50 and small but distinct Cr-54, Zn-66, Sr-84, Ba-135, Ba-137, and Sm-144 anomalies. The magnitudes of these unusual anomalies in the refractory elements are within analytical uncertainty of those found in the Allende 'FUN" inclusion C1, yet 1623-5 has a very different bulk chemical composition from C1. The fact that 1623-5 and C1 have identical isotopic anomalies yet have significantly distinct major and trace element contents provide convincing evidence for the presence of isotopically distinct reservoirs in the early solar system.

  10. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    DOE PAGES

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; ...

    2016-11-01

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. But, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stablemore » isotopes, unmeasured by Viking. Our new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, but, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.« less

  11. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; Owen, T.; Pavlov, A. A.; Wiens, R. C.; Wong, M. H.; Mahaffy, P. R.

    2016-11-01

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  12. In Situ Measurement of Atmospheric Krypton and Xenon on Mars with Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; hide

    2016-01-01

    Mars Science Laboratorys Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking missions krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  13. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. But, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stablemore » isotopes, unmeasured by Viking. Our new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, but, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.« less

  14. Isotopic anomalies - Chemical memory of Galactic evolution

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.

    1988-01-01

    New mechanisms for the chemical memory of isotopic anomalies are proposed which are based on the temporal change during the chemical evolution of the Galaxy of the isotopic composition of the mean ejecta from stars. Because of the differing temporal evolution of primary and secondary products of nucleosynthesis, the isotopic composition of the bulk interstellar medium changes approximately linearly with time, and thus any dust component having an age different from that of average dust will be isotopically anomalous. Special attention is given to C, O, Mg, Si, and isotopically heavy average-stellar condensates of SiC.

  15. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1978-01-01

    The possibility that the newly discovered correlated isotopic anomalies for heavy elements in the Allende meteorite were synthesized in the secondary neutron capture episode during the explosive carbon burning, the possible source of the O-16 and Al-26 anomalies, is examined. Explosive carbon burning calculations under typical conditions were first performed to generate time profiles of temperature, density, and free particle concentrations. These quantities were inputted into a general neutron capture code which calculates the resulting isotopic pattern from exposing the preexisting heavy seed nuclei to these free particles during the explosive carbon burning conditions. The interpretation avoids the problem of the Sr isotopic data and may resolve the conflict between the time scales inferred from 1-129, Pu-244, and Al-26.

  16. Long-term sedimentary recycling of rare sulphur isotope anomalies.

    PubMed

    Reinhard, Christopher T; Planavsky, Noah J; Lyons, Timothy W

    2013-05-02

    The accumulation of substantial quantities of O2 in the atmosphere has come to control the chemistry and ecological structure of Earth's surface. Non-mass-dependent (NMD) sulphur isotope anomalies in the rock record are the central tool used to reconstruct the redox history of the early atmosphere. The generation and initial delivery of these anomalies to marine sediments requires low partial pressures of atmospheric O2 (p(O2); refs 2, 3), and the disappearance of NMD anomalies from the rock record 2.32 billion years ago is thought to have signalled a departure from persistently low atmospheric oxygen levels (less than about 10(-5) times the present atmospheric level) during approximately the first two billion years of Earth's history. Here we present a model study designed to describe the long-term surface recycling of crustal NMD anomalies, and show that the record of this geochemical signal is likely to display a 'crustal memory effect' following increases in atmospheric p(O2) above this threshold. Once NMD anomalies have been buried in the upper crust they are extremely resistant to removal, and can be erased only through successive cycles of weathering, dilution and burial on an oxygenated Earth surface. This recycling results in the residual incorporation of NMD anomalies into the sedimentary record long after synchronous atmospheric generation of the isotopic signal has ceased, with dynamic and measurable signals probably surviving for as long as 10-100 million years subsequent to an increase in atmospheric p(O2) to more than 10(-5) times the present atmospheric level. Our results can reconcile geochemical evidence for oxygen production and transient accumulation with the maintenance of NMD anomalies on the early Earth, and suggest that future work should investigate the notion that temporally continuous generation of new NMD sulphur isotope anomalies in the atmosphere was likely to have ceased long before their ultimate disappearance from the rock record.

  17. Large sulfur-isotope anomaly in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere.

    PubMed

    Shaheen, Robina; Abaunza, Mariana M; Jackson, Teresa L; McCabe, Justin; Savarino, Joël; Thiemens, Mark H

    2014-08-19

    Sulfur-isotopic anomalies have been used to trace the evolution of oxygen in the Precambrian atmosphere and to document past volcanic eruptions. High-precision sulfur quadruple isotope measurements of sulfate aerosols extracted from a snow pit at the South Pole (1984-2001) showed the highest S-isotopic anomalies (Δ(33)S = +1.66‰ and Δ(36)S = +2‰) in a nonvolcanic (1998-1999) period, similar in magnitude to Pinatubo and Agung, the largest volcanic eruptions of the 20th century. The highest isotopic anomaly may be produced from a combination of different stratospheric sources (sulfur dioxide and carbonyl sulfide) via SOx photochemistry, including photoexcitation and photodissociation. The source of anomaly is linked to super El Niño Southern Oscillation (ENSO) (1997-1998)-induced changes in troposphere-stratosphere chemistry and dynamics. The data possess recurring negative S-isotope anomalies (Δ(36)S = -0.6 ± 0.2‰) in nonvolcanic and non-ENSO years, thus requiring a second source that may be tropospheric. The generation of nonvolcanic S-isotopic anomalies in an oxidizing atmosphere has implications for interpreting Archean sulfur deposits used to determine the redox state of the paleoatmosphere.

  18. Surface ocean carbon isotope anomalies on glacial terminations: An alternative view

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Cote, M.; Schmittner, A.

    2016-12-01

    Late Pleistocene glacial terminations are characterized by surface ocean carbon isotope minima on a global scale. During the last deglaciation (i.e. Termination 1), planktonic foraminiferal δ13C anomalies occurred in the Atlantic, Indian, Pacific, and Southern Oceans. Despite the apparently ubiquitous nature of δ13C anomalies on glacial terminations, their cause remains a matter of ongoing debate. The prevailing view is that isotopically light carbon from the abyss was upwelled in the Southern Ocean, resulting in outgassing of 13C-depleted carbon to the atmosphere and its advection to lower latitudes via mode and intermediate waters (Spero and Lea, 2002). Alternatively, carbon isotope minima may be driven by weakening of the biological pump related to circulation-driven changes in the oceanic preformed nutrient budget (Schmittner and Lund, 2015). Here we assess the deep upwelling and biological pump hypotheses using a new compilation of 70 globally-distributed planktonic δ13C records from the published literature. We find that 1) the mean deglacial δ13C anomaly is similar in all ocean basins, 2) the eastern tropical Pacific yields smaller mean δ13C anomalies than the western tropical Pacific, and 3) δ13C anomalies in the Southern Ocean decrease with increasing latitude. Our results are generally inconsistent with the deep upwelling hypothesis, which predicts that the δ13C signal should be largest in the Southern Ocean and upwelling regions. Instead, the spatial pattern in δ13C anomalies supports the biological pump hypothesis, which predicts that reduced export of light carbon from the euphotic zone triggers negative carbon isotope anomalies in the surface ocean and positive anomalies at intermediate depths. Upwelling of relatively 13C-enriched intermediate waters tends to moderate carbon isotope minima in upwelling regions. Our results suggest that the initial rise in atmospheric CO2 during Termination 1 was likely due to weakening of the biological pump

  19. The longevity of the South Pacific isotopic and thermal anomaly

    USGS Publications Warehouse

    Staudigel, H.; Park, K.-H.; Pringle, M.; Rubenstone, J.L.; Smith, W.H.F.; Zindler, A.

    1991-01-01

    The South Pacific is anomalous in terms of the Sr, Nd, and Pb isotope ratios of its hot spot basalts, a thermally enhanced lithosphere, and possibly a hotter mantle. We have studied the Sr, Nd, and Pb isotope characteristics of 12 Cretaceous seamounts in the Magellans, Marshall and Wake seamount groups (western Pacific Ocean) that originated in this South Pacific Isotopic and Thermal Anomaly (SOPITA). The range and values of isotope ratios of the Cretaceous seamount data are similar to those of the island chains of Samoa, Tahiti, Marquesas and Cook/Austral in the SOPITA. These define two major mantle components suggesting that isotopically extreme lavas have been produced at SOPITA for at least 120 Ma. Shallow bathymetry, and weakened lithosphere beneath some of the seamounts studied suggests that at least some of the thermal effects prevailed during the Cretaceous as well. These data, in the context of published data, suggest: 1. (1)|SOPITA is a long-lived feature, and enhanced heat transfer into the lithosphere and isotopically anomalous mantle appear to be an intrinsic characteristic of the anomaly. 2. (2)|The less pronounced depth anomaly during northwesterly plate motion suggests that some of the expressions of SOPITA may be controlled by the direction of plate motion. Motion parallel to the alignment of SOPITA hot spots focusses the heat (and chemical input into the lithosphere) on a smaller cross section than oblique motion. 3. (3)|The lithosphere in the eastern and central SOPITA appears to have lost its original depleted mantle characteristics, probably due to enhanced plume/lithosphere interaction, and it is dominated by isotopic compositions derived from plume materials. 4. (4)|We speculate (following D.L. Anderson) that the origin of the SOPITA, and possibly the DUPAL anomaly is largely due to focussed subduction through long periods of the geological history of the earth, creating a heterogeneous distribution of recycled components in the lower mantle

  20. Isotopic Clues to Mars Crust-Atmosphere Interactions

    NASA Image and Video Library

    2016-09-29

    Chemistry that takes place in the surface material on Mars can explain why particular xenon (Xe) and krypton (Kr) isotopes are more abundant in the Martian atmosphere than expected. The isotopes -- variants that have different numbers of neutrons -- are formed in the loose rocks and material that make up the regolith -- the surface layer down to solid rock. The chemistry begins when cosmic rays penetrate into the surface material. If the cosmic rays strike an atom of barium (Ba), the barium can lose one or more of its neutrons (n0). Atoms of xenon can pick up some of those neutrons – a process called neutron capture – to form the isotopes xenon-124 and xenon-126. In the same way, atoms of bromine (Br) can lose some of their neutrons to krypton, leading to the formation of krypton-80 and krypton-82 isotopes. These isotopes can enter the atmosphere when the regolith is disturbed by impacts and abrasion, allowing gas to escape. http://photojournal.jpl.nasa.gov/catalog/PIA20847

  1. From Mars Meteorites to Laboratory Investigations: Understanding Heterogeneous Photochemical Transformations Using Oxygen Triple Isotope Anomalies of Carbonates

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Smirnova, V.; Jackson, T. L.; Mang, L.; Thiemens, M. H.

    2016-12-01

    The planet Mars is unique in our solar system with a positive O-isotope anomaly observed in its bulk silicate and carbonates minerals ranging from 0.3 to 0.6 ‰. The carbonate isotopic signature can be used to reveal its origin, past history and atmosphere-hydrosphere-geosphere-interactions. Ozone is a powerful natural tracer of photochemical processes in Earth's atmosphere. It possess the highest enrichment in heavy isotopes δ17O ≈ δ18O (70-150‰) and oxygen isotopic anomaly (Δ17O = 30-40‰). The oxygen isotopic anomaly from ozone is transferred to other oxygen carrying molecules in the atmosphere through different mechanisms. Laboratory experiments were conducted with the JSC-Mars Simulant and iron oxide to investigate how this anomaly can be transferred to water and minerals under conditions similar to present day Mars. Three sets of laboratory experiments (O3-H2O-UV-minerals; O2-H2O-UV-minerals; O3-H2O-minerals) were performed. The oxygen triple isotopic analysis of product mineral carbonates formed from adsorbed CO2 reaction showed an oxygen isotopic anomaly (Δ17O = 0.4-3‰). The oxygen triple isotopic composition of water at photochemical equilibrium shifted towards ozone with Δ17O = 9‰ indicating reaction of ozone with water vapor via electronically excited oxygen atoms and transfer of the anomaly via hydroxyl radicals. HOx (HO, HO2) are extremely reactive and have very short life time (< μs), however, our data indicate that its signature is preserved through surficial interactions with adsorbed CO2 on mineral surfaces. Hydroxyl radicals may have played a significant role in heterogeneous photochemical transformations on mineral dust in the atmosphere of Mars and transfer of ozone anomaly to water and other oxygen bearing minerals through surficial reactions. Series of experiments were performed to constrain the amount of H2O required to preserve the oxygen isotope anomaly observed in carbonate minerals in the Martian meteorites. These

  2. The NO+O3 reaction: a triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly.

    PubMed

    Savarino, J; Bhattacharya, S K; Morin, S; Baroni, M; Doussin, J-F

    2008-05-21

    Atmospheric nitrate shows a large oxygen isotope anomaly (Delta 17 O), characterized by an excess enrichment of 17 O over 18 O, similar to the ozone molecule. Modeling and observations assign this specific isotopic composition mainly to the photochemical steady state that exists in the atmosphere between ozone and nitrate precursors, namely, the nitrogen oxides (NOx=NO+NO2). However, this transfer is poorly quantified and is built on unverified assumptions about which oxygen atoms of ozone are transferred to NO(x), greatly weakening any interpretation of the nitrate oxygen isotopic composition in terms of chemical reaction pathways and the oxidation state of the atmosphere. With the aim to improve our understanding and quantify how nitrate inherits this unusual isotopic composition, we have carried out a triple isotope study of the reaction NO+O3. Using ozone intramolecular isotope distributions available in the literature, we have found that the central atom of the ozone is abstracted by NO with a probability of (8+/-5)%(+/-2 sigma) at room temperature. This result is at least qualitatively supported by dynamical reaction experiments, the non-Arrhenius behavior of the kinetic rate of this reaction, and the kinetic isotope fractionation factor. Finally, we have established the transfer function of the isotope anomaly of O3 to NO2, which is described by the linear relationship Delta 17 O(NO2)=A x Delta 17 O(O3)+B, with A=1.18+/-0.07(+/-1 sigma) and B=(6.6+/-1.5)[per thousand](+/-1 sigma). Such a relationship can be easily incorporated into models dealing with the propagation of the ozone isotope anomaly among oxygen-bearing species in the atmosphere and should help to better interpret the oxygen isotope anomaly of atmospheric nitrate in terms of its formation reaction pathways.

  3. Nucleosynthetic osmium isotope anomalies in acid leachates of the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Reisberg, L.; Dauphas, N.; Luguet, A.; Pearson, D. G.; Gallino, R.; Zimmermann, C.

    2009-01-01

    We present osmium isotopic results obtained by sequential leaching of the Murchison meteorite, which reveal the existence of very large internal anomalies of nucleosynthetic origin (ɛ 184Os from - 108 to 460; ɛ 186Os from - 14.1 to 12.6; ɛ 188Os from - 2.6 to 1.6; ɛ 190Os from - 1.7 to 1.1). Despite these large variations, the isotopic composition of the total leachable osmium (weighted average of the leachates) is close to that of bulk chondrites. This is consistent with efficient large-scale mixing of Os isotopic anomalies in the protosolar nebula. The Os isotopic anomalies are correlated, and can be explained by the variable contributions of components derived from the s, r and p-processes of nucleosynthesis. Surprisingly, much of the s-process rich osmium is released by relatively mild leaching, suggesting the existence of an easily leachable s-process rich presolar phase, or alternatively, of a chemically resistant r-process rich phase. Taken together with previous evidence for a highly insoluble s-process rich carrier, such as SiC, these results argue for the presence of several presolar phases with anomalous nucleosynthetic compositions in the Murchison meteorite. The s-process composition of Os released by mild leaching diverges slightly from that released by aggressive digestion techniques, perhaps suggesting that the presolar phases attacked by these differing procedures condensed in different stellar environments. The correlation between ɛ 190Os and ɛ 188Os can be used to constrain the s-process 190Os/ 188Os ratio to be 1.275 ± 0.043. Such a ratio can be reproduced in a nuclear reaction network for a MACS value for 190Os of ~ 200 ± 22 mbarn at 30 keV. More generally, these results can help refine predictions of the s-process in the Os mass region, which can be used in turn to constrain the amount of cosmoradiogenic 187Os in the solar system and hence the age of the Galaxy. We also present evidence for extensive internal variation of 184Os

  4. Sulfur and Hydrogen Isotope Anomalies in Organic Compounds from the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, G. W.; Thiemens, M. H.; Jackson, T.; Chang, Sherwood

    1996-01-01

    Isotopic measurements have been made on organic sulfur and phosphorus compounds recently discovered in the Murchison meteorite. Carbon, hydrogen and sulfur measurements were performed on individual members of the organic sulfur compounds, alkyl sulfonates; and carbon and hydrogen measurements were made on bulk alkyl phosphonates. Cooper and Chang reported the first carbon isotopic measurements of Murchison organic sulfonates, providing insight into the potential synthetic mechanisms of these and, possibly, other organic species. Hydrogen isotopic measurements of the sulforiates now reveal deuterium excesses ranging from +660 to +2730 %. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low temperature astrophysical environment consistent with that of dense molecular clouds. Measurements of the sulfur isotopes provide further constraints on the origin and mechanism of formation of these organic molecules. Recently, there has been growing documentation of sulfur isotopic anomalies in meteoritic material. Thiemens and Jackson have shown that some bulk ureilites possess excess S-33 and Thiemens et al. have reported excess S-33 in an oldhamite separate from the Norton County meteorite. Rees and Thode reported a large S-33 excess in an Allende acid residue, however, attempts to verify this measurements have been unsuccessful, possibly due to the heterogeneous nature of the carrier phase. With the recognition that sulfur isotopes may reflect chemistry in the protosolar nebula or the precursor molecular cloud, identification of potential carriers is of considerable interest. In the present study, the stable isotopes of sulfur were measured in methane sulfonic acid extracted from the Murchison meteorite. The isotopic composition was found to be: (delta)S-33 = 2.48 %, (delta)S-34 = 2.49 % and (delta)S-36 = 6.76 %. Based upon analysis of more than 60 meteoritic and numerous terrestrial samples, the mass fractionation lines are

  5. Simultaneous detection of xenon and krypton in equine plasma by gas chromatography-tandem mass spectrometry for doping control.

    PubMed

    Kwok, Wai Him; Choi, Timmy L S; So, Pui-Kin; Yao, Zhong-Ping; Wan, Terence S M

    2017-02-01

    Xenon can activate the hypoxia-inducible factors (HIFs). As such, it has been allegedly used in human sports for increasing erythropoiesis. Krypton, another noble gas with reported narcosis effect, can also be expected to be a potential and less expensive erythropoiesis stimulating agent. This has raised concern about the misuse of noble gases as doping agents in equine sports. The aim of the present study is to establish a method for the simultaneous detection of xenon and krypton in equine plasma for the purpose of doping control. Xenon- or krypton-fortified equine plasma samples were prepared according to reported protocols. The target noble gases were simultaneously detected by gas chromatography-triple quadrupole mass spectrometry using headspace injection. Three xenon isotopes at m/z 129, 131, and 132, and four krypton isotopes at m/z 82, 83, 84, and 86 were targeted in selected reaction monitoring mode (with the precursor ions and product ions at identical mass settings), allowing unambiguous identification of the target analytes. Limits of detection for xenon and krypton were about 19 pmol/mL and 98 pmol/mL, respectively. Precision for both analytes was less than 15%. The method has good specificity as background analyte signals were not observed in negative equine plasma samples (n = 73). Loss of analytes under different storage temperatures has also been evaluated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Isotopic anomalies and proton irradiation in the early solar system

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Dwek, E.; Woosley, S. E.

    1977-01-01

    Nuclear cross sections relevant to the various isotopic-abundance anomalies found in solar-system objects are evaluated in an attempt to set constraints on the hypothesized mechanism of irradiation of forming planetesimals by energetic protons from the young sun. A power-law proton spectrum is adopted, attention is restricted to proton energies less than about 20 MeV, and average cross sections are calculated for several reactions that might be expected to lead to the observed anomalies. The following specific anomalies are examined in detail: Al-26, Na-22, Xe-126, I-129, Kr-80, V-50, Nb-92, La-138, Ta-180, Hg-196, K-40, Ar-36, O-17, O-18, N-15, C-13, Li, Be, and B. It is suggested that the picture of presolar-grain carriers accounts for the facts more naturally than do irradiation models.

  7. Sulfur and Hydrogen Isotope Anomalies in Organic Compounds from the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Cooper, G. W.; Thiemens, M. H.; Jackson, T.; Chang, S.

    1995-09-01

    Carbon, hydrogen and sulfur isotopic measurements have been made on individual members of a recently discovered class of organic sulfur compounds, alkyl sulfonates, in the Murchison meteorite. Cooper and Chang (1) reported the first carbon isotopic measurements of Murchison organic sulfonates, providing insight into potential synthetic mechanisms of these, and possibly other, organic species. Hydrogen isotopic measurements of the sulfonates now reveal deuterium excesses ranging from +660 to +2730 per mil. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low temperature astrophysical environment consistent with that of dense molecular clouds. Measurement of the sulfur isotopes provide further constraints on the origin and mechanism of formation of these organic molecules. Recently, there has been growing documentation of sulfur isotopic anomalies in meteoritic material. Thiemens and Jackson (2) have shown that some bulk ureilites possess excess 33S and Thiemens et al. (3) have reported excess 33S in an oldhamite separate from Norton County. Rees and Thode (4) reported a large 33S excess in an Allende acid residue, however, attempts to verify this measurement have been unsuccessful, possibly due to the heterogeneous nature of the carrier phase. With the recognition that sulfur isotopes may reflect nebular chemistry, identification of potential carriers is of considerable interest. In the present study the three stable isotopes of sulfur were measured in methane sulfonate extracted from the Murchison meteorite. The isotopic composition was found to be delta 33S=2.48, delta 34S=2.49 and delta 36S = 6.76 per mil. Based upon analysis of more than 60 meteoritic, and numerous terrestrial samples, the mass fractionation lines are defined by 33Delta = delta 33S-0.50 delta 34S and 36Delta = delta 36S -1.97 delta 34S. From these relations a 33Delta = 1.24 per mil and 36Delta = 0.89 per mil is observed. These anomalies

  8. Comparison of Medium Power Hall Effect Thruster Ion Acceleration for Krypton and Xenon Propellants

    DTIC Science & Technology

    2016-09-14

    Concentration ppb 87 1000 Stable Isotopes 9 6 Odd Isotopes 2 1 Critical Pressure MPa 5.84 5.50 Critical Temperature K 290 209 Boiling Point (1 atm) K 161 120...The velocity profile in Fig. 6 shows the velocities slightly negative, nearest the anode (at approximately - 9 mm). This negative velocity near the...Krypton and Xenon Propellants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) William A. Hargus, Jr.; Gregory M. Azarnia; Michael R

  9. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere

    PubMed Central

    Lin, Ying; Clayton, Robert N.; Huang, Lin; Nakamura, Noboru; Lyons, James R.

    2013-01-01

    To identify the possible anomalous oxygen isotope signature in stratospheric water predicted by model studies, 25 water vapor samples were collected in 2003−2005 at Alert station, Canada (82°30′N), where there is downward transport of stratospheric air to the polar troposphere, and were analyzed for δ17O and δ18O relative to Chicago local precipitation (CLP). The latter was chosen as a reference because the relatively large evaporative moisture source should erase any possible oxygen isotope anomaly from the stratosphere. A mass-dependent fractionation coefficient for meteoric waters, λMDF(H2O) = 0.529 ± 0.003 [2σ standard error (SE)], was determined from 27 CLP samples collected in 2003−2005. An oxygen isotopic anomaly of Δ17O = 76 ± 16 ppm (2σ SE) was found in water vapor samples from Alert relative to CLP. We propose that the positive oxygen isotope anomalies observed at Alert originated from stratospheric ozone, were transferred to water in the stratosphere, and subsequently mixed with tropospheric water at high latitudes as the stratospheric air descended into the troposphere. On the basis of this ground signal, the average Δ17O in stratospheric water vapor predicted by a steady-state box model is ∼40‰. Seven ice core samples (1930−1991) from Dasuopu glacier (Himalayas, China) and Standard Light Antarctic Precipitation did not show an obvious oxygen isotope anomaly, and Vienna Standard Mean Ocean Water exhibited a negative Δ17O relative to CLP. Six Alert snow samples collected in March 2011 and measured at Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France, had 17Oexcess of 45 ± 5 ppm (2σ SE) relative to Vienna Standard Mean Ocean Water. PMID:24009339

  10. Design documentation: Krypton encapsulation preconceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs,more » technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.« less

  11. Ca ISOTOPE EFFECTS IN ORGUEIL LEACHATES AND THE IMPLICATIONS FOR THE CARRIER PHASES OF {sup 54}Cr ANOMALIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moynier, Frederic; Podosek, Frank A.; Brannon, Joyce

    Primitive meteorites contain small {sup 40}Ca excesses, in addition to rare anomalies in {sup 48}Ca. Refractory inclusions from Vigarano and Allende have larger {sup 40}Ca and resolvable {sup 48}Ca anomalies. These results imply that Ca isotopic heterogeneities were still present in the early solar system at both the mineral and whole-rock scale. The absence of correlated Ca isotope anomalies in leachates from the CI1 chondrite Orgueil containing large {sup 54}Cr anomalies has implications on the origin of the Cr anomalies. {sup 54}Cr has to be produced either in massive stars during s-process nucleosynthesis without accompanying {sup 48}Ca or in particularmore » zones in the rare Type Ia supernovae. In the latter case, {sup 54}Cr has been produced in a zone predominantly enriched in Cr and {sup 54}Cr and not mixed with other zones, or {sup 54}Cr has been produced together with other neutron-rich nuclides and there has been subsequent decoupling of this material in the star, in the solar system, or in the laboratory.« less

  12. Calcium isotopic anomalies and the lack of aluminum-26 in an unusual Allende inclusion

    NASA Technical Reports Server (NTRS)

    Lee, T.; Russell, W. A.; Wasserburg, G. J.

    1979-01-01

    This letter reports the discovery of an unusual Allende inclusion that is rich in hibonite, Ca(Al, Ti, Mg)12O19, the most refractory and possibly the most primitive major oxide mineral from the solar nebula. The Mg and Ca isotopic compositions of this hibonite-rich inclusion are studied in order to investigate the distribution of Al-26 in the solar system and to extend the search for isotopic anomalies. The Mg results indicate that no Mg isotopic anomalies are present, that the initial Al-26/Al-27 ratio for the inclusion when it crystallized was less than 200 billionths, and that the Mg mass-fractionation effect in the inclusion must be less than about 20 per mil/amu for the hibonite and 10 per mil/amu for other phases. The Ca studies reveal that large Ca mass-fractionation effects of about 7.5 per mil/amu are present and that additional small 'nonlinear' effects of presumably nuclear origin at a level of about 1 to 2 per mil are present in at least Ca-42. A plausible model for the evolution of the hibonite-rich inclusion is outlined.

  13. O-16 excesses in Murchison and Murray hibonites - A case against a late supernova injection origin of isotopic anomalies in O, Mg, Ca, and Ti

    NASA Technical Reports Server (NTRS)

    Fahey, A. J.; Goswami, J. N.; Mckeegan, K. D.; Zinner, E. K.

    1987-01-01

    Ion probe measurements of the oxygen isotopic composition of seven hibonite samples from the CM chondrites Murchison and Murray are reported. All samples show large O-16 excesses relative to terrestrial oxygen. The data for all samples plot along the carbonaceous chondrite O-16-rich mixing line and show no evidence for isotopic mass fractionation effects characteristic of FUN inclusions. These hibonites have the largest Ca-48 and Ti-50 isotopic anomalies found to date; thus there is no intrinsic relationship between anomalies of a nucleosynthetic origin and isotopic mass fractionation effects. The large O-16 excess seen in the sample with the largest measured Ca-48 and Ti-50 depletions argues against a late injection of exotic material from a nearby supernova as a source for the isotopic anomalies.

  14. High-accuracy deep-UV Ramsey-comb spectroscopy in krypton

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Altmann, Robert K.; Dreissen, Laura S.; Eikema, Kjeld S. E.

    2017-01-01

    In this paper, we present a detailed account of the first precision Ramsey-comb spectroscopy in the deep UV. We excite krypton in an atomic beam using pairs of frequency-comb laser pulses that have been amplified to the millijoule level and upconverted through frequency doubling in BBO crystals. The resulting phase-coherent deep-UV pulses at 212.55 nm are used in the Ramsey-comb method to excite the two-photon 4p^6 → 4p^5 5p [1/2 ]_0 transition. For the {}^{84}Kr isotope, we find a transition frequency of 2829833101679(103) kHz. The fractional accuracy of 3.7 × 10^{-11} is 34 times better than previous measurements, and also the isotope shifts are measured with improved accuracy. This demonstration shows the potential of Ramsey-comb excitation for precision spectroscopy at short wavelengths.

  15. The VUV dimer spectra excited in condensed krypton

    NASA Astrophysics Data System (ADS)

    Gerasimov, Gennady N.; Krylov, Boris E.; Hallin, Reinhold

    2004-05-01

    The vacuum ultraviolet (VUV) emission spectra of krypton homonuclear molecules (dimers) were observed in the wavelength range 120-200 nm. The krypton dimers were excited in a DC capillary discharge and the wall of tube could be cooled with liquid nitrogen. The homogeneous DC discharge was a straight channel in the middle of capillary tube. The gas krypton pressure in the discharge channel could be stabilized in the pressure range from 3 hPa to 1000 hPa. The DC discharge current density and the electron concentration were ~ 10 A/cm2 and ~ 2-4 1014 cm-3, respectively. The VUV krypton spectra excited in vicinity of solid krypton were compared with the spectra recorded without condensed krypton. The VUV spectral lines intensities were observed as nonlinear function of the discharge length. This nonlinear increase of intensity with the length of the tube has still to be explained.

  16. Cerium anomaly across the mid-Tournaisian carbon isotope excursion (TICE)

    NASA Astrophysics Data System (ADS)

    Jiang, G.; Morales, D. C.; Maharjan, D. K.

    2015-12-01

    The Early Mississippian (ca. 359-345 Ma) represents one of the most important greenhouse-icehouse climate transitions in Earth history. Closely associated with this critical transition is a prominent positive carbon isotope excursion (δ13C ≥ +5‰) that has been documented from numerous stratigraphic successions across the globe. This δ13C excursion, informally referred to as the TICE (mid-Tournaisian carbon isotope excursion) event, has been interpreted as resulting from enhanced organic carbon burial, with anticipated outcomes including the lowering of atmospheric CO2 and global cooling, the growth of continental ice sheets and sea-level fall, and the increase of ocean oxygenation and ocean redox changes. The casual relationship between these events has been addressed from various perspectives but not yet clearly demonstrated. To document the potential redox change associated with the perturbation of the carbon cycle, we have analyzed rare earth elements (REE) and trace elements across the TICE in two sections across a shallow-to-deep water transect in the southern Great Basin (Utah and Nevada), USA. In both sections, the REE data show a significant positive cerium (Ce) anomaly (Ce/Ce* = Ce/(0.5La+0.5Pr)). Prior to the positive δ13C shift, most Ce/Ce* values are around 0.3 (between 0.2 and 0.4). Across the δ13C peak, Ce/Ce* values increase up to 0.87, followed by a decrease back to 0.2~0.3 after the δ13C excursion (Figure 1). The positive Ce anomaly is best interpreted as recording expansion of oxygen minimum zone and anoxia resulted from increased primary production. This is consistent with a significant increase of nitrogen isotopes (δ15N) across the δ13C peak. Integration of the carbon, nitrogen, and REE data demonstrates a responsive earth systems change linked to the perturbation of the Early Mississippian carbon cycle.

  17. Radio-Krypton Dating with 20kg of Water or Ice

    NASA Astrophysics Data System (ADS)

    Hu, S. M.; Gu, J. Q.; Jiang, W.; Lu, Z. T.; Ritterbusch, F.; Yang, G. M.

    2016-12-01

    Long-lived noble-gas isotopes 85Kr (10.8 y), 39Ar (269 y) and 81Kr (229 ky) are ideal tracers for dating environmental samples such as groundwater and ice. Together with 14C, these nuclides can be used to cover the whole range of 100 - 106 y. To meet the increasing demands from the earth science community, a new, improved ATTA apparatus for radio-krypton analysis is being developed at the University of Science and Technology of China (USTC). From 2017, this instrument will be capable to analyze several hundred samples per year and also reduce the sample requirement to 1-2.5 μL STP of krypton gas, which can be extracted from 20-50 kg of water or 8-20 kg of ice. In parallel, a new sampling machine for use in the field is under test at USTC, which weighs less than 20kg and can be carried by one person. With this new dating tool sharpened, we believe that many more interesting applications can be carried out in collaboration with the earth science communities. (http://atta.ustc.edu.cn)

  18. An evaluation of krypton propellant in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Linnell, Jesse Allen

    Due to its high specific impulse and low price, krypton has long sparked interest as an alternate Hall thruster propellant. Unfortunately at the moment, krypton's relatively poor performance precludes it as a legitimate option. This thesis presents a detailed investigation into krypton operation in Hall thrusters. These findings suggest that the performance gap can be decreased to 4% and krypton can finally become a realistic propellant option. Although krypton has demonstrated superior specific impulse, the xenon-krypton absolute efficiency gap ranges between 2 and 15%. A phenomenological performance model indicates that the main contributors to the efficiency gap are propellant utilization and beam divergence. Propellant utilization and beam divergence have relative efficiency deficits of 5 and 8%, respectively. A detailed characterization of internal phenomena is conducted to better understand the xenon-krypton efficiency gap. Krypton's large beam divergence is found to be related to a defocusing equipotential structure and a weaker magnetic field topology. Ionization processes are shown to be linked to the Hall current, the magnetic mirror topology, and the perpendicular gradient of the magnetic field. Several thruster design and operational suggestions are made to optimize krypton efficiency. Krypton performance is optimized for discharge voltages above 500 V and flow rates corresponding to an a greater than 0.015 mg/(mm-s), where alpha is a function of flow rate and discharge channel dimensions (alpha = m˙alphab/Ach). Performance can be further improved by increasing channel length or decreasing channel width for a given flow rate. Also, several magnetic field design suggestions are made to enhance ionization and beam focusing. Several findings are presented that improve the understanding of general Hall thruster physics. Excellent agreement is shown between equipotential lines and magnetic field lines. The trim coil is shown to enhance beam focusing

  19. A purity monitor for the KEDR liquid krypton calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, P. N.; Kotov, K. Yu.; Maslennikov, A. L.

    We present a purity monitor for the KEDR liquid krypton calorimeter. A new method is suggested based on the usage of a short pulse of a gas discharge as a source of ultraviolet radiation for the photoproduction of electrons in a drift cell of the monitor. This paper describes the design of the monitor, the results of experiments with gaseous and liquid krypton, as well as the experience of using the developed device in the process of krypton purification for the KEDR liquid krypton calorimeter.

  20. Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPa

    NASA Astrophysics Data System (ADS)

    Rosa, A. D.; Garbarino, G.; Briggs, R.; Svitlyk, V.; Morard, G.; Bouhifd, M. A.; Jacobs, J.; Irifune, T.; Mathon, O.; Pascarelli, S.

    2018-03-01

    Solid krypton (Kr) undergoes a pressure-induced martensitic phase transition from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. These two phases coexist in a very wide pressure domain inducing important modifications of the bulk properties of the resulting mixed phase system. Here, we report a detailed in situ x-ray diffraction and absorption study of the influence of the fcc-hcp phase transition on the compression behavior of solid krypton in an extended pressure domain up to 140 GPa. The onset of the hcp-fcc transformation was observed in this study at around 2.7 GPa and the coexistence of these two phases up to 140 GPa, the maximum investigated pressure. The appearance of the hcp phase is also evidenced by the pressure-induced broadening and splitting of the first peak in the XANES spectra. We demonstrate that the transition is driven by a continuous nucleation and intergrowth of nanometric hcp stacking faults that evolve in the fcc phase. These hcp stacking faults are unaffected by high-temperature annealing, suggesting that plastic deformation is not at their origin. The apparent small Gibbs free-energy differences between the two structures that decrease upon compression may explain the nucleation of hcp stacking faults and the large coexistence domain of fcc and hcp krypton. We observe a clear anomaly in the equation of state of the fcc solid at ˜20 GPa when the proportion of the hcp form reaches ˜20 % . We demonstrate that this anomaly is related to the difference in stiffness between the fcc and hcp phases and propose two distinct equation of states for the low and high-pressure regimes.

  1. Groundwater oxygen isotope anomaly before the M6.6 Tottori earthquake in Southwest Japan.

    PubMed

    Onda, Satoki; Sano, Yuji; Takahata, Naoto; Kagoshima, Takanori; Miyajima, Toshihiro; Shibata, Tomo; Pinti, Daniele L; Lan, Tefang; Kim, Nak Kyu; Kusakabe, Minoru; Nishio, Yoshiro

    2018-03-19

    Geochemical monitoring of groundwater in seismically-active regions has been carried out since 1970s. Precursors were well documented, but often criticized for anecdotal or fragmentary signals, and for lacking a clear physico-chemical explanation for these anomalies. Here we report - as potential seismic precursor - oxygen isotopic ratio anomalies of +0.24‰ relative to the local background measured in groundwater, a few months before the Tottori earthquake (M 6.6) in Southwest Japan. Samples were deep groundwater located 5 km west of the epicenter, packed in bottles and distributed as drinking water between September 2015 and July 2017, a time frame which covers the pre- and post-event. Small but substantial increase of 0.07‰ was observed soon after the earthquake. Laboratory crushing experiments of aquifer rock aimed to simulating rock deformation under strain and tensile stresses were carried out. Measured helium degassing from the rock and 18 O-shift suggest that the co-seismic oxygen anomalies are directly related to volumetric strain changes. The findings provide a plausible physico-chemical basis to explain geochemical anomalies in water and may be useful in future earthquake prediction research.

  2. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars.

    PubMed

    Shaheen, R; Abramian, A; Horn, J; Dominguez, G; Sullivan, R; Thiemens, Mark H

    2010-11-23

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess (17)O (0.4-3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O(3) reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth.

  3. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars

    PubMed Central

    Shaheen, R.; Abramian, A.; Horn, J.; Dominguez, G.; Sullivan, R.; Thiemens, Mark H.

    2010-01-01

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess 17O (0.4–3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O3 reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth. PMID:21059939

  4. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  5. Isotopic Anomalies in Primitive Solar System Matter: Spin-State-Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milam, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar nebula, Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores. We also show that while the nitriles, HCN and HNC, contain the greatest N=15 enrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support the view that solar system N-15 and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  6. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  7. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1985-01-01

    Separation of carbon isotopes by photolysis of CS.sub.2 in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distribution of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of .sup.13 CS.sub.2 is greater than that of .sup.12 CS.sub.2 (because the absorption of 206 nm radiation is greater for .sup.13 CS.sub.2), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  8. NUCLEOSYNTHETIC TUNGSTEN ISOTOPE ANOMALIES IN ACID LEACHATES OF THE MURCHISON CHONDRITE: IMPLICATIONS FOR HAFNIUM-TUNGSTEN CHRONOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhardt, Christoph; Wieler, Rainer; Kleine, Thorsten

    Progressive dissolution of the Murchison carbonaceous chondrite with acids of increasing strengths reveals large internal W isotope variations that reflect a heterogeneous distribution of s- and r-process W isotopes among the components of primitive chondrites. At least two distinct carriers of nucleosynthetic W isotope anomalies must be present, which were produced in different nucleosynthetic environments. The co-variation of {sup 182}W/{sup 184}W and {sup 183}W/{sup 184}W in the leachates follows a linear trend that is consistent with a mixing line between terrestrial W and a presumed s-process-enriched component. The composition of the s-enriched component agrees reasonably well with that predicted bymore » the stellar model of s-process nucleosynthesis. The co-variation of {sup 182}W/{sup 184}W and {sup 183}W/{sup 184}W in the leachates provides a means for correcting the measured {sup 182}W/{sup 184}W and {sup 182}W/{sup 183}W of Ca-Al-rich inclusions (CAI) for nucleosynthetic anomalies using the isotopic variations in {sup 183}W/{sup 184}W. This new correction procedure is different from that used previously, and results in a downward shift of the initial {epsilon}{sup 182}W of CAI to -3.51 {+-} 0.10 (where {epsilon}{sup 182}W is the variation in 0.01% of the {sup 182}W/{sup 183}W ratio relative to Earth's mantle). This revision leads to Hf-W model ages of core formation in iron meteorite parent bodies that are {approx}2 Myr younger than previously calculated. The revised Hf-W model ages are consistent with CAI being the oldest solids formed in the solar system, and indicate that core formation in some planetesimals occurred within {approx}2 Myr of the beginning of the solar system.« less

  9. Accurate virial coefficients of gaseous krypton from state-of-the-art ab initio potential and polarizability of the krypton dimer

    NASA Astrophysics Data System (ADS)

    Song, Bo; Waldrop, Jonathan M.; Wang, Xiaopo; Patkowski, Konrad

    2018-01-01

    We have developed a new krypton-krypton interaction-induced isotropic dipole polarizability curve based on high-level ab initio methods. The determination was carried out using the coupled-cluster singles and doubles plus perturbative triples method with very large basis sets up to augmented correlation-consistent sextuple zeta as well as the corrections for core-core and core-valence correlation and relativistic effects. The analytical function of polarizability and our recently constructed reference interatomic potential [J. M. Waldrop et al., J. Chem. Phys. 142, 204307 (2015)] were used to predict the thermophysical and electromagnetic properties of krypton gas. The second pressure, acoustic, and dielectric virial coefficients were computed for the temperature range of 116 K-5000 K using classical statistical mechanics supplemented with high-order quantum corrections. The virial coefficients calculated were compared with the generally less precise available experimental data as well as with values computed from other potentials in the literature {in particular, the recent highly accurate potential of Jäger et al. [J. Chem. Phys. 144, 114304 (2016)]}. The detailed examination in this work suggests that the present theoretical prediction can be applied as reference values in disciplines involving thermophysical and electromagnetic properties of krypton gas.

  10. Isotopic Anomalies in Primitive Solar System Matter: Spin-State Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milan, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15, This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar core. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotop c enrichments measured in carbonaceous meteorites, However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores, We also show that while the nitriles, HCN and HNC, contain the greatest N-15 enrichment, this is not expected to correlate with extreme D emichment. These calculations therefore support the view that Solar System N-15 and D isotopic anomalies have an interstellar heritage, We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  11. Energy of the quasi-free electron in supercritical krypton near the critical point.

    PubMed

    Li, Luxi; Evans, C M; Findley, G L

    2005-12-01

    Field ionization measurements of high-n CH(3)I and C(2)H(5)I Rydberg states doped into krypton are presented as a function of krypton number density along the critical isotherm. These data exhibit a decrease in the krypton-induced shift of the dopant ionization energy near the critical point. This change in shift is modeled to within +/-0.2% of experiment using a theory that accounts for the polarization of krypton by the dopant ion, the polarization of krypton by the quasi-free electron that arises from field ionization of the dopant, and the zero point kinetic energy of the free electron. The overall decrease in the shift of the dopant ionization energy near the critical point of krypton, which is a factor of 2 larger than that observed in argon, is dominated by the increase in the zero point kinetic energy of the quasi-free electron.

  12. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    USGS Publications Warehouse

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.

    2017-01-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  13. An experimental study of the isotopic enrichment in Ar, Kr, and Xe when trapped in water ice

    NASA Technical Reports Server (NTRS)

    Notesco, G.; Laufer, D.; Bar-Nun, A.; Owen, T.

    1999-01-01

    The isotopic enrichment of argon, krypton, and xenon, when trapped in water ice, was studied experimentally. The isotopes were found to be enriched according to their (m1/m2)1/2 ratio. These enrichment factors could be useful for comparison among the uncertain cosmic or solar isotopic ratios, the hopeful in situ cometary ratio, and those in Earth's atmosphere, in the context of cometary delivery of volatiles to Earth.

  14. Krypton based adsorption type cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Schember, Helene R. (Inventor)

    1989-01-01

    Krypton and a monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an adsorption type refrigerator to improve refrigeration efficiency and operational longevity.

  15. Distribution of p-process 174Hf in early solar system materials and the origin of nucleosynthetic Hf and W isotope anomalies in Ca-Al rich inclusions

    NASA Astrophysics Data System (ADS)

    Peters, Stefan T. M.; Münker, Carsten; Pfeifer, Markus; Elfers, Bo-Magnus; Sprung, Peter

    2017-02-01

    anomalies in CAIs are therefore best explained by selective processing of presolar carrier phases prior to CAI formation, and not by a late injection of supernova materials. Likewise, other isotope anomalies in additional elements in CAIs relative to the bulk solar system may reflect the same process. The isotopic heterogeneities between the first refractory condensates may have been eradicated partially during CAI formation, because W isotope anomalies in CAIs appear to decrease with increasing W concentrations as inferred from time-integrated 182W/184W. Importantly, the 176Lu-176Hf and 182Hf-182W chronometers are not significantly affected by nucleosynthetic heterogeneity of Hf isotopes in bulk meteorites, but may be affected in CAIs.

  16. Pb-isotopic compositions of volcanic rocks in the West and East Philippine island arcs: presence of the Dupal isotopic anomaly

    NASA Astrophysics Data System (ADS)

    Mukasa, Samuel B.; McCabe, Robert; Gill, James B.

    1987-07-01

    The Philippine islands are situated between two oppositely dipping zones of seismicity. With the exception of a few areas, such as in the west central Philippines where the North Palawan continental terrane (NPCT) has collided with the archipelago, these seismic zones are well defined to depths of 200 km. Active volcanic chains overlay segments in each of these zones, suggesting that subduction is presently taking place both east and west of the islands. Lavas we have studied are thus divided between what has been termed the West Philippine arc and the East Philippine arc. West Philippine arc volcanic rocks which were extruded before the Philippine archipelago collided with the NPCT, or which are younger than the collision but crop out hundreds of kilometers from the collision zone, and all but one of the rocks from the East Philippine arc fall in the MORB field on 207Pb/ 204Pb versus 206Pb/ 204Pb covariation diagrams. This is surprising considering the frequency with which arc materials have 207Pb/ 204Pb ratios higher than those of MORB, the highBa/REE and Sr/REE ratios in the lavas and the possibility of sediment subduction given the small accretionary prisms. All of these rocks have high 208Pb/ 204Pb ratios with respect to Pacific and Atlantic Ocean MORB, but are similar to Indian Ocean MORB and IOB. Thus the Philippines consist of island arcs with the peculiar Dupal isotopic anomaly documented between 0° and 60°S in the southern hemisphere and particularly in the Indian Ocean region. This demonstrates that the Dupal isotopic anomaly is not restricted to the southern hemisphere, or to MORB and OIB. Post-collision rocks cropping out near the NPCT, in the West Philippine arc, have elevated 208Pb/ 204Pb and 207Pb/ 204Pb ratios that could be attributed to assimilation of the newly introduced continental crust (NPCT) by mantle-derived magmas or to the addition of a sedimentary component to mantle-derived magmas.

  17. Strong Water Isotopic Anomalies in the Martian Atmosphere: Probing Current and Ancient Reservoirs

    NASA Technical Reports Server (NTRS)

    Villanueva, G. L.; Mumma, M. J.; Novak, R. E.; Käufl, H. U.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A.; Smith, M. D.

    2015-01-01

    We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep.

  18. Zinc isotope anomalies. [in Allende meteorite

    NASA Technical Reports Server (NTRS)

    Volkening, J.; Papanastassiou, D. A.

    1990-01-01

    The Zn isotope composition in refractory-element-rich inclusions of the Allende meteorite are determined. Typical inclusions contain normal Zn. A unique inclusion of the Allende meteorite shows an excess for Zn-66 of 16.7 + or - 3.7 eu (1 eu = 0.01 percent) and a deficit for Zn-70 of 21 + or - 13 eu. These results indicate the preservation of exotic components even for volatile elements in this inclusion. The observed excess Zn-66 correlates with excesses for the neutron-rich isotopes of Ca-48, Ti-50, Cr-54, and Fe-58 in the same inclusion.

  19. ATTA-3: a State-of-the-Art Instrument for Radio-Krypton Dating

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Zappala, J. C.; Bailey, K.; Lu, Z.; Müller, P.; O'Connor, T. P.

    2013-12-01

    The ATTA-3 instrument at Argonne has recently enabled routine Kr-81 dating. The instrument is based on Atom Trap Trace Analysis (ATTA), a novel laser based atom counting technique that allows detection of long lived noble gas radioisotopes (Kr-81, Kr-85 and Ar-39) with extremely low abundance (1E-16 to 1E-10). At the center of the instrument is a magneto-optical trap (MOT), which traps and counts only the atoms of the desired isotope. This unique feature makes ATTA free of interference from any other isotopes or molecular species. For Kr-81 dating in the age range of 150 - 1,500 kyr, the required sample size is 5 - 10 micro-L STP of krypton gas, which can be extracted from approximately 100 - 200 kg of water or 40 - 80 kg of ice. Several recent developments in our lab may lead to further improvements to the current ATTA-3 apparatus: 1) The isotopic abundance ratio between the unknown, rare isotope (either Kr-81 or Kr-85) and the stable, abundant isotope (Kr-83) is measured. Here the stable isotope serves as a control isotope. A new method has been developed that allows more accurate measurements of the control isotope Kr-83. Combined with the ability to measure the rare Kr-81 and Kr-85 isotopes, this scheme allows ATTA-3 to directly determine 81Kr/Kr and 85Kr/Kr ratios without other supplemental measurements, to reduce the overall uncertainties of the measured isotope ratios, and also to improve the long term stability of the system. 2) The current capacity of the ATTA-3 instrument is about 120 samples per year. The throughput is mainly limited by the so called 'memory effect', which is caused by the residual samples trapped in the system after each measurement. These residual samples are gradually released in subsequent measurements, causing cross-sample contaminations. In order to mitigate this problem, we wash the system with a xenon discharge for about 36 hours between measurements. This practice limits the overall sample processing speed. Preliminary

  20. A Distant Planet: Finding Superman's Krypton

    NASA Astrophysics Data System (ADS)

    Ricca, B.

    2016-01-01

    In 2012, Neil deGrasse Tyson made headlines when he appeared in a Superman comic book and pinpointed a real planet (located in Corvus) that matched the description of Superman's homeworld, the fictional planet of Krypton. This story tracked all over the world. Why? I will look at the figure of Superman, whose backstory—orphan from an exploding planet—is somehow known by everyone from the age of eight on. I will look at how specific astronomical phenomena (in the sky and in the news) may have inspired Superman's young teenaged creators in the 1930s to create this iconic modern myth—a myth, like many, grounded in astronomy. My goal is to show that comics—which we normally think of as juvenile, throwaway entertainment— actually tried to base themselves (and certainly were inspired by) actual astronomical events in the thirties and forties, made more accessible to the public by new scientific explanations, including a real supernova that may have inspired the destruction of Krypton.

  1. Isotopic coherence of refractory inclusions from CV and CK meteorites: Evidence from multiple isotope systems

    NASA Astrophysics Data System (ADS)

    Shollenberger, Quinn R.; Borg, Lars E.; Render, Jan; Ebert, Samuel; Bischoff, Addi; Russell, Sara S.; Brennecka, Gregory A.

    2018-05-01

    Calcium-aluminum-rich inclusions (CAIs) are the oldest dated materials in the Solar System and numerous previous studies have revealed nucleosynthetic anomalies relative to terrestrial rock standards in many isotopic systems. However, most of the isotopic data from CAIs has been limited to the Allende meteorite and a handful of other CV3 chondrites. To better constrain the isotopic composition of the CAI-forming region, we report the first Sr, Mo, Ba, Nd, and Sm isotopic compositions of two CAIs hosted in the CK3 desert meteorites NWA 4964 and NWA 6254 along with two CAIs from the CV3 desert meteorites NWA 6619 and NWA 6991. After consideration of neutron capture processes and the effects of hot-desert weathering, the Sr, Mo, Ba, Nd, and Sm stable isotopic compositions of the samples show clearly resolvable nucleosynthetic anomalies that are in agreement with previous results from Allende and other CV meteorites. The extent of neutron capture, as manifested by shifts in the observed 149Sm-150Sm isotopic composition of the CAIs is used to estimate the neutron fluence experienced by some of these samples and ranges from 8.40 × 1013 to 2.11 × 1015 n/cm2. Overall, regardless of CAI type or host meteorite, CAIs from CV and CK chondrites have similar nucleosynthetic anomalies within analytical uncertainty. We suggest the region that CV and CK CAIs formed was largely uniform with respect to Sr, Mo, Ba, Nd, and Sm isotopes when CAIs condensed and that CAIs hosted in CV and CK meteorites are derived from the same isotopic reservoir.

  2. Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs.

    PubMed

    Villanueva, G L; Mumma, M J; Novak, R E; Käufl, H U; Hartogh, P; Encrenaz, T; Tokunaga, A; Khayat, A; Smith, M D

    2015-04-10

    We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep. Copyright © 2015, American Association for the Advancement of Science.

  3. Origin of the DUPAL anomaly in mantle xenoliths of Patagonia (Argentina) and geodynamic consequences

    NASA Astrophysics Data System (ADS)

    Mazzucchelli, Maurizio; Cipriani, Anna; Hémond, Christophe; Zanetti, Alberto; Bertotto, Gustavo Walter; Cingolani, Carlos Alberto

    2016-04-01

    The sub-continental lithospheric mantle of South America has been known for some time to carry the DUPAL isotope anomaly as seen in volcanics from the Paraná volcanic province. However, this has not allowed discriminating whether the DUPAL anomaly is a primary feature of the mantle source or acquired during the upwelling and emplacement of the primary magmas. We discovered mantle xenoliths from the Tres Lagos location in Patagonia that carry evidence of percolation by metasomatic melts that imparted the DUPAL isotope anomaly signature. We discuss a model that requires four isotope components (LCC, EM2, HIMU and DM) to account for the Sr, Nd and Pb isotope variability of our samples. We propose that upwelling of hot astenosphere during the Miocene could have triggered the melting of the LCC and EM2 components carrying the DUPAL anomaly, previously entrained in the subcontinental mantle by subduction. These ascending melts would have then metasomatised the local SCLM characterised by DMM and HIMU geochemical affinity generating the hybrid DUPAL-bearing mantle sampled by the Tres Lagos xenoliths.

  4. FE and MG Isotopic Analyses of Isotopically Unusual Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.; Ito, M.; Rahman, Z.

    2011-01-01

    Interstellar and circumstellar silicate grains are thought to be Mg-rich and Fe-poor, based on astronomical observations and equilibrium condensation models of silicate dust formation in stellar outflows. On the other hand, presolar silicates isolated from meteorites have surprisingly high Fe contents and few Mg-rich grains are observed. The high Fe contents in meteoritic presolar silicates may indicate they formed by a non-equilibrium condensation process. Alternatively, the Fe in the stardust grains could have been acquired during parent body alteration. The origin of Fe in presolar silicates may be deduced from its isotopic composition. Thus far, Fe isotopic measurements of presolar silicates are limited to the Fe-54/Fe-56 ratios of 14 grains. Only two slight anomalies (albeit solar within error) were observed. However, these measurements suffered from contamination of Fe from the adjacent meteorite matrix, which diluted any isotopic anomalies. We have isolated four presolar silicates having unusual O isotopic compositions by focused ion beam (FIB) milling and obtained their undiluted Mg and Fe isotopic compositions. These compositions help to identify the grains stellar sources and to determine the source of Fe in the grains.

  5. Sheath oscillation characteristics and effect on near-wall conduction in a krypton Hall thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengkui, E-mail: fengkuizhang@163.com; Kong, Lingyi; Li, Chenliang

    2014-11-15

    Despite its affordability, the krypton Hall-effect thruster in applications always had problems in regard to performance. The reason for this degradation is studied from the perspective of the near-wall conductivity of electrons. Using the particle-in-cell method, the sheath oscillation characteristics and its effect on near-wall conduction are compared in the krypton and xenon Hall-effect thrusters both with wall material composed of BNSiO{sub 2}. Comparing these two thrusters, the sheath in the krypton-plasma thruster will oscillate at low electron temperatures. The near-wall conduction current is only produced by collisions between electrons and wall, thereby causing a deficiency in the channel current.more » The sheath displays spatial oscillations only at high electron temperature; electrons are then reflected to produce the non-oscillation conduction current needed for the krypton-plasma thruster. However, it is accompanied with intensified oscillations.« less

  6. Osmium isotopic homogeneity in the CK carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Goderis, Steven; Brandon, Alan D.; Mayer, Bernhard; Humayun, Munir

    2017-11-01

    Variable proportions of isotopically diverse presolar components are known to account for nucleosynthetic isotopic anomalies for a variety of elements (e.g., Ca, Ti, Cr, Ni, Sr, Zr, Mo, Ru, Pd, Ba, Nd, and Sm) in both bulk chondrites and achondrites. However, although large Os isotopic anomalies have been measured in acid leachates and residues of unequilibrated chondrites, bulk chondrites of various groups, iron meteorites, and pallasites exhibit Os isotopic compositions that are indistinguishable from terrestrial or bulk solar isotopic abundances. Since the magnitude of nucleosynthetic anomalies is typically largest in the carbonaceous chondrites, this study reports high-precision Os isotopic compositions and highly siderophile element (HSE) concentrations for ten CK chondrites. The isotope dilution concentration data for HSE and high-precision Os isotope ratios were determined on the same digestion aliquots, to precisely correct for radiogenic contributions to 186Os and 187Os. While acid leached bulk unequilibrated carbonaceous chondrites show deficits of s-process Os components to the same extent as revealed by unequilibrated enstatite, ordinary, and Rumuruti chondrites, equilibrated bulk CK chondrites exhibit no resolvable Os isotopic anomalies. These observations support the idea that acid-resistant, carbon-rich presolar grains, such as silicon carbide (SiC) or graphite, are major carriers for nucleosynthetic isotopic anomalies of Os. The destruction of these presolar grains, which are omnipresent in unequilibrated meteorites, must have occurred during aqueous alteration and thermal metamorphism, early in the CK chondrite parent body history. The dispersal of CK chondrites along the IIIAB iron meteorite isochron on a 187Os/188Os versus 187Re/188Os diagram, with Re/Os ratios from 0.032 to 0.083, in combination with the observed redistribution of other HSE (e.g., Pt, Pd), highlights the influence of parent body processes, overprinted by effects of recent

  7. DUPAL anomaly in the Sea of Japan: Pb, Nd, and Sr isotopic variations at the eastern Eurasian continental margin

    USGS Publications Warehouse

    Tatsumoto, M.; Nakamura, Y.

    1991-01-01

    Volcanic rocks from the eastern Eurasian plate margin (southwestern Japan, the Sea of Japan, and northeastern China) show enriched (EMI) component signatures. Volcanic rocks from the Ulreung and Dog Islands in the Sea of Japan show typical DUPAL anomaly characteristics with extremely high ??208/204 Pb (up to 143) and enriched Nd and Sr isotopic compositions (??{lunate}Nd = -3 to -5, 87Sr 86Sr = ~0.705). The ??208/204 Pb values are similar to those associated with the DUPAL anomaly (up to 140) in the southern hemisphere. Because the EMI characteristics of basalts from the Sea of Japan are more extreme than those of southwestern Japan and inland China basalts, we propose that old mantle lithosphere was metasomatized early (prior to the Proterozoic) with subduction-related fluids (not present subduction system) so that it has been slightly enriched in incompatible elements and has had a high Th/U for a long time. The results of this study support the idea that the old subcontinental mantle lithosphere is the source for EMI of oceanic basalts, and that EMI does not need to be stored at the core/ mantle boundary layer for a long time. Dredged samples from seamounts and knolls from the Yamato Basin Ridge in the Sea of Japan show similar isotopic characteristics to basalts from the Mariana arc, supporting the idea that the Yamato Basin Ridge is a spreading center causing separation of the northeast Japan Arc from Eurasia. ?? 1991.

  8. Geochemical and isotopic determination of deep groundwater contributions and salinity to the shallow groundwater and surface water systems, Mesilla Basin, New Mexico, Texas, and Mexico

    NASA Astrophysics Data System (ADS)

    Robertson, A.; Carroll, K. C.; Kubicki, C.; Purtshert, R.

    2017-12-01

    The Mesilla Basin/Conejos-Médanos aquifer system, extending from southern New Mexico to Chihuahua, Mexico, is a priority transboundary aquifer under the 2006 United States­-Mexico Transboundary Aquifer Assessment Act. Declining water levels, deteriorating water quality, and increasing groundwater use by municipal, industrial, and agricultural users on both sides of the international border raise concerns about long-term aquifer sustainability. Relative contributions of present-day and "paleo" recharge to sustainable fresh groundwater yields has not been determined and evidence suggests that a large source of salinity at the distal end of the Mesilla Basin is saline discharge from deep groundwater flow. The magnitude and distribution of those deep saline flow paths are not determined. The contribution of deep groundwater to discharge and salinity in the shallow groundwater and surface water of the Mesilla Basin will be determined by collecting discrete groundwater samples and analyzing for aqueous geochemical and isotopic tracers, as well as the radioisotopes of argon and krypton. Analytes include major ions, trace elements, the stable isotopes of water, strontium and boron isotopes, uranium isotopes, the carbon isotopes of dissolved inorganic carbon, noble gas concentrations and helium isotope ratios. Dissolved gases are extracted and captured from groundwater wells using membrane contactors in a process known as ultra-trace sampling. Gas samples are analyzed for radioisotope ratios of krypton by the ATTA method and argon by low-level counting. Effectiveness of the ultra-trace sampling device and method was evaluated by comparing results of tritium concentrations to the krypton-85 content. Good agreement between the analyses, especially in samples with undetectable tritium, indicates that the ultra-trace procedure is effective and confirms that introduction of atmospheric air has not occurred. The geochemistry data indicate a complex system of geochemical

  9. Nitrogen Isotopic Anomalies in a Hydrous Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Smith, J. B.; Dai, Z. R.; Weber, P. K.; Graham, G. A.; Hutcheon, I. D.; Bajt, S.; Ishii, H.; Bradley, J. P.

    2005-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere are the fine-grained end member (5 - 50 microns in size) of the meteoritic material available for investigation in the laboratory. IDPs are derived from either cometary or asteroidal sources. Some IDPs contain cosmically primitive materials with isotopic signatures reflecting presolar origins. Recent detailed studies using the NanoSIMS have shown there is a wide variation of isotopic signatures within individual IDPs; grains with a presolar signature have been observed surrounded by material with a solar isotopic composition. The majority of IDPs studied have been anhydrous. We report here results from integrated NanoSIMS/FIB/TEM/Synchrotron IR studies of a hydrous IDP, focused on understanding the correlations between the isotopic, mineralogical and chemical compositions of IDPs.

  10. Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes

    NASA Astrophysics Data System (ADS)

    Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.

    2017-09-01

    We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.

  11. Zinc isotope anomalies in Allende meteorite inclusions

    NASA Technical Reports Server (NTRS)

    Loss, R. D.; Lugmair, G. W.

    1990-01-01

    The isotopic compositions of Zn, Cr, Ti, and Ca have been measured in a number of CAIs from the Allende meteorite. The aim was to test astrophysical models which predict large excesses of Zn-66 to accompany excesses in the neutron-rich isotopes of Ca, Ti, Cr, and Ni. Some of the CAIs show clearly resolved but small excesses for Zn-66 which are at least an order of magnitude smaller than predicted. This result may simply reflect the volatility and chemical behavior of Zn as compared to the other (more refractory) anomalous elements found in these samples. Alternatively, revision of parameters and assumptions used for the model calculations may be required.

  12. Krypton gas cylinders as a source of radiation.

    PubMed

    Fischer, Helmut W; Bielefeld, Tom; Hettwig, Bernd

    2010-07-01

    A standard 40 foot shipping container with a cargo of pressurized krypton gas in 159 steel cylinders, which had triggered a radiation alarm, was investigated to address radiation safety and illicit nuclear trafficking concerns. The investigation included contamination and dose rate measurements as well as in situ high resolution gamma spectroscopy. The dose rate measurements gave a maximum value of 0.07 microSv h(-1) above background (0.08 to 0.11 microSv h(-1)) on the cylinder surface and no detectable increase above background at distances of 1 m and higher. Contamination monitor readings showed a similar relative increase (plus 8 cpm) above background (about 12 cpm) to the dose rate readings. Quantitative gamma spectroscopy revealed a contamination of the gas with 85Kr at a level of 3.5 x 10(5) Bq kg(-1). This value was found to be consistent with analytical and numerical estimates based on current data for atmospheric 85Kr, which is captured from ambient air together with stable krypton during the production process. This incident demonstrates an apparent lack of radiation-related knowledge by those who handle krypton gas, as well as by border control personnel and emergency responders. We therefore propose to improve labeling and documentation standards for such shipments. This effort may be facilitated by introducing the new category of "technically enhanced artificial radioactive material," or "TEARM" (similar to the existing "naturally occurring radioactive material" or "NORM" and "technically enhanced naturally occurring radioactive material" or "TENORM" categories).

  13. Post-GOE redox insights from Mo isotopes, Ce anomalies, and Mn from the 2.24 Ga Kazput Formation

    NASA Astrophysics Data System (ADS)

    Thoby, M.; Konhauser, K.; Philippot, P.; Killingsworth, B.; Warchola, T.; Lalonde, S.

    2017-12-01

    Following the Great Oxidation event (GOE) defined from 2.45 to 2.2 Ga, an event marking the first appearance of widespread atmospheric oxygen, a combination of decreased Mn(II) supply from land and increased Mn(IV)-precipitation in the oceans should have resulted in lower concentrations of Mn in seawater. Nevertheless, it appears that some early Proterozoic marine sediments record high seawater Mn concentrations hundreds of millions of years after the GOE. Here we investigate a Mn excursion associated with marine carbonates and shales of the 2.31 Ga Kazput Formation. Samples were recovered from drill core collected during the Turee Creek Drilling Project (TCDP). Using molybdenum (Mo) isotope data coupled with cerium (Ce) anomalies, we define the redox condition of the Kazput depositional environment. Initial results show no Mo fractionation and few cerium anomalies in carbonates, pointing to an anoxic basin without Mn oxide precipitates. Additionally, XRF data on the shales indicates an association of Mn with calcium (Ca) suggesting an anoxic environment at the time of their deposition. Our results provide new insights into the nature and environment of the Turee Creek basin and the extent of oxygenation of surface waters after the GOE.

  14. Deep Mantle Origin for the DUPAL Anomaly?

    NASA Astrophysics Data System (ADS)

    Ingle, S.; Weis, D.

    2002-12-01

    Twenty years after the discovery of the Dupal Anomaly, its origin remains a geochemical and geophysical enigma. This anomaly is associated with the Southern Hemisphere oceanic mantle and is recognized by basalts with geochemical characteristics such as low 206Pb/204Pb and high 87Sr/86Sr. Both mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) are affected, despite originating from melting at different depths and of different mantle sources. We compile geochemical data for both MORB and OIB from the three major oceans to help constrain the physical distribution and chemical composition of the Dupal Anomaly. There is a clear decrease in 206Pb/204Pb and an increase in 87Sr/86Sr with more southerly latitude for Indian MORB and OIB; these correlations are less obvious in the Atlantic and non-existent in the Pacific. The average* 143Nd/144Nd for Pacific and Atlantic OIB is 0.5129, but is lower for Indian OIB (0.5128). Interestingly, Pacific, Atlantic and Indian OIB all have 176Hf/177Hf averages of 0.2830. Indian MORB also record this phenomenon of low Nd with normal Hf isotopic compositions (Chauvel and Blichert-Toft, EPSL, 2001). Hf isotopes appear, therefore, to be a valid isotopic proxy for measuring the presence and magnitude of the Dupal Anomaly at specific locations. Wen (EPSL, 2001) reported a low-velocity layer at the D'' boundary beneath the Indian Ocean from which the Dupal Anomaly may originate. This hypothesis may be consistent with our compilations demonstrating that the long-lived Dupal Anomaly does not appear to be either mixing efficiently into the upper mantle or spreading to other ocean basins through time. We suggest that the Dupal source could be continually tapped by upwelling Indian Ocean mantle plumes. Plumes would then emplace pockets of Dupal material into the upper mantle and other ascending plumes might further disperse this material into the shallow asthenosphere. This could explain both the presence of the Dupal signature in MORB

  15. Stable Isotope Systematics of Martian Perchlorate

    NASA Astrophysics Data System (ADS)

    Martin, P.; Farley, K. A.; Archer, D., Jr.; Atreya, S. K.; Conrad, P. G.; Eigenbrode, J. L.; Fairen, A.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Malespin, C.; Ming, D. W.; Navarro-Gonzalez, R.; Sutter, B.

    2015-12-01

    Chlorine isotopic compositions in HCl released during evolved gas analysis (EGA) runs have been detected by the Sample Analysis at Mars (SAM) instrument on the Curiosity rover ranging from approximately -9‰ to -50‰ δ37Cl, with two spatially and isotopically separated groups of samples averaging -15‰ and -45‰. These extremely low values are the first such detection of any known natural material; common terrestrial values very rarely exceed ±5‰, and the most extreme isotopic signature yet detected elsewhere in the solar system are values of around +24‰ on the Moon. The only other known location in the solar system with large negative chlorine isotopes is the Atacama Desert, where perchlorate with -14‰ δ37Cl has been detected. The Atacama perchlorate has unusual Δ17O signatures associated with it, indicating a formation mechanism involving O3, which suggests an atmospheric origin of the perchlorate and associated large isotopic anomalies. Identification of non-zero positive Δ17O signatures in the O2 released during EGA runs would allow definitive evidence for a similar process having occurred on Mars. Perchlorate is thought to be the most likely source of HCl in EGA runs due to the simultaneous onset of O2 release. If perchlorate is indeed the HCl source, atmospheric chemistry could be responsible for the observed isotopic anomalies, with variable extents of perchlorate production producing the isotopic variability. However, chloride salts have also been observed to release HCl upon heating; if the timing of O2 release is merely coincidental, observed HCl could be coming from chlorides. At thermodynamic equilibrium, the fractionation factor of perchlorate reduction is 0.93, meaning that differing amounts of post-deposition reduction of isotopically normal perchlorate to chloride could account for the highly variable Cl isotopes. Additionally, post-deposition reduction could account for the difference between the two Cl isotopic groups if perchlorate

  16. Mass-independent isotope fractionation of Mo, Ru, Cd, and Te

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Moynier, F.; Albarède, F.

    2006-12-01

    The variation of the mean charge distribution in the nucleus with the neutron number of different isotopes induces a tenuous shift of the nuclear field. The mass fractionation induced during phase changes is irregular, notably with 'staggering' between odd and even masses, and becomes increasingly non-linear for neutron-rich isotopes. A strong correlation is observed between the deviation of the isotopic effects from the linear dependence with mass and the corresponding nuclear charge radii. We first demonstrated on a number of elements the existence of such mass-independent isotope fractionation in laboratory experiments of solvent extraction with a macrocyclic compound. The isotope ratios were analyzed by multiple-collector inductively coupled plasma mass spectrometry with a typical precision of <100 ppm. The isotopes of odd and even atomic masses are enriched in the solvent to an extent that closely follows the variation of their nuclear charge radii. The present results fit Bigeleisen's (1996) model, which is the standard mass-dependent theory modified to include a correction term named the nuclear field shift effect. For heavy elements like uranium, the mass-independent effect is important enough to dominate the mass-dependent effect. We subsequently set out to compare the predictions of Bigeleisen's theory with the isotopic anomalies found in meteorites. Some of these anomalies are clearly inconsistent with nucleosynthetic effects (either s- or r-processes). Isotopic variations of Mo and Ru in meteorites, especially in Allende (CV3), show a clear indication of nucleosynthetic components. However, the mass-independent anomaly of Ru observed in Murchison (CM2) is a remarkable exception which cannot be explained by the nucleosynthetic model, but fits the nuclear field shift theory extremely well. The abundances of the even atomic mass Te isotopes in the leachates of carbonaceous chondrites, Allende, Murchison, and Orgueil, fit a mass-dependent law well, but the

  17. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    PubMed Central

    2017-01-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac–Coulomb and Dirac–Coulomb–Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved. PMID:28595411

  18. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    NASA Astrophysics Data System (ADS)

    Jäger, Benjamin; Bich, Eckard

    2017-06-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved.

  19. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  20. Iron and nickel isotope compositions of presolar silicon carbide grains from supernovae

    NASA Astrophysics Data System (ADS)

    Kodolányi, János; Stephan, Thomas; Trappitsch, Reto; Hoppe, Peter; Pignatari, Marco; Davis, Andrew M.; Pellin, Michael J.

    2018-01-01

    We report the carbon, silicon, iron, and nickel isotope compositions of twenty-five presolar SiC grains of mostly supernova (SN) origin. The iron and nickel isotope compositions were measured with the new Chicago Instrument for Laser Ionization, CHILI, which allows the analysis of all iron and nickel isotopes without the isobaric interferences that plagued previous measurements with the NanoSIMS. Despite terrestrial iron and nickel contamination, significant isotopic anomalies in 54Fe/56Fe, 57Fe/56Fe, 60Ni/58Ni, 61Ni/58Ni, 62Ni/58Ni, and 64Ni/58Ni were detected in nine SN grains (of type X). Combined multi-isotope data of three grains with the largest nickel isotope anomalies (>100‰ or <-100‰ in at least one isotope ratio, when expressed as deviation from the solar value) are compared with the predictions of two SN models, one with and one without hydrogen ingestion in the He shell prior to SN explosion. One grain's carbon-silicon-iron-nickel isotope composition is consistent with the prediction of the model without hydrogen ingestion, whereas the other two grains' isotope anomalies could not be reproduced using either SN models. The discrepancies between the measured isotope compositions and model predictions may indicate element fractionation in the SN ejecta prior to or during grain condensation, and reiterate the need for three-dimensional SN models.

  1. A negative excursion at 14-16 Ma in seawater osmium isotope record: Implications for paleoceanographic studies using Fe-Mn crusts

    NASA Astrophysics Data System (ADS)

    Goto, K. T.; Tejada, M. L. G.; Suzuki, K.

    2017-12-01

    Osmium isotope stratigraphy is a recently proposed method to determine the depositional age of Fe-Mn crusts [1, 2]. Seawater Os isotope (187Os/188Os) is roughly determined by the balance of riverine Os inputs with radiogenic value (187Os/188Os = 1.4), and mantle-derived and extra-terrestrial Os inputs with non-radiogenic value (187Os/188Os = 0.12) [3]. Secular variation of global seawater Os isotope (seawater Os isotope curve) has been reconstructed by the analysis of pelagic sediments and exhibits large variations ranging from 0.2 to 1.0 with several negative excursions [3]. Hence, the depositional age of Fe-Mn crusts can be approximately estimated by fitting their Os isotope depth profiles to the seawater Os isotope curve (Osmium isotope stratigraphy). However, this method allows multiple interpretations which are partly due to the lack of high-resolution seawater Os isotope curve [1, 2]. For example, the available seawater Os isotope curve does not exhibit negative anomaly during the Miocene, which contrasts with Os isotope records of Fe-Mn crusts [4]. In the present study, we obtained a high-resolution Os isotope record of Miocene seawater using hemipelagic sediments from IODP Expedition 351 SiteU1438. We found a small negative Os isotope anomaly as low as 0.7 from sediments deposited at 14-16 Ma. The magnitude of this anomaly is similar to those reported from Fe-Mn crusts. Although the extrapolation of Be-10 ages for Fe-Mn crust indicate a younger age for the anomaly ( 11 Ma) [4], we could not find any discernable isotope anomaly at 11 Ma. Our finding is consistent with the timing of major eruption of the Columbia River flood basalts (CFRB) which could provide non-radiogenic Os to seawater at 14-16 Ma [5]. Hence, we suggest that the observed isotope anomaly reflect eruption and subsequent weathering of the CFRB. As the similar Os isotope anomaly is commonly found from Fe-Mn crusts, the Os isotope anomaly at 14-16 Ma could be used as a key event to constrain

  2. Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol.

    PubMed

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L; McCabe, Justin; Savarino, Joel; Thiemens, Mark H

    2013-10-29

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations.

  3. Search for Nucleosynthetic Cadmium Isotope Variations in Bulk Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Toth, E. R.; Schönbächler, M.; Friebel, M.; Fehr, M. A.

    2016-08-01

    New high-precision Cd isotope data will be presented for bulk carbonaceous chondrites, such as Allende and Murchison. Volatile element isotope anomalies and their potential nucleosynthetic sources will be discussed.

  4. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    PubMed

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.

  5. A Performance Comparison of Xenon and Krypton Propellant on an SPT-100 Hall Thruster (Preprint)

    DTIC Science & Technology

    2011-08-10

    plume data from electrostatic probes. This paper presents the results of performance measurements made using an inverted pendulum thrust stand. Krypton...inverted pendulum thrust stand. Krypton operating conditions were tested over a large range of operating powers from 800 W to 3.9 kW. Analysis of how...advantages for missions where high thrust at reduced specific impulse is advantageous, primarily for orbit raising missions. Bismuth’s main drawback is

  6. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  7. Osmium Isotope Evidence for an S-Process Carrier in Primitive Chondrites

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Puchtel, I. S.; Humayun, M.; Zolensky, M.

    2005-01-01

    The degree of isotopic mixing in the solar nebula and the nature of pre-solar components that have contributed to our solar system remain subjects of vigorous debate. Isotopic anomalies have been identified in Ca-Al inclusions in chondrites [1-4]. This indicates that refractory pre-solar components were not completely homogenized or processed away at the high temperatures experienced by CAIs. Pre-solar grains (SiC, C, etc.) are prevalent in primitive chondrites, and preserve isotopic heterogeneity resulting from the nucleosynthetic processes occurring in the stars from which these grains formed [2,4]. Several recent studies employing precise techniques for measuring Ru, Mo and Zr isotopes in bulk meteorites, have come up with varying conclusions on the degree of effectiveness of nebular mixing on the scale of bulk meteorite material. Some of these studies have reported isotopic anomalies in Mo and Ru [3,5-7], while others have not observed anomalies in Mo, Ru, or Zr [8-10]. Debate over the quality of the data, the normalization techniques employed, the absence or presence of isobaric interferences during the measurements on different types of instruments (e.g. TIMS versus ICP-MS), and other factors, has ensued [11,12].

  8. A Procedure to Simultaneously Determine the Calcium, Chromium, and Titanium Isotopic Compositions of Astromaterials

    NASA Technical Reports Server (NTRS)

    Tappa, M. J.; Simon, J. I; Jordan, M. K.; Young, E. D.

    2015-01-01

    Many elements display both linear (mass-dependent) and non-linear (mass-independent) isotope anomalies (relative to a common reservoir). In early Solar System objects, with the exception of oxygen, mass-dependent isotope anomalies are most commonly thought to result from phase separation processes such as evaporation and condensation, whereas many mass-independent isotope anomalies likely reflect radiogenic ingrowth or incomplete mixing of presolar components in the proto-planetary disk. Coupling the isotopic characterization of multiple elements with differing volatilities in single objects may provide information regarding the location, source material, and/or processes involved in the formation of early Solar System solids. Here, we follow up on the work presented in, and detail new procedures developed to make high-precision multi-isotope measurements of Calcium, Chromium, and Titanium with small or limited amounts of sample using thermal ionization mass spectrometry and multi-collector ICP-MS, and characterize a suite of chondritic and terrestrial standards.

  9. The origin of the 'FUN' anomalies and the high temperature inclusions in the Allende meteorite. [Fractionation and Unknown Nuclear processes

    NASA Technical Reports Server (NTRS)

    Consolmagno, G. J.; Cameron, A. G. W.

    1980-01-01

    The discovery of isotopic anomalies in white inclusions of the meteorite Allende has led to fundamental questions concerning the origin of these anomalies and of the white inclusions themselves. An analysis of the 'FUN' anomalies in the inclusions C1 and EK1-4-1 demonstrates that these isotopic anomalies may be decomposed into individual nucleosynthetic components, which have been subjected to separate mass and component fractionations. There is no evidence that any freshly-synthesized material injected into the primitive solar nebula was of abnormal isotopic composition, or that the FUN anomalies were due to an injection of unusual material. Rather, they show the effects of large mass fractionations and an unusual mixture of normal nucleosynthetic material, likely to be in the form of interstellar grains whose size or chemistry served as a memory for the nucleosynthetic origins of their constituent atoms. Giant gaseous protoplanets, as described for the early solar nebula by Cameron (1978), are a potential site for achieving both mass and component fractionations, and for producing white inclusions in general.

  10. Calcium and titanium isotopes in refractory inclusions from CM, CO, and CR chondrites

    NASA Astrophysics Data System (ADS)

    Kööp, Levke; Davis, Andrew M.; Krot, Alexander N.; Nagashima, Kazuhide; Simon, Steven B.

    2018-05-01

    Previous studies have shown that CV and CM chondrites incorporated Ca, Al-rich inclusions (CAIs) with different isotopic characteristics, which may represent different snapshots in the isotopic evolution of the early Solar System. To better understand how the isotopic characteristics of CAIs vary between different chondrite groups, we have studied calcium and titanium isotopes in CAIs from CM, CO, and CR chondrites. We show that all three chondrite groups contain CAIs with large anomalies in 48Ca and/or 50Ti (10s of ‰ or 100s of ε-units) as well as CAIs with no anomalies resolved beyond measurement uncertainties. Isotopically, the anomalous CO and CR chondrite CAIs resemble the platy hibonite crystals (PLACs) from CM chondrites, but they are more mineralogically complex. The new data are consistent with the well-established mutual exclusivity relationship between incorporation of 26Al and the presence of large anomalies in 48Ca and 50Ti. The two highly anomalous CO chondrite CAIs have correlated anomalies in 46Ti and 50Ti, while most other highly anomalous CAIs do not. This result could indicate that the reservoir with coupled 46Ti and 50Ti that was sampled by bulk meteorites and CV chondrite CAIs already existed before arrival and/or homogeneous distribution of 26Al in the protoplanetary disk. Among the studied CM chondrite CAIs are ten spinel-hibonite inclusions (SHIBs) with known oxygen isotopic compositions. Our results show that these objects sampled a reservoir that was well-mixed in oxygen, calcium, and titanium isotopes. We further show that SHIBs tend to be slightly enriched in the heavy calcium isotopes, suggesting that their formation history was different from CV chondrite CAIs.

  11. Mercury stable isotope fractionation in a tropical ecosystem including human hair: New insights for an isotope balance

    NASA Astrophysics Data System (ADS)

    Laffont, Laure; Sonke, Jeroen; Maurice, Laurence; Behra, Philippe

    2010-05-01

    Mercury contamination is an environmental problem in the Amazon basin still relevant today as impacts on human health are poorly studied. In Bolivia, indigenous people have elevated methylmercury concentrations (between 2719 and 23701 ng.g-1) in their hair. This highly toxic molecule is formed after methylation of inorganic Hg released by chemical and physical weathering and from human activities. The aim of our study is to propose a first isotope balance in a Bolivian Amazon ecosystem, through variations in Hg isotopic compositions. The discovery of mass-independent fracionation (MIF) of odd-isotopes in our organic samples (fish and human hair) opened a new way of research in tracing the sources and the processes involved in the cycle of Hg. Four types of samples are studied: liquid Hg0 from gold mining, sediment samples, fish coming from the Beni River basin (from the main channel and an associated floodplain lake) and hair from gold miners and fish-eating native populations. Hg isotopic compositions were analyzed on a Thermo-Finnigan Neptune MC-ICP-MS at the LMTG after sample digestion by HCl/HNO3 or by H2O2/HNO3 for fish samples, at 120°C. The δ202Hg values (relative to NIST 3133) are signicantly different with respect to the external precision on UM-Almaden#2 of 0.18 ‰ (2σ, n = 42): -0.34 ± 0.02 ‰ for liquid mercury, between -1.33 and -0.81 ‰ for bottom and floodplain sediments (n=18), between -0.87 and 2.22 ‰ for miners hair (n=26), +1.29 ± 0.41 ‰ for native hair (n=13) and between -0.91 and -0.21 ‰ for fish samples (n=53). A large mass-independent isotope fractionation (MIF) was observed for odd isotope ratios in all hair samples and fish samples whereas weak anomalies were measured for sediment samples: - ∆199Hg anomaly: -0.12 to -0.04 ‰ for sediment, -0.22 to +0.63 ‰ for fish samples and +0.13 to +1.63 ‰ for hair - ∆201Hg anomaly: -0.12 to -0.02 ‰ for sediment, -0.21 to +0.43 ‰ for fish samples and +0.06 to +1.25 ‰ for hair

  12. Isotopic homogeneity of iron in the early solar nebula.

    PubMed

    Zhu, X K; Guo, Y; O'Nions, R K; Young, E D; Ash, R D

    2001-07-19

    The chemical and isotopic homogeneity of the early solar nebula, and the processes producing fractionation during its evolution, are central issues of cosmochemistry. Studies of the relative abundance variations of three or more isotopes of an element can in principle determine if the initial reservoir of material was a homogeneous mixture or if it contained several distinct sources of precursor material. For example, widespread anomalies observed in the oxygen isotopes of meteorites have been interpreted as resulting from the mixing of a solid phase that was enriched in 16O with a gas phase in which 16O was depleted, or as an isotopic 'memory' of Galactic evolution. In either case, these anomalies are regarded as strong evidence that the early solar nebula was not initially homogeneous. Here we present measurements of the relative abundances of three iron isotopes in meteoritic and terrestrial samples. We show that significant variations of iron isotopes exist in both terrestrial and extraterrestrial materials. But when plotted in a three-isotope diagram, all of the data for these Solar System materials fall on a single mass-fractionation line, showing that homogenization of iron isotopes occurred in the solar nebula before both planetesimal accretion and chondrule formation.

  13. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization.

    PubMed

    Salim, Michael A; Willow, Soohaeng Yoo; Hirata, So

    2016-05-28

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  14. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization

    NASA Astrophysics Data System (ADS)

    Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So

    2016-05-01

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  15. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jäger, Benjamin, E-mail: benjamin.jaeger@uni-rostock.de; Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only atmore » a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.« less

  16. Calcium Isotopic Anomalies in the Allende CAIs and the Angrite Angra dos Reis

    NASA Astrophysics Data System (ADS)

    Chen, H. W.; Chen, J. C.; Lee, T.; Shen, J. J.

    2010-03-01

    Both negative 48Ca and 50Ti anomalies of the Angrite Angra dos Reis was identified in this study, and the result supported previous study of correlated negative 54Cr and 50Ti anomalies in achondrites.

  17. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  18. First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds.

    PubMed

    Errea, Ion; Calandra, Matteo; Mauri, Francesco

    2013-10-25

    Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a -0.38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity being mainly responsible for the isotope anomaly.

  19. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  20. Archean Isotope Anomalies as a Window into the Differentiation History of the Earth

    NASA Astrophysics Data System (ADS)

    Wainwright, A. N.; Debaille, V.; Zincone, S. A.

    2018-05-01

    No resolvable µ142Nd anomaly was detected in Paleo- Mesoarchean rocks of São Francisco and West African cratons. The lack of µ142Nd anomalies outside of North America and Greenland implies the Earth differentiated into at least two distinct domains.

  1. Krypton adsorption on rutile: State and cross-sectional area at 77 K

    NASA Astrophysics Data System (ADS)

    Grillet, Y.; Rouquerol, F.; Rouquerol, J.

    1985-10-01

    A krypton adsorption study was carried out on a polycrystalline TiO 2 sample (98.5% rutile) presently considered as a potential reference material for surface areas. Both adsorption microcalorimetry and volumetry show evidence of a two-dimensional phase change (from 2D fluid to 2D solid) taking place at 77 K before the completion of the monolayer. No such phenomenon is observed neither with nitrogen (which we explain by a strong orientation and a close-packing of this molecule on a polar surface) neither with argon (which we explain by a large incompatibility factor between rutile and an argon crystal). On completion of the monolayer, the krypton molecular cross-sectional area is here around 0.15 nm 2 (instead of the usual 0.17 to 0.21 nm 2).

  2. Tales of volcanoes and El-Niño southern oscillations with the oxygen isotope anomaly of sulfate aerosol

    PubMed Central

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L.; McCabe, Justin; Savarino, Joel; Thiemens, Mark H.

    2013-01-01

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth’s system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980–2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher ∆17O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and ∆17O = 3.3‰, OEI = 11 and ∆17O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that ∆17O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations. PMID:23447567

  3. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources.

    PubMed

    Petkov, E E; Safronova, A S; Kantsyrev, V L; Shlyaptseva, V V; Rawat, R S; Tan, K S; Beiersdorfer, P; Hell, N; Brown, G V

    2016-11-01

    X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions, in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.

  4. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources

    DOE PAGES

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; ...

    2016-08-09

    We report that X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with differentmore » electron distribution functions, in order to examine the effects that they have on emission spectra. Finally, to further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.« less

  5. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkov, E. E., E-mail: emilp@unr.edu; Safronova, A. S.; Kantsyrev, V. L.

    2016-11-15

    X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions,more » in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.« less

  6. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So, E-mail: sohirata@illinois.edu

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D{sub 2}O ice greater than that of H{sub 2}O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials ismore » taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born–Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly

  7. A new feature in the internal heavy isotope distribution in ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, S. K., E-mail: skbhatta1@gmail.com; Liang, Mao-Chang; Savarino, Joel

    Ozone produced by discharge or photolysis of oxygen has unusually heavy isotopic composition ({sup 18}O/{sup 16}O and {sup 17}O/{sup 16}O ratio) which does not follow normal mass fractionation rule: δ{sup 17}O ∼ 0.52{sup *}δ{sup 18}O, expressed as an anomaly Δ{sup 17}O = δ{sup 17}O − 0.52{sup *}δ{sup 18}O. Ozone molecule being an open isosceles triangle can have the heavy isotope located either in its apex or symmetric (s) position or the base or asymmetric (as) position. Correspondingly, one can define positional isotopic enrichment, written as δ{sup 18}O (s) or δ{sup 18}O (as) (and similarly for δ{sup 17}O) as well asmore » position dependent isotope anomaly Δ{sup 17}O (s) and Δ{sup 17}O (as). Marcus and co-workers have proposed a semi-empirical model based in principle on the RRKM model of uni-molecular dissociation but with slight modification (departure from statistical randomness assumption for symmetrical molecules) which explains many features of ozone isotopic enrichment. This model predicts that the bulk isotope anomaly is contained wholly in the asymmetric position and the Δ{sup 17}O (s) is zero. Consequently, Δ{sup 17}O (as) = 1.5 {sup *} Δ{sup 17}O (bulk) (named here simply as the “1.5 rule”) which has been experimentally confirmed over a range of isotopic enrichment. We now show that a critical re-analysis of the earlier experimental data demonstrates a small but significant departure from this 1.5 rule at the highest and lowest levels of enrichments. This departure provides the first experimental proof that the dynamics of ozone formation differs from a statistical model constrained only by restriction of symmetry. We speculate over some possible causes for the departure.« less

  8. A new feature in the internal heavy isotope distribution in ozone.

    PubMed

    Bhattacharya, S K; Savarino, Joel; Michalski, G; Liang, Mao-Chang

    2014-10-07

    Ozone produced by discharge or photolysis of oxygen has unusually heavy isotopic composition ((18)O/(16)O and (17)O/(16)O ratio) which does not follow normal mass fractionation rule: δ(17)O ∼ 0.52(*)δ(18)O, expressed as an anomaly Δ(17)O = δ(17)O - 0.52(*)δ(18)O. Ozone molecule being an open isosceles triangle can have the heavy isotope located either in its apex or symmetric (s) position or the base or asymmetric (as) position. Correspondingly, one can define positional isotopic enrichment, written as δ(18)O (s) or δ(18)O (as) (and similarly for δ(17)O) as well as position dependent isotope anomaly Δ(17)O (s) and Δ(17)O (as). Marcus and co-workers have proposed a semi-empirical model based in principle on the RRKM model of uni-molecular dissociation but with slight modification (departure from statistical randomness assumption for symmetrical molecules) which explains many features of ozone isotopic enrichment. This model predicts that the bulk isotope anomaly is contained wholly in the asymmetric position and the Δ(17)O (s) is zero. Consequently, Δ(17)O (as) = 1.5 (*) Δ(17)O (bulk) (named here simply as the "1.5 rule") which has been experimentally confirmed over a range of isotopic enrichment. We now show that a critical re-analysis of the earlier experimental data demonstrates a small but significant departure from this 1.5 rule at the highest and lowest levels of enrichments. This departure provides the first experimental proof that the dynamics of ozone formation differs from a statistical model constrained only by restriction of symmetry. We speculate over some possible causes for the departure.

  9. A new feature in the internal heavy isotope distribution in ozone

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S. K.; Savarino, Joel; Michalski, G.; Liang, Mao-Chang

    2014-10-01

    Ozone produced by discharge or photolysis of oxygen has unusually heavy isotopic composition (18O/16O and 17O/16O ratio) which does not follow normal mass fractionation rule: δ17O ˜ 0.52*δ18O, expressed as an anomaly Δ17O = δ17O - 0.52*δ18O. Ozone molecule being an open isosceles triangle can have the heavy isotope located either in its apex or symmetric (s) position or the base or asymmetric (as) position. Correspondingly, one can define positional isotopic enrichment, written as δ18O (s) or δ18O (as) (and similarly for δ17O) as well as position dependent isotope anomaly Δ17O (s) and Δ17O (as). Marcus and co-workers have proposed a semi-empirical model based in principle on the RRKM model of uni-molecular dissociation but with slight modification (departure from statistical randomness assumption for symmetrical molecules) which explains many features of ozone isotopic enrichment. This model predicts that the bulk isotope anomaly is contained wholly in the asymmetric position and the Δ17O (s) is zero. Consequently, Δ17O (as) = 1.5 * Δ17O (bulk) (named here simply as the "1.5 rule") which has been experimentally confirmed over a range of isotopic enrichment. We now show that a critical re-analysis of the earlier experimental data demonstrates a small but significant departure from this 1.5 rule at the highest and lowest levels of enrichments. This departure provides the first experimental proof that the dynamics of ozone formation differs from a statistical model constrained only by restriction of symmetry. We speculate over some possible causes for the departure.

  10. Simulation of the diurnal variations of the isotope anomaly (?17O) of reactive trace gases (NOx, HOx) and implications for the ?17O of nitrate.

    NASA Astrophysics Data System (ADS)

    Morin, Samuel; Sander, Rolf; Savarino, Joël.

    2010-05-01

    The isotope anomaly of secondary atmospheric species such as nitrate (NO3-) has potential to provide useful constrains on their formation pathways. Indeed, the ?17O of their precursors (NOx, HOx etc.) differs and depends on their interactions with ozone, which is the main source of non-zero ?17O in the atmosphere. Interpreting variations of ?17O in nitrate requires an in-depth understanding of the ?17O of its precursors taking into account non-linear chemical regimes operating under various environmental settings. In addition, the role of isotope exchange reactions must be carefully accounted for. To investigate the relevance of various assessments of the isotopic signature of nitrate production pathways that have recently been proposed in the literature, an atmospheric chemistry box model (MECCA, Sander et al., 2005, ACP)) was used to explicitly compute the diurnal variations of the isotope anomaly of NOx, HOx under several conditions prevailing in the marine boundary layer. ?17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2) according to the classical mass-balance equation applied at each time step of the model (30 seconds typically). The model confirms that diurnal variations in ?17O of NOx are well predicted by the photochemical steady-state relationship introduced by Michalski et al. (2003, GRL) during the day, but that at night a different approach must be employed (e.g. « fossilization » of the ?17O of NOx as soon as the photochemical lifetime of NOx drops below ca. 5 minutes). The model also allows to evaluate the impact on ?17O of NOx and nitrate of the frequently made simplifying assumption that ?17O(HOx)=0 permil, with and without mass-independent fractionation during the H+O2-HO2 reaction. Recommendations for the modeling of ?17O of nitrate will be given, based on the extensive model work carried out. In addition, the link between diurnal variations of the ?17O of nitrate precursors and seasonal

  11. Uranium-234 anomalies in corals older than 150,000 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bard, E.; Fairbanks, R.G.; Zindler, A.

    1991-08-01

    The authors present new precise U-Th ages of well-preserved coral specimens collected from the island of Barbados, West Indies, and the atoll of Mururoa, French Polynesia. Their new data confirm the ages attributed to oxygen isotope stage 7 in the framework of the Milankovitch theory. By using thermal ionization mass spectrometry (TIMS), it is also possible to quantify precisely the [sup 234]U/[sup 238]U ratios in corals. Samples older than 150 kyr B.P. are shown to be characterized by significant excesses of [sup 234]U relative to the uranium isotopic composition expected if the corals grew in present-day sea water. Assuming thatmore » the [sup 230]Th-ingrowth ages are accurate, these anomalies translate into high initial [sup 234]U/[sup 238]U ratios: about 1.2 at 200 kyr and up to 1.5 at about 450 kyr B.P. They propose that the anomalies result from both diagenetic addition and replacement of U and possibly from global changes in the [sup 234]U/[sup 238]U composition of the sea water through time. The [sup 234]U anomalies cast doubt on the accuracy of the classical [sup 230]Th-ingrowth dating method in old corals, and in particular for the use of measured [sup 234]U/[sup 238]U ratios alone to date corals older than 150 kyr.« less

  12. Removing krypton from xenon by cryogenic distillation to the ppq level

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; Santos, J. M. F. dos; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.

    2017-05-01

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β -emitter ^{85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon ^{nat}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq =10^{-15} mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4\\cdot 10^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of ^{nat}Kr/Xe<26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.

  13. Multielectron transitions in x-ray absorption of krypton

    NASA Astrophysics Data System (ADS)

    Ito, Yoshiaki; Nakamatsu, Hirohide; Mukoyama, Takeshi; Omote, Kazuhiko; Yoshikado, Shinzo; Takahashi, Masao; Emura, Shuichi

    1992-11-01

    The photoabsorption cross section near the K edge in krypton gas has been measured using synchro- tron radiation. Several features for simultaneous multielectron excitations were detected and analyzed by the use of the shakeup and shakeoff probabilities and their dependence on the photon energy. Previous observations of the [1s3p], [1s3d], and [1s4p] transitions have been confirmed. A transition is found between [1s3p] and [1s3d] multiple excitations and identified as a three-electron excitation [1s3d4p].

  14. Ruthenium isotopic evidence for an inner Solar System origin of the late veneer

    NASA Astrophysics Data System (ADS)

    Fischer-Gödde, Mario; Kleine, Thorsten

    2017-01-01

    The excess of highly siderophile elements in the Earth’s mantle is thought to reflect the addition of primitive meteoritic material after core formation ceased. This ‘late veneer’ either comprises material remaining in the terrestrial planet region after the main stages of the Earth’s accretion, or derives from more distant asteroidal or cometary sources. Distinguishing between these disparate origins is important because a late veneer consisting of carbonaceous chondrite-like asteroids or comets could be the principal source of the Earth’s volatiles and water. Until now, however, a ‘genetic’ link between the late veneer and such volatile-rich materials has not been established or ruled out. Such genetic links can be determined using ruthenium (Ru) isotopes, because the Ru in the Earth’s mantle predominantly derives from the late veneer, and because meteorites exhibit Ru isotope variations arising from the heterogeneous distribution of stellar-derived dust. Although Ru isotopic data and the correlation of Ru and molybdenum (Mo) isotope anomalies in meteorites were previously used to argue that the late veneer derives from the same type of inner Solar System material as do Earth’s main building blocks, the Ru isotopic composition of carbonaceous chondrites has not been determined sufficiently well to rule them out as a source of the late veneer. Here we show that all chondrites, including carbonaceous chondrites, have Ru isotopic compositions distinct from that of the Earth’s mantle. The Ru isotope anomalies increase from enstatite to ordinary to carbonaceous chondrites, demonstrating that material formed at greater heliocentric distance contains larger Ru isotope anomalies. Therefore, these data refute an outer Solar System origin for the late veneer and imply that the late veneer was not the primary source of volatiles and water on the Earth.

  15. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF.

    PubMed

    Ma, T; Chen, H; Patel, P K; Schneider, M B; Barrios, M A; Casey, D T; Chung, H-K; Hammel, B A; Berzak Hopkins, L F; Jarrott, L C; Khan, S F; Lahmann, B; Nora, R; Rosenberg, M J; Pak, A; Regan, S P; Scott, H A; Sio, H; Spears, B K; Weber, C R

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  16. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF

    NASA Astrophysics Data System (ADS)

    Ma, T.; Chen, H.; Patel, P. K.; Schneider, M. B.; Barrios, M. A.; Casey, D. T.; Chung, H.-K.; Hammel, B. A.; Berzak Hopkins, L. F.; Jarrott, L. C.; Khan, S. F.; Lahmann, B.; Nora, R.; Rosenberg, M. J.; Pak, A.; Regan, S. P.; Scott, H. A.; Sio, H.; Spears, B. K.; Weber, C. R.

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  17. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  18. Oxygen isotope anomaly in tropospheric CO2 and implications for CO2 residence time in the atmosphere and gross primary productivity.

    PubMed

    Liang, Mao-Chang; Mahata, Sasadhar; Laskar, Amzad H; Thiemens, Mark H; Newman, Sally

    2017-10-13

    The abundance variations of near surface atmospheric CO 2 isotopologues (primarily 16 O 12 C 16 O, 16 O 13 C 16 O, 17 O 12 C 16 O, and 18 O 12 C 16 O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO 2 biogeochemical cycles, Δ 17 O (=ln(1 + δ 17 O) - 0.516 × ln(1 + δ 18 O)) provides an alternative constraint on the strengths of the associated cycles involving CO 2 . Here, we analyze Δ 17 O data from four places (Taipei, Taiwan; South China Sea; La Jolla, United States; Jerusalem, Israel) in the northern hemisphere (with a total of 455 measurements) and find a rather narrow range (0.326 ± 0.005‰). A conservative estimate places a lower limit of 345 ± 70 PgC year -1 on the cycling flux between the terrestrial biosphere and atmosphere and infers a residence time of CO 2 of 1.9 ± 0.3 years (upper limit) in the atmosphere. A Monte Carlo simulation that takes various plant uptake scenarios into account yields a terrestrial gross primary productivity of 120 ± 30 PgC year -1 and soil invasion of 110 ± 30 PgC year -1 , providing a quantitative assessment utilizing the oxygen isotope anomaly for quantifying CO 2 cycling.

  19. Supershort avalanche electron beam in SF6 and krypton

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Tarasenko, Victor F.; Gu, Jianwei; Baksht, Evgeni Kh.; Beloplotov, Dmitry V.; Burachenko, Alexander G.; Yan, Ping; Lomaev, Mikhail I.; Shao, Tao

    2016-03-01

    Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB) generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF6 ) in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ˜130 kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ˜1.6 ns . SAEB parameters in SF6 are compared with those obtained in krypton (Kr), nitrogen (N2 ), air, and mixtures of SF6 with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF6 and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N2 and air (ranging from hundreds of milliamps to several amperes). Furthermore, the concentration of SF6 additive could significantly reduce the SAEB current in N2-SF6 mixture, but it slightly affected the SAEB current in Kr -SF6 mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.

  20. Anomalies of natural gas compositions and carbon isotope ratios caused by gas diffusion - A case from the Donghe Sandstone reservoir in the Hadexun Oilfield, Tarim Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Chen, Jianfa; Pang, Xiongqi; Zhang, Baoshou; Wang, Yifan; He, Liwen; Chen, Zeya; Zhang, Guoqiang

    2018-05-01

    Natural gases in the Carboniferous Donghe Sandstone reservoir within the Block HD4 of the Hadexun Oilfield, Tarim Basin are characterized by abnormally low total hydrocarbon gas contents (<65%), low methane contents (<10%) and low dryness coefficients (<0.5), and a reversal of the normal trend of carbon isotope ratios, showing δ13C methane (C1) > δ13C ethane (C2) < δ13C propane (C3) < δ13C butane (C4). Specifically, methane is enriched in 13C with the variations in δ13C1 values between gases from Block HD4 and gases from its neighboring blocks reaching 10‰. This type of abnormal gas has never been reported previously in the Tarim Basin and such large variations in δ13C have rarely been observed in other basins globally. Based on a comprehensive analysis of gas geochemical data and the geological setting of the Carboniferous reservoirs in the Hadexun Oilfield, we reveal that the anomalies of the gas compositions and carbon isotope ratios in the Donghe Sandstone reservoir are caused by gas diffusion through the poorly-sealed caprock rather than by pathways such as gas mixing, microorganism degradation, different kerogen types or thermal maturity degrees of source rocks. The documentation of an in-reservoir gas diffusion during the post entrapment process as a major cause for gas geochemical anomalies may offer important insight into exploring natural gas resources in deeply buried sedimentary basins.

  1. Isotopic compositions of cometary matter returned by Stardust.

    PubMed

    McKeegan, Kevin D; Aléon, Jerome; Bradley, John; Brownlee, Donald; Busemann, Henner; Butterworth, Anna; Chaussidon, Marc; Fallon, Stewart; Floss, Christine; Gilmour, Jamie; Gounelle, Matthieu; Graham, Giles; Guan, Yunbin; Heck, Philipp R; Hoppe, Peter; Hutcheon, Ian D; Huth, Joachim; Ishii, Hope; Ito, Motoo; Jacobsen, Stein B; Kearsley, Anton; Leshin, Laurie A; Liu, Ming-Chang; Lyon, Ian; Marhas, Kuljeet; Marty, Bernard; Matrajt, Graciela; Meibom, Anders; Messenger, Scott; Mostefaoui, Smail; Mukhopadhyay, Sujoy; Nakamura-Messenger, Keiko; Nittler, Larry; Palma, Russ; Pepin, Robert O; Papanastassiou, Dimitri A; Robert, François; Schlutter, Dennis; Snead, Christopher J; Stadermann, Frank J; Stroud, Rhonda; Tsou, Peter; Westphal, Andrew; Young, Edward D; Ziegler, Karen; Zimmermann, Laurent; Zinner, Ernst

    2006-12-15

    Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.

  2. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF

    DOE PAGES

    Ma, T.; Chen, H.; Patel, P. K.; ...

    2016-08-18

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. We describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.Published by AIP Publishing

  3. Radial mixing and Ru-Mo isotope systematics under different accretion scenarios

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Nimmo, Francis; O'Brien, David P.

    2018-01-01

    The Ru-Mo isotopic compositions of inner Solar System bodies may reflect the provenance of accreted material and how it evolved with time, both of which are controlled by the accretion scenario these bodies experienced. Here we use a total of 116 N-body simulations of terrestrial planet accretion, run in the Eccentric Jupiter and Saturn (EJS), Circular Jupiter and Saturn (CJS), and Grand Tack scenarios, to model the Ru-Mo anomalies of Earth, Mars, and Theia analogues. This model starts by applying an initial step function in Ru-Mo isotopic composition, with compositions reflecting those in meteorites, and traces compositional evolution as planets accrete. The mass-weighted provenance of the resulting planets reveals more radial mixing in Grand Tack simulations than in EJS/CJS simulations, and more efficient mixing among late-accreted material than during the main phase of accretion in EJS/CJS simulations. We find that an extensive homogeneous inner disk region is required to reproduce Earth's observed Ru-Mo composition. EJS/CJS simulations require a homogeneous reservoir in the inner disk extending to ≥3-4 AU (≥74-98% of initial mass) to reproduce Earth's composition, while Grand Tack simulations require a homogeneous reservoir extending to ≥3-10 AU (≥97-99% of initial mass), and likely to ≥6-10 AU. In the Grand Tack model, Jupiter's initial location (the most likely location for a discontinuity in isotopic composition) is ∼3.5 AU; however, this step location has only a 33% likelihood of producing an Earth with the correct Ru-Mo isotopic signature for the most plausible model conditions. Our results give the testable predictions that Mars has zero Ru anomaly and small or zero Mo anomaly, and the Moon has zero Mo anomaly. These predictions are insensitive to wide variations in parameter choices.

  4. Radial Mixing and Ru-Mo Isotope Systematics Under Different Accretion Scenarios

    NASA Astrophysics Data System (ADS)

    Fischer, R. A.; Nimmo, F.; O'Brien, D. P.

    2017-12-01

    The Ru-Mo isotopic compositions of inner Solar System bodies may reflect the provenance of accreted material and how it evolved with time, both of which are controlled by the accretion scenario these bodies experienced. Here we use a total of 116 N-body simulations of terrestrial planet accretion, run in the Eccentric Jupiter and Saturn (EJS), Circular Jupiter and Saturn (CJS), and Grand Tack scenarios, to model the Ru-Mo anomalies of Earth, Mars, and Theia analogues. This model starts by applying an initial step function in Ru-Mo isotopic composition, with compositions reflecting those in meteorites, and traces compositional evolution as planets accrete. The mass-weighted provenance of the resulting planets reveals more radial mixing in Grand Tack simulations than in EJS/CJS simulations, and more efficient mixing among late-accreted material than during the main phase of accretion in EJS/CJS simulations. We find that an extensive homogenous inner disk region is required to reproduce Earth's observed Ru-Mo composition. EJS/CJS simulations require a homogeneous reservoir in the inner disk extending to ≥3-4 AU (≥74-98% of initial mass) to reproduce Earth's composition, while Grand Tack simulations require a homogeneous reservoir extending to ≥3-10 AU (≥97-99% of initial mass), and likely to ≥7-10 AU. In the Grand Tack model, Jupiter's initial location (the most likely location for a discontinuity in isotopic composition) is 3.5 AU; however, this step location has only a 33% likelihood of producing an Earth with the correct Ru-Mo isotopic signature for the most plausible model conditions. Our results give the testable predictions that Mars has zero Ru anomaly and small or zero Mo anomaly, and the Moon has zero Mo anomaly. These predictions are insensitive to wide variations in parameter choices.

  5. Improved Multiple-Species Cyclotron Ion Source

    NASA Technical Reports Server (NTRS)

    Soli, George A.; Nichols, Donald K.

    1990-01-01

    Use of pure isotope 86Kr instead of natural krypton in multiple-species ion source enables source to produce krypton ions separated from argon ions by tuning cylcotron with which source used. Addition of capability to produce and separate krypton ions at kinetic energies of 150 to 400 MeV necessary for simulation of worst-case ions occurring in outer space.

  6. Barium isotope abundances in meteorites and their implications for early Solar System evolution

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Mezger, K.; Scherer, E. E.; Horan, M. F.; Carlson, R. W.; Upadhyay, D.; Magna, T.; Pack, A.

    2016-02-01

    Several nucleosynthetic processes contributed material to the Solar System, but the relative contributions of each process, the timing of their input into the solar nebula, and how well these components were homogenized in the solar nebula remain only partially constrained. The Ba isotope system is particularly useful in addressing these issues because Ba isotopes are synthesized via three nucleosynthetic processes (s-, r-, p-process). In this study, high precision Ba isotope analyses of 22 different whole rock chondrites and achondrites (carbonaceous chondrites, ordinary chondrites, enstatite chondrites, Martian meteorites, and eucrites) were performed to constrain the distribution of Ba isotopes on the regional scale in the Solar System. A melting method using aerodynamic levitation and CO2-laser heating was used to oxidize SiC, a primary carrier of Ba among presolar grains in carbonaceous chondrites. Destruction of these grains during the fusion process enabled the complete digestion of these samples. The Ba isotope data presented here are thus the first for which complete dissolution of the bulk meteorite samples was certain. Enstatite chondrites, ordinary chondrites, and all achondrites measured here possess Ba isotope compositions that are not resolved from the terrestrial composition. Barium isotope anomalies are evident in most of the carbonaceous chondrites analyzed, but the 135Ba anomalies are generally smaller than previously reported for similarly sized splits of CM2 meteorites. Variation in the size of the 135Ba anomaly is also apparent in fused samples from the same parent body (e.g., CM2 meteorites) and in different pieces from the same meteorite (e.g., Orgueil, CI). Here, we investigate the potential causes of variability in 135Ba, including the contribution of radiogenic 135Ba from the decay of 135Cs and incomplete homogenization of the presolar components on the <0.8 g sample scale.

  7. California GAMA Special Study. Development of a Capability for the Analysis of Krypton-85 in Groundwater Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, Ate; Bibby, Richard K.; Moran, Jean E.

    A capability for the analysis of krypton-85 ( 85Kr) in groundwater samples was developed at LLNL. Samples are collected by extracting gas from 2000-4000 L of groundwater at the well, yielding approximately 0.2 cm 3 STP krypton. Sample collection takes 1 to 4 hours. Krypton is purified in the laboratory using a combination of molecular sieve and activated charcoal traps, and transferred to a liquid scintillation vial. The 85Kr activity is measured by liquid scintillation on a Quantulus 1220 liquid scintillation counter from PerkinElmer. The detection limit for a typical 0.2 cm 3Kr sample size is 11% of the presentmore » day activity in air, corresponding to the decay corrected activity in air in 1987. The typical measurement uncertainty is below 10% for recently recharged samples. Six groundwater samples were collected, purified and counted. 85Kr was not detected in any of the samples counted at LLNL. 85Kr was detected by the low level counting laboratory of Bern University in all samples between 1.5 and 6.6 decays per minute per cm 3 krypton, corresponding to decay corrected activities in air between 1971 and 1985. The new capability is an excellent complement to tritium-helium, expanding the existing suite of age dating tools available to the GAMA program ( 35S, 3H/ 3He, 14C and radiogenic helium). 85Kr can replace 3H/ 3He in settings where 3H/ 3He ages are impossible to determine (for example where terrigenic helium overwhelms tritiogenic helium) and provides additional insight into travel time distributions in complex mixed groundwater systems.« less

  8. Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wiegel, Aaron A.; Cole, Amanda S.; Hoag, Katherine J.; Atlas, Elliot L.; Schauffler, Sue M.; Boering, Kristie A.

    2013-10-01

    We report observations of stratospheric CO2 that reveal surprisingly large anomalous enrichments in 17O that vary systematically with latitude, altitude, and season. The triple isotope slopes reached 1.95 ± 0.05(1σ) in the middle stratosphere and 2.22 ± 0.07 in the Arctic vortex versus 1.71 ± 0.03 from previous observations and a remarkable factor of 4 larger than the mass-dependent value of 0.52. Kinetics modeling of laboratory measurements of photochemical ozone-CO2 isotope exchange demonstrates that non-mass-dependent isotope effects in ozone formation alone quantitatively account for the 17O anomaly in CO2 in the laboratory, resolving long-standing discrepancies between models and laboratory measurements. Model sensitivities to hypothetical mass-dependent isotope effects in reactions involving O3, O(1D), or CO2 and to an empirically derived temperature dependence of the anomalous kinetic isotope effects in ozone formation then provide a conceptual framework for understanding the differences in the isotopic composition and the triple isotope slopes between the laboratory and the stratosphere and between different regions of the stratosphere. This understanding in turn provides a firmer foundation for the diverse biogeochemical and paleoclimate applications of 17O anomalies in tropospheric CO2, O2, mineral sulfates, and fossil bones and teeth, which all derive from stratospheric CO2.

  9. Four-body interaction energy for compressed solid krypton from quantum theory.

    PubMed

    Tian, Chunling; Wu, Na; Liu, Fusheng; Saxena, Surendra K; Zheng, Xingrong

    2012-07-28

    The importance of the four-body contribution in compressed solid krypton was first evaluated using the many-body expansion method and the coupled cluster theory with full single and double excitations plus perturbative treatment of triples. All different four-atom clusters existing in the first- and second-nearest neighbor shells of face-centered cubic krypton were considered, and both self-consistent-field Hartree-Fock and correlation parts of the four-body interaction were accurately determined from the ambient conditions up to eightfold volume compression. We find that the four-body interaction energy is negative at compression ratio lower than 2, where the dispersive forces play a dominant role. With increasing the compression, the four-body contribution becomes repulsive and significantly cancels the over-softening effects of the three-body potential. The obtained equation of state (EOS) was compared with the experiments and the density-functional theory calculations. It shows that combination of the four-body effects with two- and three-body interactions leads to an excellent agreement with EOS measurements throughout the whole experimental range 0-130 GPa, and extends the prediction to 300 GPa.

  10. Diagnosis of high-temperature implosions using low- and high-opacity Krypton lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaakobi, B.; Epstein, R.; Hooper, C.F. Jr.

    1996-04-01

    High-temperature laser target implosions can be achieved by using relatively thin-shell targets, and they can be. diagnosed by doping the fuel with krypton and measuring K-shell and L-shell lines. Electron temperatures of up to 5 keV at modest compressed densities ({approximately}1-5g/cm{sup 3}) are predicted for such experiments, with ion temperatures peaking above 10 keV at the center. It is found that the profiles of low-opacity (optically thin) lines in the expected density range are dominated by the Doppler broadening and can provide a measurement of the ion temperature if spectrometers of spectral resolution {Delta}{lambda}/{lambda} {ge} 1000 are used. For high-opacitymore » lines, obtained with a higher krypton fill pressure, the measurement of the escape factor can yield the {rho}R of the compressed fuel. At higher densities, Stark broadening of low-opacity lines becomes important and can provide a density measurement, whereas lines of higher opacity can be used to estimate the extent of mixing.« less

  11. Red krypton and blue-green argon panretinal laser photocoagulation for proliferative diabetic retinopathy: a laboratory and clinical comparison.

    PubMed

    Blankenship, G W

    1986-01-01

    The effects of PRP with red krypton laser are essentially identical to those produced with blue-green argon laser. Burns of the rabbit retina produced with these two different lasers are almost the same. In a prospective and randomized clinical trial of proliferative diabetic retinopathy treatment there was no significant difference between PRP using these two different lasers. The characteristic changes of rabbit fundi 3, 7, and 30 days after PRP with red krypton laser were almost the same as those following blue-green argon laser. Both types of treatment frequently produced small vitreous hemorrhages and exudative retinal detachments, but choroidal thickening occurred more frequently with argon treatment. These changes were transient and had resolved within 30 days of treatment. The microscopic changes consisted of pigment epithelial disruption with pigment migration into the retina, heat coagulation of the photoreceptors, disruption of the outer and inner nuclear layers with atrophy of the nuclei, and temporary swelling of the nerve fiber layer. The untreated retina and choroid between burns was not involved and appeared normal at each period. Thirty days after treatment, the scarring produced by these two types of burns was identical. Seventy-one eyes with proliferative diabetic retinopathy having three or four retinopathy risk factors were treated with panretinal laser photocoagulation, and followed in a prospective study for 6 months. Thirty-six eyes were randomly selected for blue-green argon treatment, and 35 were randomly selected for red krypton treatment. The incidence of undesired side effects during the first 2 weeks following treatment was almost identical between the two groups. However, by 1 month the majority of eyes in both groups had visual acuities equal to or better than the pretreatment acuities and complete regression of NVD. Six months after treatment, the majority of eyes in both groups continued to have visual acuities equal to or better

  12. Use of krypton laser stimulation in the treatment of dry eye syndrome

    NASA Astrophysics Data System (ADS)

    Kecik, Tadeusz; Switka-Wieclawska, Iwona; Ciszewska, Joanna; Portacha, Lidia

    1991-08-01

    We''d like to present the use of krypton laser stimulation in the treatment of dry eye syndrom. 10 patients with dry eye syndrom were treated with irradiation of the lacrimal gland. Schirmer test and break up time were performed before and after therapy. After 10 days of treatment we observed higher value of secreted tear amount.

  13. Sterile neutrinos or flux uncertainties? — Status of the reactor anti-neutrino anomaly

    NASA Astrophysics Data System (ADS)

    Dentler, Mona; Hernández-Cabezudo, Álvaro; Kopp, Joachim; Maltoni, Michele; Schwetz, Thomas

    2017-11-01

    The ˜ 3 σ discrepancy between the predicted and observed reactor anti-neutrino flux, known as the reactor anti-neutrino anomaly, continues to intrigue. The recent discovery of an unexpected bump in the reactor anti-neutrino spectrum, as well as indications that the flux deficit is different for different fission isotopes seems to disfavour the explanation of the anomaly in terms of sterile neutrino oscillations. We critically review this conclusion in view of all available data on electron (anti)neutrino disappearance. We find that the sterile neutrino hypothesis cannot be rejected based on global data and is only mildly disfavored compared to an individual rescaling of neutrino fluxes from different fission isotopes. The main reason for this is the presence of spectral features in recent data from the NEOS and DANSS experiments. If state-of-the-art predictions for reactor fluxes are taken at face value, sterile neutrino oscillations allow a consistent description of global data with a significance close to 3 σ relative to the no-oscillation case. Even if reactor fluxes and spectra are left free in the fit, a 2 σ hint in favour of sterile neutrinos remains, with allowed parameter regions consistent with an explanation of the anomaly in terms of oscillations.

  14. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Budde, Gerrit; Burkhardt, Christoph; Brennecka, Gregory A.; Fischer-Gödde, Mario; Kruijer, Thomas S.; Kleine, Thorsten

    2016-11-01

    Nucleosynthetic isotope anomalies are powerful tracers to determine the provenance of meteorites and their components, and to identify genetic links between these materials. Here we show that chondrules and matrix separated from the Allende CV3 chondrite have complementary nucleosynthetic Mo isotope anomalies. These anomalies result from the enrichment of a presolar carrier enriched in s-process Mo into the matrix, and the corresponding depletion of this carrier in the chondrules. This carrier most likely is a metal and so the uneven distribution of presolar material probably results from metal-silicate fractionation during chondrule formation. The Mo isotope anomalies correlate with those reported for W isotopes on the same samples in an earlier study, suggesting that the isotope variations for both Mo and W are caused by the heterogeneous distribution of the same carrier. The isotopic complementary of chondrules and matrix indicates that both components are genetically linked and formed together from one common reservoir of solar nebula dust. As such, the isotopic data require that most chondrules formed in the solar nebula and are not a product of protoplanetary impacts. Allende chondrules and matrix together with bulk carbonaceous chondrites and some iron meteorites (groups IID, IIIF, and IVB) show uniform excesses in 92Mo, 95Mo, and 97Mo that result from the addition of supernova material to the solar nebula region in which these carbonaceous meteorites formed. Non-carbonaceous meteorites (enstatite and ordinary chondrites as well as most iron meteorites) do not contain this material, demonstrating that two distinct Mo isotope reservoirs co-existed in the early solar nebula that remained spatially separated for several million years. This separation was most likely achieved through the formation of the gas giants, which cleared the disk between the inner and outer solar system regions parental to the non-carbonaceous and carbonaceous meteorites. The Mo isotope

  15. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    NASA Astrophysics Data System (ADS)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  16. Breaking through the glass ceiling: the correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2010-03-28

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, T(g) (103 K). Layered films, consisting of CH(3)OH and CD(3)OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above T(g). The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  17. ATTA - A New Method of Ultrasensitive Trace-Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Lu, Z.-T.; Bailey, K.; Chen, C. Y.; Du, X.; Li, Y. M.; O'Connor, T. P.; Young, L.; Winkler, G.

    2000-10-01

    We have developed a new method of ultrasensitive trace-isotope analysis based upon the technique of laser manipulation of neutral atoms [1]. This new method allows us to count individual 85Kr and 81Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10-11 and 10-13, respectively. Isotope analysis of 81Kr can be used to date polar ice, and 85Kr is a tracer used in monitoring nuclear wastes. In this experiment metastable Kr atoms were produced in a discharge, decelerated via the Zeeman slowing technique, and captured by a Magneto-Optical Trap where the atoms were counted by measuring their fluorescence. At present our system is capable of counting, in average, one 81Kr atom for about 12 minutes with a total efficiency of 2x10-7. We are currently working to improve our system efficiency by applying cryogenic cooling to the Kr atoms in the discharge region and by recirculating the gas in the vacuum system. This method can be used to analyze many other isotope tracers for a wide range of applications including measuring solar neutrino flux, searching for exotic particles, tracing atmospheric and oceanic currents, archeological and geological dating, medical diagnostics, monitoring fission products in the environment for nuclear waste management, etc. This work is supported by the U.S. Department of Energy, Nuclear Physics Division; L.Young is supported by the Office of Basic Energy Sciences, Division of Chemical Sciences (Contract W-31-109-ENG-38). [1] C.Y. Chen et. al., Science 286, 1139 (1999).

  18. Chromium Isotope Anomaly Scaling with Past Warming Episodes

    NASA Astrophysics Data System (ADS)

    Remmelzwaal, S.; O'Connor, L.; Preston, W.; Parkinson, I. J.; Schmidt, D. N.

    2017-12-01

    The recent expansion of oxygen minimum zones caused by anthropogenic global warming raises questions about the scale of this expansion with different emission scenarios. Ocean deoxygenation will impact marine ecosystems and fisheries demanding an assessment of the possible extent and intensity of deoxygenation. Here, we used past climate warming events to quantify a potential link between warming and the spread of oxygen minimum zones: including Ocean Anoxic Event (OAE) 1a, OAE 2 in the Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Eocene Thermal Maximum 2 (ETM2), and Pleistocene glacial-interglacial cycles. We applied the emerging proxy of chromium isotopes in planktic foraminifera to assess redox changes during the PETM, ETM2, and Pleistocene and bulk carbonate for the OAEs. Both δ53Cr and chromium concentrations respond markedly during the PETM indicative of a reduction in dissolved oxygen concentrations caused by changes in ocean ventilation and associated warming [1]. A strong correlation between Δδ53Cr and benthic Δδ18O, a measure of the excursion size in both oxygen and chromium isotopes, suggest temperatures to be one of the main drivers of ocean deoxygenation in the past [1]. Chromium concentrations decrease during ETM2 and OAE1a, and, increase by 4.5 ppm over the Plenus Cold Event during OAE2, which suggests enhanced seafloor ventilation. [1] Remmelzwaal, S.R.C., Dixon, S., Parkinson, I.J., Schmidt, D.N., Monteiro, F.M., Sexton, P., Fehr, M., Peacock, C., Donnadieu, Y., James, R.H., in review. Ocean deoxygenation during the Palaeocene-Eocene Thermal Maximum. EPSL.

  19. Relative efficacy of the argon green, argon blue-green, and krypton red lasers for 10-0 nylon subconjunctival laser suture lysis.

    PubMed

    Mudgil, A V; To, K W; Balachandran, R M; Janigian, R H; Tsiaras, W G

    1999-01-01

    To determine the optimal wavelength for subconjunctival laser suture lysis. 130 black monofilament 10-0 nylon sutures were sewn subconjunctivally into the bare sclera of enucleated rabbit globes. The lowest energy levels facilitating laser suture lysis were determined for the argon green (514.5 NM), argon blue-green (488.0 NM, 514.5 NM), and krypton red (647.1 NM) wavelengths. In addition, absorption spectroscopy was performed on the suture material and conjunctiva using the Perkin Elmer W/VIS Lambda 2 spectrometer. Krypton red produced the fewest buttonhole defects, and it was also the most efficient energy source for suture lysis (P = 0.0001) under nontenectomized conjunctiva. Absorbance spectra studies revealed peak absorbance at 628 NM for the 10-0 nylon suture material. Based on animal and absorption spectroscopy studies, krypton red may be a safer and more efficient wavelength for subconjunctival laser suture lysis.

  20. Development and evaluation of a silver mordenite composite sorbent for the partitioning of xenon from krypton in gas compositions

    DOE PAGES

    Garn, Troy G.; Greenhalgh, Mitchell; Law, Jack D.

    2015-12-22

    A new engineered form composite sorbent for the selective separation of xenon from krypton in simulant composition off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A sodium mordenite powder was incorporated into a macroporous polymer binder, formed into spherical beads and successfully converted to a 9 wt.% silver form composite sorbent. The final engineered form sorbent retained the characteristic surface area indicative of sodium mordenite powder. The sorbent was evaluated for xenon adsorption potential with capacities measured as high as 30 millimoles of xenon per kilogram of sorbent achieved at ambient temperature andmore » 460 millimoles of xenon per kilogram sorbent at 220 K. Xenon/krypton selectivity was calculated to be 22.4 with a 1020 µL/L xenon, 150 µL/L krypton in a balance of air feed gas at 220 K. Furthermore, adsorption/desorption thermal cycling effects were evaluated with results indicating sorbent performance was not significantly impacted while undergoing numerous adsorption/desorption thermal cycles.« less

  1. Krypton-81m ventilation scanning: acute respiratory disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavender, J.P.; Irving, H.; Armstrong, J.D. II

    1981-02-01

    From experience with 700 patients undergoing ventilation and perfusion lung scanning with krypton-81m/technetium-99m technique, 34 patients suffering from nonembolic acute respiratory disease were selected for review. In 16 patients with pneumonia, all had defects of ventilation corresponding to, or larger than, the radiologic consolidation. In 13 patients there was some preservation of perfusion in the consolidated region. In two of the three patients with matched defects, the pneumonia was of long standing. In seven patients with collapse or atelectasis and in 11 patients with acute reversible bronchial obstruction and normal volume lungs, a similar pattern or ventillation and perfusion wasmore » observed.« less

  2. Mineral associations and character of isotopically anomalous organic material in the Tagish Lake carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Zega, Thomas J.; Alexander, Conel M. O.'D.; Busemann, Henner; Nittler, Larry R.; Hoppe, Peter; Stroud, Rhonda M.; Young, Andrea F.

    2010-10-01

    We report a coordinated analytical study of matrix material in the Tagish Lake carbonaceous chondrite in which the same small (⩽20 μm) fragments were measured by secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS), and X-ray absorption near-edge spectroscopy (XANES). SIMS analysis reveals H and N isotopic anomalies (hotspots), ranging from hundreds to thousands of nanometers in size, which are present throughout the fragments. Although the differences in spatial resolution of the SIMS techniques we have used introduce some uncertainty into the exact location of the hotspots, in general, the H and N isotopic anomalies are spatially correlated with C enrichments, suggesting an organic carrier. TEM analysis, enabled by site-specific extraction using a focused-ion-beam scanning-electron microscope, shows that the hotspots contain an amorphous component, Fe-Ni sulfides, serpentine, and mixed-cation carbonates. TEM imaging reveals that the amorphous component occurs in solid and porous forms, EDS indicates that it contains abundant C, and EELS and XANES at the C K edge reveal that it is largely aromatic. This amorphous component is probably macromolecular C, likely the carrier of the isotopic anomalies, and similar to the material extracted from bulk samples as insoluble organic matter. However, given the large sizes of some of the hotspots, the disparity in spatial resolution among the various techniques employed in our study, and the phases with which they are associated, we cannot entirely rule out that some of the isotopic anomalies are carried by inorganic material, e.g., sheet silicates. The isotopic composition of the organic matter points to an initially primitive origin, quite possibly within cold interstellar clouds or the outer reaches of the solar protoplanetary disk. The association of organic material with secondary phases, e.g., serpentine

  3. Sulfur isotope change across the Early Mississippian K-O (Kinderhookian-Osagean) δ13C excursion

    NASA Astrophysics Data System (ADS)

    Maharjan, Dev; Jiang, Ganqing; Peng, Yongbo; Nicholl, Michael J.

    2018-07-01

    Paired carbonate associate sulfate (CAS) sulfur isotopes (δ34SCAS), pyrite sulfur isotopes (δ34SPY) and CAS oxygen isotopes (δ18OCAS) across the Early Mississippian K-O δ13C excursion are documented from two sections of a west-dipping carbonate ramp in the southern Great Basin, western U.S.A. A 4-6‰ positive δ34SCAS anomaly, accompanied by negative shifts in δ34SPY and δ18OCAS, is found within the K-O δ13C excursion. In the section with a broader δ13C excursion, Δ34S (Δ34 S =δ34SCAS-δ34SPY) increases from 15‰ to 45‰ and δ13Ccarb drops from 7‰ to 4‰ at the same stratigraphic interval. If this δ34SCAS anomaly represents a global phenomenon, the large magnitude (4-6‰) and short duration (shorter than that of δ13C) suggest an unusual pyrite burial event that expanded from sediments to the ocean water column. In this scenario, the areal and volumetric expansion of sulfate reduction and pyrite burial was likely triggered by abundantly available organic matter near the peak of the K-O δ13C excursion, during which organic carbon production and burial may have reached a maximum, thus substantially expanding the oxygen minimum zone (OMZ). Numerical simulations suggest that pyrite burial rates 2.5-5 times higher than that of the modern ocean followed by sulfide oxidation are required to produce the observed δ34SCAS anomaly in a sulfate-rich ([SO4] ≥28 mM) Early Mississippian ocean. Alternatively, the sulfur and CAS oxygen isotope anomalies may record local sulfur cycling in a foreland basin where changes in weathering input and bottom-water redox conditions in response to sea-level fall and cooling resulted in isotope changes. In both scenarios (either local or global), the integrated carbon, sulfur, and CAS-oxygen isotope data suggest a much more dynamic sulfur cycle across the K-O δ13C excursion than has been previously suggested.

  4. Pristine extraterrestrial material with unprecedented nitrogen isotopic variation.

    PubMed

    Briani, Giacomo; Gounelle, Matthieu; Marrocchi, Yves; Mostefaoui, Smail; Leroux, Hugues; Quirico, Eric; Meibom, Anders

    2009-06-30

    Pristine meteoritic materials carry light element isotopic fractionations that constrain physiochemical conditions during solar system formation. Here we report the discovery of a unique xenolith in the metal-rich chondrite Isheyevo. Its fine-grained, highly pristine mineralogy has similarity with interplanetary dust particles (IDPs), but the volume of the xenolith is more than 30,000 times that of a typical IDP. Furthermore, an extreme continuum of N isotopic variation is present in this xenolith: from very light N isotopic composition (delta(15)N(AIR) = -310 +/- 20 per thousand), similar to that inferred for the solar nebula, to the heaviest ratios measured in any solar system material (delta(15)N(AIR) = 4,900 +/- 300 per thousand). At the same time, its hydrogen and carbon isotopic compositions exhibit very little variation. This object poses serious challenges for existing models for the origin of light element isotopic anomalies.

  5. Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core

    NASA Astrophysics Data System (ADS)

    Scherstén, Anders; Elliott, Tim; Hawkesworth, Chris; Norman, Marc

    2004-01-01

    Osmium isotope ratios provide important constraints on the sources of ocean-island basalts, but two very different models have been put forward to explain such data. One model interprets 187Os-enrichments in terms of a component of recycled oceanic crust within the source material. The other model infers that interaction of the mantle with the Earth's outer core produces the isotope anomalies and, as a result of coupled 186Os-187Os anomalies, put time constraints on inner-core formation. Like osmium, tungsten is a siderophile (`iron-loving') element that preferentially partitioned into the Earth's core during core formation but is also `incompatible' during mantle melting (it preferentially enters the melt phase), which makes it further depleted in the mantle. Tungsten should therefore be a sensitive tracer of core contributions in the source of mantle melts. Here we present high-precision tungsten isotope data from the same set of Hawaiian rocks used to establish the previously interpreted 186Os-187Os anomalies and on selected South African rocks, which have also been proposed to contain a core contribution. None of the samples that we have analysed have a negative tungsten isotope value, as predicted from the core-contribution model. This rules out a simple core-mantle mixing scenario and suggests that the radiogenic osmium in ocean-island basalts can better be explained by the source of such basalts containing a component of recycled crust.

  6. Constraining new physics models with isotope shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Frugiuele, Claudia; Fuchs, Elina; Perez, Gilad; Schlaffer, Matthias

    2017-07-01

    Isotope shifts of transition frequencies in atoms constrain generic long- and intermediate-range interactions. We focus on new physics scenarios that can be most strongly constrained by King linearity violation such as models with B -L vector bosons, the Higgs portal, and chameleon models. With the anticipated precision, King linearity violation has the potential to set the strongest laboratory bounds on these models in some regions of parameter space. Furthermore, we show that this method can probe the couplings relevant for the protophobic interpretation of the recently reported Be anomaly. We extend the formalism to include an arbitrary number of transitions and isotope pairs and fit the new physics coupling to the currently available isotope shift measurements.

  7. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly

    NASA Astrophysics Data System (ADS)

    Derry, Louis A.

    2010-05-01

    Marked negative δ 13C excursions in Ediacaran-age carbonate sediments have been identified in several sections globally, but are not recognized in all sections of similar age. The presence of δ 13C carb values as low as -12‰ has been interpreted as recording fundamentally different processes in the global carbon cycle than those recognized today. The δ 13C carb anomalies are strongly correlated with δ 18O carb values but are not represented in δ 13C org records. While no primary depositional processes have been identified that can produce the correlated δ 18O-δ 13C arrays, simulations show that fluid-rock interaction with high- pCO 2 fluids is capable of producing such arrays at geologically reasonable pCO 2 and water-rock ratios. Variations in the Mg/Ca ratio and sulfate concentration of the altering fluid determine the extent of dolomite vs. calcite and anhydrite in the resulting mineral assemblage. Incorporation of an initially aragonitic mineralogy demonstrates that high Sr, low Mn/Sr and modest alteration of 87Sr/ 86Sr in ancient carbonates are all compatible with a burial diagenesis mechanism for generation of the δ 13C anomalies, and do not necessarily imply preservation of primary values. The profound Ediacaran negative δ 13C anomalies can be adequately explained by well-understood diagenetic processes, conflated with the difficulty of correlating Precambrian sections independently of chemostratigraphy. They are not a record of primary seawater variations and need not have independent stratigraphic significance.

  8. The vacuum ultraviolet spectrum of krypton and xenon excimers excited in a cooled dc discharge

    NASA Astrophysics Data System (ADS)

    Gerasimov, G.; Krylov, B.; Loginov, A.; Zvereva, G.; Hallin, R.; Arnesen, A.; Heijkenskjöld, F.

    1998-01-01

    We present results of an experimental and theoretical study of the VUV spectra of krypton and xenon excimers excited by a dc discharge in a capillary tube cooled by liquid nitrogen. The studied spectral regions of 115-170 nm and 140-195 nm for krypton and xenon respectively correspond to transitions between the lowest excited dimer states 1u, 0u+ and the weakly bound ground state 0g+. A semiempirical method was suggested and applied to describe the experimental spectra and to estimate the temperature of the radiating plasma volume. Electron impact, transferring dimers from the ground state to the excited states, is shown to be an efficient excitation mechanism in the 100-850 hPa and the 10-50 mA pressure and discharge current ranges. The spectra obtained as well as the results of calculations corroborate the high rate of this mechanism.

  9. Developing a new, passive diffusion sampling array to detect helium anomalies associated with volcanic unrest

    USGS Publications Warehouse

    Dame, Brittany E; Solomon, D Kip; Evans, William C.; Ingebritsen, Steven E.

    2015-01-01

    Helium (He) concentration and 3 He/ 4 He anomalies in soil gas and spring water are potentially powerful tools for investigating hydrothermal circulation associated with volca- nism and could perhaps serve as part of a hazards warning system. However, in operational practice, He and other gases are often sampled only after volcanic unrest is detected by other means. A new passive diffusion sampler suite, intended to be collected after the onset of unrest, has been developed and tested as a relatively low-cost method of determining He- isotope composition pre- and post-unrest. The samplers, each with a distinct equilibration time, passively record He concen- tration and isotope ratio in springs and soil gas. Once collected and analyzed, the He concentrations in the samplers are used to deconvolve the time history of the He concentration and the 3 He/ 4 He ratio at the collection site. The current suite consisting of three samplers is sufficient to deconvolve both the magnitude and the timing of a step change in in situ con- centration if the suite is collected within 100 h of the change. The effects of temperature and prolonged deployment on the suite ’ s capability of recording He anomalies have also been evaluated. The suite has captured a significant 3 He/ 4 He soil gas anomaly at Horseshoe Lake near Mammoth Lakes, California. The passive diffusion sampler suite appears to be an accurate and affordable alternative for determining He anomalies associated with volcanic unrest.

  10. The oxygen isotope partition function ratio of water and the structure of liquid water

    USGS Publications Warehouse

    O'Neil, J.R.; Adami, L.H.

    1969-01-01

    By means of the CO2-equilibration technique, the temperature dependence and absolute values of the oxygen isotope partition function ratio of liquid water have been determined, often at 1?? intervals, from -2 to 85??. A linear relationship between In (Q2/Q1) (H2O) and T-1 was obtained that is explicable in terms of the Bigeleisen-Mayer theory of isotopic fractionation. The data are incompatible with conventional, multicomponent mixture models of water because liquid water behaves isotopically as a singly structured homogeneous substance over the entire temperature range studied. A two-species model of water is proposed in which approximately 30% of the hydrogen bonds in ice are broken on melting at 0?? and in which this per cent of monomer changes by only a small amount over the entire liquid range. Because of the high precision and the fundamental property determined, the isotopic fractionation technique is particularly well suited to the detection of thermal anomalies. No anomalies were observed and those previously reported are ascribed to under-estimates of experimental error.

  11. The refractive index of krypton for lambda in the closed interval 168-288 nm

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Parkinson, W. H.; Huber, M. C. E.

    1975-01-01

    The index of refraction of krypton has been measured at 27 wavelengths between and including 168 and 288 nm. The probable error of each measurement is plus or minus 0.1%. Our results are compared with other measurements. Our data are about 3.8% smaller than those of Abjean et al.

  12. ANOMALY STRUCTURE OF SUPERGRAVITY AND ANOMALY CANCELLATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butter, Daniel; Gaillard, Mary K.

    2009-06-10

    We display the full anomaly structure of supergravity, including new D-term contributions to the conformal anomaly. This expression has the super-Weyl and chiral U(1){sub K} transformation properties that are required for implementation of the Green-Schwarz mechanism for anomaly cancellation. We outline the procedure for full anomaly cancellation. Our results have implications for effective supergravity theories from the weakly coupled heterotic string theory.

  13. Titanium and Oxygen Isotope Compositions of Individual Chondrules from Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Bauer, K. K.; Schönbächler, M.; Fehr, M. A.; Vennemann, T.; Chaumard, N.; Zanda, B.

    2016-08-01

    We measured Ti and triple-O isotope compositions of individual chondrules (characterized by CT scanning) from ordinary chondrites. We will discuss correlations between Ti and ∆17O and their implication for the origin of nucleosynthetic anomalies.

  14. Three-Body Forces and the Limit of Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu; Suzuki, Toshio; Holt, Jason D.; Schwenk, Achim; Akaishi, Yoshinori

    2010-07-01

    The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body systems. This leads to repulsive contributions to the interactions among excess neutrons that change the location of the neutron drip line from O28 to the experimentally observed O24. Since the mechanism is robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.

  15. Segregation of isotopes of heavy metals due to light-induced drift: results and problems

    NASA Astrophysics Data System (ADS)

    Sapar, A.; Aret, A.; Poolamäe, R.; Sapar, L.

    2008-04-01

    Atutov and Shalagin (1988) proposed light-induced drift (LID) as a physically well understandable mechanism to explain the formation of isotopic anomalies observed in CP stars. We have generalized the theory of LID and applied it to diffusion of heavy elements and their isotopes in quiescent atmospheres of CP stars. Diffusional segregation of isotopes of chemical elements is described by the equations of continuity and diffusion velocity. Computations of evolutionary sequences for the abundances of mercury isotopes in several model atmospheres have been made, using the Fortran 90 program SMART composed by the authors. Results confirm predominant role of LID in separation of isotopes.

  16. Numerical study of influence of hydrogen backflow on krypton Hall effect thruster plasma focusing

    NASA Astrophysics Data System (ADS)

    Yan, Shilin; Ding, Yongjie; Wei, Liqiu; Hu, Yanlin; Li, Jie; Ning, Zhongxi; Yu, Daren

    2017-03-01

    The influence of backflow hydrogen on plasma plume focusing of a krypton Hall effect thruster is studied via a numerical simulation method. Theoretical analysis indicates that hydrogen participates in the plasma discharge process, changes the potential and ionization distribution in the thruster discharge cavity, and finally affects the plume focusing within a vacuum vessel.

  17. Anomalies.

    ERIC Educational Resources Information Center

    Online-Offline, 1999

    1999-01-01

    This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

  18. Anomaly Detection in Gamma-Ray Vehicle Spectra with Principal Components Analysis and Mahalanobis Distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tardiff, Mark F.; Runkle, Robert C.; Anderson, K. K.

    2006-01-23

    The goal of primary radiation monitoring in support of routine screening and emergency response is to detect characteristics in vehicle radiation signatures that indicate the presence of potential threats. Two conceptual approaches to analyzing gamma-ray spectra for threat detection are isotope identification and anomaly detection. While isotope identification is the time-honored method, an emerging technique is anomaly detection that uses benign vehicle gamma ray signatures to define an expectation of the radiation signature for vehicles that do not pose a threat. Newly acquired spectra are then compared to this expectation using statistical criteria that reflect acceptable false alarm rates andmore » probabilities of detection. The gamma-ray spectra analyzed here were collected at a U.S. land Port of Entry (POE) using a NaI-based radiation portal monitor (RPM). The raw data were analyzed to develop a benign vehicle expectation by decimating the original pulse-height channels to 35 energy bins, extracting composite variables via principal components analysis (PCA), and estimating statistically weighted distances from the mean vehicle spectrum with the mahalanobis distance (MD) metric. This paper reviews the methods used to establish the anomaly identification criteria and presents a systematic analysis of the response of the combined PCA and MD algorithm to modeled mono-energetic gamma-ray sources.« less

  19. New isotopic clues to solar system formation

    NASA Technical Reports Server (NTRS)

    Lee, T.

    1979-01-01

    The presence of two new extinct nuclides Al-26 and Pd-107 with half lives of approximately one million years in the early solar system implies that there were nucleosynthetic activities involving a great many elements almost at the instant of solar system formation. Rate gas and oxygen isotopic abundance variations ('anomalies') relative to the 'cosmic' composition were observed in a variety of planetary objects, which indicates that isotopic heterogeneities caused by the incomplete mixing of distinct nucleosynthesis components permeate the entire solar system. These new results have major implications for cosmochronology, nucleosynthesis theory, star formation, planetary heating, and the genetic relationship between different planetary bodies

  20. A multielement isotopic study of refractory FUN and F CAIs: Mass-dependent and mass-independent isotope effects

    NASA Astrophysics Data System (ADS)

    Kööp, Levke; Nakashima, Daisuke; Heck, Philipp R.; Kita, Noriko T.; Tenner, Travis J.; Krot, Alexander N.; Nagashima, Kazuhide; Park, Changkun; Davis, Andrew M.

    2018-01-01

    Calcium-aluminum-rich inclusions (CAIs) are the oldest dated objects that formed inside the Solar System. Among these are rare, enigmatic objects with large mass-dependent fractionation effects (F CAIs), which sometimes also have large nucleosynthetic anomalies and a low initial abundance of the short-lived radionuclide 26Al (FUN CAIs). We have studied seven refractory hibonite-rich CAIs and one grossite-rich CAI from the Murchison (CM2) meteorite for their oxygen, calcium, and titanium isotopic compositions. The 26Al-26Mg system was also studied in seven of these CAIs. We found mass-dependent heavy isotope enrichment in all measured elements, but never simultaneously in the same CAI. The data are hard to reconcile with a single-stage melt evaporation origin and may require reintroduction or reequilibration for magnesium, oxygen and titanium after evaporation for some of the studied CAIs. The initial 26Al/27Al ratios inferred from model isochrons span a range from <1 × 10-6 to canonical (∼5 × 10-5). The CAIs show a mutual exclusivity relationship between inferred incorporation of live 26Al and the presence of resolvable anomalies in 48Ca and 50Ti. Furthermore, a relationship exists between 26Al incorporation and Δ17O in the hibonite-rich CAIs (i.e., 26Al-free CAIs have resolved variations in Δ17O, while CAIs with resolved 26Mg excesses have Δ17O values close to -23‰). Only the grossite-rich CAI has a relatively enhanced Δ17O value (∼-17‰) in spite of a near-canonical 26Al/27Al. We interpret these data as indicating that fractionated hibonite-rich CAIs formed over an extended time period and sampled multiple stages in the isotopic evolution of the solar nebula, including: (1) an 26Al-poor nebula with large positive and negative anomalies in 48Ca and 50Ti and variable Δ17O; (2) a stage of 26Al-admixture, during which anomalies in 48Ca and 50Ti had been largely diluted and a Δ17O value of ∼-23‰ had been achieved in the CAI formation region; and (3

  1. Absolute and Mass-Dependent Titanium Isotope Compositions of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Williams, N. H.; Fehr, M. A.; Akram, W. M.; Parkinson, I. J.; Schönbächler, M.

    2013-09-01

    Mass dependent Ti isotope data for various solar system material will be presented. This data has been obtained via double spike technique using ^47 Ti and ^49Ti as spikes. Absolute nucleosynthetic anomalie data for Ti will be presented also.

  2. The molecular physics of photolytic fractionation of sulfur and oxygen isotopes in planetary atmospheres (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Schmidt, J. A.; Hattori, S.; Danielache, S.; Meusinger, C.; Schinke, R.; Ueno, Y.; Nanbu, S.; Kjaergaard, H. G.; Yoshida, N.

    2013-12-01

    Atmospheric photochemistry is able to produce large mass independent anomalies in atmospheric trace gases that can be found in geological and cryospheric records. This talk will present theoretical and experimental investigations of the molecular mechanisms producing photolytic fractionation of isotopes with special attention to sulfur and oxygen. The zero point vibrational energy (ZPE) shift and reflection principle theories are starting points for estimating isotopic fractionation, but these models ignore effects arising from isotope-dependent changes in couplings between surfaces, excited state dynamics, line densities and hot band populations. The isotope-dependent absorption spectra of the isotopologues of HCl, N2O, OCS, CO2 and SO2 have been examined in a series of papers and these results are compared with experiment and ZPE/reflection principle models. Isotopic fractionation in planetary atmospheres has many interesting applications. The UV absorption of CO2 is the basis of photochemistry in the CO2-rich atmospheres of the ancient Earth, and of Mars and Venus. For the first time we present accurate temperature and isotope dependent CO2 absorption cross sections with important implications for photolysis rates of SO2 and H2O, and the production of a mass independent anomaly in the Ox reservoir. Experimental and theoretical results for OCS have implications for the modern stratospheric sulfur budget. The absorption bands of SO2 are complex with rich structure producing isotopic fractionation in photolysis and photoexcitation.

  3. Oxygen Isotopic Analyses of Water Extracted from the Martian Meteorite NWA 7034

    NASA Astrophysics Data System (ADS)

    Nunn, M.; Agee, C. B.; Thiemens, M. H.

    2012-12-01

    isotopic composition of atmospheric CO2 [5]. This anomaly is transferred by exchange from CO2 to water and subsequently to secondary minerals. The much larger CO2 to water ratio on Mars could allow this process to introduce a measurable oxygen isotopic anomaly to sulfates, carbonates, and water. The magnitude and variability of this anomaly would depend on the formation mechanism of the species (particularly the source of oxygen), as is consistent with measurements to date of phases in SNCs. References: [1] Franchi, I.A., et al. (1999) MAPS 34, 657-661. [2] Rumble, D. and Irving, A.J. (2009) LPSC XXXX, #2293 [3] Karlsson, H.R., et al. (1992) Science 255, 1409-1411. [4] Farquhar, J. and Thiemens, M.H. (2000) J. Geophys. Res. 105, 11991-11997. [5] Yung, Y.L., et al. (1991) Geophys. Res. Lett. 18, 13-16.

  4. Pathway to Cryogen Free Production of Hyperpolarized Krypton-83 and Xenon-129

    PubMed Central

    Six, Joseph S.; Hughes-Riley, Theodore; Stupic, Karl F.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2012-01-01

    Hyperpolarized (hp) 129Xe and hp 83Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp 129Xe MRI cumbersome. For hp 83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For 129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized 129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm3/min. For hp 83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D1 transition was observed and taken into account for the qualitative description of the SEOP process. PMID:23209620

  5. Stardust from Supernovae and Its Isotopes

    NASA Astrophysics Data System (ADS)

    Hoppe, Peter

    Primitive solar system materials, namely, meteorites, interplanetary dust particles, and cometary matter contain small quantities of nanometer- to micrometer-sized refractory dust grains that exhibit large isotopic abundance anomalies. These grains are older than our solar system and have been named "presolar grains." They formed in the winds of red giant and asymptotic giant stars and in the ejecta of stellar explosions, i.e., represent a sample of stardust that can be analyzed in terrestrial laboratories for isotopic compositions and other properties. The inventory of presolar grains is dominated by grains from red giant and asymptotic giant branch stars. Presolar grains from supernovae form a minor but important subpopulation. Supernova (SN) minerals identified to date include silicon carbide, graphite, silicon nitride, oxides, and silicates. Isotopic studies of major, minor, and trace elements in these dust grains have provided detailed insights into nucleosynthetic and mixing processes in supernovae and how dust forms in these violent environments.

  6. Barium isotopes in Allende meteorite - Evidence against an extinct superheavy element

    NASA Technical Reports Server (NTRS)

    Lewis, R. S.; Anders, E.; Shimamura, T.; Lugmair, G. W.

    1983-01-01

    Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10 to the 11th atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.

  7. Bangui Anomaly

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.

    2004-01-01

    Bangui anomaly is the name given to one of the Earth s largest crustal magnetic anomalies and the largest over the African continent. It covers two-thirds of the Central African Republic and therefore the name derives from the capitol city-Bangui that is also near the center of this feature. From surface magnetic survey data Godivier and Le Donche (1962) were the first to describe this anomaly. Subsequently high-altitude world magnetic surveying by the U.S. Naval Oceanographic Office (Project Magnet) recorded a greater than 1000 nT dipolar, peak-to-trough anomaly with the major portion being negative (figure 1). Satellite observations (Cosmos 49) were first reported in 1964, these revealed a 40nT anomaly at 350 km altitude. Subsequently the higher altitude (417-499km) POGO (Polar Orbiting Geomagnetic Observatory) satellite data recorded peak-to-trough anomalies of 20 nT these data were added to Cosmos 49 measurements by Regan et al. (1975) for a regional satellite altitude map. In October 1979, with the launch of Magsat, a satellite designed to measure crustal magnetic anomalies, a more uniform satellite altitude magnetic map was obtained. These data, computed at 375 km altitude recorded a -22 nT anomaly (figure 2). This elliptically shaped anomaly is approximately 760 by 1000 km and is centered at 6%, 18%. The Bangui anomaly is composed of three segments; there are two positive anomalies lobes north and south of a large central negative field. This displays the classic pattern of a magnetic anomalous body being magnetized by induction in a zero inclination field. This is not surprising since the magnetic equator passes near the center of this body.

  8. New method of 85Kr reduction in a noble gas based low-background detector

    NASA Astrophysics Data System (ADS)

    Akimov, D. Yu.; Bolozdynya, A. I.; Burenkov, A. A.; Hall, C.; Kovalenko, A. G.; Kuzminov, V. V.; Simakov, G. E.

    2017-04-01

    Krypton-85 is an anthropogenic beta-decaying isotope which produces low energy backgrounds in dark matter and neutrino experiments, especially those based upon liquid xenon. Several technologies have been developed to reduce the Kr concentration in such experiments. We propose to augment those separation technologies by first adding to the xenon an 85Kr-free sample of krypton in an amount much larger than the natural krypton that is already present. After the purification system reduces the total Kr concentration to the same level, the final 85Kr concentration will be reduced even further by the dilution factor. A test cell for measurement of the activity of various Kr samples has been assembled, and the activity of 25-year-old krypton has been measured. The measured activity agrees well with the expected activity accounting for the 85Kr abundance of the earth's atmosphere in 1990 and the half-life of the isotope. Additional tests with a Kr sample produced in the year 1944 (before the atomic era) have been done in order to demonstrate the sensitivity of the test cell.

  9. 10 CFR 32.22 - Self-luminous products containing tritium, krypton-85 or promethium-147: Requirements for license...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... promethium-147: Requirements for license to manufacture, process, produce, or initially transfer. 32.22 Section 32.22 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER... containing tritium, krypton-85 or promethium-147: Requirements for license to manufacture, process, produce...

  10. A 205 Hour Krypton Propellant Life Test of the SPT-100 Operating at 3 kW

    DTIC Science & Technology

    2013-09-01

    advantageous, such as orbit raising missions. Bismuth’s main drawback is that the metal must be vaporized to be ionized and accelerated within a Hall...the performance of the SPT-100 operating on krypton was characterized using an inverted pendulum thrust stand over a wide range of thruster operating

  11. Unradiogenic Pb Anomalies in Historical Lavas of Piton de la Fournaise (Reunion Island)

    NASA Astrophysics Data System (ADS)

    Vlastelic, I.

    2008-12-01

    A detailed investigation (218 samples) of Pb isotope variations in the most recent (1975-2007), well- documented and densely sampled eruptions of Piton de la Fournaise has been undertaken (Vlastelic et al, in press). Lead isotopes exhibit smooth temporal fluctuations (18.87<206Pb/204Pb<18.94) on which superimpose rare (5), but pronounced unradiogenic spikes (206Pb/204Pb down to 17.63). In 208Pb/204Pb vs. 206Pb/204Pb space, normal and anomalous samples plot along a single linear array. In 207Pb/204Pb vs. 206Pb/204Pb space, normal samples define an array whose slope (0.16) is commonly observed in ocean island basalts, whereas anomalous samples define less steep arrays (slopes down to 0.04). It follows that some of the anomalous samples have unusually high 207Pb/204Pb for their 206Pb/204Pb. These latter are enriched in Pb by a factor three. The lack of reproducibility of isotopic analyses suggests that samples are heterogeneous at a sub-millimeter scale. The origin of the unradiogenic anomalies is enigmatic. Leaching experiments rule out anthropogenic contamination. Interaction of plume melts with a contaminant genetically unrelated to the Reunion plume is possible although not supported by trace-element and Sr-Nd isotope signatures indistinguishable from normal lavas. On the other hand, interaction with or entrainment of Pb-rich, most likely unradiogenic sulfides could affect specifically Pb isotope compositions. Inspection of the well-know eruptions history reveals that the isotopic anomalies coincide with transitions from basalts to oceanites (lavas rich in cumulative olivine). Olivine and sulfides, which are both denser than silicate melts, could be entrained with magma pulses, which give rise to high-flux oceanite eruptions. Some sulfides may originate from the oceanic crust. Others may originate from sulfide solidus depth (c.a. 160 km) where sulfides melts are expected to pond (Hart and Gaetani, 2006). These deep sulfides melts could be remnants of past melting

  12. Materials screening tests for the krypton-85 storage development program

    NASA Astrophysics Data System (ADS)

    Nagata, P. K.

    1981-04-01

    The results of a materials testing program for krypton-85 storage techniques are reported. Corrosion and stress corrosion tests were performed on a variety of materials including AISI 4130, Type 316 SS, Type 304 SS, Type 310 SS, Nitronic 50, and alloy A286. Test environments were high-purity liquid rubidium, liquid rubidium contaminated with oxygen, and rubidium hydroxide. Oxygen and water contaminations in liquid rubidium were found to greatly increase both general and localized corrosion of the materials tested. Alloy A286, Type 304 SS, and AISI 4130 were eliminated as candidate materials due to their susceptibility to general corrosion and stress corrosion cracking.

  13. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula.

    PubMed

    Lyons, J R; Young, E D

    2005-05-19

    The abundances of oxygen isotopes in the most refractory mineral phases (calcium-aluminium-rich inclusions, CAIs) in meteorites have hitherto defied explanation. Most processes fractionate isotopes by nuclear mass; that is, 18O is twice as fractionated as 17O, relative to 16O. In CAIs 17O and 18O are nearly equally fractionated, implying a fundamentally different mechanism. The CAI data were originally interpreted as evidence for supernova input of pure 16O into the solar nebula, but the lack of a similar isotope trend in other elements argues against this explanation. A symmetry-dependent fractionation mechanism may have occurred in the inner solar nebula, but experimental evidence is lacking. Isotope-selective photodissociation of CO in the innermost solar nebula might explain the CAI data, but the high temperatures in this region would have rapidly erased the signature. Here we report time-dependent calculations of CO photodissociation in the cooler surface region of a turbulent nebula. If the surface were irradiated by a far-ultraviolet flux approximately 10(3) times that of the local interstellar medium (for example, owing to an O or B star within approximately 1 pc of the protosun), then substantial fractionation of the oxygen isotopes was possible on a timescale of approximately 10(5) years. We predict that similarly irradiated protoplanetary disks will have H2O enriched in 17O and 18O by several tens of per cent relative to CO.

  14. Oxygen and carbon stable isotopes in coast redwood tree rings respond to spring and summer climate signals

    NASA Astrophysics Data System (ADS)

    Johnstone, James A.; Roden, John S.; Dawson, Todd E.

    2013-12-01

    variability in the oxygen and carbon isotope composition of tree ring cellulose was investigated in coast redwood (Sequoia sempervirens) from three sites in coastal Northern California. Middle and late wood samples from annual tree rings were compared to regional climate indices and gridded ocean-atmosphere fields for the years 1952-2003. The strongest climate-isotope relationship (r = 0.72) was found with summer (June-September) daily maximum temperature and middle wood δ13, which also responds positively to coastal sea surface temperature and negatively to summer low cloud frequency. Late wood δ18O reflects a balance between 18O-enriched summer fog drip and depleted summer rainwater, while a combined analysis of late wood δ18O and δ13C revealed sensitivity to the sign of summer precipitation anomalies. Empirical orthogonal function analysis of regional summer climate indices and coast redwood stable isotopes identified multivariate isotopic responses to summer fog and drought that correspond to atmospheric circulation anomalies over the NE Pacific and NW U.S. The presence of regional climate signals in coast redwood stable isotope composition, consistent with known mechanistic processes and prior studies, offers the potential for high-resolution paleoclimate reconstructions of the California current system from this long-lived tree species.

  15. Tungsten isotopes in bulk meteorites and their inclusions—Implications for processing of presolar components in the solar protoplanetary disk

    PubMed Central

    Holst, J. C.; Paton, C.; Wielandt, D.; Bizzarro, M.

    2016-01-01

    We present high precision, low- and high-resolution tungsten isotope measurements of iron meteorites Cape York (IIIAB), Rhine Villa (IIIE), Bendego (IC), and the IVB iron meteorites Tlacotepec, Skookum, and Weaver Mountains, as well as CI chondrite Ivuna, a CV3 chondrite refractory inclusion (CAI BE), and terrestrial standards. Our high precision tungsten isotope data show that the distribution of the rare p-process nuclide 180W is homogeneous among chondrites, iron meteorites, and the refractory inclusion. One exception to this pattern is the IVB iron meteorite group, which displays variable excesses relative to the terrestrial standard, possibly related to decay of rare 184Os. Such anomalies are not the result of analytical artifacts and cannot be caused by sampling of a protoplanetary disk characterized by p-process isotope heterogeneity. In contrast, we find that 183W is variable due to a nucleosynthetic s-process deficit/r-process excess among chondrites and iron meteorites. This variability supports the widespread nucleosynthetic s/r-process heterogeneity in the protoplanetary disk inferred from other isotope systems and we show that W and Ni isotope variability is correlated. Correlated isotope heterogeneity for elements of distinct nucleosynthetic origin (183W and 58Ni) is best explained by thermal processing in the protoplanetary disk during which thermally labile carrier phases are unmixed by vaporization thereby imparting isotope anomalies on the residual processed reservoir. PMID:27445452

  16. Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova

    PubMed Central

    Banerjee, Projjwal; Qian, Yong-Zhong; Heger, Alexander; Haxton, W C

    2016-01-01

    About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either do not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed. PMID:27873999

  17. Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova

    DOE PAGES

    Banerjee, Projjwal; Qian, Yong -Zhong; Heger, Alexander; ...

    2016-11-22

    About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either domore » not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.« less

  18. Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Projjwal; Qian, Yong -Zhong; Heger, Alexander

    About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either domore » not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.« less

  19. Anomaly-free models for flavour anomalies

    NASA Astrophysics Data System (ADS)

    Ellis, John; Fairbairn, Malcolm; Tunney, Patrick

    2018-03-01

    We explore the constraints imposed by the cancellation of triangle anomalies on models in which the flavour anomalies reported by LHCb and other experiments are due to an extra U(1)^' gauge boson Z^' . We assume universal and rational U(1)^' charges for the first two generations of left-handed quarks and of right-handed up-type quarks but allow different charges for their third-generation counterparts. If the right-handed charges vanish, cancellation of the triangle anomalies requires all the quark U(1)^' charges to vanish, if there are either no exotic fermions or there is only one Standard Model singlet dark matter (DM) fermion. There are non-trivial anomaly-free models with more than one such `dark' fermion, or with a single DM fermion if right-handed up-type quarks have non-zero U(1)^' charges. In some of the latter models the U(1)^' couplings of the first- and second-generation quarks all vanish, weakening the LHC Z^' constraint, and in some other models the DM particle has purely axial couplings, weakening the direct DM scattering constraint. We also consider models in which anomalies are cancelled via extra vector-like leptons, showing how the prospective LHC Z^' constraint may be weakened because the Z^' → μ ^+ μ ^- branching ratio is suppressed relative to other decay modes.

  20. Search for Al-26 effects in the Allende FUN inclusion C1. [Fractionation and Unknown Nuclear anomalies

    NASA Technical Reports Server (NTRS)

    Esat, T. M.; Lee, T.; Papanastassiou, D. A.; Wasserburg, G. J.

    1978-01-01

    The Mg isotopic composition of major and minor mineral phases in the Allende inclusion C1 is reported. The results are analyzed in order to establish whether the Mg isotopic composition is the same in different phases and whether Al-26 is present in a sample which exhibited fractionation and unknown nuclear (FUN) effects on other elements. It is found that a small Mg-26 excess exists in C1 and is correlated with the Al-27/Mg-24 ratio, indicating that Al-26 was present in C1 together with the more general nuclear anomalies. The results also reveal that isotopic homogeneity of Mg in Mg-rich phases in C1 is evident in both bulk samples and single microscopic crystals.

  1. Observations of geomagnetically trapped light isotopes by NINA

    NASA Astrophysics Data System (ADS)

    Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Murashov, A.; Voronov, S.; Bidoli, V.; Casolino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Boezio, M.; Bonvicini, V.; Cirami, R.; Vacci, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; sCafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Bartalucci, S.; Ricci, M.; Castellini, G.; Wizard-NINA Collaboration

    2001-08-01

    The detector NINA aboard the satellite Resurs-01N4 detected hydrogen and helium isotopes geomagnetically trapped, while crossing the South Atlantic Anomaly. Deuterium and tritium at L-shell<1.2 were unambiguously recognized. The 3 He and 4 He power-law spectra, reconstructed at L-shell=1.2 and B<0.22 G, have indices equal to 2.30±0.08 in the energy range 12-50 MeV/n, and 3.4±0.2 in 10-40 MeV/n respectively. The measured 3 He/4 He ratio bring to the conclusion that the main source of radiation belt light isotopes is the interaction of trapped protons with residual atmospheric helium.

  2. Vascular Anomalies (Part I): Classification and Diagnostics of Vascular Anomalies.

    PubMed

    Sadick, Maliha; Müller-Wille, René; Wildgruber, Moritz; Wohlgemuth, Walter A

    2018-06-06

     Vascular anomalies are a diagnostic and therapeutic challenge. They require dedicated interdisciplinary management. Optimal patient care relies on integral medical evaluation and a classification system established by experts in the field, to provide a better understanding of these complex vascular entities.  A dedicated classification system according to the International Society for the Study of Vascular Anomalies (ISSVA) and the German Interdisciplinary Society of Vascular Anomalies (DiGGefA) is presented. The vast spectrum of diagnostic modalities, ranging from ultrasound with color Doppler, conventional X-ray, CT with 4 D imaging and MRI as well as catheter angiography for appropriate assessment is discussed.  Congenital vascular anomalies are comprised of vascular tumors, based on endothelial cell proliferation and vascular malformations with underlying mesenchymal and angiogenetic disorder. Vascular tumors tend to regress with patient's age, vascular malformations increase in size and are subdivided into capillary, venous, lymphatic, arterio-venous and combined malformations, depending on their dominant vasculature. According to their appearance, venous malformations are the most common representative of vascular anomalies (70 %), followed by lymphatic malformations (12 %), arterio-venous malformations (8 %), combined malformation syndromes (6 %) and capillary malformations (4 %).  The aim is to provide an overview of the current classification system and diagnostic characterization of vascular anomalies in order to facilitate interdisciplinary management of vascular anomalies.   · Vascular anomalies are comprised of vascular tumors and vascular malformations, both considered to be rare diseases.. · Appropriate treatment depends on correct classification and diagnosis of vascular anomalies, which is based on established national and international classification systems, recommendations and guidelines.. · In the classification

  3. Correlated Si isotope anomalies and large C-13 enrichments in a family of exotic SiC grains

    NASA Technical Reports Server (NTRS)

    Stone, J.; Hutcheon, I. D.; Epstein, S.; Wasserburg, G. J.

    1991-01-01

    A hypothesis is presented to the effect that the distinctive morphological characteristics and comparatively simple Si isotope systematics identify the platy SiC crystals as a genetically related family, formed around a single isotopically heterogeneous presolar star on an association of related stars. The enrichments in C-13 and the Si isotope systematics of the platy SiC are broadly consistent with theoretical models of nucleosynthesis in low-mass, carbon stars on the ASG. The Si isotope array most plausibly reflects mixing between (Si-28)-rich material, inherited from a previous generation of stars, and material enriched in Si-29 and Si-30, produced in intershell regions by neutron capture during He-burning. The absence of a correlation between the Si and C isotopic compositions of the SiC suggests either episodic condensation of SiC, extending over several thermal pulses, in the atmosphere of a single star, or the derivation of the SiC from several stars characterized by different rates of C-13 production.

  4. The magnification of structural anomalies with Grodzins systematic in the framework of Asymmetric Rotor Model

    NASA Astrophysics Data System (ADS)

    Bindra, Amit; Mittal, H. M.

    2018-07-01

    The dependence of Grodzins systematic as shape fluctuation energy product ESF * B (E 2) ↑ and rotational energy product EROT * B (E 2) ↑ on the Asymmetry parameter γ0 is carried out in the Z = 50-82, N = 82-126 major shell space. The Asymmetry parameter γ0, varying from 0° to 60°, reflects the change in nuclear structure from prolate to oblate. Strong anomalies are highlighted in the shape transitional isotopes. The product ESF * B (E 2) ↑ evolves from low negative values for vibrator nuclei, passing close to zero and then substantially increasing towards triaxial rotor limit with γ0 ∼ 30 °. However, the product EROT * B (E 2) ↑ decreases as a function of γ0 for all the nuclei approaching towards triaxiality from Z = 50-82, N = 82-126. Anomalies are also noticed for the N > 104 region where the product EROT * B (E 2) ↑ decreases in zigzag phase for 188-196Pt isotopes corresponding to γ0 ∼ 25- 30 ° and this reflects the breakdown of coherence between rotational energy EROT and excitation strength B (E 2) ↑. The product EROT * B (E 2) ↑ indicates the shape phase transition for Pt isotopic chain from spherical to γ - soft to slightly triaxial. We have studied for the first time the role of Grodzins systematic ESF and EROT in the framework of Asymmetric Rotor Model.

  5. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism

    PubMed Central

    Hattori, Shohei; Schmidt, Johan A.; Johnson, Matthew S.; Danielache, Sebastian O.; Yamada, Akinori; Ueno, Yuichiro; Yoshida, Naohiro

    2013-01-01

    Natural climate variation, such as that caused by volcanoes, is the basis for identifying anthropogenic climate change. However, knowledge of the history of volcanic activity is inadequate, particularly concerning the explosivity of specific events. Some material is deposited in ice cores, but the concentration of glacial sulfate does not distinguish between tropospheric and stratospheric eruptions. Stable sulfur isotope abundances contain additional information, and recent studies show a correlation between volcanic plumes that reach the stratosphere and mass-independent anomalies in sulfur isotopes in glacial sulfate. We describe a mechanism, photoexcitation of SO2, that links the two, yielding a useful metric of the explosivity of historic volcanic events. A plume model of S(IV) to S(VI) conversion was constructed including photochemistry, entrainment of background air, and sulfate deposition. Isotopologue-specific photoexcitation rates were calculated based on the UV absorption cross-sections of 32SO2, 33SO2, 34SO2, and 36SO2 from 250 to 320 nm. The model shows that UV photoexcitation is enhanced with altitude, whereas mass-dependent oxidation, such as SO2 + OH, is suppressed by in situ plume chemistry, allowing the production and preservation of a mass-independent sulfur isotope anomaly in the sulfate product. The model accounts for the amplitude, phases, and time development of Δ33S/δ34S and Δ36S/Δ33S found in glacial samples. We are able to identify the process controlling mass-independent sulfur isotope anomalies in the modern atmosphere. This mechanism is the basis of identifying the magnitude of historic volcanic events. PMID:23417298

  6. The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Wasserburg, G. J.

    1981-01-01

    The isotopic compositions of uranium and lead in Ca-Al-rich inclusions from the Allende chondrite and in whitlockite from the St. Severin chondrite and the Angra dos Reis achondrite are reported. Isoptopic analysis of acid soluble fractions of the Allende inclusions and the meteoritic whitlockite, which show isotopic anomalies in other elements, reveals U-235/U-238 ratios from 1/137.6 to 1/138.3, within 20 per mil of normal terrestrial U abundances. The Pb isotopic compositions of five coarse-grained Allende inclusions give a mean Pb-207/Pb-206 model age of 4.559 + or - 0.015 AE, in agreement with the U results. Pb isotope ratios of two fine-grained inclusions and a coarse-grained inclusion with strong mass fractionation and some nonlinear isotopic anomalies indicate that the U-Pb systems of these inclusions have evolved differently from the rest of Allende. Th/U abundance ratios in the Allende inclusions and meteoritic phosphate are found to range from 3.8 to 96, presumably indicating an optimal case for Cm/U fractionation, although the normal U concentrations do not support claims of abundant live Cm-247 or Cm-247/U-238 fractionation at the time of meteorite formation, in contrast to previous results. A limiting Cm-247/U-235 ratio of 0.004 at the time of meteorite formation is calculated which implies that the last major r process contribution at the protosolar nebula was approximately 100 million years prior to Al-26 formation and injection.

  7. Tracking ENSO with tropical trees: Progress in stable isotope dendroclimatology

    NASA Astrophysics Data System (ADS)

    Evans, M. N.; Poussart, P. F.; Saleska, S. R.; Schrag, D. P.

    2002-12-01

    The terrestrial tropics remain an important gap in the growing proxy network used to characterize past ENSO behavior. Here we describe a strategy for development of proxy estimates of paleo-ENSO, via proxy rainfall estimates derived from stable isotope (δ18O) measurements made on tropical trees. The approach applies a new model of oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brand, 1996) to develop proxy chronological, rainfall and growth rate estimates from tropical trees, even those lacking annual rings. The promise and pitfalls of the approach are illustrated in pilot datasets from the US, Costa Rica, Brazil, and Peru, which show isotopic cycles of 4-6 per mil, and interannual anomalies of up to 8 per mil. Together with the mature ENSO proxies (corals, extratropical tree-rings, varved sediments, and ice cores), replicated and well-dated stable isotope chronologies from tropical trees may eventually improve our understanding of ENSO history over the past several hundred years.

  8. Development and evaluation of a suite of isotope reference gases for methane in air

    NASA Astrophysics Data System (ADS)

    Sperlich, Peter; Uitslag, Nelly A. M.; Richter, Jürgen M.; Rothe, Michael; Geilmann, Heike; van der Veen, Carina; Röckmann, Thomas; Blunier, Thomas; Brand, Willi A.

    2016-08-01

    Measurements from multiple laboratories have to be related to unifying and traceable reference material in order to be comparable. However, such fundamental reference materials are not available for isotope ratios in atmospheric methane, which led to misinterpretations of combined data sets in the past. We developed a method to produce a suite of synthetic CH4-in-air standard gases that can be used to unify methane isotope ratio measurements of laboratories in the atmospheric monitoring community. Therefore, we calibrated a suite of pure methane gases of different methanogenic origin against international referencing materials that define the VSMOW (Vienna Standard Mean Ocean Water) and VPDB (Vienna Pee Dee Belemnite) isotope scales. The isotope ratios of our pure methane gases range between -320 and +40 ‰ for δ2H-CH4 and between -70 and -40 ‰ for δ13C-CH4, enveloping the isotope ratios of tropospheric methane (about -85 and -47 ‰ for δ2H-CH4 and δ13C-CH4 respectively). Estimated uncertainties, including the full traceability chain, are < 1.5 ‰ and < 0.2 ‰ for δ2H and δ13C calibrations respectively. Aliquots of the calibrated pure methane gases have been diluted with methane-free air to atmospheric methane levels and filled into 5 L glass flasks. The synthetic CH4-in-air standards comprise atmospheric oxygen/nitrogen ratios as well as argon, krypton and nitrous oxide mole fractions to prevent gas-specific measurement artefacts. The resulting synthetic CH4-in-air standards are referred to as JRAS-M16 (Jena Reference Air Set - Methane 2016) and will be available to the atmospheric monitoring community. JRAS-M16 may be used as unifying isotope scale anchor for isotope ratio measurements in atmospheric methane, so that data sets can be merged into a consistent

  9. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction

    USGS Publications Warehouse

    Ward, P.D.; Garrison, G.H.; Haggart, J.W.; Kring, D.A.; Beattie, M.J.

    2004-01-01

    Stable isotope analyses of Late Triassic to earliest Jurassic strata from Kennecott Point in the Queen Charlotte Islands, British Columbia, Canada shows the presence of two distinct and different organic carbon isotope anomalies at the Norian/Rhaetian and Rhaetian/Hettangian (=Triassic/Jurassic) stage boundaries. At the older of these boundaries, which is marked by the disappearance of the bivalve Monotis, the isotope record shows a series of short-lived positive excursions toward heavier values. Strata approaching this boundary show evidence of increasing anoxia. At the higher boundary, marked by the disappearance of the last remaining Triassic ammonites and over 50 species of radiolarians, the isotopic pattern consists of a series of short duration negative anomalies. The two events, separated by the duration of the Rhaetian age, comprise the end-Triassic mass extinction. While there is no definitive evidence as to cause, the isotopic record does not appear similar to that of the impact-caused Cretaceous/Tertiary boundary extinction. ?? 2004 Published by Elsevier B.V.

  10. The chlorine isotope fingerprint of the lunar magma ocean.

    PubMed

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  11. Sources and Residence Times of Groundwater in Shasta County, CA Determined by Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Peters, E.; Moran, J. E.; Deinhart, A.; Roberts, S. K.; Esser, B.; Visser, A.

    2015-12-01

    Large-volume springs are a significant source of water to communities in Shasta County. Aquifers in this region are developed in young volcanic formations and the age and flow of groundwater is not well characterized, making predicting the impact of drought and climate change on spring flow difficult. To better understand the water resources and the hydrogeology of the region and to better constrain the age of water produced by springs, we have sampled water from wells, springs, and streams for a suite of geochemical and isotopic tracers. We are using isotopic tracers because of the limited number of sampling points over a large area, leaving traditional hydrogeologic methods such as water levels and pump tests inadequate for a regional study. We analyzed samples for sulfur-35 (87.4 day half-life) and found detections in two springs, confirming the presence of a fraction of recently (1-2 years) recharged groundwater. Tritium (12.3 year half-life) activities show that some wells produce water recharged more than 5 decades ago, but most produce more recently recharged water. We will also report results for sodium-22 (2.6 year half-life), krypton-85 (10.8 year half-life), carbon-14 (5,730 year half-life), dissolved noble gases, stable isotopes of water, and helium isotopic composition. These isotopes are applied to determine the age (residence time) of groundwater over a broad age distribution, from less than one year to tens of thousands of years. These tracers should also provide information on aquifer volumes, help delineate groundwater flow, and help to identify recharge areas. A collection of groundwater ages from springs at high elevations to wells in the upper Sacramento Valley will help delineate groundwater flowpaths. Finally, groundwater residence times will help determine groundwater volume and recharge rates, and resolve questions related to drought vulnerability and effective adjustments in water resource management.

  12. Krypton and xenon in lunar fines

    NASA Technical Reports Server (NTRS)

    Basford, J. R.; Dragon, J. C.; Pepin, R. O.; Coscio, M. R., Jr.; Murthy, V. R.

    1973-01-01

    Data from grain-size separates, stepwise-heated fractions, and bulk analyses of 20 samples of fines and breccias from five lunar sites are used to define three-isotope and ordinate intercept correlations in an attempt to resolve the lunar heavy rare gas system in a statistically valid approach. Tables of concentrations and isotope compositions are given.

  13. The ATTA-Hefei Instrument for Radioactive Noble-gas Dating

    NASA Astrophysics Data System (ADS)

    Hu, S.; Cheng, C.; Cheng, G.; Sun, Y. R.; Tu, L.; Yang, G.

    2013-12-01

    Long-lived noble-gas isotopes 85Kr (10.8 y), 39Ar (269 y) and 81Kr (229 ky) are ideal tracers for dating environmental samples such as groundwater and ice. Together with 14C, these nuclides can be used to cover the whole range of 100-106 y. Atom Trap Trace Analysis (ATTA) is an emerging method for the analysis of these isotopes at an isotopic abundance level as low as 10^-16 [1,2]. The ATTA instrument built in Hefei, China, can determine the isotopic abundances of 85Kr and 81Kr with typically 5-10% accuracy using krypton gas samples of a few micro-liters (STP) krypton gas [3]. The krypton gas sample can be extracted from several liters of air using a distillation-chromatograph setup with a typical efficiency of 85%, while the air sample can be extracted from groundwater or ices. The typical sample size for ATTA measurement is 100L groundwater or 40Kg ices. One such ATTA beamline can handle about 100 samples per year. [1] Chen, C. Y. et al. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286, 1139-1141 (1999). [2] Jiang, W. et al. 39Ar detection at the 10-16 isotopic abundance level with atom trap trace analysis. Phys. Rev. Lett. 106, 103001 (2011). [3] Yang, G. -M. et al. Analysis of 85Kr: a comparison at the 10-14 level using micro-liter samples, Sci. Rep. 3, 1596 (2013). Relative uncertainty of the determined 85Kr abundance by the ATTA-Hefei instrument.

  14. Ultrafast quantum control of ionization dynamics in krypton.

    PubMed

    Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M; Kienberger, Reinhard; Bernhardt, Birgitta

    2018-02-19

    Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

  15. High-energy krypton fluoride lasers for inertial fusion.

    PubMed

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications.

  16. A stable isotope-based approach to tropical dendroclimatology

    NASA Astrophysics Data System (ADS)

    Evans, Michael N.; Schrag, Daniel P.

    2004-08-01

    We describe a strategy for development of chronological control in tropical trees lacking demonstrably annual ring formation, using high resolution δ 18O measurements in tropical wood. The approach applies existing models of the oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brenna et al., 1998) to develop proxy chronological, rainfall and growth rate estimates from tropical trees lacking visible annual ring structure. Consistent with model predictions, pilot datasets from the temperate US and Costa Rica having independent chronological control suggest that observed cyclic isotopic signatures of several permil (SMOW) represent the annual cycle of local rainfall and relative humidity. Additional data from a plantation tree of known age from ENSO-sensitive northwestern coastal Peru suggests that the 1997-8 ENSO warm phase event was recorded as an 8‰ anomaly in the δ 18O of α-cellulose. The results demonstrate reproducibility of the stable isotopic chronometer over decades, two different climatic zones, and three tropical tree genera, and point to future applications in paleoclimatology.

  17. On the 3He anomaly in hot subdwarf B stars

    NASA Astrophysics Data System (ADS)

    Schneider, David; Irrgang, Andreas; Heber, Ulrich; Nieva, Maria F.; Przybilla, Norbert

    2017-12-01

    Decades ago, 3He isotope enrichment in helium-weak B-type main-sequence, in blue horizontal branch and in hot subdwarf B (sdB) stars, i.e., helium-core burning stars of the extreme horizontal branch, were discovered. Diffusion processes in the atmosphere of these stars lead to the observed abundance anomalies. Quantitative spectral analyses of high-resolution spectra to derive photospheric isotopic helium abundance ratios for known 3He sdBs have not been performed yet. We present preliminary results of high-resolution and high S/N spectra to determine the 3He and 4He abundances of nine known 3He sdBs. We used a hybrid local/non-local thermodynamic equilibrium (LTE/NLTE) approach for B-type stars investigating multiple He i lines, including λ4922 Å and λ6678 Å, which show the strongest isotopic shifts in the optical spectral range.We also report the discovery of four new 3He sdBs from the ESO Supernova Progenitor survey. Most of the 3He sdBs cluster in a narrow temperature strip between ˜ 26000 K and ˜ 30000 K and have almost no atmospheric 4He at all. Interestingly, three 3He sdBs show evidence for vertical helium stratification.

  18. Production and decay of K -shell hollow krypton in collisions with 52-197-MeV/u bare xenon ions

    NASA Astrophysics Data System (ADS)

    Shao, Caojie; Yu, Deyang; Cai, Xiaohong; Chen, Xi; Ma, Kun; Evslin, Jarah; Xue, Yingli; Wang, Wei; Kozhedub, Yury S.; Lu, Rongchun; Song, Zhangyong; Zhang, Mingwu; Liu, Junliang; Yang, Bian; Guo, Yipan; Zhang, Jianming; Ruan, Fangfang; Wu, Yehong; Zhang, Yuezhao; Dong, Chenzhong; Chen, Ximeng; Yang, Zhihu

    2017-07-01

    X-ray spectra of K -shell hollow krypton atoms produced in single collisions with 52-197-MeV/u X e54 + ions are measured in a heavy-ion storage ring equipped with an internal gas-jet target. Energy shifts of the K α1,2 s , K α1,2 h ,s , and K β1,3 s transitions are obtained. Thus the average number of the spectator L vacancies presented during the x-ray emission is deduced. From the relative intensities of the K α1,2 s and K α1,2 h ,s transitions, the ratio of K -shell hollow krypton to singly K -shell ionized atoms is determined to be 14 %-24 % . In the considered collisions, the K vacancies are mainly created by the direct ionization which cannot be calculated within the perturbation descriptions. The experimental results are compared with a relativistic coupled-channel calculation performed within the independent particle approximation.

  19. Post-Metamorphic Thermal Anomaly across the Nacimiento Block, Central California: a Hydrothermal Overprint?

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Hughes, J.; Lahfid, A.; Delchini, S.

    2017-12-01

    The thermal history of the Nacimiento block located within the Franciscan Complex (California, USA) has been previously proposed based on both vitrinite reflectance (Rm) and illite cristallinity methods (Underwood et al., 1995). These authors suggest that the Nacimiento block is locally perturbed by a thermal anomaly (up to 300ºC), probably caused by post-metamorphic hydrothermal activity linked to the emplacement of an Au-deposit: the Los Burros Gold deposit. Although both thermal anomaly and deposit seem spatially correlated, their relationship is still poorly constrained. Detailed geological and structural mapping within the Los Burros Mining District (LBMD) coupled with a thermal study was conducted to better understand processes responsible for the anomalous temperatures recorded near the deposit. The regional maximum temperature reached by metasediments from the Nacimiento block have been first investigated using the Raman Spectroscopy of Carbonaceous Materials (RSCM) method. In addition, through careful fluid-inclusion and stable isotopes (O and C) studies on the deposit, the temperature and the potential source of the fluid responsible for the Los Burros Au-deposit emplacement were investigated. RSCM technique confirms the presence of a thermal anomaly in the range 260-320ºC near LBMD. However, our structural and petrographic results suggest that the thermal anomaly is not correlated to a post-metamorphic hydrothermal overprint but rather to a late, transpressive deformation uplifting buried metamorphic rocks.

  20. Seasonal and ENSO Influences on the Stable Isotopic Composition of Galápagos Precipitation

    NASA Astrophysics Data System (ADS)

    Martin, N. J.; Conroy, J. L.; Noone, D.; Cobb, K. M.; Konecky, B. L.; Rea, S.

    2018-01-01

    The origin of stable isotopic variability in precipitation over time and space is critical to the interpretation of stable isotope-based paleoclimate proxies. In the eastern equatorial Pacific, modern stable isotope measurements in precipitation (δ18Op and δDp) are sparse and largely unevaluated in the literature, although insights from such analyses would benefit the interpretations of several regional isotope-based paleoclimate records. Here we present a new 3.5 year record of daily-resolved δ18Op and δDp from Santa Cruz, Galápagos. With a prior 13 year record of monthly δ18Op and δDp from the island, these new data reveal controls on the stable isotopic composition of regional precipitation on event to interannual time scales. Overall, we find Galápagos δ18Op is significantly correlated with precipitation amount on daily and monthly time scales. The majority of Galápagos rain events are drizzle, or garúa, derived from local marine boundary layer vapor, with corresponding high δ18Op values due to the local source and increased evaporation and equilibration of smaller drops with boundary layer vapor. On monthly time scales, only precipitation in very strong, warm season El Niño months has substantially lower δ18Op values, as the sea surface temperature threshold for deep convection (28°C) is only surpassed at these times. The 2015/2016 El Niño event did not produce strong precipitation or δ18Op anomalies due to the short period of warm SST anomalies, which did not extend into the peak of the warm season. Eastern Pacific proxy isotope records may be biased toward periods of high rainfall during strong to very strong El Niño events.

  1. Organic Analysis in the Miller Range 090657 CR2 Chondrite: Part 3 C and N Isotopic Imaging

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Nakamura-Messenger, K.; Elsila, J. E.; Berger, E. L.; Burton, A. S.; Clemett, S. J.; Cao, T.

    2016-01-01

    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble nanoglobules of macro-molecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Large H, C and N isotopic anomalies suggest some organic components formed in low-T interstellar or outer Solar System environments. The highest isotope anomalies occur in m-scale inclusions in the most primitive materials, such as cometary dust and the least altered carbonaceous chondrites. Often, the hosts of these isotopically anomalous 'hotspots' are discrete organic nanoglobules that probably formed in the outermost reaches of the protosolar disk or cold molecular cloud. Molecular and isotopic studies of meteoritic organic matter are aimed at identifying the chemical properties and formation processes of interstellar organic materials and the subsequent chemical evolutionary pathways in various Solar System environments. The combination of soluble and insoluble analyses with in situ and bulk studies provides powerful constraints on the origin and evolution of organic matter in the Solar System. Using macroscale extraction and analysis techniques as well as microscale in situ observations we have been studying both insoluble and soluble organic material in primitive astromaterial samples. Here, we present results of bulk C and N isotopic measurements and coordinated in situ C and N isotopic imaging and mineralogical and textural studies of carbonaceous materials in a Cr2 carbonaceous chondrite. In accompanying abstracts we discuss the morphology and distribution of carbonaceous components and soluble organic species of this meteorite.

  2. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  3. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  4. High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria

    NASA Astrophysics Data System (ADS)

    Boch, Ronny; Spötl, Christoph; Kramers, Jan

    2009-11-01

    Two coeval stalagmites from Katerloch Cave show pronounced intervals of low δ18O values around 8.2, 9.1, and 10.0 kyr (all ages are reported before the year 2000 AD) and represent an inorganic U-Th dated climate archive from the southeast of the European Alps, a region where only very few well-dated climate records exist. The O isotope curves, providing near-annual resolution, allow a direct comparison to the Greenland ice core records, as temperature was the primary factor controlling the O isotopic composition of Katerloch speleothems. The 8.2 kyr climate anomaly lasted about one century, from 8196 to 8100 yr, with a maximum amplitude of 1.1‰ at 8175 yr. The event is characterized by a rapid onset and a more gradual demise and U-Th data as well as annual lamina counting support a rapid climate change towards cooler conditions within 10-20 yr. There is no strong evidence that the 8.2 kyr anomaly was superimposed on a pronounced longer-term cooling episode, nor do the new data support two separate cooling events within the 8.2 kyr event as reported by other studies. Our record also shows a distinct climate anomaly around 9.1 kyr, which lasted 70-110 yr and showed a maximum amplitude of 1.0‰, i.e. it had a similar duration and amplitude as the (central) 8.2 kyr event. Compared to the 8.2 kyr event, the 9.1 kyr anomaly shows a more symmetrical structure, but onset and demise still occurred within a few decades only. The different progression of the 8.2 (asymmetrical) and 9.1 kyr anomaly (symmetrical) suggests a fundamental difference in the trigger and/or the response of the climate system. Moreover, both stalagmites show evidence of a climate anomaly around 10.0 kyr, which was of comparable magnitude to the two subsequent events. Using a well constrained modern calibration between air temperature and δ18O of precipitation for the study area and cave monitoring data (confirming speleothem deposition in Katerloch reflecting cave air temperature), a maximum

  5. The chlorine isotope fingerprint of the lunar magma ocean

    PubMed Central

    Boyce, Jeremy W.; Treiman, Allan H.; Guan, Yunbin; Ma, Chi; Eiler, John M.; Gross, Juliane; Greenwood, James P.; Stolper, Edward M.

    2015-01-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free (“dry”) Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because 37Cl/35Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, 37Cl/35Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high 37Cl/35Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon’s history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets. PMID:26601265

  6. Excitation of vacuum ultraviolet spectra of krypton in a cooled gas discharge

    NASA Astrophysics Data System (ADS)

    Gerasimov, Gennadii N.; Krylov, Boris E.; Hallin, Reinhold

    1995-08-01

    Results are presented on the experimental study of VUV spectra of krypton excited by a dc discharge in a capillary tube with the wall cooled to the temperature of liquid nitrogen. We studied the 120-200 nm spectral region corresponding to the transitions between the dimer lowest excited states and the weakly bound ground state, 1u, 0u+ yields 0g+. Electron impact, transferring dimers from the ground state into the excited state, is shown to be an efficient excitation mechanism in the 50-650 Torr and the 10-50 mA pressure and current ranges. The spectra obtained and the calculations made corroborate the high rate of this process.

  7. Solar, planetary, and other inert gases in two sieve fractions of a disaggregated Allende sample - A study by stepwise heating extraction

    NASA Technical Reports Server (NTRS)

    Palma, R. L.; Heymann, D.

    1988-01-01

    Inert gases released by stepwise heating of unaltered, strongly magnetic, and weakly magnetic samples from the 0-64 micron and the 105-250 micron fractions of a disaggregated and sieved sample of the Allende meteorite reveal the occurrence of both solar and planetary neon. The origin of the solar neon is thought to be implantation of solar wind ions. The origin of the planetary neon remains unresolved. Heavy isotope enriched components of krypton and xenon have been detected and there are some indications that a light krypton component may also be present. Other than a larger concentration of Xe-129 in the weakly magnetic samples, the signatures of the magnetic separates are isotopically very similar.

  8. MG Isotopic Measurement of FIB-Isolated Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Nguyen, A.; Ito, M.; Rahman, Z.

    2010-01-01

    The majority of presolar oxide and silicate grains are ascribed to origins in low-mass red giant and asymptotic giant branch (AGB) stars based on their O isotopic ratios. However, a minor population of these grains (< 10%) has O isotopic ratios incompatible with these sources. Two principle alternative sources are higher-than-solar metallicity (Z) stars or, more likely, supernovae (SN) [1-3]. These rare (Group 4) grains [3] are characterized by enrichments in O-18, and typically also enrichments in O-17. An even rarer subset of grains with extremely large enrichments in O-17 and smaller depletions in O-18 were suggested to come from binary star systems [2]. To establish the origins of these isotopically unusual grains, it is necessary to examine isotopic systems in addition to O. Presolar silicates offer several elements diagnostic of their stellar sources and nuclear processes, including O, Si, Mg, Fe and Ca. However, the database for minor element isotopic compositions in silicates is seriously lacking. To date only two silicate grains have been analyzed for Mg [4] or Fe [5]. One major complicating factor is their small size (average 230 nm), which greatly limits the number of measurements that can be performed on any one grain and makes it more difficult to obtain statistically relevant data. This problem is compounded because the grains are identified among isotopically solar silicates, which contribute a diluting signal in isotopic measurements [1]. Thus, relatively small isotopic anomalies are missed due to this dilution effect. By applying focused ion beam (FIB) milling, we obtain undiluted Mg isotopic ratios of isolated rare presolar silicate grains to investigate their sources.

  9. Clustering and Recurring Anomaly Identification: Recurring Anomaly Detection System (ReADS)

    NASA Technical Reports Server (NTRS)

    McIntosh, Dawn

    2006-01-01

    This viewgraph presentation reviews the Recurring Anomaly Detection System (ReADS). The Recurring Anomaly Detection System is a tool to analyze text reports, such as aviation reports and maintenance records: (1) Text clustering algorithms group large quantities of reports and documents; Reduces human error and fatigue (2) Identifies interconnected reports; Automates the discovery of possible recurring anomalies; (3) Provides a visualization of the clusters and recurring anomalies We have illustrated our techniques on data from Shuttle and ISS discrepancy reports, as well as ASRS data. ReADS has been integrated with a secure online search

  10. Branchial anomalies in children.

    PubMed

    Bajaj, Y; Ifeacho, S; Tweedie, D; Jephson, C G; Albert, D M; Cochrane, L A; Wyatt, M E; Jonas, N; Hartley, B E J

    2011-08-01

    Branchial cleft anomalies are the second most common head and neck congenital lesions seen in children. Amongst the branchial cleft malformations, second cleft lesions account for 95% of the branchial anomalies. This article analyzes all the cases of branchial cleft anomalies operated on at Great Ormond Street Hospital over the past 10 years. All children who underwent surgery for branchial cleft sinus or fistula from January 2000 to December 2010 were included in this study. In this series, we had 80 patients (38 female and 42 male). The age at the time of operation varied from 1 year to 14 years. Amongst this group, 15 patients had first branchial cleft anomaly, 62 had second branchial cleft anomaly and 3 had fourth branchial pouch anomaly. All the first cleft cases were operated on by a superficial parotidectomy approach with facial nerve identification. Complete excision was achieved in all these first cleft cases. In this series of first cleft anomalies, we had one complication (temporary marginal mandibular nerve weakness. In the 62 children with second branchial cleft anomalies, 50 were unilateral and 12 were bilateral. In the vast majority, the tract extended through the carotid bifurcation and extended up to pharyngeal constrictor muscles. Majority of these cases were operated on through an elliptical incision around the external opening. Complete excision was achieved in all second cleft cases except one who required a repeat excision. In this subgroup, we had two complications one patient developed a seroma and one had incomplete excision. The three patients with fourth pouch anomaly were treated with endoscopic assisted monopolar diathermy to the sinus opening with good outcome. Branchial anomalies are relatively common in children. There are three distinct types, first cleft, second cleft and fourth pouch anomaly. Correct diagnosis is essential to avoid inadequate surgery and multiple procedures. The surgical approach needs to be tailored to the type

  11. Posterior fossa anomalies diagnosed with fetal MRI: associated anomalies and neurodevelopmental outcomes.

    PubMed

    Patek, Kyla J; Kline-Fath, Beth M; Hopkin, Robert J; Pilipenko, Valentina V; Crombleholme, Timothy M; Spaeth, Christine G

    2012-01-01

    The purpose of this study was to describe the relationship between intracranial and extracranial anomalies and neurodevelopmental outcome for fetuses diagnosed with a posterior fossa anomaly (PFA) on fetal MRI. Cases of Dandy-Walker malformation, vermian hypogenesis/hypoplasia, and mega cisterna magna (MCM) were identified through the Fetal Care Center of Cincinnati between January 2004 and December 2010. Parental interview and retrospective chart review were used to assess neurodevelopmental outcome. Posterior fossa anomalies were identified in 59 fetuses; 9 with Dandy-Walker malformation, 36 with vermian hypogenesis/hypoplasia, and 14 with MCM. Cases with isolated PFAs (14/59) had better outcomes than those with additional anomalies (p = 0.00016), with isolated cases of MCM all being neurodevelopmentally normal. Cases with additional intracranial anomalies had a worse outcome than those without intracranial anomalies (p = 0.00017). The presence of extracranial anomalies increased the likelihood of having a poor outcome (p = 0.00014) as did the identification of an abnormal brainstem (p = 0.00018). Intracranial and extracranial anomalies were good predictors of neurodevelopmental outcome in this study. The prognosis was poor for individuals with an abnormal brainstem, whereas those with isolated MCM had normal neurodevelopmental outcome. © 2012 John Wiley & Sons, Ltd.

  12. Cervical vertebral anomalies in patients with anomalies of the head and neck.

    PubMed

    Manaligod, J M; Bauman, N M; Menezes, A H; Smith, R J

    1999-10-01

    Congenital head and neck anomalies can occur in association with vertebral anomalies, particularly of the cervical vertebrae. While the former are easily recognized, especially when part of a syndrome, the latter are often occult, thereby delaying their diagnosis. The presence of vertebral anomalies must be considered in pediatric patients with head and neck abnormalities to expedite management of select cases and to prevent neurologic injury. We present our experience with 5 pediatric patients who were referred to the Department of Otolaryngology-Head and Neck Surgery at the University of Iowa with a variety of syndromic anomalies of the head and neck. Each patient was subsequently also found to have a vertebral anomaly. The relevant embryogenesis of the anomalous structures is discussed, with highlighting of potential causes such as teratogenic agents and events and germ-line mutations. A review of syndromes having both head and neck and vertebral anomalies is presented to heighten awareness of otolaryngologists evaluating children with syndromic disorders. Finally, the findings on radiographic imaging studies, particularly computed tomography, are discussed to facilitate the prompt diagnosis of vertebral anomalies.

  13. Low Temperature Thermodynamic Equilibrium of CO2 Dimer Anion Species in Cryogenic Argon and Krypton Matrices

    NASA Astrophysics Data System (ADS)

    Goodrich, Michael E.; Moore, David T.

    2016-06-01

    The separated CO2 dimer anion, (CO2)(CO2-), is observed by FTIR spectroscopy in matrix isolation experiments at 1652 cm-1 upon deposition of high energy argon ions into an argon matrix doped with 0.5% CO2. It has previously been reported by Andrews that upon annealing the matrix to 25K, the separated species converts to an oxalate-like C2O4- species which appears at 1856 cm-1.a We have observed that subsequently holding the matrix at 10K caused the C2O4- species to fully convert back to (CO2)(CO2-). Upon further investigation, we determined that the two species reversibly interconvert between 19K and 23K, suggesting the species are in thermodynamic equilibrium. The associated van't Hoff plot has a linear trend and indicates an endothermic reaction driven by a large increase in entropy. An analogous experiment in a krypton matrix was performed, and the equilibrium was found to occur between 26K and 31K. Interestingly, analysis revealed the reaction in krypton is more endothermic, but has nearly the same entropy value as was observed in the argon experiment. aZhou, M.; Andrews, L.; J. Chem. Phys. 110, 2414 (1999).

  14. SULFUR ISOTOPIC COMPOSITIONS OF SUBMICROMETER SiC GRAINS FROM THE MURCHISON METEORITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuchen; Zinner, Ernst; Gallino, Roberto

    2015-02-01

    We report C, Si, N, S, Mg-Al, and Ca-Ti isotopic compositions of presolar silicon carbide (SiC) grains from the SiC-rich KJE size fraction (0.5-0.8 μm) of the Murchison meteorite. One thousand one hundred thirteen SiC grains were identified based on their C and Si isotopic ratios. Mainstream, AB, C, X, Y, and Z subtypes of SiC, and X-type silicon nitride (Si{sub 3}N{sub 4}) account for 81.4%, 5.7%, 0.1%, 1.5%, 5.8%, 4.9%, and 0.4%, respectively. Twenty-five grains with unusual Si isotopic ratios, including one C grain, 16 X grains, 1 Y grain, 5 Z grains, and 2 X-type Si{sub 3}N{sub 4} grainsmore » were selected for N, S, Mg-Al, and Ca-Ti isotopic analysis. The C grain is highly enriched in {sup 29}Si and {sup 30}Si (δ{sup 29}Si = 1345‰ ± 19‰, δ{sup 30}Si = 1272‰ ± 19‰). It has a huge {sup 32}S excess, larger than any seen before, and larger than that predicted for the Si/S supernova (SN) zone, providing evidence against the elemental fractionation model by Hoppe et al. Two SN models investigated here present a more satisfying explanation in terms of a radiogenic origin of {sup 32}S from the decay of short-lived {sup 32}Si (τ{sub 1/2} = 153 yr). Silicon-32 as well as {sup 29}Si and {sup 30}Si can be produced in SNe by short neutron bursts; evidence for initial {sup 44}Ti (τ{sub 1/2} = 60 yr) in the C grain is additional evidence for an SN origin. The X grains have marginal {sup 32}S excesses, much smaller than expected from their large {sup 28}Si excesses. Similarly, the Y and Z grains do not show the S-isotopic anomalies expected from their large Si isotopic anomalies. Low intrinsic S contents and contamination with isotopically normal S are the most likely explanations.« less

  15. Analysis of spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Graham, W. C.

    1976-01-01

    The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.

  16. Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia's Z machine

    DOE PAGES

    Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; ...

    2014-11-11

    We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Inmore » conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.« less

  17. Competing Orders and Anomalies

    PubMed Central

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  18. Spacecraft Environmental Anomalies Handbook

    DTIC Science & Technology

    1989-08-01

    1989 4. TITLE AND SUBTITLE S. FUNDING NUMBERS SPACECRAFT ENVIRONMENTAL ANOMALIES HANDBOOK 282201AA PE: 63410F 6. AUTHOR(S) Paul A. Robinson, Jr 7...engineering solutions for mitigating the effects of environmental anomalies have been developed. Among the causes o, spacecraft anomalies are surface...have been discovered after years of investig!:tion, and engineering solutions for mitigating the effccts of environmental anomalies have been developed

  19. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less

  20. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less

  1. Fractionation of uranium isotopes in minerals screened by gamma spectrometry.

    NASA Astrophysics Data System (ADS)

    Geiger, Jeffrey L.; Baldwin, Austin M.; Blatchley, Charles C.

    2008-03-01

    At least two groups have reported finding shifts in the ratio of U-235/U-238 for sandstone, black shale, and other sedimentary samples using precision ICP-MS. These shifts were tentatively attributed to a recently predicted isotope effect based on nuclear volume that causes fractionation for U^IV-U^VI transitions. However, fractionation of high Z elements may be less likely an explanation than U-235 depletion induced by galactic cosmic ray neutrons. Isotope depletion in marine sediments could therefore be an indicator of changes in cosmic ray flux due to nearby supernovae, gamma-ray bursts, or longer term changes during the 62 million year cycle of the Sun above and below the galactic plane. We report using a less precise approach than ICP-MS, but one which can quickly screen samples to look for anomalies in isotope ratios, namely HPGe gamma ray spectrometry. Various levels of depletion were measured for uranium rich minerals, including brannerite, carnotite, and pitchblende, as well as coal and limestone samples.

  2. Hydrogen isotope fractionation in methane plasma

    NASA Astrophysics Data System (ADS)

    Robert, François; Derenne, Sylvie; Lombardi, Guillaume; Hassouni, Khaled; Michau, Armelle; Reinhardt, Peter; Duhamel, Rémi; Gonzalez, Adriana; Biron, Kasia

    2017-01-01

    The hydrogen isotope ratio (D/H) is commonly used to reconstruct the chemical processes at the origin of water and organic compounds in the early solar system. On the one hand, the large enrichments in deuterium of the insoluble organic matter (IOM) isolated from the carbonaceous meteorites are interpreted as a heritage of the interstellar medium or resulting from ion-molecule reactions taking place in the diffuse part of the protosolar nebula. On the other hand, the molecular structure of this IOM suggests that organic radicals have played a central role in a gas-phase organosynthesis. So as to reproduce this type of chemistry between organic radicals, experiments based on a microwave plasma of CH4 have been performed. They yielded a black organic residue in which ion microprobe analyses revealed hydrogen isotopic anomalies at a submicrometric spatial resolution. They likely reflect differences in the D/H ratios between the various CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities, usually referred to as hot and cold spots, are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the disk surrounding the Sun during its formation may have triggered the formation of organic compounds.

  3. A model for osmium isotopic evolution of metallic solids at the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Humayun, Munir

    2011-03-01

    Some plumes are thought to originate at the core-mantle boundary, but geochemical evidence of core-mantle interaction is limited to Os isotopes in samples from Hawaii, Gorgona (89 Ma), and Kostomuksha (2.7 Ga). The Os isotopes have been explained by physical entrainment of Earth's liquid outer core into mantle plumes. This model has come into conflict with geophysical estimates of the timing of core formation, high-pressure experimental determinations of the solid metal-liquid metal partition coefficients (D), and the absence of expected 182W anomalies. A new model is proposed where metallic liquid from the outer core is partially trapped in a compacting cumulate pile of Fe-rich nonmetallic precipitates (FeO, FeS, Fe3Si, etc.) at the top of the core and undergoes fractional crystallization precipitating solid metal grains, followed by expulsion of the residual metallic liquid back to the outer core. The Os isotopic composition of the solids and liquids in the cumulate pile is modeled as a function of the residual liquid remaining and the emplacement age using 1 bar D values, with variable amounts of oxygen (0-10 wt %) as the light element. The precipitated solids evolve Os isotope compositions that match the trends for Hawaii (at an emplacement age of 3.5-4.5 Ga; 5%-10% oxygen) and Gorgona (emplacement age < 1.5 Ga; 0%-5% oxygen). The Fe-rich matrix of the cumulate pile dilutes the precipitated solid metal decoupling the Fe/Mn ratio from Os and W isotopes. The advantages to using precipitated solid metal as the Os host include a lower platinum group element and Ni content to the mantle source region relative to excess iron, miniscule anomalies in 182W (<0.1 ɛ), and no effects for Pb isotopes, etc. A gradual thermomechanical erosion of the cumulate pile results in incorporation of this material into the base of the mantle, where mantle plumes subsequently entrain it. Fractional crystallization of metallic liquids within the CMB provides a consistent explanation of

  4. Thallium isotope variations in anthropogenically-affected soils

    NASA Astrophysics Data System (ADS)

    Vanek, Ales; Chrastny, Vladislav; Penizek, Vit; Mihaljevic, Martin; Komarek, Michael; Cabala, Jerzy

    2014-05-01

    Our preliminary data from soils impacted by long-term Tl deposition in the vicinity of a primary/secondary Zn smelter at Olkusz (Poland) indicate apparent variability of ɛ205Tl within soil profiles. The identified ɛ205Tl values presented for the forest soil profile reached -1.7 in the surface/organic horizon, +1.9 in the organo-mineral horizon (Ap), and +1.0 in the mineral horizon (C). This finding suggests both the enrichment of 203Tl isotope in the topsoil, as well as its preferential release during smelting operations, as "lighter" Tl tends to enter the emissions during a high-temperature process. The maximum ɛ205Tl value in the subsurface horizon Ap is in accordance with the concentration peak of oxalate-extractable Mn, indicating the presence of amorphous/poorly-crystalline Mn oxides with a potential to isotopically fractionate Tl toward the "heavier" fraction. The Tl isotope signature in the bottom horizon probably reflects the composition of a local geochemical anomaly of Tl. However, a portion of mobile (anthropogenic) Tl with negative ɛ205Tl moving downwards in the soil profile cannot be neglected. In general, there is no detailed information about the biogeochemical cycling and variations of Tl isotopes in areas affected by significant anthropogenic inputs of the metal (e.g., coal burning and primary metallurgy); the questions of the degree to which the factors such as soil (and sediment) chemistry, mineralogy, local biota, and pollution source control Tl isotope fractionation remain unresolved. Therefore, further research on the topic is needed before any principal conclusions will be made.

  5. Compositional changes in the UCC through time revealed by tungsten isotopes

    NASA Astrophysics Data System (ADS)

    Mundl, A.; Walker, R. J.; Reimink, J. R.; Rudnick, R. L.; Gaschnig, R. M.

    2017-12-01

    During periods of glaciation, ice scrapes off large areas of Earth's surface. The resulting sediments, termed glacial diamictites, are typically little affected by chemical alteration during their accumulation and lithification. The fine-grained matrix of a diamictite can therefore provide important information about the average composition of a portion of the upper continental crust (UCC) preceding the time of its deposition. Major and trace element studies of diamictites have reported compositional changes in the UCC through Earth's history, documenting changes in its average lithology. Short-lived radiogenic isotope systems are useful tools to further study crustal evolution via diamictites, as small-scale 182W (182Hf → 182W, t½ = 8.9 Ma) and 142Nd (146Nd → 142Nd, t½= 103 Ma) anomalies may reflect mantle or crustal processes that occurred very early in Earth history. We have investigated 182W/184W ratios in thirteen glacial diamictite composites from four different continents. These rocks were deposited during the Archean (3.0 Ga), Proterozoic (2.4, 2.3, 2.2, 0.6 Ga) and Paleozoic (0.3 Ga) in South Africa, as well as during the Proterozoic (2.4, 0.7, 0.6 Ga) in North America, and the Paleozoic (0.3 Ga) in South America. Individual glacial diamictites sample multiple crustal sources, so the isotopic compositions of the diamictites are more representative of the UCC at the time of deposition, than the komatiites and early Archean supracrustal rocks, which have been the focus of most prior studies. Tungsten isotope compositions reveal well-resolved deficits in 182W/184W of as much as 14 ppm in three of the four Archean samples from South Africa. By contrast, there are no clearly resolved deficits in Paleoproterozoic diamictites from the same area, although results for multiple analyses of the same samples suggest that a small deficit of 6 ppm may be present. No anomalies are present in younger diamictites. The Archean diamictites provide additional evidence

  6. The Liquid Krypton Hugoniot at Megabar Pressures

    NASA Astrophysics Data System (ADS)

    Root, Seth; Magyar, Rudy J.; Mattsson, Ann E.; Hanson, David L.; Mattsson, Thomas R.

    2011-06-01

    Krypton is an ideal candidate to study multi-Mbar pressure effects on elements with filled-shell electron configurations. Few experimental data on Kr at high pressures exist, however, with prior Hugoniot data limited to below 1 Mbar. Similar to liquid xenon, the current Kr equation of state (EOS) models agree with the data and each other below 1 Mbar, but diverge with increasing pressure. We examine the liquid Kr Hugoniot up to 8 Mbar by using density functional theory (DFT) methods and by performing shock compression experiments on the Sandia Z - accelerator. Our initial DFT Kr Hugoniot calculations indicated the standard PAW potential is inadequate at the high pressures and temperatures occurring under strong shock compression. A new Kr PAW potential was constructed giving improved scattering properties of the atom at high energies. The Z Hugoniot measurements above 1 Mbar validated the DFT results and the pseudo-potential. The DFT and Z results suggest that the current EOS models require some modifications. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. On krypton-doped capsule implosion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Ma, T.; Nora, R.; Barrios, M. A.; Scott, H. A.; Schneider, M. B.; Berzak Hopkins, L.; Casey, D. T.; Hammel, B. A.; Jarrott, L. C.; Landen, O. L.; Patel, P. K.; Rosenberg, M. J.; Spears, B. K.

    2017-07-01

    This paper presents the spectroscopic aspects of using Krypton as a dopant in NIF capsule implosions through simulation studies and the first set of NIF experiments. Using a combination of 2D hohlraum and 1D capsule simulations with comprehensive spectroscopic modeling, the calculations focused on the effect of dopant concentration on the implosion, and the impact of gradients in the electron density and temperature to the Kr line features and plasma opacity. Experimental data were obtained from three NIF Kr-dopant experiments, performed with varying Kr dopant concentrations between 0.01% and 0.03%. The implosion performance, hotspot images, and detailed Kr spectral analysis are summarized relative to the predictions. Data show that fuel-dopant spectroscopy can serve as a powerful and viable diagnostic for inertial confinement fusion implosions.

  8. Lymphatic Anomalies Registry

    ClinicalTrials.gov

    2018-01-23

    Lymphatic Malformation; Generalized Lymphatic Anomaly (GLA); Central Conducting Lymphatic Anomaly; CLOVES Syndrome; Gorham-Stout Disease ("Disappearing Bone Disease"); Blue Rubber Bleb Nevus Syndrome; Kaposiform Lymphangiomatosis; Kaposiform Hemangioendothelioma/Tufted Angioma; Klippel-Trenaunay Syndrome; Lymphangiomatosis

  9. Analysis of genitourinary anomalies in patients with VACTERL (Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, Limb abnormalities) association.

    PubMed

    Solomon, Benjamin D; Raam, Manu S; Pineda-Alvarez, Daniel E

    2011-06-01

    The goal of this study was to describe a novel pattern of genitourinary (GU) anomalies in VACTERL association,which involves congenital anomalies affecting the vertebrae,anus, heart, trachea and esophagus, kidneys, and limbs.We collected clinical data on 105 patients diagnosed with VACTERL association and analyzed a subset of 89 patients who met more stringent inclusion criteria. Twenty-one percent of patients have GU anomalies, which are more severe (but not more frequent) in females. Anomalies were noted in patients without malformations affecting the renal, lower vertebral, or lower gastrointestinal systems. There should be a high index of suspicion for the presence of GU anomalies even in patients who do not have spatially similar malformations.

  10. Platinum stable isotopes in ferromanganese crust and nodules

    NASA Astrophysics Data System (ADS)

    Corcoran, Loretta; Seward, Terry; Handler, Monica R.

    2015-04-01

    Hydrogenetic ferromanganese (Fe-Mn) crust and nodules are slow-growing chemical sediments that form by direct precipitation from seawater, resulting in a record of changing seawater chemistry. These sediments are the primary sink for platinum in the modern oxic marine environment, hosting well-documented enrichments over other platinum-group elements (PGEs): the Pt anomaly [1]. Platinum is a non-bio-essential, highly siderophile, transition metal with six stable isotopes (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt) with several oxidation states (Pt0, Pt2+ and Pt4+). Platinum is generally considered to exist in the hydrosphere as Pt2+ although its behaviour in the marine environment is poorly constrained, and Pt4+may also be present. Variations in ocean redox state, together with changes in source fluxes to the oceans, may therefore lead to small variations (< ±1) in the stable isotopic composition of marine platinum, raising the potential of adding platinum to the growing arsenal of paleoceanographic tracers. A method has been developed to measure the platinum isotopic composition using double spike MC-ICPMS analysis [2]and applied to a global suite of modern Fe-Mn crust and nodules. Combining synchrotron XAFS analyses of platinum adsorbed onto Fe-Mn oxide and oxyhydroxide surfaces to determine oxidation state and bonding environment, with platinum stable isotopic measurements allowing us to evaluate both platinum incorporation onto these sediments and the associated degree of platinum isotopic fractionation. Leaching experiments conducted on platinum rich terrestrial materials underwent platinum stable isotopic measurement as an analogue for the Pt isotopic fractionation associated with continental weathering. [1] Hodge, V.F. et al. (1985) Earth and Planetary Science Letters, 72, 158-162. [2] Creech, J. et al. (2013) Journal of Analytical Atomic Spectrometry, 28. 853-865.

  11. Biological Oxygen Productivity Over The Last Glacial Termination From Triple Oxygen Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Blunier, T.; Bender, M. L.; Hendricks, M. B.

    The atmospheric oxygen isotope signature of O2 is linked to the oxygen signature of seawater through photosynthesis and respiration. Fractionation during these pro- cesses is mass dependent affecting 17O about half as much as 18O. A mass indepen- dent fractionation process takes place during isotope exchange between O2 and CO2 in the stratosphere (Thiemens, 1999; Luz et al., 1999). The magnitude of the mass- independent anomaly in the triple isotope composition of O2 depends on relative rates of biological O2 cycling and photochemical reactions in the stratosphere. Variations of this anomaly thus allows us to estimate changes of mass dependent O2 production by photosynthesis versus mass independent O2-CO2 exchange in the stratosphere. We reconstruct total oxygen productivity for the past from 17O and 18O measure- ments of O2 trapped in ice cores. With a box model we estimate that the total biogenic productivity was only 76-83 % of today for the glacial and was probably still lower than today during the glacial-interglacial transition and the early Holocene. In principle we can calculate the oxygen flux from the ocean biosphere if we know the oxygen flux from the land biosphere. Calculated ocean production is very sensitive to the estimate of land biosphere production. The latter term remains uncertain, however, and we can presently only constrain glacial ocean production to 88 to 140 % of the present value.

  12. Analysis of genitourinary anomalies in patients with VACTERL (Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, Limb abnormalities) association

    PubMed Central

    Solomon, Benjamin D.; Raam, Manu S.; Pineda-Alvarez, Daniel E.

    2010-01-01

    Purpose The goal of this study was to describe a novel pattern of genitourinary (GU) anomalies in VACTERL association, which involves congenital anomalies affecting the vertebrae, anus, heart, trachea and esophagus, kidneys, and limbs. Procedures We collected clinical data on 105 patients diagnosed with VACTERL association and analyzed a subset of 89 patients who met more stringent inclusion criteria. Findings Twenty-one percent of patients have GU anomalies, which are more severe (but not more frequent) in females. Anomalies were noted in patients without malformations affecting the renal, lower vertebral, or lower gastrointestinal systems. Conclusions There should be a high index of suspicion for the presence of GU anomalies even in patient who do not have spatially similar malformations. PMID:21235632

  13. MAGSAT anomaly map and continental drift

    NASA Technical Reports Server (NTRS)

    Lemouel, J. L. (Principal Investigator); Galdeano, A.; Ducruix, J.

    1981-01-01

    Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.

  14. Isotopic anomalies of H2 and C in the peat from the Tunguska meteorite impact area

    NASA Astrophysics Data System (ADS)

    Kolesnikov, E. M.

    Core samples of peat collected at the site of the Tunguska meteorite impact were mixed with CuO and burned inside evacuated and sealed quartz ampules. As a result, the organic components of peat were transformed to H2O and CO2 which were then separated and analyzed using a mass spectrometer. Results show that layers located above the level dated by 1908 are characterized by lighter H2 isotopes and heavier C isotopes, compared with lower layers. These effects are ascribed to the conservation and gradual redistribution of cosmic matter (e.g., regular chondrites, achondrites, and C4-type carbon chondrites) in the upper peat layers.

  15. Isotopic and Chemical Evidence for Primitive Aqueous Alteration in the Tagish Lake Meteorite

    NASA Astrophysics Data System (ADS)

    Sakuma, Keisuke; Hidaka, Hiroshi; Yoneda, Shigekazu

    2018-01-01

    Aqueous alteration is one of the primitive activities that occurred on meteorite parent bodies in the early solar system. The Tagish Lake meteorite is known to show an intense parent body aqueous alteration signature. In this study, quantitative analyses of the alkaline elements and isotopic analyses of Sr and Ba from acid leachates of TL (C2-ungrouped) were performed to investigate effects of aqueous alteration. The main purpose of this study is to search for isotopic evidence of extinct 135Cs from the Ba isotopic analyses in the chemical separates from the Tagish Lake meteorite. Barium isotopic data from the leachates show variable 135Ba isotopic anomalies (ε = ‑2.6 ∼ +3.6) which correlatewith 137Ba and 138Ba suggesting a heterogeneous distribution of s- and r-rich nucleosynthetic components in the early solar system. The 87Rb–87Sr and 135Cs–135Ba decay systems on TL in this study do not provide any chronological information. The disturbance of the TL chronometers is likely a reflection of the selective dissolution of Cs and Rb given the relatively higher mobility of Cs and Rb compared to Ba and Sr, respectively, during fluid mineral interactions.

  16. Threshold krypton charge-state distributions coincident with K-shell fluorescence.

    NASA Astrophysics Data System (ADS)

    Armen, Brad; Levin, Jon; Kanter, Elliot; Krässig, Bertold; Southworth, Steve; Young, Linda

    2001-05-01

    The distribution of Kr^q+ ionic charge states has been measured in coincidence with K-shell photon emission as a function of incident-photon energy across the krypton 1s threshold. With this scheme, we observe changes resulting from the contrast between resonant Raman and fluorescence effects. By selecting the radiative(U. Arp, T. LeBrun, S. H. Southworth, M. A. MacDonald, and M. Jung, Phys. Rev.) A 51 3598 (1995), as opposed to the non-radiative(G. B. Armen, J. C. Levin, and I. A. Sellin, Phys. Rev.) A 53 772 (1996) channel, excitation PCI effects are suppressed. In general, the higher charge states are seen to increase in importance as the edge is traversed. We present the experimental results in detail and an interpretation of the observed trends, based on a simple model of the excitation processfootnoteÅberg and Tulkki, in Atomic Inner-Shell Physics ed. B. Crasemann, Plenum 1985 and the ensuing cascade decay.

  17. First branchial groove anomaly.

    PubMed

    Kumar, M; Hickey, S; Joseph, G

    2000-06-01

    First branchial groove anomalies are very rare. We report a case of a first branchial groove anomaly presented as an infected cyst in an 11-month-old child. Management of such lesions is complicated because of their close association with the facial nerve. Surgical management must include identification and protection of the facial nerve. Embryology and facial nerve disposition in relation to the anomaly are reviewed.

  18. Proxy system modeling of tree-ring isotope chronologies over the Common Era

    NASA Astrophysics Data System (ADS)

    Anchukaitis, K. J.; LeGrande, A. N.

    2017-12-01

    The Asian monsoon can be characterized in terms of both precipitation variability and atmospheric circulation across a range of spatial and temporal scales. While multicentury time series of tree-ring widths at hundreds of sites across Asia provide estimates of past rainfall, the oxygen isotope ratios of annual rings may reveal broader regional hydroclimate and atmosphere-ocean dynamics. Tree-ring oxygen isotope chronologies from Monsoon Asia have been interpreted to reflect a local 'amount effect', relative humidity, source water and seasonality, and winter snowfall. Here, we use an isotope-enabled general circulation model simulation from the NASA Goddard Institute for Space Science (GISS) Model E and a proxy system model of the oxygen isotope composition of tree-ring cellulose to interpret the large-scale and local climate controls on δ 18O chronologies. Broad-scale dominant signals are associated with a suite of covarying hydroclimate variables including growing season rainfall amounts, relative humidity, and vapor pressure deficit. Temperature and source water influences are region-dependent, as are the simulated tree-ring isotope signals associated with the El Nino Southern Oscillation (ENSO) and large-scale indices of the Asian monsoon circulation. At some locations, including southern coastal Viet Nam, local precipitation isotope ratios and the resulting simulated δ 18O tree-ring chronologies reflect upstream rainfall amounts and atmospheric circulation associated with monsoon strength and wind anomalies.

  19. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.

    2014-01-01

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.

  20. Volcanic dust veils from sixth century tree-ring isotopes linked to reduced irradiance, primary production and human health.

    PubMed

    Helama, Samuli; Arppe, Laura; Uusitalo, Joonas; Holopainen, Jari; Mäkelä, Hanna M; Mäkinen, Harri; Mielikäinen, Kari; Nöjd, Pekka; Sutinen, Raimo; Taavitsainen, Jussi-Pekka; Timonen, Mauri; Oinonen, Markku

    2018-01-22

    The large volcanic eruptions of AD 536 and 540 led to climate cooling and contributed to hardships of Late Antiquity societies throughout Eurasia, and triggered a major environmental event in the historical Roman Empire. Our set of stable carbon isotope records from subfossil tree rings demonstrates a strong negative excursion in AD 536 and 541-544. Modern data from these sites show that carbon isotope variations are driven by solar radiation. A model based on sixth century isotopes reconstruct an irradiance anomaly for AD 536 and 541-544 of nearly three standard deviations below the mean value based on modern data. This anomaly can be explained by a volcanic dust veil reducing solar radiation and thus primary production threatening food security over a multitude of years. We offer a hypothesis that persistently low irradiance contributed to remarkably simultaneous outbreaks of famine and Justinianic plague in the eastern Roman Empire with adverse effects on crop production and photosynthesis of the vitamin D in human skin and thus, collectively, human health. Our results provide a hitherto unstudied proxy for exploring the mechanisms of 'volcanic summers' to demonstrate the post-eruption deficiencies in sunlight and to explain the human consequences during such calamity years.

  1. Lead isotopes in iron and manganese oxide coatings and their use as an exploration guide for concealed mineralization

    USGS Publications Warehouse

    Gulson, B.L.; Church, S.E.; Mizon, K.J.; Meier, A.L.

    1992-01-01

    -rich base-metal veins, and sedimentary country rocks. Stream-sediment anomalies detected using oxalic acid leaches can be evaluated using Pb isotope analysesof selected geochemical anomalies. Such an evaluation procedure, given regional target Pb isotope signatures for concealed mineralization, can greatly reduce the cost of exploration for undiscovered ore deposits concealed beneath barren overburden. Lead isotope measurements on aliquots of the same solutions showed that ICP-MS determinations are of low precision and vary non-systematically when compared with the Pb isotope values of the higher precision thermal ionization method. These variations and lower precision of the ICP-MS measurements are attributed to matrix effects. ?? 1992.

  2. Absolute Isotopic Abundance Ratios and the Accuracy of Δ47 Measurements

    NASA Astrophysics Data System (ADS)

    Daeron, M.; Blamart, D.; Peral, M.; Affek, H. P.

    2016-12-01

    Conversion from raw IRMS data to clumped isotope anomalies in CO2 (Δ47) relies on four external parameters: the (13C/12C) ratio of VPDB, the (17O/16O) and (18O/16O) ratios of VSMOW (or VPDB-CO2), and the slope of the triple oxygen isotope line (λ). Here we investigate the influence that these isotopic parameters exert on measured Δ47 values, using real-world data corresponding to 7 months of measurements; simulations based on randomly generated data; precise comparisons between water-equilibrated CO2 samples and between carbonate standards believed to share quasi-identical Δ47 values; reprocessing of two carbonate calibration data sets with different slopes of Δ47 versus T. Using different sets of isotopic parameters generally produces systematic offsets as large as 0.04 ‰ in final Δ47 values. What's more, even using a single set of isotopic parameters can produce intra- and inter-laboratory discrepancies in final Δ47 values, if some of these parameters are inaccurate. Depending on the isotopic compositions of the standards used for conversion to "absolute" values, these errors should correlate strongly with either δ13C or δ18O, or more weakly with both. Based on measurements of samples expected to display identical Δ47 values, such as 25°C water-equilibrated CO2 with different carbon and oxygen isotope compositions, or high-temperature standards ETH-1 and ETH-2, we conclude that the isotopic parameters used so far in most clumped isotope studies produces large, systematic errors controlled by the relative bulk isotopic compositions of samples and standards, which should be one of the key factors responsible for current inter-laboratory discrepancies. By contrast, the isotopic parameters of Brand et al. [2010] appear to yield accurate Δ47 values regardless of bulk isotopic composition. References:Brand, Assonov and Coplen [2010] http://dx.doi.org/10.1351/PAC-REP-09-01-05

  3. In search of the Earth-forming reservoir: Mineralogical, chemical, and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites

    NASA Astrophysics Data System (ADS)

    Burkhardt, Christoph; Dauphas, Nicolas; Tang, Haolan; Fischer-GöDde, Mario; Qin, Liping; Chen, James H.; Rout, Surya S.; Pack, Andreas; Heck, Philipp R.; Papanastassiou, Dimitri A.

    2017-05-01

    High-precision isotope data of meteorites show that the long-standing notion of a "chondritic uniform reservoir" is not always applicable for describing the isotopic composition of the bulk Earth and other planetary bodies. To mitigate the effects of this "isotopic crisis" and to better understand the genetic relations of meteorites and the Earth-forming reservoir, we performed a comprehensive petrographic, elemental, and multi-isotopic (O, Ca, Ti, Cr, Ni, Mo, Ru, and W) study of the ungrouped achondrites NWA 5363 and NWA 5400, for both of which terrestrial O isotope signatures were previously reported. Also, we obtained isotope data for the chondrites Pillistfer (EL6), Allegan (H6), and Allende (CV3), and compiled available anomaly data for undifferentiated and differentiated meteorites. The chemical compositions of NWA 5363 and NWA 5400 are strikingly similar, except for fluid mobile elements tracing desert weathering. We show that NWA 5363 and NWA 5400 are paired samples from a primitive achondrite parent-body and interpret these rocks as restite assemblages after silicate melt extraction and siderophile element addition. Hafnium-tungsten chronology yields a model age of 2.2 ± 0.8 Myr after CAI, which probably dates both of these events within uncertainty. We confirm the terrestrial O isotope signature of NWA 5363/NWA 5400; however, the discovery of nucleosynthetic anomalies in Ca, Ti, Cr, Mo, and Ru reveals that the NWA5363/NWA 5400 parent-body is not the "missing link" that could explain the composition of the Earth by the mixing of known meteorites. Until this "missing link" or a direct sample of the terrestrial reservoir is identified, guidelines are provided of how to use chondrites for estimating the isotopic composition of the bulk Earth.

  4. Geomagnetically trapped light isotopes observed with the detector NINA

    NASA Astrophysics Data System (ADS)

    Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Murashov, A.; Voronov, S.; Bidoli, V.; Casolino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Boezio, M.; Bonvicini, V.; Cirami, R.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.

    2002-08-01

    The detector New Instrument for Nuclear Analysis (NINA) aboard the satellite Resurs-01-N4 detected hydrogen and helium isotopes geomagnetically trapped, while crossing the South Atlantic Anomaly. Deuterium and tritium at L shell < 1.2 were unambiguously recognized. The 3He and 4He power law spectra, reconstructed at L shell = 1.2 and B < 0.22 G, have indices equal to 2.30 +/- 0.08 in the energy range 12-50 MeV nucleon-1 and 3.4 +/- 0.2 in 10-30 MeV nucleon-1, respectively. The measured 3He/4He ratio and the reconstructed deuterium profile as a function of L shell bring one to the conclusion that the main source of radiation belt light isotopes at Resurs altitudes (~800 km) and for energy greater than 10 MeV nucleon-1 is the interaction of trapped protons with residual atmospheric helium.

  5. Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Hemming, S. R.; Taylor, S. R.; Eriksson, K. A.

    1995-03-01

    Early Proterozoic (1.8-1.7 Ga) metasedimentary rocks in northern New Mexico and southern Colorado, USA, can be divided into turbidite successions (commonly volcanogenic) associated with mafic/felsic metavolcanic successions (e.g., Irving Fm.) and stable shelf quartzite-pelite successions of shallow marine origin (e.g., Hondo Gp.). Metapelites from the turbidite successions reported here have low K2O/Na2O, low Th/U (<3.0), low to moderate Th/Sc (0.1-0.6), and slight negative Eu-anomalies, although regionally, negative Eu-anomalies in such rocks are common. At the time of sedimentation (ca. 1.7-1.8 Ga), ɛNd values were in the range +3 to +7, indistinguishable from associated metavolcanic and plutonic rocks. Similarly, lead isotopic data scatter about a 1.7 Ga reference isochron. Low κ (232Th/238U) values for the Irving Formation are consistent with derivation from crustal sources similar to the southern Colorado/northern New Mexico lead isotope crustal province. These data are further consistent with a volcanic arc related origin. In contrast, stable shelf metapelites have high K2O/Na2O, variable but commonly high Th/U (2.0-7.0), moderate to high Th/Sc (0.5-1.4), and substantial negative Eu-anomalies. Although compositions are rather variable, they are typical of post-Archean shales. Neodymium isotopes are surprisingly radiogenic with ɛNd(1.7 Ga) in the range -0.2 to +4. Lead isotopic data for the least radiogenic samples also are consistent with a dominantly juvenile source and on a 207Pb/204Pb vs. 206Pb/204Pb diagram, data scatter slightly above the 1.7 Ga reference isochron, suggesting minor components of significantly older material. Lead isotopic systematics suggest that a major component of the provenance was derived from the immediately associated metavolcanic-plutonic terranes, consistent with suggestions of a first-cycle origin, but with an Archean component. Isotopic data restrict the Archean component to about 10%, on average, and no more than 25% in

  6. ISHM Anomaly Lexicon for Rocket Test

    NASA Technical Reports Server (NTRS)

    Schmalzel, John L.; Buchanan, Aubri; Hensarling, Paula L.; Morris, Jonathan; Turowski, Mark; Figueroa, Jorge F.

    2007-01-01

    Integrated Systems Health Management (ISHM) is a comprehensive capability. An ISHM system must detect anomalies, identify causes of such anomalies, predict future anomalies, help identify consequences of anomalies for example, suggested mitigation steps. The system should also provide users with appropriate navigation tools to facilitate the flow of information into and out of the ISHM system. Central to the ability of the ISHM to detect anomalies is a clearly defined catalog of anomalies. Further, this lexicon of anomalies must be organized in ways that make it accessible to a suite of tools used to manage the data, information and knowledge (DIaK) associated with a system. In particular, it is critical to ensure that there is optimal mapping between target anomalies and the algorithms associated with their detection. During the early development of our ISHM architecture and approach, it became clear that a lexicon of anomalies would be important to the development of critical anomaly detection algorithms. In our work in the rocket engine test environment at John C. Stennis Space Center, we have access to a repository of discrepancy reports (DRs) that are generated in response to squawks identified during post-test data analysis. The DR is the tool used to document anomalies and the methods used to resolve the issue. These DRs have been generated for many different tests and for all test stands. The result is that they represent a comprehensive summary of the anomalies associated with rocket engine testing. Fig. 1 illustrates some of the data that can be extracted from a DR. Such information includes affected transducer channels, narrative description of the observed anomaly, and the steps used to correct the problem. The primary goal of the anomaly lexicon development efforts we have undertaken is to create a lexicon that could be used in support of an associated health assessment database system (HADS) co-development effort. There are a number of significant

  7. Seismic data fusion anomaly detection

    NASA Astrophysics Data System (ADS)

    Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David

    2014-06-01

    Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.

  8. Nickel and chromium isotopes in Allende inclusions

    NASA Technical Reports Server (NTRS)

    Birck, J. L.; Lugmair, G. W.

    1988-01-01

    High-precision nickel and chromium isotopic measurements were carried out on nine Allende inclusions. It is found that Ni-62, Ni-64, excesses are present in at least three of the samples. The results suggest that the most likely mechanism for the anomalies is a neutron-rich statistical equilibrium process. An indication of elevated Ni-60 is found in almost every inclusion measured. This effect is thought to be related to the decay of now extinct Fe-60. An upper limit of 1.6 X 10 to the -6th is calculated for the Fe-60/Fe-56 ratio at the time these Allende inclusions crystallized.

  9. Reliability of CHAMP Anomaly Continuations

    NASA Technical Reports Server (NTRS)

    vonFrese, Ralph R. B.; Kim, Hyung Rae; Taylor, Patrick T.; Asgharzadeh, Mohammad F.

    2003-01-01

    CHAMP is recording state-of-the-art magnetic and gravity field observations at altitudes ranging over roughly 300 - 550 km. However, anomaly continuation is severely limited by the non-uniqueness of the process and satellite anomaly errors. Indeed, our numerical anomaly simulations from satellite to airborne altitudes show that effective downward continuations of the CHAMP data are restricted to within approximately 50 km of the observation altitudes while upward continuations can be effective over a somewhat larger altitude range. The great unreliability of downward continuation requires that the satellite geopotential observations must be analyzed at satellite altitudes if the anomaly details are to be exploited most fully. Given current anomaly error levels, joint inversion of satellite and near- surface anomalies is the best approach for implementing satellite geopotential observations for subsurface studies. We demonstrate the power of this approach using a crustal model constrained by joint inversions of near-surface and satellite magnetic and gravity observations for Maude Rise, Antarctica, in the southwestern Indian Ocean. Our modeling suggests that the dominant satellite altitude magnetic anomalies are produced by crustal thickness variations and remanent magnetization of the normal polarity Cretaceous Quiet Zone.

  10. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.

    PubMed

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James

    2014-12-16

    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other magmatic iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.

  11. The initial Hf isotopic composition of the Earth

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Boyet, M. M.; Vervoort, J. D.; Patchett, P. J.

    2011-12-01

    One area of considerable activity in trying to understand the formation and evolution of Earth's crust is the isotopic analysis of Hf in parallel with Sm-Nd and U-Pb zircon studies, either to constrain early crustal growth and evolution [1], or as a complement to detrital zircon studies [2]. The 176Lu decay constant deduced from early planetary and Earth materials have different values. It has been suggested that a period of irradiation in the early Solar System affected the 176Hf production rate in meteoritic and planetary materials [3,4]. In this scenario, the initial Hf isotopic composition of the Solar System and the Earth would be ~4 ∈Hf units lower, affecting tremendously the interpretation of the differentiation history of the early Earth. We investigated Lu-Hf compositions of calcium-aluminum-rich inclusions, the oldest known objects of the Solar System dated at 4568 Ma [5], to assess the possibility of neutrino irradiation in the solar nebula. Here we report high-precision 176Lu-176Hf systematics of leached and unleached, and spiked and unspiked, bulk fractions and mineral separates of 6 individual CAIs from 2 CV3 chondrites. Isotopic analyses were carried out by Neptune MC-ICPMS at ASU. Analytical details are in [6,7]. The unspiked Hf fractions reveal stable isotope anomalies of μ178Hf= 20 ± 6 and μ180Hf= 31 ± 9 (2SD) for the CAI B4 fractions (n=3) and μ178Hf= -4 ± 10 and μ180Hf= 2 ± 10 (n=2) for BCR-2 relative to the JMC 475 Hf standard. Further high-precision analysis of unspiked Sm and Nd fractions of the samples will be made to correct from nucleosynthetic or neutron capture anomalies [8]. Such Hf stable isotopic anomalies predict no more than 50ppm correction on 176Hf/177Hf. At this stage, we have thus regressed together the spiked and unspiked Hf compositions of CAI fractions (n=13) for isochron calculations. The slope of the Lu-Hf isochron is 0.0882 ± 0.0026 (2SD) which corresponds to a 176Lu decay constant value of 1.852 (± 0.052) ×10

  12. 6d, Coulomb branch anomaly matching

    NASA Astrophysics Data System (ADS)

    Intriligator, Kenneth

    2014-10-01

    6d QFTs are constrained by the analog of 't Hooft anomaly matching: all anomalies for global symmetries and metric backgrounds are constants of RG flows, and for all vacua in moduli spaces. We discuss an anomaly matching mechanism for 6d theories on their Coulomb branch. It is a global symmetry analog of Green-Schwarz-West-Sagnotti anomaly cancellation, and requires the apparent anomaly mismatch to be a perfect square, . Then Δ I 8 is cancelled by making X 4 an electric/magnetic source for the tensor multiplet, so background gauge field instantons yield charged strings. This requires the coefficients in X 4 to be integrally quantized. We illustrate this for theories. We also consider the SCFTs from N small E8 instantons, verifying that the recent result for its anomaly polynomial fits with the anomaly matching mechanism.

  13. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, X. X.; Zhang, D. X.; Qian, Y.

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in heliummore » recycle gas are less than 1 ppb.« less

  14. High precision tungsten isotope analysis using MC-ICP-MS and application for terrestrial samples

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Takamasa, A.

    2017-12-01

    Tungsten has five isotopes (M = 180, 182, 183, 184, 186), and 182W isotope is a rediogenic isotope produced by b-decay of 182Hf. Its half life is short (8.9 m.y.), and 182W isotope has been investigated to understand the early Earth geochemical evolution. Both Hf and W are highly refractory elements. As Hf is a lithophile and W is a siderophile elements, 182Hf-182W system could give constraints on metal-silicate (core-mantle) differentiation such as especially early Earth system because of its larege fractionation betwenn core-mantle and short half life. Improvement of analytical techniques of W isotope analyses leads to findings of W isotope anomaly (mostly positive) in old komatiites (2.4 - 3.8 Ga) and young volcanic rocks (12 Ma Ontong Java Plateau and 6 Ma Baffin Bay). In our study, high-precision W isotope ratio measurement with MC-ICP-MS (Thermo co. Ltd., NEPTUNE PLUS). We have measured W standard solution (SRM 3163) and obtained the isotopic compositions with an precision of ± 5ppm. However, the standard solution, which separated by cation or anion exchange resin, has systematical 183W/184W drift to -5ppm. These phenomena was also reported by Willbold et al. (2011). Therefore, we used the standard solution for correction of isotopic fractionation of samples which was processed by the same method as that of the samples. We will present the data of terrestrial samples obtained by the technique dveloped in this study.

  15. Satellite GN and C Anomaly Trends

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Stoneking, Eric

    2003-01-01

    On-orbit anomaly records for satellites launched from 1990 through 2001 are reviewed to determine recent trends of un-manned space mission critical failures. Anomalies categorized by subsystems show that Guidance, Navigation and Control (GN&C) subsystems have a high number of anomalies that result in a mission critical failure when compared to other subsystems. A mission critical failure is defined as a premature loss of a satellite or loss of its ability to perform its primary mission during its design life. The majority of anomalies are shown to occur early in the mission, usually within one year from launch. GN&C anomalies are categorized by cause and equipment type involved. A statistical analysis of the data is presented for all anomalies compared with the GN&C anomalies for various mission types, orbits and time periods. Conclusions and recommendations are presented for improving mission success and reliability.

  16. Selenium isotopes record extensive marine suboxia during the Great Oxidation Event

    PubMed Central

    Kipp, Michael A.; Stüeken, Eva E.; Bekker, Andrey; Buick, Roger

    2017-01-01

    It has been proposed that an “oxygen overshoot” occurred during the early Paleoproterozoic Great Oxidation Event (GOE) in association with the extreme positive carbon isotopic excursion known as the Lomagundi Event. Moreover, it has also been suggested that environmental oxygen levels then crashed to very low levels during the subsequent extremely negative Shunga–Francevillian carbon isotopic anomaly. These redox fluctuations could have profoundly influenced the course of eukaryotic evolution, as eukaryotes have several metabolic processes that are obligately aerobic. Here we investigate the magnitude of these proposed oxygen perturbations using selenium (Se) geochemistry, which is sensitive to redox transitions across suboxic conditions. We find that δ82/78Se values in offshore shales show a positive excursion from 2.32 Ga until 2.1 Ga (mean +1.03 ± 0.67‰). Selenium abundances and Se/TOC (total organic carbon) ratios similarly show a peak during this interval. Together these data suggest that during the GOE there was pervasive suboxia in near-shore environments, allowing nonquantitative Se reduction to drive the residual Se oxyanions isotopically heavy. This implies O2 levels of >0.4 μM in these settings. Unlike in the late Neoproterozoic and Phanerozoic, when negative δ82/78Se values are observed in offshore environments, only a single formation, evidently the shallowest, shows evidence of negative δ82/78Se. This suggests that there was no upwelling of Se oxyanions from an oxic deep-ocean reservoir, which is consistent with previous estimates that the deep ocean remained anoxic throughout the GOE. The abrupt decline in δ82/78Se and Se/TOC values during the subsequent Shunga–Francevillian anomaly indicates a widespread decrease in surface oxygenation. PMID:28096405

  17. Modeling Hf-W Evolution for Earth, Moon and Mars in Grand Tack Accretion Simulations: The Isotopic Consequences of Rapid Accretion

    NASA Astrophysics Data System (ADS)

    Zube, N.; Nimmo, F.; Jacobson, S. A.; Fischer, R. A.

    2017-12-01

    Short-lived isotopes, such as the decay of lithophile 182Hf into siderophile 182W with a half-life of 9 My, can provide constraints on the timescales of planetary core formation and accretion. Classical accretion scenarios have produced Hf-W isotopic outcomes like those measured presently on the Earth [2,3]. We examine Grand Tack accretion simulations [4,5] and determine the mantle equilibration conditions necessary to produce the observed tungsten isotopic anomaly. Additionally, we follow Hf-W evolution for pairs of bodies that experience a last giant impact fitting the conditions of Earth's Moon-forming collision. In this way, we determine the likelihood of producing the observed almost indistinguishable W isotope anomalies of the Earth and Moon mantles [6]. We model Hf-W evolution for growing planets in 141 N-body simulations during late accretion in the Grand Tack scenario. For each case, we vary the equilibration factor during collisions—the fraction of impactor core that experiences re-equilibration with the entire target mantle—in steps ranging from none (cores merging) to complete equilibration. For Earth-like and Mars-like surviving planets, we find that cases with a high equilibration factor (k > 0.8) and an intermediate (2:1 - 4:1) ratio of initial embryo mass to planetesimal mass were most frequently able to approximate the observed W measurements for Earth and Mars. The equilibration factor required is more restrictive than the one found for classical accretion scenarios [2,3] and may not be consistent with fluid-dynamical predictions [7]. Moons made of impactor material from Earth's last giant impact are only able to result in an Earth-Moon pair having sufficiently similar W anomalies with a likelihood of 8% or less across all simulations. This indicates that a scenario where the Moon isotopically equilibrated with the Earth's mantle after the impact [8] may be required to explain the measured values. [1] Kleine et al. 2009 [2] Nimmo et al. 2010

  18. Behavioral economics without anomalies.

    PubMed Central

    Rachlin, H

    1995-01-01

    Behavioral economics is often conceived as the study of anomalies superimposed on a rational system. As research has progressed, anomalies have multiplied until little is left of rationality. Another conception of behavioral economics is based on the axiom that value is always maximized. It incorporates so-called anomalies either as conflicts between temporal patterns of behavior and the individual acts comprising those patterns or as outcomes of nonexponential time discounting. This second conception of behavioral economics is both empirically based and internally consistent. PMID:8551195

  19. [Mass anomalies of the extremities in anurans].

    PubMed

    Kovalenko, E E

    2000-01-01

    The author analyses literature data on anomalies of limbs in Anura. It is shown that published data is usually not enough to discuss either conditions of appearance or the causes of anomalies. Traditional statistical methods does not adequately characterise the frequency of anomalies. The author suggests a new criteria for ascertaining the fact of appearance of mass anomalies. A number of experimental data don't correspond to current theoretical ideas about the nature of anomalies. It is considered to distinguish "background" and "mass" anomalies. "Background" anomalies can not be a good indicator of unfavourable condition of development.

  20. Isotopic composition of waters from Ethiopia and Kenya: Insights into moisture sources for eastern Africa

    NASA Astrophysics Data System (ADS)

    Levin, Naomi E.; Zipser, Edward J.; Cerling, Thure E.

    2009-12-01

    Oxygen and deuterium isotopic values of meteoric waters from Ethiopia are unusually high when compared to waters from other high-elevation settings in Africa and worldwide. These high values are well documented; however, the climatic processes responsible for the isotopic anomalies in Ethiopian waters have not been thoroughly investigated. We use isotopic data from waters and remote data products to demonstrate how different moisture sources affect the distribution of stable isotopes in waters from eastern Africa. Oxygen and deuterium stable isotopic data from 349 surface and near-surface groundwaters indicate isotopic distinctions between waters in Ethiopia and Kenya and confirm the anomalous nature of Ethiopian waters. Remote data products from the Tropical Rainfall Measuring Mission (TRMM) and National Centers for Environmental Prediction (NCEP) reanalysis project show strong westerly and southwesterly components to low-level winds during precipitation events in western and central Ethiopia. This is in contrast to the easterly and southeasterly winds that bring rainfall to Kenya and southeastern Ethiopia. Large regions of high equivalent potential temperatures (θe) at low levels over the Sudd and the Congo Basin demonstrate the potential for these areas as sources of moisture and convective instability. The combination of wind direction data from Ethiopia and θe distribution in Africa indicates that transpired moisture from the Sudd and the Congo Basin is likely responsible for the high isotopic values of rainfall in Ethiopia.

  1. Geophysical Investigation of Upper Mantle Anomalies of the Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Choi, H.; Kim, S. S.; Lin, J.

    2017-12-01

    Australian-Antarctic Ridge (AAR) is situated between the Pacific-Antarctic Ridge (PAR) and Southeast Indian Ridge (SEIR), extending eastward from the Australian-Antarctic Discordance (AAD). Much of the AAR has been remained uncharted until 2011 because of its remoteness and harsh weather conditions. Since 2011, four multidisciplinary expeditions initiated by the Korea Polar Research Institute (KOPRI) have surveyed the little-explored eastern ends of the AAR and investigated the tectonics, geochemistry, and hydrothermal activity of this intermediate spreading system. Recent isotope studies using the new basalt samples from the AAR have led to the new hypothesis of the Southern Ocean mantle domain (SOM), which may have originated from the super-plume activity associated with the Gondwana break-up. In this study, we characterize the geophysics of the Southern Ocean mantle using the newly acquired shipboard bathymetry and available geophysical datasets. First, we computed residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography along the AAR in order to obtain a geological proxy for regional variations in magma supply. The results of these analyses revealed that the southern flank of the AAR is associated with shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle in comparison to the conjugate northern flank. Furthermore, this north-south asymmetry becomes more prominent toward the central ridge segments of the AAR. Interestingly, the along-axis depths of the entire AAR are significantly shallower than the neighboring ridge systems and the global ridges of intermediate spreading rates. Such shallow depths are also correlated with regional negative geoid anomalies. Furthermore, recent mantle tomography models consistently showed that the upper mantle (< 250 km) below the AAR has low S-wave velocities, suggesting that it may be hotter than the nearby ridges. Such regional-scale anomalies of the

  2. Apollo experience report: Flight anomaly resolution

    NASA Technical Reports Server (NTRS)

    Lobb, J. D.

    1975-01-01

    The identification of flight anomalies, the determination of their causes, and the approaches taken for corrective action are described. Interrelationships of the broad range of disciplines involved with the complex systems and the team concept employed to ensure timely and accurate resolution of anomalies are discussed. The documentation techniques and the techniques for management of anomaly resolution are included. Examples of specific anomalies are presented in the original form of their progressive documentation. Flight anomaly resolution functioned as a part of the real-time mission support and postflight testing, and results were included in the postflight documentation.

  3. Analysis of 85Kr: a comparison at the 10-14 level using micro-liter samples

    PubMed Central

    Yang, G. -M.; Cheng, C. -F.; Jiang, W.; Lu, Z. -T.; Purtschert, R.; Sun, Y. -R.; Tu, L. -Y.; Hu, S. -M.

    2013-01-01

    The isotopic abundance of 85Kr in the atmosphere, currently at the level of 10−11, has increased by orders of magnitude since the dawn of nuclear age. With a half-life of 10.76 years, 85Kr is of great interest as tracers for environmental samples such as air, groundwater and ice. Atom Trap Trace Analysis (ATTA) is an emerging method for the analysis of rare krypton isotopes at isotopic abundance levels as low as 10−14 using krypton gas samples of a few micro-liters. Both the reliability and reproducibility of the method are examined in the present study by an inter-comparison among different instruments. The 85Kr/Kr ratios of 12 samples, in the range of 10−13 to 10−10, are measured independently in three laboratories: a low-level counting laboratory in Bern, Switzerland, and two ATTA laboratories, one in Hefei, China, and another in Argonne, USA. The results are in agreement at the precision level of 5%. PMID:23549244

  4. Presentation and Treatment of Poland Anomaly.

    PubMed

    Buckwalter V, Joseph A; Shah, Apurva S

    2016-12-01

    Background: Poland anomaly is a sporadic, phenotypically variable congenital condition usually characterized by unilateral pectoral muscle agenesis and ipsilateral hand deformity. Methods: A comprehensive review of the medical literature on Poland anomaly was performed using a Medline search. Results: Poland anomaly is a sporadic, phenotypically variable congenital condition usually characterized by unilateral, simple syndactyly with ipsilateral limb hypoplasia and pectoralis muscle agenesis. Operative management of syndactyly in Poland anomaly is determined by the severity of hand involvement and the resulting anatomical dysfunction. Syndactyly reconstruction is recommended in all but the mildest cases because most patients with Poland anomaly have notable brachydactyly, and digital separation can improve functional length. Conclusions: Improved understanding the etiology and presentation of Poland anomaly can improve clinician recognition and management of this rare congenital condition.

  5. Presentation and Treatment of Poland Anomaly

    PubMed Central

    Buckwalter V, Joseph A.; Shah, Apurva S.

    2016-01-01

    Background: Poland anomaly is a sporadic, phenotypically variable congenital condition usually characterized by unilateral pectoral muscle agenesis and ipsilateral hand deformity. Methods: A comprehensive review of the medical literature on Poland anomaly was performed using a Medline search. Results: Poland anomaly is a sporadic, phenotypically variable congenital condition usually characterized by unilateral, simple syndactyly with ipsilateral limb hypoplasia and pectoralis muscle agenesis. Operative management of syndactyly in Poland anomaly is determined by the severity of hand involvement and the resulting anatomical dysfunction. Syndactyly reconstruction is recommended in all but the mildest cases because most patients with Poland anomaly have notable brachydactyly, and digital separation can improve functional length. Conclusions: Improved understanding the etiology and presentation of Poland anomaly can improve clinician recognition and management of this rare congenital condition. PMID:28149203

  6. System for closure of a physical anomaly

    DOEpatents

    Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S

    2014-11-11

    Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.

  7. Sulfide in the core and the Nd isotopic composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    McCoy-West, A.; Millet, M. A.; Nowell, G. M.; Wohlers, A.; Wood, B. J.; Burton, K. W.

    2016-12-01

    The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive chondritic meteorites. It now appears, however, that the silicate Earth is not chondritic, but depleted in incompatible elements and a resovable 20 ppm excess is observed in 142Nd relative to chondirtes [1, 2]. This anomaly requires a process that occurred within 30 Myr of solar system formation and has been variably ascribed to: a complementary enriched reservoir in the deep Earth [1]; loss to space through collisional erosion [3]; or the inhertence of nucleosynthetic anomalies [4]. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [5]. The drawback of the short-lived 146Sm-142Nd radiogenic isotope system is that it is not possible to distinguish between fractionations of Sm/Nd that occurs during silicate melting or segregation of a sulfide-melt. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites by 0.3 ‰, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavier values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd stable isotope data for

  8. Road Anomalies Detection System Evaluation.

    PubMed

    Silva, Nuno; Shah, Vaibhav; Soares, João; Rodrigues, Helena

    2018-06-21

    Anomalies on road pavement cause discomfort to drivers and passengers, and may cause mechanical failure or even accidents. Governments spend millions of Euros every year on road maintenance, often causing traffic jams and congestion on urban roads on a daily basis. This paper analyses the difference between the deployment of a road anomalies detection and identification system in a “conditioned” and a real world setup, where the system performed worse compared to the “conditioned” setup. It also presents a system performance analysis based on the analysis of the training data sets; on the analysis of the attributes complexity, through the application of PCA techniques; and on the analysis of the attributes in the context of each anomaly type, using acceleration standard deviation attributes to observe how different anomalies classes are distributed in the Cartesian coordinates system. Overall, in this paper, we describe the main insights on road anomalies detection challenges to support the design and deployment of a new iteration of our system towards the deployment of a road anomaly detection service to provide information about roads condition to drivers and government entities.

  9. Associated congenital anomalies among cases with Down syndrome.

    PubMed

    Stoll, Claude; Dott, Beatrice; Alembik, Yves; Roth, Marie-Paule

    2015-12-01

    Down syndrome (DS) is the most common congenital anomaly widely studied for at least 150 years. However, the type and the frequency of congenital anomalies associated with DS are still controversial. Despite prenatal diagnosis and elective termination of pregnancy for fetal anomalies, in Europe, from 2008 to 2012 the live birth prevalence of DS per 10,000 was 10. 2. The objectives of this study were to examine the major congenital anomalies occurring in infants and fetuses with Down syndrome. The material for this study came from 402,532 consecutive pregnancies of known outcome registered by our registry of congenital anomalies between 1979 and 2008. Four hundred sixty seven (64%) out of the 728 cases with DS registered had at least one major associated congenital anomaly. The most common associated anomalies were cardiac anomalies, 323 cases (44%), followed by digestive system anomalies, 42 cases (6%), musculoskeletal system anomalies, 35 cases (5%), urinary system anomalies, 28 cases (4%), respiratory system anomalies, 13 cases (2%), and other system anomalies, 26 cases (3.6%). Among the cases with DS with congenital heart defects, the most common cardiac anomaly was atrioventricular septal defect (30%) followed by atrial septum defect (25%), ventricular septal defect (22%), patent ductus arteriosus (5%), coarctation of aorta (5%), and tetralogy of Fallot (3%). Among the cases with DS with a digestive system anomaly recorded, duodenal atresia (67%), Hirschsprung disease (14%), and tracheo-esophageal atresia (10%) were the most common. Fourteen (2%) of the cases with DS had an obstructive anomaly of the renal pelvis, including hydronephrosis. The other most common anomalies associated with cases with DS were syndactyly, club foot, polydactyly, limb reduction, cataract, hydrocephaly, cleft palate, hypospadias and diaphragmatic hernia. Many studies to assess the anomalies associated with DS have reported various results. There is no agreement in the literature as to

  10. Exploring the usability of isotopically anomalous oxygen in bones and teeth as paleo-CO2-barometer

    NASA Astrophysics Data System (ADS)

    Pack, Andreas; Gehler, Alexander; Süssenberger, Annette

    2013-02-01

    Fluctuations in atmospheric p may have played the key role in global climate throughout Earth's history. For the quantification of past variations in atmospheric p, several geological proxy approaches and geochemical models have been developed. Here, we evaluate a new CO2 proxy approach that is based on the triple oxygen isotope composition (16O, 17O, 18O) of skeletal apatite of terrestrial mammals. Our approach utilizes the relation between an anomaly in 17O of tropospheric air O2 and atmospheric p. The anomaly is transferred from inhaled air O2 to skeletal apatite of mammals. Hence, triple oxygen isotope data of mammalian bioapatite provide information regarding p during the animal's lifetime. The approach was calibrated with a detailed mass balance model that was verified by analyses on a set of recent mammals. We evaluate the potential of this new independent terrestrial paleo-CO2 proxy in a case study including Eocene to Miocene samples. The present investigation provides promising results that are in good agreement with existing proxy- and model data. The uncertainty intrinsic to the proxy is mainly due to uncertainties in physiological parameters.

  11. Gravity Anomalies

    NASA Image and Video Library

    2015-04-15

    Analysis of radio tracking data have enabled maps of the gravity field of Mercury to be derived. In this image, overlain on a mosaic obtained by MESSENGER's Mercury Dual Imaging System and illuminated with a shape model determined from stereo-photoclinometry, Mercury's gravity anomalies are depicted in colors. Red tones indicate mass concentrations, centered on the Caloris basin (center) and the Sobkou region (right limb). Such large-scale gravitational anomalies are signatures of subsurface structure and evolution. The north pole is near the top of the sunlit area in this view. http://photojournal.jpl.nasa.gov/catalog/PIA19285

  12. Hamiltonian Anomalies from Extended Field Theories

    NASA Astrophysics Data System (ADS)

    Monnier, Samuel

    2015-09-01

    We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.

  13. Congenital hand anomalies in Upper Egypt

    PubMed Central

    Abulezz, Tarek; Talaat, Mohamed; Elsani, Asem; Allam, Karam

    2016-01-01

    Background: Congenital hand anomalies are numerous and markedly variant. Their significance is attributed to the frequent occurrence and their serious social, psychological and functional impacts on patient's life. Patients and Methods: This is a follow-up study of 64 patients with hand anomalies of variable severity. All patients were presented to Plastic Surgery Department of Sohag University Hospital in a period of 24 months. Results: This study revealed that failure of differentiation and duplication deformities were the most frequent, with polydactyly was the most common anomaly encountered. The mean age of presentation was 6 years and female to male ratio was 1.46:1. Hand anomalies were either isolated, associated with other anomalies or part of a syndrome. Conclusion: Incidence of congenital hand anomalies in Upper Egypt is difficult to be estimated due to social and cultural concepts, lack of education, poor registration and deficient medical survey. Management of hand anomalies should be individualised, carefully planned and started as early as possible to achieve the best outcome. PMID:27833283

  14. Global anomalies and effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golkar, Siavash; Sethi, Savdeep

    2016-05-17

    Here, we show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on thermal effective field theory, where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient (up to an overall additive factor). This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functionsmore » rather than eta invariants.« less

  15. Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon.

    PubMed

    Laffont, Laure; Sonke, Jeroen E; Maurice, Laurence; Hintelmann, Holger; Pouilly, Marc; Sánchez Bacarreza, Yuba; Perez, Tamará; Behra, Philippe

    2009-12-01

    We report mercury (Hg) mass-dependent isotope fractionation (MDF) and mass-independent isotope fractionation (MIF) in hair samples of the Bolivian Esse Ejjas native people and in several tropical fish species that constitute their daily diet. MDF with delta(202)Hg ranging from -0.40 to -0.92 per thousand for fish and +1.04 to +1.42 per thousand for hair was observed. Hair samples of native people with a fish-dominated diet are enriched by +2.0 +/- 0.2 per thousand in delta(202)Hg relative to the fish consumed. Both odd Hg isotopes, (199)Hg and (201)Hg, display MIF in fish (from -0.14 to +0.38 per thousand for Delta(201)Hg and from -0.09 to +0.55 per thousand for Delta(199)Hg) and in hair (from +0.12 to +0.66 per thousand for Delta(201)Hg and from +0.14 to +0.81 per thousand for Delta(199)Hg). No significant difference in MIF anomalies is observed between Hg in fish and in human hair, suggesting that the anomalies act as conservative source tracers between upper trophic levels of the tropical food chain. Fish Hg MIF anomalies are 10-fold lower than those published for fish species from midlatitude lakes. Grouping all Amazonian fish species per location shows that Delta(199)Hg:Delta(201)Hg regression slopes for the clear water Itenez River basin (0.95 +/- 0.08) are significantly lower than those for the white water Beni River basin (1.28 +/- 0.12). Assuming that the observed MIF originates from aquatic photoreactions, we calculated limited photodemethylation of monomethylmercury (MMHg) in the Beni River floodplains and insignificant photodemethylation in the Itenez River floodplains. This is possibly related to lower residence times of MMHg in the Itenez compared to the Beni River floodplains. Finally, a significantly negative Delta(201)Hg of -0.14 per thousand in Beni River fish suggests that the inorganic Hg precursor to the MMHg that bioaccumulates up the food chain defines an ecosystem specific non-zero Delta(201)Hg baseline. Calculation of photodemethylation

  16. Tellurium stable isotope fractionation in chondritic meteorites and some terrestrial samples

    NASA Astrophysics Data System (ADS)

    Fehr, Manuela A.; Hammond, Samantha J.; Parkinson, Ian J.

    2018-02-01

    New methodologies employing a 125Te-128Te double-spike were developed and applied to obtain high precision mass-dependent tellurium stable isotope data for chondritic meteorites and some terrestrial samples by multiple-collector inductively coupled plasma mass spectrometry. Analyses of standard solutions produce Te stable isotope data with a long-term reproducibility (2SD) of 0.064‰ for δ130/125Te. Carbonaceous and enstatite chondrites display a range in δ130/125Te of 0.9‰ (0.2‰ amu-1) in their Te stable isotope signature, whereas ordinary chondrites present larger Te stable isotope fractionation, in particular for unequilibrated ordinary chondrites, with an overall variation of 6.3‰ for δ130/125Te (1.3‰ amu-1). Tellurium stable isotope variations in ordinary chondrites display no correlation with Te contents or metamorphic grade. The large Te stable isotope fractionation in ordinary chondrites is likely caused by evaporation and condensation processes during metamorphism in the meteorite parent bodies, as has been suggested for other moderately and highly volatile elements displaying similar isotope fractionation. Alternatively, they might represent a nebular signature or could have been produced during chondrule formation. Enstatite chondrites display slightly more negative δ130/125Te compared to carbonaceous chondrites and equilibrated ordinary chondrites. Small differences in the Te stable isotope composition are also present within carbonaceous chondrites and increase in the order CV-CO-CM-CI. These Te isotope variations within carbonaceous chondrites may be due to mixing of components that have distinct Te isotope signatures reflecting Te stable isotope fractionation in the early solar system or on the parent bodies and potentially small so-far unresolvable nucleosynthetic isotope anomalies of up to 0.27‰. The Te stable isotope data of carbonaceous and enstatite chondrites displays a general correlation with the oxidation state and hence might

  17. Complete second branchial cleft anomaly presenting as a fistula and a tonsillar cyst: an interesting congenital anomaly.

    PubMed

    Thottam, Prasad John; Bathula, Samba S; Poulik, Janet M; Madgy, David N

    2014-01-01

    Branchial cleft anomalies make up 30% of all pediatric neck masses, but complete second branchial cleft anomalies are extremely rare. We report an unusual case of a complete second branchial cleft anomaly that presented as a draining neck fistula and a tonsillar cyst in an otherwise healthy 3-month-old girl. At the age of 7 months, the patient had been experiencing feeding difficulties, and there was increasing concern about the risk of persistent infections. At that point, the anomaly was excised in its entirety. Our suspicion that the patient had a complete second branchial cleft anomaly was confirmed by imaging, surgical excision, and histopathologic analysis.

  18. Identification of Anthropogenic CO2 Using Triple Oxygen and Clumped Isotopes.

    PubMed

    Laskar, Amzad H; Mahata, Sasadhar; Liang, Mao-Chang

    2016-11-01

    Quantification of contributions from various sources of CO 2 is important for understanding the atmospheric CO 2 budget. Considering the number and diversity of sources and sinks, the widely used proxies such as concentration and conventional isotopic compositions (δ 13 C and δ 18 O) are not always sufficient to fully constrain the CO 2 budget. Additional constraints may help in understanding the mechanisms of CO 2 production and consumption. The anomaly in triple oxygen isotopes or 17 O excess (denoted by Δ 17 O) and molecules containing two rare isotopes, called clumped isotopes, are two recently developed tracers with potentials to independently constrain some important processes that regulate CO 2 in the atmosphere. The clumped isotope for CO 2 , denoted by Δ 47 , is the excess of 13 C 16 O 18 O over a random distribution of isotopes in a CO 2 molecule. We measured the concentrations of δ 13 C, δ 18 O, Δ 17 O, and Δ 47 in air CO 2 samples collected from the Hsuehshan tunnel (length: 12.9 km), and applied linear and polynomial regressions to obtain the fossil fuel end-members for all these isotope proxies. The other end-members, the values of all these proxies for background air CO 2 , are either assumed or taken as the values obtained over the tunnel and ocean. The fossil fuel (anthropogenic) CO 2 end-member values for δ 13 C, δ 18 O, Δ 17 O, and Δ 47 are estimated using the two component mixing approach: the derived values are -26.76 ± 0.25‰, 24.57 ± 0.33‰, -0.219 ± 0.021‰, and 0.267 ± 0.036‰, respectively. These four major CO 2 isotope tracers along with the concentration were used to estimate the anthropogenic contribution in the atmospheric CO 2 in urban and suburban locations. We demonstrate that Δ 17 O and Δ 47 have the potential to independently estimate anthropogenic contribution, and the advantages of these two over the conventional isotope proxies are discussed.

  19. Anomalies and gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, Eckehard W.

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed.

  20. Aeromagnetic anomalies over faulted strata

    USGS Publications Warehouse

    Grauch, V.J.S.; Hudson, Mark R.

    2011-01-01

    High-resolution aeromagnetic surveys are now an industry standard and they commonly detect anomalies that are attributed to faults within sedimentary basins. However, detailed studies identifying geologic sources of magnetic anomalies in sedimentary environments are rare in the literature. Opportunities to study these sources have come from well-exposed sedimentary basins of the Rio Grande rift in New Mexico and Colorado. High-resolution aeromagnetic data from these areas reveal numerous, curvilinear, low-amplitude (2–15 nT at 100-m terrain clearance) anomalies that consistently correspond to intrasedimentary normal faults (Figure 1). Detailed geophysical and rock-property studies provide evidence for the magnetic sources at several exposures of these faults in the central Rio Grande rift (summarized in Grauch and Hudson, 2007, and Hudson et al., 2008). A key result is that the aeromagnetic anomalies arise from the juxtaposition of magnetically differing strata at the faults as opposed to chemical processes acting at the fault zone. The studies also provide (1) guidelines for understanding and estimating the geophysical parameters controlling aeromagnetic anomalies at faulted strata (Grauch and Hudson), and (2) observations on key geologic factors that are favorable for developing similar sedimentary sources of aeromagnetic anomalies elsewhere (Hudson et al.).

  1. Toward Baseline Software Anomalies in NASA Missions

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Zelkowitz, Marvin; Basili, Victor; Nikora, Allen P.

    2012-01-01

    In this fast abstract, we provide preliminary findings an analysis of 14,500 spacecraft anomalies from unmanned NASA missions. We provide some baselines for the distributions of software vs. non-software anomalies in spaceflight systems, the risk ratings of software anomalies, and the corrective actions associated with software anomalies.

  2. Noble gases in the moon

    NASA Technical Reports Server (NTRS)

    Manuel, O. K.; Srinivasan, B.; Hennecke, E. W.; Sinclair, D. E.

    1972-01-01

    The abundance and isotopic composition of helium, neon, argon, krypton, and xenon which were released by stepwise heating of lunar fines (15601.64) and (15271.65) were measured spectrometrically. The results of a composition of noble gases released from the lunar fines with noble gases in meteorites and in the earth are presented along with the isotopic composition of noble gases in lunar fines, in meteorites, and in the atmosphere. A study of two isotopically distinct components of trapped xenon in carbonaceous chondrites is also included.

  3. Branchial anomalies in the pediatric population.

    PubMed

    Schroeder, James W; Mohyuddin, Nadia; Maddalozzo, John

    2007-08-01

    We sought to review the presentation, evaluation, and treatment of branchial anomalies in the pediatric population and to relate these findings to recurrences and complications. We conducted a retrospective study at a tertiary care pediatric hospital. Ninety-seven pediatric patients who were treated for branchial anomalies over a 10-year period were reviewed. Patients were studied if they underwent surgical treatment for the branchial anomaly and had 1 year of postoperative follow-up; 67 children met criteria, and 74 anomalies were studied. Patients with cysts presented at a later age than did those with branchial anomaly fistulas or sinus branchial anomalies. 32% of branchial anomalies were previously infected. Of these, 71% had more than one preoperative infection. 18% of the BA were first arch derivatives, 69% were second arch derivatives and 7% were third arch derivatives. There were 22 branchial cysts, 31 branchial sinuses and 16 branchial fistulas. The preoperative and postoperative diagnoses differed in 17 cases. None of the excised specimens that contained a cystic lining recurred; all five recurrences had multiple preoperative infections. Recurrence rates are increased when there are multiple preoperative infections and when there is no epithelial lining identified in the specimen.

  4. Congenital basis of posterior fossa anomalies

    PubMed Central

    Cotes, Claudia; Bonfante, Eliana; Lazor, Jillian; Jadhav, Siddharth; Caldas, Maria; Swischuk, Leonard

    2015-01-01

    The classification of posterior fossa congenital anomalies has been a controversial topic. Advances in genetics and imaging have allowed a better understanding of the embryologic development of these abnormalities. A new classification schema correlates the embryologic, morphologic, and genetic bases of these anomalies in order to better distinguish and describe them. Although they provide a better understanding of the clinical aspects and genetics of these disorders, it is crucial for the radiologist to be able to diagnose the congenital posterior fossa anomalies based on their morphology, since neuroimaging is usually the initial step when these disorders are suspected. We divide the most common posterior fossa congenital anomalies into two groups: 1) hindbrain malformations, including diseases with cerebellar or vermian agenesis, aplasia or hypoplasia and cystic posterior fossa anomalies; and 2) cranial vault malformations. In addition, we will review the embryologic development of the posterior fossa and, from the perspective of embryonic development, will describe the imaging appearance of congenital posterior fossa anomalies. Knowledge of the developmental bases of these malformations facilitates detection of the morphological changes identified on imaging, allowing accurate differentiation and diagnosis of congenital posterior fossa anomalies. PMID:26246090

  5. Gravitational parity anomaly with and without boundaries

    NASA Astrophysics Data System (ADS)

    Kurkov, Maxim; Vassilevich, Dmitri

    2018-03-01

    In this paper we consider gravitational parity anomaly in three and four dimensions. We start with a re-computation of this anomaly on a 3D manifold without boundaries and with a critical comparison of our results to the previous calculations. Then we compute the anomaly on 4D manifolds with boundaries with local bag boundary conditions. We find, that gravitational parity anomaly is localized on the boundary and contains a gravitational Chern-Simons terms together with a term depending of the extrinsic curvature. We also discuss the main properties of the anomaly, as the conformal invariance, relations between 3D and 4D anomalies, etc.

  6. Coronary Artery Anomalies in Animals

    PubMed Central

    Scansen, Brian A.

    2017-01-01

    Coronary artery anomalies represent a disease spectrum from incidental to life-threatening. Anomalies of coronary artery origin and course are well-recognized in human medicine, but have received limited attention in veterinary medicine. Coronary artery anomalies are best described in the dog, hamster, and cow though reports also exist in the horse and pig. The most well-known anomaly in veterinary medicine is anomalous coronary artery origin with a prepulmonary course in dogs, which limits treatment of pulmonary valve stenosis. A categorization scheme for coronary artery anomalies in animals is suggested, dividing these anomalies into those of major or minor clinical significance. A review of coronary artery development, anatomy, and reported anomalies in domesticated species is provided and four novel canine examples of anomalous coronary artery origin are described: an English bulldog with single left coronary ostium and a retroaortic right coronary artery; an English bulldog with single right coronary ostium and transseptal left coronary artery; an English bulldog with single right coronary ostium and absent left coronary artery with a prepulmonary paraconal interventricular branch and an interarterial circumflex branch; and a mixed-breed dog with tetralogy of Fallot and anomalous origin of all coronary branches from the brachiocephalic trunk. Coronary arterial fistulae are also described including a coronary cameral fistula in a llama cria and an English bulldog with coronary artery aneurysm and anomalous shunting vessels from the right coronary artery to the pulmonary trunk. These examples are provided with the intent to raise awareness and improve understanding of such defects. PMID:29056679

  7. Associated anomalies in cases with esophageal atresia.

    PubMed

    Stoll, Claude; Alembik, Yves; Dott, Beatrice; Roth, Marie-Paule

    2017-08-01

    Esophageal atresia (EA) is a common type of congenital anomaly. The etiology of esophageal atresia is unclear and its pathogenesis is controversial. Infants with esophageal atresia often have other non-EA associated congenital anomalies. The purpose of this investigation was to assess the prevalence and the types of these associated anomalies in a defined population. The associated anomalies in cases with EA were collected in all livebirths, stillbirths, and terminations of pregnancy during 29 years in 387,067 consecutive births in the area covered by our population-based registry of congenital malformations. Of the 116 cases with esophageal atresia, representing a prevalence of 2.99 per 10,000, 54 (46.6%) had associated anomalies. There were 9 (7.8%) cases with chromosomal abnormalities including 6 trisomies 18, and 20 (17.2%) nonchromosomal recognized dysmorphic conditions including 12 cases with VACTERL association and 2 cases with CHARGE syndrome. Twenty five (21.6%) of the cases had multiple congenital anomalies (MCA). Anomalies in the cardiovascular, the digestive, the urogenital, the musculoskeletal, and the central nervous systems were the most common other anomalies. The anomalies associated with esophageal atresia could be classified into a recognizable malformation syndrome or pattern in 29 out of 54 cases (53.7%). This study included special strengths: each affected child was examined by a geneticist, all elective terminations were ascertained, and the surveillance for anomalies was continued until 2 years of age. In conclusion the overall prevalence of associated anomalies, which was close to one in two cases, emphasizes the need for a thorough investigation of cases with EA. A routine screening for other anomalies may be considered in infants and in fetuses with EA. © 2017 Wiley Periodicals, Inc.

  8. Isotope ratio analysis by Orbitrap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Chimiak, L. M.; Dallas, B.; Griep-Raming, J.; Juchelka, D.; Makarov, A.; Schwieters, J. B.

    2016-12-01

    environmental pollutants, and study of the origins of isotope anomalies in meteoritic organics.

  9. Tectonically Induced Anomalies Without Large Earthquake Occurrences

    NASA Astrophysics Data System (ADS)

    Shi, Zheming; Wang, Guangcai; Liu, Chenglong; Che, Yongtai

    2017-06-01

    In this study, we documented a case involving large-scale macroscopic anomalies in the Xichang area, southwestern Sichuan Province, China, from May to June of 2002, after which no major earthquake occurred. During our field survey in 2002, we found that the timing of the high-frequency occurrence of groundwater anomalies was in good agreement with those of animal anomalies. Spatially, the groundwater and animal anomalies were distributed along the Anninghe-Zemuhe fault zone. Furthermore, the groundwater level was elevated in the northwest part of the Zemuhe fault and depressed in the southeast part of the Zemuhe fault zone, with a border somewhere between Puge and Ningnan Counties. Combined with microscopic groundwater, geodetic and seismic activity data, we infer that the anomalies in the Xichang area were the result of increasing tectonic activity in the Sichuan-Yunnan block. In addition, groundwater data may be used as a good indicator of tectonic activity. This case tells us that there is no direct relationship between an earthquake and these anomalies. In most cases, the vast majority of the anomalies, including microscopic and macroscopic anomalies, are caused by tectonic activity. That is, these anomalies could occur under the effects of tectonic activity, but they do not necessarily relate to the occurrence of earthquakes.

  10. Distribution of branchial anomalies in a paediatric Asian population.

    PubMed

    Teo, Neville Wei Yang; Ibrahim, Shahrul Izham; Tan, Kun Kiaang Henry

    2015-04-01

    The objective of the present study was to review the distribution and incidence of branchial anomalies in an Asian paediatric population and highlight the challenges involved in the diagnosis of branchial anomalies. This was a retrospective chart review of all paediatric patients who underwent surgery for branchial anomalies in a tertiary paediatric hospital from August 2007 to November 2012. The clinical notes were correlated with preoperative radiological investigations, intraoperative findings and histology results. Branchial anomalies were classified based on the results of the review. A total of 28 children underwent surgery for 30 branchial anomalies during the review period. Two children had bilateral branchial anomalies requiring excision. Of the 30 branchial anomalies, 7 (23.3%) were first branchial anomalies, 5 (16.7%) were second branchial anomalies, 3 (10.0%) were third branchial anomalies, and 4 (13.3%) were fourth branchial anomalies (one of the four patients with fourth branchial anomalies had bilateral branchial anomalies). In addition, seven children had 8 (26.7%) branchial anomalies that were thought to originate from the pyriform sinus; however, we were unable to determine if these anomalies were from the third or fourth branchial arches. There was inadequate information on the remaining 3 (10.0%) branchial anomalies for classification. The incidence of second branchial anomalies appears to be lower in our Asian paediatric population, while that of third and fourth branchial anomalies was higher. Knowledge of embryology and the related anatomy of the branchial apparatus is crucial in the identification of the type of branchial anomaly.

  11. Distribution of branchial anomalies in a paediatric Asian population

    PubMed Central

    Teo, Neville Wei Yang; Ibrahim, Shahrul Izham; Tan, Kun Kiaang Henry

    2015-01-01

    INTRODUCTION The objective of the present study was to review the distribution and incidence of branchial anomalies in an Asian paediatric population and highlight the challenges involved in the diagnosis of branchial anomalies. METHODS This was a retrospective chart review of all paediatric patients who underwent surgery for branchial anomalies in a tertiary paediatric hospital from August 2007 to November 2012. The clinical notes were correlated with preoperative radiological investigations, intraoperative findings and histology results. Branchial anomalies were classified based on the results of the review. RESULTS A total of 28 children underwent surgery for 30 branchial anomalies during the review period. Two children had bilateral branchial anomalies requiring excision. Of the 30 branchial anomalies, 7 (23.3%) were first branchial anomalies, 5 (16.7%) were second branchial anomalies, 3 (10.0%) were third branchial anomalies, and 4 (13.3%) were fourth branchial anomalies (one of the four patients with fourth branchial anomalies had bilateral branchial anomalies). In addition, seven children had 8 (26.7%) branchial anomalies that were thought to originate from the pyriform sinus; however, we were unable to determine if these anomalies were from the third or fourth branchial arches. There was inadequate information on the remaining 3 (10.0%) branchial anomalies for classification. CONCLUSION The incidence of second branchial anomalies appears to be lower in our Asian paediatric population, while that of third and fourth branchial anomalies was higher. Knowledge of embryology and the related anatomy of the branchial apparatus is crucial in the identification of the type of branchial anomaly. PMID:25917471

  12. Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in Southwest Japan

    NASA Astrophysics Data System (ADS)

    Sano, Yuji; Takahata, Naoto; Kagoshima, Takanori; Shibata, Tomo; Onoue, Tetsuji; Zhao, Dapeng

    2016-11-01

    Geochemical monitoring of groundwater and soil gas emission pointed out precursor and/or coseismic anomalies of noble gases associated with earthquakes, but there was lack of plausible physico-chemical basis. A laboratory experiment of rock fracturing and noble gas emission was conducted, but there is no quantitative connection between the laboratory results and observation in field. We report here deep groundwater helium anomalies related to the 2016 Kumamoto earthquake, which is an inland crustal earthquake with a strike-slip fault and a shallow hypocenter (10 km depth) close to highly populated areas in Southwest Japan. The observed helium isotope changes, soon after the earthquake, are quantitatively coupled with volumetric strain changes estimated from a fault model, which can be explained by experimental studies of helium degassing during compressional loading of rock samples. Groundwater helium is considered as an effective strain gauge. This suggests the first quantitative linkage between geochemical and seismological observations and may open the possibility to develop a new monitoring system to detect a possible strain change prior to a hazardous earthquake in regions where conventional borehole strain meter is not available.

  13. Clinical Study of Second Branchial Cleft Anomalies.

    PubMed

    Lee, Dong Hoon; Yoon, Tae Mi; Lee, Joon Kyoo; Lim, Sang Chul

    2018-03-30

    The objective of this study was to review the clinical characteristics and surgical treatment outcomes of second branchial cleft anomalies, and to evaluate the usefulness and accuracy of preoperative fine-needle aspiration cytology (FNAC) in the diagnosis of branchial cleft cysts. A retrospective chart review was performed at Chonnam National University Hwasun Hospital from January 2010 to December 2016. Among 25 patients with second branchial cleft anomalies, in 23 patients (92.0%), these anomalies presented as cysts, and in the remaining 2 patients (8.0%), these anomalies presented as fistulas. Fine-needle aspiration cytology had a diagnostic sensitivity of 100%, a positive-predictive value of 100%, and accuracy of 100% for diagnosing second branchial cleft cyst. All patients of second branchial cleft anomalies were treated surgically under general anesthesia. No recurrence of second branchial cleft anomalies was observed. Branchial cleft cysts were the most common type of second branchial cleft anomalies. Preoperative FNAC is a useful and accurate method for preoperative evaluation of branchial cleft cysts. Surgical excision of second branchial cleft anomalies is the treatment of choice without any complications and with no recurrence.

  14. [Autopsies for fetal anomalies].

    PubMed

    Kidron, Debora; Eidel, Jouly; Aviram, Rami

    2013-06-01

    Fetal autopsies are effective in identifying the cause and/or mechanisms leading to death in cases of intrauterine fetal death. Autopsies for fetal anomalies are different. To summarize our experience with 569 autopsies of fetal anomalies which were performed during an 18-year period. A retrospective analysis of 569 autopsies of fetal anomalies was conducted, out of a total of 1067 fetal autopsies. The pregnancy weeks were 14 - 41. Among 569 cases, 88% were termination of pregnancies, 10% intrauterine death and 2% perinatal deaths. The diagnosis of a syndrome or disease process was made when a constellation of gross and/or histologic findings was met. Specific diagnoses were offered in cases of cystic diseases of kidneys, types of dwarfism, tumors and fetal hydrops. Teratogenic (acquired) processes, such as congenital infections, thrombosis and cerebral hemorrhages, were differentiated from malformations. In cases of multiple congenital anomalies, documentation of the entire spectrum of malformations facilitated the genetic counseling. First and foremost, the autopsy is performed in the interest of the parents, with their written consent and in accordance with limitations and requests which they pose. Autopsy results provide feedback to the prenatal imaging. They assist in focusing the genetic counseling. Autopsy reports provide tools of control for the health authorities. Autopsies for fetal anomalies are time consuming. They require skill and experience. They are helpfuL when the prenatal diagnosis raises differential diagnosis. They are Less helpful when the diagnosis is clear, i.e. chromosomal trisomy.

  15. Orbital debris hazard insights from spacecraft anomalies studies

    NASA Astrophysics Data System (ADS)

    McKnight, Darren S.

    2016-09-01

    Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.

  16. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    PubMed Central

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-01-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between −1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non–33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere. PMID:27330111

  17. Gravity Anomaly Intersects Moon Basin

    NASA Image and Video Library

    2012-12-05

    A linear gravity anomaly intersecting the Crisium basin on the nearside of the moon has been revealed by NASA GRAIL mission. The GRAIL gravity gradient data are shown at left, with the location of the anomaly indicated.

  18. Prevalence of dental anomalies in Saudi orthodontic patients.

    PubMed

    Al-Jabaa, Aljazi H; Aldrees, Abdullah M

    2013-07-01

    This study aimed to investigate the prevalence of dental anomalies and study the association of these anomalies with different types of malocclusion in a random sample of Saudi orthodontic patients. Six hundred and two randomly selected pretreatment records including orthopantomographs (OPG), and study models were evaluated. The molar relationship was determined using pretreatment study models, and OPG were examined to investigate the prevalence of dental anomalies among the sample. The most common types of the investigated anomalies were: impaction followed by hypodontia, microdontia, macrodontia, ectopic eruption and supernumerary. No statistical significant correlations were observed between sex and dental anomalies. Dental anomalies were more commonly found in class I followed by asymmetric molar relation, then class II and finally class III molar relation. No malocclusion group had a statistically significant relation with any individual dental anomaly. The prevalence of dental anomalies among Saudi orthodontic patients was higher than the general population. Although, orthodontic patients have been reported to have high rates of dental anomalies, orthodontists often fail to consider this. If not detected, dental anomalies can complicate dental and orthodontic treatment; therefore, their presence should be carefully investigated during orthodontic diagnosis and considered during treatment planning.

  19. Formation and Preservation of the Depleted and Enriched Shergottite Isotopic Reservoirs in a Convecting Martian Mantle

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Jones, John H.

    2015-01-01

    There is compelling isotopic and crater density evidence for geologically recent volcanism on Mars, in the last 100-200 million years and possibly in the last 50 million years. This volcanism is due to adiabatic decompression melting and thus requires some type of present-day convective upwelling in the martian mantle. On the other hand, martian meteorites preserve evidence for at least 3 distinct radiogenic isotopic reservoirs. Anomalies in short-lived isotopic systems (Sm-146, Nd-142, Hf-182, W-182) require that these reservoirs must have developed in the first 50 to 100 million years of Solar System history. The long-term preservation of chemically distinct reservoirs has sometimes been interpreted as evidence for the absence of mantle convection and convective mixing on Mars for most of martian history, a conclusion which is at odds with the evidence for young volcanism. This apparent paradox can be resolved by recognizing that a variety of processes, including both inefficient mantle mixing and geographic separation of isotopic reservoirs, may preserve isotopic heterogeneity on Mars in an actively convecting mantle. Here, we focus on the formation and preservation of the depleted and enriched isotopic and trace element reservoirs in the shergottites. In particular, we explore the possible roles of processes such as chemical diffusion and metasomatism in dikes and magma chambers for creating the isotopically enriched shergottites. We also consider processes that may preserve the enriched reservoir against convective mixing for most of martian history.

  20. Analysis of GEO spacecraft anomalies: Space weather relationships

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Sung; Lee, Jaejin; Cho, Kyung-Suk; Kwak, Young-Sil; Cho, Il-Hyun; Park, Young-Deuk; Kim, Yeon-Han; Baker, Daniel N.; Reeves, Geoffrey D.; Lee, Dong-Kyu

    2011-06-01

    While numerous anomalies and failures of spacecraft have been reported since the beginning of the space age, space weather effects on modern spacecraft systems have been emphasized more and more with the increase of their complexity and capability. However, the relationship between space weather and commercial satellite anomalies has not been studied extensively. In this paper, we investigate the geostationary Earth orbit (GEO) satellite anomalies archived by Satellite News Digest during 1997-2009 in order to search for possible influences of space weather on the anomaly occurrences. We analyze spacecraft anomalies for the Kp index, local time, and season and then compare them with the tendencies of charged particles observed by Los Alamos National Laboratory (LANL) satellites. We obtain the following results: (1) there are good relationships between geomagnetic activity (as measured by the Kp index) and anomaly occurrences of the GEO satellites; (2) the satellite anomalies occurred mainly in the midnight to morning sector; and (3) the anomalies are found more frequently in spring and fall than summer and winter. While we cannot fully explain how space weather is involved in producing such anomalies, our analysis of LANL data shows that low-energy (<100 keV) electrons have similar behaviors with spacecraft anomalies and implies the spacecraft charging might dominantly contribute to the GEO spacecraft anomalies reported in Satellite News Digest.

  1. Hawking radiation and covariant anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Rabin; Kulkarni, Shailesh

    2008-01-15

    Generalizing the method of Wilczek and collaborators we provide a derivation of Hawking radiation from charged black holes using only covariant gauge and gravitational anomalies. The reliability and universality of the anomaly cancellation approach to Hawking radiation is also discussed.

  2. Enabling NLDAS-2 Anomaly Analysis Using Giovanni

    NASA Astrophysics Data System (ADS)

    Loeser, C.; Rui, H.; Teng, W. L.; Vollmer, B.; Mocko, D. M.

    2017-12-01

    A newly implemented feature in Giovanni (GES DISC Interactive Online Visualization and Analysis Interface) allows users to explore and visualize anomaly data from the NLDAS-2 Primary Forcing and Noah model data sets. For a given measurement and location, an anomaly describes how conditions for a particular time period compare to normal conditions, based on long-term averages. Analyzing anomalies is important for monitoring droughts, determining weather trends, and studying land surface processes relevant for meteorology, hydrology, and climate. Using Giovanni to analyze anomalies for NLDAS-2 data allows for these studies to be efficiently conducted for the central North American region. Phase 2 of NLDAS (NLDAS-2) currently runs at an 1/8th degree resolution, in near-real time, with data sets extending back to January 1979. NLDAS-2 provides data for soil moisture, precipitation, temperature, and other hydrology measurements. Hourly, monthly, and 30-year (1980-2009) monthly climatology data are available for several land surface models and forcing data sets. The Giovanni anomaly tool calculates monthly anomalies, for a given user-defined variable, as the difference between the NLDAS-2 monthly climatology data and the monthly data. The resulting anomaly describes how a chosen month compares to the 30-year monthly average. The presentation will demonstrate the capabilities and usefulness of Giovanni's anomaly tool, detail the recently added NLDAS-2 variables for which anomalies are available, and show how users can access the data.

  3. Enabling NLDAS-2 Anomaly Analysis Using Giovanni

    NASA Technical Reports Server (NTRS)

    Loeser, Carlee; Rui, Hualan; Teng, William; Vollmer, Bruce; Mocko, David

    2017-01-01

    A newly implemented feature in Giovanni (GES DISC Interactive Online Visualization and Analysis Interface) allows users to explore and visualize anomaly data from the NLDAS-2 Primary Forcing and Noah model data sets. For a given measurement and location, an anomaly describes how conditions for a particular time period compare to normal conditions, based on long-term averages. Analyzing anomalies is important for monitoring droughts, determining weather trends, and studying land surface processes relevant for meteorology, hydrology, and climate. Using Giovanni to analyze anomalies for NLDAS-2 data allows for these studies to be efficiently conducted for the central North American region. Phase 2 of NLDAS (NLDAS-2) currently runs at an 1/8th degree resolution, in near-real time, with data sets extending back to January 1979. NLDAS-2 provides data for soil moisture, precipitation, temperature, and other hydrology measurements. Hourly, monthly, and 30-year (1980-2009) monthly climatology data are available for several land surface models and forcing data sets. The Giovanni anomaly tool calculates monthly anomalies, for a given user-defined variable, as the difference between the NLDAS-2 monthly climatology data and the monthly data. The resulting anomaly describes how a chosen month compares to the 30-year monthly average. The presentation will demonstrate the capabilities and usefulness of Giovanni's anomaly tool, detail the recently added NLDAS-2 variables for which anomalies are available, and show how users can access the data.

  4. Prevalence of dental anomalies in Indian population.

    PubMed

    Patil, Santosh; Doni, Bharati; Kaswan, Sumita; Rahman, Farzan

    2013-10-01

    Developmental anomalies of the dentition are not infrequently observed by the dental practitioner. The aim of the present study was to determine the prevalence of dental anomalies in the Indian population. A retrospective study of 4133 panoramic radiographs of patients, who attended the Department of Oral Medicine and Radiology, Jodhpur Dental College General Hospital between September 2008 to December 2012 was done. The ages of the patients ranged from 13 to 38 years with a mean age of 21.8 years. The orthopantomographs (OPGs) and dental records were examined for any unusual finding such as congenitally missing teeth, impactions, ectopic eruption, supernumerary teeth, odontoma, dilacerations, taurodontism, dens in dente, germination and fusion, among others. 1519 (36.7%) patients had at least one dental anomaly. The congenitally missing teeth 673 (16.3%) had the highest prevalence, followed by impacted teeth 641 (15.5%), supernumerary teeth 51 (1.2%) and microdontia 41 (1.0%). Other anomalies were found at lower prevalence ranging from transposition 7 (0.1%) to ectopic eruption 30 (0.7%). The most prevalent anomaly in the Indian population was congenitally missing teeth (16.3%), and the second frequent anomaly was impacted teeth (15.5%), whereas, macrodontia, odontoma and transposition were the least frequent anomalies, with a prevalence of 0.2%, 0.2% and 0.1% respectively. While the overall prevalence of these anomalies may be low, the early diagnosis is imperative for the patient management and treatment planning. Key words:Dental anomaly, prevalence, panoramic radiography.

  5. Anomaly-specified virtual dimensionality

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Yu; Paylor, Drew; Chang, Chein-I.

    2013-09-01

    Virtual dimensionality (VD) has received considerable interest where VD is used to estimate the number of spectral distinct signatures, denoted by p. Unfortunately, no specific definition is provided by VD for what a spectrally distinct signature is. As a result, various types of spectral distinct signatures determine different values of VD. There is no one value-fit-all for VD. In order to address this issue this paper presents a new concept, referred to as anomaly-specified VD (AS-VD) which determines the number of anomalies of interest present in the data. Specifically, two types of anomaly detection algorithms are of particular interest, sample covariance matrix K-based anomaly detector developed by Reed and Yu, referred to as K-RXD and sample correlation matrix R-based RXD, referred to as R-RXD. Since K-RXD is only determined by 2nd order statistics compared to R-RXD which is specified by statistics of the first two orders including sample mean as the first order statistics, the values determined by K-RXD and R-RXD will be different. Experiments are conducted in comparison with widely used eigen-based approaches.

  6. The pair correlation function of krypton in the critical region: theory and experiment

    NASA Astrophysics Data System (ADS)

    Barocchi, F.; Chieux, P.; Fontana, R.; Magli, R.; Meroni, A.; Parola, A.; Reatto, L.; Tau, M.

    1997-10-01

    We present the results of high-precision measurements of the structure factor S(k) of krypton in the near-critical region of the liquid - vapour phase transition for values of k ranging from 1.5 up to 0953-8984/9/42/003/img15. The experimental results are compared with a theoretical calculation based on the hierarchical reference theory (HRT) with an accurate potential which includes two- and three-body contributions. The theory is based on a new implementation of HRT in which we avoid the use of hard spheres as a reference system. With this soft-core formulation we find a generally good agreement with experiments both at large k, where S(k) probes the short-range correlations, as well as at small k, where critical fluctuations become dominant. Also, for the density derivative of the pair correlation function there is an overall good agreement between theory and experiment.

  7. The magnetic anomaly of the Ivreazone

    NASA Technical Reports Server (NTRS)

    Albert, G.

    1979-01-01

    A magnetic field survey was made in the Ivreazone in 1969/70. The results were: significant anomaly of the vertical intensity is found. It follows the basic main part of the Ivrea-Verbano zone and continues to the south. The width of the anomaly is about 10 km, the maximum measures about +800 gamma. The model interpretation shows that possibly the anomaly belongs to an amphibolitic body, which in connection with the Ivrea-body was found by deep seismic sounding. Therefore, the magnetic anomaly provides further evidence for the conception that the Ivrea-body has to be regarded as a chip of earthmantle material pushed upward by tectonic processes.

  8. Chromatographic separation of radioactive noble gases from xenon

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  9. Overgrowth syndromes with vascular anomalies.

    PubMed

    Blei, Francine

    2015-04-01

    Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations. Copyright © 2015 Mosby, Inc. All rights reserved.

  10. Analysis of renal anomalies in VACTERL association.

    PubMed

    Cunningham, Bridget K; Khromykh, Alina; Martinez, Ariel F; Carney, Tyler; Hadley, Donald W; Solomon, Benjamin D

    2014-10-01

    VACTERL association refers to a combination of congenital anomalies that can include: vertebral anomalies, anal atresia, cardiac malformations, tracheo-esophageal fistula with esophageal atresia, renal anomalies (typically structural renal anomalies), and limb anomalies. We conducted a description of a case series to characterize renal findings in a cohort of patients with VACTERL association. Out of the overall cohort, 48 patients (with at least three component features of VACTERL and who had abdominal ultrasound performed) met criteria for analysis. Four other patients were additionally analyzed separately, with the hypothesis that subtle renal system anomalies may occur in patients who would not otherwise meet criteria for VACTERL association. Thirty-three (69%) of the 48 patients had a clinical manifestation affecting the renal system. The most common renal manifestation (RM) was vesicoureteral reflux (VUR) in addition to a structural defect (present in 27%), followed by unilateral renal agenesis (24%), and then dysplastic/multicystic kidneys or duplicated collected system (18% for each). Twenty-two (88%) of the 25 patients with a structural RM had an associated anorectal malformation. Individuals with either isolated lower anatomic anomalies, or both upper and lower anatomic anomalies were not statistically more likely to have a structural renal defect than those with isolated upper anatomic anomalies (p = 0.22, p = 0.284, respectively). Given the high prevalence of isolated VUR in our cohort, we recommend a screening VCUG or other imaging modality be obtained to evaluate for VUR if initial renal ultrasound shows evidence of obstruction or renal scarring, as well as ongoing evaluation of renal health. © 2014 Wiley Periodicals, Inc.

  11. Climate variability during the Medieval Climate Anomaly and Little Ice Age based on ostracod faunas and shell geochemistry from Biscayne Bay, Florida: Chapter 14

    USGS Publications Warehouse

    Cronin, Thomas M.; Wingard, G. Lynn; Dwyer, Gary S.; Swart, Peter K.; Willard, Debra A.; Albietz, Jessica

    2012-01-01

    An 800-year-long environmental history of Biscayne Bay, Florida, is reconstructed from ostracod faunal and shell geochemical (oxygen, carbon isotopes, Mg/Ca ratios) studies of sediment cores from three mudbanks in the central and southern parts of the bay. Using calibrations derived from analyses of modern Biscayne and Florida Bay ostracods, palaeosalinity oscillations associated with changes in precipitation were identified. These oscillations reflect multidecadal- and centennial-scale climate variability associated with the Atlantic Multidecadal Oscillation during the late Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Evidence suggests wetter regional climate during the MCA and drier conditions during the LIA. In addition, twentieth century anthropogenic modifications to Everglades hydrology influenced bay circulation and/or processes controlling carbon isotopic composition.

  12. Distribution of female genital tract anomalies in two classifications.

    PubMed

    Heinonen, Pentti K

    2016-11-01

    This study assessed the distribution of Müllerian duct anomalies in two verified classifications of female genital tract malformations, and the presence of associated renal defects. 621 women with confirmed female genital tract anomalies were retrospectively grouped under the European (ESHRE/ESGE) and the American (AFS) classification. The diagnosis of uterine malformation was based on findings in hysterosalpingography, two-dimensional ultrasonography, endoscopies, laparotomy, cesarean section and magnetic resonance imaging in 97.3% of cases. Renal status was determined in 378 patients, including 5 with normal uterus and vagina. The European classification covered all 621 women studied. Uterine anomalies without cervical or vaginal anomaly were found in 302 (48.6%) patients. Uterine anomaly was associated with vaginal anomaly in 45.2%, and vaginal anomaly alone was found in 26 (4.2%) cases. Septate uterus was the most common (49.1%) of all genital tract anomalies, followed by bicorporeal uteri (18.2%). The American classification covered 590 (95%) out of the 621 women with genital tract anomalies. The American system did not take into account vaginal anomalies in 170 (34.7%) and cervical anomalies in 174 (35.5%) out of 490 cases with uterine malformations. Renal abnormalities were found in 71 (18.8%) out of 378 women, unilateral renal agenesis being the most common defect (12.2%), also found in 4 women without Müllerian duct anomaly. The European classification sufficiently covered uterine and vaginal abnormalities. The distribution of the main uterine anomalies was equal in both classifications. The American system missed cervical and vaginal anomalies associated with uterine anomalies. Evaluation of renal system is recommended for all patients with genital tract anomalies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Prevalence of dental developmental anomalies: a radiographic study.

    PubMed

    Ezoddini, Ardakani F; Sheikhha, M H; Ahmadi, H

    2007-09-01

    To determine the prevalence of developmental dental anomalies in patients attending the Dental Faculty of Medical University of Yazd, Iran and the gender differences of these anomalies. A retrospective study based on the panoramic radiographs of 480 patients. Patients referred for panoramic radiographs were clinically examined, a detailed family history of any dental anomalies in their first and second degree relatives was obtained and finally their radiographs were studied in detail for the presence of dental anomalies. 40.8% of the patients had dental anomalies. The more common anomalies were dilaceration (15%), impacted teeth (8.3%) and taurodontism (7.5%) and supernumerary teeth (3.5%). Macrodontia and fusion were detected in a few radiographs (0.2%). 49.1% of male patients had dental anomalies compared to 33.8% of females. Dilaceration, taurodontism and supernumerary teeth were found to be more prevalent in men than women, whereas impacted teeth, microdontia and gemination were more frequent in women. Family history of dental anomalies was positive in 34% of the cases.. Taurodontism, gemination, dens in dente and talon cusp were specifically limited to the patients under 20 year's old, while the prevalence of other anomalies was almost the same in all groups. Dilaceration, impaction and taurodontism were relatively common in the studied populaton. A family history of dental anomalies was positive in a third of cases.

  14. New Data Bases and Standards for Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Hildenbrand, T. G.; Webring, M. W.; Hinze, W. J.; Ravat, D.; Li, X.

    2008-12-01

    Ever since the use of high-precision gravimeters emerged in the 1950's, gravity surveys have been an important tool for geologic studies. Recent developments that make geologically useful measurements from airborne and satellite platforms, the ready availability of the Global Positioning System that provides precise vertical and horizontal control, improved global data bases, and the increased availability of processing and modeling software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases publicly available to the geoscience community by expanding their holdings and increasing the accuracy and precision of the data in them. Specifically the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States are being revised using new formats and standards to improve their coverage, standardization, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account the enhanced computational power available, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining the different components of gravity anomalies. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the calculated value of theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies in that long wavelength artifacts are removed. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. Although many types of gravity anomalies have been described, they fall into three main classes. The primary class incorporates planetary effects, which are analytically prescribed, to

  15. Relationships between Rwandan seasonal rainfall anomalies and ENSO events

    NASA Astrophysics Data System (ADS)

    Muhire, I.; Ahmed, F.; Abutaleb, K.

    2015-10-01

    This study aims primarily at investigating the relationships between Rwandan seasonal rainfall anomalies and El Niño-South Oscillation phenomenon (ENSO) events. The study is useful for early warning of negative effects associated with extreme rainfall anomalies across the country. It covers the period 1935-1992, using long and short rains data from 28 weather stations in Rwanda and ENSO events resourced from Glantz (2001). The mean standardized anomaly indices were calculated to investigate their associations with ENSO events. One-way analysis of variance was applied on the mean standardized anomaly index values per ENSO event to explore the spatial correlation of rainfall anomalies per ENSO event. A geographical information system was used to present spatially the variations in mean standardized anomaly indices per ENSO event. The results showed approximately three climatic periods, namely, dry period (1935-1960), semi-humid period (1961-1976) and wet period (1977-1992). Though positive and negative correlations were detected between extreme short rains anomalies and El Niño events, La Niña events were mostly linked to negative rainfall anomalies while El Niño events were associated with positive rainfall anomalies. The occurrence of El Niño and La Niña in the same year does not show any clear association with rainfall anomalies. However, the phenomenon was more linked with positive long rains anomalies and negative short rains anomalies. The normal years were largely linked with negative long rains anomalies and positive short rains anomalies, which is a pointer to the influence of other factors other than ENSO events. This makes projection of seasonal rainfall anomalies in the country by merely predicting ENSO events difficult.

  16. Gravity anomaly detection: Apollo/Soyuz

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Kahn, W. D.; Bryan, J. W.; Schmid, P. E.; Wells, W. T.; Conrad, D. T.

    1976-01-01

    The Goddard Apollo-Soyuz Geodynamics Experiment is described. It was performed to demonstrate the feasibility of tracking and recovering high frequency components of the earth's gravity field by utilizing a synchronous orbiting tracking station such as ATS-6. Gravity anomalies of 5 MGLS or larger having wavelengths of 300 to 1000 kilometers on the earth's surface are important for geologic studies of the upper layers of the earth's crust. Short wavelength Earth's gravity anomalies were detected from space. Two prime areas of data collection were selected for the experiment: (1) the center of the African continent and (2) the Indian Ocean Depression centered at 5% north latitude and 75% east longitude. Preliminary results show that the detectability objective of the experiment was met in both areas as well as at several additional anomalous areas around the globe. Gravity anomalies of the Karakoram and Himalayan mountain ranges, ocean trenches, as well as the Diamantina Depth, can be seen. Maps outlining the anomalies discovered are shown.

  17. Anomaly Resolution in the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, William A.

    2000-01-01

    Topics include post flight 2A status, groundrules, anomaly resolution, Early Communications Subsystem anomaly and resolution, Logistics and Maintenance plan, case for obscuration, case for electrical short, and manual fault isolation, and post mission analysis. Photographs from flight 2A.1 are used to illustrate anomalies.

  18. Geological reasons for change in intensity of linear magnetic anomalies of the Kursk magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Zhavoronkin, I. A.; Kopayev, V. V.

    1985-01-01

    The geological reasons for fluctuations in the anomalous field intensity along the polar axes were examined. The Kursk magnetic anomaly is used as the basis for the study. A geological-geophysical section was constructed which used the results of the interpretation of gravimagnetic anomalies.

  19. New perspective on Aptian carbon isotope stratigraphy: Data from δ13C records of terrestrial organic matter

    NASA Astrophysics Data System (ADS)

    Ando, Atsushi; Kakegawa, Takeshi; Takashima, Reishi; Saito, Tsunemasa

    2002-03-01

    Carbon isotope analyses were performed on detrital woody materials in Aptian (mid- Cretaceous) marine sediments of central Hokkaido, northern Japan. A positive δ13Cwood excursion (from -25.4‰ to -21.8‰) following a remarkable negative isotope shift is recognized in the early Aptian, and a small positive anomaly is also found in the latest Aptian. This δ13Cwood profile is exactly in phase with the δ13Ccarbonate curve from a Pacific guyot when the age of the guyot carbonates is revised using published Sr isotope stratigraphies. The highly conformable δ13C profiles of Pacific and Hokkaido sections suggest that δ13C compositions of Aptian marine and terrestrial carbon reservoirs changed simultaneously by the same amplitude within the ocean-atmosphere-biosphere system. Fluctuation patterns of Tethyan δ13Ccarbonate curves are slightly different from those of Pacific and Hokkaido sections. Such differences in δ13C profiles may be attributed to the local paleoceanographic setting of the Aptian Mediterranean Tethys.

  20. Pb isotope geochemistry of Piton de la Fournaise historical lavas

    NASA Astrophysics Data System (ADS)

    Vlastélic, Ivan; Deniel, Catherine; Bosq, Chantal; Télouk, Philippe; Boivin, Pierre; Bachèlery, Patrick; Famin, Vincent; Staudacher, Thomas

    2009-07-01

    Variations of Pb isotopes in historical lavas (1927-2007) from Piton de la Fournaise are investigated based on new (116 samples) and published (127 samples) data. Lead isotopic signal exhibits smooth fluctuations (18.87 < 206Pb/ 204Pb < 18.94) on which superimpose unradiogenic spikes ( 206Pb/ 204Pb down to 18.70). Lead isotopes are decoupled from 87Sr/ 86Sr and 143Nd/ 144Nd, which display small and barely significant variations, respectively. No significant change of Pb isotope composition occurred during the longest (> 3 years) periods of inactivity of the volcano (1939-1942, 1966-1972, 1992-1998), supporting previous inferences that Pb isotopic variations occur mostly during and not between eruptions. Intermediate compositions (18.904 < 206Pb/ 204Pb < 18.917) bracket the longest periods of quiescence. In this respect, the highly frequent occurrence of an intermediate composition (18.90 < 206Pb/ 204Pb < 18.91), which clearly defines an isotopic baseline during the most recent densely sampled period (1975-2007), either suggests direct sampling of plume melts or sampling of a voluminous magma reservoir that buffers Pb isotopic composition. Deviations from this prevalent composition occurred during well-defined time periods, namely 1977-1986 (radiogenic signature), 1986-1990 and 1998-2005 (unradiogenic signatures). The three periods display a progressive isotopic drift ending by a rapid return (mostly during a single eruption) to the isotopic baseline. The isotopic gradients could reflect progressive emptying of small magma reservoirs or magma conduits, which are expected to be more sensitive to wall-rock interactions than the main magma chamber. These gradients provide a lower bound ranging from 0.1 to 0.17 km 3 for the size of the shallow magma storage system. The isotopic shifts (March 1986, January 1990 and February 2005) are interpreted as refilling the plumbing system with deep melts that have not interacted with crustal components. The volume of magma erupted

  1. Correlated silicon and titanium isotopic compositions of presolar SiC grains from the Murchison CM2 chondrite

    NASA Astrophysics Data System (ADS)

    Gyngard, Frank; Amari, Sachiko; Zinner, Ernst; Marhas, Kuljeet Kaur

    2018-01-01

    We report correlated Si, and Ti isotopic compositions and elemental concentrations of 238 presolar SiC grains from the Murchison CM2 meteorite. Combined with measurements of the C and N isotopic compositions of these 238 grains, 220 were determined to be of type mainstream, 10 type AB, 4 type Y and 4 type Z. SiC grains of diameter ≳2.5 μm, to ensure enough material to attempt Ti measurements, were randomly chosen without any other prejudice. The Ti isotopic compositions of the majority of the grains are characterized by enrichments in 46Ti, 47Ti, 49Ti, and 50Ti relative to 48Ti, and show linear isotopic correlations indicative of galactic chemical evolution and neutron capture of the grains parent stars. The variability in the observed Ti signal as a function of depth in most of the grains indicates the presence of distinct subgrains, likely TiC that have been previously observed in TEM studies. Vandium-51 concentrations correlate with those of Ti, indicating V substitutes for Ti in the TiC matrix in many of the grains. No isotopic anomalies in 52Cr/53Cr ratios were observed, and Cr concentrations did not correlate with those of either Ti or V.

  2. Adiabatic Quantum Anomaly Detection and Machine Learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen; Lidar, Daniel

    2012-02-01

    We present methods of anomaly detection and machine learning using adiabatic quantum computing. The machine learning algorithm is a boosting approach which seeks to optimally combine somewhat accurate classification functions to create a unified classifier which is much more accurate than its components. This algorithm then becomes the first part of the larger anomaly detection algorithm. In the anomaly detection routine, we first use adiabatic quantum computing to train two classifiers which detect two sets, the overlap of which forms the anomaly class. We call this the learning phase. Then, in the testing phase, the two learned classification functions are combined to form the final Hamiltonian for an adiabatic quantum computation, the low energy states of which represent the anomalies in a binary vector space.

  3. Lunar Bouguer gravity anomalies - Imbrian age craters

    NASA Technical Reports Server (NTRS)

    Dvorak, J.; Phillips, R. J.

    1978-01-01

    The Bouguer gravity of mass anomalies associated with four Imbrian age craters, analyzed in the present paper, are found to differ considerably from the values of the mass anomalies associated with some young lunar craters. Of the Imbrian age craters, only Piccolomini exhibits a negative gravity anomaly (i.e., a low density region) which is characteristic of the young craters studied. The Bouguer gravity anomalies are zero for each of the remaining Imbrian age craters. Since, Piccolomini is younger, or at least less modified, than the other Imbrian age craters, it is suggested that the processes responsible for the post-impact modification of the Imbrian age craters may also be responsible for removing the negative mass anomalies initially associated with these features.

  4. Intracranial developmental venous anomaly: is it asymptomatic?

    PubMed

    Puente, A Bolívar; de Asís Bravo Rodríguez, F; Bravo Rey, I; Romero, E Roldán

    2018-03-16

    Intracranial developmental venous anomalies are the most common vascular malformation. In the immense majority of cases, these anomalies are asymptomatic and discovered incidentally, and they are considered benign. Very exceptionally, however, they can cause neurological symptoms. In this article, we present three cases of patients with developmental venous anomalies that presented with different symptoms owing to complications derived from altered venous drainage. These anomalies were located in the left insula, right temporal lobe, and cerebellum. The exceptionality of the cases presented as well as of the images associated, which show the mechanism through which the symptoms developed, lies in the low incidence of symptomatic developmental venous anomalies reported in the literature. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Branchial Anomalies: Diagnosis and Management

    PubMed Central

    Azeez, Arun; Thada, Nikhil Dinaker; Rao, Pallavi; Prasad, Kishore Chandra

    2014-01-01

    Objective. To find out the incidence of involvement of individual arches, anatomical types of lesions, the age and sex incidence, the site and side of predilection, the common clinical features, the common investigations, treatment, and complications of the different anomalies. Setting. Academic Department of Otolaryngology, Head and Neck Surgery. Design. A 10 year retrospective study. Participants. 30 patients with clinically proven branchial anomalies including patients with bilateral disease totaling 34 lesions. Main Outcome Measures. The demographical data, clinical features, type of branchial anomalies, and the management details were recorded and analyzed. Results and Observations. The mean age of presentation was 18.67 years. Male to female sex ratio was 1.27 : 1 with a male preponderance. Of the 34 lesions, maximum incidence was of second arch anomalies (50%) followed by first arch. We had two cases each of third and fourth arch anomalies. Only 1 (3.3%) patients of the 30 presented with lesion at birth. The most common pathological type of lesions was fistula (58.82%) followed by cyst. 41.18% of the lesions occurred on the right side. All the patients underwent surgical excision. None of our patients had involvement of facial nerve in first branchial anomaly. All patients had tracts going superficial to the facial nerve. Conclusion. Confirming the extent of the tract is mandatory before any surgery as these lesions pass in relation to some of the most vital structures of the neck. Surgery should always be the treatment option. injection of dye, microscopic removal and inclusion of surrounding tissue while excising the tract leads to a decreased incidence of recurrence. PMID:24772172

  6. Branchial anomalies: diagnosis and management.

    PubMed

    Prasad, Sampath Chandra; Azeez, Arun; Thada, Nikhil Dinaker; Rao, Pallavi; Bacciu, Andrea; Prasad, Kishore Chandra

    2014-01-01

    Objective. To find out the incidence of involvement of individual arches, anatomical types of lesions, the age and sex incidence, the site and side of predilection, the common clinical features, the common investigations, treatment, and complications of the different anomalies. Setting. Academic Department of Otolaryngology, Head and Neck Surgery. Design. A 10 year retrospective study. Participants. 30 patients with clinically proven branchial anomalies including patients with bilateral disease totaling 34 lesions. Main Outcome Measures. The demographical data, clinical features, type of branchial anomalies, and the management details were recorded and analyzed. Results and Observations. The mean age of presentation was 18.67 years. Male to female sex ratio was 1.27 : 1 with a male preponderance. Of the 34 lesions, maximum incidence was of second arch anomalies (50%) followed by first arch. We had two cases each of third and fourth arch anomalies. Only 1 (3.3%) patients of the 30 presented with lesion at birth. The most common pathological type of lesions was fistula (58.82%) followed by cyst. 41.18% of the lesions occurred on the right side. All the patients underwent surgical excision. None of our patients had involvement of facial nerve in first branchial anomaly. All patients had tracts going superficial to the facial nerve. Conclusion. Confirming the extent of the tract is mandatory before any surgery as these lesions pass in relation to some of the most vital structures of the neck. Surgery should always be the treatment option. injection of dye, microscopic removal and inclusion of surrounding tissue while excising the tract leads to a decreased incidence of recurrence.

  7. Probing soil nitrogen transformations using triple nitrate isotopes

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Elliott, E. M.

    2017-12-01

    Models of soil nitrogen (N) transformations are essential for understanding biogeochemical N cycling and its environmental implications. While natural abundance stable N isotopes (δ15N) of the soil N pool are widely used to infer soil N dynamics, its quantitative use is limited by uncertainties in the relevant isotopic fractionations. Oxygen-17 isotope anomalies in nitrate (Δ17O-NO3-), originating from mass-independent fractionation during photochemical NO3- formation, are a conservative tracer of atmospherically deposited NO3- in terrestrial ecosystems. Therefore, measurement of soil Δ17O-NO3- may provide additional tracing power for δ15N-based process models, in that Δ17O-NO3- is not altered by mass-dependent isotopic fractionations. In this study, we conducted both laboratory and field experiments to assess the effectiveness of using triple NO3- isotopes (Δ17O, δ15N, δ18O) for modeling soil N transformations. Surface soil (0-7 cm) was sampled from an urban riparian area and temperate, upland forests in rural and urban settings for batch incubations and amendments with Δ17O-enriched NO3-. After amendment, the soils were extracted on six occasions over a 4-day period to measure concentrations and isotopic composition of NO3- and ammonium. A Δ17O-based numerical model was developed and used to derive gross N fluxes. In situ field soil and lysimeter sampling was also conducted at the rural forest site on five consecutive days immediately following snowmelt input of Δ17O-enriched NO3-. The results show that the temporal dynamics of Δ17O-NO3- can provide quantitative information on soil N turnover. In the laboratory incubations, modeled gross nitrification and denitrification rates were significantly higher for the urban forest and riparian soils, consistent with results from inhibitor-based potential measurements. Non-zero Δ17O-NO3- values, up to 4.3‰, were measured in the rural forest soil following the snowmelt event. A numerical model of the

  8. First Detection of Krypton and Xenon in a White Dwarf

    NASA Astrophysics Data System (ADS)

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-07-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 Kr VI- VII and Xe VI- VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 ± 0.5 and log Xe = -4.2 ± 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and that the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell flash or a binary white dwarf merger.

  9. First Detection of Krypton and Xenon in a White Dwarf

    NASA Technical Reports Server (NTRS)

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-01-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 KrVI-VII and Xe VI-VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 plus or minus 0.5 and log Xe = -4.2 plus or minus 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the-precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and thaI the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell nash or a binary white dwarf merger.

  10. A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula

    NASA Astrophysics Data System (ADS)

    Kööp, Levke; Davis, Andrew M.; Nakashima, Daisuke; Park, Changkun; Krot, Alexander N.; Nagashima, Kazuhide; Tenner, Travis J.; Heck, Philipp R.; Kita, Noriko T.

    2016-09-01

    PLACs (platy hibonite crystals) and related hibonite-rich calcium-, aluminum-rich inclusions (CAIs; hereafter collectively referred to as PLAC-like CAIs) have the largest nucleosynthetic isotope anomalies of all materials believed to have formed in the solar system. Most PLAC-like CAIs have low inferred initial 26Al/27Al ratios and could have formed prior to injection or widespread distribution of 26Al in the solar nebula. In this study, we report 26Al-26Mg systematics combined with oxygen, calcium, and titanium isotopic compositions for a large number of newly separated PLAC-like CAIs from the Murchison CM2 chondrite (32 CAIs studied for oxygen, 26 of these also for 26Al-26Mg, calcium and titanium). Our results confirm (1) the large range of nucleosynthetic anomalies in 50Ti and 48Ca (our data range from -70‰ to +170‰ and -60‰ to +80‰, respectively), (2) the substantial range of Δ17O values (-28‰ to -17‰, with Δ17O = δ17O - 0.52 × δ18O), and (3) general 26Al-depletion in PLAC-like CAIs. The multielement approach reveals a relationship between Δ17O and the degree of variability in 50Ti and 48Ca: PLAC-like CAIs with the highest Δ17O (∼-17‰) show large positive and negative 50Ti and 48Ca anomalies, while those with the lowest Δ17O (∼-28‰) have small to no anomalies in 50Ti and 48Ca. These observations could suggest a physical link between anomalous 48Ca and 50Ti carriers and an 16O-poor reservoir. We suggest that the solar nebula was isotopically heterogeneous shortly after collapse of the protosolar molecular cloud, and that the primordial dust reservoir, in which anomalous carrier phases were heterogeneously distributed, was 16O-poor (Δ17O ⩾ -17‰) relative to the primordial gaseous (CO + H2O) reservoir (Δ17O < -35‰). However, other models such as CO self-shielding in the protoplanetary disk are also considered to explain the link between oxygen and calcium and titanium isotopes in PLAC-like CAIs.

  11. Magnetosheath Flow Anomalies in 3-D

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Burch, J. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.; Waite, J. H., Jr.; Skalsky, A. A.; Borodkova, N. L.; Coffey, V. N.; Gallagher, D. L.; hide

    2000-01-01

    Measurements of the plasma and magnetic field with high temporal resolution on the Interball Tail probe reveal many flow anomalies in the magnetosheath. They are usually seen as flow direction and number density variations, accompanied by magnetic field discontinuities. Large flow anomalies with number density variations of factor of 2 or more and velocity variations of 100 km/s or more are seen with periodicity of about I per hour. The cases of flow anomalies following in succession are also observed, and suggest their decay while propagating through the magnetosheath. Some magnetospheric disturbances observed in the outer magnetosphere after the satellite has crossed the magnetopause on the inbound orbit suggest their association with magnetosheath flow anomalies observed in the magnetosheath prior to magnetopause crossing.

  12. Gravity and geoid anomalies of the Philippine Sea: Evidence on the depth of compensation for the negative residual water depth anomaly

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1982-01-01

    A negative free-air gravity anomaly which occurs in the central part of the Philippine Sea was examined to determine the distribution and nature of possible regional mass excesses or deficiencies. Geoid anomalies from GEOS-3 observation were positive. A negative residual geoid anomaly consistent with the area of negative free-air gravity anomalies were found. Theoretical gravity-topography and geoid-topography admittance functions indicated that high density mantle at about 60 km dept could account for the magnitudes of the gravity and residual geoid anomaly and the 1 km residual water depth anomaly in the Philippine Sea. The negative residual depth anomaly may be compensated for by excess density in the uppermost mantle, but the residual geoid and regional free-air gravity anomalies and a slow surface wave velocity structure might result from low-density warm upper mantle material lying beneath the zone of high-density uppermost mantle. From a horizontal disk approximation, the depth of the low-density warm mantle was estimated to be on the order of 200 km.

  13. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    DOE PAGES

    Jennings, Christopher A.; Ampleford, David J.; Lamppa, Derek C.; ...

    2015-05-18

    Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiativemore » output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.« less

  14. Energy transfer studies in krypton-xenon mixtures excited in a cooled DC discharge

    NASA Astrophysics Data System (ADS)

    Krylov, B.; Gerasimov, G.; Morozov, A.; Arnesen, A.; Hallin, R.; Heijkenskjold, F.

    2000-01-01

    The VUV spectrum of gaseous mixtures of krypton with a small amount of xenon added was investigated in the range 115-200 nm. The mixtures were excited in a capillary DC discharge where the capillary could be cooled by using liquid nitrogen. The mixed molecule band around the Xe I resonance line at λ = 147 nm and the mixed molecule continuum to the long wavelength side from the line were analysed. The band around λ = 147 nm was identified as transitions between a weakly bound excited state and the weakly bound ground state of XeKr molecules. When cooling the capillary wall, the appearance of the Xe2 continuum was observed. The effect is ascribed to energy transfer between molecular states as a consequence of radiation trapping in the band around λ = 147 nm. The role of the mixed molecule in the formation of the VUV spectrum of the gas mixture is discussed and underlined.

  15. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field.

    PubMed

    Christiansen, Peter; Nielsen, Lars N; Steen, Kim A; Jørgensen, Rasmus N; Karstoft, Henrik

    2016-11-11

    Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45-90 m) than RCNN. RCNN has a similar performance at a short range (0-30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit).

  16. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field

    PubMed Central

    Christiansen, Peter; Nielsen, Lars N.; Steen, Kim A.; Jørgensen, Rasmus N.; Karstoft, Henrik

    2016-01-01

    Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45–90 m) than RCNN. RCNN has a similar performance at a short range (0–30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit). PMID:27845717

  17. The hydrogen anomaly problem in neutron Compton scattering

    NASA Astrophysics Data System (ADS)

    Karlsson, Erik B.

    2018-03-01

    Neutron Compton scattering (also called ‘deep inelastic scattering of neutrons’, DINS) is a method used to study momentum distributions of light atoms in solids and liquids. It has been employed extensively since the start-up of intense pulsed neutron sources about 25 years ago. The information lies primarily in the width and shape of the Compton profile and not in the absolute intensity of the Compton peaks. It was therefore not immediately recognized that the relative intensities of Compton peaks arising from scattering on different isotopes did not always agree with values expected from standard neutron cross-section tables. The discrepancies were particularly large for scattering on protons, a phenomenon that became known as ‘the hydrogen anomaly problem’. The present paper is a review of the discovery, experimental tests to prove or disprove the existence of the hydrogen anomaly and discussions concerning its origin. It covers a twenty-year-long history of experimentation, theoretical treatments and discussions. The problem is of fundamental interest, since it involves quantum phenomena on the subfemtosecond time scale, which are not visible in conventional thermal neutron scattering but are important in Compton scattering where neutrons have two orders of magnitude times higher energy. Different H-containing systems show different cross-section deficiencies and when the scattering processes are followed on the femtosecond time scale the cross-section losses disappear on different characteristic time scales for each H-environment. The last section of this review reproduces results from published papers based on quantum interference in scattering on identical particles (proton or deuteron pairs or clusters), which have given a quantitative theoretical explanation both regarding the H-cross-section reduction and its time dependence. Some new explanations are added and the concluding chapter summarizes the conditions for observing the specific quantum

  18. Thermal Infrared Anomalies of Several Strong Earthquakes

    PubMed Central

    Wei, Congxin; Guo, Xiao; Qin, Manzhong

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of “time-frequency relative power spectrum.” (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting. PMID:24222728

  19. Thermal infrared anomalies of several strong earthquakes.

    PubMed

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  20. Euro-African MAGSAT anomaly-tectonic observations

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Olivier, R.; Vonfrese, R. R. B.

    1985-01-01

    Preliminary satellite (MAGSAT) scalar magnetic anomaly data are compiled and differentially reduced to radial polarization by equivalent point source inversion for comparison with tectonic data of Africa, Europe and adjacent marine areas. A number of associations are evident to constrain analyses of the tectonic features and history of the region. The Precambrian shields of Africa and Europe exhibit varied magnetic signatures. All shields are not magnetic highs and, in fact, the Baltic shield is a marked minimum. The reduced-to-the-pole magnetic map shows a marked tendency for northeasterly striking anomalies in the eastern Atlantic and adjacent Africa, which is coincident to the track of several hot spots for the past 100 million years. However, there is little consistency in the sign of the magnetic anomalies and the track of the hot spots. Comparison of the radially polarized anomalies of Africa and Europe with other reduced-to-the-pole magnetic satellite anomaly maps of the Western Hemisphere support the reconstruction of the continents prior to the origin of the present-day Atlantic Ocean in the Mesozoic Era.

  1. Euro-african MAGSAT Anomaly-tectonic Observations

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator); Olivier, R.

    1984-01-01

    Preliminary satellite (MAGSAT) scalar magnetic anomaly data are compiled and differentially reduced to radial polarization by equivalent point source inversion for comparison with tectonic data of Africa, Europe and adjacent marine areas. A number of associations are evident to constrain analyses of the tectonic features and history of the region. The Precambrian shields of Africa and Europe exhibit varied magnetic signatures. All shields are not magnetic highs and, in fact, the Baltic shield is a marked minimum. The reduced-to-the-pole magnetic map shows a marked tendency for northeasterly striking anomalies in the eastern Atlantic and adjacent Africa, which is coincident to the track of several hot spots for the past 100 million years. However, there is little consistency in the sign of the magnetic anomalies and the track of the hot spots. Comparison of the radially polarized anomalies of Africa and Europe with other reduced-to-the-pole magnetic satellite anomaly maps of the Western Hemisphere support the reconstruction of the continents prior to the origin of the present-day Atlantic Ocean in the Mesozoic Era.

  2. Coronary artery anomalies in Turner Syndrome.

    PubMed

    Viuff, Mette H; Trolle, Christian; Wen, Jan; Jensen, Jesper M; Nørgaard, Bjarne L; Gutmark, Ephraim J; Gutmark-Little, Iris; Mortensen, Kristian H; Gravholt, Claus Højbjerg; Andersen, Niels H

    Congenital heart disease, primarily involving the left-sided structures, is often seen in patients with Turner Syndrome. Moreover, a few case reports have indicated that coronary anomalies may be more prevalent in Turner Syndrome than in the normal population. We therefore set out to systematically investigate coronary arterial anatomy by computed tomographic coronary angiography (coronary CTA) in Turner Syndrome patients. Fifty consecutive women with Turner Syndrome (mean age 47 years [17-71]) underwent coronary CTA. Patients were compared with 25 gender-matched controls. Coronary anomaly was more frequent in patients with Turner Syndrome than in healthy controls [20% vs. 4% (p = 0.043)]. Nine out of ten abnormal cases had an anomalous left coronary artery anatomy (absent left main trunk, n = 7; circumflex artery originating from the right aortic sinus, n = 2). One case had a tubular origin of the right coronary artery above the aortic sinus. There was no correlation between the presence of coronary arterial anomalies and karyotype, bicuspid aortic valve, or other congenital heart defects. Coronary anomalies are highly prevalent in Turner Syndrome. The left coronary artery is predominantly affected, with an absent left main coronary artery being the most common anomaly. No hemodynamically relevant coronary anomalies were found. Copyright © 2016 Society of Cardiovascular Computed Tomography. All rights reserved.

  3. Elemental abundance anomalies in the late Cenomanian extinction interval: a search for the source(s)

    USGS Publications Warehouse

    Orth, C.J.; Attrep, M.; Quintana, L.R.; Elder, W.P.; Kauffman, E.G.; Diner, R.; Villamil, T.

    1993-01-01

    Elemental abundances have been measured by neutron activation methods across the Cenomanian-Turonian (late Cretaceous) extinction interval in samples collected from sixteen sites in the Western Interior Basin of North America and from twelve widely separated locations around the globe, including six ODP/DSDP sites. In most Western Interior Basin sites, in Colombia, and in western Europe (weaker), two closely spaced elemental abundance peaks occur in the upper Cenomanian (??? 92 m.y.), spanning the ammonite zones of Sciponoceras gracile through Neocardioceras juddii. Elements with anomalously high concentrations include Sc, Ti, V, Cr, Mn, Co, Ni, Ir, Pt and Au. The lower peak coincides with the disappearance (extinction) of the foraminifer Rotalipora cushmani. In North American sections R. greenhornensis also disappears at or just below this horizon, but in Europe it disappears considerably earlier than R. cushmani. A series of molluscan extinction and speciation or migration events also begins near the stratigraphic level of the lower elemental abundance peak. The well-documented positive ?? 13C excursion begins just before the extinctions and the elemental anomalies, and continues into the lower Turonian, well above the upper anomaly. This carbon isotope excursion has been observed in East European sections where we find little or no evidence of the elemental anomalies, suggesting that the two phenomena may not be tightly coupled. Elemental abundance ratios in the anomalies closely resemble those of Mid-Atlantic Ridge basalt or Hawaiian lava (tholeiitic), but not those of C1 chondrite, black shale, average crustal rocks, or lamproite and kimberlite of roughly similar age in southeastern Kansas. The excess Ir and other siderophiles hint at possible large-body impact(s) for the source. However, we have not located microspherules (other than biogenic calcispheres) or shocked mineral grains in any of our samples. Furthermore, Sc, Ti, V and Mn are not enriched in

  4. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, I.; Quevedo, H. J.; Feldman, S.

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental datamore » characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.« less

  5. Coexistence of bilateral first and second branchial arch anomalies

    PubMed Central

    Thakur, J S; Shekar, Vidya; Saluja, Manika; Mohindroo, N K

    2013-01-01

    Branchial arch anomalies are one of the most common congenital anomalies that are usually unilateral and bilateral presentation is rare. The simultaneous presence of bilateral second branchial arch anomalies along with bilateral first arch anomalies is extremely rare, with only three such cases reported in the literature. We present two non-syndromic cases of coexisting bilateral first and second arch anomalies. Developmental anomalies of the branchial apparatus account for 17% of all paediatric cervical masses and are the most common type of congenital cervical mass. They usually present in the paediatric age group. About 96–97% of these anomalies are unilateral. Bilateral presentation is seen in 2–3% having a strong familial association. Congenital syndromes also have been associated with first and second branchial arch anomalies. Thorough clinical examination and investigations should be done to rule out these syndromes. PMID:23580675

  6. Negative gravity anomalies on the moon

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1975-01-01

    Two kinds of negative gravity anomalies on the moon are distinguished - those which show a correspondence to lunar topography and those which appear to be unrelated to surface topography. The former appear to be due to mass deficiencies caused by the cratering process, in large part probably by ejection of material from the crater. Anomalies on the far side which do not correspond to topography are thought to have resulted from irregularities in the thickness of the lunar crust. Localized large negative anomalies adjacent to mascons are considered. Although structures on the moon having a half-wavelength of 800 km or less and large negative or positive gravity anomalies are not in isostatic equilibrium, many of these features have mass loadings of about 1000 kg/sq cm which can be statically sustained on the moon.

  7. Regional magnetic anomaly constraints on continental rifting

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  8. Osmium-Iridium Correlation and Osmium Isotopic Composition in Some Geological Boundaries and Meteorites

    NASA Astrophysics Data System (ADS)

    Liu, Y. Z.; Wang, J. X.; Mao, X. Y.; Chai, C. F.

    1992-07-01

    Since the pioneering study of Alvarez et al. on K/T boundary event, Ir has long been considered to be the main indicator of extraterrestrial materials in boundaries, while little work about Os and its isotopic composition have been done. In this work a sophisticated radiochemical separation procedure together with neutron activation analsis (NAA) method was established for the determination of Os in some geological boundaries (P epsilon/epsilon, K/T, D/C, O/S, P/T). Combined with our early work--determination of Ir abundances [1], the sources of boundary events were deciphered by using the Os/Ir ratios. Simultaneously ^184Os/^190Os ratios in K/T boundaries, as well as inclusions of Allende chondrite and acid-insoluble residues of iron meteorites (Nandan, Jianshi, Longchang) were determined to search for the Os isotopic composition anomalies resulted from the extrasolar components by RNAA. The results show that the Os abundances exhibit a positive correlation with the Ir abundances for overall K/T boundary samples, but only the Os/Ir ratios of K/T boundaries, with the average of 0.98 +- 0.55, are in excellent agreement with 1.01 of the solar system [2], Accordingly, it provides new evidence for an extraterrestrial source of the K/T event. The results of ^184Os/^190Os ratios, with uncertainties of less than 1%, indicate there is no remarkable ^184Os/^190Os ratio anomaly in the K/T boundary samples, which implies the impacting matter may be from the solar system not the extrasolar, while no anomaly exists in the inclusions of Allende chondrite and acid-insoluble residues of iron meteorites, which disagree with the results obtained by Goel [3]. REFERENCES [1] Chai Chifang (1988) Isotopenpraxis 24, pp. 257-272. [2] Anders E. and Grevesse N. (l989) Geochim. Cosmochim. Acta 53, 197-214. [3] Goel P.S.(1987) Proc. Indian Acad. Sci. (Earth Planet. Sci), 96, pp. 81-102.

  9. Recycling and Mantle Stirring Determined by 142Nd/144Nd Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    Jacobsen, S. B.; Ranen, M. C.

    2004-12-01

    It is now well established that 146Sm was live in the early solar system with an initial uniform 146Sm/144Sm ratio of ~0.008. Harper and Jacobsen (1992) discovered that a sample from Isua (~3.8 Ga old) had a positive 142Nd/144Nd anomaly of 33 ppm when compared to normal terrestrial and chondritic Nd. Furthermore, Jacobsen and Harper (1996) reported results from other Isua as well as Acasta (~4 Ga old) samples. Three other Isua samples had a possible small range (about -15 to +15), while two Acasta samples had no anomalies (normal to within 5 ppm). The presence of 142Nd anomalies at Isua has recently been confirmed by two other groups (Boyet et al. 2003; Caro et al. 2003). The available data demonstrate both the existence of early depleted mantle and that the early mantle was isotopically heterogeneous. As discussed by Jacobsen and Harper (1996), the recycling rate can be determined by tracing the decay of the average 142Nd/144Nd value of the depleted mantle. In addition, by using the 142Nd/144Nd heterogeneity in the depleted mantle through time we can determine the stirring rate of the mantle (Kellogg, Jacobsen and O'Connell, 2002) as a function of time. For this project our goal is to obtain a resolution in 142Nd/144Nd measurements of ~1 ppm. We have thus compared results obtained for the Nd isotope composition and 142Nd enriched standards for three different TIMS instruments: The Finnigan MAT 262 at Harvard, the Isoprobe-T and Finnigan TRITON mass spectrometers in GV Instrument's and Thermo Electron's demo laboratories in Manchester and Bremen, respectively. The Finnigan TRITON was designed in response to a request from the senior author for such an instrument. The results obtained so far demonstrate that all three instruments yield the same 142Nd/144Nd, 143Nd/144Nd and 145Nd/144Nd isotopic ratios to within a few ppm, while 148Nd/144Nd and 150Nd/144Nd ratios agree to within 10-20 ppm, when all ratios are normalized to 146Nd/144Nd using the exponential law. Due to

  10. Isotope effects in photo dissociation of ozone with visible light

    NASA Astrophysics Data System (ADS)

    Früchtl, Marion; Janssen, Christof; Röckmann, Thomas

    2014-05-01

    Ozone (O3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O3 has a very peculiar isotope composition. Following the mass dependent fractionation equation δ17O = 0.52 * δ18O, most fractionation processes depend directly on mass. However, O3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O3 formation reaction. To what degree O3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O3 is still not fully understood and an open question within scientific community. We set up new experiments to investigate the isotope effect resulting from photo dissociation of O3 in the Chappuis band (R1). Initial O3 is produced by an electric discharge. After photolysis O3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O3 is then converted to O2 in order to measure the oxygen isotopes of O3 using isotope ratio mass spectrometry. To isolate O3 photo dissociation (R1) from O3 decomposition (R2) and secondary O3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the O + O3 reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling. (R1) O3 + hυ → O (3P) + O2 (R2) O3 + O (3P) → 2 O2 (R3) O + O2 + M → O3 + M (R4) O (3P) + CO + M → CO2 + M

  11. Experimental Anomalies in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Palamara, Ornella

    2014-03-01

    In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.

  12. Neodymium isotope heterogeneity of ordinary and carbonaceous chondrites and the origin of non-chondritic 142Nd compositions in the Earth

    NASA Astrophysics Data System (ADS)

    Fukai, Ryota; Yokoyama, Tetsuya

    2017-09-01

    We present high-precision Nd isotope compositions for ordinary and carbonaceous chondrites determined using thermal ionization mass spectrometry with dynamic and multistatic methods. The ordinary chondrites had uniform and non-terrestrial μ142 Nd , μ148 Nd , and μ150 Nd values, with data that plot along the mixing line between s-process and terrestrial components in μ150 Nd versus μ148 Nd and μ142 Nd versus μ148,150Nd diagrams. In contrast, the carbonaceous chondrites were characterized by larger anomalies in their μ142 Nd , μ148 Nd , and μ150 Nd values compared to ordinary chondrites. Importantly, the data for carbonaceous chondrites plot along the s-process and terrestrial mixing line in a μ150 Nd versus μ148 Nd diagram, whereas they have systematically lower μ142 Nd values than the s-process and terrestrial mixing line in μ142 Nd versus μ148,150Nd diagrams. This shift likely results from the incorporation of calcium- and aluminum-rich inclusions (CAIs), indicating that the Nd isotopic variability in the ordinary chondrites and CAI-free carbonaceous chondrites was caused solely by the heterogeneous distribution of s-process nuclides. The isotopic variation most likely results from nebular thermal processing that caused selective destruction of s-process-depleted (or r-process-enriched) dust grains in the inner Solar System where the parent bodies of ordinary chondrites formed, whereas such grains were preserved in the region of carbonaceous chondrite parent body formation. The Nd isotope dichotomy between ordinary and bulk aliquots of carbonaceous chondrites can be related to the presence of Jupiter, which may have separated two isotopically distinct reservoirs that were present in the solar nebula. After correcting for s-process anomalies and CAI contributions to the Nd isotopes observed in the chondrites, we obtained a μ142 Nd value (- 2.4 ± 4.8 ppm) that was indistinguishable from the terrestrial value. Our results corroborate the

  13. Multiple stable oxygen isotopic studies of atmospheric sulfate: A new quantitative way to understand sulfate formation processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Charles Chi-Woo

    2000-11-01

    )Atmospheric (aerosol and rainwater) sulfate has a mass independent oxygen isotopic composition; (2)Aqueous phase S(IV) oxidation by atmospheric ozone and hydrogen peroxide are the source of the mass independent anomaly in atmospheric sulfate; (3)The mass independent oxygen isotopic anomaly appears to enhance with increasing altitude, suggesting a stratospheric contribution; (4)Primary sulfate from biomass burning has a mass dependent oxygen isotopic composition.

  14. Preliminary aeromagnetic anomaly map of California

    USGS Publications Warehouse

    Roberts, Carter W.; Jachens, Rober C.

    1999-01-01

    The magnetization in crustal rocks is the vector sum of induced in minerals by the Earth’s present main field and the remanent magnetization of minerals susceptible to magnetization (chiefly magnetite) (Blakely, 1995). The direction of remanent magnetization acquired during the rock’s history can be highly variable. Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). The magnetic anomaly map (fig. 2) provides a synoptic view of major anomalies and contributes to our understanding of the tectonic development of California. Reference fields, that approximate the Earth’s main (core) field, have been subtracted from the recorded magnetic data. The resulting map of the total magnetic anomalies exhibits anomaly patterns related to the distribution of magnetized crustal rocks at depths shallower than the Curie point isotherm (the surface within the Earth beneath which temperatures are so high that rocks lose their magnetic properties). The magnetic anomaly map has been compiled from existing digital data. Data obtained from aeromagnetic surveys that were made at different times, spacings and elevations, were merged by analytical continuation of each set onto a common surface 305 m (1000 ft) above terrain. Digital data in this compatible form allows application of analytical techniques (Blakley, 1995) that can be used to enhance anomaly characteristics (e.g., wavelength and trends) and provide new interpretive information.

  15. DSCS II. Battery Anomaly Investigation Satellites 9437 and 9438.

    DTIC Science & Technology

    1980-04-25

    Chronology Prior to Identifying the Anomaly 2-1 3 . ANOMALY OBSERVATIONS 3 -1 3.1 Satellite 9437 3 -1 3.1.1 State of the Batteries Prior to the Anomaly...Observation 3 -1 3.1.2 Anomalous Behavior 3 -1 3.2 Satellite 9438 3 -6 3.2.1 State of the Batteries Prior to the Anomaly Observation 3 -6 3.2.2 Anomalous...Behavior 3 -6 4. ANOMALY INVESTIGATIONS 4-1 4.1 Scope 4-1 4.2 Postulated Causes of the Anomaly 4-1 4.3 Cell Short Circuits 4-2 4.3.1 Evidence in Support of

  16. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies

    PubMed Central

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years. PMID:28178351

  17. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    PubMed

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  18. Quantum anomalies in nodal line semimetals

    NASA Astrophysics Data System (ADS)

    Burkov, A. A.

    2018-04-01

    Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure topology. Their unusual observable properties may often be understood in terms of quantum anomalies. In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly, which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals, namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding anomalous response.

  19. [Prevalence of selected congenital anomalies in the Czech Republic: congenital anomalies of the central nervous system and gastrointestinal tract].

    PubMed

    Šípek, A; Gregor, V; Horáček, J; Šípek, A; Klaschka, J; Malý, M

    2015-03-01

    Analysis of the prevalence of selected congenital anomalies in the Czech Republic in 1994-2009. Retrospective epidemiological analysis of the postnatal and overall (including prenatally diagnosed cases) prevalence of congenital anomalies from the database of the National Registry of Congenital Anomalies of the Czech Republic. Data from the National Registry of Congenital Anomalies (NRCA) maintained by the Institute of Health Information and Statistics of the Czech Republic (IHIS CR) were used. The analysis was carried out for the entire Czech Republic, based on the data from 1994 to 2009. Additional data on prenatally diagnosed anomalies were obtained from medical genetics centres and laboratories in the Czech Republic. This study analyzed the postnatal and overall (including prenatally diagnosed cases) prevalence of congenital anomalies. More detailed analysis was carried out for the following diagnoses: anencephaly, spina bifida, encephalocoele, congenital hydrocephalus, omphalocoele, gastroschisis, oesophageal atresia and stenosis, anorectal anomalies, and diaphragmatic hernia. Prevalence trends were analysed using Poisson regression. In 2009, a total of 118 348 live births were recorded in the Czech Republic, 60 368 boys and 57 980 girls. Of this total, 4 653, i.e. 2 745 boys and 1 908 girls, were diagnosed with congenital anomalies. In 2007-2009, the total of life births with congenital anomalies ranged between 4.6 and 4.8 thousand per year. The respective ranges in this three-year period were in the order of 2.7 and 2.8 thousand per year for boys and 1.9 thousand per year for girls. The prevalence of postnatally diagnosed anencephaly was minimal, as most cases were diagnosed prenatally, and the data did not vary significantly. The prevalence of postnatally diagnosed cases remained at the same level. The effectiveness of the prenatal diagnosis of spina bifida increased and thus the prevalence of postnatally diagnosed cases decreased. The prevalence of

  20. Ion current as a precise measure of the loading rate of a magneto-optical trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, W.; Bailey, K.; Lu, Z. -T.

    2014-01-01

    We have demonstrated that the ion current resulting from collisions between metastable krypton atoms in a magneto-optical trap can be used to precisely measure the trap loading rate. We measured both the ion current of the abundant isotope Kr-83 (isotopic abundance = 11%) and the single-atom counting rate of the rare isotope Kr-85 (isotopic abundance similar to 1 x 10(-11)), and found the two quantities to be proportional at a precision level of 0.9%. This work results in a significant improvement in using the magneto-optical trap as an analytical tool for noble-gas isotope ratio measurements, and will benefit both atomicmore » physics studies and applications in the earth sciences. (C) 2014 Optical Society of America« less

  1. Closed system oxygen isotope redistribution in igneous CAIs upon spinel dissolution

    NASA Astrophysics Data System (ADS)

    Aléon, Jérôme

    2018-01-01

    In several Calcium-Aluminum-rich Inclusions (CAIs) from the CV3 chondrites Allende and Efremovka, representative of the most common igneous CAI types (type A, type B and Fractionated with Unknown Nuclear isotopic anomalies, FUN), the relationship between 16O-excesses and TiO2 content in pyroxene indicates that the latter commonly begins to crystallize with a near-terrestrial 16O-poor composition and becomes 16O-enriched during crystallization, reaching a near-solar composition. Mass balance calculations were performed to investigate the contribution of spinel to this 16O-enrichment. It is found that a back-reaction of early-crystallized 16O-rich spinel with a silicate partial melt having undergone a 16O-depletion is consistent with the O isotopic evolution of CAI minerals during magmatic crystallization. Dissolution of spinel explains the O isotopic composition (16O-excess and extent of mass fractionation) of pyroxene as well as that of primary anorthite/dmisteinbergite and possibly that of the last melilite crystallizing immediately before pyroxene. It requires that igneous CAIs behaved as closed-systems relative to oxygen from nebular gas during a significant fraction of their cooling history, contrary to the common assumption that CAI partial melts constantly equilibrated with gas. The mineralogical control on O isotopes in igneous CAIs is thus simply explained by a single 16O-depletion during magmatic crystallization. This 16O-depletion occurred in an early stage of the thermal history, after the crystallization of spinel, i.e. in the temperature range for melilite crystallization/partial melting and did not require multiple, complex or late isotope exchange. More experimental work is however required to deduce the protoplanetary disk conditions associated with this 16O-depletion.

  2. The Ellsworth terrane, coastal Maine: Geochronology, geochemistry, and Nd-Pb isotopic composition - Implications for the rifting of Ganderia

    USGS Publications Warehouse

    Schulz, K.J.; Stewart, D.B.; Tucker, R.D.; Pollock, J.C.; Ayuso, R.A.

    2008-01-01

    The Ellsworth terrane is one of a number of fault-bounded blocks that occur along the eastern margin of Ganderia, the western-most of the peri-Gondwanan domains in the northern Appalachians that were accreted to Laurentia in the Paleozoic. Geologic relations, detrital zircon ages, and basalt geochemistry suggest that the Ellsworth terrane is part of Ganderia and not an exotic terrane. In the Penobscot Bay area of coastal Maine, the Ellsworth terrane is dominantly composed of bimodal basalt-rhyolite volcanic sequences of the Ellsworth Schist and unconformably overlying Castine Volcanics. We use new U-Pb zircon geochronology, geochemistry, and Nd and Pb isotopes for these volcanic sequences to constrain the petrogenetic history and paleotectonic setting of the Ellsworth terrane and its relationship with Ganderia. U-Pb zircon geochronology for rhyolites indicates that both the Ellsworth Schist (508.6 ?? 0.8 Ma) and overlying Castine Volcanics (503.5 ?? 2.5 Ma) are Middle Cambrian in age. Two tholefitic basalt types are recognized. Type Tb-1 basalt, present as pillowed and massive lava flows and as sills in both units, has depleted La and Ce ([La/Nd]N = 0.53-0.87) values, flat heavy rare earth element (REE) values, and no positive Th or negative Ta anomalies on primitive mantle-normalized diagrams. In contrast, type Th-2 basalt, present only in the Castine Volcanics, has stightly enriched LREE ([La/Yb]N = 1.42-2.92) values and no Th or Th anomalies. Both basalt types have strongly positive ??Nd (500) values (Th-1 = +7.9-+8.6; Th-2 = +5.6-+7.0) and relatively enriched Pb isotopic compositions (206Ph/204Pb = 18.037-19.784; 207/204Pb = 15.531-15.660; 2088Pb/204Pb = 37.810-38.817). The basalts have compositions transitional between recent normal and enriched mid-ocean-ridge basalt, and they were probably derived by partial melting of compositionatly heterogeneous asthenosphenc mantle. Two types of rhyolite also are present. Type R-1 rhyolite, which mostly occurs as tuffs

  3. Mass Independent Fractionation of Cadmium Isotopes During Thermal Ionization

    NASA Astrophysics Data System (ADS)

    Abouchami, W.; Galer, S. J.; Feldmann, H.; Schmitt, A. D.

    2008-12-01

    We have previously reported that Cd isotopes exhibit anomalous, non-mass dependent fractionation of odd versus even isotopes when measured by TIMS using silica gel-phosphoric acid activator. The deviation from mass dependent fractionation (MDF) on the odd masses 111 and 113 varies by fractions of a per-cent between runs. The effects cannot be explained by isobaric interferences, but seem, instead, to reflect mass independent fractionation (MIF) of Cd isotopes, much like that recently documented for Hg isotopes in natural systems (Bergquist and Blum, 2007). The absence of comparable Cd isotope anomalies in the ICP torch, and during extreme in-vacuo volatilization of Cd metal (Wombacher et al., 2004) conclusively implicates the silica gel activator in the process. So far, MIF has been documented for Cd, Zn and Pb isotopes when measured using the silica gel technique (Thirlwall, 2000; Schmitt et al., 2006; Manhes and Göpel, 2007). These MIF effects on Cd isotopes might perhaps be related to the non-mass dependence of nuclear volume with mass number, as described by Bigeleisen (1996) - also known as the "nuclear field shift". The MIF caused by the nuclear field shift results is a departure from MDF broadly characterized by a odd-even staggering with mass number. These effects have been quantified by Schauble (2007) who showed that the magnitude of the non-mass dependence for Hg and Tl isotopes lies in the ppm range for some simple reactions. Such MIF effects would appear, overall, far too small to account for our data, which require MIF offsets on the odd masses 111 and 113 approaching a per-cent. Moreover, an in-depth examination along the lines of Fujii et al. (2006) predicts tell-tale offsets for the even-even isotope pairs 114Cd/112Cd and 116Cd/112Cd as well, based upon the theory and the respective nuclear radii, but such accompanying offsets are unequivocally absent in our data. The odd-even isotope effects seen in our runs using silica gel activator are better

  4. Near-threshold electron-impact doubly differential cross sections for the ionization of argon and krypton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Brent R.; Khakoo, Murtadha A.

    2011-04-15

    We present normalized doubly differential cross sections (DDCS's) for the near-threshold, electron-impact single ionization of argon and krypton, similar to those taken earlier for Ne and Xe [Yates et al., J. Phys. B 42, 095206 (2009)]. The Ar measurements were taken at incident energies of 17, 18, 20, and 30 eV while the Kr measurements were taken at 15, 16, 17.5, and 20 eV. The DDCS scattering angles range from 15 deg. to 120 deg. The differential data are initially normalized to available experimental cross sections for excitation of the ground np{sup 6} to the np{sup 5}(n+1)s excited states ofmore » the noble gas and, after integration, to well-established experimental total ionization cross sections of Rapp and Englander-Golden [J. Chem. Phys. 43, 1464 (1965)].« less

  5. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture

    NASA Astrophysics Data System (ADS)

    Miller, Nicholas A. T.; Daivis, Peter J.; Snook, Ian K.; Todd, B. D.

    2013-10-01

    Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures.

  6. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    PubMed

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions. This journal is © the Owner Societies 2011

  7. Distribution, Management Difficulty and Outcome of Branchial Anomalies.

    PubMed

    Sattar, M A; Sultana, M T; Ahmed, S

    2018-01-01

    Branchial arch anomalies are one of the most common congenital anomalies of the neck. Developmental anomalies of the branchial apparatus account for 17% of all pediatric cervical masses. This study aimed to focus on proper diagnosis of branchial anomaly and describe occurrence, presentation, management and outcome of usual and unusual types. This ten-year prospective observational study was conducted from November 2005 to November 2015 including 2-year postoperative follow-up of the patients in Department of ENT, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh. Total 89 patients were enrolled for this study. Information was recorded on Clinical examination, relevant investigation, Per-operative findings and Histo-pathological findings. After receiving Histo-pathological findings 61 cases were proved as branchial arch anomalies. Ultrasonography and Histopathology was done for every patient. Fistulogram and sinogram was done for patient of fistula and sinus respectively. CT scan was needed for 9 patients, MRI for 3 patients and 12 patient undergone FNAC. Outcomes of those patients were described in terms of Hospital stay, Complications and Follow up studies. Data analysis was done by Standard Statistical Method.Presentation of a number of participant's mimics Branchial arch anomalies; 4.91% was syndromal. Second branchial arch anomalies were the highest. Management was exclusively surgical. Recurrence rate was about 6.56%. Surgery is the tool for diagnosis, treatment, preventing complications, avoiding carcinoma for branchial arch anomalies.

  8. The subcontinental mantle beneath southern New Zealand, characterised by helium isotopes in intraplate basalts and gas-rich springs

    NASA Astrophysics Data System (ADS)

    Hoke, L.; Poreda, R.; Reay, A.; Weaver, S. D.

    2000-07-01

    New helium isotope data measured in Cenozoic intraplate basalts and their mantle xenoliths are compared with present-day mantle helium emission on a regional scale from thermal and nonthermal gas discharges on the South Island of New Zealand and the offshore Chatham Islands. Cenozoic intraplate basaltic volcanism in southern New Zealand has ocean island basalt affinities but is restricted to continental areas and absent from adjacent Pacific oceanic crust. Its distribution is diffuse and widespread, it is of intermittent timing and characterised by low magma volumes. Most of the 3He/ 4He ratios measured in fluid inclusions in mantle xenocrysts and basalt phenocrysts such as olivine, garnet, and amphibole fall within the narrow range of 8.5 ± 1.5 Ra (Ra is the atmospheric 3He/ 4He ratio) with a maximum value of 11.5 Ra. This range is characteristic of the relatively homogeneous and degassed upper MORB-mantle helium reservoir. No helium isotope ratios typical of the lower less degassed mantle (>12 Ra), such as exemplified by the modern hot-spot region of Hawaii (with up to 32 Ra) were measured. Helium isotope ratios of less than 8 Ra are interpreted in terms of dilution of upper mantle helium with a radiogenic component, due to either age of crystallisation or small-scale mantle heterogeneities caused by mixing of crustal material into the upper mantle. The crude correlation between age of samples and helium isotopes with generally lower R/Ra values in mantle xenoliths compared with host rock phenocrysts and the in general depleted Nd and Sr isotope ratios and the light rare earth element enrichment of the basalts supports derivation of melts as small melt fractions from a depleted upper mantle, with posteruptive ingrowth of radiogenic helium as a function of lithospheric age. In comparison, the regional helium isotope survey of thermal and nonthermal gas discharges of the South Island of New Zealand shows that mantle 3He anomalies in general do not show an obvious

  9. Global magnetic anomaly and aurora of Neptune

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F.

    1990-01-01

    The large offset and tilt of Neptune's dipole magnetic field combine to create a global magnetic anomaly, analogous to but much more important than earth's South Atlantic Anomaly. Energetic particle precipitation loss within the Neptune anomaly creates 'atmospheric drift shadows' within which particle fluxes are greatly reduced. The energetic particle dropout observed by Voyager near closest approach occurred near the predicted times when Voyager passed within the atmospheric drift shadow. Extremely soft, structured bursts of ions and electrons within the drift shadow may result from plasma wave-induced pitch angle scattering of trapped particles confined near the magnetic equator. The dropout does not necessarily imply that Voyager passed through an earth-like discrete auroral zone, as earlier reported. The ion and electron fluxes observed within the dropout period correspond to particles that must precipitate to Neptune's atmosphere within the anomaly region. This anomaly precipitation can account for a major portion of the ultraviolet emissions previously identified as Neptune aurora.

  10. DOWN'S ANOMALY.

    ERIC Educational Resources Information Center

    PENROSE, L.S.; SMITH, G.F.

    BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…

  11. Warm Anomaly Effects on California Current Phytoplankton

    NASA Astrophysics Data System (ADS)

    Gomez Ocampo, E.; Gaxiola-Castro, G.; Beier, E.; Durazo, R.

    2016-02-01

    Positive temperature anomalies were reported in the NE Pacific Ocean since the boreal winter of 2013-2014. Previous studies showed that these anomalies were caused by lower than normal rates of heat loss from the ocean to the atmosphere and by relatively weak cold water advection to the upper ocean. Anomalous Sea Surface Temperature (SST), Absolute Dynamic Topography (ADT), and Chlorophyll (CHL) obtained from monthly remote sensing data were registered in the California Current region during August 2014. Anomalies appeared around the coastal and oceanic zones, particularly in the onshore zone between Monterey Bay, California and Magdalena Bay, Baja California. High positive SST anomalous values up to 4ºC above the long-term mean, 20 cm in ADT, and less of 4.5 mg m-3 of CHL were registered. Changes of 20 cm in ADT above the average are equivalent to 50 m thermocline deepening considering typical values of stratification for the area, which in turn influenced the availability of nutrients and light for phytoplankton growth in the euphotic zone. To examine the influence of the warm anomaly on phytoplankton production, we fitted with Generalized Additive Models the relationship between monthly primary production satellite data and ADT. Primary production inferred from the model, showed during August 2014 high negative anomalies (up to 0.5 gC m-2 d1) in the coastal zone. The first empirical orthogonal function of ADT and PP revealed that the highest ADT anomalies and the lowest primary production occurred off the Baja California Peninsula, between Punta Eugenia and Cabo San Lucas. Preliminary conclusions showed that warm anomaly affected negatively to phytoplankton organisms during August 2014, being this evident by low biomass and negative primary production anomalies as result of pycnocline deepens.

  12. Variation of the stable isotopes of water with altitiude in the Saint Elias Mountains of Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdsworth, G.; Fogarasi, S.; Krouse, H.R.

    1991-04-20

    The stable isotopes of water, measured in melt samples taken from snow pits and cores at locations between 1,750- and 5,930-m altitude on Mount Logan and between 2,900 and 4,900 m on Mount Steele, in the Saint Elias Mountains, Yukon, show a distinctive altitudinal distribution. Several {delta}{sup 18}O and {delta}D versus altitude profiles indicate the general persistence of a nearly iso-{delta} step, or staircase structure, separating a lower region of altitude dependent isotopic fractionation between 1,750 and 3,350 m from another apparent frictionation sequence appearing above about 5,300 m. On the one hand, postdepositional changes to isotope ratios in snowmore » at different altitudes may cause distortions to an otherwise nearly monotonic isotope fractionation sequence, but the main anomaly appears to be far too large to be explained this way. On the other hand, an explanation linked to processes occuring in the lower and midtroposphere is based on established meteorological principles as well as on upper air data. This hypothesis is proposed as the primary one to explain the gross features of the observed isotope profiles. It is compatible with the concept of secondary-source moisture arriving via the upper troposphere, and it does not exclude the effects of postdepositional stratigraphic and stable isotope ratio changes. Over interannual time scales, any vertical modulation of the observed isotope-altitude structure, from, for example, changes in wind regime, would give rise to an additional signal in any ice core {delta} time series. These findings identify a potential difficulty in the interpretation of stable isotope records obtained from high mountain ice core sites. It is possible that the results may have application to atmospheric circulation modeling, where the effects of extreme topography are being studied.« less

  13. Tungsten residence in silicate rocks: implications for interpreting W isotopic compositions

    NASA Astrophysics Data System (ADS)

    Liu, J.; Pearson, G. D.; Chacko, T.; Luo, Y.

    2015-12-01

    High-precision measurements of W isotopic ratios have boosted recent exploration of early Earth processes from the small W isotope anomalies observable in some Hadean-Archean rocks. However, before applying W isotopic data to understand the geological processes responsible for the formation of these rocks, it is critical to evaluate whether the rocks' present W contents and isotopic compositions reflect that of the protolith or the effects of secondary W addition/mobilization. To investigate this issue, we have carried out in situ concentration measurements of W and other HFSEs in mineral phases and alteration assemblages within a broad spectrum of rocks using LA-ICP-MS. Isotope dilution whole-rock W concentration measurements are used along with modes calculated from mineral and bulk rock major element data to examine the mass balance for W and other elements. In general, W is positively correlated with Nb, Ta, Ti, Sn, Mo and U, indicating similar geochemical behavior. Within granitic gneisses and amphibolites, biotite, hornblende, titanite and ilmenite control the W budget, while plagioclase and k-feldspar have little effect. For granulites, pyroxenites and eclogites, titanite, rutile, ilmenite, magnetite and sulfide, as well as grain boundary alteration assemblages dominate the W budget, while garnet, clinopyroxene, orthopyroxene and plagioclase have little or no W. Within mantle harzburgites and dunites, major phases such as olivine, clinopyroxene, orthopyroxene and spinel/chromite have very low concentrations of W, Nb, Ta, Sn and Mo. Instead, these elements are concentrated along grain boundaries and within sulfide/mss. Mass balance shows that for granitic gneisses and amphibolites, the rock-forming minerals can adequately account for the whole-rock W budget, whereas for ultramafic rocks such as pyroxenites, eclogites and harzburgites and dunites, significant W is hosted along grain boundaries, indicating that metamorphism and melt/fluid metasomatism can

  14. Sharing AIS Related Anomalies (SARA)

    DTIC Science & Technology

    2016-03-01

    Maritime Integrated Command, Control and Communications IMO International Maritime Organization IQ Information Quality ISI Information Sharing...way to summarize level 1 anomalies, an Information Quality ( IQ ) approach was selected. One of the reasons to favour this approach is the option to...Ray [31], but with slightly different IQ dimensions. Six dimensions of IQ have been selected to describe level 2 anomalies (described in Table 3.1

  15. Inertial Fusion Target Physics Advantages with the Krypton Fluoride Laser

    NASA Astrophysics Data System (ADS)

    Obenschain, Stephen

    2010-11-01

    The krypton fluoride (KrF) laser's short wavelength, broad bandwidth and capability to provide extremely uniform target illumination are advantages towards obtaining high gain direct drive implosions. The short wavelength helps suppress deleterious laser-plasma instabilities, and allows one to employ higher ablation pressures. In addition, the KrF architecture allows one to zoom down the focal diameter to follow the size of the imploding pellet, thereby improving the coupling efficiency. The NRL researchers have been conducting theoretical and experimental studies to quantify the beneficial effects of utilizing KrF light. Experiments using the Nike facility have confirmed that KrF light significantly increases the threshold for laser-plasma instability. This presentation will discuss the observed target physics with KrF light and its effects towards facilitating the high gains needed for power production with inertial fusion. Simulations indicate that shock ignited designs can achieve gains above 200 with KrF energies as low a 1 megajoule. For fusion energy a laser driver must be capable of high repetition rates (5-10 Hz) along with adequate efficiency and durability. The Electra KrF 30-cm aperture electron-beam-pumped amplifier has demonstrated long duration continuous operation at high-repetition rates. This and other advances show that the KrF laser should be able to meet the requirements.

  16. Marine vs. local control on seawater Nd-isotope ratios at the northwest coast of Africa during the late Cretaceous-early Eocene

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Ulianov, A.; Chiaradia, M.

    2013-12-01

    At the northwest corner of Africa excellent conditions existed for phosphate formation (i.e., stable upwelling system) during the late Cretaceous-early Eocene. This is probably in relation to stable tectonic evolution of shallow epicontinental basins at a passive continental margin and to their paleogeographic situation between the Atlantic and Tethys marine realms. To better comprehend paleoceanic conditions in this area, radiogenic isotope ratios (87Sr/86Sr and 143Nd/144Nd) and trace element compositions of fossil biogenic apatite are investigated from Maastrichtian to Ypresian shallow marine phosphorite deposits in Morocco (Ouled Abdoun and Ganntour Basins). Rare earth elements (REE) distributions in the fossils are compatible with early diagenetic marine pore fluid represented by negative Ce-anomaly and heavy REE enrichment. An overall shift in Ce-anomaly is apparent with gradually lower values in younger fossils along three distinct assemblages that correspond to Maastrichtian, Danian-Thanetian and Ypresian periods. The temporal change can be interpreted as presence of gradually more oxygenated seawater in the basins. Strontium isotopic ratios of the fossils follow the global Sr-evolution curve. However, the latest Cretaceous and the oldest Paleocene fossils yielded slightly higher ratios than the global ocean, which could reflect minor diagenetic alteration. Neodymium isotopic ratios are quite even along the phosphate series with ɛNd(t) values ranges from -6.8 to -5.8. These values are higher than those reported for average North Atlantic deep water and Tethyan seawater (e.g., Stille et al., 1996; Thomas et al., 2003). For the origin of the stable, high 143Nd/144Nd we propose three main hypotheses: (1) contribution of continental Nd-source, (2) locally controlled deep water Nd-isotope ratios near the coast from where upwelling originated in the area and (3) possible surface marine water contribution from the Pacific across the Atlantic. Stille, P., Steinmann

  17. Continental and oceanic magnetic anomalies: Enhancement through GRM

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.

    1985-01-01

    In contrast to the POGO and MAGSAT satellites, the Geopotential Research Mission (GRM) satellite system will orbit at a minimum elevation to provide significantly better resolved lithospheric magnetic anomalies for more detailed and improved geologic analysis. In addition, GRM will measure corresponding gravity anomalies to enhance our understanding of the gravity field for vast regions of the Earth which are largely inaccessible to more conventional surface mapping. Crustal studies will greatly benefit from the dual data sets as modeling has shown that lithospheric sources of long wavelength magnetic anomalies frequently involve density variations which may produce detectable gravity anomalies at satellite elevations. Furthermore, GRM will provide an important replication of lithospheric magnetic anomalies as an aid to identifying and extracting these anomalies from satellite magnetic measurements. The potential benefits to the study of the origin and characterization of the continents and oceans, that may result from the increased GRM resolution are examined.

  18. Orbital Anomalies in Goddard Spacecraft for Calendar Year 1994

    NASA Technical Reports Server (NTRS)

    Thomas, Walter B.

    1996-01-01

    This report summarizes and updates the annual on-orbit performance between January I and December 31, 1994, for spacecraft built by or managed by the Goddard Space Flight Center (GSFC). During 1994, GSFC had 27 active orbiting satellites and I Shuttle-launched and retrieved 'free flyer.' There were 310 reported anomalies among 21 satellites and one GSFC instrument (TOMS). GOES-8 accounted for 66 anomalies, and SAMPES reported 155 'anomalies'. Of the 155 anomalies reported for all but SAMPEX, only 4 affected the spacecraft missions 'substantially' or greater, that is, presented a loss of more than 33% of the total missions. The most frequent subsystem anomalies were Instrument/Payload(44), Timing Command and Control(40), and Attitude Control Systems(33). Of the non-SAMPEX anomalies, 29% had no effect on the missions and 28% caused subsystem or instrument degradation and, for another 28%, no anomaly effect on the mission could be determined. Fifty-three percent of non-SAMPEX anomalies could not be classified according to 'type'; the other most common types were 'systemic'(35), 'random'(19), and 'normal or expected operation'(15). Forty percent of the anomalies were not classified according to failure category; the remaining most frequent occurrences were 'design problems'(50) and 'other known problems'(35).

  19. Prevalence and distribution of dental anomalies in orthodontic patients.

    PubMed

    Montasser, Mona A; Taha, Mahasen

    2012-01-01

    To study the prevalence and distribution of dental anomalies in a sample of orthodontic patients. The dental casts, intraoral photographs, and lateral panoramic and cephalometric radiographs of 509 Egyptian orthodontic patients were studied. Patients were examined for dental anomalies in number, size, shape, position, and structure. The prevalence of each dental anomaly was calculated and compared between sexes. Of the total study sample, 32.6% of the patients had at least one dental anomaly other than agenesis of third molars; 32.1% of females and 33.5% of males had at least one dental anomaly other than agenesis of third molars. The most commonly detected dental anomalies were impaction (12.8%) and ectopic eruption (10.8%). The total prevalence of hypodontia (excluding third molars) and hyperdontia was 2.4% and 2.8%, respectively, with similiar distributions in females and males. Gemination and accessory roots were reported in this study; each of these anomalies was detected in 0.2% of patients. In addition to genetic and racial factors, environmental factors could have more important influence on the prevalence of dental anomalies in every population. Impaction, ectopic eruption, hyperdontia, hypodontia, and microdontia were the most common dental anomalies, while fusion and dentinogenesis imperfecta were absent.

  20. Magnetic anomalies in the Cosmonauts Sea, off East Antarctica

    NASA Astrophysics Data System (ADS)

    Nogi, Y.; Hanyu, T.; Fujii, M.

    2017-12-01

    Identification of magnetic anomaly lineations and fracture zone trends in the Southern Indian Ocean, are vital to understanding the breakup of Gondwana. However, the magnetic spreading anomalies and fracture zones are not clear in the Southern Indian Ocean. Magnetic anomaly lineations in the Cosmonauts Sea, off East Antarctica, are key to elucidation of separation between Sri Lanka/India and Antarctica. No obvious magnetic anomaly lineations are observed from a Japanese/German aerogeophysical survey in the Cosmonauts Sea, and this area is considered to be created by seafloor spreading during the Cretaceous Normal Superchron. Vector magnetic anomaly measurements have been conducted on board the Icebreaker Shirase mainly to understand the process of Gondwana fragmentation in the Indian Ocean. Magnetic boundary strikes are derived from vector magnetic anomalies obtained in the Cosmonauts Sea. NE-SW trending magnetic boundary strikes are mainly observed along the several NW-SE oriented observation lines with magnetic anomaly amplitudes of about 200 nT. These NE-SW trending magnetic boundary strikes possibly indicate M-series magnetic anomalies that can not be detected from the aerogeophysical survey with nearly N-S observation lines. We will discuss the magnetic spreading anomalies and breakup process between Sri Lanka/India and Antarctica in the Cosmonauts Sea.

  1. Shortening anomalies in supersymmetric theories

    DOE PAGES

    Gomis, Jaume; Komargodski, Zohar; Ooguri, Hirosi; ...

    2017-01-17

    We present new anomalies in two-dimensional N = (2, 2) superconformal theories. They obstruct the shortening conditions of chiral and twisted chiral multiplets at coincident points. This implies that marginal couplings cannot be promoted to background superfields in short representations. Therefore, standard results that follow from N = (2, 2) spurion analysis are invalidated. These anomalies appear only if supersymmetry is enhanced beyond N = (2; 2). These anomalies explain why the conformal manifolds of the K 3 and T 4 sigma models are not Kähler and do not factorize into chiral and twisted chiral moduli spaces and why theremore » are no N = (2, 2) gauged linear sigma models that cover these conformal manifolds. We also present these results from the point of view of the Riemann curvature of conformal manifolds.« less

  2. Shortening anomalies in supersymmetric theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomis, Jaume; Komargodski, Zohar; Ooguri, Hirosi

    We present new anomalies in two-dimensional N = (2, 2) superconformal theories. They obstruct the shortening conditions of chiral and twisted chiral multiplets at coincident points. This implies that marginal couplings cannot be promoted to background superfields in short representations. Therefore, standard results that follow from N = (2, 2) spurion analysis are invalidated. These anomalies appear only if supersymmetry is enhanced beyond N = (2; 2). These anomalies explain why the conformal manifolds of the K 3 and T 4 sigma models are not Kähler and do not factorize into chiral and twisted chiral moduli spaces and why theremore » are no N = (2, 2) gauged linear sigma models that cover these conformal manifolds. We also present these results from the point of view of the Riemann curvature of conformal manifolds.« less

  3. Preservation of REE and Fe isotopes in altered stromatolites and the paleo-environmental record

    NASA Astrophysics Data System (ADS)

    Nies, S. M.; Shapiro, R. S.; Lalonde, S.

    2015-12-01

    Geochemical proxies are increasingly being used to unravel ancient ecosystems and environmental perturbations back to the earliest rock record on Earth. Along with more traditional fossils (stromatolites) and other biosignatures (e.g., lipids), the geochemical record is used specifically to evaluate biogenecity and to understand oxygenation of the atmosphere and ocean in the Archean and Paleoproterozoic. However, the effects of diagenesis, metamorphism, and other modes of secondary alteration are still poorly constrained, particularly as technological advances allow us to expand farther across the periodic table. Our study focused on the robustness and preservation of rare earth element (REE) and Fe isotope compositions of two stromatolitic units that have undergone contact and regional metamorphism. 18 samples were collected from cores, open pit mines, and field locations in Minnesota and Ontario from silicified iron formation (Biwabik-Gunflint formations). The samples were carefully constrained to one of two meter-scale stromatolitic units. Metamorphic grade ranged from essentially unmetamorphosed through prehnite-pumpellyite up to amphibolite (fayalite+hypersthene). Samples were also collected that represented deep secondary weathering, likely related to Cretaceous climatic extremes. Polished samples were first analyzed by electron microprobe and selected samples were further analyzed via laser ablation HR-ICP-MS to constrain trace element (n=13) and Fe isotopic variations (n=8). Preliminary results indicate that transition metal concentrations are surprisingly resilient to high-temperature metamorphic recrystallization. REE concentrations were analyzed in individual iron oxide grains, with full resolution (La to Lu) achieved for some samples and partial resolution (La to Nd) achieved for all samples. Core samples exhibited a relatively stable positive Ce anomaly occurring from low to extremely high alteration. Outcrop and mine samples indicate a shift from a

  4. Congenital neurodevelopmental anomalies in pediatric and young adult cancer.

    PubMed

    Wong-Siegel, Jeannette R; Johnson, Kimberly J; Gettinger, Katie; Cousins, Nicole; McAmis, Nicole; Zamarione, Ashley; Druley, Todd E

    2017-10-01

    Congenital anomalies that are diagnosed in at least 120,000 US infants every year are the leading cause of infant death and contribute to disability and pediatric hospitalizations. Several large-scale epidemiologic studies have provided substantial evidence of an association between congenital anomalies and cancer risk in children, suggesting potential underlying cancer-predisposing conditions and the involvement of developmental genetic pathways. Electronic medical records from 1,107 pediatric, adolescent, and young adult oncology patients were reviewed. The observed number (O) of congenital anomalies among children with a specific pediatric cancer subtype was compared to the expected number (E) of anomalies based on the frequency of congenital anomalies in the entire study population. The O/E ratios were tested for significance using Fisher's exact test. The Kaplan-Meier method was used to compare overall and neurological malignancy survival rates following tumor diagnosis. Thirteen percent of patients had a congenital anomaly diagnosis prior to their cancer diagnosis. When stratified by congenital anomaly subtype, there was an excess of neurological anomalies among children with central nervous system tumors (O/E = 1.56, 95%CI 1.13-2.09). Male pediatric cancer patients were more likely than females to have a congenital anomaly, particularly those <5 years of age (O/E 1.35, 95%CI 0.97-1.82). Our study provides additional insight into the association between specific congenital anomaly types and pediatric cancer development. Moreover, it may help to inform the development of new screening policies and support hypothesis-driven research investigating mechanisms underlying tumor predisposition in children with congenital anomalies. © 2017 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.

  5. The Oxygen Isotopic Composition of the Sun

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.; Kallio, A.; Heber, V. S.; Jarzebinski, G.; Mao, P.; Coath, C.; Kunihiro, T.; Wiens, R. C.; Judith, A.; Burnett, D. S.

    2010-12-01

    An accurate and precise determination of the oxygen isotopic composition of the Sun is the highest priority scientific goal of the Genesis Mission [1] as such data would provide a baseline from which one could interpret the oxygen isotopic anomalies found at all spatial scales in inner solar system materials. We have measured oxygen isotope compositions of implanted solar wind in 40 spots along a radial traverse of the Genesis SiC target sample 60001 by depth profiling with the UCLA MegaSIMS [2]. Mass-dependent fractionation induced by the solar wind concentrator [3] ion optics was corrected by comparison of the concentrator 22Ne/20Ne with that measured in a bulk solar wind target (diamond-like carbon on Si, [4]). The solar wind captured at L1 has an isotopic composition of (δ18O, δ17O) ≈ (-99, -79)‰, a value which is far removed from the terrestrial mass fractionation line. Profiles from the central portion of the target, where solar concentrations are highest and background corrections minimal, yield a mean Δ17O = -28.3 ± 1.8 ‰ indicating that the Earth and other planetary materials from the inner solar system are highly depleted in 16O relative to the solar wind. A mass-dependent fractionation of ~ -20%/amu in the acceleration of solar wind is required if we hypothesize that the photospheric oxygen isotope value, which represents the bulk starting composition of the solar system, is on the 16O-mixing line characteristic of refractory phase in primitive meteorites [5]. With this assumption, our preferred value for the bulk solar oxygen isotope composition is δ18O ≈ δ17O ≈ -57‰. A mechanism is required to fractionate oxygen isotopes in a non-mass-dependent manner to deplete 16O by ~6 to 7% in the rocky materials of the solar nebula. As oxygen is the third most abundant element in the solar system, and the most abundant in the terrestrial planets, this mechanism must operate on a large scale. Isotope-selective photochemistry, for example as in

  6. Uranium and other contaminants in hair from the parents of children with congenital anomalies in Fallujah, Iraq

    PubMed Central

    2011-01-01

    Background Recent reports have drawn attention to increases in congenital birth anomalies and cancer in Fallujah Iraq blamed on teratogenic, genetic and genomic stress thought to result from depleted Uranium contamination following the battles in the town in 2004. Contamination of the parents of the children and of the environment by Uranium and other elements was investigated using Inductively Coupled Plasma Mass Spectrometry. Hair samples from 25 fathers and mothers of children diagnosed with congenital anomalies were analysed for Uranium and 51 other elements. Mean ages of the parents was: fathers 29.6 (SD 6.2); mothers: 27.3 (SD 6.8). For a sub-group of 6 women, long locks of hair were analysed for Uranium along the length of the hair to obtain information about historic exposures. Samples of soil and water were also analysed and Uranium isotope ratios determined. Results Levels of Ca, Mg, Co, Fe, Mn, V, Zn, Sr, Al, Ba, Bi, Ga, Pb, Hg, Pd and U (for mothers only) were significantly higher than published mean levels in an uncontaminated population in Sweden. In high excess were Ca, Mg, Sr, Al, Bi and Hg. Of these only Hg can be considered as a possible cause of congenital anomaly. Mean levels for Uranium were 0.16 ppm (SD: 0.11) range 0.02 to 0.4, higher in mothers (0.18 ppm SD 0.09) than fathers (0.11 ppm; SD 0.13). The highly unusual non-normal Fallujah distribution mean was significantly higher than literature results for a control population Southern Israel (0.062 ppm) and a non-parametric test (Mann Whitney-Wilcoxon) gave p = 0.016 for this comparison of the distribution. Mean levels in Fallujah were also much higher than the mean of measurements reported from Japan, Brazil, Sweden and Slovenia (0.04 ppm SD 0.02). Soil samples show low concentrations with a mean of 0.76 ppm (SD 0.42) and range 0.1-1.5 ppm; (N = 18). However it may be consistent with levels in drinking water (2.28 μgL-1) which had similar levels to water from wells (2.72 μgL-1) and the

  7. Conditional anomaly detection methods for patient–management alert systems

    PubMed Central

    Valko, Michal; Cooper, Gregory; Seybert, Amy; Visweswaran, Shyam; Saul, Melissa; Hauskrecht, Milos

    2010-01-01

    Anomaly detection methods can be very useful in identifying unusual or interesting patterns in data. A recently proposed conditional anomaly detection framework extends anomaly detection to the problem of identifying anomalous patterns on a subset of attributes in the data. The anomaly always depends (is conditioned) on the value of remaining attributes. The work presented in this paper focuses on instance–based methods for detecting conditional anomalies. The methods rely on the distance metric to identify examples in the dataset that are most critical for detecting the anomaly. We investigate various metrics and metric learning methods to optimize the performance of the instance–based anomaly detection methods. We show the benefits of the instance–based methods on two real–world detection problems: detection of unusual admission decisions for patients with the community–acquired pneumonia and detection of unusual orders of an HPF4 test that is used to confirm Heparin induced thrombocytopenia — a life–threatening condition caused by the Heparin therapy. PMID:25392850

  8. Detailed gravity anomalies from Geos 3 satellite altimetry data

    NASA Technical Reports Server (NTRS)

    Gopalapillai, G. S.; Mourad, A. G.

    1979-01-01

    Detailed gravity anomalies are computed from a combination of Geos 3 satellite altimeter and terrestrial gravity data using least-squares principles. The mathematical model used is based on the Stokes' equation modified for a nonglobal solution. Using Geos 3 data in the calibration area, the effects of several anomaly parameter configurations and data densities/distributions on the anomalies and their accuracy estimates are studied. The accuracy estimates for 1 deg x 1 deg mean anomalies from low density altimetry data are of the order of 4 mgal. Comparison of these anomalies with the terrestrial data and also with Rapp's data derived using collocation techniques show rms differences of 7.2 and 4.9 mgal, respectively. Indications are that the anomaly accuracies can be improved to about 2 mgal with high density data. Estimation of 30 in. x 30 in. mean anomalies indicates accuracies of the order of 5 mgal. Proper verification of these results will be possible only when accurate ground truth data become available.

  9. Dental and oral anomalies in incontinentia pigmenti: a systematic review.

    PubMed

    Minić, Snežana; Trpinac, Dušan; Gabriel, Heinz; Gencik, Martin; Obradović, Miljana

    2013-01-01

    Incontinentia pigmenti (IP) is an X-linked genodermatosis caused by a mutation of the IKBKG gene. The objective of this study was to present a systematic review of the dental and oral types of anomalies, to determine the total number and sex distribution of the anomalies, and to analyze possible therapies. We analyzed the literature data from 1,286 IP cases from the period 1993-2010. Dental and/or oral anomalies were diagnosed for 54.38% of the investigated IP patients. Most of the anomaly types were dental, and the most frequent of these were dental shape anomalies, hypodontia, and delayed dentition. The most frequent oral anomaly types were cleft palate and high arched palate. IKBKG exon 4-10 deletion was present in 86.36% of genetically confirmed IP patients. According to the frequency, dental and/or oral anomalies represent the most frequent and important IP minor criteria. The most frequent mutation was IKBKG exon 4-10 deletion. The majority of dental anomalies and some of the oral anomalies could be corrected. Because of the presence of cleft palate and high arched palate in IP patients, these two anomalies may be considered as diagnostic IP minor criteria as well.

  10. Debendox does not cause the Poland anomaly.

    PubMed Central

    David, T J

    1982-01-01

    The suggestion that Debendox may cause the Poland anomaly is refuted by a study of the antenatal drug exposure in 46 cases of the Poland anomaly and 32 cases of isolated absence of the pectoralis major. Debendox had been prescribed in one case of the Poland anomaly and in one case of isolated pectoralis absence, but in neither was the compound given during organogenesis. In none of the 78 cases could Debendox be causally implicated. PMID:7092316

  11. Modeling of self-potential anomalies near vertical dikes.

    USGS Publications Warehouse

    Fitterman, D.V.

    1983-01-01

    The self-potential (SP) Green's function for an outcropping vertical dike is derived from solutions for the dc resistivity problem for the same geometry. The Green's functions are numerically integrated over rectangular source regions on the contacts between the dike and the surrounding material to obtain the SP anomaly. The analysis is valid for thermoelectrical source mechanisms. Two types of anomalies can be produced by this geometry. When the two source planes are polarized in opposite directions, a monopolar anomaly is produced. This corresponds to the thermoelectrical properties of the dike being in contrast with the surrounding material. When the thermoelectric coefficients change monotonically across the dike, a dipolar anomaly is produced. In either case positive and negative anomalies are possible, and the greatest variation in potential will occur in the most resistive regions. -Author

  12. Application of isostatic gravity anomaly in the Yellow Sea area

    NASA Astrophysics Data System (ADS)

    Hao, Z.; Qin, J.; Huang, W.; Wu, X.

    2017-12-01

    In order to study the deep crustal structure of the Yellow Sea area, we used the Airy-Heiskanen model to calculate the isostatic gravity anomaly of this area. Based on the Bouguer gravity anomaly and water depth data of this area, we chose the calculating parameters as standard crustal thickness 30 km, crust-mantle density difference 0.6g/cm3and grid spacing 0.1°×0.1°. This study reveals that there are six faults and four isostatic negative anomalies in the study area. The isostatic anomalies in much of Yellow Sea areas give priority to those with positive anomalies. The isostatic anomalies in North Yellow Sea are higher than South Yellow Sea with Jiashan-Xiangshui fault as the boundary. In the north of the study area, isostatic anomalies are characterized by large areas of positive anomaly. The change is relatively slow, and the trends give priority to the trend NE or NEE. In the middle of the north Yellow Sea basin, there is a local negative anomaly, arranged as a string of beads in NE to discontinuous distribution. Negative anomaly range is small, basically corresponds to the region's former Cenozoic sedimentary basin position. To the south of Jiashan-Xiangshui fault and west of Yellow Sea eastern margin fault, including most of the south Yellow Sea and Jiangsu province, the isostatic anomalies are lower. And the positive and negative anomalies are alternative distribution, and negative anomaly trap in extensive development. The trends give priority to NE, NEE, both to the NW. On the basis of the characteristics of isostatic gravity anomalies, it is concluded that the Yellow Sea belongs to continental crustal isostatic area whose isostatic anomalies is smooth and slow. ReferencesHeiskanen, W. A., F. A. V. Meinesz, and S. A. Korff (1958), The Earth and Its Gravity Field, McGraw-Hill, New York. Meng, X. J., X. H. Zhang, and J. Y. Yang (2014), Geophysical survey in eastern China seas and the characteristics of gravity and magnetic fields, Marine Geoglogy

  13. First branchial cleft anomalies: otologic manifestations and treatment outcomes.

    PubMed

    Shinn, Justin R; Purcell, Patricia L; Horn, David L; Sie, Kathleen C Y; Manning, Scott C

    2015-03-01

    This study describes the presentation of first branchial cleft anomalies and compares outcomes of first branchial cleft with other branchial cleft anomalies with attention to otologic findings. Case series with chart review. Pediatric tertiary care facility. Surgical databases were queried to identify children with branchial cleft anomalies. Descriptive analysis defined sample characteristics. Risk estimates were calculated using Fisher's exact test. Queries identified 126 subjects: 27 (21.4%) had first branchial cleft anomalies, 80 (63.4%) had second, and 19 (15.1%) had third or fourth. Children with first anomalies often presented with otologic complications, including otorrhea (22.2%), otitis media (25.9%), and cholesteatoma (14.8%). Of 80 children with second branchial cleft anomalies, only 3 (3.8%) had otitis. Compared with children with second anomalies, children with first anomalies had a greater risk of requiring primary incision and drainage: 16 (59.3%) vs 2 (2.5%) (relative risk [RR], 3.5; 95% confidence interval [CI], 2.4-5; P<.0001). They were more likely to have persistent disease after primary excision: 7 (25.9%) vs 2 (2.5%) (RR, 3; 95% CI, 1.9-5; P=.0025). They were more likely to undergo additional surgery: 8 (29.6%) vs 3 (11.1%) (RR, 2.9; 95% CI, 1.8-4.7; P=.0025). Of 7 persistent first anomalies, 6 (85.7%) were medial to the facial nerve, and 4 (57.1%) required ear-specific surgery for management. Children with first branchial cleft anomalies often present with otologic complaints. They are at increased risk of persistent disease, particularly if anomalies lie medial to the facial nerve. They may require ear-specific surgery such as tympanoplasty. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  14. Energy Spectra of Geomagnetically Trapped Light Isotopes Measured by NINA-2 Instrument

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. V.; Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Voronov, S.; Bidoli, V.; Caoslino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Boezio, M.; Bonvincini, V.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.

    2003-07-01

    This paper reports about the energy spectrum of geomagnetically trapped protons, deuterons, tritons and He isotop es measured by the instrument NINA2 at the low boundary of the South Atlantic Anomaly. NINA-2 on board the satellite MITA has been in orbit from 15 July 2000 to 10 August 2001, flying with circular polar orbit (87° inclination), at an altitude between 300-440 km. Differential energy spectra were measured at L-shell ˜ 1.2 and local magnetic field b< 0.22 G. Data from NINA-2 are compared with measurements made onboard Resurs-01 N4 satellite with NINA instrument. Possible solar modulation effects are discussed.

  15. Dental anomalies in primary dentition and their corresponding permanent teeth.

    PubMed

    Gomes, R R; Fonseca, J A C; Paula, L M; Acevedo, A C; Mestrinho, H D

    2014-05-01

    The objectives of this paper are to estimate the prevalence of dental anomalies in primary dentition in a sample of 2- to 5-year-old Brazilian preschool children, determine their distribution, and investigate their occurrence in the succedaneous teeth of the sample compared with a control group of children with no dental anomalies in the primary dentition. The one-stage sample comprised 1,718 two to five-year-old children with fully erupted primary dentition clinically examined for dental anomalies. All children presenting dental anomalies underwent panoramic radiographs. Descriptive statistics were performed for the studied variables. A control group matched by sex and age was studied to compare the prevalence ratio for dental anomalies in the permanent dentition. The prevalence of dental anomalies in the primary dentition was 1.8 %, with no significant statistical difference between sexes. Double teeth were the most frequently observed. Dental anomalies on the succedaneous permanent teeth were diagnosed in 54.8 % of the children with affected primary dentition. The prevalence ratio (PR) for dental anomalies in the succedaneous permanent teeth was 17.1 (confidence interval (CI) 5.33-54.12) higher compared with the control group, higher in children with bilateral anomalies (PR = 31.2, CI 10.18-94.36). An association between anomalies of the permanent dentition and the presence of dental anomalies in primary teeth was observed, especially when they occur bilaterally. The results in the present study have a clinical relevance in the diagnosis of children with dental anomalies in primary dentition. Early identification of these anomalies can aid the dentist in planning dental treatment at the appropriate time.

  16. Gravity anomalies on Venus

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Phillips, R. J.; Birkeland, P. W.; Wimberly, R. N.

    1980-01-01

    Doppler radio tracking of the Pioneer Venus orbiter has provided gravity measures over a significant portion of Venus. Feature resolution is approximately 300-1000 km within an area extending from 10 deg S to 40 deg N latitude and from 70 deg W to 130 deg E longitude (approximately equal to 200 deg). Many anomalies were detected, and there is considerable correlation with radar altimetry topography (Pettengill et al., 1980). The amplitudes of the anomalies are relatively mild and similar to those on earth at this resolution. Calculations for isostatic adjustment reveal that significant compensation has occurred.

  17. [Rare umbilical anomalies].

    PubMed

    Kysucan, J; Malý, T; Neoral, C

    2010-12-01

    Umbilicus is a scar, which is the place of the previous merger of the fetus with the umbilical cord. After birth, it has no known function, however, unless the umbilical annulus is completely closed, umbilical hernia may occur. Umbilical scar is also an area where may occur a number of anomalies that may be present alone or together with umbilical hernia. Failure of involution leads to persistence of omphalomesenteric duct and urachal remnants. These embryonic remnants may cause more or less significant clinical problems, or may be completely asymptomatic and may be diagnosed at random. The authors present their own group of patients who were diagnosed and dealt with the defect omphalomesenteric duct or urachus. In past 7 years we observed 35 children with these abnormalities. A large group of patients represents incidental findings during elective surgery for umbilical hernia. Another large group are patients with symptomatic or asymptomatic Meckel's diverticulum. The anatomical observations, clinical manifestations, complications and treatment of these anomalies are mentioned. A total of 35 children were found with these birth defects. In 23 cases we observed omphalomesenteric duct disorders and 12 urachal remnants were reported. Of these, 12 abnormalities were found incidentally during elative procedure for umbilical hernia. Asymptomatic or symptomatic Meckel's diverticulum appeared in 16 cases. Surgical treatment included resection or exstirpation, if urachal anomaly was accompanied then partial resection of the bladder vertex was added. Postoperative complications emerged in 4 cases, three times it was ileus from adhesions 6 months after surgery, once postoperative cystitis appeared and was treated conservatively. Birth abnormalities of the umbilicus are relatively rare diseases that may occur in the pediatric population. Omfalomesenteric duct and urachal anomalies constitute a major group of these congenital disorders and are often associated with umbilical

  18. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia

    NASA Astrophysics Data System (ADS)

    Vuille, M.; Burns, S. J.; Taylor, B. L.; Cruz, F. W.; Bird, B. W.; Abbott, M. B.; Kanner, L. C.; Cheng, H.; Novello, V. F.

    2012-08-01

    We review the history of the South American summer monsoon (SASM) over the past ~2000 yr based on high-resolution stable isotope proxies from speleothems, ice cores and lake sediments. Our review is complemented by an analysis of an isotope-enabled atmospheric general circulation model (GCM) for the past 130 yr. Proxy records from the monsoon belt in the tropical Andes and SE Brazil show a very coherent behavior over the past 2 millennia with significant decadal to multidecadal variability superimposed on large excursions during three key periods: the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the current warm period (CWP). We interpret these three periods as times when the SASM's mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative δ18O values recorded during the entire record length. On the other hand, the monsoon strength is currently rather weak in a 2000-yr historical perspective, rivaled only by the low intensity during the MCA. Our climatic interpretation of these archives is consistent with our isotope-based GCM analysis, which suggests that these sites are sensitive recorders of large-scale monsoon variations. We hypothesize that these centennial-scale climate anomalies were at least partially driven by temperature changes in the Northern Hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity (amount of rainfall upstream over the Amazon Basin). This interpretation is supported by several independent records from different proxy archives and modeling studies. Although ENSO is the main forcing for δ18O variability over tropical South America on interannual time scales, our results suggest that its influence may be significantly modulated by North Atlantic climate variability on longer time scales. Finally, our analyses indicate that isotopic

  19. Whole exome sequence analysis of Peters anomaly

    PubMed Central

    Weh, Eric; Reis, Linda M.; Happ, Hannah C.; Levin, Alex V.; Wheeler, Patricia G.; David, Karen L.; Carney, Erin; Angle, Brad; Hauser, Natalie

    2015-01-01

    Peters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes. Among the eight previously recognized Peters anomaly genes, we identified a de novo missense mutation in PAX6, c.155G>A, p.(Cys52Tyr), in one patient. Analysis of 691 additional genes currently associated with a different ocular phenotype identified a heterozygous splicing mutation c.1025+2T>A in TFAP2A, a de novo heterozygous nonsense mutation c.715C>T, p.(Gln239*) in HCCS, a hemizygous mutation c.385G>A, p.(Glu129Lys) in NDP, a hemizygous mutation c.3446C>T, p.(Pro1149Leu) in FLNA, and compound heterozygous mutations c.1422T>A, p.(Tyr474*) and c.2544G>A, p.(Met848Ile) in SLC4A11; all mutations, except for the FLNA and SLC4A11 c.2544G>A alleles, are novel. This is the frst study to use whole exome sequencing to discern the genetic etiology of a large cohort of patients with syndromic or isolated Peters anomaly. We report five new genes associated with this condition and suggest screening of TFAP2A and FLNA in patients with Peters anomaly and relevant syndromic features and HCCS, NDP and SLC4A11 in patients with isolated Peters anomaly. PMID:25182519

  20. Impacts of the IOD-associated temperature and salinity anomalies on the intermittent equatorial undercurrent anomalies

    NASA Astrophysics Data System (ADS)

    Li, Junde; Liang, Chujin; Tang, Youmin; Liu, Xiaohui; Lian, Tao; Shen, Zheqi; Li, Xiaojing

    2017-11-01

    The study of Equatorial Undercurrent (EUC) has attracted a broad attention in recent years due to its strong response and feedback to the Indian Ocean Dipole. In this paper, we first produce a high-quality simulation of three-dimensional temperature, salinity and zonal current simulation from 1982 to 2014, using a high-resolution ocean general circulation model. On this basis, with two sensitivity experiments, we investigate the role of temperature and salinity anomalies in driving and enhancing the EUC during the positive IOD events by examining the variation of the EUC seasonal cycle and diagnosing the zonal momentum budget along the equatorial Indian Ocean. Our results show that during January-March, the EUC can appear along the entire equatorial Indian Ocean in all years, but during August-November, the EUC can appear and reach the eastern Indian Ocean only during the positive IOD events. The zonal momentum budget analysis indicates that the pressure gradient force contributes most to the variation of the eastward acceleration of zonal currents in the subsurface. During the positive IOD events, strong negative subsurface temperature anomalies exist in the eastern Indian Ocean, with negative surface salinity anomalies in the central and eastern Indian Ocean, resulting in a large pressure gradient force to drive EUC during the August-November. Further, the results of two sensitivity experiments indicate that the temperature anomalies significantly impact the pressure gradient force, playing a leading role in driving the EUC, while the surface salinity anomalies can secondarily help to intensify the eastward EUC through increasing the zonal density gradient in the eastern Indian Ocean and impacting the vertical momentum advection in the subsurface.

  1. Ionospheric winter anomaly and annual anomaly observed from Formosat-3/COSMIC Radio Occultation observations during the ascending phase of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Sai Gowtam, V.; Tulasi Ram, S.

    2017-10-01

    Ionospheric winter and annual anomalies have been investigated during the ascending phase of solar cycle 24 using high-resolution global 3D - data of the FORMOSAT - 3/COSMIC (Formosa satellite - 3/Constellation Observing System for Meterology, Ionosphere and Climate) radio occultation observations. Our detailed analysis shows that the occurrence of winter anomaly at low-latitudes is confined only to the early morning to afternoon hours, whereas, the winter anomaly at mid-latitudes is almost absent at all local times during the ascending phase of solar cycle 24. Further, in the topside ionosphere (altitudes of 400 km and above), the winter anomaly is completely absent at all local times. In contrast, the ionospheric annual anomaly is consistently observed at all local times and altitudes during this ascending phase of solar cycle 24. The annual anomaly exhibits strong enhancements over southern EIA crest latitudes during day time and around Weddle Sea Anomaly (WSA) region during night times. The global mean annual asymmetry index is also computed to understand the altitudinal variation. The global mean AI maximizes around 300-500 km altitudes during the low solar active periods (2008-10), whereas it extends up to 600 km during moderate to high (2011) solar activity period. These findings from our study provide new insights to the current understanding of the annual anomaly.

  2. The south-central United States magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Braile, L. W. (Principal Investigator); Starich, P. J.

    1984-01-01

    The South-Central United States Magnetic Anomaly is the most prominent positive feature in the MAGSAT scalar magnetic field over North America. The anomaly correlates with increased crustal thickness, above average crustal velocity, negative free air gravity anomalies and an extensive zone of Middle Proterozoic anorogenic felsic basement rocks. Spherical dipole source inversion of the MAGSAT scalar data and subsequent calculation of reduced to pole and derivative maps provide constraints for a crustal magnetic model which corresponds geographically to the extensive Middle Proterozoic felsic rocks trending northeasterly across the United States. These felsic rocks contain insufficient magnetization or volume to produce the anomaly, but are rather indicative of a crustal zone which was disturbed during a Middle Proterozoic thermal event which enriched magnetic material deep in the crust.

  3. A resolved mantle anomaly as the cause of the Australian-Antarctic Discordance

    NASA Astrophysics Data System (ADS)

    Ritzwoller, M. H.; Shapiro, N. M.; Leahy, G. M.

    2003-12-01

    We present evidence for the existence of an Australian-Antarctic Mantle Anomaly (AAMA), which trends northwest-southeast (NW-SE) through the Australian-Antarctic Discordance (AAD) on the Southeast Indian Ridge (SEIR), is confined to the upper 120 km of the mantle beneath the AAD, and dips shallowly to the west so that it extends to a depth of about 150 km west of the AAD. Average temperatures within the AAMA are depressed about 100°C relative to surrounding lithosphere and suggest very rapid cooling of newly formed lithosphere at the AAD to an effective thermal age between 20 and 30 Ma. A convective down welling beneath the AAD is not consistent with the confinement of the AAMA in the uppermost mantle. In substantial agreement with the model of [1998], we argue that the AAMA is the suspended remnant of a slab that subducted at the Gondwanaland-Pacific convergent margin more than 100 Myr ago, foundered in the deeper mantle, and then ascended into the shallow mantle within the past 30 Myr, cutting any ties to deeper roots. The stability of the AAMA and its poor correlation with residual topography and gravity imply that it is approximately neutrally buoyant. The thermally induced density anomaly can be balanced by bulk iron depletion of less than 0.8%, consistent with the warmer conditions of formation for the Pacific than Indian lithosphere. We hypothesize that the low temperatures in the AAMA inhibit crustal formation and the AAD depth anomaly is formed at the intersection of the SEIR and the AAMA. The northward migration of the SEIR overriding the cold NW-SE trending AAMA therefore presents a simple kinematic explanation for both the V-shaped residual depth anomaly in the southeast Indian Ocean and the western migration of the AAD along the SEIR. Neither explanation requires the Pacific asthenospheric mantle to push westward and displace Indian asthenosphere. The AAMA may also act as a barrier to large-scale flows in the shallow asthenosphere and may therefore

  4. Removing the effects of metamorphism from the Neoproterozoic carbon isotope record: a case study on Islay, western Scotland

    NASA Astrophysics Data System (ADS)

    Skelton, Alasdair

    2016-04-01

    The Port Askaig Formation on Islay, western Scotland is the first discovered tillite (glacial sediment) of Neoproterozoic age. This formation is sandwiched between carbonate rocks which preserve an extreme negative carbon isotope excursion. This so called "Islay anomaly" has been correlated with other such anomalies worldwide and together with the tillites has been cited as evidence of major (worldwide) glaciation events. During subsequent mountain building, this carbonate-tillite- carbonate sequence has been folded, producing a major en-echelon anticlinal fold system. Folding was accompanied by metamorphism at greenschist facies conditions which was, in turn, accompanied by metamorphic fluid flow. Mapping of the δ18O and δ13C values of these carbonate rocks reveals that metamorphic fluids were channelled through the axial region of the anticlinal fold. The metamorphic fluid was found to have a highly negative δ13C value, which was found to be in equilibrium with metamorphosed graphitic mudstones beneath the carbonate-tillite-carbonate sequence. Devolatilisation of these mudstones is therefore a likely source of this metamorphic fluid. Removal of the effects of metamorphic fluid flow on δ13C values recorded by metamorphosed carbonate rocks on Islay allows us to re-evaluate the isotopic evidence used to reconstruct Neoproterozoic climate. We are able to show that extreme negative δ13C values can partly be attributed to metamorphic fluid flow.

  5. Domain Anomaly Detection in Machine Perception: A System Architecture and Taxonomy.

    PubMed

    Kittler, Josef; Christmas, William; de Campos, Teófilo; Windridge, David; Yan, Fei; Illingworth, John; Osman, Magda

    2014-05-01

    We address the problem of anomaly detection in machine perception. The concept of domain anomaly is introduced as distinct from the conventional notion of anomaly used in the literature. We propose a unified framework for anomaly detection which exposes the multifaceted nature of anomalies and suggest effective mechanisms for identifying and distinguishing each facet as instruments for domain anomaly detection. The framework draws on the Bayesian probabilistic reasoning apparatus which clearly defines concepts such as outlier, noise, distribution drift, novelty detection (object, object primitive), rare events, and unexpected events. Based on these concepts we provide a taxonomy of domain anomaly events. One of the mechanisms helping to pinpoint the nature of anomaly is based on detecting incongruence between contextual and noncontextual sensor(y) data interpretation. The proposed methodology has wide applicability. It underpins in a unified way the anomaly detection applications found in the literature. To illustrate some of its distinguishing features, in here the domain anomaly detection methodology is applied to the problem of anomaly detection for a video annotation system.

  6. Congenital anomalies of the limbs in mythology and antiquity.

    PubMed

    Mavrogenis, Andreas F; Markatos, Konstantinos; Nikolaou, Vasilios; Gartziou-Tatti, Ariadne; Soucacos, Panayotis N

    2018-04-01

    Congenital anomalies of the limbs have been observed since ancient human civilizations, capturing the imagination of ancient physicians and people. The knowledge of the era could not possibly theorize on the biologic aspects of these anomalies; however, from the very beginning of civilization the spiritual status of people attempted to find a logical explanation for the existence of such cases. The next logical step of the spiritual and religious system of the ancients was to correlate these anomalies with the Gods and to attribute them to a different level of existence in order to rationalize their existence. In these settings, the mythology and religious beliefs of ancient civilizations comprised several creatures that were related to the observed congenital anomalies in humans. The purpose of this historic review is to summarize the depiction of congenital anomalies of the limbs in mythology and antiquity, to present several mythological creatures with resemblance to humans with congenital anomalies of the limbs, to present the atmosphere of the era concerning the congenital anomalies, and to theorize on the anomaly and medical explanation upon which such creatures were depicted. Our aim is to put historic information in one place, creating a comprehensive review that the curious reader would find interesting and enjoyable.

  7. The prevalence of dental anomalies in a turkish population.

    PubMed

    Aren, Gamze; Guven, Yeliz; Guney Tolgay, Ceren; Ozcan, Ilknur; Bayar, Ozlem Filiz; Kose, Taha Emre; Koyuncuoglu, Gulhan; Ak, Gulsum

    2015-01-01

    The aim of the present study was to investigate the prevalence of dental anomalies in a Turkish population according to the gender and age. A retrospective study was performed using panoramic radiographs of 2025 patients (885 males and 1140 females) ranging in age from 9 to 35 (mean age 25.61±10.04) years attending Department of Oral Radiology, University of Istanbul, Faculty of Dentistry. These patients were examined to determine the presence of developmental dental anomalies involving hypodontia, hyperdontia, microdontia, taurodontism and other root anomalies. The incidence of these anomalies were assessed according to the gender and age. Among the 2025 subjects, a total of 96 individuals (42 males and 54 females) showed at least one of the selected dental anomalies (4.74%). Tooth agenesis was the most common dental abnormality (1.77%) followed by taurodontism (1.18%), hyperdontia (0.79%), microdontia (0.54%) and root anomalies (0.44%), respectively. Tooth agenesis is the most common developmental dental anomaly in the studied Turkish population followed by taurodontism.

  8. Congenital anomalies

    PubMed Central

    Kunisaki, Shaun M.

    2012-01-01

    Over the past decade, amniotic fluid-derived stem cells have emerged as a novel, experimental approach for the treatment of a wide variety of congenital anomalies diagnosed either in utero or postnatally. There are a number of unique properties of amniotic fluid stem cells that have allowed it to become a major research focus. These include the relative ease of accessing amniotic fluid cells in a minimally invasive fashion by amniocentesis as well as the relatively rich population of progenitor cells obtained from a small aliquot of fluid. Mesenchymal stem cells, c-kit positive stem cells, as well as induced pluripotent stem cells have all been derived from human amniotic fluid in recent years. This article gives a pediatric surgeon’s perspective on amniotic fluid stem cell therapy for the management of congenital anomalies. The current status in the use of amniotic fluid-derived stem cells, particularly as they relate as substrates in tissue engineering-based applications, is described in various animal models. A roadmap for further study and eventual clinical application is also proposed. PMID:22986340

  9. An Unsupervised Deep Hyperspectral Anomaly Detector

    PubMed Central

    Ma, Ning; Peng, Yu; Wang, Shaojun

    2018-01-01

    Hyperspectral image (HSI) based detection has attracted considerable attention recently in agriculture, environmental protection and military applications as different wavelengths of light can be advantageously used to discriminate different types of objects. Unfortunately, estimating the background distribution and the detection of interesting local objects is not straightforward, and anomaly detectors may give false alarms. In this paper, a Deep Belief Network (DBN) based anomaly detector is proposed. The high-level features and reconstruction errors are learned through the network in a manner which is not affected by previous background distribution assumption. To reduce contamination by local anomalies, adaptive weights are constructed from reconstruction errors and statistical information. By using the code image which is generated during the inference of DBN and modified by adaptively updated weights, a local Euclidean distance between under test pixels and their neighboring pixels is used to determine the anomaly targets. Experimental results on synthetic and recorded HSI datasets show the performance of proposed method outperforms the classic global Reed-Xiaoli detector (RXD), local RX detector (LRXD) and the-state-of-the-art Collaborative Representation detector (CRD). PMID:29495410

  10. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Serpell, Christopher J.; Rutte, Reida N.; Geraki, Kalotina; Pach, Elzbieta; Martincic, Markus; Kierkowicz, Magdalena; de Munari, Sonia; Wals, Kim; Raj, Ritu; Ballesteros, Belén; Tobias, Gerard; Anthony, Daniel C.; Davis, Benjamin G.

    2016-10-01

    The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular `blueprint' this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as `contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging.

  11. Magnetic and gravity anomalies in the Americas

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    The cleaning and magnetic tape storage of spherical Earth processing programs are reported. These programs include: NVERTSM which inverts total or vector magnetic anomaly data on a distribution of point dipoles in spherical coordinates; SMFLD which utilizes output from NVERTSM to compute total or vector magnetic anomaly fields for a distribution of point dipoles in spherical coordinates; NVERTG; and GFLD. Abstracts are presented for papers dealing with the mapping and modeling of magnetic and gravity anomalies, and with the verification of crustal components in satellite data.

  12. Nd Isotope and U-Th-Pb Age Mapping of Single Monazite Grains by Laser Ablation Split Stream Analysis

    NASA Astrophysics Data System (ADS)

    Fisher, C. M.; Hanchar, J. M.; Miller, C. F.; Phillips, S.; Vervoort, J. D.; Martin, W.

    2015-12-01

    Monazite is a common accessory mineral that occurs in medium to high grade metamorphic and Ca-poor felsic igneous rocks, and often controls the LREE budget (including Sm and Nd) of the host rock in which it crystallizes. Moreover, it contains appreciable U and Th, making it an ideal mineral for determining U-Th-Pb ages and Sm-Nd isotopic compositions, both of which are readily determined using in situ techniques with very high spatial resolution like LA-MC-ICPMS. Here, we present the results of laser ablation split stream analyses (LASS), which allows for simultaneous determination of the age and initial Nd isotopic composition in a single analysis. Analyses were done using a 20mm laser spot that allowed for detailed Nd isotope mapping of monazite grains (~30 analyses per ~250mm sized grain). Combined with LREE ratios (e.g., Sm/Nd, Ce/Gd, and Eu anomalies) these results yield important petrogenetic constraints on the evolution of peraluminous granites from the Old Woman-Piute batholith in southeastern California. Our findings also allow an improved understanding of the causes of isotope heterogeneity in granitic rocks. U-Th-Pb age mapping across the crystals reveals a single Cretaceous age for all grains with precision and accuracy typical of laser ablation analyses (~2%). In contrast, the concurrent Nd isotope mapping yields homogeneous initial Nd isotope compositions for some grains and large initial intra-grain variations of up to 8 epsilon units in others. The grains that yield homogeneous Nd isotope compositions have REE ratios suggesting that they crystallized in a fractionally crystallizing magma. Conversely, other grains, which also record fractional crystallization of both feldspar and LREE rich minerals, demonstrate a change in the Nd isotope composition of the magma during crystallization of monazite. Comparison of inter- and intra-grain Nd isotope compositions reveals further details on the potential mechanisms responsible for isotope heterogeneity

  13. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  14. Electromagnetic duality and entanglement anomalies

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Michel, Ben; Wall, Aron C.

    2017-08-01

    Duality is an indispensable tool for describing the strong-coupling dynamics of gauge theories. However, its actual realization is often quite subtle: quantities such as the partition function can transform covariantly, with degrees of freedom rearranged in a nonlocal fashion. We study this phenomenon in the context of the electromagnetic duality of Abelian p -forms. A careful calculation of the duality anomaly on an arbitrary D -dimensional manifold shows that the effective actions agree exactly in odd D , while in even D they differ by a term proportional to the Euler number. Despite this anomaly, the trace of the stress tensor agrees between the dual theories. We also compute the change in the vacuum entanglement entropy under duality, relating this entanglement anomaly to the duality of an "edge mode" theory in two fewer dimensions. Previous work on this subject has led to conflicting results; we explain and resolve these discrepancies.

  15. Familial polythelia without associated anomalies.

    PubMed

    Casey, H D; Chasan, P E; Chick, L R

    1996-01-01

    Of the many forms of supernumerary breast tissue, the most common form is the isolated presence of an accessory nipple, polythelia. While familial polythelia is recognized, it is extremely rare. In the past several years, polythelia has been noted to be associated with nephrourological anomalies. All reports of such a relationship are in random, nonfamilial cases of polythelia. We report three cases of polythelia in a family over two generations who had no urinary tract abnormalities. Discussion includes a comprehensive review of familial polythelia and its association with renal anomalies. From this review, the association of familial polythelia with nephrourological abnormalities will be delineated. Although in this report of a single family with polythelia we did not demonstrate any renal anomalies, we feel that a thorough physical exam, urine analysis, and renal ultrasound should be pursued in any patient with a significant familial history of polythelia.

  16. Solving the muon g -2 anomaly in deflected anomaly mediated SUSY breaking with messenger-matter interactions

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wang, Wenyu; Yang, Jin Min

    2017-10-01

    We propose to introduce general messenger-matter interactions in the deflected anomaly mediated supersymmetry (SUSY) breaking (AMSB) scenario to explain the gμ-2 anomaly. Scenarios with complete or incomplete grand unified theory (GUT) multiplet messengers are discussed, respectively. The introduction of incomplete GUT mulitiplets can be advantageous in various aspects. We found that the gμ-2 anomaly can be solved in both scenarios under current constraints including the gluino mass bounds, while the scenarios with incomplete GUT representation messengers are more favored by the gμ-2 data. We also found that the gluino is upper bounded by about 2.5 TeV (2.0 TeV) in scenario A and 3.0 TeV (2.7 TeV) in scenario B if the generalized deflected AMSB scenarios are used to fully account for the gμ-2 anomaly at 3 σ (2 σ ) level. Such a gluino should be accessible in the future LHC searches. Dark matter (DM) constraints, including DM relic density and direct detection bounds, favor scenario B with incomplete GUT multiplets. Much of the allowed parameter space for scenario B could be covered by the future DM direct detection experiments.

  17. South American Monsoon variability during the past 2,000 years from stable isotopic proxies and model simulations

    NASA Astrophysics Data System (ADS)

    Vuille, M.; Cruz, F. W.; Abbott, M.; Bird, B. W.; Burns, S. J.; Cheng, H.; Colose, C. M.; Kanner, L. C.; LeGrande, A. N.; Novello, V. F.; Taylor, B. L.

    2012-12-01

    The rapidly growing number of high-resolution stable isotopic proxies from speleothems, ice cores and lake sediments, located in the South American summer monsoon (SASM) belt, will soon allow for a comprehensive analysis of climate variability in the South American tropics and subtropics over the past ~ 2000 years. In combination with isotope-enabled General Circulation Models (GCMs) this offers new prospects for better understanding the spatiotemporal dynamics of the South American monsoon system and for diagnosing its sensitivities to external forcing mechanisms (solar, volcanic) and modes of ocean-atmosphere variability (e.g. ENSO and AMO). In this presentation we will discuss the rationale for interpreting isotopic excursions recorded in various proxies from the Andes, northeastern and southeastern Brazil as indicative of changes in monsoon intensity. We will focus on the past 2 millenia when isotopic proxies from the SASM region show a very coherent behavior regardless of the type of archive or their location. All proxies exhibit significant decadal to multidecadal variability, superimposed on large excursions during three key periods, the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the Current Warm Period (CWP). We interpret these three periods as times when the SASM mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative delta-18O values recorded during the entire record length. On the other hand the monsoon strength is currently rather weak in a 2000- year historical perspective, rivaled only by the low intensity during the MCA. One interpretation of these centennial-scale climate anomalies suggests that they were at least partially driven by temperature changes in the northern hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity and degree of

  18. Isotopic and Trace Element Compositions of Antarctic Micrometeorites and Comparison with IDPs

    NASA Astrophysics Data System (ADS)

    Stadermann, F. J.; Olinger, C. T.

    1992-07-01

    Antarctic micrometeorites (AMMs) show resemblances and differences to both stratospheric interplanetary dust particles (IDPs) and chondritic meteorites, but the exact nature of this relationship has yet to be established. We measured Ne, H, C, and N isotopic compositions, as well as trace element abundances in several AMMs in order to compare the results to similar measurements of IDPs (Stadermann, 1991). AMMs for this study were collected near Cap-Prudhomme (Maurette et al., 1989), and optically selected (Olinger et al., 1990). Noble gases of 23 selected AMMs were extracted through laser vaporization. Nine of these particles contained implanted solar Ne and one showed a clear signature from spallogenic Ne, confirming their extraterrestrial origin. We selected fragments from 6 of these particles, plus 2 containing apparent Ne excess and one with a roughly chondritic bulk chemistry but immeasurably low Ne, for further analyses. Secondary ion mass spectrometry (SIMS) was used to measure the H, C, and N isotopic compositions. These measurements turned out to be difficult, since the concentrations of H and C in the analyzed samples were significantly lower than in IDPs. The low concentration of C also affected the N isotopic measurements because N could only be measured as CN-. We were able to measure H in 9, as well as C and N in 3 AMMs. All measurements yielded isotopically normal results. Previous determinations of the O isotopic compositions of the same samples (Virag, pers. comm.) also gave no indication of isotopic anomalies. These results are significantly different from measurements of IDPs, where isotopic anomalies in H and N were found in roughly 1/2 and 1/3 of the particles, respectively. SIMS was also used to measure the rare earth and trace element abundances in up to 4 different fragments of 6 AMMs. Although most particles had roughly chondritic abundances, anomalous concentrations were found for Ca, Li, Co, Ni, and Ba. Significant Ca depletions up to 0

  19. Anomaly General Circulation Models.

    NASA Astrophysics Data System (ADS)

    Navarra, Antonio

    The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the

  20. Invesigation of prevalence of dental anomalies by using digital panoramic radiographs.

    PubMed

    Bilge, Nebiha Hilal; Yeşiltepe, Selin; Törenek Ağırman, Kübra; Çağlayan, Fatma; Bilge, Osman Murat

    2017-09-21

    This study was performed to evaluate the prevalence of all types and subtypes of dental anomalies among 6 to 40 year-old patients by using panoramic radiographs. This cross-sectional study was conducted by analyzing digital panoramic radiographs of 1200 patients admitted to our clinic in 2014. Dental anomalies were examined under 5 types and 16 subtypes. Dental anomalies were divided into five types: (a) number (including hypodontia, oligodontia and hyperdontia); (b) size (including microdontia and macrodontia); (c) structure (including amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia); (d) position (including transposition, ectopia, displacement, impaction and inversion); (e) shape (including fusion-gemination, dilaceration and taurodontism); RESULTS: The prevalence of dental anomalies diagnosed by panoramic radiographs was 39.2% (men (46%), women (54%)). Anomalies of position (60.8%) and shape (27.8%) were the most common types of abnormalities and anomalies of size (8.2%), structure (0.2%) and number (17%) were the least in both genders. Anomalies of impaction (45.5%), dilacerations (16.3%), hypodontia (13.8%) and taurodontism (11.2%) were the most common subtypes of dental anomalies. Taurodontism was more common in the age groups of 13-19 years. The age range of the most frequent of all other anomalies was 20-29. Anomalies of tooth position were the most common type of dental anomalies and structure anomalies were the least in this Turkish dental population. The frequency and type of dental anomalies vary within and between populations, confirming the role of racial factors in the prevalence of dental anomalies. Digital panoramic radiography is a very useful method for the detection of dental anomalies.

  1. Disparity : scalable anomaly detection for clusters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, N.; Bradshaw, R.; Lusk, E.

    2008-01-01

    In this paper, we describe disparity, a tool that does parallel, scalable anomaly detection for clusters. Disparity uses basic statistical methods and scalable reduction operations to perform data reduction on client nodes and uses these results to locate node anomalies. We discuss the implementation of disparity and present results of its use on a SiCortex SC5832 system.

  2. Penile anomalies in adolescence.

    PubMed

    Wood, Dan; Woodhouse, Christopher

    2011-03-07

    This article considers the impact and outcomes of both treatment and underlying condition of penile anomalies in adolescent males. Major congenital anomalies (such as exstrophy/epispadias) are discussed, including the psychological outcomes, common problems (such as corporal asymmetry, chordee, and scarring) in this group, and surgical assessment for potential surgical candidates. The emergence of new surgical techniques continues to improve outcomes and potentially raises patient expectations. The importance of balanced discussion in conditions such as micropenis, including multidisciplinary support for patients, is important in order to achieve appropriate treatment decisions. Topical treatments may be of value, but in extreme cases, phalloplasty is a valuable option for patients to consider. In buried penis, the importance of careful assessment and, for the majority, a delay in surgery until puberty has completed is emphasised. In hypospadias patients, the variety of surgical procedures has complicated assessment of outcomes. It appears that true surgical success may be difficult to measure as many men who have had earlier operations are not reassessed in either puberty or adult life. There is also a brief discussion of acquired penile anomalies, including causation and treatment of lymphoedema, penile fracture/trauma, and priapism.

  3. Identifying Anomalies in Gravitational Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a "fold" lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.

  4. [Surgical treatment of first branchial cleft anomaly].

    PubMed

    Xiao, Hongjun; Kong, Weijia; Gong, Shusheng; Wang, Jibao; Liu, Shiying; Shi, Hong

    2005-10-01

    To identify the clinical and anatomical presentations and to discuss the guidelines for surgical management of anomalies of the first branchial cleft. Twenty-one patients with first branchial cleft anomalies were treated in our department between January 1994 and December 2004, their clinical data were retrospectively analysed. Surgery was performed on all patients. Among them 13 were males and 8 females, ranging in age from 1.5 to 33 years with an average of 15 years. Anatomically, 3 types of first branchial cleft anomalies were identified: fistulas (n = 17), cysts (n = 2), and fistula combined with cyst (n = 2). Before definitive surgery, soma patients (n = 4) underwent incision and drainage for infection owing to the difficulties in diagnosing this anomaly. Methylthioninium Chloride was used in almost all cases for tracking the fistulous during operation. Wide exposure is necessary in many cases,and a standard parotidectomy incision allows adequate exposure of the anomaly and preservation of the facial nerve. Complete removal without complications depends on a good understanding of regional embryogenesis, an awareness of the different anatomical presentations, and a readiness to identify and protect the facial nerve during resection.

  5. Paleo-Pole Positions from Martian Magnetic Anomaly Data

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Frawley, James J.

    2003-01-01

    Magnetic component anomaly maps were made from five mapping cycles of the Mars Global Surveyor s magnetometer data. Our goal was to find and isolate positive and negative anomaly pairs which would indicate magnetization of a single source body. From these anomalies we could compute the direction of the magnetizing vector and subsequently the location of the magnetic pole existing at the time of magnetization. We found nine suitable anomaly pairs and from these we computed four North and 3 South poles with two at approximately 60 degrees north latitude. These results suggest that during the existence of the Martian main magnetic field it experienced several reversals.

  6. Paleo-Pole Positions from Martian Magnetic Anomaly Data

    NASA Technical Reports Server (NTRS)

    Frawley, James J.; Taylor, Patrick T.

    2004-01-01

    Magnetic component anomaly maps were made from five mapping cycles of the Mars Global Surveyor's magnetometer data. Our goal was to find and isolate positive and negative anomaly pairs which would indicate magnetization of a single source body. From these anomalies we could compute the direction of the magnetizing vector and subsequently the location of the magnetic pole existing at the time of magnetization. We found nine suitable anomaly pairs and from these we computed paleo-poles that were nearly equally divided between north, south and mid-latitudes. These results suggest that during the existence of the martian main magnetic field it experienced several reversals and excursions.

  7. The Compact Environmental Anomaly Sensor (CEASE) III

    NASA Astrophysics Data System (ADS)

    Roddy, P.; Hilmer, R. V.; Ballenthin, J.; Lindstrom, C. D.; Barton, D. A.; Ignazio, J. M.; Coombs, J. M.; Johnston, W. R.; Wheelock, A. T.; Quigley, S.

    2016-12-01

    The Air Force Research Laboratory's Energetic Charged Particle (ECP) sensor project is a comprehensive effort to measure the charged particle environment that causes satellite anomalies. The project includes the Compact Environmental Anomaly Sensor (CEASE) III, building on the flight heritage of prior CEASE designs. CEASE III consists of multiple sensor modules. High energy particles are observed using independent unique silicon detector stacks. In addition CEASE III includes an electrostatic analyzer (ESA) assembly which uses charge multiplication for particle detection. The sensors cover a wide range of proton and electron energies that contribute to satellite anomalies.

  8. Regional magnetic anomaly constraints on continental breakup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Frese, R.R.B.; Hinze, W.J.; Olivier, R.

    1986-01-01

    Continental lithosphere magnetic anomalies mapped by the Magsat satellite are related to tectonic features associated with regional compositional variations of the crust and upper mantle and crustal thickness and thermal perturbations. These continental-scale anomaly patterns when corrected for varying observation elevation and the global change in the direction and intensity of the geomagnetic field show remarkable correlation of regional lithospheric magnetic sources across rifted continental margins when plotted on a reconstruction of Pangea. Accordingly, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans.

  9. Heat flow anomalies and their interpretation

    NASA Astrophysics Data System (ADS)

    Chapman, David S.; Rybach, Ladislaus

    1985-12-01

    More than 10,000 heat flow determinations exist for the earth and the data set is growing steadily at about 450 observations per year. If heat flow is considered as a surface expression of geothermal processes at depth, the analysis of the data set should reveal properties of those thermal processes. They do, but on a variety of scales. For this review heat flow maps are classified by 4 different horizontal scales of 10 n km (n = 1, 2, 3 and 4) and attention is focussed on the interpretation of anomalies which appear with characteristic dimensions of 10 (n - 1) km in the respective representations. The largest scale of 10 4 km encompasses heat flow on a global scale. Global heat loss is 4 × 10 13 W and the process of sea floor spreading is the principal agent in delivering much of this heat to the surface. Correspondingly, active ocean ridge systems produce the most prominent heat flow anomalies at this scale with characteristic widths of 10 3 km. Shields, with similar dimensions, exhibit negative anomalies. The scale of 10 3 km includes continent wide displays. Heat flow patterns at this scale mimic tectonic units which have dimensions of a few times 10 2 km, although the thermal boundaries between these units are sometimes sharp. Heat flow anomalies at this scale also result from plate tectonic processes, and are associated with arc volcanism, back arc basins, hot spot traces, and continental rifting. There are major controversies about the extent to which these surface thermal provinces reflect upper mantle thermal conditions, and also about the origin and evolution of the thermal state of continental lithosphere. Beginning with map dimensions of 10 2 km thermal anomalies of scale 10 1 km, which have a definite crustal origin, become apparent. The origin may be tectonic, geologic, or hydrologic. Ten kilometers is a common wavelength of topographic relief which drives many groundwater flow systems producing thermal anomalies. The largest recognized continental

  10. Identification of Biomarkers for Patients With Vascular Anomalies

    ClinicalTrials.gov

    2018-02-12

    Vascular Anomaly; Generalized Lymphatic Anomaly; Kaposiform Hemangioendothelioma; Kaposiform Lymphangiomatosis; Gorham-Stout Disease; Klippel Trenaunay Syndrome; Congenital Lipomatous Overgrowth, Vascular Malformations, and Epidermal Nevi

  11. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism

    PubMed Central

    Bontognali, Tomaso R. R.; Sessions, Alex L.; Allwood, Abigail C.; Fischer, Woodward W.; Grotzinger, John P.; Summons, Roger E.; Eiler, John M.

    2012-01-01

    The 3.45-billion-year-old Strelley Pool Formation of Western Australia preserves stromatolites that are considered among the oldest evidence for life on Earth. In places of exceptional preservation, these stromatolites contain laminae rich in organic carbon, interpreted as the fossil remains of ancient microbial mats. To better understand the biogeochemistry of these rocks, we performed microscale in situ sulfur isotope measurements of the preserved organic sulfur, including both Δ33S and . This approach allows us to tie physiological inference from isotope ratios directly to fossil biomass, providing a means to understand sulfur metabolism that is complimentary to, and independent from, inorganic proxies (e.g., pyrite). Δ33S values of the kerogen reveal mass-anomalous fractionations expected of the Archean sulfur cycle, whereas values show large fractionations at very small spatial scales, including values below -15‰. We interpret these isotopic patterns as recording the process of sulfurization of organic matter by H2S in heterogeneous mat pore-waters influenced by respiratory S metabolism. Positive Δ33S anomalies suggest that disproportionation of elemental sulfur would have been a prominent microbial process in these communities. PMID:22949693

  12. Discovering System Health Anomalies Using Data Mining Techniques

    NASA Technical Reports Server (NTRS)

    Sriastava, Ashok, N.

    2005-01-01

    We present a data mining framework for the analysis and discovery of anomalies in high-dimensional time series of sensor measurements that would be found in an Integrated System Health Monitoring system. We specifically treat the problem of discovering anomalous features in the time series that may be indicative of a system anomaly, or in the case of a manned system, an anomaly due to the human. Identification of these anomalies is crucial to building stable, reusable, and cost-efficient systems. The framework consists of an analysis platform and new algorithms that can scale to thousands of sensor streams to discovers temporal anomalies. We discuss the mathematical framework that underlies the system and also describe in detail how this framework is general enough to encompass both discrete and continuous sensor measurements. We also describe a new set of data mining algorithms based on kernel methods and hidden Markov models that allow for the rapid assimilation, analysis, and discovery of system anomalies. We then describe the performance of the system on a real-world problem in the aircraft domain where we analyze the cockpit data from aircraft as well as data from the aircraft propulsion, control, and guidance systems. These data are discrete and continuous sensor measurements and are dealt with seamlessly in order to discover anomalous flights. We conclude with recommendations that describe the tradeoffs in building an integrated scalable platform for robust anomaly detection in ISHM applications.

  13. Strontium and carbon isotope stratigraphy of the Late Jurassic shallow marine limestone in western Palaeo-Pacific, northwest Borneo

    NASA Astrophysics Data System (ADS)

    Kakizaki, Yoshihiro; Weissert, Helmut; Hasegawa, Takashi; Ishikawa, Tsuyoshi; Matsuoka, Jun; Kano, Akihiro

    2013-09-01

    Strontium and carbon isotope stratigraphy was applied to a 202 m-thick shallow marine carbonate section within the Late Jurassic Bau Limestone at the SSF quarry in northwest Borneo, Malaysia, which was deposited in the western Palaeo-Pacific. Strontium isotopic ratios of rudist specimens suggest that the SSF section was formed between the latest Oxfordian (155.95 Ma) and the Late Kimmeridgian (152.70 Ma), which is consistent with previous biostratigraphy. The δ13Ccarb values of bulk carbonate range from -0.10 to +2.28‰ and generally show an increasing upward trend in the lower part of the section and a decreasing upward trend in the upper part of the section. A comparable pattern is preserved in the δ13Corg isotope record. Limestone samples of the SSF section mainly preserve the initial δ13Ccarb values, except for the interval 84-92 m, where an apparent negative anomaly likely developed as a result of meteoric diagenesis. Comparing with the Tethyan δ13Ccarb profile, a negative anomaly in the lower SSF section can be correlated with the lowered δ13C values around the Oxfordian/Kimmeridgian boundary. In addition, δ13Ccarb values of the Bau Limestone are generally ∼1‰ lower than the Tethyan values, but comparable with the values reported from Scotland and Russia, located in Boreal realm during the Late Jurassic. This suggests that either the Tethyan record or the other records have been affected by the δ13C values of regionally variable dissolved inorganic carbon (DIC). The Late Jurassic δ13CDIC values are thought to have been regionally variable as a result of their palaeoceanographic settings. This study shows that δ13C chemostratigraphy of the Palaeo-Pacific region contributes to an improved understanding of global carbon cycling and oceanography during this time period.

  14. A Probability Model for Belady's Anomaly

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel E.; Anderson, Nicole

    2010-01-01

    In demand paging virtual memory systems, the page fault rate of a process varies with the number of memory frames allocated to the process. When an increase in the number of allocated frames leads to an increase in the number of page faults, Belady's anomaly is said to occur. In this paper, we present a probability model for Belady's anomaly. We…

  15. A Distinct Magnetic Isotope Effect Measured in Atmospheric Mercury in Epiphytes

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Odom, A. L.

    2007-12-01

    Due to the importance of Mercury as an environmental contaminant, mercury cycling in the atmosphere has been extensively studied. However, there still remain uncertainties in the relative amounts of natural and anthropogenic emissions, atmospheric deposition rates as well as the spatial variation of atmospheric mercury. Part of a study to determine the isotopic composition of mercury deposited from the atmosphere has involved the use of epiphytes as monitors. The greatest advantage of such natural monitors is that a widespread, high-density network is possible at low cost. One of the disadvantages at present is that these monitors likely contain different mercury species (for example both gaseous, elemental mercury trapped by adsorption and Hg (II) by wet deposition). The project began with the understanding that biochemical reactions involving metallothioneins within the epiphytes might have produced an isotopic effect. One such regional network was composed of samples of Tillandsia usenoides (common name: Spanish moss) collected along the eastern Coastal Plain of the U.S. from northern Florida to North Carolina. The isotopic composition of a sample is expressed as permil deviations from a standard. The deviations are defined as δAHg = \\left(\\frac{Rsample}{Rstd}-1 \\right)1000 ‰ , where A represents the atomic mass number. R=\\frac{AHg}{202Hg} were measured for the isotopes 198Hg, 199Hg, 200Hg, 201Hg, 202Hg and 204Hg relative to the mercury standard SRM NIST 3133, by a standard-sample bracketing technique. For all samples, the delta values of the even-N plotted against atomic mass numbers define a linear curve. For the odd-N isotopes, δ199Hg and δ201Hg deviate from this mass-dependent fractionation (MDF) relationship and indicate a mass-independent fractionation (MIF) effect and a negative anomaly, i.e. a depletion in 199Hg and 201Hg relative to the even-N isotopes. These deviations are expressed as Δ199Hg = δ199Hgtotal - δ199HgMDF. A Δ201Hg/Δ199Hg

  16. Type II first branchial cleft anomaly.

    PubMed

    Al-Mahdi, Akmam H; Al-Khurri, Luay E; Atto, Ghada Z; Dhaher, Ameer

    2013-01-01

    First branchial cleft anomaly is a rare disease of the head and neck. It accounts for less than 8% of all branchial abnormalities. It is classified into type I, which is thought to arise from the duplication of the membranous external ear canal and are composed of ectoderm only, and type II that have ectoderm and mesoderm. Because of its rarity, first branchial cleft anomaly is often misdiagnosed and results in inappropriate management. A 9-year-old girl presented to us with fistula in the submandibular region and discharge in the external ear. Under general anesthesia, complete surgical excision of the fistula tract was done through step-ladder approach, and the histopathologic examination confirmed the diagnosis of type II first branchial cleft anomaly.

  17. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  18. Frequency of developmental dental anomalies in the Indian population.

    PubMed

    Guttal, Kruthika S; Naikmasur, Venkatesh G; Bhargava, Puneet; Bathi, Renuka J

    2010-07-01

    To evaluate the frequency of developmental dental anomalies in the Indian population. This prospective study was conducted over a period of 1 year and comprised both clinical and radiographic examinations in oral medicine and radiology outpatient department. Adult patients were screened for the presence of dental anomalies with appropriate radiographs. A comprehensive clinical examination was performed to detect hyperdontia, talon cusp, fused teeth, gemination, concrescence, hypodontia, dens invaginatus, dens evaginatus, macro- and microdontia and taurodontism. Patients with syndromes were not included in the study. Of the 20,182 patients screened, 350 had dental anomalies. Of these, 57.43% of anomalies occurred in male patients and 42.57% occurred in females. Hyperdontia, root dilaceration, peg-shaped laterals (microdontia), and hypodontia were more frequent compared to other dental anomalies of size and shape. Dental anomalies are clinically evident abnormalities. They may be the cause of various dental problems. Careful observation and appropriate investigations are required to diagnose the condition and institute treatment.

  19. Isotopic perspectives on the western Himalayan syntaxis

    NASA Astrophysics Data System (ADS)

    Argles, T. W.; Foster, G. L.; Whittington, A. G.; George, M. T.

    2003-04-01

    The western syntaxis has been characterised as a structural and metamorphic anomaly within the Himalaya, resulting from extreme Neogene exhumation and associated partial melting. However, an integration of detailed fieldwork with whole-rock isotopic data indicates that all the major tectonic units observed along the arc of the orogen also occur in the syntaxis. Most of the rocks exposed by the extreme exhumation have very different characteristics to their correlatives in the rest of the Himalayan mountain belt, because they represent very different crustal levels. The generally higher metamorphic grade of most syntaxial units obscures their affinities, while high strain throughout the syntaxis also conspires to mask the major tectonic faults that form boundaries to the units in the rest of the orogen. The Lesser Himalayan affinity of the gneissic core of the Nanga Parbat massif has been revealed previously using Nd isotopes. This study confirms the distinction between Lesser (E(Nd) = -20 to -29) and High (E(Nd) = -12 to -19) Himalayan rocks, but further subdivides those units with a High Himalayan Nd signature using Sr isotopic data. Some low-grade schists within the syntaxis have a relatively low 87Sr/86Sr ratio (<0.720) that distinguishes them from the High Himalayan rocks, and suggests they are metamorphic equivalents of the Tethyan sediments exposed in the main Himalayan orogen. The tectonic contact between the Lesser and High Himalayan units in the central Himalaya is the Main Central Thrust, a zone characterised by inverted metamorphism and high strain, but in the uniformly high-strain syntaxis this thrust is difficult to locate except by isotopic signatures. Extensive thermobarometric studies in the syntaxis, however, show two things. The first is the varying intensity of Neogene metamorphic overprint, whose strength is closely related to the degree of deformation (and rheology). The second is a zone of distinctly lower temperature mineral assemblages

  20. Prevalence and distribution of selected developmental dental anomalies in an Indian population.

    PubMed

    Gupta, Saurabh K; Saxena, Payal; Jain, Sandhya; Jain, Deshraj

    2011-06-01

    The purpose of this study was to determine the prevalence of developmental dental anomalies in an Indian population and to statistically analyze the distribution of these anomalies. The study was based on clinical examination, evaluation of dental casts, and panoramic radiographs of 1123 Indian subjects (572 males, 551 females), who visited the outpatient clinic at Government Dental College, Indore between November 2009 and September 2010, after obtaining their informed consent. These patients were examined for the following developmental dental anomalies: shape anomalies (microdontia, talon cusp, dens evaginatus, fusion, taurodontism), number anomalies (hypodontia, oligodontia, anodontia), structural anomalies (amelogenesis imperfecta, dentinogenesis imperfecta) and positional anomalies (ectopic eruption, rotation, impaction). The percentages of these anomalies were assessed for the whole group and compared using statistical analysis. Among the 1123 subjects, a total of 385 individuals (34.28%) presented with the selected developmental dental anomalies. The distribution by sex was 197 males (34.44%), and 188 females (34.06%). Out of the total 1123 individuals, 351 (31.26%) exhibited at least one anomaly, 28 (2.49 %) showed two anomalies and 6 (0.53%) displayed more than two anomalies. P values indicated that the dental anomalies were statistically independent of sex. On intergroup comparison, positional anomalies were significantly most prevalent (P < 0.05) in the Indian population. The most common developmental dental anomaly was rotation (10.24%), followed by ectopic eruption (7.93%). The next common group was number anomalies. The most common number anomaly was hypodontia (4.19%), which had a higher frequency than hyperdontia (2.40%). Analyzing the next prevalent group of shape anomalies, microdontia (2.58%) was found to be the most common, followed by taurodontism (2.49%), dens evaginatus (2.40%) and talon cusp (0.97%). Dentinogenesis imperfecta (0.09%) was

  1. Paleocene-Eocene Thermal Maximum triggered by Volcanism revealed by Mercury anomalies

    NASA Astrophysics Data System (ADS)

    Khozyem, Hassan; Adatte, Thierry; Mbabi Bitchong, André; Chevalier, Yoann; Keller, Gerta

    2017-04-01

    The Paleocene-Eocene Thermal Maximum (PETM, 55.8±0.2 Ma) is marked by a global drop of 2-6‰ in 13C values and rapid warming of 4-5°C in tropical surface waters and 4-8°C in high latitudes. Climate warming persisted for several tens of thousands of years and resulted in rapid diversification in terrestrial mammals and marine planktic foraminifera. Deep-water bathyal benthic foraminifera suffered a mass extinction ( 40% species) but no significant extinctions occurred shallow shelf environments. Benthic extinctions are commonly explained as the effects of the initial stage of climate warming due to North Atlantic Volcanic Province volcanism (NAVP), which triggered methane release from ocean sediments causing global warming and ocean acidification. But the relationship between NAPV and the PETM events are not clearly demonstrated. Several studies [1-4] demonstrated the relationship between Hg anomalies in sediments and LIP activity associated with mass extinctions. We investigated the mercury (Hg) content of several sections located in deep bathyal (Zumaya, Trabakua, N-Spain) and outer shelf environments (Dababiya GSSP, Duwi, Egypt). At Zumaya the PETM is marked by a red clayey and marly interval poor in organic matter and coincident with a pronounced ∂13C negative shift. A comparable clay interval with low TOC content is also present in the Dababyia section in the lower part of the negative ∂13C shift, whereas the upper part of is enriched in TOC, reflecting increased productivity. A significant but unique Hg enrichment is observed at the onset of the PETM just below the carbone isotope shift in Spain as well as in Egypt. This increase, which is not correlated with clay or total organic carbon contents, suggests the Hg anomaly resulted from higher atmospheric Hg input into the marine realm, rather than organic matter scavenging and/or increased run-off. This Hg anomaly at the onset of the PETM provides the first direct evidence that volcanism played a

  2. Precambrian crystalline basement map of Idaho-an interpretation of aeromagnetic anomalies

    USGS Publications Warehouse

    Sims, P.K.; Lund, Karen; Anderson, E.

    2005-01-01

    Idaho lies within the northern sector of the U.S. Cordillera astride the boundary between the Proterozoic continent (Laurentia) to the east and the Permian to Jurassic accreted terranes to the west. The continental basement is mostly covered by relatively undeformed Mesoproterozoic metasedimentary rocks and intruded or covered by Phanerozoic igneous rocks; accordingly, knowledge of the basement geology is poorly constrained. Incremental knowledge gained since the pioneering studies by W. Lindgren, C.P. Ross, A.L. Anderson, A. Hietanen, and others during the early- and mid-1900's has greatly advanced our understanding of the general geology of Idaho. However, knowledge of the basement geology remains relatively poor, partly because of the remoteness of much of the region plus the lack of a stimulus to decipher the complex assemblage of high-grade gneisses and migmatite of central Idaho. The availability of an updated aeromagnetic anomaly map of Idaho (North American Magnetic Anomaly Group, 2002) provides a means to determine the regional Precambrian geologic framework of the State. The combined geologic and aeromagnetic data permit identification of previously unrecognized crystalline basement terranes, assigned to Archean and Paleoproterozoic ages, and the delineation of major shear zones, which are expressed in the aeromagnetic data as linear negative anomalies (Finn and Sims, 2004). Limited geochronologic data on exposed crystalline basement aided by isotopic studies of zircon inheritance, particularly Bickford and others (1981) and Mueller and others (1995), provide much of the geologic background for our interpretation of the basement geology. In northwestern United States, inhomogeneities in the basement inherited from Precambrian tectogenesis controlled many large-scale tectonic features that developed during the Phanerozoic. Two basement structures, in particular, provided zones of weakness that were repeatedly rejuvenated: (1) northeast-trending ductile

  3. IDENTIFYING ANOMALIES IN GRAVITATIONAL LENS TIME DELAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik, E-mail: acongdon@jpl.nasa.go, E-mail: keeton@physics.rutgers.ed, E-mail: nordgren@sas.upenn.ed

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a 'fold' lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxiesmore » with tidal shear. We can then identify outliers as 'time delay anomalies'. We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.« less

  4. Preliminary correlations of MAGSAT anomalies with tectonic features of Africa

    USGS Publications Warehouse

    Hastings, David A.

    1982-01-01

    An overview of the MAGSAT scalar anomaly map for Africa has suggested a correlation of MAGSAT anomalies with major crustal blocks of uplift or depression and different degrees of regional metamorphism. The strongest MAGSAT anomalies in Africa are closely correlated spatially with major tectonic features. Although a magnetic anomaly caused by a rectangular crustal block would be offset from the block's center by the effects of magnetic inclination, an anomaly caused by real crustal blocks of varying uplift, depression, and degree of regional metamorphism would be located nearer to the locus of greatest vertical movement and highest grade of metamorphism. Thus, the Bangui anomaly may be caused by a central old Precambrian shield, flanked to the north and south by two relatively young sedimentary basins.

  5. Enhanced detection and visualization of anomalies in spectral imagery

    NASA Astrophysics Data System (ADS)

    Basener, William F.; Messinger, David W.

    2009-05-01

    Anomaly detection algorithms applied to hyperspectral imagery are able to reliably identify man-made objects from a natural environment based on statistical/geometric likelyhood. The process is more robust than target identification, which requires precise prior knowledge of the object of interest, but has an inherently higher false alarm rate. Standard anomaly detection algorithms measure deviation of pixel spectra from a parametric model (either statistical or linear mixing) estimating the image background. The topological anomaly detector (TAD) creates a fully non-parametric, graph theory-based, topological model of the image background and measures deviation from this background using codensity. In this paper we present a large-scale comparative test of TAD against 80+ targets in four full HYDICE images using the entire canonical target set for generation of ROC curves. TAD will be compared against several statistics-based detectors including local RX and subspace RX. Even a perfect anomaly detection algorithm would have a high practical false alarm rate in most scenes simply because the user/analyst is not interested in every anomalous object. To assist the analyst in identifying and sorting objects of interest, we investigate coloring of the anomalies with principle components projections using statistics computed from the anomalies. This gives a very useful colorization of anomalies in which objects of similar material tend to have the same color, enabling an analyst to quickly sort and identify anomalies of highest interest.

  6. Expanding the clinical spectrum of ocular anomalies in Noonan syndrome: Axenfeld-anomaly in a child with PTPN11 mutation.

    PubMed

    Guerin, Andrea; So, Joyce; Mireskandari, Kamiar; Jougeh-Doust, Soghra; Chisholm, Caitlin; Klatt, Regan; Richer, Julie

    2015-02-01

    Ocular anomalies have been frequently reported in Noonan syndrome. Anterior segment anomalies have been described in 57% of PTPN11 positive patients, with the most common findings being corneal changes and in particular, prominent corneal nerves and cataracts. We report on a neonate with a confirmed PTPN11 mutation and ocular findings consistent with Axenfeld anomaly. The patient initially presented with non-immune hydrops and subsequently developed hypertrophic cardiomyopathy and dysmorphic features typical of Noonan syndrome. While a pathogenic mutation in PTPN11 was confirmed, prior testing for the two common genes associated with Axenfeld-Rieger syndrome, PITX2, and FOXC1 was negative. This finding expands the spectrum of anterior chamber anomalies seen in Noonan syndrome and perhaps suggests a common neural crest related mechanism that plays a critical role in the development of the eye and other organs. © 2014 Wiley Periodicals, Inc.

  7. On the origin of the Bangui magnetic anomaly, central African empire

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.

    1977-01-01

    A large magnetic anomaly was recognized in satellite magnetometer data over the Central African Empire in central Africa. They named this anomaly the Bangui magnetic anomaly due to its location near the capital city of Bangui, C.A.E. Because large crustal magnetic anomalies are uncommon, the origin of this anomaly has provoked some interest. The area of the anomaly was visited to make ground magnetic measurements, geologic observations, and in-situ magnetic susceptibility measurements. Some rock samples were also collected and chemically analyzed. The results of these investigations are presented.

  8. Ca, Sr, Mo and U isotopes evidence ocean acidification and deoxygenation during the Late Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Silva-Tamayo, Juan Carlos; Payne, Jon; Wignall, Paul; Newton, Rob; Eisenhauer, Anton; Weyer, Stenfan; Neubert, Nadja; Lau, Kim; Maher, Kate; Paytan, Adina; Lehrmann, Dan; Altiner, Demir; Yu, Meiyi

    2014-05-01

    The most catastrophic extinction event in the history of animal life occurred at the end of the Permian Period, ca. 252 Mya. Ocean acidification and global oceanic euxinia have each been proposed as causes of this biotic crisis, but the magnitude and timing of change in global ocean chemistry remains poorly constrained. Here we use multiple isotope systems - Ca, Sr, Mo and U - measured from well dated Upper Permian- Lower Triassic sedimentary sections to better constrain the magnitude and timing of change in ocean chemistry and the effects of ocean acidification and de-oxygenation through this interval. All the investigated carbonate successions (Turkey, Italy and China) exhibit decreasing δ44/40Ca compositions, from ~-1.4‰ to -2.0‰ in the interval preceding the main extinction. These values remain low during most of the Griesbachian, to finally return to -1.4‰ in the middle Dienerian. The limestone succession from southern Turkey also displays a major decrease in the δ88/86Sr values from 0.45‰ to 0.3‰ before the extinction. These values remain low during the Griesbachian and finally increase to 0.55‰ by the middle Dienerian. The paired negative anomalies on the carbonate δ44/40Ca and δ88/86Sr suggest a decrease in the carbonate precipitation and thus an episode of ocean acidification coincident with the major biotic crisis. The Mo and U isotope records also exhibit significant rapid negative anomalies at the onset of the main extinction interval, suggesting rapid expansion of anoxic and euxinic marine bottom waters during the extinction interval. The rapidity of the isotope excursions in Mo and U suggests substantially reduced residence times of these elements in seawater relative to the modern, consistent with expectations for a time of widespread anoxia. The large C-isotope variability within Lower Triassic rocks, which is similar to that of the Lower-Middle Cambrian, may reflect biologically controlled perturbations of the oceanic carbon cycle

  9. Branchial Cleft Anomalies

    PubMed Central

    McPhail, Neil; Mustard, Robert A.

    1966-01-01

    The embryology, anatomy and pathology of branchial cleft anomalies are discussed and 87 cases reviewed. The most frequent anomaly was branchial cleft cyst, of which there were 77 cases. Treatment in all cases consisted of complete excision. There were five cases of external branchial sinus and five cases of complete branchial fistula. Sinograms were helpful in demonstrating these lesions. Excision presented little difficulty. No proved case of branchiogenic carcinoma has been found in the Toronto General Hospital. Five cases are described in which the original diagnosis was branchiogenic carcinoma—in four of these a primary tumour has already been found. The authors believe that the diagnosis of branchiogenic carcinoma should never be accepted until repeated examinations over a period of at least five years have failed to reveal a primary tumour. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5 PMID:5901161

  10. Elemental and Sr-Nd isotopic geochemistry of the Uradzhongqi magmatic complex in western Inner Mongolia, China: A record of early Permian post-collisional magmatism

    NASA Astrophysics Data System (ADS)

    Qiao, Xueyuan; Li, Wenbo; Zhong, Richen; Hu, Chuansheng; Zhu, Feng; Li, Zhihua

    2017-08-01

    The magmatic complex in Uradzhongqi, Inner Mongolia, is located in the western segment of the northern margin of the North China Craton (NCC). The dominant components in the complex include syenogranite, monzogranite, granodiorite, diorite and gabbro. Mafic microgranular enclaves (MMEs) are common in syenogranite and granodiorite. Zircon U-Pb dating shows that the ages of these rocks range from 283 to 270 Ma, suggesting an early Permian emplacement. The syenogranite and monzogranite are peraluminous I-type granites, exhibiting conspicuous negative Eu anomaly, enrichment in large-ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in high field strength elements (HFSE). The granodiorites, diorites and MMEs are metaluminous in composition, show high Al2O3, MgO and Fe2O3T contents and weak negative Eu anomaly, as well as LREE and LILE enrichment and HFSE depletion. The gabbros show weak positive Eu anomaly and slight REE differentiation. The Sr-Nd isotope compositions show that the source of mafic magma was depleted mantle (DM) with possible involvement of enriched mantle II (EM II), whereas the felsic magma was derived from the Archean lower crust. Petrographic observation and analytical results of mineralogy, geochronology, geochemistry and Sr-Nd isotopes indicate that the main petrogenesis of these magmatic rocks is the mixing of underplating mafic magma and felsic magma. Tectonically, the complex pluton was formed within a post-collisional regime, and the underplating in this area provides another piece of evidence for the vertical growth of the western segment of the northern margin of the NCC.

  11. Nonrelativistic trace and diffeomorphism anomalies in particle number background

    NASA Astrophysics Data System (ADS)

    Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe

    2018-04-01

    Using the heat kernel method, we compute nonrelativistic trace anomalies for Schrödinger theories in flat spacetime, with a generic background gauge field for the particle number symmetry, both for a free scalar and a free fermion. The result is genuinely nonrelativistic, and it has no counterpart in the relativistic case. Contrary to naive expectations, the anomaly is not gauge invariant; this is similar to the nongauge covariance of the non-Abelian relativistic anomaly. We also show that, in the same background, the gravitational anomaly for a nonrelativistic scalar vanishes.

  12. New insights into Mo and Ru isotope variation in the nebula and terrestrial planet accretionary genetics

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Worsham, E. A.; Walker, R. J.

    2018-04-01

    When corrected for the effects of cosmic ray exposure, Mo and Ru nucleosynthetic isotope anomalies in iron meteorites from at least nine different parent bodies are strongly correlated in a manner consistent with variable depletion in s-process nucleosynthetic components. In contrast to prior studies, the new results show no significant deviations from a single correlation trend. In the refined Mo-Ru cosmic correlation, a distinction between the non-carbonaceous (NC) group and carbonaceous chondrite (CC) group is evident. Members of the NC group are characterized by isotope compositions reflective of variable s-process depletion. Members of the CC group analyzed here plot in a tight cluster and have the most s-process depleted Mo and Ru isotopic compositions, with Mo isotopes also slightly enriched in r- and possibly p-process contributions. This indicates that the nebular feeding zone of the NC group parent bodies was characterized by Mo and Ru with variable s-process contributions, but with the two elements always mixed in the same proportions. The CC parent bodies sampled here, by contrast, were derived from a nebular feeding zone that had been mixed to a uniform s-process depleted Mo-Ru isotopic composition. Six molybdenite samples, four glacial diamictites, and two ocean island basalts were analyzed to provide a preliminary constraint on the average Mo isotope composition of the bulk silicate Earth (BSE). Combined results yield an average μ97Mo value of +3 ± 6. This value, coupled with a previously reported μ100Ru value of +1 ± 7 for the BSE, indicates that the isotopic composition of the BSE falls precisely on the refined Mo-Ru cosmic correlation. The overlap of the BSE with the correlation implies that there was homogeneous accretion of siderophile elements for the final accretion of 10 to 20 wt% of Earth's mass. The only known cosmochemical materials with an isotopic match to the BSE, with regard to Mo and Ru, are some members of the IAB iron meteorite

  13. Magmatic Fluid Source of the Chingshui Geothermal Field: Evidence of Carbonate Isotope data

    NASA Astrophysics Data System (ADS)

    Song, S. R.; Lu, Y. C.; Wang, P. L.; John, C. M.; MacDonald, J.

    2015-12-01

    The Chingshui geothermal field is located at the northern tip of the Miocene Lushan Slate Formation, which was part of the Eurasian continental margin subject to the Plio-Pleistocene collision associated with the Luzon Arc. The remnant heat of the Taiwan orogeny has long been considered to drive the circulation of hydrothermal fluids in the Chingshui geothermal field. However, recent studies based on magnetic anomalies and helium isotopic ratios suggest that the heat might instead be derived from igneous bodies. By examining isotope data of calcite veins and scaling in geothermal wells, this study aimed to clarify the fluid origin and possible heat source accounting for the geothermal fluids in the Chingshui geothermal field. Carbon and oxygen isotope analyses indicate that veins from outcrops and scalings in geothermal wells have high and low d values, respectively. Data for veins in drilled cores fall in between outcrop veins and scalings values. Such an isotopic pattern could be interpreted as the mixing of two end member fluids. The clumped isotope analysis of calcite veins from the outcrops yielded precipitation temperatures of up to 232 ± 16 ℃ and a reconstructed d18O fluid value of 9.5 ‰(magmatic fluid: 6-11 ‰; metamorphic fluid: 5-28 ‰ by Taylor, 1974). The inferred d18O values of hot fluids for the vein formation are significantly different from that of meteoric water in Chingshui area (around -5.4 ‰) as well as the scaling in geothermal wells (around -7.6 ‰). Previous study of magnetotelluric image demonstrated two possible fluid reservoirs at different depths (Chen et al. 2012). Our isotope data combined with these lines of evidence suggest that the scaling in geothermal wells could be derived from fluids originating from the shallower reservoir. In contrast, the veins present at outcrops could have been formed from 18O-enriched, deeply-sourced fluids related to either metamorphic dehydration or magmatic processes.

  14. Characteristics of chiral anomaly in view of various applications

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    2018-01-01

    In view of the recent applications of chiral anomaly to various fields beyond particle physics, we discuss some basic aspects of chiral anomaly which may help deepen our understanding of chiral anomaly in particle physics also. It is first shown that Berry's phase (and its generalization) for the Weyl model H =vFσ →.p →(t ) assumes a monopole form at the exact adiabatic limit but deviates from it off the adiabatic limit and vanishes in the high frequency limit of the Fourier transform of p →(t ) for bounded |p →(t )|. An effective action, which is consistent with the nonadiabatic limit of Berry's phase, combined with the Bjorken-Johnson-Low prescription, gives normal equal-time space-time commutators and no chiral anomaly. In contrast, an effective action with a monopole at the origin of the momentum space, which describes Berry's phase in the precise adiabatic limit but fails off the adiabatic limit, gives anomalous space-time commutators and a covariant anomaly to the gauge current. We regard this anomaly as an artifact of the postulated monopole and not a consequence of Berry's phase. As for the recent application of the chiral anomaly to the description of effective Weyl fermions in condensed matter and nuclear physics, which is closely related to the formulation of lattice chiral fermions, we point out that the chiral anomaly for each species doubler separately vanishes for a finite lattice spacing, contrary to the common assumption. Instead, a general form of pair creation associated with the spectral flow for the Dirac sea with finite depth takes place. This view is supported by the Ginsparg-Wilson fermion, which defines a single Weyl fermion without doublers on the lattice and gives a well-defined index (anomaly) even for a finite lattice spacing. A different use of anomaly in analogy to the partially conserved axial-vector current is also mentioned and could lead to an effect without fermion number nonconservation.

  15. Prospects for improved understanding of isotopic reactor antineutrino fluxes

    NASA Astrophysics Data System (ADS)

    Gebre, Y.; Littlejohn, B. R.; Surukuchi, P. T.

    2018-01-01

    Predictions of antineutrino fluxes produced by fission isotopes in a nuclear reactor have recently received increased scrutiny due to observed differences in predicted and measured inverse beta decay (IBD) yields, referred to as the "reactor antineutrino flux anomaly." In this paper, global fits are applied to existing IBD yield measurements to produce constraints on antineutrino production by individual plutonium and uranium fission isotopes. We find that fits including measurements from highly U 235 -enriched cores and fits including Daya Bay's new fuel evolution result produce discrepant best-fit IBD yields for U 235 and Pu 239 . This discrepancy can be alleviated in a global analysis of all data sets through simultaneous fitting of Pu 239 , U 235 , and U 238 yields. The measured IBD yield of U 238 in this analysis is (7.02 ±1.65 )×10-43 cm2/fission , nearly two standard deviations below existing predictions. Future hypothetical IBD yield measurements by short-baseline reactor experiments are examined to determine their possible impact on the global understanding of isotopic IBD yields. It is found that future improved short-baseline IBD yield measurements at both high-enriched and low-enriched cores can significantly improve constraints for U 235 , U 238 , and Pu 239 , providing comparable or superior precision to existing conversion- and summation-based antineutrino flux predictions. Systematic and experimental requirements for these future measurements are also investigated.

  16. Quantum machine learning for quantum anomaly detection

    NASA Astrophysics Data System (ADS)

    Liu, Nana; Rebentrost, Patrick

    2018-04-01

    Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.

  17. Method of Mapping Anomalies in Homogenous Material

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)

    2016-01-01

    An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.

  18. Chemical Compositions and Anomalies in Stellar Coronae

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy; Oliversen, Ronald J. (Technical Monitor)

    2005-01-01

    In summary, as the papers cited here and in earlier reports demonstrate, this award has enabled us to obtain a fairly good picture of the abundance anomalies in stellar coronae. The "inverse FIP" effect in very active stars has now been fleshed out as a more complex anomaly depending on FIP, whereas before it appeared only in terms of a general metal paucity, the recent solar abundance assessment of Asplund et a1 will, if correct, challenge some of the older interpretations of coronal abundance anomalies since they imply quite different relative abundances of CNO compared with Fe, Mg and Si. Further investigations have been in into the possibility of modeling some of the recent coronal abundance anomaly results in terms of Alfven wave-driven separation of neutrals and ions in the upper chromosphere. This work still remains in the seed stage, and future funding from a different program will be requested to pursue it further.

  19. Brain anomalies in velo-cardio-facial syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitnick, R.J.; Bello, J.A.; Shprintzen, R.J.

    Magnetic resonance imaging of the brain in 11 consecutively referred patients with velo-cardio-facial syndrome (VCF) showed anomalies in nine cases including small vermis, cysts adjacent to the frontal horns, and small posterior fossa. Focal signal hyperintensities in the white matter on long TR images were also noted. The nine patients showed a variety of behavioral abnormalities including mild development delay, learning disabilities, and characteristic personality traits typical of this common multiple anomaly syndrome which has been related to a microdeletion at 22q11. Analysis of the behavorial findings showed no specific pattern related to the brain anomalies, and the patients withmore » VCF who did not have detectable brain lesions also had behavioral abnormalities consistent with VCF. The significance of the lesions is not yet known, but the high prevalence of anomalies in this sample suggests that structural brain abnormalities are probably common in VCF. 25 refs.« less

  20. Linking entanglement and discrete anomaly

    NASA Astrophysics Data System (ADS)

    Hung, Ling-Yan; Wu, Yong-Shi; Zhou, Yang

    2018-05-01

    In 3 d Chern-Simons theory, there is a discrete one-form symmetry, whose symmetry group is isomorphic to the center of the gauge group. We study the `t Hooft anomaly associated to this discrete one-form symmetry in theories with generic gauge groups, A, B, C, D-types. We propose to detect the discrete anomaly by computing the Hopf state entanglement in the subspace spanned by the symmetry generators and develop a systematical way based on the truncated modular S matrix. We check our proposal for many examples.

  1. Meteoroid-Induced Anomalies on Spacecraft

    NASA Technical Reports Server (NTRS)

    Cooke, Bill

    2015-01-01

    Sporadic meteoroid background is directional (not isotropic) and accounts for 90 percent of the meteoroid risk to a typical spacecraft. Meteor showers get all the press, but account for only approximately10 percent of spacecraft risk. Bias towards assigning meteoroid cause to anomalies during meteor showers. Vast majority of meteoroids come from comets and have a bulk density of approximately 1 gram per cubic centimeter (ice). High speed meteoroids (approximately 50 kilometers per second) can induce electrical anomalies in spacecraft through discharging of charged surfaces (also EMP (electromagnetic pulse?).

  2. An immunity-based anomaly detection system with sensor agents.

    PubMed

    Okamoto, Takeshi; Ishida, Yoshiteru

    2009-01-01

    This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user's command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.

  3. Titanium isotopes and rare earth patterns in CAIs: Evidence for thermal processing and gas-dust decoupling in the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Davis, Andrew M.; Zhang, Junjun; Greber, Nicolas D.; Hu, Jingya; Tissot, François L. H.; Dauphas, Nicolas

    2018-01-01

    Titanium isotopic compositions (mass-dependent fractionation and isotopic anomalies) were measured in 46 calcium-, aluminum-rich inclusions (CAIs) from the Allende CV chondrite. After internal normalization to 49Ti/47Ti, we found that ε50Ti values are somewhat variable among CAIs, and that ε46Ti is highly correlated with ε50Ti, with a best-fit slope of 0.162 ± 0.030 (95% confidence interval). The linear correlation between ε46Ti and ε50Ti extends the same correlation seen among bulk solar objects (slope 0.184 ± 0.007). This observation provides constraints on dynamic mixing of the solar disk and has implications for the nucleosynthetic origin of titanium isotopes, specifically on the possible contributions from various types of supernovae to the solar system. Titanium isotopic mass fractionation, expressed as δ‧49Ti, was measured by both sample-standard bracketing and double-spiking. Most CAIs are isotopically unfractionated, within a 95% confidence interval of normal, but a few are significantly fractionated and the range δ‧49Ti is from ∼-4 to ∼+4. Rare earth element patterns were measured in 37 of the CAIs. All CAIs with significant titanium mass fractionation effects have group II and related REE patterns, implying kinetically controlled volatility fractionation during the formation of these CAIs.

  4. MOG without anomaly

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Ghaffary, Tooraj; Naimi, Yaghoob

    2018-03-01

    We obtain the action of Moffat's Modified Gravity (MOG), a scalar-tensor-vector theory of gravitation, by generalizing the Horava-Witten mechanism to fourteen dimensions. We show that the resulting theory is anomaly-free. We propose an extended version of MOG that includes fermionic fields.

  5. Xenon Fractionation and Archean Hydrogen Escape

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  6. The lunar neutron energy spectrum inferred from the isotope compositions of rare-earth elements and hafnium in Apollo samples

    NASA Astrophysics Data System (ADS)

    Albalat, Emmanuelle; Blichert-Toft, Janne; Telouk, Philippe; Albarède, Francis

    2015-11-01

    The isotopic abundances of Sm, Gd, Dy, Er, Yb, and Hf have been measured in nine lunar samples by MC-ICP-MS. The data were corrected for both instrumental mass bias and natural isotope fractionation. We used the data to calculate the total flux and energy spectrum of the neutrons absorbed by the rocks. We write the constitutive equations of the isotopic changes for these elements induced by neutrons and solve the inverse problem by computing local energy averages. Resonant absorption peaks can be used as convenient kernels to define the spectrum of epithermal neutrons. We find that 149Sm and 157Gd anomalies correlate with neutron flux density for E < 0.015 eV (r2 > 0.98) and E ≈ 0.13 eV (r2 > 0.85), while no significant correlation exists between the ratio of these anomalies and the epithermal/thermal flux ratio at any value of energy. Neutron flux density variations can be used to trace the proportions of neutrons scattered out of the samples. The spectrum in the thermal region follows the expected E - 1 / 2 dependence but with 'notches' corresponding to neutron absorption. A major notch at the lowest end of the epithermal neutron spectrum (0.2-0.8 eV) is possibly due to absorption of neutrons by 151Eu, 167Er, and 149Sm. In general, we find a rather good correlation between the neutron flux density at specific energies and the exposure age, which suggests a mean residence time of the samples at the surface of the regolith of 2-300 Ma. Another correlation of epithermal neutrons with sample wt% FeO + TiO2 is consistent with orbital reflectance observations.

  7. Marine Magnetic Anomalies and the Reconstruction of the World

    NASA Technical Reports Server (NTRS)

    Heirtzler, James R.; Smith, David E. (Technical Monitor)

    2000-01-01

    Until the middle of the 20th century little was known about magnetic anomalies in the oceans. Then it was discovered that there are relatively large anomalies in most of the oceans and they were unrelated to any geological structure known at that time. In the early 1950's large anomalies had been found over the Mid-Atlantic Ridge, and linear anomalies over the eastern continental shelf of North America and, shortly after that, off the west coast. A survey of the ridge south of Iceland showed that the anomalies were linear, parallel to the ridge axis, and symmetrical about the axis. Using the theory that the anomalies were caused by geomagnetic field reversals and seafloor spreading it was possible to greatly extend the time scale of geomagnetic reversals, to determine the velocity of seafloor spreading and estimate the time of opening of the North Atlantic. Lamont had a world-wide collection of marine magnetic profiles. These were used, systematically, to determine the positions of most of the land masses of the world since the beginnings of the world's present oceans.

  8. A Bouguer Gravity Anomaly Map of Africa.

    DTIC Science & Technology

    A Bouguer Gravity Anomaly Map of Africa has been compiled using only terrestrial data. The map is a contoured representation of one degree x one...The anomaly pattern shown on the map is discussed and evaluated with respect to regional and local tectonic and geologic patterns. The entire Bouguer

  9. Neonate with VACTERL Association and a Branchial Arch Anomaly without Hydrocephalus.

    PubMed

    Velazquez, Danitza; Pereira, Elaine; Havranek, Thomas

    2016-03-01

    VACTERL (vertebral anomalies, anal atresia, cardiac defect, tracheoesophageal fistula, renal anomaly, limb anomalies) is an association of anomalies with a wide spectrum of phenotypic expression. While the majority of cases are sporadic, there is evidence of an inherited component in a small number of patients as well as the potential influence of nongenetic risk factors (maternal diabetes mellitus). Presence of hydrocephalus has been reported in VACTERL patients (VACTERL-H) in the past, with some displaying branchial arch anomalies. We report the unique case of an infant of diabetic mother with VACTERL association and a branchial arch anomaly-in the absence of hydrocephalus.

  10. Analysis of the interdecadal variability of summer precipitation in central Japan using a reconstructed 106 year long oxygen isotope record from tree ring cellulose

    NASA Astrophysics Data System (ADS)

    Kurita, Naoyuki; Nakatsuka, Takeshi; Ohnishi, Keiko; Mitsutani, Takumi; Kumagai, Tomo'omi

    2016-10-01

    We present a unique proxy for reconstructing the interannual variability of summer precipitation associated with the quasi-stationary front (Baiu front) in central Japan. The rainfall from the Baiu front has a relatively lower oxygen isotopic composition than other types of nonfrontal precipitation. The variability in the oxygen isotopes in summer rainfall is closely related to the Baiu frontal activity. In this study we used a mechanistic tree ring isotope model to reconstruct a 106 year long oxygen isotopic composition of precipitation during the early rainy season (June) based on the oxygen isotopic compositions of the annual rings of Chamaecyparis obtusa Endl trees from central Japan. The year-to-year variations of the isotopes over the most recent 25 years are associated with several teleconnection patterns that often lead to the Baiu precipitation anomalies in central Japan (such as the Pacific-Japan (PJ) pattern, Silk Road pattern, and wave train pattern along the polar jet). Yet none of these external forcing mechanisms apply further back in time. From the 1950s to 1980s, the interannual isotopic variability is predominantly related to local factors such as anomalous intensification/weakening of the Bonin High. Before the 1950s, the variability of the oxygen isotopic composition of precipitation is mainly associated with a wave train pattern along the polar jet. The isotopic variability is predominantly linked to the PJ pattern, while the PJ index is correlated with El Niño-Southern Oscillation. These findings suggest that the teleconnection patterns influencing Baiu precipitation variability vary according to interdecadal time scales during the twentieth century.

  11. Oxygen-17 anomaly in soil nitrate: A new precipitation proxy for desert landscapes

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Ge, Wensheng; Luo, Hao; Seo, Ji-Hye; Michalski, Greg

    2016-03-01

    The nitrogen cycle in desert soil ecosystems is particularly sensitive to changes in precipitation, even of relatively small magnitude and short duration, because it is already under water stress. This suggests that desert soils may have preserved past evidence of small variations in continental precipitation. We have measured nitrate (NO3-) concentrations in soils from the Atacama (Chile), Kumtag (China), Mojave (US), and Thar (India) deserts, and stable nitrogen and oxygen isotope (15N, 17O, and 18O) abundances of the soil NO3-. 17O anomalies (Δ17O), the deviations from the mass-independent isotopic fractionation, were detected in soil NO3- from almost all sites of these four deserts. There was a strong negative correlation between the mean annual precipitation (MAP) and soil NO3- Δ17O values (Δ

  12. On the size and structure of helium snowballs formed around charged atoms and clusters of noble gases.

    PubMed

    Bartl, Peter; Leidlmair, Christian; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2014-09-18

    Helium nanodroplets doped with argon, krypton, or xenon are ionized by electrons and analyzed in a mass spectrometer. HenNgx(+) ions containing up to seven noble gas (Ng) atoms and dozens of helium atoms are identified; the high resolution of the mass spectrometer combined with advanced data analysis make it possible to unscramble contributions from isotopologues that have the same nominal mass but different numbers of helium or Ng atoms, such as the magic He20(84)Kr2(+) and the isobaric, nonmagic He41(84)Kr(+). Anomalies in these ion abundances reveal particularly stable ions; several intriguing patterns emerge. Perhaps most astounding are the results for HenAr(+), which show evidence for three distinct, solid-like solvation shells containing 12, 20, and 12 helium atoms. This observation runs counter to the common notion that only the first solvation shell is solid-like but agrees with calculations by Galli et al. for HenNa(+) [J. Phys. Chem. A 2011, 115, 7300] that reveal three shells of icosahedral symmetry. HenArx(+) (2 ≤ x ≤ 7) ions appear to be especially stable if they contain a total of n + x = 19 atoms. A sequence of anomalies in the abundance distribution of HenKrx(+) suggests that rings of six helium atoms are inserted into the solvation shell each time a krypton atom is added to the ionic core, from Kr(+) to Kr3(+). Previously reported strong anomalies at He12Kr2(+) and He12Kr3(+) [Kim , J. H.; et al. J. Chem. Phys. 2006, 124, 214301] are attributed to a contamination. Only minor local anomalies appear in the distributions of HenXex(+) (x ≤ 3). The distributions of HenKr(+) and HenXe(+) show strikingly similar, broad features that are absent from the distribution of HenAr(+); differences are tentatively ascribed to the very different fragmentation dynamics of these ions.

  13. On the Size and Structure of Helium Snowballs Formed around Charged Atoms and Clusters of Noble Gases

    PubMed Central

    2013-01-01

    Helium nanodroplets doped with argon, krypton, or xenon are ionized by electrons and analyzed in a mass spectrometer. HenNgx+ ions containing up to seven noble gas (Ng) atoms and dozens of helium atoms are identified; the high resolution of the mass spectrometer combined with advanced data analysis make it possible to unscramble contributions from isotopologues that have the same nominal mass but different numbers of helium or Ng atoms, such as the magic He2084Kr2+ and the isobaric, nonmagic He4184Kr+. Anomalies in these ion abundances reveal particularly stable ions; several intriguing patterns emerge. Perhaps most astounding are the results for HenAr+, which show evidence for three distinct, solid-like solvation shells containing 12, 20, and 12 helium atoms. This observation runs counter to the common notion that only the first solvation shell is solid-like but agrees with calculations by Galli et al. for HenNa+ [J. Phys. Chem. A2011, 115, 730021568337] that reveal three shells of icosahedral symmetry. HenArx+ (2 ≤ x ≤ 7) ions appear to be especially stable if they contain a total of n + x = 19 atoms. A sequence of anomalies in the abundance distribution of HenKrx+ suggests that rings of six helium atoms are inserted into the solvation shell each time a krypton atom is added to the ionic core, from Kr+ to Kr3+. Previously reported strong anomalies at He12Kr2+ and He12Kr3+ [KimJ. H.; et al. J. Chem. Phys.2006, 124, 21430116774401] are attributed to a contamination. Only minor local anomalies appear in the distributions of HenXex+ (x ≤ 3). The distributions of HenKr+ and HenXe+ show strikingly similar, broad features that are absent from the distribution of HenAr+; differences are tentatively ascribed to the very different fragmentation dynamics of these ions. PMID:24128371

  14. Interpretation of magnetic anomalies using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Kaftan, İlknur

    2017-08-01

    A genetic algorithm (GA) is an artificial intelligence method used for optimization. We applied a GA to the inversion of magnetic anomalies over a thick dike. Inversion of nonlinear geophysical problems using a GA has advantages because it does not require model gradients or well-defined initial model parameters. The evolution process consists of selection, crossover, and mutation genetic operators that look for the best fit to the observed data and a solution consisting of plausible compact sources. The efficiency of a GA on both synthetic and real magnetic anomalies of dikes by estimating model parameters, such as depth to the top of the dike ( H), the half-width of the dike ( B), the distance from the origin to the reference point ( D), the dip of the thick dike ( δ), and the susceptibility contrast ( k), has been shown. For the synthetic anomaly case, it has been considered for both noise-free and noisy magnetic data. In the real case, the vertical magnetic anomaly from the Pima copper mine in Arizona, USA, and the vertical magnetic anomaly in the Bayburt-Sarıhan skarn zone in northeastern Turkey have been inverted and interpreted. We compared the estimated parameters with the results of conventional inversion methods used in previous studies. We can conclude that the GA method used in this study is a useful tool for evaluating magnetic anomalies for dike models.

  15. Prevalence of Dental Anomalies among School Going Children in India.

    PubMed

    Kathariya, Mitesh D; Nikam, Atul Pralhad; Chopra, Kirti; Patil, Namrata N; Raheja, Hitesh; Kathariya, Renuka

    2013-10-01

    The purpose of the present study is to investigate the prevalence of dental anomalies according to gender among children. This cross-sectional study was conducted a group of 600 children, of them 293 (48.8%) were males and 275 (45.8%) females which were taken with proper sampling technique. Type III clinical examination was done to know the prevalence of dental anomalies. The Statistical software namely SPSS version 16.0 was used for data analysis. Chi-square test was used at p value of 0.05 or less. Impactions (39.2%) were the most common anomaly in this study and most of the impacted teeth were related to maxilla. A significant difference was seen in case of hypodontia, microdontia and talons cusp according to gender in which first two anomalies were more among females and last one among males. Children with one dental anomaly were 25.8%, and 13.4% were having more than one. The percentage of dental anomalies were high specially impaction and rotated teeth. So these anomalies should be treated earlier to avoid further complications. How to cite this article: Kathariya MD, Nikam AP, Chopra K, Patil NN, Raheja H, Kathariya R. Prevalence of Dental Anomalies among School Going Children in India. J Int Oral Health 2013; 5(5):10-4.

  16. Oceanic Residual Depth Anomalies Maintained by a Shallow Asthenospheric Channel

    NASA Astrophysics Data System (ADS)

    Richards, F. D.; Hoggard, M.; White, N.

    2016-12-01

    Oceanic residual depth anomalies vary on wavelengths of 800-2,000 km and have amplitudesof ±1 km. There is also evidence from glacio-isostatic adjustment, plate motions and seismicanisotropy studies for the existence of a low-viscosity asthenospheric channel immediately beneaththe lithospheric plates. Here, we investigate whether global residual depth anomalies are consistentwith temperature variations within a sub-plate channel. For a given channel thickness, we convertresidual depth anomalies into temperature anomalies, assuming thermal isostasy alone (i.e. no mantle flow). Using aparameterisation that is calibrated against stacked oceanic shear wave velocity profiles, we convertthese temperature anomalies into velocity variations. We then compare the inferred velocity vari-ations with published seismic tomographic models. We find that thermal anomalies of ±100 °Cwithin a 150 ± 50 km thick channel yield a good match to > 95% of global residual depth anoma-lies. These temperature variations are consistent with geochemical evidence from mid-oceanic ridgebasalts and oceanic crustal thicknesses. The apparent success of this simple isostatic approach sup-ports the existence of a low-viscosity asthenospheric channel that plays a key role in controllingresidual depth anomalies. Far from subduction zones and from plume conduits, dynamic topog-raphy in the oceanic realm appears to be primarily controlled by temperature-induced buoyancyvariations within this channel.

  17. Columbus Payloads Flow Rate Anomalies

    NASA Technical Reports Server (NTRS)

    Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.

    2011-01-01

    The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.

  18. A model for anomaly classification in intrusion detection systems

    NASA Astrophysics Data System (ADS)

    Ferreira, V. O.; Galhardi, V. V.; Gonçalves, L. B. L.; Silva, R. C.; Cansian, A. M.

    2015-09-01

    Intrusion Detection Systems (IDS) are traditionally divided into two types according to the detection methods they employ, namely (i) misuse detection and (ii) anomaly detection. Anomaly detection has been widely used and its main advantage is the ability to detect new attacks. However, the analysis of anomalies generated can become expensive, since they often have no clear information about the malicious events they represent. In this context, this paper presents a model for automated classification of alerts generated by an anomaly based IDS. The main goal is either the classification of the detected anomalies in well-defined taxonomies of attacks or to identify whether it is a false positive misclassified by the IDS. Some common attacks to computer networks were considered and we achieved important results that can equip security analysts with best resources for their analyses.

  19. Fourth branchial complex anomalies: a case series.

    PubMed

    Shrime, Mark; Kacker, Ashutosh; Bent, John; Ward, Robert F

    2003-11-01

    Anomalies of the fourth branchial arch complex are exceedingly rare, with approximately forty cases reported in the literature since 1972. The authors report experience with six fourth arch anomalies. Retrospective chart review of six consecutive patients presenting to the pediatric otolaryngology service at a tertiary care center with anomalies referable to the fourth branchial arch. All six patients presented within the first or second decade of life. All six had left-sided disease. Four patients presented with recurrent neck infection, one with asymptomatic cervical masses, and one with a neck mass and respiratory compromise. One patient had prior surgery presented with a recurrence. Diagnosis of fourth arch anomalies was suggested or confirmed by computed tomography and flexible laryngoscopy. Treatment was surgical in five patients; one patient is awaiting surgery. Surgical procedures included resection of the mass and endoscopic cauterization of the inner opening of the cyst. The presentation of a cervical mass, especially with recurrent infections and especially on the left side, in a child in the first or second decade of life heightens suspicion for an anomaly of the fourth branchial arch. Diagnosis can be difficult, but is aided by the use of flexible laryngoscopy, Computed tomography (CT) scanning and ultrasonography. Surgical resection of the cyst and cauterization of its pyriform sinus opening should be undertaken to minimize recurrence.

  20. Hyperbolic Orbits and the Planetary Flylby Anomaly

    NASA Technical Reports Server (NTRS)

    Wilson, T.L.; Blome, H.J.

    2009-01-01

    Space probes in the Solar System have experienced unexpected changes in velocity known as the flyby anomaly [1], as well as shifts in acceleration referred to as the Pioneer anomaly [2-4]. In the case of Earth flybys, ESA s Rosetta spacecraft experienced the flyby effect and NASA s Galileo and NEAR satellites did the same, although MESSENGER did not possibly due to a latitudinal property of gravity assists. Measurements indicate that both anomalies exist, and explanations have varied from the unconventional to suggestions that new physics in the form of dark matter might be the cause of both [5]. Although dark matter has been studied for over 30 years, there is as yet no strong experimental evidence supporting it [6]. The existence of dark matter will certainly have a significant impact upon ideas regarding the origin of the Solar System. Hence, the subject is very relevant to planetary science. We will point out here that one of the fundamental problems in science, including planetary physics, is consistency. Using the well-known virial theorem in astrophysics, it will be shown that present-day concepts of orbital mechanics and cosmology are not consistent for reasons having to do with the flyby anomaly. Therefore, the basic solution regarding the anomalies should begin with addressing the inconsistencies first before introducing new physics.

  1. Sr and Nd isotope composition of the metamorphic, sedimentary and ultramafic xenoliths of Lanzarote (Canary Islands): Implications for magma sources

    NASA Astrophysics Data System (ADS)

    Aparicio, Alfredo; Tassinari, Colombo C. G.; García, Roberto; Araña, Vicente

    2010-01-01

    The lavas produced by the Timanfaya eruption of 1730-1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine ± orthopyroxene ± clinopyroxene ± plagioclase; their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The 87Sr/ 86Sr (around 0.703) and 143Nd/ 144Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the 147Sm/ 144Nd ratios show crustal values (0.13-0.16) in the ultramafic xenoliths and mantle values (0.18-0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange ( 87Sr/ 86Sr and 143Nd/ 144Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths.

  2. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here wemore » present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.« less

  3. Upper Lithospheric Sources of Magnetic and Gravity Anomalies of The Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Korhonen, J. V.; Koistinen, T.; Working GroupFennoscandian Geophysical Maps

    Magnetic total intensity anomalies (DGRF-65), Bouguer anomalies (d=2670 kg/m3) and geological units from 3400 Ma to present of the Fennoscandian Shield have been digitally compiled and printed as maps 1:2 000 000. Insert maps 1:15,000,000 com- pare anomaly components in different source scales: pseudogravimetric anomaly ver- sus Bouguer anomaly, DGRF-65 anomaly versus pseudomagnetic anomaly, magnetic vertical derivative versus second derivative of Bouguer anomaly. Data on bulk density, total magnetisation and lithology of samples have been presented as scatter diagrams and distribution maps of the average petrophysical properties in space and time. In sample level, the bulk density correlates with the lithology and, together with mag- netisation, establishes four principal populations of petrophysical properties. The av- erage properties, calculated for 5 km x 5 km cells, correlate only weakly with av- erage Bouguer-anomaly and magnetic anomaly, revealing major deep seated sources of anomalies. Pseudogravimetric and Bouguer anomalies correlate only locally with each other. The correlation is negative in the area of felsic Palaeoproterozoic rocks in W- and NW-parts of the Shield. In 2D models the sources of gravity anomalies are explained by lateral variation of density in upper and lower crust. Smoothly varying regional components are explained by boundaries of the lower crust, the upper mantle and the astenosphere. Magnetic anomalies are explained by lateral variation of magnetisation in the upper crust. Re- gional components are due to the lateral variation of magnetisation in the lower crust and the boundaries of lower crust and mantle and the Curie isotherm of magnetite.

  4. A DBN based anomaly targets detector for HSI

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Wang, Shaojun; Yu, Jinxiang; Peng, Yu

    2017-10-01

    Due to the assumption that Hyperspectral image (HSI) should conform to Gaussian distribution, traditional Mahalanobis distance-based anomaly targets detectors perform poor because the assumption may not always hold. In order to solve those problems, a deep learning based detector, Deep Belief Network(DBN) anomaly detector(DBN-AD), was proposed to fit the unknown distribution of HSI by energy modeling, the reconstruction errors of this encode-decode processing are used for discriminating the anomaly targets. Experiments are implemented on real and synthesized HSI dataset which collection by Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS). Comparing to classic anomaly detector, the proposed method shows better performance, it performs about 0.17 higher in Area Under ROC Curve (AUC) than that of Reed-Xiaoli detector(RXD) and Kernel-RXD (K-RXD).

  5. The mineralogy of global magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E. (Principal Investigator)

    1984-01-01

    Experimental and analytical data on magnetic mineralogy was provided as an aid to the interpretation of magnetic anomaly maps. An integrated program, ranging from the chemistry of materials from 100 or more km depth within the Earth, to an examination of the MAGSAT anomaly maps at about 400 km above the Earth's surface, was undertaken. Within this framework, a detailed picture of the pertinent mineralogical and magnetic relationships for the region of West Africa was provided. Efforts were directed toward: (1) examining the geochemistry, mineralogy, magnetic properties, and phases relations of magnetic oxides and metal alloys in rocks demonstrated to have originated in the lower crust of upper mantle, (2) examining the assumption that these rocks portray the nature of their source regions; and (3) examining the regional geology, tectonics, gravity field and the MAGSAT anomaly maps for West Africa.

  6. Spectroscopic studies of ozone in cryosolutions: FT-IR spectra of 16O3 in liquid nitrogen, oxygen, argon and krypton

    NASA Astrophysics Data System (ADS)

    Bulanin, Kirill M.; Bulanin, Michael O.; Rudakova, Aida V.; Kolomijtsova, Tatiana D.; Shchepkin, Dmitrij N.

    2018-03-01

    We have measured and interpreted the IR spectra of ozone dissolved in liquid nitrogen, oxygen, argon, and krypton in the 650-4700 cm-1 spectral region at 79-117 K. Frequency shifts, band intensities and bandshapes of 22 spectral features of soluted ozone were analyzed. The bands of the A1 symmetry have a complex contour and possess an excess intensity with respect to the value of the purely vibrational transition moment. It was found that this effect is related to the manifestation of the Coriolis interaction. The bandshape distortion manifests itself as an additional intensity from the side of the B1 symmetry band being an intensity source in the case of the Coriolis interaction.

  7. The fourth branchial complex anomaly: a rare clinical entity.

    PubMed

    Patel, Alpen B; Hinni, Michael L

    2011-01-01

    Fourth branchial pouch anomalies are rare congenital disorders of the neck and are a consequence of abnormal development of the branchial apparatus during embryogenesis. Failure to appropriately recognize these anomalies may result in misdiagnosis, insufficient treatment, and continued recurrence. Here, we present an unique presentation of two cases, describe their diagnosis, clinical course, and management, and review the literature regarding these interesting anomalies.

  8. Statistical Traffic Anomaly Detection in Time-Varying Communication Networks

    DTIC Science & Technology

    2015-02-01

    methods perform better than their vanilla counterparts, which assume that normal traffic is stationary. Statistical Traffic Anomaly Detection in Time...our methods perform better than their vanilla counterparts, which assume that normal traffic is stationary. Index Terms—Statistical anomaly detection...anomaly detection but also for understanding the normal traffic in time-varying networks. C. Comparison with vanilla stochastic methods For both types

  9. Statistical Traffic Anomaly Detection in Time Varying Communication Networks

    DTIC Science & Technology

    2015-02-01

    methods perform better than their vanilla counterparts, which assume that normal traffic is stationary. Statistical Traffic Anomaly Detection in Time...our methods perform better than their vanilla counterparts, which assume that normal traffic is stationary. Index Terms—Statistical anomaly detection...anomaly detection but also for understanding the normal traffic in time-varying networks. C. Comparison with vanilla stochastic methods For both types

  10. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount

    NASA Astrophysics Data System (ADS)

    Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian

    2018-01-01

    Low-temperature hydrothermal vents, such as those encountered at Loihi Seamount, harbor abundant microbial communities and provide ideal systems to test hypotheses on biotic versus abiotic formation of hydrous ferric oxide (FeOx) deposits at the seafloor. Hydrothermal activity at Loihi Seamount produces abundant microbial mats associated with rust-colored FeOx deposits and variably encrusted with Mn-oxyhydroxides. Here, we applied Fe isotope systematics together with major and trace element geochemistry to study the formation mechanisms and preservation of such mineralized microbial mats. Iron isotope composition of warm (<60 °C), Fe-rich and H2S-depleted hydrothermal fluids yielded δ56Fe values near +0.1‰, indistinguishable from basalt values. Suspended particles in the vent fluids and FeOx deposits recovered nearby active vents yielded systematically positive δ56Fe values. The enrichment in heavy Fe isotopes between +1.05‰ and +1.43‰ relative to Fe(II) in vent fluids suggest partial oxidation of Fe(II) during mixing of the hydrothermal fluid with seawater. By comparing the results with experimentally determined Fe isotope fractionation factors, we determined that less than 20% of Fe(II) is oxidized within active microbial mats, although this number may reach 80% in aged or less active deposits. These results are consistent with Fe(II) oxidation mediated by microbial processes considering the expected slow kinetics of abiotic Fe oxidation in low oxygen bottom water at Loihi Seamount. In contrast, FeOx deposits recovered at extinct sites have distinctly negative Fe-isotope values down to -1.77‰ together with significant enrichment in Mn and occurrence of negative Ce anomalies. These results are best explained by the near-complete oxidation of an isotopically light Fe(II) source produced during the waning stage of hydrothermal activity under more oxidizing conditions. Light Fe isotope values of FeOx are therefore generated by subsurface precipitation of

  11. Magnesium and Titanium Isotopic Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende: It Is Fun

    NASA Technical Reports Server (NTRS)

    Liu, M.-C.; Keller, L. P.; McKeegan, K. D.

    2016-01-01

    Introduction: Hibonite-rich refractory inclusions are among the first solids that formed in the solar nebula, and thus provide constraints on the earliest environment in the Solar System. An unusual hibonite-perovskite inclusion from Allende, SHAL, consists of a large (approximately 500 by 200 microns) single hibonite crystal and coexisting blocky perovskite (approximately 200 microns in size). The hibonite is characterized by chemical and oxygen isotopic compositions similar to those in the FUN (Fractionated and Unknown Nuclear anomalies) inclusion HAL. However, the rare earth element (REE) patterns measured at different spots of SHAL hibonite are highly variable, ranging from Group II-like (light REEs enriched relative to heavy REEs) to Group III-like (relatively flat with slight Eu depletions), but overall contrast largely with that of HAL, especially in the Ce and Yb abundances. This implies that SHAL hibonite formed and underwent distillation processes under more reducing conditions. Interestingly, the accompanying perovskite has uniform, unfractionated oxygen isotopic compositions (averaging delta (sup 17) O equals delta (sup 18) O equals -7 per mille) and REE abundances that are completely different from those of SHAL hibonite. This has been interpreted that perovskite and hibonite may not be co-genetic. Here we performed Al-Mg and Ti isotopic measurements of SHAL hibonite and perovskite to determine if the FUN characteristics are observed in these two isotope systems, and to further constrain the origin and evolution of SHAL. Results: Isotopic measurements of Al-Mg and Ti in SHAL were performed on the UCLA CAMECA ims-1290 ion microprobe by following the analytical protocols described in [1]. The Al-Mg and Ti data obtained in both terrestrial standards and SHAL hibonite and perovskite are shown below. Both SHAL hibonite and perovskite, despite very high (sup 27) Al to (sup 24) Mg ratios, are devoid of (sup 26) Mg excesses that can be attributed to the decay

  12. Revised estimation of 550-km times 550-km mean gravity anomalies

    NASA Technical Reports Server (NTRS)

    Williamson, M. R.

    1977-01-01

    The calculation of 550-km x 550-km mean gravity anomalies from 1 degree x 1 degree mean free-air gravimetry data is discussed. The block estimate procedure developed by Kaula is used to obtain 1,504 of the 1,654 possible mean block anomalies. The estimated block anomalies calculated from 1 deg x 1 deg mean anomalies referred to the reference ellipsoid and from 1 degree x 1 degree mean anomalies referred to a 24th-degree-and-order field are compared.

  13. Geophysical Anomalies and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  14. Evaluation of Anomaly Detection Method Based on Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Fontugne, Romain; Himura, Yosuke; Fukuda, Kensuke

    The number of threats on the Internet is rapidly increasing, and anomaly detection has become of increasing importance. High-speed backbone traffic is particularly degraded, but their analysis is a complicated task due to the amount of data, the lack of payload data, the asymmetric routing and the use of sampling techniques. Most anomaly detection schemes focus on the statistical properties of network traffic and highlight anomalous traffic through their singularities. In this paper, we concentrate on unusual traffic distributions, which are easily identifiable in temporal-spatial space (e.g., time/address or port). We present an anomaly detection method that uses a pattern recognition technique to identify anomalies in pictures representing traffic. The main advantage of this method is its ability to detect attacks involving mice flows. We evaluate the parameter set and the effectiveness of this approach by analyzing six years of Internet traffic collected from a trans-Pacific link. We show several examples of detected anomalies and compare our results with those of two other methods. The comparison indicates that the only anomalies detected by the pattern-recognition-based method are mainly malicious traffic with a few packets.

  15. Relational databases for rare disease study: application to vascular anomalies.

    PubMed

    Perkins, Jonathan A; Coltrera, Marc D

    2008-01-01

    To design a relational database integrating clinical and basic science data needed for multidisciplinary treatment and research in the field of vascular anomalies. Based on data points agreed on by the American Society of Pediatric Otolaryngology (ASPO) Vascular Anomalies Task Force. The database design enables sharing of data subsets in a Health Insurance Portability and Accountability Act (HIPAA)-compliant manner for multisite collaborative trials. Vascular anomalies pose diagnostic and therapeutic challenges. Our understanding of these lesions and treatment improvement is limited by nonstandard terminology, severity assessment, and measures of treatment efficacy. The rarity of these lesions places a premium on coordinated studies among multiple participant sites. The relational database design is conceptually centered on subjects having 1 or more lesions. Each anomaly can be tracked individually along with their treatment outcomes. This design allows for differentiation between treatment responses and untreated lesions' natural course. The relational database design eliminates data entry redundancy and results in extremely flexible search and data export functionality. Vascular anomaly programs in the United States. A relational database correlating clinical findings and photographic, radiologic, histologic, and treatment data for vascular anomalies was created for stand-alone and multiuser networked systems. Proof of concept for independent site data gathering and HIPAA-compliant sharing of data subsets was demonstrated. The collaborative effort by the ASPO Vascular Anomalies Task Force to create the database helped define a common vascular anomaly data set. The resulting relational database software is a powerful tool to further the study of vascular anomalies and the development of evidence-based treatment innovation.

  16. Geochemical and Isotopic Variations Along the Southeast Indian Ridge (126°-140°E) Related to Mantle Flow Originating from Beneath Antarctica

    NASA Astrophysics Data System (ADS)

    Hanan, B. B.; Graham, D. W.; Hemond, C.; Dufour, F.; Briais, A.; Ceuleneer, G.; Maia, M.; Park, S. H.; Revillon, S.; Yang, Y. S.

    2017-12-01

    We present data for glassy basalts from 37 localities along the spreading axis of the Southeast Indian Ridge (SEIR) between 126°-140°E, eastward of the Australian-Antarctic Discordance (AAD). Each of the five ridge segments (A1 to A5, west to east) show well-defined major element trends. An isotopic and negative axial depth anomaly is present, centered on the overlapping tips of segments A3 and A4 at 135°E. Segment A4 basalts have distinct radiogenic Pb and He isotopes plus enriched MORB-like ɛHf, relative to segments to the west and east. Crystal fractionation is more extensive at the A3 and A5 overlapping segment tips adjacent to A4, and decreases both to the west and east. The along axis pattern suggests a mantle heterogeneity located beneath the A3-A4 segments. Pb-Pb isotopic co-variations for the 5 segments define two linear arrays, with a western trend (A1-A3) and an eastern trend (A4-A5) that intersects it at the composition of the anomalous A4 segment, at a 206Pb/204Pb 19. The western trend has higher 208Pb/204Pb for a given 206Pb/204Pb, revealing a gradient in the asthenosphere, with Δ208Pb/204Pb decreasing to the east away from the AAD. Overall, 206,207,208Pb/204Pb and 4He/3He of the A4 anomaly define trends that vector toward the fields for Cenozoic lavas from west Antarctica (Marie Byrd Land and Balleny Islands). West Antarctica has a history of mantle plume underplating and lithosphere modification by subduction [1,2], and there is a broad seismic anomaly below 250 km underlying the West Antarctic Rift system [3]. Our data supports a model in which flow of underplated material plus lithosphere may be guided by the underside topography of the lithosphere beneath the Transantarctic mountains. This flow emerges from beneath east Antarctica, where it leads to volcanism in the Balleny Islands [4]. The material apparently continues to flow northward to the SEIR at 135°E. The geochemical anomaly beneath Zone A is potentially explained by the presence of

  17. Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction

    PubMed Central

    Whiteside, Jessica H.; Olsen, Paul E.; Eglinton, Timothy; Brookfield, Michael E.; Sambrotto, Raymond N.

    2010-01-01

    A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO2. The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie’s Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO2 super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date. PMID:20308590

  18. Equilibrium Atmospheric Response to North Atlantic SST Anomalies.

    NASA Astrophysics Data System (ADS)

    Kushnir, Yochanan; Held, Isaac M.

    1996-06-01

    The equilibrium general circulation model (GCM) response to sea surface temperature (SST) anomalies in the western North Atlantic region is studied. A coarse resolution GCM, with realistic lower boundary conditions including topography and climatological SST distribution, is integrated in perpetual January and perpetual October modes, distinguished from one another by the strength of the midlatitude westerlies. An SST anomaly with a maximum of 4°C is added to the climatological SST distribution of the model with both positive and negative polarity. These anomaly runs are compared to one another, and to a control integration, to determine the atmospheric response. In all cases warming (cooling) of the midlatitude ocean surface yields a warming (cooling) of the atmosphere over and to the east of the SST anomaly center. The atmospheric temperature change is largest near the surface and decreases upward. Consistent with this simple thermal response, the geopotential height field displays a baroclinic response with a shallow anomalous low somewhat downstream from the warm SST anomaly. The equivalent barotropic, downstream response is weak and not robust. To help interpret the results, the realistic GCM integrations are compared with parallel idealized model runs. The idealized model has full physics and a similar horizontal and vertical resolution, but an all-ocean surface with a single, permanent zonal asymmetry. The idealized and realistic versions of the GCM display compatible response patterns that are qualitatively consistent with stationary, linear, quasigeostrophic theory. However, the idealized model response is stronger and more coherent. The differences between the two model response patterns can be reconciled based on the size of the anomaly, the model treatment of cloud-radiation interaction, and the static stability of the model atmosphere in the vicinity of the SST anomaly. Model results are contrasted with other GCM studies and observations.

  19. Detecting anomalies in CMB maps: a new method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neelakanta, Jayanth T., E-mail: jayanthtn@gmail.com

    2015-10-01

    Ever since WMAP announced its first results, different analyses have shown that there is weak evidence for several large-scale anomalies in the CMB data. While the evidence for each anomaly appears to be weak, the fact that there are multiple seemingly unrelated anomalies makes it difficult to account for them via a single statistical fluke. So, one is led to considering a combination of these anomalies. But, if we ''hand-pick'' the anomalies (test statistics) to consider, we are making an a posteriori choice. In this article, we propose two statistics that do not suffer from this problem. The statistics aremore » linear and quadratic combinations of the a{sub ℓ m}'s with random co-efficients, and they test the null hypothesis that the a{sub ℓ m}'s are independent, normally-distributed, zero-mean random variables with an m-independent variance. The motivation for considering multiple modes is this: because most physical models that lead to large-scale anomalies result in coupling multiple ℓ and m modes, the ''coherence'' of this coupling should get enhanced if a combination of different modes is considered. In this sense, the statistics are thus much more generic than those that have been hitherto considered in literature. Using fiducial data, we demonstrate that the method works and discuss how it can be used with actual CMB data to make quite general statements about the incompatibility of the data with the null hypothesis.« less

  20. A novel surgical management of hypopharyngeal branchial anomalies.

    PubMed

    Givens, Daniel J; Buchmann, Luke O; Park, Albert H

    2015-04-01

    To review our experience treating hypopharyngeal branchial anomalies utilizing an open transcervical approach that: (1) includes recurrent laryngeal nerve (RLN) monitoring and identification if needed; (2) resection of tract if present; and (3) a superiorly based sternothyroid muscle flap for closure. A retrospective chart review was performed to identify all patients at a tertiary level children's hospital with branchial anomalies from 2005 to 2014. The clinical presentation, evaluation, treatment and outcome were analyzed for those patients with hypopharyngeal branchial anomalies. Forty-seven patients who underwent excision of branchial anomalies with a known origin were identified. Thirteen patients had hypopharyngeal branchial anomalies. Six of these patients were treated by the authors of this study and are the focus of this analysis. All six underwent an open transcervical procedure with a sternothyroid muscle flap closure of a piriform sinus opening over a nine year period. Definitive surgery included a microlaryngoscopy and an open transcervical approach to close a fistula between the piriform sinus and neck with recurrent laryngeal nerve monitoring or dissection. A superiorly based sternothyroid muscle flap was used to close the sinus opening. There were no recurrences, recurrent laryngeal nerve injuries or other complications from these procedures. This study supports complete surgical extirpation of the fistula tract using an open cervical approach, recurrent laryngeal nerve monitoring or identification, and rotational muscle flap closure to treat patients with hypopharyngeal branchial anomalies. Published by Elsevier Ireland Ltd.