Liang, Qiming; Chang, Brian; Lee, Patrick; Brulois, Kevin F.; Ge, Jianning; Shi, Mude; Rodgers, Mary A.; Feng, Pinghui; Oh, Byung-Ha; Liang, Chengyu
2015-01-01
ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) evades host defenses through tight suppression of autophagy by targeting each step of its signal transduction: by viral Bcl-2 (vBcl-2) in vesicle nucleation, by viral FLIP (vFLIP) in vesicle elongation, and by K7 in vesicle maturation. By exploring the roles of KSHV autophagy-modulating genes, we found, surprisingly, that vBcl-2 is essential for KSHV lytic replication, whereas vFLIP and K7 are dispensable. Knocking out vBcl-2 from the KSHV genome resulted in decreased lytic gene expression at the mRNA and protein levels, a lower viral DNA copy number, and, consequently, a dramatic reduction in the amount of progeny infectious viruses, as also described in the accompanying article (A. Gelgor, I. Kalt, S. Bergson, K. F. Brulois, J. U. Jung, and R. Sarid, J Virol 89:5298–5307, 2015). More importantly, the antiapoptotic and antiautophagic functions of vBcl-2 were not required for KSHV lytic replication. Using a comprehensive mutagenesis analysis, we identified that glutamic acid 14 (E14) of vBcl-2 is critical for KSHV lytic replication. Mutating E14 to alanine totally blocked KSHV lytic replication but showed little or no effect on the antiapoptotic and antiautophagic functions of vBcl-2. Our study indicates that vBcl-2 harbors at least three important and genetically separable functions to modulate both cellular signaling and the virus life cycle. IMPORTANCE The present study shows for the first time that vBcl-2 is essential for KSHV lytic replication. Removal of the vBcl-2 gene results in a lower level of KSHV lytic gene expression, impaired viral DNA replication, and consequently, a dramatic reduction in the level of progeny production. More importantly, the role of vBcl-2 in KSHV lytic replication is genetically separated from its antiapoptotic and antiautophagic functions, suggesting that the KSHV Bcl-2 carries a novel function in viral lytic replication. PMID:25740994
Yang, Mengtian; Huang, Lu; Li, Xiaojuan; Kuang, Ersheng
2016-09-01
Lytic infection is essential for the persistent infection and pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV), and inhibiting KSHV lytic replication may effectively prevent the occurrence of KSHV-related diseases. Chloroquine (CQ), a well-known antimalarial drug and autophagy inhibitor, exerts broad-spectrum antiviral effects and shows anti-cancer therapeutic potential. However, the ability of CQ and its derivatives to control infection of oncogenic γ-herpesvirus remains undefined. Here we reveal that CQ suppresses KSHV lytic gene expression and virion production, and shows cytotoxicity toward KSHV lytically infected B cells at clinically acceptable doses. CQ suppresses mTOR and p38-MAPK pathway activation during KSHV lytic replication but not latent infection. Furthermore, CQ blocks Epstein-Barr virus (EBV) lytic replication via a distinct mechanism that is invoked to block virion production but does not affect viral gene expression. These results suggest that CQ is an effective antiviral drug against KSHV lytic infection. Our findings indicate that CQ treatment should be considered for controlling KSHV-related diseases, particularly for primary use in co-infection of KSHV with malaria. Copyright © 2016 Elsevier B.V. All rights reserved.
Reactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update
Aneja, Kawalpreet K.; Yuan, Yan
2017-01-01
The life cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) consists of two phases, latent and lytic. The virus establishes latency as a strategy for avoiding host immune surveillance and fusing symbiotically with the host for lifetime persistent infection. However, latency can be disrupted and KSHV is reactivated for entry into the lytic replication. Viral lytic replication is crucial for efficient dissemination from its long-term reservoir to the sites of disease and for the spread of the virus to new hosts. The balance of these two phases in the KSHV life cycle is important for both the virus and the host and control of the switch between these two phases is extremely complex. Various environmental factors such as oxidative stress, hypoxia, and certain chemicals have been shown to switch KSHV from latency to lytic reactivation. Immunosuppression, unbalanced inflammatory cytokines, and other viral co-infections also lead to the reactivation of KSHV. This review article summarizes the current understanding of the initiation and regulation of KSHV reactivation and the mechanisms underlying the process of viral lytic replication. In particular, the central role of an immediate-early gene product RTA in KSHV reactivation has been extensively investigated. These studies revealed multiple layers of regulation in activation of RTA as well as the multifunctional roles of RTA in the lytic replication cascade. Epigenetic regulation is known as a critical layer of control for the switch of KSHV between latency and lytic replication. The viral non-coding RNA, PAN, was demonstrated to play a central role in the epigenetic regulation by serving as a guide RNA that brought chromatin remodeling enzymes to the promoters of RTA and other lytic genes. In addition, a novel dimension of regulation by microPeptides emerged and has been shown to regulate RTA expression at the protein level. Overall, extensive investigation of KSHV reactivation and lytic replication has revealed a sophisticated regulation network that controls the important events in KSHV life cycle. PMID:28473805
Chen, E. Ricky; Nilsen, Timothy W.
2017-01-01
ABSTRACT N6-adenosine methylation (m6A) is the most common posttranscriptional RNA modification in mammalian cells. We found that most transcripts encoded by the Kaposi's sarcoma-associated herpesvirus (KSHV) genome undergo m6A modification. The levels of m6A-modified mRNAs increased substantially upon stimulation for lytic replication. The blockage of m6A inhibited splicing of the pre-mRNA encoding the replication transcription activator (RTA), a key KSHV lytic switch protein, and halted viral lytic replication. We identified several m6A sites in RTA pre-mRNA crucial for splicing through interactions with YTH domain containing 1 (YTHDC1), an m6A nuclear reader protein, in conjunction with serine/arginine-rich splicing factor 3 (SRSF3) and SRSF10. Interestingly, RTA induced m6A and enhanced its own pre-mRNA splicing. Our results not only demonstrate an essential role of m6A in regulating RTA pre-mRNA splicing but also suggest that KSHV has evolved a mechanism to manipulate the host m6A machinery to its advantage in promoting lytic replication. IMPORTANCE KSHV productive lytic replication plays a pivotal role in the initiation and progression of Kaposi's sarcoma tumors. Previous studies suggested that the KSHV switch from latency to lytic replication is primarily controlled at the chromatin level through histone and DNA modifications. The present work reports for the first time that KSHV genome-encoded mRNAs undergo m6A modification, which represents a new mechanism at the posttranscriptional level in the control of viral replication. PMID:28592530
Niclosamide inhibits lytic replication of Epstein-Barr virus by disrupting mTOR activation.
Huang, Lu; Yang, Mengtian; Yuan, Yan; Li, Xiaojuan; Kuang, Ersheng
2017-02-01
Infection with the oncogenic γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause several severe malignancies in humans. Inhibition of the lytic replication of EBV and KSHV eliminates the reservoir of persistent infection and transmission, consequently preventing the occurrence of diseases from the sources of infection. Antiviral drugs are limited in controlling these viral infectious diseases. Here, we demonstrate that niclosamide, an old anthelmintic drug, inhibits mTOR activation during EBV lytic replication. Consequently, niclosamide effectively suppresses EBV lytic gene expression, viral DNA lytic replication and virion production in EBV-infected lymphoma cells and epithelial cells. Niclosamide exhibits cytotoxicity toward lymphoma cells and induces irreversible cell cycle arrest in lytically EBV-infected cells. The ectopic overexpression of mTOR reverses the inhibition of niclosamide in EBV lytic replication. Similarly, niclosamide inhibits KSHV lytic replication. Thus, we conclude that niclosamide is a promising candidate for chemotherapy against the acute occurrence and transmission of infectious diseases of oncogenic γ-herpesviruses. Copyright © 2016 Elsevier B.V. All rights reserved.
Baquero-Pérez, Belinda; Whitehouse, Adrian
2015-01-01
Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus associated with various AIDS-related malignancies. Like other herpesviruses, multiple processes required for KSHV lytic replication, including viral transcription, viral DNA synthesis and capsid assembly occur in virus-induced intranuclear structures, termed replication and transcription compartments (RTCs). Here we utilised a novel methodology, combining subcellular fractionation and quantitative proteomics, to identify cellular proteins which are recruited to KSHV-induced RTCs and thus play a key role in KSHV lytic replication. We show that several isoforms of the HSP70 chaperone family, Hsc70 and iHsp70, are redistributed from the cytoplasm into the nucleus coinciding with the initial formation of KSHV-induced RTCs. We demonstrate that nuclear chaperone foci are dynamic, initially forming adjacent to newly formed KSHV RTCs, however during later time points the chaperones move within KSHV RTCs and completely co-localise with actively replicating viral DNA. The functional significance of Hsp70 isoforms recruitment into KSHV RTCs was also examined using the specific Hsp70 isoform small molecule inhibitor, VER-155008. Intriguingly, results highlight an essential role of Hsp70 isoforms in the KSHV replication cycle independent of protein stability and maturation. Notably, inhibition of Hsp70 isoforms precluded KSHV RTC formation and RNA polymerase II (RNAPII) relocalisation to the viral genome leading to the abolishment of global KSHV transcription and subsequent viral protein synthesis and DNA replication. These new findings have revealed novel mechanisms that regulate KSHV lytic replication and highlight the potential of HSP70 inhibitors as novel antiviral agents. PMID:26587836
Wilson, Sam J; Tsao, Edward H; Webb, Benjamin L J; Ye, Hongtao; Dalton-Griffin, Lucy; Tsantoulas, Christoforos; Gale, Catherine V; Du, Ming-Qing; Whitehouse, Adrian; Kellam, Paul
2007-12-01
Reactivation of lytic replication from viral latency is a defining property of all herpesviruses. Despite this, the authentic physiological cues for the latent-lytic switch are unclear. Such cues should ensure that viral lytic replication occurs under physiological conditions, predominantly in sites which facilitate transmission to permissive uninfected cells and new susceptible hosts. Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with the B-cell neoplasm primary effusion lymphoma (PEL), in which the virus remains latent. We have previously shown that PEL cells have the gene expression profile and immunophenotype of cycling preplasma cells (plasmablasts). Here, we show that the highly active spliced isoform of plasma cell transcription factor X box binding protein 1 (XBP-1s) is a lytic switch for KSHV. XBP-1s is normally absent in PEL, but the induction of endoplasmic reticulum stress leads to XBP-1s generation, plasma cell-like differentiation, and lytic reactivation of KSHV. XBP-1s binds to and activates the KSHV immediate-early gene ORF50 and synergizes with the ORF50 gene product RTA to induce a full lytic cycle. These data suggest that KSHV remains latent until B-cell terminal differentiation into plasma cells, the transcriptional environment of which provides the physiological "lytic switch" through XBP-1s. This links B-cell terminal differentiation to KSHV lytic reactivation.
ARID3B: a Novel Regulator of the Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycle
Wood, Jennifer J.; Boyne, James R.; Paulus, Christina; Jackson, Brian R.; Nevels, Michael M.
2016-01-01
ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of commonly fatal malignancies of immunocompromised individuals, including primary effusion lymphoma (PEL) and Kaposi's sarcoma (KS). A hallmark of all herpesviruses is their biphasic life cycle—viral latency and the productive lytic cycle—and it is well established that reactivation of the KSHV lytic cycle is associated with KS pathogenesis. Therefore, a thorough appreciation of the mechanisms that govern reactivation is required to better understand disease progression. The viral protein replication and transcription activator (RTA) is the KSHV lytic switch protein due to its ability to drive the expression of various lytic genes, leading to reactivation of the entire lytic cycle. While the mechanisms for activating lytic gene expression have received much attention, how RTA impacts cellular function is less well understood. To address this, we developed a cell line with doxycycline-inducible RTA expression and applied stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative proteomics. Using this methodology, we have identified a novel cellular protein (AT-rich interacting domain containing 3B [ARID3B]) whose expression was enhanced by RTA and that relocalized to replication compartments upon lytic reactivation. We also show that small interfering RNA (siRNA) knockdown or overexpression of ARID3B led to an enhancement or inhibition of lytic reactivation, respectively. Furthermore, DNA affinity and chromatin immunoprecipitation assays demonstrated that ARID3B specifically interacts with A/T-rich elements in the KSHV origin of lytic replication (oriLyt), and this was dependent on lytic cycle reactivation. Therefore, we have identified a novel cellular protein whose expression is enhanced by KSHV RTA with the ability to inhibit KSHV reactivation. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of fatal malignancies of immunocompromised individuals, including Kaposi's sarcoma (KS). Herpesviruses are able to establish a latent infection, in which they escape immune detection by restricting viral gene expression. Importantly, however, reactivation of productive viral replication (the lytic cycle) is necessary for the pathogenesis of KS. Therefore, it is important that we comprehensively understand the mechanisms that govern lytic reactivation, to better understand disease progression. In this study, we have identified a novel cellular protein (AT-rich interacting domain protein 3B [ARID3B]) that we show is able to temper lytic reactivation. We showed that the master lytic switch protein, RTA, enhanced ARID3B levels, which then interacted with viral DNA in a lytic cycle-dependent manner. Therefore, we have added a new factor to the list of cellular proteins that regulate the KSHV lytic cycle, which has implications for our understanding of KSHV biology. PMID:27512077
Sanchez, Erica L; Pulliam, Thomas H; Dimaio, Terri A; Thalhofer, Angel B; Delgado, Tracie; Lagunoff, Michael
2017-05-15
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors. IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation. Our previous findings showed that latently infected cells are sensitive to inhibitors of cellular metabolic pathways, including glycolysis, glutaminolysis, and fatty acid synthesis. Here we found that these same inhibitors block the production of infectious virus from lytically infected cells, each at a different stage of viral replication. Therefore, inhibition of specific cellular metabolic pathways can both eliminate latently infected cells and block lytic replication, thereby inhibiting infection of new cells. Inhibition of metabolic pathways provides novel therapeutic approaches for KS tumors. Copyright © 2017 American Society for Microbiology.
Sanchez, Erica L.; Pulliam, Thomas H.; Dimaio, Terri A.; Thalhofer, Angel B.; Delgado, Tracie
2017-01-01
ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors. IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation. Our previous findings showed that latently infected cells are sensitive to inhibitors of cellular metabolic pathways, including glycolysis, glutaminolysis, and fatty acid synthesis. Here we found that these same inhibitors block the production of infectious virus from lytically infected cells, each at a different stage of viral replication. Therefore, inhibition of specific cellular metabolic pathways can both eliminate latently infected cells and block lytic replication, thereby inhibiting infection of new cells. Inhibition of metabolic pathways provides novel therapeutic approaches for KS tumors. PMID:28275189
KSHV Targeted Therapy: An Update on Inhibitors of Viral Lytic Replication
Coen, Natacha; Duraffour, Sophie; Snoeck, Robert; Andrei, Graciela
2014-01-01
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease. Since the discovery of KSHV 20 years ago, there is still no standard treatment and the management of virus-associated malignancies remains toxic and incompletely efficacious. As the majority of tumor cells are latently infected with KSHV, currently marketed antivirals that target the virus lytic cycle have shown inconsistent results in clinic. Nevertheless, lytic replication plays a major role in disease progression and virus dissemination. Case reports and retrospective studies have pointed out the benefit of antiviral therapy in the treatment and prevention of KSHV-associated diseases. As a consequence, potent and selective antivirals are needed. This review focuses on the anti-KSHV activity, mode of action and current status of antiviral drugs targeting KSHV lytic cycle. Among these drugs, different subclasses of viral DNA polymerase inhibitors and compounds that do not target the viral DNA polymerase are being discussed. We also cover molecules that target cellular kinases, as well as the potential of new drug targets and animal models for antiviral testing. PMID:25421895
Curreli, Francesca; Cerimele, Francesca; Muralidhar, Sumitra; Rosenthal, Leonard J.; Cesarman, Ethel; Friedman-Kien, Alvin E.; Flore, Ornella
2002-01-01
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a cellular dihydrofolate reductase (DHFR) homologue. Methotrexate (MTX), a potent anti-inflammatory agent, inhibits cellular DHFR activity. We investigated the effect of noncytotoxic doses of MTX on latency and lytic KSHV replication in two KSHV-infected primary effusion lymphoma cell lines (BC-3 and BC-1) and in MTX-resistant BC-3 cells (MTX-R-BC-3 cells). Treatment with MTX completely prevented tetradecanoyl phorbol acetate-induced viral DNA replication and strongly decreased viral lytic transcript levels, even in MTX-resistant cells. However, the same treatment had no effect on transcription of cellular genes and KSHV latent genes. One of the lytic transcripts inhibited by MTX, ORF50/Rta (open reading frame), is an immediate-early gene encoding a replication-transcription activator required for expression of other viral lytic genes. Therefore, transcription of genes downstream of ORF50/Rta was inhibited, including those encoding the viral G-protein-coupled receptor (GPCR), viral interleukin-6, and K12/kaposin, which have been shown to be transforming in vitro and oncogenic in mice. Resistance to MTX has been documented in cultured cells and also in patients treated with this drug. However, MTX showed an inhibitory activity even in MTX-R-BC-3 cells. Two currently available antiherpesvirus drugs, cidofovir and foscarnet, had no effect on the transcription of these viral oncogenes and ORF50/Rta. MTX is the first example of a compound shown to downregulate the expression of ORF50/Rta and therefore prevent viral transforming gene transcription. Given that the expression of these genes may be important for tumor development, MTX could play a role in the future management of KSHV-associated malignancies. PMID:11967335
Chatterjee, Deboeeta; Chandran, Bala
2012-01-01
Kaposi sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) is etiologically associated with three neoplastic syndromes: Kaposi sarcoma and the uncommon HIV-associated B-cell lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. The incidence of the latter B-cell pathology has been increasing in spite of antiretroviral therapy; its association with lytic virus replication has prompted interest in therapeutic strategies aimed at this phase of the virus life cycle. We designed and expressed a recombinant immunotoxin (2014-PE38) targeting the gpK8.1A viral glycoprotein expressed on the surface of the virion and infected cells. We show that this immunotoxin selectively kills KSHV-infected cells in dose-dependent fashion, resulting in major reductions of infectious virus release. The immunotoxin and ganciclovir, an inhibitor of viral DNA replication, showed marked reciprocal potentiation of antiviral activities. These results suggest that the immunotoxin, alone or in combination, may represent a new approach to treat diseases associated with KSHV lytic replication. PMID:22377676
Lee, Hye-Ra; Mitra, Jaba; Lee, Stacy; Gao, Shou-Jiang; Oh, Tae-Kwang; Kim, Myung Hee; Ha, Taekjip; Jung, Jae U
2016-01-15
Kaposi's sarcoma-associated herpesvirus (KSHV) infection modulates the host cell cycle to create an environment optimal for its viral-DNA replication during the lytic life cycle. We report here that KSHV vIRF4 targets the β-catenin/CBP cofactor and blocks its occupancy on the cyclin D1 promoter, suppressing the G1-S cell cycle progression and enhancing KSHV replication. This shows that KSHV vIRF4 suppresses host G1-S transition, possibly providing an intracellular milieu favorable for its replication. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Gillen, Joseph; Li, Wenwei; Liang, Qiming; Avey, Denis; Wu, Jianjun; Wu, Fayi; Myoung, JinJong; Zhu, Fanxiu
2015-05-01
The ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus-specific immediate-early tegument protein. Our previous studies have revealed its crucial roles in both early and late stages of KSHV infection. In this study, we surveyed the interactome of ORF45 using a panel of monoclonal antibodies. In addition to the previously identified extracellular regulated kinase (ERK) and p90 ribosomal S6 kinase (RSK) proteins, we found several other copurified proteins, including prominent ones of ∼38 kDa and ∼130 kDa. Mass spectrometry revealed that the 38-kDa protein is viral ORF33 and the 130-kDa protein is cellular USP7 (ubiquitin-specific protease 7). We mapped the ORF33-binding domain to the highly conserved carboxyl-terminal 19 amino acids (aa) of ORF45 and the USP7-binding domain to the reported consensus motif in the central region of ORF45. Using immunofluorescence staining, we observed colocalization of ORF45 with ORF33 or USP7 both under transfected conditions and in KSHV-infected cells. Moreover, we noticed ORF45-dependent relocalization of a portion of ORF33/USP7 from the nucleus to the cytoplasm. We found that ORF45 caused an increase in ORF33 protein accumulation that was abolished if either the ORF33- or USP7-binding domain in ORF45 was deleted. Furthermore, deletion of the conserved carboxyl terminus of ORF45 in the KSHV genome drastically reduced the level of ORF33 protein in KSHV-infected cells and abolished production of progeny virions. Collectively, our results not only reveal new components of the ORF45 interactome, but also demonstrate that the interactions among these proteins are crucial for KSHV lytic replication. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human cancers. KSHV ORF45 is a multifunctional protein that is required for KSHV lytic replication, but the exact mechanisms by which ORF45 performs its critical functions are unclear. Our previous studies revealed that all ORF45 protein in cells exists in high-molecular-weight complexes. We therefore sought to characterize the interactome of ORF45 to provide insights into its roles during lytic replication. Using a panel of monoclonal antibodies, we surveyed the ORF45 interactome in KSHV-infected cells. We identified two new binding partners of ORF45: the viral protein ORF33 and cellular ubiquitin-specific protease 7 (USP7). We further demonstrate that the interaction between ORF45 and ORF33 is crucial for the efficient production of KSHV viral particles, suggesting that the targeted interference with this interaction may represent a novel strategy to inhibit KSHV lytic replication. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Wang, Yan; Xu, Jun
2017-01-01
APE1 is a multifunctional protein with a DNA base excision repair function in its C-terminal domain and a redox activity in its N-terminal domain. The redox function of APE1 converts certain transcription factors from inactive oxidized to active reduced forms. Given that among the APE1-regulated transcription factors many are critical for KSHV replication and pathogenesis, we investigated whether inhibition of APE1 redox function blocks KSHV replication and Kaposi’s sarcoma (KS) phenotypes. With an shRNA-mediated silencing approach and a known APE-1 redox inhibitor, we demonstrated that APE1 redox function is indeed required for KSHV replication as well as KSHV-induced angiogenesis, validating APE1 as a therapeutic target for KSHV-associated diseases. A ligand-based virtual screening yielded a small molecular compound, C10, which is proven to bind to APE1. C10 exhibits low cytotoxicity but efficiently inhibits KSHV lytic replication (EC50 of 0.16 μM and selective index of 165) and KSHV-mediated pathogenic phenotypes including cytokine production, angiogenesis and cell invasion, demonstrating its potential to become an effective drug for treatment of KS. PMID:28380040
Avey, Denis; Tepper, Sarah; Pifer, Benjamin; Bahga, Amritpal; Williams, Hunter; Gillen, Joseph; Li, Wenwei; Ogden, Sarah; Zhu, Fanxiu
2016-07-01
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner dependent on ORF36 kinase activity. We mapped the regions of ORF36 and ORF45 involved in the binding. Their association appears to be mediated by electrostatic interactions, since deletion of either the highly basic N terminus of ORF36 or an acidic patch of ORF45 abolished the binding. In addition, the dephosphorylation of ORF45 protein dramatically reduced its association with ORF36. Importantly, ORF45 enhances both the stability and kinase activity of ORF36. Consistent with previous studies of CHPK homologs, we detected ORF36 protein in extracellular virions. To investigate the roles of ORF36 in the context of KSHV lytic replication, we used bacterial artificial chromosome mutagenesis to engineer both ORF36-null and kinase-dead mutants. We found that ORF36-null/mutant virions are moderately defective in viral particle production and are further deficient in primary infection. In summary, our results uncover a functionally important interaction between ORF36 and ORF45 and indicate a significant role of ORF36 in the production of infectious progeny virions. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus with a significant public health burden. KSHV ORF36 encodes a serine/threonine viral protein kinase, whose functions throughout the viral life cycle have not been elucidated. Here, we report that ORF36 interacts with another KSHV protein, ORF45. We mapped the regions of ORF36 and ORF45 involved in their association and further characterized the consequences of this interaction. We engineered ORF36 mutant viruses in order to investigate the functional roles of ORF36 in the context of KSHV lytic replication, and we confirmed that ORF36 is a component of KSHV virions. Moreover, we found that ORF36 mutants are defective in virion production and primary infection. In summary, we discovered and characterized a functionally important interaction between KSHV ORF36 and ORF45, and our results suggest a significant role of ORF36 in the production of infectious progeny virions, a process critical for KSHV pathogenesis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Tan, Brandon; Gao, Shou-Jiang
2018-04-26
N 6 -methyladenosine (m 6 A) was discovered 4 decades ago. However, the functions of m 6 A and the cellular machinery that regulates its changes have just been revealed in the last few years. m 6 A is an abundant internal mRNA modification on cellular RNA and is implicated in diverse cellular functions. Recent works have demonstrated the presence of m 6 A in the genomes of RNA viruses and transcripts of a DNA virus with either a proviral or antiviral role. Here, we first summarize what is known about the m 6 A "writers," "erasers," "readers," and "antireaders" as well as the role of m 6 A in mRNA metabolism. We then review how the replications of numerous viruses are enhanced and restricted by m 6 A with emphasis on the oncogenic DNA virus, Kaposi sarcoma-associated herpesvirus (KSHV), whose m 6 A epitranscriptome was recently mapped. In the context of KSHV, m 6 A and the reader protein YTHDF2 acts as an antiviral mechanism during viral lytic replication. During viral latency, KSHV alters m 6 A on genes that are implicated in cellular transformation and viral latency. Lastly, we discuss future studies that are important to further delineate the functions of m 6 A in KSHV latent and lytic replication and KSHV-induced oncogenesis. Copyright © 2018 John Wiley & Sons, Ltd.
Medveczky, Maria M; Sherwood, Tracy A; Klein, Thomas W; Friedman, Herman; Medveczky, Peter G
2004-09-15
The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC), has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV) and Epstein-Barr virus (EBV) replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS) of monkeys, murine gamma herpesvirus 68 (MHV 68), and herpes simplex type 1 (HSV-1) was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC. These studies may also provide the foundation for the development of antiviral strategies utilizing non-psychoactive derivatives of THC.
Gruffaz, Marion; Zhou, Shenghua; Vasan, Karthik; Rushing, Teresa; Michael, Qing Liu; Lu, Chu
2018-01-01
ABSTRACT Oncogenic Kaposi’s sarcoma-associated herpesvirus (KSHV) is etiologically linked to primary effusion lymphoma (PEL), an aggressive and nontreatable malignancy commonly found in AIDS patients. In this study, we performed a high-throughput screening of 3,731 characterized compounds and identified cytarabine, approved by the FDA for treating numerous types of cancer, as a potent inhibitor of KSHV-induced PEL. We showed the high efficacy of cytarabine in the growth inhibition of various PEL cells by inducing cell cycle arrest and apoptosis. Cytarabine inhibited host DNA and RNA syntheses and therefore induced cellular cytotoxicity. Furthermore, cytarabine inhibited viral DNA and RNA syntheses and induced the rapid degradation of KSHV major latent protein LANA (latency-associated nuclear antigen), leading to the suppression of KSHV latent replication. Importantly, cytarabine effectively inhibited active KSHV replication and virion production in PEL cells. Finally, cytarabine treatments not only effectively inhibited the initiation and progression of PEL tumors but also induced regression of grown PEL tumors in a xenograft mouse model. Altogether, our study has identified cytarabine as a novel therapeutic agent for treating PEL as well as eliminating KSHV persistent infection. PMID:29739902
He, Zhiheng; Liu, Yunhua; Liang, Deguang; Wang, Zhuo; Robertson, Erle S; Lan, Ke
2010-02-01
Replication and transcription activator (RTA) encoded by open reading frame 50 (ORF50) of Kaposi's sarcoma-associated herpesvirus (KSHV) is essential and sufficient to initiate lytic reactivation. RTA activates its target genes through direct binding with high affinity to its responsive elements or by interaction with cellular factors, such as RBP-Jkappa, Ap-1, C/EBP-alpha, and Oct-1. In this study, we identified transducin-like enhancer of split 2 (TLE2) as a novel RTA binding protein by using yeast two-hybrid screening of a human spleen cDNA library. The interaction between TLE2 and RTA was confirmed by glutathione S-transferase (GST) binding and coimmunoprecipitation assays. Immunofluorescence analysis showed that TLE2 and RTA were colocalized in the same nuclear compartment in KSHV-infected cells. This interaction recruited TLE2 to RTA bound to its recognition sites on DNA and repressed RTA auto-activation and transactivation activity. Moreover, TLE2 also inhibited the induction of lytic replication and virion production driven by RTA. We further showed that the Q (Gln-rich), SP (Ser-Pro-rich), and WDR (Trp-Asp repeat) domains of TLE2 and the Pro-rich domain of RTA were essential for this interaction. RBP-Jkappa has been shown previously to bind to the same Pro-rich domain of RTA, and this binding can be subject to competition by TLE2. In addition, TLE2 can form a complex with RTA to access the cognate DNA sequence of the RTA-responsive element at different promoters. Intriguingly, the transcription level of TLE2 could be upregulated by RTA during the lytic reactivation process. In conclusion, we identified a new RTA binding protein, TLE2, and demonstrated that TLE2 inhibited replication and transactivation mediated by RTA. This provides another potentially important mechanism for maintenance of KSHV viral latency through interaction with a host protein.
Vallery, Tenaya K; Withers, Johanna B; Andoh, Joana A; Steitz, Joan A
2018-07-01
Kaposi's sarcoma-associated herpesvirus (KSHV), like other herpesviruses, replicates within the nuclei of its human cell host and hijacks host machinery for expression of its genes. The activities that culminate in viral DNA synthesis and assembly of viral proteins into capsids physically concentrate in nuclear areas termed viral replication compartments. We sought to better understand the spatiotemporal regulation of viral RNAs during the KSHV lytic phase by examining and quantifying the subcellular localization of select viral transcripts. We found that viral mRNAs, as expected, localized to the cytoplasm throughout the lytic phase. However, dependent on active viral DNA replication, viral transcripts also accumulated in the nucleus, often in foci in and around replication compartments, independent of the host shutoff effect. Our data point to involvement of the viral long noncoding polyadenylated nuclear (PAN) RNA in the localization of an early, intronless viral mRNA encoding ORF59-58 to nuclear foci that are associated with replication compartments. IMPORTANCE Late in the lytic phase, mRNAs from Kaposi's sarcoma-associated herpesvirus accumulate in the host cell nucleus near viral replication compartments, centers of viral DNA synthesis and virion production. This work contributes spatiotemporal data on herpesviral mRNAs within the lytic host cell and suggests a mechanism for viral RNA accumulation. Our findings indicate that the mechanism is independent of the host shutoff effect and splicing but dependent on active viral DNA synthesis and in part on the viral noncoding RNA, PAN RNA. PAN RNA is essential for the viral life cycle, and its contribution to the nuclear accumulation of viral messages may facilitate propagation of the virus. Copyright © 2018 American Society for Microbiology.
Yu, Xiaolan; Shahir, Abdel-Malek; Sha, Jingfeng; Feng, Zhimin; Eapen, Betty; Nithianantham, Stanley; Das, Biswajit; Karn, Jonathan; Weinberg, Aaron; Bissada, Nabil F.
2014-01-01
ABSTRACT Periodontal pathogens such as Porphyromonas gingivalis and Fusobacterium nucleatum produce five different short-chain fatty acids (SCFAs) as metabolic by-products. We detect significantly higher levels of SCFAs in the saliva of patients with severe periodontal disease. The different SCFAs stimulate lytic gene expression of Kaposi's sarcoma-associated herpesvirus (KSHV) dose dependently and synergistically. SCFAs inhibit class-1/2 histone deacetylases (HDACs) and downregulate expression of silent information regulator-1 (SIRT1). SCFAs also downregulate expression of enhancer of zeste homolog2 (EZH2) and suppressor of variegation 3-9 homolog1 (SUV39H1), which are two histone N-lysine methyltransferases (HLMTs). By suppressing the different components of host epigenetic regulatory machinery, SCFAs increase histone acetylation and decrease repressive histone trimethylations to transactivate the viral chromatin. These new findings provide mechanistic support that SCFAs from periodontal pathogens stimulate KSHV replication and infection in the oral cavity and are potential risk factors for development of oral Kaposi's sarcoma (KS). IMPORTANCE About 20% of KS patients develop KS lesions first in the oral cavity, while other patients never develop oral KS. It is not known if the oral microenvironment plays a role in oral KS tumor development. In this work, we demonstrate that a group of metabolic by-products, namely, short-chain fatty acids, from bacteria that cause periodontal disease promote lytic replication of KSHV, the etiological agent associated with KS. These new findings provide mechanistic support that periodontal pathogens create a unique microenvironment in the oral cavity that contributes to KSHV replication and development of oral KS. PMID:24501407
Zhu, Xiaolei; Ma, Xinting; Yan, Qin; Zeng, Yi; Guo, Yuanyuan; Feng, Ninghan; Lu, Chun
2012-01-01
Kaposi's sarcoma-associated herpesvirus (KSHV) infection was necessary but not sufficient for Kaposi's sarcoma (KS) development without other cofactors. Previously, we identified that both human immunodeficiency type 1 (HIV-1) Tat and herpes simplex virus 1 (HSV-1) were important cofactors reactivating KSHV from latency. Here, we further investigated the potential of herpes simplex virus 2 (HSV-2) to influence KSHV replication and examined the role of Tat in this procedure. We demonstrated that HSV-2 was a potentially important factor in the pathogenesis of KS, as determined by production of lytic phase mRNA transcripts, viral proteins and infectious viral particles in BCBL-1 cells. These results were further confirmed by an RNA interference experiment using small interfering RNA targeting KSHV Rta and a luciferase reporter assay testing Rta promoter-driven luciferase activity. Mechanistic studies showed that HSV-2 infection activated nuclear factor-kappa B (NF-κB) signaling pathway. Inhibition of NF-κB pathway enhanced HSV-2-mediated KSHV activation, whereas activation of NF-κB pathway suppressed KSHV replication in HSV-2-infected BCBL-1 cells. Additionally, ectopic expression of Tat enhanced HSV-2-induced KSHV replication. These novel findings suggest a role of HSV-2 in the pathogenesis of KS and provide the first laboratory evidence that Tat may participate HSV-2-mediated KSHV activation, implying the complicated pathogenesis of acquired immunodeficiency syndrome (AIDS)-related KS (AIDS-KS) patients. PMID:22347501
Corcoran, Jennifer A.; Khaperskyy, Denys A.; Johnston, Benjamin P.; King, Christine A.; Cyr, David P.; Olsthoorn, Alisha V.
2012-01-01
During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, host gene expression is severely restricted by a process of global mRNA degradation known as host shutoff, which rededicates translational machinery to the expression of viral proteins. A subset of host mRNAs is spared from shutoff, and a number of these contain cis-acting AU-rich elements (AREs) in their 3′ untranslated regions. AREs are found in labile mRNAs encoding cytokines, growth factors, and proto-oncogenes. Activation of the p38/MK2 signal transduction pathway reverses constitutive decay of ARE-mRNAs, resulting in increased protein production. The viral G-protein-coupled receptor (vGPCR) is thought to play an important role in promoting the secretion of angiogenic molecules from KSHV-infected cells during lytic replication, but to date it has not been clear how vGPCR circumvents host shutoff. Here, we demonstrate that vGPCR activates the p38/MK2 pathway and stabilizes ARE-mRNAs, augmenting the levels of their protein products. Using MK2-deficient cells, we demonstrate that MK2 is essential for maximal vGPCR-mediated ARE-mRNA stabilization. ARE-mRNAs are normally delivered to cytoplasmic ribonucleoprotein granules known as processing bodies (PBs) for translational silencing and decay. We demonstrate that PB formation is prevented during KSHV lytic replication or in response to vGPCR-mediated activation of RhoA subfamily GTPases. Together, these data show for the first time that vGPCR impacts gene expression at the posttranscriptional level, coordinating an attack on the host mRNA degradation machinery. By suppressing ARE-mRNA turnover, vGPCR may facilitate escape of certain target mRNAs from host shutoff and allow secretion of angiogenic factors from lytically infected cells. PMID:22696654
Jin, Yi; He, Zhiheng; Liang, Deguang; Zhang, Quanzhi; Zhang, Hongxing; Deng, Qiang
2012-01-01
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is closely associated with several malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV can establish lifelong latency in the host, but the mechanism is not fully understood. Previous studies have proposed a feedback model in which the viral replication and transcription activator (RTA) can induce the expression of the latency-associated nuclear antigen (LANA) during early infection. LANA, in turn, represses transcription and RTA function to establish and maintain KSHV latency. The interaction between LANA and the recombination signal sequence binding protein Jκ (RBP-Jκ, also called CSL), a major transcriptional repressor of the Notch signaling pathway, is essential for RTA repression. In the present study, we show that the LANA carboxyl-terminal amino acids 1052 to 1082 are responsible for the LANA interaction with RBP-Jκ. The secondary structure of the LANA carboxyl terminus resembles the RBP-Jκ-associated module (RAM) of Notch receptor. Furthermore, deletion of the region of LANA residues 1052 to 1082 resulted in aberrant expression of RTA, leading to elevated viral lytic replication. For the first time, we dissected a conserved RBP-Jκ binding domain in LANA and demonstrated that this domain was indispensable for LANA-mediated repression of KSHV lytic genes, thus helping the virus maintain latency and control viral reactivation. PMID:22379075
Jin, Yi; He, Zhiheng; Liang, Deguang; Zhang, Quanzhi; Zhang, Hongxing; Deng, Qiang; Robertson, Erle S; Lan, Ke
2012-05-01
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is closely associated with several malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV can establish lifelong latency in the host, but the mechanism is not fully understood. Previous studies have proposed a feedback model in which the viral replication and transcription activator (RTA) can induce the expression of the latency-associated nuclear antigen (LANA) during early infection. LANA, in turn, represses transcription and RTA function to establish and maintain KSHV latency. The interaction between LANA and the recombination signal sequence binding protein Jκ (RBP-Jκ, also called CSL), a major transcriptional repressor of the Notch signaling pathway, is essential for RTA repression. In the present study, we show that the LANA carboxyl-terminal amino acids 1052 to 1082 are responsible for the LANA interaction with RBP-Jκ. The secondary structure of the LANA carboxyl terminus resembles the RBP-Jκ-associated module (RAM) of Notch receptor. Furthermore, deletion of the region of LANA residues 1052 to 1082 resulted in aberrant expression of RTA, leading to elevated viral lytic replication. For the first time, we dissected a conserved RBP-Jκ binding domain in LANA and demonstrated that this domain was indispensable for LANA-mediated repression of KSHV lytic genes, thus helping the virus maintain latency and control viral reactivation.
Cerimele, Francesca; Curreli, Francesca; Ely, Scott; Friedman-Kien, Alvin E.; Cesarman, Ethel; Flore, Ornella
2001-01-01
Previous studies have shown the presence of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) DNA in endothelial cells, in keratinocytes in the basal layer of the epidermis overlying plaque-stage nodular lesions of cutaneous Kaposi's sarcoma (KS), and in the epithelial cells of eccrine glands within KS lesions. We infected primary cell cultures of human keratinocytes with KSHV/HHV8. At 6 days post infection, transcription of viral genes was detected by reverse transcriptase PCR (RT-PCR), and protein expression was documented by an immunofluorescence assay with an anti-LANA monoclonal antibody. To determine whether the viral lytic cycle was inducible by chemical treatment, KSHV/HHV8-infected keratinocytes were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) and RT-PCR was performed to confirm the transcription of lytic genes such as open reading frame 26, (which encodes a capsid protein). Finally, to assess infectious viral production, other primary human cells (human umbilical vein endothelial cells), were infected with concentrated supernatant of KSHV-infected, TPA-induced keratinocytes and the presence of viral transcripts was confirmed by RT-PCR. The uninfected keratinocytes senesced 3 to 5 weeks after mock infection, while the KSHV/HHV8-infected keratinocytes continued to proliferate and to date are still in culture. However, 8 weeks after infection, viral genomes were no longer detectable by nested PCR. Although the previously KSHV/HHV8-infected keratinocytes still expressed epithelial markers, they acquired new characteristics such as contact inhibition loss, telomerase activity, anchorage-independent growth, and changes in cytokine production. These results show that KSHV/HHV8, like other herpesviruses, can infect and replicate in epithelial cells in vitro and suggest that in vivo these cells may play a significant role in the establishment of KSHV/HHV8 infection and viral transmission. PMID:11160746
Gorres, Kelly L.; Daigle, Derek; Mohanram, Sudharshan
2014-01-01
ABSTRACT The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. IMPORTANCE Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota. Small-molecule inducers of the lytic cycle are desired for oncolytic therapy. Inhibition of viral reactivation, alternatively, may prove useful in cancer treatment. Overall, our findings contribute to the understanding of pathways that control the latent-to-lytic switch and identify naturally occurring molecules that may regulate this process. PMID:24807711
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saji, Chiaki; Higashi, Chizuka; Niinaka, Yasufumi
Highlights: Black-Right-Pointing-Pointer Constitutive NF-{kappa}B signaling is essential for the survival and growth of PEL cells. Black-Right-Pointing-Pointer NF-{kappa}B signaling is upregulated by the proteasome-dependent degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress NF-{kappa}B signaling and induce apoptosis in PEL cells through stabilization of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress viral replication in PEL cells during lytic KSHV infection. -- Abstract: Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV). This study provides evidence that proteasomal activity is required for both survival of PEL cells stably harboring the KSHV genome and viral replication of KSHV. We evaluated the cytotoxicmore » effects of proteasome inhibitors on PEL cells. The proteasome inhibitors MG132, lactacystin, and proteasome inhibitor I dramatically inhibited cell proliferation and induced apoptosis of PEL cells through the accumulation of p21 and p27. Furthermore, proteasome inhibitors induced the stabilization of NF-{kappa}B inhibitory molecule (I{kappa}B{alpha}) and suppressed the transcriptional activity of NF-{kappa}B in PEL cells. The NF-{kappa}B specific inhibitor BAY11-7082 also induced apoptosis in PEL cells. The constitutive activation of NF-{kappa}B signaling is essential for the survival and growth of B cell lymphoma cells, including PEL cells. NF-{kappa}B signaling is upregulated by proteasome-dependent degradation of I{kappa}B{alpha}. The suppression of NF-{kappa}B signaling by proteasome inhibitors may contribute to the induction of apoptosis in PEL cells. In addition, proteasome activity is required for KSHV replication in KSHV latently infected PEL cells. MG132 reduced the production of progeny virus from PEL cells at low concentrations, which do not affect PEL cell growth. These findings suggest that proteasome inhibitors may represent a novel strategy for the treatment of KSHV infection and KSHV-associated lymphomas.« less
Curreli, Francesca; Friedman-Kien, Alvin E.; Flore, Ornella
2005-01-01
Kaposi sarcoma–associated herpesvirus (KSHV) is linked with all clinical forms of Kaposi sarcoma and several lymphoproliferative disorders. Like other herpesviruses, KSHV becomes latent in the infected cells, expressing only a few genes that are essential for the establishment and maintenance of its latency and for the survival of the infected cells. Inhibiting the expression of these latent genes should lead to eradication of herpesvirus infection. All currently available drugs are ineffective against latent infection. Here we show, for the first time to our knowledge, that latent infection with KSHV in B lymphocytes can be terminated by glycyrrhizic acid (GA), a triterpenoid compound earlier shown to inhibit the lytic replication of other herpesviruses. We demonstrate that GA disrupts latent KSHV infection by downregulating the expression of latency-associated nuclear antigen (LANA) and upregulating the expression of viral cyclin and selectively induces cell death of KSHV-infected cells. We show that reduced levels of LANA lead to p53 reactivation, an increase in ROS, and mitochondrial dysfunction, which result in G1 cell cycle arrest, DNA fragmentation, and oxidative stress–mediated apoptosis. Latent genes are involved in KSHV-induced oncogenesis, and strategies to interfere with their expression might prove useful for eradicating latent KSHV infection and have future therapeutic implications. PMID:15765147
Curreli, Francesca; Friedman-Kien, Alvin E; Flore, Ornella
2005-03-01
Kaposi sarcoma-associated herpesvirus (KSHV) is linked with all clinical forms of Kaposi sarcoma and several lymphoproliferative disorders. Like other herpesviruses, KSHV becomes latent in the infected cells, expressing only a few genes that are essential for the establishment and maintenance of its latency and for the survival of the infected cells. Inhibiting the expression of these latent genes should lead to eradication of herpesvirus infection. All currently available drugs are ineffective against latent infection. Here we show, for the first time to our knowledge, that latent infection with KSHV in B lymphocytes can be terminated by glycyrrhizic acid (GA), a triterpenoid compound earlier shown to inhibit the lytic replication of other herpesviruses. We demonstrate that GA disrupts latent KSHV infection by downregulating the expression of latency-associated nuclear antigen (LANA) and upregulating the expression of viral cyclin and selectively induces cell death of KSHV-infected cells. We show that reduced levels of LANA lead to p53 reactivation, an increase in ROS, and mitochondrial dysfunction, which result in G1 cell cycle arrest, DNA fragmentation, and oxidative stress-mediated apoptosis. Latent genes are involved in KSHV-induced oncogenesis, and strategies to interfere with their expression might prove useful for eradicating latent KSHV infection and have future therapeutic implications.
KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation
Sharma, Nishi R.; Majerciak, Vladimir; Kruhlak, Michael J.
2017-01-01
TIA-1 positive stress granules (SG) represent the storage sites of stalled mRNAs and are often associated with the cellular antiviral response. In this report, we provide evidence that Kaposi’s sarcoma-associated herpesvirus (KSHV) overcomes the host antiviral response by inhibition of SG formation via a viral lytic protein ORF57. By immunofluorescence analysis, we found that B lymphocytes with KSHV lytic infection are refractory to SG induction. KSHV ORF57, an essential post-transcriptional regulator of viral gene expression and the production of new viral progeny, inhibits SG formation induced experimentally by arsenite and poly I:C, but not by heat stress. KSHV ORF37 (vSOX) bearing intrinsic endoribonuclease activity also inhibits arsenite-induced SG formation, but KSHV RTA, vIRF-2, ORF45, ORF59 and LANA exert no such function. ORF57 binds both PKR-activating protein (PACT) and protein kinase R (PKR) through their RNA-binding motifs and prevents PACT-PKR interaction in the PKR pathway which inhibits KSHV production. Consistently, knocking down PKR expression significantly promotes KSHV virion production. ORF57 interacts with PKR to inhibit PKR binding dsRNA and its autophosphorylation, leading to inhibition of eIF2α phosphorylation and SG formation. Homologous protein HSV-1 ICP27, but not EBV EB2, resembles KSHV ORF57 in the ability to block the PKR/eIF2α/SG pathway. In addition, KSHV ORF57 inhibits poly I:C-induced TLR3 phosphorylation. Altogether, our data provide the first evidence that KSHV ORF57 plays a role in modulating PKR/eIF2α/SG axis and enhances virus production during virus lytic infection. PMID:29084250
Hunter, Olga V.; Sei, Emi; Richardson, R. Blake
2013-01-01
The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 57 (ORF57)-encoded protein (Mta) is a multifunctional regulator of viral gene expression. ORF57 is essential for viral replication, so elucidation of its molecular mechanisms is important for understanding KSHV infection. ORF57 has been implicated in nearly every aspect of viral gene expression, including transcription, RNA stability, splicing, export, and translation. Here we demonstrate that ORF57 interacts with the KSHV K-bZIP protein in vitro and in cell extracts from lytically reactivated infected cells. To further test the biological relevance of the interaction, we performed a chromatin immunoprecipitation and microarray (ChIP-chip) analysis using anti-ORF57 antibodies and a KSHV tiling array. The results revealed four specific areas of enrichment, including the ORF4 and K8 (K-bZIP) promoters, as well as oriLyt, all of which interact with K-bZIP. In addition, ORF57 associated with DNA corresponding to the PAN RNA transcribed region, a known posttranscriptional target of ORF57. All of the peaks were RNase insensitive, demonstrating that ORF57 association with the viral genome is unlikely to be mediated exclusively by an RNA tether. Our data demonstrate that ORF57 associates with the viral genome by using at least two modes of recruitment, and they suggest that ORF57 and K-bZIP coregulate viral gene expression during lytic infection. PMID:23365430
Pathology of Kaposi’s Sarcoma-Associated Herpesvirus Infection
Fukumoto, Hitomi; Kanno, Takayuki; Hasegawa, Hideki; Katano, Harutaka
2011-01-01
Kaposi’s sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) is a human herpesvirus, classified as a gamma-herpesvirus. KSHV is detected in Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and some cases of multicentric Castleman’s disease (MCD). Similar to other herpes viruses, there are two phases of infection, latent and lytic. In KSHV-associated malignancies such as KS and PEL, KSHV latently infects almost all tumor cells. Quantitative PCR analysis revealed that each tumor cell contains one copy of KSHV in KS lesions. The oncogenesis by KSHV has remained unclear. Latency-associated nuclear antigen (LANA)-1 plays an important role in the pathogenesis of KSHV-associated malignancies through inhibition of apoptosis and maintenance of latency. Because all KSHV-infected cells express LANA-1, LANA-1 immunohistochemistry is a useful tool for diagnosis of KSHV infection. KSHV encodes some homologs of cellular proteins including cell-cycle regulators, cytokines, and chemokines, such as cyclin D, G-protein-coupled protein, interleukin-6, and macrophage inflammatory protein-1 and -2. These viral proteins mimic or disrupt host cytokine signals, resulting in microenvironments amenable to tumor growth. Lytic infection is frequently seen in MCD tissues, suggesting a different pathogenesis from KS and lymphoma. PMID:21904536
Bihl, Florian; Narayan, Murli; Chisholm, John V; Henry, Leah M; Suscovich, Todd J; Brown, Elizabeth E; Welzel, Tania M; Kaufmann, Daniel E; Zaman, Tauheed M; Dollard, Sheila; Martin, Jeff N; Wang, Fred; Scadden, David T; Kaye, Kenneth M; Brander, Christian
2007-05-01
The cellular immunity against Kaposi's sarcoma-associated herpesvirus (KSHV) is poorly characterized and has not been compared to T-cell responses against other human herpesviruses. Here, novel and dominant targets of KSHV-specific cellular immunity are identified and compared to T cells specific for lytic and latent antigens in a second human gammaherpesvirus, Epstein-Barr virus. The data identify a novel HLA-B57- and HLA-B58-restricted epitope in the Orf57 protein and show consistently close parallels in immune phenotypes and functional response patterns between cells targeting lytic or latent KSHV- and EBV-encoded antigens, suggesting common mechanisms in the induction of these responses.
Bihl, Florian; Narayan, Murli; Chisholm, John V.; Henry, Leah M.; Suscovich, Todd J.; Brown, Elizabeth E.; Welzel, Tania M.; Kaufmann, Daniel E.; Zaman, Tauheed M.; Dollard, Sheila; Martin, Jeff N.; Wang, Fred; Scadden, David T.; Kaye, Kenneth M.; Brander, Christian
2007-01-01
The cellular immunity against Kaposi's sarcoma-associated herpesvirus (KSHV) is poorly characterized and has not been compared to T-cell responses against other human herpesviruses. Here, novel and dominant targets of KSHV-specific cellular immunity are identified and compared to T cells specific for lytic and latent antigens in a second human gammaherpesvirus, Epstein-Barr virus. The data identify a novel HLA-B57- and HLA-B58-restricted epitope in the Orf57 protein and show consistently close parallels in immune phenotypes and functional response patterns between cells targeting lytic or latent KSHV- and EBV-encoded antigens, suggesting common mechanisms in the induction of these responses. PMID:17329344
RNA N6-adenosine methylation (m6A) steers epitranscriptomic control of herpesvirus replication
Ye, Fengchun
2017-01-01
Latency is a hallmark of all herpesviruses, during which the viral genomes are silenced through DNA methylation and suppressive histone modifications. When latent herpesviruses reactivate to undergo productive lytic replication, the suppressive epigenetic marks are replaced with active ones to allow for transcription of viral genes. Interestingly, by using Kaposi’s sarcoma-associated herpesvirus (KSHV) as a model, we recently demonstrated that the newly transcribed viral RNAs are also subjected to post-transcriptional N6-adenosine methylation (m6A). Blockade of this post-transcriptional event abolishes viral protein expression and halts virion production. We found that m6A modification controls RNA splicing, stability, and protein translation to regulate viral lytic gene expression and replication. Thus, our finding for the first time reveals a critical role of this epitranscriptomic mechanism in the control of herpesviral replication, which shall shed lights on development of novel strategies for the control of herpesviral infection. PMID:29082271
Kaposi's Sarcoma Associated-Herpes Virus (KSHV) Seroprevalence in Pregnant Women in South Africa
2010-01-01
Background Factors previously associated with Kaposi's sarcoma-associated herpesvirus (KSHV) transmission in Africa include sexual, familial, and proximity to river water. We measured the seroprevalence of KSHV in relation to HIV, syphilis, and demographic factors among pregnant women attending public antenatal clinics in the Gauteng province of South Africa. Methods We tested for antibodies to KSHV lytic K8.1 and latent Orf73 antigens in 1740 pregnant women attending antenatal clinics who contributed blood to the "National HIV and Syphilis Sero-Prevalence Survey - South Africa, 2001". Information on HIV and syphilis serology, age, education, residential area, gravidity, and parity was anonymously linked to evaluate risk factors for KSHV seropositivity. Clinics were grouped by municipality regions and their proximity to the two main river catchments defined. Results KSHV seropositivity (reactive to either lytic K8.1 and latent Orf73) was nearly twice that of HIV (44.6% vs. 23.1%). HIV and syphilis seropositivity was 12.7% and 14.9% in women without KSHV, and 36.1% and 19.9% respectively in those with KSHV. Women who are KSHV seropositive were 4 times more likely to be HIV positive than those who were KSHV seronegative (AOR 4.1 95%CI: 3.4 - 5.7). Although, women with HIV infection were more likely to be syphilis seropositive (AOR 1.8 95%CI: 1.3 - 2.4), no association between KSHV and syphilis seropositivity was observed. Those with higher levels of education had lower levels of KSHV seropositivity compared to those with lower education levels. KSHV seropositivity showed a heterogeneous pattern of prevalence in some localities. Conclusions The association between KSHV and HIV seropositivity and a lack of common association with syphilis, suggests that KSHV transmission may involve geographical and cultural factors other than sexual transmission. PMID:20807396
Polizzotto, Mark N; Uldrick, Thomas S; Hu, Duosha; Yarchoan, Robert
2012-01-01
Soon after the discovery of Kaposi sarcoma (KS)-associated herpesvirus (KSHV), it was appreciated that this virus was associated with most cases of multicentric Castleman disease (MCD) arising in patients infected with human immunodeficiency virus. It has subsequently been recognized that KSHV-MCD is a distinct entity from other forms of MCD. Like MCD that is unrelated to KSHV, the clinical presentation of KSHV-MCD is dominated by systemic inflammatory symptoms including fevers, cachexia, and laboratory abnormalities including cytopenias, hypoalbuminemia, hyponatremia, and elevated C-reactive protein. Pathologically KSHV-MCD is characterized by polyclonal, IgM-lambda restricted plasmacytoid cells in the intrafollicular areas of affected lymph nodes. A portion of these cells are infected with KSHV and a sizable subset of these cells express KSHV lytic genes including a viral homolog of interleukin-6 (vIL-6). Patients with KSHV-MCD generally have elevated KSHV viral loads in their peripheral blood. Production of vIL-6 and induction of human (h) IL-6 both contribute to symptoms, perhaps in combination with overproduction of IL-10 and other cytokines. Until recently, the prognosis of patients with KSHV-MCD was poor. Recent therapeutic advances targeting KSHV-infected B cells with the anti-CD20 monoclonal antibody rituximab and utilizing KSHV enzymes to target KSHV-infected cells have substantially improved patient outcomes. Recently another KSHV-associated condition, the KSHV inflammatory cytokine syndrome (KICS) has been described. Its clinical manifestations resemble those of KSHV-MCD but lymphadenopathy is not prominent and the pathologic nodal changes of KSHV-MCD are absent. Patients with KICS exhibit elevated KSHV viral loads and elevation of vIL-6, homolog of human interleukin-6 and IL-10 comparable to those seen in KSHV-MCD; the cellular origin of these is a matter of investigation. KICS may contribute to the inflammatory symptoms seen in some patients with severe KS or primary effusion lymphoma. Additional research is needed to better define the clinical spectrum of KICS and its relationship to KSHV-MCD. In additional, research is needed to better understand the pathogenesis and epidemiology of both KICS and KSHV-MCD, as well as the optimal therapy for both of these disorders.
The Role of Gammaherpesviruses in Cancer Pathogenesis
Jha, Hem Chandra; Banerjee, Shuvomoy; Robertson, Erle S.
2016-01-01
Worldwide, one fifth of cancers in the population are associated with viral infections. Among them, gammaherpesvirus, specifically HHV4 (EBV) and HHV8 (KSHV), are two oncogenic viral agents associated with a large number of human malignancies. In this review, we summarize the current understanding of the molecular mechanisms related to EBV and KSHV infection and their ability to induce cellular transformation. We describe their strategies for manipulating major cellular systems through the utilization of cell cycle, apoptosis, immune modulation, epigenetic modification, and altered signal transduction pathways, including NF-kB, Notch, Wnt, MAPK, TLR, etc. We also discuss the important EBV latent antigens, namely EBNA1, EBNA2, EBNA3’s and LMP’s, which are important for targeting these major cellular pathways. KSHV infection progresses through the engagement of the activities of the major latent proteins LANA, v-FLIP and v-Cyclin, and the lytic replication and transcription activator (RTA). This review is a current, comprehensive approach that describes an in-depth understanding of gammaherpes viral encoded gene manipulation of the host system through targeting important biological processes in viral-associated cancers. PMID:26861404
Activation of DNA Damage Response Induced by the Kaposi’s Sarcoma-Associated Herpes Virus
Di Domenico, Enea Gino; Toma, Luigi; Bordignon, Valentina; Trento, Elisabetta; D’Agosto, Giovanna; Cordiali-Fei, Paola; Ensoli, Fabrizio
2016-01-01
The human herpes virus 8 (HHV-8), also known as Kaposi sarcoma-associated herpes virus (KSHV), can infect endothelial cells often leading to cell transformation and to the development of tumors, namely Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and the plasmablastic variant of multicentric Castleman’s disease. KSHV is prevalent in areas such as sub-Saharan Africa and the Mediterranean region presenting distinct genotypes, which appear to be associated with differences in disease manifestation, according to geographical areas. In infected cells, KSHV persists in a latent episomal form. However, in a limited number of cells, it undergoes spontaneous lytic reactivation to ensure the production of new virions. During both the latent and the lytic cycle, KSHV is programmed to express genes which selectively modulate the DNA damage response (DDR) through the activation of the ataxia telangiectasia mutated (ATM) pathway and by phosphorylating factors associated with the DDR, including the major tumor suppressor protein p53 tumor suppressor p53. This review will focus on the interplay between the KSHV and the DDR response pathway throughout the viral lifecycle, exploring the putative molecular mechanism/s that may contribute to malignant transformation of host cells. PMID:27258263
Gammaherpesvirus Infection of Human Neuronal Cells
Jha, Hem Chandra; Mehta, Devan; Lu, Jie; El-Naccache, Darine; Shukla, Sanket K.; Kovacsics, Colleen; Kolson, Dennis
2015-01-01
ABSTRACT Gammaherpesviruses human herpesvirus 4 (HHV4) and HHV8 are two prominent members of the herpesvirus family associated with a number of human cancers. HHV4, also known as Epstein-Barr virus (EBV), a ubiquitous gammaherpesvirus prevalent in 90 to 95% of the human population, is clinically associated with various neurological diseases such as primary central nervous system lymphoma, multiple sclerosis, Alzheimer’s disease, cerebellar ataxia, and encephalitis. However, the possibility that EBV and Kaposi’s sarcoma-associated herpesvirus (KSHV) can directly infect neurons has been largely overlooked. This study has, for the first time, characterized EBV infection in neural cell backgrounds by using the Sh-Sy5y neuroblastoma cell line, teratocarcinoma Ntera2 neurons, and primary human fetal neurons. Furthermore, we also demonstrated KSHV infection of neural Sh-Sy5y cells. These neuronal cells were infected with green fluorescent protein-expressing recombinant EBV or KSHV. Microscopy, genetic analysis, immunofluorescence, and Western blot analyses for specific viral antigens supported and validated the infection of these cells by EBV and KSHV and showed that the infection was efficient and productive. Progeny virus produced from infected neuronal cells efficiently infected fresh neuronal cells, as well as peripheral blood mononuclear cells. Furthermore, acyclovir was effective at inhibiting the production of virus from neuronal cells similar to lymphoblastoid cell lines; this suggests active lytic replication in infected neurons in vitro. These studies represent a potentially new in vitro model of EBV- and KSHV-associated neuronal disease development and pathogenesis. PMID:26628726
Yang, Wan-Shan; Hsu, Hung-Wei; Campbell, Mel; Cheng, Chia-Yang; Chang, Pei-Ching
2015-01-01
SUMOylation is associated with epigenetic regulation of chromatin structure and transcription. Epigenetic modifications of herpesviral genomes accompany the transcriptional switch of latent and lytic genes during the virus life cycle. Here, we report a genome-wide comparison of SUMO paralog modification on the KSHV genome. Using chromatin immunoprecipitation in conjunction with high-throughput sequencing, our study revealed highly distinct landscape changes of SUMO paralog genomic modifications associated with KSHV reactivation. A rapid and widespread deposition of SUMO-2/3, compared with SUMO-1, modification across the KSHV genome upon reactivation was observed. Interestingly, SUMO-2/3 enrichment was inversely correlated with H3K9me3 mark after reactivation, indicating that SUMO-2/3 may be responsible for regulating the expression of viral genes located in low heterochromatin regions during viral reactivation. RNA-sequencing analysis showed that the SUMO-2/3 enrichment pattern positively correlated with KSHV gene expression profiles. Activation of KSHV lytic genes located in regions with high SUMO-2/3 enrichment was enhanced by SUMO-2/3 knockdown. These findings suggest that SUMO-2/3 viral chromatin modification contributes to the diminution of viral gene expression during reactivation. Our previous study identified a SUMO-2/3-specific viral E3 ligase, K-bZIP, suggesting a potential role of this enzyme in regulating SUMO-2/3 enrichment and viral gene repression. Consistent with this prediction, higher K-bZIP binding on SUMO-2/3 enrichment region during reactivation was observed. Moreover, a K-bZIP SUMO E3 ligase dead mutant, K-bZIP-L75A, in the viral context, showed no SUMO-2/3 enrichment on viral chromatin and higher expression of viral genes located in SUMO-2/3 enriched regions during reactivation. Importantly, virus production significantly increased in both SUMO-2/3 knockdown and KSHV K-bZIP-L75A mutant cells. These results indicate that SUMO-2/3 modification of viral chromatin may function to counteract KSHV reactivation. As induction of herpesvirus reactivation may activate cellular antiviral regimes, our results suggest that development of viral SUMO E3 ligase specific inhibitors may be an avenue for anti-virus therapy. PMID:26197391
Polizzotto, Mark N.; Uldrick, Thomas S.; Hu, Duosha; Yarchoan, Robert
2012-01-01
Soon after the discovery of Kaposi sarcoma (KS)-associated herpesvirus (KSHV), it was appreciated that this virus was associated with most cases of multicentric Castleman disease (MCD) arising in patients infected with human immunodeficiency virus. It has subsequently been recognized that KSHV–MCD is a distinct entity from other forms of MCD. Like MCD that is unrelated to KSHV, the clinical presentation of KSHV–MCD is dominated by systemic inflammatory symptoms including fevers, cachexia, and laboratory abnormalities including cytopenias, hypoalbuminemia, hyponatremia, and elevated C-reactive protein. Pathologically KSHV–MCD is characterized by polyclonal, IgM-lambda restricted plasmacytoid cells in the intrafollicular areas of affected lymph nodes. A portion of these cells are infected with KSHV and a sizable subset of these cells express KSHV lytic genes including a viral homolog of interleukin-6 (vIL-6). Patients with KSHV–MCD generally have elevated KSHV viral loads in their peripheral blood. Production of vIL-6 and induction of human (h) IL-6 both contribute to symptoms, perhaps in combination with overproduction of IL-10 and other cytokines. Until recently, the prognosis of patients with KSHV–MCD was poor. Recent therapeutic advances targeting KSHV-infected B cells with the anti-CD20 monoclonal antibody rituximab and utilizing KSHV enzymes to target KSHV-infected cells have substantially improved patient outcomes. Recently another KSHV-associated condition, the KSHV inflammatory cytokine syndrome (KICS) has been described. Its clinical manifestations resemble those of KSHV–MCD but lymphadenopathy is not prominent and the pathologic nodal changes of KSHV–MCD are absent. Patients with KICS exhibit elevated KSHV viral loads and elevation of vIL-6, homolog of human interleukin-6 and IL-10 comparable to those seen in KSHV–MCD; the cellular origin of these is a matter of investigation. KICS may contribute to the inflammatory symptoms seen in some patients with severe KS or primary effusion lymphoma. Additional research is needed to better define the clinical spectrum of KICS and its relationship to KSHV–MCD. In additional, research is needed to better understand the pathogenesis and epidemiology of both KICS and KSHV–MCD, as well as the optimal therapy for both of these disorders. PMID:22403576
Sarid, Ronit; Flore, Ornella; Bohenzky, Roy A.; Chang, Yuan; Moore, Patrick S.
1998-01-01
Kaposi’s sarcoma-associated herpesvirus (KSHV) gene transcription in the BC-1 cell line (KSHV and Epstein-Barr virus coinfected) was examined by using Northern analysis with DNA probes extending across the viral genome except for a 3-kb unclonable rightmost region. Three broad classes of viral gene transcription have been identified. Class I genes, such as those encoding the v-cyclin, latency-associated nuclear antigen, and v-FLIP, are constitutively transcribed under standard growth conditions, are unaffected by tetradecanoylphorbol acetate (TPA) induction, and presumably represent latent viral transcripts. Class II genes are primarily clustered in nonconserved regions of the genome and include small polyadenylated RNAs (T0.7 and T1.1) as well as most of the virus-encoded cytokines and signal transduction genes. Class II genes are transcribed without TPA treatment but are induced to higher transcription levels by TPA treatment. Class III genes are primarily structural and replication genes that are transcribed only following TPA treatment and are presumably responsible for lytic virion production. These results indicate that BC-1 cells have detectable transcription of a number of KSHV genes, particularly nonconserved genes involved in cellular signal transduction and regulation, during noninduced (latent) virus culture. PMID:9444993
Verma, Subhash C.; Lu, Jie; Cai, Qiliang; Kosiyatrakul, Settapong; McDowell, Maria E.; Schildkraut, Carl L.; Robertson, Erle S.
2011-01-01
Kaposi's sarcoma associated herpesvirus (KSHV), an etiologic agent of Kaposi's sarcoma, Body Cavity Based Lymphoma and Multicentric Castleman's Disease, establishes lifelong latency in infected cells. The KSHV genome tethers to the host chromosome with the help of a latency associated nuclear antigen (LANA). Additionally, LANA supports replication of the latent origins within the terminal repeats by recruiting cellular factors. Our previous studies identified and characterized another latent origin, which supported the replication of plasmids ex-vivo without LANA expression in trans. Therefore identification of an additional origin site prompted us to analyze the entire KSHV genome for replication initiation sites using single molecule analysis of replicated DNA (SMARD). Our results showed that replication of DNA can initiate throughout the KSHV genome and the usage of these regions is not conserved in two different KSHV strains investigated. SMARD also showed that the utilization of multiple replication initiation sites occurs across large regions of the genome rather than a specified sequence. The replication origin of the terminal repeats showed only a slight preference for their usage indicating that LANA dependent origin at the terminal repeats (TR) plays only a limited role in genome duplication. Furthermore, we performed chromatin immunoprecipitation for ORC2 and MCM3, which are part of the pre-replication initiation complex to determine the genomic sites where these proteins accumulate, to provide further characterization of potential replication initiation sites on the KSHV genome. The ChIP data confirmed accumulation of these pre-RC proteins at multiple genomic sites in a cell cycle dependent manner. Our data also show that both the frequency and the sites of replication initiation vary within the two KSHV genomes studied here, suggesting that initiation of replication is likely to be affected by the genomic context rather than the DNA sequences. PMID:22072974
Dai, Lu; Trillo-Tinoco, Jimena; Bai, Aiping; Chen, Yihan; Bielawski, Jacek; Del Valle, Luis; Smith, Charles D.; Ochoa, Augusto C.; Qin, Zhiqiang; Parsons, Chris
2015-01-01
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for several human cancers including primary effusion lymphoma (PEL), a rapidly progressive malignancy arising preferentially in immunocompromised patients. With conventional chemotherapy, PEL continues to portend high mortality, dictating the development of novel therapeutic strategies. Sphingosine kinase 2 (SphK2) represents a key gatekeeper for sphingolipid metabolism, responsible for conversion of ceramides to sphingosine-1-phosphate (S1P). We have previously demonstrated that targeting SphK2 using a novel selective inhibitor, ABC294640, leads to intracellular accumulation of ceramides and induces apoptosis for KSHV-infected PEL cells, while suppressing tumor progression in vivo. In the current study, we sought to determine whether specific ceramide/dh-ceramide species and related ceramide synthases (CerS) impact viability for KSHV-infected PEL cells during targeting of SphK2. We found that several specific ceramide and dihydro(dh)-ceramide species and their associated CerS reduce PEL survival and tumor expansion in vitro and in vivo. Moreover, we found that dhC16-Cer induces PEL apoptosis in part through activation of KSHV lytic gene expression. These data further implicate bioactive sphingolipids in regulation of PEL survival, and provide justification for future studies evaluating clinically relevant ceramide analogs or mimetics for their potential as therapeutic agents for PEL. PMID:26327294
Dominissini, Dan; He, Chuan
2018-01-01
Methylation at the N6 position of adenosine (m6A) is a highly prevalent and reversible modification within eukaryotic mRNAs that has been linked to many stages of RNA processing and fate. Recent studies suggest that m6A deposition and proteins involved in the m6A pathway play a diverse set of roles in either restricting or modulating the lifecycles of select viruses. Here, we report that m6A levels are significantly increased in cells infected with the oncogenic human DNA virus Kaposi’s sarcoma-associated herpesvirus (KSHV). Transcriptome-wide m6A-sequencing of the KSHV-positive renal carcinoma cell line iSLK.219 during lytic reactivation revealed the presence of m6A across multiple kinetic classes of viral transcripts, and a concomitant decrease in m6A levels across much of the host transcriptome. However, we found that depletion of the m6A machinery had differential pro- and anti-viral impacts on viral gene expression depending on the cell-type analyzed. In iSLK.219 and iSLK.BAC16 cells the pathway functioned in a pro-viral manner, as depletion of the m6A writer METTL3 and the reader YTHDF2 significantly impaired virion production. In iSLK.219 cells the defect was linked to their roles in the post-transcriptional accumulation of the major viral lytic transactivator ORF50, which is m6A modified. In contrast, although the ORF50 mRNA was also m6A modified in KSHV infected B cells, ORF50 protein expression was instead increased upon depletion of METTL3, or, to a lesser extent, YTHDF2. These results highlight that the m6A pathway is centrally involved in regulating KSHV gene expression, and underscore how the outcome of this dynamically regulated modification can vary significantly between cell types. PMID:29659627
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha, Seho; Lim, Chunghun; Lee, Jae Young
2010-04-16
During latent infection, latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) plays important roles in episomal persistence and replication. Several host factors are associated with KSHV latent replication. Here, we show that the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku70, and Ku86 bind the N-terminal region of LANA. LANA was phosphorylated by DNA-PK and overexpression of Ku70, but not Ku86, impaired transient replication. The efficiency of transient replication was significantly increased in the HCT116 (Ku86 +/-) cell line, compared to the HCT116 (Ku86 +/+) cell line, suggesting that the DNA-PK/Ku complex negatively regulates KSHV latent replication.
Di Bartolo, Daniel L; Hyjek, Elizabeth; Keller, Shannon; Guasparri, Ilaria; Deng, Hongyu; Sun, Ren; Chadburn, Amy; Knowles, Daniel M; Cesarman, Ethel
2009-05-01
Primary effusion lymphoma (PEL) is a distinct type of B-cell non-Hodgkin lymphoma characterized by the presence of Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8). Despite having a genotype and gene expression signature of highly differentiated B cells, PEL does not usually express surface or cytoplasmic immunoglobulin (Ig). We show the lack of Oct-2 and OCA-B transcription factors to be responsible, at least in part, for this defect in Ig production. Like Ig genes, ORF50, the key regulator of the switch from latency to lytic reactivation, contains an octamer motif within its promoter. We therefore examined the impact of Oct-2 and OCA-B on ORF50 activation. The binding of Oct-1 to the ORF50 promoter has been shown to significantly enhance ORF50 transactivation. We found that Oct-2, on the other hand, inhibited ORF50 expression and consequently lytic reactivation by competing with Oct-1 for the octamer motif in the ORF50 promoter. Our data suggest that Oct-2 downregulation in infected cells would be favorable to KSHV in allowing for efficient viral reactivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Lei
2008-01-01
Open reading frame 11 (ORF11) of Kaposi's sarcoma-associated herpesvirus belongs to a herpesviral homologous protein family shared by some members of the gamma- herpesvirus subfamily. Little is known about this ORF11 homologous protein family. We have characterized an unknown open reading frame, ORF11, located adjacent and in the opposite orientation to a well-characterized viral IL-6 gene. Northern blot analysis reveals that ORF11 is expressed during the KSHV lytic cycle with delayed-early transcription kinetics. We have determined the 5{prime} and 3{prime} untranslated region of the unspliced ORF11 transcript and identified both the transcription start site and the transcription termination site. Coremore » promoter region, representing ORF11 promoter activity, was mapped to a 159nt fragment 5{prime} most proximal to the transcription start site. A functional TATA box was identified in the core promoter region. Interestingly, we found that ORF11 transcriptional activation is not responsive to Rta, the KSHV lytic switch protein. We also discovered that part of the ORF11 promoter region, the 209nt fragment upstream of the transcription start site, was repressed by phorbol esters. Our data help to understand transcription regulation of ORF11 and to elucidate roles of ORF11 in KSHV pathogenesis and life cycle.« less
G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV
Madireddy, Advaitha; Purushothaman, Pravinkumar; Loosbroock, Christopher P.; Robertson, Erle S.; Schildkraut, Carl L.; Verma, Subhash C.
2016-01-01
Kaposi's sarcoma associated herpesvirus (KSHV) establishes life-long latent infection by persisting as an extra-chromosomal episome in the infected cells and by maintaining its genome in dividing cells. KSHV achieves this by tethering its epigenome to the host chromosome by latency associated nuclear antigen (LANA), which binds in the terminal repeat (TR) region of the viral genome. Sequence analysis of the TR, a GC-rich DNA element, identified several potential Quadruplex G-Rich Sequences (QGRS). Since quadruplexes have the tendency to obstruct DNA replication, we used G-quadruplex stabilizing compounds to examine their effect on latent DNA replication and the persistence of viral episomes. Our results showed that these G-quadruplex stabilizing compounds led to the activation of dormant origins of DNA replication, with preferential bi-directional pausing of replications forks moving out of the TR region, implicating the role of the G-rich TR in the perturbation of episomal DNA replication. Over time, treatment with PhenDC3 showed a loss of viral episomes in the infected cells. Overall, these data show that G-quadruplex stabilizing compounds retard the progression of replication forks leading to a reduction in DNA replication and episomal maintenance. These results suggest a potential role for G-quadruplex stabilizers in the treatment of KSHV-associated diseases. PMID:26837574
de Sanjose, Silvia; Mbisa, Georgina; Perez-Alvarez, Susana; Benavente, Yolanda; Sukvirach, Sukhon; Hieu, Nguyen Trong; Shin, Hai-Rim; Anh, Pham Thi Hoang; Thomas, Jaiyeola; Lazcano, Eduardo; Matos, Elena; Herrero, Rolando; Muñoz, Nubia; Molano, Monica; Franceschi, Silvia; Whitby, Denise
2009-05-15
The aim of the present study was to estimate the prevalence of Kaposi sarcoma-associated herpesvirus (KSHV) in the female general population, to define geographic variation in and heterosexual transmission of the virus. The study included 10,963 women from 9 countries for whom information on sociodemographic characteristics and reproductive, sexual, and smoking behaviors were available. Antibodies against KSHV that encoded lytic antigen K8.1 and latent antigen ORF73 were determined. The range of prevalence of KSHV (defined as detection of any antigen) was 3.81%-46.02%, with significant geographic variation noted. In Nigeria, the prevalence was 46.02%; in Colombia, 13.32%; in Costa Rica, 9.81%; in Argentina, 6.40%; in Ho Chi Minh City, Vietnam, 15.50%; in Hanoi, Vietnam, 11.26%; in Songkla, Thailand, 10%; in Lampang, Thailand, 8.63%; in Korea, 4.93%; and in Spain, 3.65%. The prevalence of KSHV slightly increased with increasing age among subjects in geographic areas where the prevalence of KSHV was high, such as Nigeria and Colombia, and it significantly decreased with increases in the educational level attained by subjects in those areas. KSHV was not statistically associated with age at first sexual intercourse, number of sex partners, number of children, patterns of oral contraceptive use, presence of cervical human papillomavirus DNA, or smoking status. The study provides comparable estimates of KSHV prevalence in diverse cultural settings across 4 continents and provides evidence that sexual transmission of KSHV is not a major source of infection in the general population.
G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV.
Madireddy, Advaitha; Purushothaman, Pravinkumar; Loosbroock, Christopher P; Robertson, Erle S; Schildkraut, Carl L; Verma, Subhash C
2016-05-05
Kaposi's sarcoma associated herpesvirus (KSHV) establishes life-long latent infection by persisting as an extra-chromosomal episome in the infected cells and by maintaining its genome in dividing cells. KSHV achieves this by tethering its epigenome to the host chromosome by latency associated nuclear antigen (LANA), which binds in the terminal repeat (TR) region of the viral genome. Sequence analysis of the TR, a GC-rich DNA element, identified several potential Quadruplex G-Rich Sequences (QGRS). Since quadruplexes have the tendency to obstruct DNA replication, we used G-quadruplex stabilizing compounds to examine their effect on latent DNA replication and the persistence of viral episomes. Our results showed that these G-quadruplex stabilizing compounds led to the activation of dormant origins of DNA replication, with preferential bi-directional pausing of replications forks moving out of the TR region, implicating the role of the G-rich TR in the perturbation of episomal DNA replication. Over time, treatment with PhenDC3 showed a loss of viral episomes in the infected cells. Overall, these data show that G-quadruplex stabilizing compounds retard the progression of replication forks leading to a reduction in DNA replication and episomal maintenance. These results suggest a potential role for G-quadruplex stabilizers in the treatment of KSHV-associated diseases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Clyde, Karen; Glaunsinger, Britt A.
2011-01-01
One characteristic of lytic infection with gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and murine herpesvirus 68 (MHV68), is the dramatic suppression of cellular gene expression in a process known as host shutoff. The alkaline exonuclease proteins (KSHV SOX, MHV-68 muSOX and EBV BGLF5) have been shown to induce shutoff by destabilizing cellular mRNAs. Here we extend previous analyses of cellular mRNA abundance during lytic infection to characterize the effects of SOX and muSOX, in the absence of other viral genes, utilizing deep sequencing technology (RNA-seq). Consistent with previous observations during lytic infection, the majority of transcripts are downregulated in cells expressing either SOX or muSOX, with muSOX acting as a more potent shutoff factor than SOX. Moreover, most cellular messages fall into the same expression class in both SOX- and muSOX-expressing cells, indicating that both factors target similar pools of mRNAs. More abundant mRNAs are more efficiently downregulated, suggesting a concentration effect in transcript targeting. However, even among highly expressed genes there are mRNAs that escape host shutoff. Further characterization of select escapees reveals multiple mechanisms by which cellular genes can evade downregulation. While some mRNAs are directly refractory to SOX, the steady state levels of others remain unchanged, presumably as a consequence of downstream effects on mRNA biogenesis. Collectively, these studies lay the framework for dissecting the mechanisms underlying the susceptibility of mRNA to destruction during lytic gammaherpesvirus infection. PMID:21573023
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohsaki, Eriko; Ueda, Keiji, E-mail: kueda@virus.me
The Kaposi's sarcoma-associated herpesvirus (KSHV) genome is stably maintained in KSHV-infected PEL cell lines during cell division. We previously showed that accumulation of LANA in the nuclear matrix fraction could be important for the latent DNA replication, and that the functional significance of LANA should be its recruitment of ori-P to the nuclear matrix. Here, we investigated whether the forced localization of the LANA-DNA binding domain (DBD) to the nuclear matrix facilitated ori-P-containing plasmid replication. We demonstrated that chimeric proteins constructed by fusion of LANA DBD with the nuclear mitotic apparatus protein (NuMA), which is one of the components ofmore » the nuclear matrix, could bind with ori-P and enhance replication of an ori-P-containing plasmid, compared with that in the presence of DBD alone. These results further suggested that the ori-P recruitment to the nuclear matrix through the binding with DBD is important for latent viral DNA replication. - Highlights: •KSHV replication in latency depends on LANA localization to the nuclear matrix. •LANA DBD was fused with NuMA, a nuclear matrix protein, at the N- and C-terminus. •NuMA-DBD was in the nuclear matrix and supported the ori-P dependent replication. •LANA in the nuclear matrix should be important for the KSHV replication in latency.« less
2018-01-01
Epstein-Barr virus (EBV) is characterized by a bipartite life cycle in which latent and lytic stages are alternated. Latency is compatible with long-lasting persistency within the infected host, while lytic expression, preferentially found in oropharyngeal epithelial tissue, is thought to favor host-to-host viral dissemination. The clinical importance of EBV relates to its association with cancer, which we think is mainly a consequence of the latency/persistency mechanisms. However, studies in murine models of tumorigenesis/lymphomagenesis indicate that the lytic cycle also contributes to cancer formation. Indeed, EBV lytic expression is often observed in established cell lines and tumor biopsies. Within the lytic cycle EBV expresses a handful of immunomodulatory (BCRF1, BARF1, BNLF2A, BGLF5 & BILF1) and anti-apoptotic (BHRF1 & BALF1) proteins. In this review, we discuss the evidence supporting an abortive lytic cycle in which these lytic genes are expressed, and how the immunomodulatory mechanisms of EBV and related herpesviruses Kaposi Sarcoma herpesvirus (KSHV) and human cytomegalovirus (HCMV) result in paracrine signals that feed tumor cells. An abortive lytic cycle would reconcile the need of lytic expression for viral tumorigenesis without relaying in a complete cycle that would induce cell lysis to release the newly formed infective viral particles. PMID:29601503
Chiu, Ya-Fang; Sugden, Arthur U.
2017-01-01
Genetic elements that replicate extrachromosomally are rare in mammals; however, several human tumor viruses, including the papillomaviruses and the gammaherpesviruses, maintain their plasmid genomes by tethering them to cellular chromosomes. We have uncovered an unprecedented mechanism of viral replication: Kaposi’s sarcoma–associated herpesvirus (KSHV) stably clusters its genomes across generations to maintain itself extrachromosomally. To identify and characterize this mechanism, we developed two complementary, independent approaches: live-cell imaging and a predictive computational model. The clustering of KSHV requires the viral protein, LANA1, to bind viral genomes to nucleosomes arrayed on both cellular and viral DNA. Clustering affects both viral partitioning and viral genome numbers of KSHV. The clustering of KSHV plasmids provides it with an effective evolutionary strategy to rapidly increase copy numbers of genomes per cell at the expense of the total numbers of cells infected. PMID:28696226
Chiu, Ya-Fang; Sugden, Arthur U.; Fox, Kathryn; ...
2017-07-10
Genetic elements that replicate extrachromosomally are rare in mammals; however, several human tumor viruses, including the papillomaviruses and the gammaherpesviruses, maintain their plasmid genomes by tethering them to cellular chromosomes. We have uncovered an unprecedented mechanism of viral replication: Kaposi’s sarcoma–associated herpesvirus (KSHV) stably clusters its genomes across generations to maintain itself extrachromosomally. To identify and characterize this mechanism, we developed two complementary, independent approaches: live-cell imaging and a predictive computational model. The clustering of KSHV requires the viral protein, LANA1, to bind viral genomes to nucleosomes arrayed on both cellular and viral DNA. Clustering affects both viral partitioning andmore » viral genome numbers of KSHV. The clustering of KSHV plasmids provides it with an effective evolutionary strategy to rapidly increase copy numbers of genomes per cell at the expense of the total numbers of cells infected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Ya-Fang; Sugden, Arthur U.; Fox, Kathryn
Genetic elements that replicate extrachromosomally are rare in mammals; however, several human tumor viruses, including the papillomaviruses and the gammaherpesviruses, maintain their plasmid genomes by tethering them to cellular chromosomes. We have uncovered an unprecedented mechanism of viral replication: Kaposi’s sarcoma–associated herpesvirus (KSHV) stably clusters its genomes across generations to maintain itself extrachromosomally. To identify and characterize this mechanism, we developed two complementary, independent approaches: live-cell imaging and a predictive computational model. The clustering of KSHV requires the viral protein, LANA1, to bind viral genomes to nucleosomes arrayed on both cellular and viral DNA. Clustering affects both viral partitioning andmore » viral genome numbers of KSHV. The clustering of KSHV plasmids provides it with an effective evolutionary strategy to rapidly increase copy numbers of genomes per cell at the expense of the total numbers of cells infected.« less
Amon, Wolfgang; White, Robert E; Farrell, Paul J
2006-05-01
Epstein-Barr virus (EBV) establishes a latent persistence from which it can be reactivated to undergo lytic replication. Late lytic-cycle gene expression is linked to lytic DNA replication, as it is sensitive to the same inhibitors that block lytic replication, and it has recently been shown that the viral origin of lytic replication (ori lyt) is required in cis for late-gene expression. During the lytic cycle, the viral genome forms replication compartments, which are usually adjacent to promyelocytic leukaemia protein (PML) nuclear bodies. A tetracycline repressor DNA-binding domain-enhanced green fluorescent protein fusion was used to visualize replicating plasmids carrying a tetracycline operator sequence array. ori lyt mediated the production of plasmid replication compartments that were associated with PML nuclear bodies. Plasmids carrying ori lyt and EBV itself were visualized in the same cells and replicated in similar regions of the nucleus, further supporting the validity of the plasmids for studying late-gene regulation.
Bruce, A. Gregory; Barcy, Serge; DiMaio, Terri; Gan, Emilia; Garrigues, H. Jacques; Lagunoff, Michael; Rose, Timothy M.
2017-01-01
The transcriptome of the Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8) after primary latent infection of human blood (BEC), lymphatic (LEC) and immortalized (TIME) endothelial cells was analyzed using RNAseq, and compared to long-term latency in BCBL-1 lymphoma cells. Naturally expressed transcripts were obtained without artificial induction, and a comprehensive annotation of the KSHV genome was determined. A set of unique coding sequence (UCDS) features and a process to resolve overlapping transcripts were developed to accurately quantitate transcript levels from specific promoters. Similar patterns of KSHV expression were detected in BCBL-1 cells undergoing long-term latent infections and in primary latent infections of both BEC and LEC cultures. High expression levels of poly-adenylated nuclear (PAN) RNA and spliced and unspliced transcripts encoding the K12 Kaposin B/C complex and associated microRNA region were detected, with an elevated expression of a large set of lytic genes in all latently infected cultures. Quantitation of non-overlapping regions of transcripts across the complete KSHV genome enabled for the first time accurate evaluation of the KSHV transcriptome associated with viral latency in different cell types. Hierarchical clustering applied to a gene correlation matrix identified modules of co-regulated genes with similar correlation profiles, which corresponded with biological and functional similarities of the encoded gene products. Gene modules were differentially upregulated during latency in specific cell types indicating a role for cellular factors associated with differentiated and/or proliferative states of the host cell to influence viral gene expression. PMID:28335496
Carbone, Antonino; Cesarman, Ethel; Gloghini, Annunziata; Drexler, Hans G.
2013-01-01
Primary effusion lymphoma (PEL) is a very rare subgroup of B-cell lymphomas presenting as pleural, peritoneal and pericardial neoplastic effusions in the absence of a solid tumor mass or recognizable nodal involvement. There is strong evidence that Kaposi’s sarcoma associated herpesvirus (KSHV) is a causal agent of PEL. PEL tumor cells are latently infected by KSHV with consistent expression of several viral proteins and microRNAs that can affect cellular proliferation, differentiation and survival. The most relevant data on pathogenesis and biology of KSHV have been provided by studies on PEL derived cell lines. Fourteen continuous cell lines have been established from the malignant effusions of patients with AIDS-and non-AIDS-associated PEL. These KSHV+ EBV+/− cell lines are wellcharacterized, authenticated and mostly available from public biological ressource centers. The PEL cell lines display unique features and are clearly distinct from other lymphoma cell lines. PEL cell lines represent an indispensable tool for the understanding of KSHV biology and its impact on the clinical manifestation of PEL. Studies on PEL cell lines have shown that a number of viral genes, expressed during latency or lytic life cycle, have effects on cell binding, proliferation, angiogenesis and inflammation. Also PEL cell lines are important model systems for the study of the pathology of PEL including the lack of invasive or destructive growth patterns and the peculiar propensity of PEL to involve body cavity surfaces. PMID:20051807
Howard, Kellie; Cherezova, Lidia; DeMaster, Laura K; Rose, Timothy M
2017-11-01
The latency-associated nuclear antigens (LANA) of KSHV and macaque RFHVMn, members of the RV1 rhadinovirus lineage, are closely related with conservation of complex nuclear localization signals (NLS) containing bipartite KR-rich motifs and RG-rich domains, which interact distinctly with importins α and ß1 for nuclear import via classical and non-classical pathways, respectively. RV1 LANAs are expressed in the nucleus of latently-infected cells where they inhibit replication and establish a dominant RV1 latency. Here we show that LANA homologs of macaque RRV and MneRV2 from the more distantly-related RV2 lineage, lack the KR-rich NLS, and instead have a large RG-rich NLS with multiple RG dipeptides and a conserved RGG motif. The RG-NLS interacts uniquely with importin β1, which mediates nuclear import and accumulation of RV2 LANA in the nucleolus. The alternative nuclear import and localization of RV2 LANA homologs may contribute to the dominant RV2 lytic replication phenotype. Copyright © 2017. Published by Elsevier Inc.
Bridgeman, Anne; Stevenson, Philip G.; Simas, J. Pedro; Efstathiou, Stacey
2001-01-01
Herpesviruses encode a variety of proteins with the potential to disrupt chemokine signaling, and hence immune organization. However, little is known of how these might function in vivo. The B cell–tropic murine gammaherpesvirus-68 (MHV-68) is related to the Kaposi's sarcoma–associated herpesvirus (KSHV), but whereas KSHV expresses small chemokine homologues, MHV-68 encodes a broad spectrum chemokine binding protein (M3). Here we have analyzed the effect on viral pathogenesis of a targeted disruption of the M3 gene. After intranasal infection, an M3 deficiency had surprisingly little effect on lytic cycle replication in the respiratory tract or the initial spread of virus to lymphoid tissues. However, the amplification of latently infected B cells in the spleen that normally drives MHV-68–induced infectious mononucleosis failed to occur. Thus, there was a marked reduction in latent virus recoverable by in vitro reactivation, latency-associated viral tRNA transcripts detectable by in situ hybridization, total viral DNA load, and virus-driven B cell activation. In vivo CD8+ T cell depletion largely reversed this deficiency, suggesting that the chemokine neutralization afforded by M3 may function to block effective CD8+ T cell recruitment into lymphoid tissue during the expansion of latently infected B cell numbers. In the absence of M3, MHV-68 was unable to establish a normal latent load. PMID:11489949
Activation of human herpesvirus replication by apoptosis.
Prasad, Alka; Remick, Jill; Zeichner, Steven L
2013-10-01
A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.
Activation of Human Herpesvirus Replication by Apoptosis
Prasad, Alka; Remick, Jill
2013-01-01
A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance. PMID:23885073
Wakeman, Brian S.; Izumiya, Yoshihiro
2016-01-01
ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50. RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation. IMPORTANCE Gammaherpesviruses are associated with the development of lymphomas and lymphoproliferative diseases, as well as several other types of cancer. The human gammaherpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is tightly associated with the development of Kaposi's sarcoma and multicentric Castleman's disease, as well as a rare form of B cell lymphoma (primary effusion lymphoma) primarily observed in HIV-infected individuals. RTA is an essential viral gene product involved in the initiation of gammaherpesvirus replication and is conserved among all known gammaherpesviruses. We show here for KSHV that transcription of the gene encoding RTA is complex and leads to the expression of several isoforms of RTA with distinct functions. This observed complexity in KSHV RTA expression and function likely plays a critical role in the regulation of downstream viral and cellular gene expression, leading to the efficient production of mature virions. PMID:27795414
Bruce, A. Gregory; Ryan, Jonathan T.; Thomas, Mathew J.; Peng, Xinxia; Grundhoff, Adam; Tsai, Che-Chung
2013-01-01
The complete sequence of retroperitoneal fibromatosis-associated herpesvirus Macaca nemestrina (RFHVMn), the pig-tailed macaque homolog of Kaposi's sarcoma-associated herpesvirus (KSHV), was determined by next-generation sequence analysis of a Kaposi's sarcoma (KS)-like macaque tumor. Colinearity of genes was observed with the KSHV genome, and the core herpesvirus genes had strong sequence homology to the corresponding KSHV genes. RFHVMn lacked homologs of open reading frame 11 (ORF11) and KSHV ORFs K5 and K6, which appear to have been generated by duplication of ORFs K3 and K4 after the divergence of KSHV and RFHV. RFHVMn contained positional homologs of all other unique KSHV genes, although some showed limited sequence similarity. RFHVMn contained a number of candidate microRNA genes. Although there was little sequence similarity with KSHV microRNAs, one candidate contained the same seed sequence as the positional homolog, kshv-miR-K12-10a, suggesting functional overlap. RNA transcript splicing was highly conserved between RFHVMn and KSHV, and strong sequence conservation was noted in specific promoters and putative origins of replication, predicting important functional similarities. Sequence comparisons indicated that RFHVMn and KSHV developed in long-term synchrony with the evolution of their hosts, and both viruses phylogenetically group within the RV1 lineage of Old World primate rhadinoviruses. RFHVMn is the closest homolog of KSHV to be completely sequenced and the first sequenced RV1 rhadinovirus homolog of KSHV from a nonhuman Old World primate. The strong genetic and sequence similarity between RFHVMn and KSHV, coupled with similarities in biology and pathology, demonstrate that RFHVMn infection in macaques offers an important and relevant model for the study of KSHV in humans. PMID:24109218
Chen, Christopher Phillip; Lyu, Yuanzhi; Chuang, Frank; Nakano, Kazushi; Izumiya, Chie; Jin, Di; Campbell, Mel
2017-01-01
ABSTRACT Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposi's sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional “factories,” which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of “viral transcriptional factories” decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an “all-in-one” factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells. IMPORTANCE B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the physical distribution of these episomes following stimulation. The results showed heterogeneity in the responses of individual KSHV episomes to stimuli within a single reactivating cell; those episomes that did respond to stimulation, aggregated within large domains that appear to function as viral transcription factories. A significant portion of cellular RNA polymerase II was trapped in these factories and served to transcribe viral genomes, which coincided with an overall decrease in cellular gene expression. Our findings uncover a strategy of KSHV gene regulation through focal assembly of KSHV episomes and a molecular mechanism of late gene expression. PMID:28331082
Wakeman, Brian S; Izumiya, Yoshihiro; Speck, Samuel H
2017-01-01
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50 RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation. Gammaherpesviruses are associated with the development of lymphomas and lymphoproliferative diseases, as well as several other types of cancer. The human gammaherpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is tightly associated with the development of Kaposi's sarcoma and multicentric Castleman's disease, as well as a rare form of B cell lymphoma (primary effusion lymphoma) primarily observed in HIV-infected individuals. RTA is an essential viral gene product involved in the initiation of gammaherpesvirus replication and is conserved among all known gammaherpesviruses. We show here for KSHV that transcription of the gene encoding RTA is complex and leads to the expression of several isoforms of RTA with distinct functions. This observed complexity in KSHV RTA expression and function likely plays a critical role in the regulation of downstream viral and cellular gene expression, leading to the efficient production of mature virions. Copyright © 2016 American Society for Microbiology.
Gonnella, Roberta; Santarelli, Roberta; Farina, Antonella; Granato, Marisa; D'Orazi, Gabriella; Faggioni, Alberto; Cirone, Mara
2013-10-23
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway regulates multiple cellular processes such as cell proliferation, evasion from apoptosis, migration, glucose metabolism, protein synthesis and proper differentiation in immune cells. Kaposi sarcoma-associated herpesvirus (KSHV), an oncogenic virus associated with several human malignancies, expresses a variety of latent and lytic proteins able to activate PI3K/AKT pathway, promoting the growth of infected cells and a successful viral infection. We found that KSHV latent infection of THP-1 cells, a human monocytic cell line derived from an acute monocytic leukemia patient, resulted in an increase of AKT phoshorylation, not susceptible to bortezomib-induced dephosphorylation, compared to the mock-infected THP-1. Accordingly, THP-1-infected cells displayed increased resistance to the bortezomib cytotoxic effect in comparison to the uninfected cells, which was counteracted by pre-treatment with AKT-specific inhibitors. Finally, AKT hyperactivation by KSHV infection correlated with plasma membrane exposure of glucose transporter GLUT1, particularly evident during bortezomib treatment. GLUT1 membrane trafficking is a characteristic of malignant cells and underlies a change of glucose metabolism that ensures the survival to highly proliferating cells and render these cells highly dependent on glycolysis. GLUT1 membrane trafficking in KSHV-infected THP-1 cells indeed led to increased sensitivity to cell death induced by the glycolysis inhibitor 2-Deoxy-D-glucose (2DG), further potentiated by its combination with bortezomib. KSHV confers to the THP-1 infected cells an oncogenic potential by altering the phosphorylation, expression and localization of key molecules that control cell survival and metabolism such as AKT and GLUT1. Such modifications in one hand lead to resistance to cell death induced by some chemotherapeutic drugs such as bortezomib, but on the other hand, offer an Achilles heel, rendering the infected cells more sensitive to other treatments such as AKT or glycolysis inhibitors. These therapeutic strategies can be exploited in the anticancer therapy of KSHV-associated malignancies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen
Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected atmore » the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.« less
Majerciak, Vladimir; Lu, Mathew; Li, Xiaofan
2014-01-01
Kaposi sarcoma–associated herpesvirus (KSHV) ORF57 is a multifunctional post-transcriptional regulator essential for viral gene expression during KSHV lytic infection. ORF57 requires interactions with various cellular proteins for its function. Here, we identified serine/arginine-rich splicing factor 3 (SRSF3, formerly known as SRp20) as a cellular cofactor involved in ORF57-mediated splicing of KSHV K8β RNA. In the absence of ORF57, SRSF3 binds to a suboptimal K8β intron and inhibits K8β splicing. Knockdown of SRSF3 promotes K8β splicing, mimicking the effect of ORF57. The N-terminal half of ORF57 binds to the RNA recognition motif of SRSF3, which prevents SRSF3 from associating with the K8β intron RNA and therefore attenuates the suppressive effect of SRSF3 on K8β splicing. ORF57 also promotes splicing of heterologous non-KSHV transcripts that are negatively regulated by SRSF3, indicating that the effect of ORF57 on SRSF3 activity is independent of RNA target. SPEN proteins, previously identified as ORF57-interacting partners, suppress ORF57 splicing activity by displacing ORF57 from SRSF3–RNA complexes. In summary, we have identified modulation of SRSF3 activity as the molecular mechanism by which ORF57 promotes RNA splicing. PMID:25234929
Majerciak, Vladimir; Lu, Mathew; Li, Xiaofan; Zheng, Zhi-Ming
2014-11-01
Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 is a multifunctional post-transcriptional regulator essential for viral gene expression during KSHV lytic infection. ORF57 requires interactions with various cellular proteins for its function. Here, we identified serine/arginine-rich splicing factor 3 (SRSF3, formerly known as SRp20) as a cellular cofactor involved in ORF57-mediated splicing of KSHV K8β RNA. In the absence of ORF57, SRSF3 binds to a suboptimal K8β intron and inhibits K8β splicing. Knockdown of SRSF3 promotes K8β splicing, mimicking the effect of ORF57. The N-terminal half of ORF57 binds to the RNA recognition motif of SRSF3, which prevents SRSF3 from associating with the K8β intron RNA and therefore attenuates the suppressive effect of SRSF3 on K8β splicing. ORF57 also promotes splicing of heterologous non-KSHV transcripts that are negatively regulated by SRSF3, indicating that the effect of ORF57 on SRSF3 activity is independent of RNA target. SPEN proteins, previously identified as ORF57-interacting partners, suppress ORF57 splicing activity by displacing ORF57 from SRSF3-RNA complexes. In summary, we have identified modulation of SRSF3 activity as the molecular mechanism by which ORF57 promotes RNA splicing. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Daikoku, Tohru; Kudoh, Ayumi; Fujita, Masatoshi; Sugaya, Yutaka; Isomura, Hiroki; Tsurumi, Tatsuya
2004-12-24
The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is required for maintenance of the viral genome DNA during the latent phase of EBV replication but continues to be synthesized after the induction of viral productive replication. An EBV genome-wide chromatin immunoprecipitation assay revealed that EBNA1 constantly binds to oriP of the EBV genome during not only latent but also lytic infection. Although the total levels of EBNA1 proved constant throughout the latter, the levels of the oriP-bound form were increased as lytic infection proceeded. EBV productive DNA replication occurs at discrete sites in nuclei, called replication compartments, where viral replication proteins are clustered. Confocal laser microscopic analyses revealed that whereas EBNA1 was distributed broadly in nuclei as fine punctate dots during the latent phase of infection, the protein became redistributed to the viral replication compartments and localized as distinct spots within and/or nearby the compartments after the induction of lytic replication. Taking these findings into consideration, oriP regions of the EBV genome might be organized by EBNA1 into replication domains that may set up scaffolding for lytic replication and transcription.
McDowell-Sargent, Maria; Uppal, Timsy; Purushothaman, Pravinkumar
2017-01-01
Kaposi’s sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into ‘open’ chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone-modifying enzymes to alter the chromatin structure during lytic reactivation. PMID:28678843
Strahan, Roxanne C; McDowell-Sargent, Maria; Uppal, Timsy; Purushothaman, Pravinkumar; Verma, Subhash C
2017-07-01
Kaposi's sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into 'open' chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone-modifying enzymes to alter the chromatin structure during lytic reactivation.
Li, Shijun; Tan, Min; Juillard, Franceline; Ponnusamy, Rajesh; Correia, Bruno; Simas, J. Pedro; Carrondo, Maria A.; McVey, Colin E.; Kaye, Kenneth M.
2015-01-01
Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes. PMID:26420481
Wang'ondu, Ruth; Teal, Stuart; Park, Richard; Heston, Lee; Delecluse, Henri; Miller, George
2015-01-01
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.
Li, Shijun; Tan, Min; Juillard, Franceline; Ponnusamy, Rajesh; Correia, Bruno; Simas, J Pedro; Carrondo, Maria A; McVey, Colin E; Kaye, Kenneth M
2015-11-20
Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Adamson, Amy L; Le, Brandi T; Siedenburg, Brian D
2014-06-11
Epstein-Barr virus is a human herpesvirus that infects a majority of the human population. Primary infection of Epstein-Barr virus (EBV) causes the syndrome infectious mononucleosis. This virus is also associated with several cancers, including Burkitt's lymphoma, post-transplant lymphoproliferative disorder and nasopharyngeal carcinoma. As all herpesvirus family members, EBV initially replicates lytically to produce abundant virus particles, then enters a latent state to remain within the host indefinitely. Through a genetic screen in Drosophila, we determined that reduction of Drosophila Tor activity altered EBV immediate-early protein function. To further investigate this finding, we inhibited mTOR in EBV-positive cells and investigated subsequent changes to lytic replication via Western blotting, flow cytometry, and quantitative PCR. The student T-test was used to evaluate significance. mTOR, the human homolog of Drosophila Tor, is an important protein at the center of a major signaling pathway that controls many aspects of cell biology. As the EBV immediate-early genes are responsible for EBV lytic replication, we examined the effect of inhibition of mTORC1 on EBV lytic replication in human EBV-positive cell lines. We determined that treatment of cells with rapamycin, which is an inhibitor of mTORC1 activity, led to a reduction in the ability of B cell lines to undergo lytic replication. In contrast, EBV-positive epithelial cell lines underwent higher levels of lytic replication when treated with rapamycin. Overall, the responses of EBV-positive cell lines vary when treated with mTOR inhibitors, and this may be important when considering such inhibitors as anti-cancer therapeutic agents.
Therapies based on targeting EBV lytic replication for EBV-associated malignancies.
Li, Hongde; Hu, Jianmin; Luo, Xiangjian; Bode, Ann M; Dong, Zigang; Cao, Ya
2018-05-11
In recent years, EBV lytic infection has been shown to significantly contribute to carcinogenesis. Thus, therapies aimed at targeting the EBV lytic cycle have been developed as novel strategies for treatment of EBV-associated diseases malignancies. In this review, focusing on the viral lytic proteins, we describe recent advances regarding the involvement of the EBV lytic cycle in carcinogenesis. Moreover, we further discuss two distinct EBV lytic cycle-targeted therapeutic strategies against EBV-induced malignancies: One of the strategies involves inhibition of the EBV lytic cycle by natural compounds known to have anti-EBV properties; another one is to intentionally induce EBV lytic replication in combination with nucleotide analogues. Recent advances in EBV lytic-based strategies are beginning to show promise in the treatment and/or prevention of EBV-related tumors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Analysis of HSV viral reactivation in explants of sensory neurons
Turner, Anne-Marie W.; Kristie, Thomas M.
2014-01-01
As with all Herpesviruses, Herpes simplex virus (HSV) has both a lytic replication phase and a latency-reactivation cycle. During lytic replication, there is an ordered cascade of viral gene expression that leads to the synthesis of infectious viral progeny. In contrast, latency is characterized by the lack of significant lytic gene expression and the absence of infectious virus. Reactivation from latency is characterized by the re-entry of the virus into the lytic replication cycle and the production of recurrent disease. This unit describes the establishment of the mouse sensory neuron model of HSV-1 latency-reactivation as a useful in vivo system for the analysis of mechanisms involved in latency and reactivation. Assays including the determination of viral yields, immunohistochemical/immunofluorescent detection of viral antigens, and mRNA quantitation are used in experiments designed to investigate the network of cellular and viral proteins regulating HSV-1 lytic infection, latency, and reactivation. PMID:25367271
Work, Thierry M.; Dagenais, Julie; Balazs, George H.; Schettle, Nelli; Ackermann, Mathias
2015-01-01
Cancers in humans and animals can be caused by viruses, but virus-induced tumors are considered to be poor sites for replication of intact virions (lytic replication). Fibropapillomatosis (FP) is a neoplastic disease associated with a herpesvirus, chelonid herpesvirus 5 (ChHV5), that affects green turtles globally. ChHV5 probably replicates in epidermal cells of tumors, because epidermal intranuclear inclusions (EIIs) contain herpesvirus-like particles. However, although EIIs are a sign of herpesvirus replication, they have not yet been firmly linked to ChHV5. Moreover, the dynamics of viral shedding in turtles are unknown, and there are no serological reagents to confirm actual presence of the specific ChHV5 virus in tissues. The investigators analyzed 381 FP tumors for the presence of EIIs and found that overall, about 35% of green turtles had lytic replication in skin tumors with 7% of tumors showing lytic replication. A few (11%) turtles accounted for more than 30% cases having lytic viral replication, and lytic replication was more likely in smaller tumors. To confirm that turtles were actively replicating ChHV5, a prerequisite for shedding, the investigators used antiserum raised against F-VP26, a predicted capsid protein of ChHV5 that localizes to the host cell nucleus during viral replication. This antiserum revealed F-VP26 in EIIs of tumors, thus confirming the presence of replicating ChHV5. In this light, it is proposed that unlike other virus-induced neoplastic diseases, FP is a disease that may depend on superspreaders, a few highly infectious individuals growing numerous small tumors permissive to viral production, for transmission of ChHV5.
Work, T M; Dagenais, J; Balazs, G H; Schettle, N; Ackermann, M
2015-11-01
Cancers in humans and animals can be caused by viruses, but virus-induced tumors are considered to be poor sites for replication of intact virions (lytic replication). Fibropapillomatosis (FP) is a neoplastic disease associated with a herpesvirus, chelonid herpesvirus 5 (ChHV5), that affects green turtles globally. ChHV5 probably replicates in epidermal cells of tumors, because epidermal intranuclear inclusions (EIIs) contain herpesvirus-like particles. However, although EIIs are a sign of herpesvirus replication, they have not yet been firmly linked to ChHV5. Moreover, the dynamics of viral shedding in turtles are unknown, and there are no serological reagents to confirm actual presence of the specific ChHV5 virus in tissues. The investigators analyzed 381 FP tumors for the presence of EIIs and found that overall, about 35% of green turtles had lytic replication in skin tumors with 7% of tumors showing lytic replication. A few (11%) turtles accounted for more than 30% cases having lytic viral replication, and lytic replication was more likely in smaller tumors. To confirm that turtles were actively replicating ChHV5, a prerequisite for shedding, the investigators used antiserum raised against F-VP26, a predicted capsid protein of ChHV5 that localizes to the host cell nucleus during viral replication. This antiserum revealed F-VP26 in EIIs of tumors, thus confirming the presence of replicating ChHV5. In this light, it is proposed that unlike other virus-induced neoplastic diseases, FP is a disease that may depend on superspreaders, a few highly infectious individuals growing numerous small tumors permissive to viral production, for transmission of ChHV5. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Wodarz, Dominik
2005-12-01
This article reviews mathematical models which have investigated the importance of lytic and non-lytic immune responses for the control of viral infections. Lytic immune responses fight the virus by killing infected cells, while non-lytic immune responses fight the virus by inhibiting viral replication while leaving the infected cell alive. The models suggest which types or combinations of immune responses are required to resolve infections which vary in their characteristics, such as the rate of viral replication and the rate of virus-induced target cell death. This framework is then applied to persistent infections and viral evolution. It is investigated how viral evolution and antigenic escape can influence the relative balance of lytic and non-lytic responses over time, and how this might correlate with the transition from an asymptomatic infection to pathology. This is discussed in the specific context of hepatitis C virus infection.
Church, Trenton Mel; Verma, Dinesh; Thompson, Jacob; Swaminathan, Sankar
2018-03-15
Epstein-Barr virus (EBV) is linked to the development of both lymphoid and epithelial malignancies worldwide. The M81 strain of EBV, isolated from a Chinese patient with nasopharyngeal carcinoma (NPC), demonstrates spontaneous lytic replication and high-titer virus production in comparison to the prototype B95-8 EBV strain. Genetic comparisons of M81 and B95-8 EBVs were previously been performed in order to determine if the hyperlytic property of M81 is associated with sequence differences in essential lytic genes. EBV SM is an RNA-binding protein expressed during early lytic replication that is essential for virus production. We compared the functions of M81 SM and B95-8 SM and demonstrate that polymorphisms in SM do not contribute to the lytic phenotype of M81 EBV. However, the expression level of the EBV DNA polymerase protein was much higher in M81- than in B95-8-infected cells. The relative deficiency in the expression of B95-8 DNA polymerase was related to the B95-8 genome deletion, which truncates the BALF5 3' untranslated region (UTR). Similarly, the insertion of bacmid DNA into the widely used recombinant B95-8 bacmid creates an inefficient BALF5 3' UTR. We further showed that the while SM is required for and facilitates the efficient expression of both M81 and B95-8 mRNAs regardless of the 3' UTR, the BALF5 3' UTR sequence is important for BALF5 protein translation. These data indicate that the enhanced lytic replication and virus production of M81 compared to those of B95-8 are partly due to the robust translation of EBV DNA polymerase required for viral DNA replication due to a more efficient BALF5 3' UTR in M81. IMPORTANCE Epstein-Barr virus (EBV) infects more than 90% of the human population, but the incidence of EBV-associated tumors varies greatly in different parts of the world. Thus, understanding the connection between genetic polymorphisms from patient isolates of EBV, gene expression phenotypes, and disease is important and may help in developing antiviral therapy. This study examines potential causes of the enhanced lytic replicative properties of M81 EBV isolated from a nasopharyngeal carcinoma (NPC) patient and provides new evidence for the role of the BALF5 gene 3' UTR sequence in DNA polymerase protein expression during lytic replication. Variation in the gene structure of the DNA polymerase gene may therefore contribute to lytic virus reactivation and pathogenesis. Copyright © 2018 American Society for Microbiology.
Hahn, Alexander S; Großkopf, Anna K; Jungnickl, Doris; Scholz, Brigitte; Ensser, Armin
2016-09-01
Nuclear domain 10 (ND10) components restrict herpesviral infection, and herpesviruses antagonize this restriction by a variety of strategies, including degradation or relocalization of ND10 proteins. The rhesus monkey rhadinovirus (RRV) shares many key biological features with the closely related Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) and readily infects cells of both human and rhesus monkey origin. We used the clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) technique to generate knockout (ko) cells for each of the four ND10 components, PML, SP100, DAXX, and ATRX. These ko cells were analyzed with regard to permissiveness for RRV infection. In addition, we analyzed the fate of the individual ND10 components in infected cells by immunofluorescence and Western blotting. Knockout of the ND10 component DAXX markedly increased RRV infection, while knockout of PML or SP100 had a less pronounced effect. In line with these observations, RRV infection resulted in rapid degradation of SP100, followed by degradation of PML and the loss of ND10 structures, whereas the protein levels of ATRX and DAXX remained constant. Notably, inhibition of the proteasome but not inhibition of de novo gene expression prevented the loss of SP100 and PML in cells that did not support lytic replication, compatible with proteasomal degradation of these ND10 components through the action of a viral tegument protein. Expression of the RRV FGARAT homolog ORF75 was sufficient to effect the loss of SP100 and PML in transfected or transduced cells, implicating ORF75 as the viral effector protein. Our findings highlight the antiviral role of ND10 and its individual components and further establish the viral FGARAT homologs of the gammaherpesviruses to be important viral effectors that counteract ND10-instituted intrinsic immunity. Surprisingly, even closely related viruses like KSHV and RRV evolved to use different strategies to evade ND10-mediated restriction. RRV first targets SP100 for degradation and then targets PML with a delayed kinetic, a strategy which clearly differs from that of other gammaherpesviruses. Despite efficient degradation of these two major ND10 components, RRV is still restricted by DAXX, another abundant ND10 component, as evidenced by a marked increase in RRV infection and replication upon knockout of DAXX. Taken together, our findings substantiate PML, SP100, and DAXX as key antiviral proteins, in that the first two are targeted for degradation by RRV and the last one still potently restricts replication of RRV. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bilger, Andrea; Plowshay, Julie; Ma, Shidong; Nawandar, Dhananjay; Barlow, Elizabeth A; Romero-Masters, James C; Bristol, Jillian A; Li, Zhe; Tsai, Ming-Han; Delecluse, Henri-Jacques; Kenney, Shannon C
2017-07-04
EBV infection causes mononucleosis and is associated with specific subsets of B cell lymphomas. Immunosuppressed patients such as organ transplant recipients are particularly susceptible to EBV-induced lymphoproliferative disease (LPD), which can be fatal. Leflunomide (a drug used to treat rheumatoid arthritis) and its active metabolite teriflunomide (used to treat multiple sclerosis) inhibit de novo pyrimidine synthesis by targeting the cellular dihydroorotate dehydrogenase, thereby decreasing T cell proliferation. Leflunomide also inhibits the replication of cytomegalovirus and BK virus via both "on target" and "off target" mechanisms and is increasingly used to treat these viruses in organ transplant recipients. However, whether leflunomide/teriflunomide block EBV replication or inhibit EBV-mediated B cell transformation is currently unknown. We show that teriflunomide inhibits cellular proliferation, and promotes apoptosis, in EBV-transformed B cells in vitro at a clinically relevant dose. In addition, teriflunomide prevents the development of EBV-induced lymphomas in both a humanized mouse model and a xenograft model. Furthermore, teriflunomide inhibits lytic EBV infection in vitro both by preventing the initial steps of lytic viral reactivation, and by blocking lytic viral DNA replication. Leflunomide/teriflunomide might therefore be clinically useful for preventing EBV-induced LPD in patients who have high EBV loads yet require continued immunosuppression.
Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex.
Sato, Yoshitaka; Kamura, Takumi; Shirata, Noriko; Murata, Takayuki; Kudoh, Ayumi; Iwahori, Satoko; Nakayama, Sanae; Isomura, Hiroki; Nishiyama, Yukihiro; Tsurumi, Tatsuya
2009-07-01
p53-signaling is modulated by viruses to establish a host cellular environment advantageous for their propagation. The Epstein-Barr virus (EBV) lytic program induces phosphorylation of p53, which prevents interaction with MDM2. Here, we show that induction of EBV lytic program leads to degradation of p53 via an ubiquitin-proteasome pathway independent of MDM2. The BZLF1 protein directly functions as an adaptor component of the ECS (Elongin B/C-Cul2/5-SOCS-box protein) ubiquitin ligase complex targeting p53 for degradation. Intringuingly, C-terminal phosphorylation of p53 resulting from activated DNA damage response by viral lytic replication enhances its binding to BZLF1 protein. Purified BZLF1 protein-associated ECS could be shown to catalyze ubiquitination of phospho-mimetic p53 more efficiently than the wild-type in vitro. The compensation of p53 at middle and late stages of the lytic infection inhibits viral DNA replication and production during lytic infection, suggesting that the degradation of p53 is required for efficient viral propagation. Taken together, these findings demonstrate a role for the BZLF1 protein-associated ECS ligase complex in regulation of p53 phosphorylated by activated DNA damage signaling during viral lytic infection.
Keck, Kristin M; Moquin, Stephanie A; He, Amanda; Fernandez, Samantha G; Somberg, Jessica J; Liu, Stephanie M; Martinez, Delsy M; Miranda, Jj L
2017-08-11
Lytic infection by the Epstein-Barr virus (EBV) poses numerous health risks, such as infectious mononucleosis and lymphoproliferative disorder. Proteins in the bromodomain and extraterminal (BET) family regulate multiple stages of viral life cycles and provide promising intervention targets. Synthetic small molecules can bind to the bromodomains and disrupt function by preventing recognition of acetylated lysine substrates. We demonstrate that JQ1 and other BET inhibitors block two different steps in the sequential cascade of the EBV lytic cycle. BET inhibitors prevent expression of the viral immediate-early protein BZLF1. JQ1 alters transcription of genes controlled by the host protein BACH1, and BACH1 knockdown reduces BZLF1 expression. BET proteins also localize to the lytic origin of replication (OriLyt) genetic elements, and BET inhibitors prevent viral late gene expression. There JQ1 reduces BRD4 recruitment during reactivation to preclude replication initiation. This represents a rarely observed dual mode of action for drugs.
Molecular Basis of Latency in Pathogenic Human Viruses
NASA Astrophysics Data System (ADS)
Garcia-Blanco, Mariano A.; Cullen, Bryan R.
1991-11-01
Several human viruses are able to latently infect specific target cell populations in vivo. Analysis of the replication cycles of herpes simplex virus, Epstein-Barr virus, and human immunodeficiency virus suggests that the latent infections established by these human pathogens primarily result from a lack of host factors critical for the expression of viral early gene products. The subsequent activation of specific cellular transcription factors in response to extracellular stimuli can induce the expression of these viral regulatory proteins and lead to a burst of lytic viral replication. Latency in these eukaryotic viruses therefore contrasts with latency in bacteriophage, which is maintained primarily by the expression of virally encoded repressors of lytic replication.
Sävneby, Anna; Luthman, Johannes; Nordenskjöld, Fabian; Andersson, Björn
2016-01-01
The transcriptomes of cells infected with lytic and non-lytic variants of coxsackievirus B2 Ohio-1 (CVB2O) were analyzed using next generation sequencing. This approach was selected with the purpose of elucidating the effects of lytic and non-lytic viruses on host cell transcription. Total RNA was extracted from infected cells and sequenced. The resulting reads were subsequently mapped against the human and CVB2O genomes. The amount of intracellular RNA was measured, indicating lower proportions of human RNA in the cells infected with the lytic virus compared to the non-lytic virus after 48 hours. This may be explained by reduced activity of the cellular transcription/translation machinery in lytic enteroviral replication due to activities of the enteroviral proteases 2A and/or 3C. Furthermore, differential expression in the cells infected with the two virus variants was identified and a number of transcripts were singled out as possible answers to the question of how the viruses interact with the host cells, resulting in lytic or non-lytic infections. PMID:27760161
Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.
Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U
2016-11-30
The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.
Rates of spontaneous mutation among RNA viruses.
Drake, J W
1993-01-01
Simple methods are presented to estimate rates of spontaneous mutation from mutant frequencies and population parameters in RNA viruses. Published mutant frequencies yield a wide range of mutation rates per genome per replication, mainly because mutational targets have usually been small and, thus, poor samples of the mutability of the average base. Nevertheless, there is a clear central tendency for lytic RNA viruses (bacteriophage Q beta, poliomyelitis, vesicular stomatitis, and influenza A) to display rates of spontaneous mutation of approximately 1 per genome per replication. This rate is some 300-fold higher than previously reported for DNA-based microbes. Lytic RNA viruses thus mutate at a rate close to the maximum value compatible with viability. Retroviruses (spleen necrosis, murine leukemia, Rous sarcoma), however, mutate at an average rate about an order of magnitude lower than lytic RNA viruses. PMID:8387212
Gonzalez-Farre, Blanca; Rovira, Jordina; Martinez, Daniel; Valera, Alexandra; Garcia-Herrera, Adriana; Marcos, Maria Angeles; Sole, Carla; Roue, Gael; Colomer, Dolors; Gonzalvo, Elena; Ribera-Cortada, Imma; Araya, Monica; Lloreta, Josep; Colomo, Luis; Campo, Elias; Lopez-Guillermo, Armando; Martinez, Antonio
2014-12-01
Post-transplant lymphoproliferative disorders are life-threatening complications following hematopoietic or solid organ transplantation. They represent a spectrum of mostly EBV-driven lymphoplasmacytic proliferations. While the oncogenic effect of EBV is related to latent infection, lytic infection also has a role in lymphomagenesis. In vitro, EBV replication is linked to plasma cell differentiation and XBP1 activation, although this phenomenon has never been addressed in vivo. We analyzed for the first time latent and lytic intratumoral EBV infection in a series of 35 adult patients with a diagnosis of post-transplant lymphoproliferative disorder (26M/9F, median age 54 years). A complete EBV study was performed including the analysis of the latent EBER, latent membrane protein-11, and EBV nuclear antigens as well as the immediate-early BZLF1/ZEBRA and early BMRF1/EADE31 lytic genes. XBP1 activation was assessed by nuclear protein expression. EBV infection was observed in 28 (80%) cases being latency II and III the most frequently observed 22 (79%). Intratumoral EBV replication was detected in 17 (60%) cases. Among these, XBP1 activation was observed in 11/12 evaluable cases associated with strong cytoplasmic immunoglobulin expression consistent with plasma cell differentiation. Intriguingly, the combination of latency III infection and EBV replication identified a high-risk subgroup of patients with significantly shorter survival (overall survival at 1 year 18% vs 48%) and early-onset (median of 7 vs 26 months) post-transplant lymphoproliferative disorder. Moreover, these patients appear to be more heavily immunosuppressed, so they exhibit lower rates of rejection and graft vs host disease but higher rates of cytomegalovirus reactivation. In conclusion, EBV replication is associated with plasma cell differentiation and XBP1 activation with prognostic implications. Both latency III and lytic EBV infection are related to aggressive and early-onset post-transplant lymphoproliferative disorder. These results suggest that immunohistochemical study of latent and lytic EBV genes in the clinical practice may help to select higher-risk patients to new therapies including antiviral treatments.
Prang, N; Wolf, H; Schwarzmann, F
1999-12-01
The ability of the Epstein-Barr virus (EBV) to avoid lytic replication and to establish a latent infection in B-lymphocytes is fundamental for its lifelong persistence and the pathogenesis of various EBV-associated diseases. The viral immediate-early gene BZLF-1 plays a key role for the induction of lytic replication and its activity is strictly regulated on different levels of gene expression. Recently, it was demonstrated that BZLF-1 is also controlled by a posttranscriptional mechanism. Transient synthesis of a mutated competitor RNA saturated this mechanism and caused both expression of the BZLF-1 protein and the induction of lytic viral replication. Using short overlapping fragments of the competitor, it is shown that this control acts on the unspliced primary transcript. RT-PCR demonstrated unspliced BZLF-1 RNA in latently infected B-lymphocytes in the absence of BZLF-1 protein. Due to the complementarity of the gene BZLF-1 and the latency-associated gene EBNA-1 on the opposite strand of the genome, we propose an antisense-mediated mechanism. RNase protection assays demonstrated transcripts in antisense orientation to the BZLF-1 transcript during latency, which comprise a comparable constellation to other herpesviruses. A combined RNAse protection/RT-PCR assay detected the double-stranded hybrid RNA, consisting of the unspliced BZLF-1 transcript and a noncoding intron of the EBNA-1 gene. Binding of BZLF-1 transcripts is suggested to be an important backup control mechanism in addition to transcriptional regulation, stabilizing latency and preventing inappropriate lytic viral replication in vivo. Copyright 1999 Wiley-Liss, Inc.
Gilbert, Rosalind A.; Kelly, William J.; Altermann, Eric; Leahy, Sinead C.; Minchin, Catherine; Ouwerkerk, Diane; Klieve, Athol V.
2017-01-01
The rumen is known to harbor dense populations of bacteriophages (phages) predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome. PMID:29259581
Wu, Shu-En; Miller, William E.
2015-01-01
Human cytomegalovirus (HCMV) resides in a latent form in hematopoietic progenitors and undifferentiated cells within the myeloid lineage. Maturation and differentiation along the myeloid lineage triggers lytic replication. Here, we used peripheral blood monocytes and the monocytic cell line THP-1 to investigate the effects of 1,25-dihydroxyvitamin D3 on HCMV replication. Interestingly, 1,25-dihydroxyvitamin D3 induces lytic replication marked by upregulation of HCMV gene expression and production of infectious virus. Moreover, we demonstrate that the effects of 1,25-dihydroxyvitamin D3 correlate with maturation/differentiation of the monocytes and not by directly stimulating the MIEP. These results are somewhat surprising as 1,25-dihydroxyvitamin D3 typically boosts immunity to bacteria and viruses rather than driving the infectious life cycle as it does for HCMV. Defining the signaling pathways kindled by 1,25-dihydroxyvitamin D3 will lead to a better understanding of the underlying molecular mechanisms that determine the fate of HCMV once it infects cells in the myeloid lineage. PMID:25965798
Quinn, Laura L.; Zuo, Jianmin; Abbott, Rachel J. M.; Shannon-Lowe, Claire; Tierney, Rosemary J.; Hislop, Andrew D.; Rowe, Martin
2014-01-01
CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IE
Gammaherpesvirus Colonization of the Spleen Requires Lytic Replication in B Cells.
Lawler, Clara; de Miranda, Marta Pires; May, Janet; Wyer, Orry; Simas, J Pedro; Stevenson, Philip G
2018-04-01
Gammaherpesviruses infect lymphocytes and cause lymphocytic cancers. Murid herpesvirus-4 (MuHV-4), Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus all infect B cells. Latent infection can spread by B cell recirculation and proliferation, but whether this alone achieves systemic infection is unclear. To test the need of MuHV-4 for lytic infection in B cells, we flanked its essential ORF50 lytic transactivator with loxP sites and then infected mice expressing B cell-specific Cre (CD19-Cre). The floxed virus replicated normally in Cre - mice. In CD19-Cre mice, nasal and lymph node infections were maintained; but there was little splenomegaly, and splenic virus loads remained low. Cre-mediated removal of other essential lytic genes gave a similar phenotype. CD19-Cre spleen infection by intraperitoneal virus was also impaired. Therefore, MuHV-4 had to emerge lytically from B cells to colonize the spleen. An important role for B cell lytic infection in host colonization is consistent with the large CD8 + T cell responses made to gammaherpesvirus lytic antigens during infectious mononucleosis and suggests that vaccine-induced immunity capable of suppressing B cell lytic infection might reduce long-term virus loads. IMPORTANCE Gammaherpesviruses cause B cell cancers. Most models of host colonization derive from cell cultures with continuous, virus-driven B cell proliferation. However, vaccines based on these models have worked poorly. To test whether proliferating B cells suffice for host colonization, we inactivated the capacity of MuHV-4, a gammaherpesvirus of mice, to reemerge from B cells. The modified virus was able to colonize a first wave of B cells in lymph nodes but spread poorly to B cells in secondary sites such as the spleen. Consequently, viral loads remained low. These results were consistent with virus-driven B cell proliferation exploiting normal host pathways and thus having to transfer lytically to new B cells for new proliferation. We conclude that viral lytic infection is a potential target to reduce B cell proliferation. Copyright © 2018 American Society for Microbiology.
Dai, Lu; DeFee, Michael R; Cao, Yueyu; Wen, Jiling; Wen, Xiaofei; Noverr, Mairi C; Qin, Zhiqiang
2014-01-01
Kaposi's sarcoma (KS) remains the most common tumor arising in patients with HIV/AIDS, and involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage of a variety of bacteria. Whether interactions involving pathogenic bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity remains unknown. In the current study, our data indicate that pretreatment of primary human oral fibroblasts with two prototypical pathogen-associated molecular patterns (PAMPs) produced by oral pathogenic bacteria-lipoteichoic acid (LTA) and lipopolysaccharide (LPS), increase KSHV entry and subsequent viral latent gene expression during de novo infection. Further experiments demonstrate that the underlying mechanisms induced by LTA and/or LPS include upregulation of cellular receptor, increasing production of reactive oxygen species (ROS), and activating intracellular signaling pathways such as MAPK and NF-κB, and all of which are closely associated with KSHV entry or gene expression within oral cells. Based on these findings, we hope to provide the framework of developing novel targeted approaches for treatment and prevention of oral KSHV infection and KS development in high-risk HIV-positive patients.
Dai, Lu; DeFee, Michael R.; Cao, Yueyu; Wen, Jiling; Wen, Xiaofei; Noverr, Mairi C.; Qin, Zhiqiang
2014-01-01
Kaposi’s sarcoma (KS) remains the most common tumor arising in patients with HIV/AIDS, and involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage of a variety of bacteria. Whether interactions involving pathogenic bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity remains unknown. In the current study, our data indicate that pretreatment of primary human oral fibroblasts with two prototypical pathogen-associated molecular patterns (PAMPs) produced by oral pathogenic bacteria–lipoteichoic acid (LTA) and lipopolysaccharide (LPS), increase KSHV entry and subsequent viral latent gene expression during de novo infection. Further experiments demonstrate that the underlying mechanisms induced by LTA and/or LPS include upregulation of cellular receptor, increasing production of reactive oxygen species (ROS), and activating intracellular signaling pathways such as MAPK and NF-κB, and all of which are closely associated with KSHV entry or gene expression within oral cells. Based on these findings, we hope to provide the framework of developing novel targeted approaches for treatment and prevention of oral KSHV infection and KS development in high-risk HIV-positive patients. PMID:24971655
Mutlu, Agata D'Agostino; Cavallin, Lucas E.; Vincent, Loïc; Chiozzini, Chiara; Eroles, Pilar; Duran, Elda M.; Asgari, Zahra; Hooper, Andrea T.; La Perle, Krista M. D.; Hilsher, Chelsey; Gao, Shou-Jiang; Dittmer, Dirk P.; Rafii, Shahin; Mesri, Enrique A.
2007-01-01
Transfection of a Kaposi's sarcoma (KS) herpesvirus (KSHV) Bacterial Artificial Chromosome (KSHVBac36) into mouse bone marrow endothelial lineage cells generates a cell (mECK36) that forms KS-like tumors in mice. mECK36 expressed most KSHV genes and were angiogenic, but didn't form colonies in soft agar. In nude mice, mECK36 formed KSHV-harboring vascularized spindle-cell sarcomas that were LANA+/podoplanin+, overexpressed VEGF and Angiopoietin ligands and receptors, and displayed KSHV and host transcriptomes reminiscent of KS. mECK36 that lost the KSHV episome reverted to non-tumorigenicity. siRNA suppression of KSHV vGPCR, an angiogenic gene up-regulated in mECK36 tumors, inhibited angiogenicity and tumorigenicity. These results show that KSHV malignancy is in vivo growth-restricted and reversible, defining mECK36 as a biologically sensitive animal model of KSHV-dependent KS. PMID:17349582
Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J
2018-05-01
The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.
Quantitative multi-target RNA profiling in Epstein-Barr virus infected tumor cells.
Greijer, A E; Ramayanti, O; Verkuijlen, S A W M; Novalić, Z; Juwana, H; Middeldorp, J M
2017-03-01
Epstein-Barr virus (EBV) is etiologically linked to multiple acute, chronic and malignant diseases. Detection of EBV-RNA transcripts in tissues or biofluids besides EBV-DNA can help in diagnosing EBV related syndromes. Sensitive EBV transcription profiling yields new insights on its pathogenic role and may be useful for monitoring virus targeted therapy. Here we describe a multi-gene quantitative RT-PCR profiling method that simultaneously detects a broad spectrum (n=16) of crucial latent and lytic EBV transcripts. These transcripts include (but are not restricted to), EBNA1, EBNA2, LMP1, LMP2, BARTs, EBER1, BARF1 and ZEBRA, Rta, BGLF4 (PK), BXLF1 (TK) and BFRF3 (VCAp18) all of which have been implicated in EBV-driven oncogenesis and viral replication. With this method we determine the amount of RNA copies per infected (tumor) cell in bulk populations of various origin. While we confirm the expected RNA profiles within classic EBV latency programs, this sensitive quantitative approach revealed the presence of rare cells undergoing lytic replication. Inducing lytic replication in EBV tumor cells supports apoptosis and is considered as therapeutic approach to treat EBV-driven malignancies. This sensitive multi-primed quantitative RT-PCR approach can provide broader understanding of transcriptional activity in latent and lytic EBV infection and is suitable for monitoring virus-specific therapy responses in patients with EBV associated cancers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Baba, Yusuke; Shigemi, Zenpei; Hara, Naoko; Moriguchi, Misato; Ikeda, Marina; Watanabe, Tadashi; Fujimuro, Masahiro
2018-02-01
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of primary effusion lymphoma (PEL) and Kaposi's sarcoma. PEL is a type of non-Hodgkin's B-cell lymphoma, affecting immunosuppressed individuals, such as post-transplant or AIDS patients. However, since PEL is resistant to chemotherapeutic regimens, new effective treatment strategies are required. Arctigenin, a natural lignan compound found in the plant Arctium lappa, has been widely investigated as a potential anticancer agent in the clinical setting. In the present study, we examined the cytotoxic effects of arctigenin by cell viability assay and found that arctigenin markedly inhibited the proliferation of PEL cells compared with KSHV-uninfected B-lymphoma cells under conditions of glucose deprivation. Arctigenin decreased cellular ATP levels, disrupted mitochondrial membrane potential and triggered caspase-9-mediated apoptosis in the glucose-deprived PEL cells. In addition, western blot analysis using phospho-specific antibodies were used to evaluate activity changes in the signaling pathways of interest. As a result, arctigenin suppressed the activation of the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways by inhibiting ERK and p38 MAPK phosphorylation in the glucose-deprived PEL cells. We confirmed that an inhibitor of ERK (U0126) or p38 MAPK (SB202190 and SB203580) suppressed the proliferation of the BC3 PEL cells compared with the KSHV-negative DG75 cells. Moreover, RT-PCR and luciferase reporter assay revealed that arctigenin and p38 MAPK inhibition by SB202190 or SB203580 downregulated the transcriptional expression of unfolded protein response (UPR)‑related molecules, including GRP78 and ATF6α under conditions of glucose deprivation. Finally, we confirmed that arctigenin did not affect KSHV replication in PEL cells, suggesting that arctigenin treatment for PEL does not contribute to the risk of de novo KSHV production. These data thus indicate that arctigenin may serve as a lead compound for the development of novel and effective drugs for the treatment of PEL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wan; Qin, Yan; Bai, Lei
2013-06-05
Infection of Kaposi's sarcoma-associated herpesvirus (KSHV) is commonly occurred in AIDS patients. KSHV and HIV-1 act cooperatively in regulating infection with each other and in human carcinogenesis. Dendritic cells (DCs), as the pivotal cells in host immunity, may be modulated by both viruses, for immunoevasion and dissemination, therefore, the interaction between DCs and each virus has been a prior focus for pathogenesis elucidation. Here, we assessed the potential effect of KSHV on DC–HIV-1 interaction. We found that KSHV stimulation could promote maturation of monocyte-derived DCs (MDDCs) and impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} Tmore » cells, demonstrating the immunosuppression induced by KSHV. More importantly, KSHV-stimulated MDDCs could capture more HIV-1 and efficiently transferred these infectious viruses to Hut/CCR5 T cell line. Our results reveal the novel modulation of DC-mediated HIV-1 dissemination by KSHV, and highlight the importance of studying DC–HIV-1 interaction to elucidate HIV/AIDS pathogenesis. - Highlights: ► KSHV impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells. ► KSHV stimulation matured MDDCs and enhanced HIV-1 endocytosis. ► KSHV stimulated MDDCs increased ICAM-1 expression and tighten contact with T cells. ► KSHV-stimulated MDDCs promoted HIV-1 trans-infection of CD4{sup +} T cells.« less
Kim, Hyemin; Jang, Mirim; Kim, Yejin; Choi, Jiyea; Jeon, Jane; Kim, Jihoon; Hwang, Young-Il; Kang, Jae Seung; Lee, Wang Jae
2016-03-01
Because red ginseng and vitamin C have immunomodulatory function and anti-viral effect, we investigated whether red ginseng and vitamin C synergistically regulate immune cell function and suppress viral infection. Red ginseng and vitamin C were treated to human peripheral blood mononuclear cells (PBMCs) or sarcoma-associated herpesvirus (KSHV)-infected BCBL-1, and administrated to Gulo(-/-) mice, which are incapable of synthesizing vitamin C, with or without influenza A virus/H1N1 infection. Red ginseng and vitamin C increased the expression of CD25 and CD69 of PBMCs and natural killer (NK) cells. Co-treatment of them decreased cell viability and lytic gene expression in BCBL-1. In Gulo(-/-) mice, red ginseng and vitamin C increased the expression of NKp46, a natural cytotoxic receptor of NK cells and interferon (IFN)-γ production. Influenza infection decreased the survival rate, and increased inflammation and viral plaque accumulation in the lungs of vitamin C-depleted Gulo(-/-) mice, which were remarkably reduced by red ginseng and vitamin C supplementation. Administration of red ginseng and vitamin C enhanced the activation of immune cells like T and NK cells, and repressed the progress of viral lytic cycle. It also reduced lung inflammation caused by viral infection, which consequently increased the survival rate. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.
Amodio, Emanuele; Goedert, James J.; Barozzi, Patrizia; Riva, Giovanni; Firenze, Alberto; Bonura, Filippa; Viviano, Enza; Romano, Nino; Luppi, Mario
2011-01-01
SUMMARY Kaposi sarcoma (KS) may develop because of incompetent immune responses, both nonspecifically and specifically against the KS-associated herpes virus (KSHV). Peripheral blood mononuclear cells from 15 classic (non-AIDS) KS cases, 13 KSHV seropositives (without KS), and 15 KSHV-seronegative controls were tested for interferon-γ T-cell (Elispot) responses to KSHV-LANA, KSHV-K8.1, and CMV/EBV peptide pools. The forearm and thigh of each participant also was tested for delayed-type hypersensitivity (DTH) against common recall antigens. Groups were compared with Fisher exact test and multinomial logistic regression to calculate odds ratios (OR) and 95% confidence intervals (CI). KSHV Elispot response was detected in 10 (67%) classic KS cases, 11 (85%) KSHV seropositives (without KS), and 2 (13%) seronegative controls. All 4 cases with KSHV-LANA responses had current KS lesions, whereas 5 of 6 cases with KSHV-K8.1 responses had no lesions (P=0.048). No case responded to both LANA and K8.1. Compared to seronegative controls, risk for classic KS was inversely related to DTH in the thigh (OR 0.71, 95% CI 0.55–0.94, P=0.01), directly associated with DTH in the forearm (OR 1.35, 95% CI 1.02–1.80, P=0.04), and tended to be increased 5-fold per KSHV Elispot response (OR 5.13, 95% CI 0.86–30.77, P=0.07). Compared to KSHV seropositives (without KS), risk for classic KS, was reduced 5-fold (OR 0.20, CI 0.03–0.77, P=0.04) per KSHV response. CMV/EBV Elispot responses were irrelevant. Deficiency of both KSHV-specific and –nonspecific immunity is associated with classic KS. This may clarify why Kaposi sarcoma responds to immune reconstitution. PMID:21740480
Amodio, Emanuele; Goedert, James J; Barozzi, Patrizia; Riva, Giovanni; Firenze, Alberto; Bonura, Filippa; Viviano, Enza; Romano, Nino; Luppi, Mario
2011-10-01
Kaposi sarcoma (KS) might develop because of incompetent immune responses, both non-specifically and specifically against the KS-associated herpesvirus (KSHV). Peripheral blood mononuclear cells from 15 classic (non-AIDS) KS cases, 13 KSHV seropositives (without KS) and 15 KSHV-seronegative controls were tested for interferon-γ T-cell (enzyme-linked immunospot [Elispot]) responses to KSHV-latency-associated nuclear antigen (LANA), KSHV-K8.1 and CMV/Epstein-Barr virus (EBV) peptide pools. The forearm and thigh of each participant was also tested for delayed-type hypersensitivity (DTH) against common recall antigens. Groups were compared with Fisher exact test and multinomial logistic regression to calculate odds ratios (OR) and 95% confidence intervals (CI). A KSHV Elispot response was detected in 10 (67%) classic KS cases, 11 (85%) KSHV seropositives (without KS) and two (13%) seronegative controls. All four cases with KSHV-LANA responses had current KS lesions, whereas five of six cases with KSHV-K8.1 responses had no lesions (P = 0.048). No case responded to both LANA and K8.1. Compared with the seronegative controls, the risk for classic KS was inversely related to DTH in the thigh (OR 0.71, 95% CI 0.55-0.94, P = 0.01), directly associated with DTH in the forearm (OR 1.35, 95% CI 1.02-1.80, P = 0.04) and tended to be increased fivefold per KSHV Elispot response (OR 5.13, 95% CI 0.86-30.77, P = 0.07). Compared with KSHV seropositives (without KS), the risk for classic KS was reduced fivefold (OR 0.20, CI 0.03-0.77, P = 0.04) per KSHV response. The CMV/EBV Elispot responses were irrelevant. Deficiency of both KSHV-specific and KSHV-non-specific immunity is associated with classic KS. This might clarify why Kaposi sarcoma responds to immune reconstitution. © 2011 Japanese Cancer Association and this article is a US Government work and is in the public domain in the USA.
Kaposi's sarcoma herpesvirus and HIV-1 seroprevalences in prostitutes in Djibouti.
Marcelin, Anne-Geneviève; Grandadam, Marc; Flandre, Philippe; Nicand, Elisabeth; Milliancourt, Catherine; Koeck, Jean-Louis; Philippon, Michel; Teyssou, Remy; Agut, Henri; Dupin, Nicolas; Calvez, Vincent
2002-10-01
Kaposi's sarcoma herpesvirus (KSHV) is linked causally to Kaposi's sarcoma. Epidemiological studies have shown that KSHV transmission can occur during sex among homosexual men, but heterosexual transmission seems to be very rare in KSHV low prevalence countries. A seroepidemiological study was conducted to determine whether KSHV is transmitted sexually between heterosexuals in an endemic country. Sera from 282 subjects of African origin living in Djibouti were tested for antibodies to KSHV and HIV-1. Among the 282 individuals, 43 were female prostitutes working in the streets (group 1), 123 were female prostitutes working in luxury bars (group 2), 41 were non-prostitute females (group 3), and 75 were non-prostitute males (group 4). KSHV seroprevalence was 26, 20, 17, and 36% in groups 1, 2, 3, and 4, respectively. The seroprevalence of KSHV is not different between street or bar prostitutes and non-prostitute females (OR = 1.67; P = 0.34 and OR = 1.18; P = 0.73). These results suggest that in this endemic country commercial sex work does not seem to be a risk factor for KSHV infection and provides evidence against heterosexual transmission of KSHV in the female population studied. Copyright 2002 Wiley-Liss, Inc.
Carbone, Antonino; De Paoli, Paolo; Gloghini, Annunziata; Vaccher, Emanuela
2015-07-15
Multicentric Castleman Disease (MCD) is a lymphoproliferative disorder presenting with heterogeneous pathological and clinical features. It comprises disease entities with a complex aetiology and overlapping pathogenesis. MCD can be found in association with HIV infection, plasma-cell dyscrasias, Kaposi sarcoma (KS), B-cell lymphomas including primary effusion lymphoma (PEL) and its solid variant, and Hodgkin lymphoma. In KSHV-associated MCD cases, a common association is KS and a specific variant of lymphoma referred to as "plasmablastic lymphoma," also called "large B-cell lymphoma arising in KSHV-associated MCD" lacking EBV infection. MCD is often referred to as human interleukin-6 (hIL-6) syndrome, since an overproduction of IL-6 occurs in MCD-associated diseases as well as in MCD itself. hIL-6 and a viral IL-6 (vIL-6) homolog encoded by KSHV can independently or together lead to flares of KSHV-associated MCD. Recently, a new clinical entity was proposed to describe a severe systemic infection/reactivation of KSHV: KSHV inflammatory syndrome (KICS). KICS may contribute in inducing the inflammatory symptoms seen in some patients with severe KS or PEL. The precise relationship of KICS to KSHV-associated MCD is unclear and it is possible that KICS may be prodromal symptoms to frank KSHV-associated MCD. Options for treatment of KSHV-associated MCD and related diseases include monoclonal antibodies, chemotherapy, immune modulators, virus-activated cytotoxic therapy and antiviral therapies. A comprehensive understanding of the intricacies of the HIV-KSHV coinfection will probably lead to additional advances in therapy and managements for these disorders. © 2014 UICC.
Dedrick, Rebekah M; Marinelli, Laura J; Newton, Gerald L; Pogliano, Kit; Pogliano, Joseph; Hatfull, Graham F
2013-05-01
Bacteriophages represent a majority of all life forms, and the vast, dynamic population with early origins is reflected in their enormous genetic diversity. A large number of bacteriophage genomes have been sequenced. They are replete with novel genes without known relatives. We know little about their functions, which genes are required for lytic growth, and how they are expressed. Furthermore, the diversity is such that even genes with required functions - such as virion proteins and repressors - cannot always be recognized. Here we describe a functional genomic dissection of mycobacteriophage Giles, in which the virion proteins are identified, genes required for lytic growth are determined, the repressor is identified, and the transcription patterns determined. We find that although all of the predicted phage genes are expressed either in lysogeny or in lytic growth, 45% of the predicted genes are non-essential for lytic growth. We also describe genes required for DNA replication, show that recombination is required for lytic growth, and that Giles encodes a novel repressor. RNAseq analysis reveals abundant expression of a small non-coding RNA in a lysogen and in late lytic growth, although it is non-essential for lytic growth and does not alter lysogeny. © 2013 Blackwell Publishing Ltd.
Hagemeier, Stacy R.; Dickerson, Sarah J.; Meng, Qiao; Yu, Xianming; Mertz, Janet E.; Kenney, Shannon C.
2010-01-01
The Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) mediates the switch between latent and lytic EBV infection. Z not only activates early lytic viral gene transcription but also plays a direct role in lytic viral genome replication. Although a small fraction of Z is known to be sumoylated, the effects of this posttranslational modification on various different Z functions have not been well defined. In this report, we show that only the lysine at amino acid residue 12 is required for the sumoylation of Z, and that Z can be sumoylated by SUMO isoforms 1, 2, and 3. We also demonstrate that the sumo-defective Z mutants ZK12A and ZK12R have enhanced transcriptional activity. The sumoylated and nonsumoylated forms of Z were found to have a similar cellular location, both being localized primarily within the nuclear matrix. The Z sumo-defective mutants were, however, partially defective for disrupting promyelocytic leukemia (PML) bodies compared to the ability of wild-type Z. In addition, we show that lytic viral genome replication does not require the sumoylation of Z, although a Z mutant altered at both amino acids 12 and 13 is replication defective. Furthermore, we show that the sumoylation of Z is greatly increased (from less than 1 to about 11%) in lytically induced 293 cells infected with an EBV mutant virus deleted for the EBV-encoded protein kinase (EBV-PK) compared to that of 293 cells infected with wild-type EBV, and that the overexpression of EBV-PK leads to the reduced sumoylation of Z in EBV-negative cells. Our results suggest that the sumoylation of Z helps to promote viral latency, and that EBV-PK inhibits Z sumoylation during viral reactivation. PMID:20181712
Kieffer-Kwon, Philippe; Happel, Christine; Uldrick, Thomas S.; Ramalingam, Dhivya; Ziegelbauer, Joseph M.
2015-01-01
Kaposi’s sarcoma (KS) is characterized by highly vascularized spindle-cell tumors induced after infection of endothelial cells by Kaposi’s sarcoma-associated herpesvirus (KSHV). In KS tumors, KSHV expresses only a few latent proteins together with 12 pre-microRNAs. Previous microarray and proteomic studies predicted that multiple splice variants of the tumor suppressor protein tropomyosin 1 (TPM1) were targets of KSHV microRNAs. Here we show that at least two microRNAs of KSHV, miR-K2 and miR-K5, repress protein levels of specific isoforms of TPM1. We identified a functional miR-K5 binding site in the 3’ untranslated region (UTR) of one TPM1 isoform. Furthermore, the inhibition or loss of miR-K2 or miR-K5 restores expression of TPM1 in KSHV-infected cells. TPM1 protein levels were also repressed in KSHV-infected clinical samples compared to uninfected samples. Functionally, miR-K2 increases viability of unanchored human umbilical vein endothelial cells (HUVEC) by inhibiting anoikis (apoptosis after cell detachment), enhances tube formation of HUVECs, and enhances VEGFA expression. Taken together, KSHV miR-K2 and miR-K5 may facilitate KSHV pathogenesis. PMID:26263384
Bandyopadhyay, Chirosree; Veettil, Mohanan Valiya; Dutta, Sujoy; Chandran, Bala
2014-12-01
Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. Eukaryotic cell adaptor molecules, without any intrinsic enzymatic activity, are well known to allow a great diversity of specific and coordinated protein-protein interactions imparting signal amplification to different networks for physiological and pathological signaling. They are involved in integrating signals from growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. The present study identifies human microvascular dermal endothelial (HMVEC-d) cellular scaffold protein p130Cas (Crk-associated substrate) as a platform to promote Kaposi's sarcoma-associated herpesvirus (KSHV) trafficking. Early during KSHV de novo infection, p130Cas associates with lipid rafts and scaffolds EphrinA2 (EphA2)-associated critical adaptor members to downstream effector molecules, promoting successful nuclear delivery of the KSHV genome. Hence, simultaneous targeting of the receptor EphA2 and scaffolding action of p130Cas can potentially uncouple the signal cross talk of the KSHV entry-associated upstream signal complex from the immediate downstream trafficking-associated signalosome, consequently routing KSHV toward lysosomal degradation and eventually blocking KSHV infection and associated malignancies. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Kaposi sarcoma–associated herpesvirus: immunobiology, oncogenesis, and therapy
Dittmer, Dirk P.
2016-01-01
Kaposi sarcoma–associated herpesvirus (KSHV), also known as human herpesvirus 8, is the etiologic agent underlying Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. This human gammaherpesvirus was discovered in 1994 by Drs. Yuan Chang and Patrick Moore. Today, there are over five thousand publications on KSHV and its associated malignancies. In this article, we review recent and ongoing developments in the KSHV field, including molecular mechanisms of KSHV pathogenesis, clinical aspects of KSHV-associated diseases, and current treatments for cancers associated with this virus. PMID:27584730
Botting, Carolyn; Lu, Xu; Triezenberg, Steven J
2016-01-27
Herpes simplex virus type 1 (HSV-1) can establish both lytic and latent infections in humans. The phosphorylation of histone H2AX, a common marker of DNA damage, during lytic infection by HSV-1 is well established. However, the role(s) of H2AX phosphorylation in lytic infection remain unclear. Following infection of human foreskin fibroblasts by HSV-1 or HSV-2, we assayed the phosphorylation of H2AX in the presence of inhibitors of transcription, translation, or viral DNA replication, or in the presence of inhibitors of ATM and ATR kinases (KU-55933 and VE-821, respectively). We also assayed viral replication in fibroblasts in the presence of the kinase inhibitors or siRNAs specific for ATM and ATR, as well as in cell lines deficient for either ATR or ATM. The expression of viral immediate-early and early proteins (including the viral DNA polymerase), but not viral DNA replication or late protein expression, were required for H2AX phosphorylation following HSV-1 infection. Inhibition of ATM kinase activity prevented HSV-stimulated H2AX phosphorylation but had only a minor effect on DNA replication and virus yield in HFF cells. These results differ from previous reports of a dramatic reduction in viral yield following chemical inhibition of ATM in oral keratinocytes or following infection of ATM(-/-) cells. Inhibition of the closely related kinase ATR (whether by chemical inhibitor or siRNA disruption) had no effect on H2AX phosphorylation and reduced viral DNA replication only moderately. During infection by HSV-2, H2AX phosphorylation was similarly dispensable but was dependent on both ATM activity and viral DNA replication. H2AX phosphorylation represents a cell type-specific and virus type-specific host response to HSV infection with little impact on viral infection.
KSHV-TK is a tyrosine kinase that disrupts focal adhesions and induces Rho-mediated cell contraction
Gill, Michael B; Turner, Rachel; Stevenson, Philip G; Way, Michael
2015-01-01
Paradoxically, the thymidine kinase (TK) encoded by Kaposi sarcoma-associated herpesvirus (KSHV) is an extremely inefficient nucleoside kinase, when compared to TKs from related herpesviruses. We now show that KSHV-TK, in contrast to HSV1-TK, associates with the actin cytoskeleton and induces extensive cell contraction followed by membrane blebbing. These dramatic changes in cell morphology depend on the auto-phosphorylation of tyrosines 65, 85 and 120 in the N-terminus of KSHV-TK. Phosphorylation of tyrosines 65/85 and 120 results in an interaction with Crk family proteins and the p85 regulatory subunit of PI3-Kinase, respectively. The interaction of Crk with KSHV-TK leads to tyrosine phoshorylation of this cellular adaptor. Auto-phosphorylation of KSHV-TK also induces a loss of FAK and paxillin from focal adhesions, resulting in activation of RhoA-ROCK signalling to myosin II and cell contraction. In the absence of FAK or paxillin, KSHV-TK has no effect on focal adhesion integrity or cell morphology. Our observations demonstrate that by acting as a tyrosine kinase, KSHV-TK modulates signalling and cell morphology. PMID:25471072
Lytic Replication of Epstein-Barr Virus During Space Flight
NASA Technical Reports Server (NTRS)
Stowe, R. P.; Pierson, D. L.; Barrett, A. D. T.
1999-01-01
Reactivation of latent Epstein-Barr virus (EBV) may be an important threat to crew health during extended space missions. Cellular immunity, which is decreased during and after space flight, is responsible for controlling EBV replication in vivo. In this study, we investigated the effects of short-term space flight on latent EBV reactivation.
Chadburn, A; Hyjek, E M; Tam, W; Liu, Y; Rengifo, T; Cesarman, E; Knowles, D M
2008-11-01
Kaposi sarcoma herpesvirus (KSHV) is aetiologically related to Kaposi sarcoma, classical and extracavitary primary effusion lymphoma (PEL; EC-PEL) and multicentric Castleman disease (MCD), entities preferentially occurring in HIV-infected individuals. Characterization of HIV-associated PELs/EC-PELs suggests that the KSHV-infected malignant cells originate from a pre-terminal stage of B-cell differentiation. However, only limited phenotypic studies have been performed on HIV+ MCD, including for PR domain containing 1 with zinc finger domain/B lymphocyte-induced maturation protein 1 (PRDM1/BLIMP1), a key regulator of terminal B-cell differentiation. The aim was to characterize KSHV-infected cells in 17 cases of HIV+ MCD. Double immunohistochemistry and immunohistochemistry-in situ hybridization were used to characterize the KSHV-infected cells in MCD; the results were compared with the phenotypic profiles of 39 PELs/EC-PELs and seven PEL cell lines. Whereas the immunophenotype of KSHV-infected cells in MCD and malignant KSHV+ PEL cells was similar (PAX5, Bcl-6-; PRDM1/BLIMP1, IRF4/MUM1+; Ki67+), the MCD KSHV-infected cells differed, as they expressed OCT2, cytoplasmic lambda immunoglobulin; variably expressed CD27; lacked CD138; and were Epstein-Barr virus negative. Although both PEL and MCD originate from KSHV-infected pre-terminally differentiated B cells, these findings, with previously reported genetic studies, indicate HIV+ MCD may arise from extrafollicular B cells, whereas PELs may originate from cells that have traversed the germinal centre.
Epidemiology of Kaposi's sarcoma-associated herpesvirus in Asia: Challenges and opportunities.
Zhang, Tiejun; Wang, Linding
2017-04-01
Kaposi's sarcoma-associated herpes virus (KSHV) also referred to as human herpesvirus-8 (HHV-8), is a gamma herpes virus and recently discovered human virus. Since its discovery, a myriad of studies has been conducted to explore its pathogenesis mechanisms. However, despite our consistently increasing understanding of KSHV biology and its clinical manifestations, only little progress has been made in understanding of its epidemiology characteristics which in turn hampered the management of KSHV-associated diseases and public health. Asia, the largest continent with a diversity of populations, has been thought to be with relative lower KSHV prevalence and diseases burden. The epidemiology of KSHV in this area is obscure either. The present review summarizes the current knowledge pertaining to the epidemiology of KSHV across Asian countries. Studies available in the literature have shown a substantial variation in this region indicating the virus is not ubiquitous in Asia countries as is the case with other human herpes viruses. Also, the MSM has been reconfirmed to be at the highest risk of KSHV infection in Asia highlighting the need for an increased focus on this previously marginalized population. Because of the paucity of data available, the epidemiologic characteristics of KSHV are difficult to determine in Asian countries. Future systematic collection of data to inform KSHV prevention strategies in Asia is urgently needed. J. Med. Virol. 89:563-570, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sychev, Zoi E.; Hu, Alex; Lagunoff, Michael
2017-01-01
Kaposi’s Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi’s Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells. PMID:28257516
Lytic to temperate switching of viral communities
NASA Astrophysics Data System (ADS)
Knowles, B.; Silveira, C. B.; Bailey, B. A.; Barott, K.; Cantu, V. A.; Cobián-Güemes, A. G.; Coutinho, F. H.; Dinsdale, E. A.; Felts, B.; Furby, K. A.; George, E. E.; Green, K. T.; Gregoracci, G. B.; Haas, A. F.; Haggerty, J. M.; Hester, E. R.; Hisakawa, N.; Kelly, L. W.; Lim, Y. W.; Little, M.; Luque, A.; McDole-Somera, T.; McNair, K.; de Oliveira, L. S.; Quistad, S. D.; Robinett, N. L.; Sala, E.; Salamon, P.; Sanchez, S. E.; Sandin, S.; Silva, G. G. Z.; Smith, J.; Sullivan, C.; Thompson, C.; Vermeij, M. J. A.; Youle, M.; Young, C.; Zgliczynski, B.; Brainard, R.; Edwards, R. A.; Nulton, J.; Thompson, F.; Rohwer, F.
2016-03-01
Microbial viruses can control host abundances via density-dependent lytic predator-prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus ‘more microbes, fewer viruses’.
KSHV LANA inhibits TGF-β signaling through epigenetic silencing of the TGF-β type II receptor
Di Bartolo, Daniel L.; Cannon, Mark; Liu, Yi-Fang; Renne, Rolf; Chadburn, Amy; Boshoff, Chris
2008-01-01
Signaling through the transforming growth factor–β (TGF-β) pathway results in growth inhibition and induction of apoptosis in various cell types. We show that this pathway is blocked in Kaposi sarcoma herpesvirus (KSHV)–infected primary effusion lymphoma through down-regulation of the TGF-β type II receptor (TβRII) by epigenetic mechanisms. Our data also suggest that KSHV infection may result in lower expression of TβRII in Kaposi sarcoma and multicentric Castleman disease. KSHV-encoded LANA associates with the promoter of TβRII and leads to its methylation and to the deacetylation of proximal histones. Reestablishment of signaling through this pathway reduces viability of these cells, inferring that KSHV-mediated blockage of TGF-β signaling plays a role in the establishment and progression of KSHV-associated neoplasia. These data suggest a mechanism whereby KSHV evades both the antiproliferative effects of TGF-β signaling by silencing TβRII gene expression and immune recognition by suppressing TGF-β–responsive immune cells through the elevated secretion of TGF-β1. PMID:18199825
Niller, Hans Helmut; Wolf, Hans; Minarovits, Janos
2008-05-01
Epstein-Barr virus (EBV) is a human herpesvirus hiding in a latent form in memory B cells in the majority of the world population. Although, primary EBV infection is asymptomatic or causes a self-limiting disease, infectious mononucleosis, the virus is associated with a wide variety of neoplasms developing in immunosuppressed or immunodeficient individuals, but also in patients with an apparently intact immune system. In memory B cells, tumor cells, and lymphoblastoid cell lines (LCLs, transformed by EBV in vitro) the expression of the viral genes is highly restricted. There is no virus production (lytic viral replication associated with the expression of all viral genes) in tight latency. The expression of latent viral oncogenes and RNAs is under a strict epigenetic control via DNA methylation and histone modifications that results either in a complete silencing of the EBV genome in memory B cells, or in a cell-type dependent usage of latent promoters in tumor cells, germinal center B cells, and LCLs. Both the latent and lytic EBV proteins are potent immunogens and elicit vigorous B- and T-cell responses. In immunosuppressed and immunodeficient patients, or in individuals with a functional defect of EBV-specific T cells, lytic EBV replication is regularly activated and an increased viral load can be detected in the blood. Enhanced lytic replication results in new infection events and EBV-associated transformation events, and seems to be a risk factor both for malignant transformation and the development of autoimmune diseases. One may speculate that an increased load or altered presentation of a limited set of lytic or latent EBV proteins that cross-react with cellular antigens triggers and perpetuates the pathogenic processes that result in multiple sclerosis, systemic lupus erythematosus (SLE), and rheumatoid arthritis. In addition, in SLE patients EBV may cause defects of B-cell tolerance checkpoints because latent membrane protein 1, an EBV-encoded viral oncoprotein can induce BAFF, a B-cell activating factor that rescues self-reactive B cells and induces a lupus-like autoimmune disease in transgenic mice.
Delgado, Tracie; Sanchez, Erica L.; Camarda, Roman; Lagunoff, Michael
2012-01-01
Like cancer cells, virally infected cells have dramatically altered metabolic requirements. We analyzed global metabolic changes induced by latent infection with an oncogenic virus, Kaposi's Sarcoma-associated herpesvirus (KSHV). KSHV is the etiologic agent of Kaposi's Sarcoma (KS), the most common tumor of AIDS patients. Approximately one-third of the nearly 200 measured metabolites were altered following latent infection of endothelial cells by KSHV, including many metabolites of anabolic pathways common to most cancer cells. KSHV induced pathways that are commonly altered in cancer cells including glycolysis, the pentose phosphate pathway, amino acid production and fatty acid synthesis. Interestingly, over half of the detectable long chain fatty acids detected in our screen were significantly increased by latent KSHV infection. KSHV infection leads to the elevation of metabolites involved in the synthesis of fatty acids, not degradation from phospholipids, and leads to increased lipid droplet organelle formation in the infected cells. Fatty acid synthesis is required for the survival of latently infected endothelial cells, as inhibition of key enzymes in this pathway led to apoptosis of infected cells. Addition of palmitic acid to latently infected cells treated with a fatty acid synthesis inhibitor protected the cells from death indicating that the products of this pathway are essential. Our metabolomic analysis of KSHV-infected cells provides insight as to how oncogenic viruses can induce metabolic alterations common to cancer cells. Furthermore, this analysis raises the possibility that metabolic pathways may provide novel therapeutic targets for the inhibition of latent KSHV infection and ultimately KS tumors. PMID:22916018
Hahn, Alexander S.
2014-01-01
ABSTRACT The ephrin receptor tyrosine kinase A2 (EphA2) is an entry receptor for Kaposi's sarcoma-associated herpesvirus (KSHV) that is engaged by the virus through its gH/gL glycoprotein complex. We describe here that natural ephrin ligands inhibit the gH/gL-EphA2 interaction. The effects of point mutations within EphA2 demonstrated that KSHV gH/gL interacts with EphA2 through a restricted set of the same residues that mediate binding of A-type ephrins. Two previously described inhibitors of the EphA2 interaction with ephrin A5 also inhibited binding of KSHV gH/gL to EphA2. The more potent of the two compounds inhibited KSHV infection of blood vessel and lymphatic endothelial cells in the micromolar concentration range. Our results demonstrate that interaction of KSHV with EphA2 occurs in a fashion similar to that of the natural ephrin ligands. Our data further indicate a new avenue for drug development against KSHV. IMPORTANCE Our study reports two important findings. First, we show that KSHV engages its receptor, the receptor tyrosine kinase EphA2, at a site that overlaps the binding site of the natural ephrin ligands. Second, we demonstrate that KSHV infection of target cells can be blocked by a small-molecule inhibitor of the viral glycoprotein-EphA2 interaction. These findings represent a novel avenue for the development of strategies to treat KSHV-associated diseases. PMID:24899181
Nalwoga, Angela; Cose, Stephen; Nash, Stephen; Miley, Wendell; Asiki, Gershim; Kusemererwa, Sylvia; Yarchoan, Robert; Labo, Nazzarena; Whitby, Denise; Newton, Robert
2018-05-08
We examined anaemia and malaria as risk factors for KSHV seropositivity and antibody levels in a long-standing rural Ugandan cohort, in which KSHV is prevalent. Samples from 4134 children, aged 1-17 years, with a sex ratio of 1:1 and 3149 adults aged 18-103 years, 41% of whom were males, were analysed. Among children, malaria infection was associated with higher KSHV prevalence (61% versus 41% prevalence among malaria infected and uninfected respectively); malaria was not assessed in adults. Additionally, lower haemoglobin level was associated with an increased prevalence of KSHV seropositivity, both in children and in adults.
Polizzotto, Mark N.; Aleman, Karen; Wyvill, Kathleen M.; Marshall, Vickie; Whitby, Denise; Wang, Victoria; Pittaluga, Stefania; O’Mahony, Deirdre; Steinberg, Seth M.; Little, Richard F.; Yarchoan, Robert
2014-01-01
Kaposi sarcoma (KS) herpesvirus–associated multicentric Castleman disease (KSHV-MCD) is a lymphoproliferative disorder, most commonly seen in HIV-infected patients, that has a high mortality if untreated. Concurrent KS is common. Although rituximab has reported activity in KSHV-MCD, its use is often associated with KS progression. Within a natural history study of KSHV-MCD, we prospectively evaluated rituximab 375 mg/m2 combined with liposomal doxorubicin 20 mg/m2 (R-Dox) every 3 weeks in 17 patients. Patients received a median of 4 cycles (range 3-9). All received antiretroviral therapy, 11 received consolidation interferon-α, and 6 received consolidation high-dose zidovudine with valganciclovir. Using NCI KSHV-MCD response criteria, major clinical and biochemical responses were attained in 94% and 88% of patients, respectively. With a median 58 months’ potential follow-up, 3-year event-free survival was 69% and 3-year overall survival was 81%. During R-Dox therapy, cutaneous KS developed in 1 patient, whereas 5 of 6 patients with it had clinical improvement. R-Dox was associated with significant improvement in anemia and hypoalbuminemia. KSHV viral load, KSHV viral interleukin-6, C-reactive protein, human interleukin-6, and serum immunoglobulin free light chains decreased with therapy. R-Dox is effective in symptomatic KSHV-MCD and may be useful in patients with concurrent KS. This trial was registered at www.clinicaltrials.gov as #NCT00092222. PMID:25331113
Sanchez, Erica L.; Carroll, Patrick A.; Thalhofer, Angel B.; Lagunoff, Michael
2015-01-01
Kaposi’s Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of Kaposi’s Sarcoma (KS). KSHV establishes a predominantly latent infection in the main KS tumor cell type, the spindle cell, which is of endothelial cell origin. KSHV requires the induction of multiple metabolic pathways, including glycolysis and fatty acid synthesis, for the survival of latently infected endothelial cells. Here we demonstrate that latent KSHV infection leads to increased levels of intracellular glutamine and enhanced glutamine uptake. Depletion of glutamine from the culture media leads to a significant increase in apoptotic cell death in latently infected endothelial cells, but not in their mock-infected counterparts. In cancer cells, glutamine is often required for glutaminolysis to provide intermediates for the tri-carboxylic acid (TCA) cycle and support for the production of biosynthetic and bioenergetic precursors. In the absence of glutamine, the TCA cycle intermediates alpha-ketoglutarate (αKG) and pyruvate prevent the death of latently infected cells. Targeted drug inhibition of glutaminolysis also induces increased cell death in latently infected cells. KSHV infection of endothelial cells induces protein expression of the glutamine transporter, SLC1A5. Chemical inhibition of SLC1A5, or knockdown by siRNA, leads to similar cell death rates as glutamine deprivation and, similarly, can be rescued by αKG. KSHV also induces expression of the heterodimeric transcription factors c-Myc-Max and related heterodimer MondoA-Mlx. Knockdown of MondoA inhibits expression of both Mlx and SLC1A5 and induces a significant increase in cell death of only cells latently infected with KSHV, again, fully rescued by the supplementation of αKG. Therefore, during latent infection of endothelial cells, KSHV activates and requires the Myc/MondoA-network to upregulate the glutamine transporter, SLC1A5, leading to increased glutamine uptake for glutaminolysis. These findings expand our understanding of the required metabolic pathways that are activated during latent KSHV infection of endothelial cells, and demonstrate a novel role for the extended Myc-regulatory network, specifically MondoA, during latent KSHV infection. PMID:26197457
DOE Office of Scientific and Technical Information (OSTI.GOV)
Togi, Sumihito; Nakasuji, Misa; Muromoto, Ryuta
Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA), which interacts with cellular proteins, plays a central role in modification of viral and/or cellular gene expression. Here, we show that LANA associates with glucocorticoid receptor (GR), and that LANA enhances the transcriptional activity of GR. Co-immunoprecipitation revealed a physical interaction between LANA and GR in transiently transfected 293T and HeLa cells. In human B-lymphoma cells, LANA overexpression enhanced GR activity and cell growth suppression following glucocorticoid stimulation. Furthermore, confocal microscopy showed that activated GR was bound to LANA and accumulated in the nucleus, leading to an increase in binding of activatedmore » GR to the glucocorticoid response element of target genes. Taken together, KSHV-derived LANA acts as a transcriptional co-activator of GR. Our results might suggest a careful use of glucocorticoids in the treatment of patients with KSHV-related malignancies such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. - Highlights: • KSHV-LANA enhances the transcriptional activity of GR in 293T and HeLa cells. • KSHV-LANA physically associates with GR. • KSHV-LANA enhances GR activation and cell growth suppression in human B-lymphocytes. • KSHV-LANA influences the nuclear retention and DNA binding activity of GR.« less
Liu, Zhenqiu; Fang, Qiwen; Zuo, Jialu; Minhas, Veenu; Wood, Charles; He, Na; Zhang, Tiejun
2017-10-01
Kaposi's sarcoma-associated herpesvirus (KSHV) has become widely dispersed worldwide since it was first reported in 1994, but the seroprevalence of KSHV varies geographically. KSHV is relatively ubiquitous in Mediterranean areas and the Xinjiang Uygur Autonomous Region, China. The origin of KSHV has long been puzzling. In the present study, we collected and analysed 154 KSHV ORF-K1 sequences obtained from samples originating from Xinjiang, Italy, Greece, Iran and southern Siberia using Bayesian evolutionary analysis in BEAST to test the hypothesis that KSHV was introduced into Xinjiang via the ancient Silk Road. According to the phylogenetic analysis, 72 sequences were subtype A and 82 subtype C, with C2 (n = 56) being the predominant subtype. The times to the most recent common ancestors (tMRCAs) of KSHV were 29,872 years (95% highest probability density [HPD], 26,851-32,760 years) for all analysed sequences and 2037 years (95% HPD, 1843-2229 years) for Xinjiang sequences in particular. The tMRCA of Xinjiang KSHV was exactly matched with the time period of the ancient Silk Road approximately two thousand years ago. This route began in Chang'an, the capital of the Han dynasty of China, and crossed Central Asia, ending in the Roman Empire. The evolution rate of KSHV was slow, with 3.44 × 10 -6 substitutions per site per year (95% HPD, 2.26 × 10 -6 to 4.71 × 10 -6 ), although 11 codons were discovered to be under positive selection pressure. The geographic distances from Italy to Iran and Xinjiang are more than 4000 and 7000 kilometres, respectively, but no explicit relationship between genetic distance and geographic distance was detected.
León Vázquez, Erika De; Juillard, Franceline; Rosner, Bernard; Kaye, Kenneth M.
2013-01-01
Kaposi’s sarcoma-associated herpesvirus LANA (1162 residues) mediates episomal persistence of viral genomes during latency. LANA mediates viral DNA replication and segregates episomes to daughter nuclei. A 59 residue deletion immediately upstream of the internal repeat elements rendered LANA highly deficient for DNA replication and modestly deficient for the ability to segregate episomes, while smaller deletions did not. The 59 amino acid deletion reduced LANA episome persistence by ~14-fold, while sequentially smaller deletions resulted in ~3-fold, or no deficiency. Three distinct LANA regions reorganized heterochromatin, one of which contains the deleted sequence, but the deletion did not abolish LANA’s ability to alter chromatin. Therefore, this work identifies a short internal LANA sequence that is critical for DNA replication, has modest effects on episome segregation, and substantially impacts episome persistence; this region may exert its effects through an interacting host cell protein(s). PMID:24314665
Garrigues, H Jacques; Rubinchikova, Yelena E; Rose, Timothy M
2014-03-01
Cell surface structures initiating attachment of Kaposi's sarcoma-associated herpesvirus (KSHV) were characterized using purified hapten-labeled virions visualized by confocal microscopy with a sensitive fluorescent enhancement using tyramide signal amplification (TSA). KSHV attachment sites were present in specific cellular domains, including actin-based filopodia, lamellipodia, ruffled membranes, microvilli and intercellular junctions. Isolated microdomains were identified on the dorsal surface, which were heterogeneous in size with a variable distribution that depended on cellular confluence and cell cycle stage. KSHV binding domains ranged from scarce on interphase cells to dense and continuous on mitotic cells, and quantitation of bound virus revealed a significant increase on mitotic compared to interphase cells. KSHV also bound to a supranuclear domain that was distinct from microdomains in confluent and interphase cells. These results suggest that rearrangement of the cellular membrane during mitosis induces changes in cell surface receptors implicated in the initial attachment stage of KSHV entry. Copyright © 2014 Elsevier Inc. All rights reserved.
Virus reactivation: a panoramic view in human infections
Traylen, Christopher M; Patel, Hersh R; Fondaw, Wylder; Mahatme, Sheran; Williams, John F; Walker, Lia R; Dyson, Ossie F; Arce, Sergio; Akula, Shaw M
2011-01-01
Viruses are obligate intracellular parasites, relying to a major extent on the host cell for replication. An active replication of the viral genome results in a lytic infection characterized by the release of new progeny virus particles, often upon the lysis of the host cell. Another mode of virus infection is the latent phase, where the virus is ‘quiescent’ (a state in which the virus is not replicating). A combination of these stages, where virus replication involves stages of both silent and productive infection without rapidly killing or even producing excessive damage to the host cells, falls under the umbrella of a persistent infection. Reactivation is the process by which a latent virus switches to a lytic phase of replication. Reactivation may be provoked by a combination of external and/or internal cellular stimuli. Understanding this mechanism is essential in developing future therapeutic agents against viral infection and subsequent disease. This article examines the published literature and current knowledge regarding the viral and cellular proteins that may play a role in viral reactivation. The focus of the article is on those viruses known to cause latent infections, which include herpes simplex virus, varicella zoster virus, Epstein–Barr virus, human cytomegalovirus, human herpesvirus 6, human herpesvirus 7, Kaposi’s sarcoma-associated herpesvirus, JC virus, BK virus, parvovirus and adenovirus. PMID:21799704
Measles virus induces persistent infection by autoregulation of viral replication.
Doi, Tomomitsu; Kwon, Hyun-Jeong; Honda, Tomoyuki; Sato, Hiroki; Yoneda, Misako; Kai, Chieko
2016-11-24
Natural infection with measles virus (MV) establishes lifelong immunity. Persistent infection with MV is likely involved in this phenomenon, as non-replicating protein antigens never induce such long-term immunity. Although MV establishes stable persistent infection in vitro and possibly in vivo, the mechanism by which this occurs is largely unknown. Here, we demonstrate that MV changes the infection mode from lytic to non-lytic and evades the innate immune response to establish persistent infection without viral genome mutation. We found that, in the persistent phase, the viral RNA level declined with the termination of interferon production and cell death. Our analysis of viral protein dynamics shows that during the establishment of persistent infection, the nucleoprotein level was sustained while the phosphoprotein and large protein levels declined. The ectopic expression of nucleoprotein suppressed viral replication, indicating that viral replication is self-regulated by nucleoprotein accumulation during persistent infection. The persistently infected cells were able to produce interferon in response to poly I:C stimulation, suggesting that MV does not interfere with host interferon responses in persistent infection. Our results may provide mechanistic insight into the persistent infection of this cytopathic RNA virus that induces lifelong immunity.
Sattler, Christine; Steer, Beatrix; Adler, Heiko
2016-03-01
An unresolved question in herpesvirus biology is why some herpesviruses contain more than one lytic origin of replication (oriLyt). Using murine gammaherpesvirus 68 (MHV-68) as model virus containing two oriLyts, we demonstrate that loss of either of the two oriLyts was well tolerated in some situations but not in others both in vitro and in vivo. This was related to the cell type, the organ or the route of inoculation. Depending on the cell type, different cellular proteins, for example Hexim1 and Rbbp4, were found to be associated with oriLyt DNA. Overexpression or downregulation of these proteins differentially affected the growth of mutants lacking either the left or the right oriLyt. Thus, multiple oriLyts are required to ensure optimal fitness in different cell types and tissues.
Lopez, M Veronica; Rivera, Angel A; Viale, Diego L; Benedetti, Lorena; Cuneo, Nicasio; Kimball, Kristopher J; Wang, Minghui; Douglas, Joanne T; Zhu, Zeng B; Bravo, Alicia I; Gidekel, Manuel; Alvarez, Ronald D; Curiel, David T; Podhajcer, Osvaldo L
2012-01-01
Targeting the tumor stroma in addition to the malignant cell compartment is of paramount importance to achieve complete tumor regression. In this work, we modified a previously designed tumor stroma-targeted conditionally replicative adenovirus (CRAd) based on the SPARC promoter by introducing a mutated E1A unable to bind pRB and pseudotyped with a chimeric Ad5/3 fiber (Ad F512v1), and assessed its replication/lytic capacity in ovary cancer in vitro and in vivo. AdF512v1 was able to replicate in fresh samples obtained from patients: (i) with primary human ovary cancer; (ii) that underwent neoadjuvant treatment; (iii) with metastatic disease. In addition, we show that four intraperitoneal (i.p.) injections of 5 × 1010 v.p. eliminated 50% of xenografted human ovary tumors disseminated in nude mice. Moreover, AdF512v1 replication in tumor models was enhanced 15–40-fold when the tumor contained a mix of malignant and SPARC-expressing stromal cells (fibroblasts and endothelial cells). Contrary to the wild-type virus, AdF512v1 was unable to replicate in normal human ovary samples while the wild-type virus can replicate. This study provides evidence on the lytic capacity of this CRAd and highlights the importance of targeting the stromal tissue in addition to the malignant cell compartment to achieve tumor regression. PMID:22948673
Sharma-Walia, Neelam; Sadagopan, Sathish; Veettil, Mohanan Valiya; Kerur, Nagaraj; Chandran, Bala
2010-01-01
Kaposi's sarcoma (KS), an enigmatic endothelial cell vascular neoplasm, is characterized by the proliferation of spindle shaped endothelial cells, inflammatory cytokines (ICs), growth factors (GFs) and angiogenic factors. KSHV is etiologically linked to KS and expresses its latent genes in KS lesion endothelial cells. Primary infection of human micro vascular endothelial cells (HMVEC-d) results in the establishment of latent infection and reprogramming of host genes, and cyclooxygenase-2 (COX-2) is one of the highly up-regulated genes. Our previous study suggested a role for COX-2 in the establishment and maintenance of KSHV latency. Here, we examined the role of COX-2 in the induction of ICs, GFs, angiogenesis and invasive events occurring during KSHV de novo infection of endothelial cells. A significant amount of COX-2 was detected in KS tissue sections. Telomerase-immortalized human umbilical vein endothelial cells supporting KSHV stable latency (TIVE-LTC) expressed elevated levels of functional COX-2 and microsomal PGE2 synthase (m-PGES), and secreted the predominant eicosanoid inflammatory metabolite PGE2. Infected HMVEC-d and TIVE-LTC cells secreted a variety of ICs, GFs, angiogenic factors and matrix metalloproteinases (MMPs), which were significantly abrogated by COX-2 inhibition either by chemical inhibitors or by siRNA. The ability of these factors to induce tube formation of uninfected endothelial cells was also inhibited. PGE2, secreted early during KSHV infection, profoundly increased the adhesion of uninfected endothelial cells to fibronectin by activating the small G protein Rac1. COX-2 inhibition considerably reduced KSHV latent ORF73 gene expression and survival of TIVE-LTC cells. Collectively, these studies underscore the pivotal role of KSHV induced COX-2/PGE2 in creating KS lesion like microenvironment during de novo infection. Since COX-2 plays multiple roles in KSHV latent gene expression, which themselves are powerful mediators of cytokine induction, anti-apoptosis, cell survival and viral genome maintainence, effective inhibition of COX-2 via well-characterized clinically approved COX-2 inhibitors could potentially be used in treatment to control latent KSHV infection and ameliorate KS. PMID:20169190
KSHV LANA and EBV LMP1 induce the expression of UCH-L1 following viral transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentz, Gretchen L.; Bheda-Malge, Anjali; Wang, Ling
Ubiquitin C-terminal Hydrolase L1 (UCH-L1) has oncogenic properties and is highly expressed during malignancies. We recently documented that Epstein-Barr virus (EBV) infection induces uch-l1 expression. Here we show that Kaposi's Sarcoma-associated herpesvirus (KSHV) infection induced UCH-L1 expression, via cooperation of KSHV Latency-Associated Nuclear Antigen (LANA) and RBP-Jκ and activation of the uch-l1 promoter. UCH-L1 expression was also increased in Primary Effusion Lymphoma (PEL) cells co-infected with KSHV and EBV compared with PEL cells infected only with KSHV, suggesting EBV augments the effect of LANA on uch-l1. EBV latent membrane protein 1 (LMP1) is one of the few EBV products expressedmore » in PEL cells. Results showed that LMP1 was sufficient to induce uch-l1 expression, and co-expression of LMP1 and LANA had an additive effect on uch-l1 expression. These results indicate that viral latency products of both human γ-herpesviruses contribute to uch-l1 expression, which may contribute to the progression of lymphoid malignancies. - Highlights: • Infection of endothelial cells with KSHV induced UCH-L1 expression. • KSHV LANA is sufficient for the induction of uch-l1. • Co-infection with KSHV and EBV (observed in some PELs) results in the additive induction of uch-l1. • EBV LMP1 also induced UCH-L1 expression. • LANA- and LMP1-mediated activation of the uch-l1 promoter is in part through RBP-Jκ.« less
Iqbal, Jawed; Ansari, Mairaj Ahmed; Kumar, Binod; Dutta, Dipanjan; Roy, Arunava; Chikoti, Leela; Pisano, Gina; Dutta, Sujoy; Veettil, Mohanan Valiya; Chandran, Bala
2016-01-01
IFI16 (gamma-interferon-inducible protein 16), a predominantly nuclear protein involved in transcriptional regulation, also functions as an innate immune response DNA sensor and induces the IL-1β and antiviral type-1 interferon-β (IFN-β) cytokines. We have shown that IFI16, in association with BRCA1, functions as a sequence independent nuclear sensor of episomal dsDNA genomes of KSHV, EBV and HSV-1. Recognition of these herpesvirus genomes resulted in IFI16 acetylation, BRCA1-IFI16-ASC-procaspase-1 inflammasome formation, cytoplasmic translocation, and IL-1β generation. Acetylated IFI16 also interacted with cytoplasmic STING and induced IFN-β. However, the identity of IFI16 associated nuclear proteins involved in STING activation and the mechanism is not known. Mass spectrometry of proteins precipitated by anti-IFI16 antibodies from uninfected endothelial cell nuclear lysate revealed that histone H2B interacts with IFI16. Single and double proximity ligation microscopy, immunoprecipitation, EdU-genome labeled virus infection, and chromatin immunoprecipitation studies demonstrated that H2B is associated with IFI16 and BRCA1 in the nucleus in physiological conditions. De novo KSHV and HSV-1 infection as well as latent KSHV and EBV infection induces the cytoplasmic distribution of H2B-IFI16, H2B-BRCA1 and IFI16-ASC complexes. Vaccinia virus (dsDNA) cytoplasmic replication didn’t induce the redistribution of nuclear H2B-IFI16 or H2B into the cytoplasm. H2B is critical in KSHV and HSV-1 genome recognition by IFI16 during de novo infection. Viral genome sensing by IFI16-H2B-BRCA1 leads to BRCA1 dependent recruitment of p300, and acetylation of H2B and IFI16. BRCA1 knockdown or inhibition of p300 abrogated the acetylation of H2B-IFI16 or H2B. Ran-GTP protein mediated the translocation of acetylated H2B and IFI16 to the cytoplasm along with BRCA1 that is independent of IFI16-ASC inflammasome. ASC knockdown didn’t affect the acetylation of H2B, its cytoplasmic transportation, and the association of STING with IFI16 and H2B during KSHV infection. Absence of H2B didn’t affect IFI16-ASC association and cytoplasmic distribution and thus demonstrating that IFI16-H2B complex is independent of IFI16-ASC-procaspase-1-inflammasome complex formed during infection. The H2B-IFI16-BRCA1 complex interacted with cGAS and STING in the cytoplasm leading to TBK1 and IRF3 phosphorylation, nuclear translocation of pIRF3 and IFN-β production. Silencing of H2B, cGAS and STING inhibited IFN-β induction but not IL-1β secretion, and cGAMP activity is significantly reduced by H2B and IFI16 knockdown during infection. Silencing of ASC inhibited IL-1β secretion but not IFN-β secretion during de novo KSHV and HSV-1 infection. These studies identify H2B as an innate nuclear sensor mediating a novel extra chromosomal function, and reveal that two IFI16 complexes mediate KSHV and HSV-1 genome recognition responses, with recognition by the IFI16-BRCA1-H2B complex resulting in IFN-β responses and recognition by IFI16-BRCA1 resulting in inflammasome responses. PMID:27764250
Shepard, L W; Yang, M; Xie, P; Browning, D D; Voyno-Yasenetskaya, T; Kozasa, T; Ye, R D
2001-12-07
The Kaposi's sarcoma herpesvirus (KSHV) open reading frame 74 encodes a G protein-coupled receptor (GPCR) for chemokines. Exogenous expression of this constitutively active GPCR leads to cell transformation and vascular overgrowth characteristic of Kaposi's sarcoma. We show here that expression of KSHV-GPCR in transfected cells results in constitutive transactivation of nuclear factor kappa B (NF-kappa B) and secretion of interleukin-8, and this response involves activation of G alpha(13) and RhoA. The induced expression of a NF-kappa B luciferase reporter was partially reduced by pertussis toxin and the G beta gamma scavenger transducin, and enhanced by co-expression of G alpha(13) and to a lesser extent, G alpha(q). These results indicate coupling of KSHV-GPCR to multiple G proteins for NF-kappa B activation. Expression of KSHV-GPCR led to stress fiber formation in NIH 3T3 cells. To examine the involvement of the G alpha(13)-RhoA pathway in KSHV-GPCR-mediated NF-kappa B activation, HeLa cells were transfected with KSHV-GPCR alone and in combination with the regulator of G protein signaling (RGS) from p115RhoGEF or a dominant negative RhoA(T19N). Both constructs, as well as the C3 exoenzyme from Clostritium botulinum, partially reduced NF-kappa B activation by KSHV-GPCR, and by a constitutively active G alpha(13)(Q226L). KSHV-GPCR-induced NF-kappa B activation is accompanied by increased secretion of IL-8, a function mimicked by the activated G alpha(13) but not by an activated G alpha(q)(Q209L). These results suggest coupling of KSHV-GPCR to the G alpha(13)-RhoA pathway in addition to other G proteins.
Jackson, Brian R.; Boyne, James R.; Noerenberg, Marko; Taylor, Adam; Hautbergue, Guillaume M.; Walsh, Matthew J.; Wheat, Rachel; Blackbourn, David J.; Wilson, Stuart A.; Whitehouse, Adrian
2011-01-01
The hTREX complex mediates cellular bulk mRNA nuclear export by recruiting the nuclear export factor, TAP, via a direct interaction with the export adaptor, Aly. Intriguingly however, depletion of Aly only leads to a modest reduction in cellular mRNA nuclear export, suggesting the existence of additional mRNA nuclear export adaptor proteins. In order to efficiently export Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs from the nucleus, the KSHV ORF57 protein recruits hTREX onto viral intronless mRNAs allowing access to the TAP-mediated export pathway. Similarly however, depletion of Aly only leads to a modest reduction in the nuclear export of KSHV intronless mRNAs. Herein, we identify a novel interaction between ORF57 and the cellular protein, UIF. We provide the first evidence that the ORF57-UIF interaction enables the recruitment of hTREX and TAP to KSHV intronless mRNAs in Aly-depleted cells. Strikingly, depletion of both Aly and UIF inhibits the formation of an ORF57-mediated nuclear export competent ribonucleoprotein particle and consequently prevents ORF57-mediated mRNA nuclear export and KSHV protein production. Importantly, these findings highlight that redundancy exists in the eukaryotic system for certain hTREX components involved in the mRNA nuclear export of intronless KSHV mRNAs. PMID:21814512
Nishiwaki, Morie; Fujimuro, Masahiro; Teishikata, Yasuhiro; Inoue, Hisanori; Sasajima, Hitoshi; Nakaso, Kazuhiro; Nakashima, Kenji; Sadanari, Hidetaka; Yamamoto, Tomohiro; Fujiwara, Yoshie; Ogawa, Naoki; Yokosawa, Hideyoshi
2006-12-01
A multiplex polymerase chain reaction (PCR) has been developed for the simultaneous detection of Epstein-Barr virus (EBV), cytomegalovirus (CMV), and Kaposi's sarcoma-associated herpesvirus (KSHV) in a clinical sample. Primers of multiplex PCR were designed to amplify specific regions of the EBV EBNA1, CMV IE2, and KSHV LANA genes. This multiplex PCR assay was found to have detection sensitivities of 1-10 copies of purified viral DNA cloned into the plasmid. To assess diagnostic and pre-clinical applications with this method, we utilized KSHV-positive primary effusion lymphoma (PEL) cells, EBV-positive Burkitt's lymphoma cells, CMV-infected fibroblast cells, and clinically prepared peripheral blood leukocytes (PBLs) that had been infected with viruses. We found that this multiplex PCR assay has high sensitivity and specificity for simultaneous detection of EBV, CMV, and KSHV genomes in a single amplification from a clinical material. Using this multiplex PCR assay, we investigated the prevalence of EBV, CMV, and KSHV in PBL samples from normal Japanese randomly selected. KSHV, EBV, and CMV genomes were detected in samples from 2 (0.2%), 377 (39.5%), and 27 (2.8%) of the 953 blood donors, respectively. Interestingly, both EBV and CMV genomes were detected in samples from all KSHV-positive donors. (c) 2006 Wiley-Liss, Inc.
Sattler, Christine; Steer, Beatrix; Adler, Heiko
2016-01-01
An unresolved question in herpesvirus biology is why some herpesviruses contain more than one lytic origin of replication (oriLyt). Using murine gammaherpesvirus 68 (MHV-68) as model virus containing two oriLyts, we demonstrate that loss of either of the two oriLyts was well tolerated in some situations but not in others both in vitro and in vivo. This was related to the cell type, the organ or the route of inoculation. Depending on the cell type, different cellular proteins, for example Hexim1 and Rbbp4, were found to be associated with oriLyt DNA. Overexpression or downregulation of these proteins differentially affected the growth of mutants lacking either the left or the right oriLyt. Thus, multiple oriLyts are required to ensure optimal fitness in different cell types and tissues. PMID:27007137
Infection of KSHV and Interaction with HIV: The Bad Romance.
Qin, Jie; Lu, Chun
2017-01-01
Kaposi's sarcoma-associated herpesvirus (KSHV), namely, human herpesvirus 8 (HHV-8), is considered as the pathogen of Kaposi's sarcoma (KS), the most frequent cancer in untreated HIV-infected individuals. Patients infected with HIV have a much higher possibility developing KS than average individual. Researchers have found that HIV, which functions as a cofactor of KS, contributes a lot to the development of KS. In this article, we will give a brief introduction of KS and KSHV and how the interaction between KSHV and HIV contributes to the development of KS. Also we will take a glance at the development of treatment in KS, especially AIDS-KS.
Deng, Zhaohui; Liang, Deguang; Zhou, Xin; Sun, Rui
2017-01-01
There is increasing consensus that males are more vulnerable than females to infection by several pathogens. However, the underlying mechanism needs further investigation. Here, it was showed that knockdown of androgen receptor (AR) expression or pre-treatment with 5α-dihydrotestosterone, the AR agonist, led to a considerably dysregulated Kaposi’s sarcoma-associated herpesvirus (KSHV) infection. In endothelial cells, membrane-localized AR promoted the endocytosis and nuclear trafficking of KSHV. The AR interacted with ephrin receptor A2 (EphA2) and increased its phosphorylation at residue Ser897, which was specifically upregulated upon KSHV infection. This phosphorylation resulted from the AR-mediated recruitment of Src, which resulted in the activation of p90 ribosomal S6 kinase 1 (RSK1), which directly phosphorylates EphA2 at Ser897. Finally, the EphA2-mediated entry of KSHV was abolished in a Ser897Asn EphA2 mutant. Taken together, membrane-localized AR was identified as a KSHV entry factor that cooperatively activates Src/RSK1/EphA2 signaling, which subsequently promotes KSHV infection of both endothelial and epithelial cells. PMID:28957431
Work, Thierry M.; Dagenais, Julie; Weatherby, Tina; Ackermann, Mathias; Balazs, George H.
2017-01-01
Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with Chelonid herpesvirus 5 (ChHV5) that has historically been refractory to growth in tissue culture. Here, we show for the first time de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative for active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included 1) either in-vitro culturing of ChHV5-positive tumor biopsies (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and 2) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies revealing intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegumentation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign for active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures where most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as model to culture other viruses that are resistant to replication in conventional cell culture.
KSHV-Mediated Angiogenesis in Tumor Progression
Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C.
2016-01-01
Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi’s sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman’s disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV’s efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661
Gay, Lauren A; Sethuraman, Sunantha; Thomas, Merin; Turner, Peter C; Renne, Rolf
2018-04-15
Kaposi's sarcoma (KS) tumors are derived from endothelial cells and express Kaposi's sarcoma-associated herpesvirus (KSHV) microRNAs (miRNAs). Although miRNA targets have been identified in B cell lymphoma-derived cells and epithelial cells, little has been done to characterize the KSHV miRNA targetome in endothelial cells. A recent innovation in the identification of miRNA targetomes, cross-linking, ligation, and sequencing of hybrids (CLASH), unambiguously identifies miRNAs and their targets by ligating the two species while both species are still bound within the RNA-induced silencing complex (RISC). We developed a streamlined quick CLASH (qCLASH) protocol that requires a lower cell input than the original method and therefore has the potential to be used on patient biopsy samples. Additionally, we developed a fast-growing, KSHV-negative endothelial cell line derived from telomerase-immortalized vein endothelial long-term culture (TIVE-LTC) cells. qCLASH was performed on uninfected cells and cells infected with either wild-type KSHV or a mutant virus lacking miR-K12-11/11*. More than 1,400 cellular targets of KSHV miRNAs were identified. Many of the targets identified by qCLASH lacked a canonical seed sequence match. Additionally, most target regions in mRNAs originated from the coding DNA sequence (CDS) rather than the 3' untranslated region (UTR). This set of genes includes some that were previously identified in B cells and some new genes that warrant further study. Pathway analysis of endothelial cell targets showed enrichment in cell cycle control, apoptosis, and glycolysis pathways, among others. Characterization of these new targets and the functional consequences of their repression will be important in furthering our understanding of the role of KSHV miRNAs in oncogenesis. IMPORTANCE KS lesions consist of endothelial cells latently infected with KSHV. Cells that make up these lesions express KSHV miRNAs. Identification of the targets of KSHV miRNAs will help us understand their role in viral oncogenesis. The cross-linking and sequencing of hybrids (CLASH) protocol is a method for unambiguously identifying miRNA targetomes. We developed a streamlined version of CLASH, called quick CLASH (qCLASH). qCLASH requires a lower initial input of cells than for its parent protocol. Additionally, a new fast-growing KSHV-negative endothelial cell line, named TIVE-EX-LTC cells, was established. qCLASH was performed on TIVE-EX-LTC cells latently infected with wild-type (WT) KSHV or a mutant virus lacking miR-K12-11/11*. A number of novel targets of KSHV miRNAs were identified, including targets of miR-K12-11, the ortholog of the cellular oncogenic miRNA (oncomiR) miR-155. Many of the miRNA targets were involved in processes related to oncogenesis, such as glycolysis, apoptosis, and cell cycle control. Copyright © 2018 American Society for Microbiology.
Lymphoid disorders associated with HHV-8/KSHV infection: facts and contentions.
Gaidano, G; Castaños-Velez, E; Biberfeld, P
1999-04-01
Following the demonstration in 1994, that Kaposi's sarcoma (KS) was associated with a novel virus (KSHV or HHV-8) belonging to the lymphotropic herpes family, this virus was also found in certain lymphoid neoplasias of immunodeficient (HIV+) and immune competent hosts. The association of HHV-8/KSHV infection is now well established with primary effusion lymphoma (PEL) or body cavity based lymphoma (BCBL) and multicentric Castleman's disease (MCD) of the plasma cell type. A possible pathogenic role of HHV-8/KSHV in other lymphoid tumours including primary central nervous system lymphoma (PCNSL) and multiple myeloma (MM) as well as some atypical lymphoproliferations and sarcoidosis has also been suggested, but this is at present a controversial matter, or not confirmed. Several HHV-8/KSHV genes, including potential oncogenes, genes homologous to various cellular genes and growth factors have been incriminated in the pathogenesis of KS and PEL/BCBL, but a common pathogenic mechanism for the clearly diverse proliferations represented by PEL, MCD and KS is at present not evident.
Zhang, Tiejun; Yang, Ying; Yu, Feng; Zhao, Yanping; Lin, Feifei; Minhas, Veenu; Wood, Charles; He, Na
2014-02-05
Limited information on epidemiologic patterns of KSHV, with none focusing on heterosexual transmission, is available in mainland China. To clarify this, a cross-sectional study was conducted among a group of female sex workers (FSW) and general population women (GW) in Shanghai, China. An anonymous questionnaire interview was administrated among 600 FSW and 600 GW. Blood samples were collected and tested for antibodies to KSHV, HSV-2, HIV, syphilis and HBsAg. Correlates of KSHV and HSV-2 were examined using multiple logistic regression analysis. None of the study participants were tested positive for HIV. The seroprevalence of KSHV, HSV-2 , HBV and syphilis was 10.0%, 52.2%, 12.3% and 10.5%, respectively for FSW, and was 11.0%, 15.3%, 9.8% and 2.8%, respectively for GW. KSHV seropositivity was not associated with syphilis and HSV-2 infection as well as sexual practices among either FSW or GW. Nevertheless, HSV-2 infection among FSW was independently associated with being ever married (OR = 1.59; 95%CI: 1.04-2.45), >5 years of prostitution (OR = 2.06; 95%CI: 1.16-3.68) and being syphilis positive (OR = 2.65; 95%CI: 1.43-4.93). HSV-2 infection among GW was independently associated with an age of >35 years (OR = 2.29; 95%CI: 1.07-4.93), having had more than 2 sex partners in the prior 12 months (OR = 6.44; 95%CI: 1.67-24.93) and being syphilis positive (OR = 3.94; 95%CI: 1.38-11.23). A gradual increase of prevalence with the prostitution time group was also detected for HSV-2 and syphilis, but not for KSHV. KSHV is moderately and equivalently prevalent among FSW and GW. Heterosexual contact is not a predominant route for KSHV transmission among Chinese women.
Work, Thierry M; Dagenais, Julie; Weatherby, Tina M; Balazs, George H; Ackermann, Mathias
2017-09-01
Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with chelonid herpesvirus 5 (ChHV5), which has historically been refractory to growth in tissue culture. Here we show, for the first time, de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative of active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included (i) either in vitro cultures of ChHV5-positive tumor biopsy specimens (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and (ii) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies that revealed intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegument formation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign of active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures, in which most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as a model for culture of other viruses that are resistant to replication in conventional cell culture. IMPORTANCE A major challenge in virology is the study of viruses that cannot be grown in the laboratory. One example is chelonid herpesvirus 5 (ChHV5), which is associated with fibropapillomatosis, a globally distributed, debilitating, and fatal tumor disease of endangered marine turtles. Pathological examination shows that ChHV5 is shed in skin. Here we show that ChHV5 will grow in vitro if we replicate the complex three-dimensional structure of turtle skin. Moreover, lytic virus growth requires a close interplay between fibroblasts and keratinocytes. Finally, the morphogenesis of herpesviral growth in three-dimensional cultures reveals a far richer, and likely more realistic, array of capsid morphologies than that encountered in traditional monolayer cell cultures. Our findings have applications to other viruses, including those of humans. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Richard; Heston, Lee; Shedd, Duane
ZEBRA, a transcription factor and DNA replication protein encoded by the Epstein-Barr virus (EBV) BZLF1 gene, plays indispensable roles in the EBV lytic cycle. We recently described the phenotypes of 46 single amino acid substitutions introduced into the DNA-recognition region of ZEBRA [Heston, L., El-Guindy, A., Countryman, J., Dela Cruz, C., Delecluse, H.J., and Miller, G. 2006]. The 27 DNA-binding-proficient mutants exhibited distinct defects in their ability to activate expression of the kinetic classes of viral genes. Four phenotypic variants could be discerned: wild-type, defective at activating Rta, defective at activating early genes, and defective at activating late genes. Heremore » we analyze the distribution of ZEBRA within the nucleus and the localization of EA-D (the viral DNA polymerase processivity factor), an indicator of the development of replication compartments, in representatives of each phenotypic group. Plasmids encoding wild-type (WT) and mutant ZEBRA were transfected into 293 cells containing EBV-bacmids. WT ZEBRA protein was diffusely and smoothly distributed throughout the nucleus, sparing nucleoli, and partially recruited to globular replication compartments. EA-D induced by WT ZEBRA was present diffusely in some cells and concentrated in globular replication compartments in other cells. The distribution of ZEBRA and EA-D proteins was identical to WT following transfection of K188R, a mutant with a conservative change. The distribution of S186A mutant ZEBRA protein, defective for activation of Rta and EA-D, was identical to WT, except that the mutant ZEBRA was never found in globular compartments. Co-expression of Rta with S186A mutant rescued diffuse EA-D but not globular replication compartments. The most striking observation was that several mutant ZEBRA proteins defective in activating EA-D (R179A, K181A and A185V) and defective in activating lytic viral DNA replication and late genes (Y180E and K188A) were localized to numerous punctate foci. The speckled appearance of R179A and Y180E was more regular and clearly defined in EBV-positive than in EBV-negative 293 cells. The Y180E late-mutant induced EA-D, but prevented EA-D from localizing to globular replication compartments. These results show that individual amino acids within the basic domain influence localization of the ZEBRA protein and its capacity to induce EA-D to become located in mature viral replication compartments. Furthermore, these mutant ZEBRA proteins delineate several stages in the processes of nuclear re-organization which accompany lytic EBV replication.« less
Sawtell, Nancy M; Thompson, Richard L
2016-09-01
The life long relationship between herpes simplex virus and its host hinges on the ability of the virus to aggressively replicate in epithelial cells at the site of infection and transport into the nervous system through axons innervating the infection site. Interaction between the virus and the sensory neuron represents a pivot point where largely unknown mechanisms lead to a latent or a lytic infection in the neuron. Regulation at this pivot point is critical for balancing two objectives, efficient widespread seeding of the nervous system and host survival. By combining genetic and in vivo in approaches, our studies reveal that the balance between latent and lytic programs is a process occurring early in the trigeminal ganglion. Unexpectedly, activation of the latent program precedes entry into the lytic program by 12 -14hrs. Importantly, at the individual neuronal level, the lytic program begins as a transition out of this acute stage latent program and this escape from the default latent program is regulated by de novo VP16 expression. Our findings support a model in which regulated de novo VP16 expression in the neuron mediates entry into the lytic cycle during the earliest stages of virus infection in vivo. These findings support the hypothesis that the loose association of VP16 with the viral tegument combined with sensory axon length and transport mechanisms serve to limit arrival of virion associated VP16 into neuronal nuclei favoring latency. Further, our findings point to specialized features of the VP16 promoter that control the de novo expression of VP16 in neurons and this regulation is a key component in setting the balance between lytic and latent infections in the nervous system.
Sawtell, Nancy M.; Thompson, Richard L.
2016-01-01
The life long relationship between herpes simplex virus and its host hinges on the ability of the virus to aggressively replicate in epithelial cells at the site of infection and transport into the nervous system through axons innervating the infection site. Interaction between the virus and the sensory neuron represents a pivot point where largely unknown mechanisms lead to a latent or a lytic infection in the neuron. Regulation at this pivot point is critical for balancing two objectives, efficient widespread seeding of the nervous system and host survival. By combining genetic and in vivo in approaches, our studies reveal that the balance between latent and lytic programs is a process occurring early in the trigeminal ganglion. Unexpectedly, activation of the latent program precedes entry into the lytic program by 12 -14hrs. Importantly, at the individual neuronal level, the lytic program begins as a transition out of this acute stage latent program and this escape from the default latent program is regulated by de novo VP16 expression. Our findings support a model in which regulated de novo VP16 expression in the neuron mediates entry into the lytic cycle during the earliest stages of virus infection in vivo. These findings support the hypothesis that the loose association of VP16 with the viral tegument combined with sensory axon length and transport mechanisms serve to limit arrival of virion associated VP16 into neuronal nuclei favoring latency. Further, our findings point to specialized features of the VP16 promoter that control the de novo expression of VP16 in neurons and this regulation is a key component in setting the balance between lytic and latent infections in the nervous system. PMID:27607440
Deng, Z; Chen, C J; Zerby, D; Delecluse, H J; Lieberman, P M
2001-11-01
Epstein-Barr virus (EBV) lytic cycle transcription and DNA replication require the transcriptional activation function of the viral immediate-early protein Zta. We describe a series of alanine substitution mutations in the Zta activation domain that reveal two functional motifs based on amino acid composition. Alanine substitution of single or paired hydrophobic aromatic amino acid residues resulted in modest transcription activation defects, while combining four substitutions of aromatic residues (F22/F26/W74/F75) led to more severe transcription defects. Substitution of acidic amino acid residue E27, D35, or E54 caused severe transcription defects on most viral promoters. Promoter- and cell-specific defects were observed for some substitution mutants. Aromatic residues were required for Zta interaction with TFIIA-TFIID and the CREB-binding protein (CBP) and for stimulation of CBP histone acetyltransferase activity in vitro. In contrast, acidic amino acid substitution mutants interacted with TFIIA-TFIID and CBP indistinguishably from the wild type. The nuclear domain 10 (ND10) protein SP100 was dispersed by most Zta mutants, but acidic residue mutations led to reduced, while aromatic substitution mutants led to increased SP100 nuclear staining. Acidic residue substitution mutants had more pronounced defects in transcription activation of endogenous viral genes in latently infected cells and for viral replication, as measured by the production of infectious virus. One mutant, K12/F13, was incapable of stimulating EBV lytic replication but had only modest transcription defects. These results indicate that Zta stimulates viral reactivation through two nonredundant structural motifs, one of which interacts with general transcription factors and coactivators, and the other has an essential but as yet not understood function in lytic transcription.
Hydrocortisone activation of human herpesvirus 8 viral DNA replication and gene expression in vitro.
Hudnall, S D; Rady, P L; Tyring, S K; Fish, J C
1999-03-15
Patients undergoing chronic steroid therapy for organ transplantation are at increased risk for development of human herpes virus 8(HHV-8)-associated Kaposi's sarcoma (KS). It has also been reported that following steroid withdrawal, KS lesions often undergo partial or complete regression. We have examined the effect of corticosteroid treatment on HHV-8 replication, gene expression, and lytic protein expression in BCBL-1 cells in vitro. BCBL-1 cells were collected after culture for 24-72 hr with hydrocortisone (HC) 1-5 microM, phorbol ester 20 ng/ml (positive control), and culture medium only (negative control). HHV-8 genomic conformation was examined by Gardella gel analysis. mRNA expression of viral cyclin (v-Cyc), viral Bcl-2 (v-Bcl-2), viral macrophage inflammatory protein-I (v-MIP-I), viral interferon regulatory factor-1(v-IRF-1), and viral tegument protein (TP) was examined by RT-PCR Southern blot. Viral protein expression within the cells was examined by indirect immunofluorescence using 5 different HHV-8 positive antisera from 4 renal transplant recipients and 1 patient with classic KS. Gardella gel analysis revealed that HC induced an accumulation of the linear replicative genomic form of the virus in a time-dependent fashion. Southern blot analysis of the RT-PCR products revealed that HC induced increased expression of v-IRF-1, v-Bcl-2, and TP mRNA, with little discernible effect on v-Cyc, and v-MIP-I. Immunofluorescence revealed that HC induced increased numbers of cells expressing lytic antigens. These data indicate that hydrocortisone acts directly on BCBL-1 cells to activate the lytic cycle of HHV-8 and provide further support for the hypothesis that HHV-8 is activated in corticosteroid-treated immunocompromised patients.
Ding, Xiangya; Shen, Chenyou; Hu, Minmin; Zhu, Ying; Qin, Di; Lu, Hongmei; Krueger, Brian J.; Renne, Rolf; Gao, Shou-Jiang; Lu, Chun
2016-01-01
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a gammaherpesvirus etiologically associated with KS, a highly disseminated angiogenic tumor of hyperproliferative spindle endothelial cells. KSHV encodes 25 mature microRNAs but their roles in KSHV-induced tumor dissemination and angiogenesis remain unknown. Here, we investigated KSHV-encoded miR-K12-6-3p (miR-K6-3p) promotion of endothelial cell migration and angiogenesis, which are the underlying mechanisms of tumor dissemination and angiogenesis. We found that ectopic expression of miR-K6-3p promoted endothelial cell migration and angiogenesis. Mass spectrometry, bioinformatics and luciferase reporter analyses revealed that miR-K6-3p directly targeted sequence in the 3’ untranslated region (UTR) of SH3 domain binding glutamate-rich protein (SH3BGR). Overexpression of SH3BGR reversed miR-K6-3p induction of cell migration and angiogenesis. Mechanistically, miR-K6-3p downregulated SH3BGR, hence relieved STAT3 from SH3BGR direct binding and inhibition, which was required for miR-K6-3p maximum activation of STAT3 and induction of cell migration and angiogenesis. Finally, deletion of miR-K6 from the KSHV genome abrogated its effect on the SH3BGR/STAT3 pathway, and KSHV-induced migration and angiogenesis. Our results illustrated that, by inhibiting SH3BGR, miR-K6-3p enhances cell migration and angiogenesis by activating the STAT3 pathway, and thus contributes to the dissemination and angiogenesis of KSHV-induced malignancies. PMID:27128969
Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf
2013-01-01
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645–659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies. PMID:24006441
Khajedaluee, Mohammad; Babaei, Ali; Vakili, Rosita; Valizade, Narges; Homaei Shandiz, Fateme; Alavian, Seyed Moayed; Seyed Nozadi, Mohsen; Jazayeri, Seyed Mohammad; Hassannia, Tahereh
2016-01-01
Background Prisoners are at high risk of blood borne and sexually transmitted infections due to their high involvement in risky behaviors. In this descriptive/cross-sectional study, the prevalence, sero-prevalence, and risk factors for bloodborne tumor viruses including HTLV-I, HBV, HCV, and KSHV were evaluated among inmates of two central prisons in the northeast of Iran. Methods Blood samples of 1114 inmates were analyzed for the presence of anti HTLV-I, KSHV, and HCV antibodies and HBsAg by ELISA. PCR tests were performed to confirm the presence of these viruses in plasma and identify the current infections. Results The sero-prevalence of HCV, HBV, HTLV-I, and KSHV was 24.5%, 4.2%, 3.4%, and 3.2% and the prevalence of HCV, HBV, HTLV-I, and KSHV was 19.1%, 2.1%, 2%, and 3%, respectively. HCV infection was significantly associated with history of imprisonment, tobacco consumption, alcohol consumption, intravenous drug use, length of imprisonment, and type of crime committed. Thirty one (2.8%) prisoners had HCV-KSHV co-infection, 16 (1.5%) had HCV-HTLV-I co-infection, and 14 (1.3%) had HBV-HCV co-infection. Triple co-infection was observed in seven cases and one case had four infections concomitantly. Conclusions This epidemiological study indicated different rates and transmission risks for these viruses. HCV was the most contagious viral infection and HTLV-I was the weakest in the prisoners. Apart from KSHV infection which its prevalence was as twice as in the general population, the prevalence of HBV and HTLV-I in prisoners was nearly in ranges of the general population. PMID:28123439
Cesarman, E; Chang, Y; Moore, P S; Said, J W; Knowles, D M
1995-05-04
DNA fragments that appeared to belong to an unidentified human herpesvirus were recently found in more than 90 percent of Kaposi's sarcoma lesions associated with the acquired immunodeficiency syndrome (AIDS). These fragments were also found in 6 of 39 tissue samples without Kaposi's sarcoma, including 3 malignant lymphomas, from patients with AIDS, but not in samples from patients without AIDS. We examined the DNA of 193 lymphomas from 42 patients with AIDS and 151 patients who did not have AIDS. We searched the DNA for sequences of Kaposi's sarcoma-associated herpesvirus (KSHV) by Southern blot hybridization, the polymerase chain reaction (PCR), or both. The PCR products in the positive samples were sequences and compared with the KSHV sequences in Kaposi's sarcoma tissues from patients with AIDS. KSHV sequences were identified in eight lymphomas in patients infected with the human immunodeficiency virus. All eight, and only these eight, were body-cavity-based lymphomas--that is, they were characterized by pleural, pericardial, or peritoneal lymphomatous effusions. All eight lymphomas also contained the Epstein-Barr viral genome. KSHV sequences were not found in the other 185 lymphomas. KSHV sequences were 40 to 80 times more abundant in the body-cavity-based lymphomas than in the Kaposi's sarcoma lesions. A high degree of conservation of KSHV sequences in Kaposi's sarcoma and in the eight lymphomas suggests the presence of the same agent in both lesions. The recently discovered KSHV DNA sequences occur in an unusual subgroup of AIDS-related B-cell lymphomas, but not in any other lymphoid neoplasm studied thus far. Our finding strongly suggests that a novel herpesvirus has a pathogenic role in AIDS-related body-cavity-based lymphomas.
Zhang, Shilun; Yin, Juan; Zhong, Jiang
2017-01-01
Oxidative stress, regarded as a negative effect of free radicals in vivo, takes place when organisms suffer from harmful stimuli. Some viruses can induce the release of reactive oxygen species (ROS) in infected cells, which may be closely related with their pathogenicity. In this report, chaetocin, a fungal metabolite reported to have antimicrobial and cytostatic activity, was studied for its effect on the activation of latent Epstein-Barr virus (EBV) in B95-8 cells. We found that chaetocin remarkably up-regulated EBV lytic transcription and DNA replication at a low concentration (50 nmol L -1 ). The activation of latent EBV was accompanied by an increased cellular ROS level. N-acetyl-L-cysteine (NAC), an ROS inhibitor, suppressed chaetocin-induced EBV activation. Chaetocin had little effect on histone H3K9 methylation, while NAC also significantly reduced H3K9 methylation. These results suggested that chaetocin reactivates latent EBV primarily via ROS pathways.
Ryan, Julie L; Jones, Richard J; Elmore, Sandra H; Kenney, Shannon C; Miller, George; Schroeder, Jane C; Gulley, Margaret L
2009-01-01
WZhet is a rearranged and partially deleted form of the Epstein-Barr virus (EBV) genome in which the BamH1W region becomes juxtaposed with and activates BZLF1, resulting in constitutive viral replication. We tested whether WZhet induces viral replication in epithelial cells, and we studied its prevalence in a wide range of lesional tissues arising in vivo. A quantitative real-time PCR assay targeting EBV WZhet DNA was developed to measure this recombinant form of the EBV genome. WZhet DNA was undetectable in any of 324 plasma or paraffin-embedded tissue samples from patients with EBV-associated and EBV-negative disorders. These included specimens from patients with Hodgkin or non-Hodgkin lymphoma, post-transplant lymphoproliferation, nasopharyngeal or gastric adenocarcinoma, and infectious mononucleosis. However, WZhet DNA was detected in vitro in EBV-infected AGS gastric cancer cells. Additionally, transient transfection of infected AGS gastric cancer cells showed that viral replication could be induced by a WZhet plasmid. This is the first evidence that WZhet induces the EBV lytic cycle in an epithelial cell line. Our negative findings in natural settings suggest that WZhet is a defective viral product that thrives in the absence of a host immune system but is rarely present in vivo. Copyright 2009 S. Karger AG, Basel.
Giffin, Louise; West, John A; Damania, Blossom
2015-12-08
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi's sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman's disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6's impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with the development of three human malignancies, Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. KSHV expresses many factors that enable the virus to manipulate the host environment in order to persist and induce disease. The viral interleukin-6 (vIL-6) produced by KSHV is structurally and functionally homologous to the human cytokine interleukin-6, except that vIL-6 is secreted slowly and functions primarily from inside the host cell. To investigate the unique intracellular role of vIL-6, we analyzed the impact of vIL-6 on endothelial cell gene expression. We report that vIL-6 significantly alters the expression of genes associated with cell movement, including that for CEACAM1. The gene for CEACAM1 was upregulated by vIL-6 and by latent and primary KSHV infection and promotes vIL-6-mediated endothelial cell migration. This work advances the field's understanding of vIL-6 function and its contribution to KSHV pathogenesis. Copyright © 2015 Giffin et al.
Dutta, Dipanjan; Chakraborty, Sayan; Bandyopadhyay, Chirosree; Valiya Veettil, Mohanan; Ansari, Mairaj Ahmed; Singh, Vivek Vikram; Chandran, Bala
2013-01-01
Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with human dermal endothelial cell surface tyrosine kinase EphrinA2 (EphA2) and integrins (α3β1 and αVβ3) in the lipid raft (LR) region, and EphA2 regulates macropinocytic virus entry by coordinating integrin-c-Cbl associated signaling. In contrast, KSHV enters human foreskin fibroblast (HFF) cells by LR-independent clathrin mediated endocytosis. The present studies conducted to identify the key molecules regulating KSHV entry in HFF cells showed that KSHV induces association with integrins (αVβ5, αVβ3 and α3β1) and EphA2 in non-LR regions early during infection and activates EphA2, which in turn associates with phosphorylated c-Cbl, myosin IIA, FAK, Src, and PI3-K, as well as clathrin and its adaptor AP2 and effector Epsin-15 proteins. EphA2 knockdown significantly reduced these signal inductions, virus internalization and gene expression. c-Cbl knockdown ablated the c-Cbl mediated K63 type polyubiquitination of EphA2 and clathrin association with EphA2 and KSHV. Mutations in EphA2's tyrosine kinase domain (TKD) or sterile alpha motif (SAM) abolished its interaction with c-Cbl. Mutations in tyrosine kinase binding (TKB) or RING finger (RF) domains of c-Cbl resulted in very poor association of c-Cbl with EphA2 and decreased EphA2 polyubiquitination. These studies demonstrated the contributions of these domains in EphA2 and c-Cbl association, EphA2 polyubiquitination and virus-EphA2 internalization. Collectively, these results revealed for the first time that EphA2 influences the tyrosine phosphorylation of clathrin, the role of EphA2 in clathrin mediated endocytosis of a virus, and c-Cbl mediated EphA2 polyubiquitination directing KSHV entry in HFF cells via coordinated signal induction and progression of endocytic events, all of which suggest that targeting EphA2 and c-Cbl could block KSHV entry and infection. PMID:23874206
Kaposi sarcoma herpesvirus pathogenesis
Koch, Sandra; Schulz, Thomas F.
2017-01-01
Kaposi sarcoma herpesvirus (KSHV), taxonomical name human gammaherpesvirus 8, is a phylogenetically old human virus that co-evolved with human populations, but is now only common (seroprevalence greater than 10%) in sub-Saharan Africa, around the Mediterranean Sea, parts of South America and in a few ethnic communities. KSHV causes three human malignancies, Kaposi sarcoma, primary effusion lymphoma, and many cases of the plasmablastic form of multicentric Castleman's disease (MCD) as well as occasional cases of plasmablastic lymphoma arising from MCD; it has also been linked to rare cases of bone marrow failure and hepatitis. As it has colonized humans physiologically for many thousand years, cofactors are needed to allow it to unfold its pathogenic potential. In most cases, these include immune defects of genetic, iatrogenic or infectious origin, and inflammation appears to play an important role in disease development. Our much improved understanding of its life cycle and its role in pathogenesis should now allow us to develop new therapeutic strategies directed against key viral proteins or intracellular pathways that are crucial for virus replication or persistence. Likewise, its limited (for a herpesvirus) distribution and transmission should offer an opportunity for the development and use of a vaccine to prevent transmission. This article is part of the themed issue ‘Human oncogenic viruses’. PMID:28893942
Makielski, Kathleen R.; Lee, Denis; Lorenz, Laurel D.; Nawandar, Dhananjay M.; Chiu, Ya- Fang; Kenney, Shannon C.; Lambert, Paul F.
2016-01-01
Epstein-Barr virus and human papillomaviruses are human tumor viruses that infect and replicate in upper aerodigestive tract epithelia and cause head and neck cancers. The productive phases of both viruses are tied to stratified epithelia highlighting the possibility that these viruses may affect each other’s life cycles. Our lab has established an in vitro model system to test the effects of EBV and HPV co-infection in stratified squamous oral epithelial cells. Our results indicate that HPV increases maintenance of the EBV genome in the co-infected cells and promotes lytic reactivation of EBV in upper layers of stratified epithelium. Expression of the HPV oncogenes E6 and E7 were found to be necessary and sufficient to account for HPV-mediated lytic reactivation of EBV. Our findings indicate that HPV increases the capacity of epithelial cells to support the EBV life cycle, which could in turn increase EBV-mediated pathogenesis in the oral cavity. PMID:27179345
T-cell help permits memory CD8(+) T-cell inflation during cytomegalovirus latency.
Walton, Senta M; Torti, Nicole; Mandaric, Sanja; Oxenius, Annette
2011-08-01
CD4(+) T cells are implied to sustain CD8(+) T-cell responses during persistent infections. As CD4(+) T cells are often themselves antiviral effectors, they might shape CD8(+) T-cell responses via help or via controlling antigen load. We used persistent murine CMV (MCMV) infection to dissect the impact of CD4(+) T cells on virus-specific CD8(+) T cells, distinguishing between increased viral load in the absence of CD4(+) T cells and CD4(+) T-cell-mediated helper mechanisms. Absence of T-helper cells was associated with sustained lytic MCMV replication and led to a slow and gradual reduction of the size and function of the MCMV-specific CD8(+) T-cell pool. However, when virus replication was controlled in the absence of CD4(+) T cells, CD8(+) T-cell function was comparably impaired, but in addition CD8(+) T-cell inflation, a hallmark of CMV infection, was completely abolished. Thus, CD8(+) T-cell inflation during latent CMV infection is strongly dependent on CD4(+) T-cell helper functions, which can partially be compensated by ongoing lytic viral replication in the absence of CD4(+) T cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Treating KSHV-Associated Multicentric Castleman Disease
In this study, patients with KSHV-associated multicentric Castleman disease will receive IV tocilizumab every other week for up to 12 weeks. Patients who do not benefit may go on to receive high-dose AZT and valganciclovir as well.
Establishment of an ELISA to detect Kaposi's sarcoma-associated herpesvirus using recombinant ORF73.
Ouyang, Xin-xing; Fu, Bi-shi; Li, Bao-lin; Zeng, Yan; Xu, Fan-hong; Wang, Lin-ding
2010-06-01
Kaposi's sarcoma-associated herpesvirus (KSHV) is causally related to Kaposi's sarcoma (KS), primary effusion lymphoma (PEL) and a proportion of cases of multicentric Castleman's disease (MCD). The ORF73 protein was cloned into pQE80L-orf73 and expressed in E.coli and purified. The expressed recombinant ORF73 was identified by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE). A protein of about 27 kDa was expressed as expected. Western Blotting showed that the purified recombinant ORF73 reacted with KSHV positive serum. The immunogenicity of the recombinant ORF73 was further analysed by ELISA and the optimal conditions were determined. The ORF73 ELISA was used to compare the KSHV seroprevalence between Hubei and Xinjiang Han people. The Han people in Xinjiang have significantly higher KSHV seroprevalence than their counterparts in Hubei (6.7% vs 2.9%, P = 0.005).
Paul, Arun George; Chandran, Bala; Sharma-Walia, Neelam
2014-01-01
The effective anti-tumorigenic potential of non-steroidal anti-inflammatory drugs (NSAIDs) and eicosonoid (EP; EP1–4) receptor antagonists prompted us to test their efficacy in Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) related lymphomas. Our study demonstrated that (1) EP1–4 receptor protein levels vary among the various non-Hodgkin’s lymphoma (NHL) cell lines tested (BCBL-1:KSHV+/EBV−;BC-3: KSHV+/EBV−; Akata/EBV+: KSHV−/EBV+; and JSC-1 cells: KSHV+/EBV+ cells); (2) 5.0 µM of EP1 antagonist (SC-51322) had a significant anti-proliferative effect on BCBL-1, BC-3, Akata/EBV+, and JSC-1 cells; (3) 50.0 µM of EP2 antagonist (AH6809) was required to induce a significant anti-proliferative effect on BCBL-1, Akata/EBV+, and JSC-1 cells; (4) 5.0 µM of EP4 antagonist (GW 627368X) had a significant anti-proliferative effect on BC-3, Akata/EBV+, and JSC-1 cells; (5) COX-2 selective inhibitor celecoxib (5.0µM) had significant anti-proliferative effects on BCBL-1, BC-3, Akata/EBV+, and JSC-1 cells; and (6) a combination of 1.0µM each of celecoxib, SC-51322 and GW 627368X could potentiate the pro-apoptotic properties of celecoxib or vice-versa. Overall, our studies identified the synergistic anti-proliferative effect of NSAIDs and EP receptor blockers on KSHV and EBV related B cell malignancies. PMID:23523954
Fujimuro, Masahiro; Nakaso, Kazuhiro; Nakashima, Kenji; Sadanari, Hidetaka; Hisanori, Inoue; Teishikata, Yasuhiro; Hayward, S Diane; Yokosawa, Hideyoshi
2006-04-01
Human lymphotropic herpesviruses, Epstein-Barr virus (EBV), cytomegalovirus (CMV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are responsible for a wide variety of human diseases. Due to an increase in diseased states associated with immunosuppression, more instances of co-morbid infections with these herpesviruses have resulted in viral reactivations that have caused numerous fatalities. Therefore, the development of rapid and accurate method to detect these viruses in immunocompromised patients is vital for immediate treatment with antiviral prophylactic drugs. In this study, we developed a new multiplex PCR method coupled to DNA array hybridization, which can simultaneously detect all three human herpesviruses in one single cell sample. Multiplex PCR primers were designed to amplify specific regions of the EBV (EBER1), CMV (IE) and KSHV (LANA) viral genomes. Pre-clinical application of this method revealed that this approach is capable of detecting as few as 1 copy of the viral genomes for KSHV and CMV and 100 copies of the genome for EBV. Furthermore, this highly sensitive test showed no cross-reactivity among the three viruses and is capable of detecting both KSHV and EBV viral genomes simultaneously in the lymphoblastoid cells that have been double infected with both viruses. Thus, this array-based approach serves as a rapid and reliable diagnostic tool for clinical applications.
Chang, Ting-Yu; Wu, Yu-Hsuan; Cheng, Cheng-Chung; Wang, Hsei-Wei
2011-09-01
Alternative RNA splicing greatly increases proteome diversity, and the possibility of studying genome-wide alternative splicing (AS) events becomes available with the advent of high-throughput genomics tools devoted to this issue. Kaposi's sarcoma associated herpesvirus (KSHV) is the etiological agent of KS, a tumor of lymphatic endothelial cell (LEC) lineage, but little is known about the AS variations induced by KSHV. We analyzed KSHV-controlled AS using high-density microarrays capable of detecting all exons in the human genome. Splicing variants and altered exon-intron usage in infected LEC were found, and these correlated with protein domain modification. The different 3'-UTR used in new transcripts also help isoforms to escape microRNA-mediated surveillance. Exome-level analysis further revealed information that cannot be disclosed using classical gene-level profiling: a significant exon usage difference existed between LEC and CD34(+) precursor cells, and KSHV infection resulted in LEC-to-precursor, dedifferentiation-like exon level reprogramming. Our results demonstrate the application of exon arrays in systems biology research, and suggest the regulatory effects of AS in endothelial cells are far more complex than previously observed. This extra layer of molecular diversity helps to account for various aspects of endothelial biology, KSHV life cycle and disease pathogenesis that until now have been unexplored.
Hogan, Chad H.; Oldenburg, Darby G.; Kara, Mehmet
2018-01-01
Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host. PMID:29390024
Van Skike, Nick D; Minkah, Nana K; Hogan, Chad H; Wu, Gary; Benziger, Peter T; Oldenburg, Darby G; Kara, Mehmet; Kim-Holzapfel, Deborah M; White, Douglas W; Tibbetts, Scott A; French, Jarrod B; Krug, Laurie T
2018-02-01
Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host.
Analysis of JC virus DNA replication using a quantitative and high-throughput assay
Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.
2015-01-01
Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200
Marquez, Victor E; Hughes, Stephen H; Sei, Shizuko; Agbaria, Riad
2006-09-01
Conformationally locked (North)-methanocarbathymidine (N-MCT) and (South)-methanocarbathymidine (S-MCT) have been used to investigate the conformational preferences of kinases and polymerases. The herpes kinases show a distinct bias for S-MCT, while DNA polymerases almost exclusively incorporate the North 5'-triphosphate (N-MCT-TP). Only N-MCT demonstrated potent antiviral activity against herpes simplex viruses (HSV-1 and 2) and Kaposi's sarcoma-associated herpesvirus (KSHV). The activity of N-MCT depends on its metabolic transformation to N-MCT-TP by the herpes kinases (HSV-tk or KSHV-tk), which catalyze the mono and diphosphorylation steps; cellular kinases generate the triphosphate. N-MCT at a dose of 5.6 mg/kg was totally protective for mice inoculated intranasally with HSV-1. Tumor cells that are not responsive to antiviral therapy became sensitive to N-MCT if the cells expressed HSV-tk. N-MCT given twice daily (100 mg/kg) for 7 days completely inhibited the growth of MC38 tumors derived from cells that express HSV-tk in mice while exhibiting no effect on tumors derived from non-transduced cells. After i.p. administration, N-MCT was rapidly absorbed and distributed in all organs examined with slow penetration into brain and testes. N-MCT-TP was also a potent inhibitor of HIV replication in human osteosarcoma (HOS) cells expressing HSV-tk.
A viral microRNA functions as an ortholog of cellular miR-155
Gottwein, Eva; Mukherjee, Neelanjan; Sachse, Christoph; Frenzel, Corina; Majoros, William H.; Chi, Jen-Tsan A.; Braich, Ravi; Manoharan, Muthiah; Soutschek, Jürgen; Ohler, Uwe; Cullen, Bryan R.
2008-01-01
All metazoan eukaryotes express microRNAs (miRNAs), ∼22 nt regulatory RNAs that can repress the expression of mRNAs bearing complementary sequences1. Several DNA viruses also express miRNAs in infected cells, suggesting a role in viral replication and pathogenesis2. While specific viral miRNAs have been shown to autoregulate viral mRNAs3,4 or downregulate cellular mRNAs5,6, the function of the majority of viral miRNAs remains unknown. Here, we report that the miR-K12−11 miRNA encoded by Kaposi's Sarcoma Associated Herpesvirus (KSHV) shows significant homology to cellular miR-155, including the entire miRNA “seed” region7. Using a range of assays, we demonstrate that expression of physiological levels of miR-K12−11 or miR-155 results in the downregulation of an extensive set of common mRNA targets, including genes with known roles in cell growth regulation. Our findings indicate that viral miR-K12−11 functions as an ortholog of cellular miR-155 and has likely evolved to exploit a pre-existing gene regulatory pathway in B-cells. Moreover, the known etiological role of miR-155 in B-cell transformation8-10 suggests that miR-K12−11 may contribute to the induction of KSHV-positive B-cell tumors in infected patients. PMID:18075594
Detection of Kaposi's Sarcoma Associated Herpesvirus Nucleic Acids Using a Smartphone Accessory
Mancuso, Matthew; Cesarman, Ethel; Erickson, David
2014-01-01
Kaposi's sarcoma (KS) is an infectious cancer occurring in immune-compromised patients, caused by Kaposi's sarcoma associated herpesvirus (KSHV). Our vision is to simplify the process of KS diagnosis through the creation of a smartphone based point-of-care system capable of yielding an actionable diagnostic readout starting from a raw biopsy sample. In this work we develop the sensing mechanism for the overall system, a smartphone accessory capable of detecting KSHV nucleic acids. The accessory reads out microfluidic chips filled with a colorimetric nanoparticle assay targeted at KSHV. We calculate that our final device can read out gold nanoparticle solutions with an accuracy of .05 OD, and we demonstrate that it can detect DNA sequences from KSHV down to 1 nM. We believe that through integration with our previously developed components, a smartphone based system like the one studied here can provide accurate detection information, as well as a simple platform for field based clinical diagnosis and research. PMID:25117534
Sethuraman, Sunantha; Thomas, Merin; Gay, Lauren A; Renne, Rolf
2018-05-29
Ribonomics experiments involving crosslinking and immuno-precipitation (CLIP) of Ago proteins have expanded the understanding of the miRNA targetome of several organisms. These techniques, collectively referred to as CLIP-seq, have been applied to identifying the mRNA targets of miRNAs expressed by Kaposi's Sarcoma-associated herpes virus (KSHV) and Epstein-Barr virus (EBV). However, these studies focused on identifying only those RNA targets of KSHV and EBV miRNAs that are known to encode proteins. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are also targeted by miRNAs. In this study, we performed a systematic re-analysis of published datasets from KSHV- and EBV-driven cancers. We used CLIP-seq data from lymphoma cells or EBV-transformed B cells, and a crosslinking, ligation and sequencing of hybrids dataset from KSHV-infected endothelial cells, to identify novel lncRNA targets of viral miRNAs. Here, we catalog the lncRNA targetome of KSHV and EBV miRNAs, and provide a detailed in silico analysis of lncRNA-miRNA binding interactions. Viral miRNAs target several hundred lncRNAs, including a subset previously shown to be aberrantly expressed in human malignancies. In addition, we identified thousands of lncRNAs to be putative targets of human miRNAs, suggesting that miRNA-lncRNA interactions broadly contribute to the regulation of gene expression.
Lin, Zhen; Swan, Kenneth; Zhang, Xin; Cao, Subing; Brett, Zoe; Drury, Stacy; Fewell, Claire; Puetter, Adriane; Wang, Xia; Ferris, MaryBeth; Sullivan, Deborah E.; Li, Li
2016-01-01
ABSTRACT In the oral epithelium, peripheral stores of Epstein-Barr virus (EBV) are transmitted from infiltrating B cells to epithelial cells. Once the virus is transmitted to epithelial cells, the highly permissive nature of this cell type for lytic replication allows virus amplification and exchange to other hosts. Since the initial transfer of EBV from B cells to epithelial cells requires transitioning of the B-cell to a state that induces virus reactivation, we hypothesized that there might be epithelium-specific signals that allow the infiltrating B cells to sense the appropriate environment to initiate reactivation and begin this exchange process. We previously found that the epithelium-specific miR-200 family of microRNAs promotes EBV lytic replication. Here we show that there are high levels of miR-200 family members in oral and tonsillar epithelia and in saliva. Analysis of cultured oral epithelial cells (OKF6) showed that they actively secrete membrane vesicles (exosomes) that are enriched with miR-200 family members. Coculturing of EBV-positive B cells with OKF6 cells induced viral reactivation. Further, treatment of EBV-positive B cells with OKF6 cell-derived membrane vesicles promoted reactivation. Using a cell system that does not naturally express miR-200 family members, we found that enforced expression of a miR-200 family member produced membrane vesicles that were able to induce the lytic cascade in EBV-positive B cells. We propose that membrane vesicles secreted by oral and tonsillar epithelial cells may serve as a tissue-specific environmental cue that initiates reactivation in B cells, promoting the transfer of virus from peripheral B-cell stores to the oral epithelium to facilitate virus amplification and exchange to other hosts. IMPORTANCE Epstein-Barr virus (EBV) is an important human pathogen that is causally associated with several lymphomas and carcinomas. The switch from latency to the lytic cycle is critical for successful host infection and for EBV pathogenesis. Although the EBV lytic cycle can be triggered by certain agents in vitro, the mechanisms that signal reactivation in vivo are poorly understood. We previously reported that endogenously expressed miR-200 family members likely play a role in facilitating the lytic tendencies of EBV in epithelial cells. Here we show that membrane vesicles secreted from oral epithelial cells contain miR-200 family members and that they can be transmitted to proximal EBV-positive B cells, where they trigger reactivation. We propose that this intercellular communication pathway may serve as a sensor mechanism for infiltrating B cells to recognize an appropriate environment to initiate reactivation, thereby allowing the exchange of virus to the oral epithelium. PMID:26764001
Epstein-Barr Virus BKRF4 Gene Product Is Required for Efficient Progeny Production.
Masud, H M Abdullah Al; Watanabe, Takahiro; Yoshida, Masahiro; Sato, Yoshitaka; Goshima, Fumi; Kimura, Hiroshi; Murata, Takayuki
2017-12-01
Epstein-Barr virus (EBV), a member of human gammaherpesvirus, infects mainly B cells. EBV has two alternative life cycles, latent and lytic, and is reactivated occasionally from the latent stage to the lytic cycle. To combat EBV-associated disorders, understanding the molecular mechanisms of the EBV lytic replication cycle is also important. Here, we focused on an EBV lytic gene, BKRF4. Using our anti-BKRF4 antibody, we revealed that the BKRF4 gene product is expressed during the lytic cycle with late kinetics. To characterize the role of BKRF4, we constructed BKRF4-knockout mutants using the bacterial artificial chromosome (BAC) and CRISPR/Cas9 systems. Although disruption of the BKRF4 gene had almost no effect on viral protein expression and DNA synthesis, it significantly decreased progeny virion levels in HEK293 and Akata cells. Furthermore, we show that BKRF4 is involved not only in production of progeny virions but also in increasing the infectivity of the virus particles. Immunoprecipitation assays revealed that BKRF4 interacted with a virion protein, BGLF2. We showed that the C-terminal region of BKRF4 was critical for this interaction and for efficient progeny production. Immunofluorescence analysis revealed that BKRF4 partially colocalized with BGLF2 in the nucleus and perinuclear region. Finally, we showed that BKRF4 is a phosphorylated, possible tegument protein and that the EBV protein kinase BGLF4 may be important for this phosphorylation. Taken together, our data suggest that BKRF4 is involved in the production of infectious virions. IMPORTANCE Although the latent genes of EBV have been studied extensively, the lytic genes are less well characterized. This study focused on one such lytic gene, BKRF4, which is conserved only among gammaherpesviruses (ORF45 of Kaposi's sarcoma-associated herpesvirus or murine herpesvirus 68). After preparing the BKRF4 knockout virus using B95-8 EBV-BAC, we demonstrated that the BKRF4 gene was involved in infectious progeny particle production. Importantly, we successfully generated a BKRF4 knockout virus of Akata using CRISPR/Cas9 technology, confirming the phenotype in this separate strain. We further showed that BKRF4 interacted with another virion protein, BGLF2, and demonstrated the importance of this interaction in infectious virion production. These results shed light on the elusive process of EBV progeny maturation in the lytic cycle. Notably, this study describes a successful example of the generation and characterization of an EBV construct with a disrupted lytic gene using CRISPR/Cas9 technology. Copyright © 2017 American Society for Microbiology.
Kaposi's Sarcoma-Associated Herpesvirus | Center for Cancer Research
The discovery of KSHV in 1994 was a historical landmark in tumor virology and human cancer research. KSHV's subsequent identification as a cause of Kaposi sarcoma and its association with primary effusion lymphoma and multicentric Castleman disease soon attracted the attention of hundreds of research laboratories and motivated thousands of virologists and oncologists to switch
Stress-induced reactivation of Epstein-Barr virus in astronauts
NASA Technical Reports Server (NTRS)
Stowe, R. P.; Pierson, D. L.; Feeback, D. L.; Barrett, A. D.
2000-01-01
Herpesviruses are leading causes of infectious blindness and death in immunocompromised individuals. Impaired cellular immunity, which is known to result in increased frequency and severity of herpesvirus infections, has been demonstrated both during and after spaceflight. Therefore, we examined whether Epstein-Barr virus (EBV), a well-characterized latent herpesvirus, undergoes reactivation in astronauts. Sera from Shuttle astronauts, taken before and after spaceflight, were examined for evidence of EBV reactivation. The geometric mean antibody titer to EBV viral capsid antigen (VCA) was significantly increased prior to flight compared to baseline (p = 0. 0001). After spaceflight, evidence of acute lytic replication was found in which 8- to 64-fold increases in EBV early antigen (EA) antibodies occurred without significant increases in antibodies to measles virus. Additionally, stress-induced shifts in circulating leukocytes and elevated levels of urinary cortisol and epinephrine were found. Overall, significant increases in EA or high VCA/EA antibody titers were found in 8 of 23 (35%) male astronauts and 3 of 5 (60%) female astronauts. These results indicate that stress reactivates EBV prior to flight and suggest that acute lytic replication of EBV occurs during spaceflight. Copyright 2000 S. Karger AG, Basel.
Bencun, Maja; Klinke, Olaf; Hotz-Wagenblatt, Agnes; Klaus, Severina; Tsai, Ming-Han; Poirey, Remy; Delecluse, Henri-Jacques
2018-04-06
The Epstein-Barr virus (EBV) genome encodes several hundred transcripts. We have used ribosome profiling to characterize viral translation in infected cells and map new translation initiation sites. We show here that EBV transcripts are translated with highly variable efficiency, owing to variable transcription and translation rates, variable ribosome recruitment to the leader region and coverage by monosomes versus polysomes. Some transcripts were hardly translated, others mainly carried monosomes, showed ribosome accumulation in leader regions and most likely represent non-coding RNAs. A similar process was visible for a subset of lytic genes including the key transactivators BZLF1 and BRLF1 in cells infected with weakly replicating EBV strains. This suggests that ribosome trapping, particularly in the leader region, represents a new checkpoint for the repression of lytic replication. We could identify 25 upstream open reading frames (uORFs) located upstream of coding transcripts that displayed 5' leader ribosome trapping, six of which were located in the leader region shared by many latent transcripts. These uORFs repressed viral translation and are likely to play an important role in the regulation of EBV translation.
Bruce, A. Gregory; Horst, Jeremy A.; Rose, Timothy M.
2016-01-01
The envelope-associated glycoprotein B (gB) is highly conserved within the Herpesviridae and plays a critical role in viral entry. We analyzed the evolutionary conservation of sequence and structural motifs within the Kaposi’s sarcoma-associated herpesvirus (KSHV) gB and homologs of Old World primate rhadinoviruses belonging to the distinct RV1 and RV2 rhadinovirus lineages. In addition to gB homologs of rhadinoviruses infecting the pig-tailed and rhesus macaques, we cloned and sequenced gB homologs of RV1 and RV2 rhadinoviruses infecting chimpanzees. A structural model of the KSHV gB was determined, and functional motifs and sequence variants were mapped to the model structure. Conserved domains and motifs were identified, including an “RGD” motif that plays a critical role in KSHV binding and entry through the cellular integrin αVβ3. The RGD motif was only detected in RV1 rhadinoviruses suggesting an important difference in cell tropism between the two rhadinovirus lineages. PMID:27070755
COX-2/PGE2: molecular ambassadors of Kaposi's sarcoma-associated herpes virus oncoprotein-v-FLIP
Sharma-Walia, N; Patel, K; Chandran, K; Marginean, A; Bottero, V; Kerur, N; Paul, A G
2012-01-01
Kaposi's sarcoma herpesvirus (KSHV) latent oncoprotein viral FLICE (FADD-like interferon converting enzyme)-like inhibitory protein (v-FLIP) or K13, a potent activator of NF-κB, has well-established roles in KSHV latency and oncogenesis. KSHV-induced COX-2 represents a novel strategy employed by KSHV to promote latency and inflammation/angiogenesis/invasion. Here, we demonstrate that v-FLIP/K13 promotes tumorigenic effects via the induction of host protein COX-2 and its inflammatory metabolite PGE2 in an NF-κB-dependent manner. In addition to our previous studies demonstrating COX-2/PGE2's role in transcriptional regulation of KSHV latency promoter and latent gene expression, the current study adds to the complexity that though LANA-1 (latency associated nuclear antigen) is utilizing COX-2/PGE2 as critical factors for its transcriptional regulation, it is the v-FLIP/K13 gene in the KSHV latency cluster that maintains continuous COX-2/PGE2 levels in the infected cells. We demonstrate that COX-2 inhibition, via its chemical inhibitors (NS-398 or celecoxib), reduced v-FLIP/K13-mediated NF-κB induction, and extracellular matrix (ECM) interaction-mediated signaling, mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) levels, and subsequently downregulated detachment-induced apoptosis (anoikis) resistance. vFLIP expression mediated the secretion of cytokines, and spindle cell differentiation activated the phosphorylation of p38, RSK, FAK, Src, Akt and Rac1-GTPase. The COX-2 inhibition in v-FLIP/K13-HMVECs reduced inflammation and invasion/metastasis-related genes, along with reduced anchorage-independent colony formation via modulating ‘extrinsic' as well as ‘intrinsic' cell death pathways. COX-2 blockade in v-FLIP/K13-HMVEC cells drastically augmented cell death induced by removal of essential growth/survival factors secreted in the microenvironment. Transformed cells obtained from anchorage-independent colonies of COX-2 inhibitor-treated v-FLIP/K13-HMVEC cells expressed lower levels of endothelial–mesenchymal transition genes such as slug, snail and twist, and higher expression of the tumor-suppressor gene, E-cadherin. Taken together, our study provides strong evidences that FDA-approved COX-2 inhibitors have great potential in blocking tumorigenic events linked to KSHV's oncogenic protein v-FLIP/K13. PMID:23552603
Viral MicroRNAs Repress the Cholesterol Pathway, and 25-Hydroxycholesterol Inhibits Infection.
Serquiña, Anna K P; Kambach, Diane M; Sarker, Ontara; Ziegelbauer, Joseph M
2017-07-11
From various screens, we found that Kaposi's sarcoma-associated herpesvirus (KSHV) viral microRNAs (miRNAs) target several enzymes in the mevalonate/cholesterol pathway. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR [a rate-limiting step in the mevalonate pathway]), and farnesyl-diphosphate farnesyltransferase 1 (FDFT1 [a committed step in the cholesterol branch]) are repressed by multiple KSHV miRNAs. Transfection of viral miRNA mimics in primary endothelial cells (human umbilical vein endothelial cells [HUVECs]) is sufficient to reduce intracellular cholesterol levels; however, small interfering RNAs (siRNAs) targeting only HMGCS1 did not reduce cholesterol levels. This suggests that multiple targets are needed to perturb this tightly regulated pathway. We also report here that cholesterol levels were decreased in de novo -infected HUVECs after 7 days. This reduction is at least partially due to viral miRNAs, since the mutant form of KSHV lacking 10 of the 12 miRNA genes had increased cholesterol compared to wild-type infections. We hypothesized that KSHV is downregulating cholesterol to suppress the antiviral response by a modified form of cholesterol, 25-hydroxycholesterol (25HC). We found that the cholesterol 25-hydroxylase (CH25H) gene, which is responsible for generating 25HC, had increased expression in de novo -infected HUVECs but was strongly suppressed in long-term latently infected cell lines. We found that 25HC inhibits KSHV infection when added exogenously prior to de novo infection. In conclusion, we found that multiple KSHV viral miRNAs target enzymes in the mevalonate pathway to modulate cholesterol in infected cells during latency. This repression of cholesterol levels could potentially be beneficial to viral infection by decreasing the levels of 25HC. IMPORTANCE A subset of viruses express unique microRNAs (miRNAs), which act like cellular miRNAs to generally repress host gene expression. A cancer virus, Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8 [HHV-8]), encodes multiple miRNAs that repress gene expression of multiple enzymes that are important for cholesterol synthesis. In cells with these viral miRNAs or with natural infection, cholesterol levels are reduced, indicating these viral miRNAs decrease cholesterol levels. A modified form of cholesterol, 25-hydroxycholesterol, is generated directly from cholesterol. Addition of 25-hydroxycholesterol to primary cells inhibited KSHV infection of cells, suggesting that viral miRNAs may decrease cholesterol levels to decrease the concentration of 25-hydroxycholesterol and to promote infection. These results suggest a new virus-host relationship and indicate a previously unidentified viral strategy to lower cholesterol levels. Copyright © 2017 Serquiña et al.
KAPOSI’S SARCOMA–ASSOCIATED HERPESVIRUS IMMUNOEVASION AND TUMORIGENESIS: TWO SIDES OF THE SAME COIN?
Moore, Patrick S.; Chang, Yuan
2013-01-01
Kaposi’s sarcoma–associated herpesvirus (KSHV) [or human herpesvirus 8 (HHV-8)] is the most frequent cause of malignancy among AIDS patients. KSHV and related herpesviruses have extensively pirated cellular cDNAs from the host genome, providing a unique opportunity to examine the range of viral mechanisms for controlling cell proliferation. Many of the viral regulatory homologs encode proteins that directly inhibit host adaptive and innate immunity. Other viral proteins target retinoblastoma protein and p53 control of tumor suppressor pathways, which also play key effector roles in intracellular immune responses. The immune evasion strategies employed by KSHV, by targeting tumor suppressor pathways activated during immune system signaling, may lead to inadvertent cell proliferation and tumorigenesis in susceptible hosts. PMID:14527293
Fang, Qiwen; Liu, Zhenqiu; Zhang, Zhijie; Zeng, Yan; Zhang, Tiejun
2017-10-01
Intravenous drug users (IDUs) have been demonstrated to be highly vulnerable to HIV/AIDS. Nevertheless, the prevalence of Kaposi's sarcoma associated herpesvirus (KSHV), an important co-infected agent with HIV, among this population remained obscure. We conducted a systematic review on the epidemiological features of KSHV among IDUs worldwide. Eligible studies were retrieved from 6 electronic databases (PubMed, EMBASE, Web of Science, CBM, CNKI and Wanfang). We calculated the pooled prevalence and 95% confidence interval (CI) overall and among subgroups using either random-effects model or fixed-effects model depending on between-study heterogeneity. The potential publication bias was assessed by the Egger's test. A meta-regression analysis was performed to explore the sources of heterogeneity. Finally, twenty-two studies with a total sample of 7881 IDUs were included in the analysis. The pooled prevalence of KSHV was 14.71% (95% CI 11.12%-19.46%) among IDUs. Specifically, KSHV prevalence was 10.86% (95% CI 6.95%-16.96%) in HIV-negative IDUs, and 13.56% (95% CI 10.57%-17.38%) in HIV-positive IDUs. Moreover, prevalence among IDUs from the three continents involved in the current study was similar: 16.10% (95%CI 7.73%-33.54%) in Asia; 14.22% (95%CI 8.96%-22.57%) in Europe and 14.06% (95%CI 11.38%-17.37%) in America. Globally, IDUs are at higher risk of the KSHV infection when compared with the general population, regardless of geographical region or HIV-infection status.
Lin, Xiaochen; Tsai, Ming-Han; Shumilov, Anatoliy; Poirey, Remy; Bannert, Helmut; Middeldorp, Jaap M.; Feederle, Regina; Delecluse, Henri-Jacques
2015-01-01
The Epstein-Barr virus (EBV) is a B lymphotropic virus that infects the majority of the human population. All EBV strains transform B lymphocytes, but some strains, such as M81, also induce spontaneous virus replication. EBV encodes 22 microRNAs (miRNAs) that form a cluster within the BART region of the virus and have been previously been found to stimulate tumor cell growth. Here we describe their functions in B cells infected by M81. We found that the BART miRNAs are downregulated in replicating cells, and that exposure of B cells in vitro or in vivo in humanized mice to a BART miRNA knockout virus resulted in an increased proportion of spontaneously replicating cells, relative to wild type virus. The BART miRNAs subcluster 1, and to a lesser extent subcluster 2, prevented expression of BZLF1, the key protein for initiation of lytic replication. Thus, multiple BART miRNAs cooperate to repress lytic replication. The BART miRNAs also downregulated pro- and anti-apoptotic mediators such as caspase 3 and LMP1, and their deletion did not sensitize B-cells to apoptosis. To the contrary, the majority of humanized mice infected with the BART miRNA knockout mutant developed tumors more rapidly, probably due to enhanced LMP1 expression, although deletion of the BART miRNAs did not modify the virus transforming abilities in vitro. This ability to slow cell growth could be confirmed in non-humanized immunocompromized mice. Injection of resting B cells exposed to a virus that lacks the BART miRNAs resulted in accelerated tumor growth, relative to wild type controls. Therefore, we found that the M81 BART miRNAs do not enhance B-cell tumorigenesis but rather repress it. The repressive effects of the BART miRNAs on potentially pathogenic viral functions in infected B cells are likely to facilitate long-term persistence of the virus in the infected host. PMID:26694854
Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications.
Advani, S J; Weichselbaum, R R; Whitley, R J; Roizman, B
2002-09-01
Herpes simplex virus-1 (HSV-1) is a relatively large double-stranded DNA virus encoding at least 89 proteins with well characterized disease pathology. An understanding of the functions of viral proteins together with the ability to genetically engineer specific viral mutants has led to the development of attenuated HSV-1 for gene therapy. This review highlights the progress in creating attenuated genetically engineered HSV-1 mutants that are either replication competent (viral non-essential gene deleted) or replication defective (viral essential gene deleted). The choice between a replication-competent or -defective virus is based on the end-goal of the therapeutic intervention. Replication-competent HSV-1 mutants have primarily been employed as antitumor oncolytic viruses, with the lytic nature of the virus harnessed to destroy tumor cells selectively. In replacement gene therapy, replication-defective viruses have been utilized as delivery vectors. The advantages of HSV-1 vectors are that they infect quiescent and dividing cells efficiently and can encode for relatively large transgenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Tadashi; Nakamura, Shigeo; Ono, Toshiya
Highlights: • Seven fullerenes were evaluated in terms of their cytotoxic effects on B-lymphomas. • Pyrrolidinium fullerene induced apoptosis of KSHV-infected B-lymphoma PEL cells. • The activation of Akt is essential for PEL cell survival. • Pyrrolidinium fullerene activated caspase-9 by inactivating Akt in PEL cells. • Pyrrolidinium fullerene have potential as novel drugs for the treatment of PEL. - Abstract: Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected withmore » KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated whether pyrrolidinium fullerene in combination with the HSP90 inhibitor (geldanamycin; GA) or valproate, potentiated the cytotoxic effects on PEL cells. Compared to treatment with pyrrolidinium fullerene alone, the addition of low-concentration GA or valproate enhanced the cytotoxic activity of pyrrolidinium fullerene. These results indicate that pyrrolidinium fullerene could be used as a novel therapy for the treatment of PEL.« less
Dyson, Ossie F.; Pagano, Joseph S.
2017-01-01
ABSTRACT Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication. IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and lymphomas that develop in organ transplant recipients. Cellular DNA damage is a major determinant in the establishment of oncogenic processes and is well studied, but there are few studies of endogenous repair of viral DNA. This work evaluates how EBV's BPLF1 protein and its conserved deubiquitinating activity regulate the cellular DNA repair enzyme polymerase eta and recruit it to potential sites of viral damage and replication, resulting in enhanced production of infectious virus. These findings help to establish how EBV enlists and manipulates cellular DNA repair factors during the viral lytic cycle, contributing to efficient infectious virion production. PMID:28724765
Dyson, Ossie F; Pagano, Joseph S; Whitehurst, Christopher B
2017-10-01
Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae ; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication. IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and lymphomas that develop in organ transplant recipients. Cellular DNA damage is a major determinant in the establishment of oncogenic processes and is well studied, but there are few studies of endogenous repair of viral DNA. This work evaluates how EBV's BPLF1 protein and its conserved deubiquitinating activity regulate the cellular DNA repair enzyme polymerase eta and recruit it to potential sites of viral damage and replication, resulting in enhanced production of infectious virus. These findings help to establish how EBV enlists and manipulates cellular DNA repair factors during the viral lytic cycle, contributing to efficient infectious virion production. Copyright © 2017 American Society for Microbiology.
Vesicular Egress of Non-Enveloped Lytic Parvoviruses Depends on Gelsolin Functioning
Bär, Séverine; Daeffler, Laurent; Rommelaere, Jean; Nüesch, Jürg P. F.
2008-01-01
The autonomous parvovirus Minute Virus of Mice (MVM) induces specific changes in the cytoskeleton filaments of infected permissive cells, causing in particular the degradation of actin fibers and the generation of “actin patches.” This is attributed to a virus-induced imbalance between the polymerization factor N-WASP (Wiscott-Aldrich syndrome protein) and gelsolin, a multifunctional protein cleaving actin filaments. Here, the focus is on the involvement of gelsolin in parvovirus propagation and virus-induced actin processing. Gelsolin activity was knocked-down, and consequences thereof were determined for virus replication and egress and for actin network integrity. Though not required for virus replication or progeny particle assembly, gelsolin was found to control MVM (and related H1-PV) transport from the nucleus to the cell periphery and release into the culture medium. Gelsolin-dependent actin degradation and progeny virus release were both controlled by (NS1)/CKIIα, a recently identified complex between a cellular protein kinase and a MVM non-structural protein. Furthermore, the export of newly synthesized virions through the cytoplasm appeared to be mediated by (virus-modified) lysomal/late endosomal vesicles. By showing that MVM release, like entry, is guided by the cytoskeleton and mediated by vesicles, these results challenge the current view that egress of non-enveloped lytic viruses is a passive process. PMID:18704167
Kim, Hyoji; Choi, Hoyun
2015-01-01
ABSTRACT Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with a variety of tumor types. EBV can establish latency or undergo lytic replication in host cells. In general, EBV remains latent in tumors and expresses a limited repertoire of latent proteins to avoid host immune surveillance. When the lytic cycle is triggered by some as-yet-unknown form of stimulation, lytic gene expression and progeny virus production commence. Thus far, the exact mechanism of EBV latency maintenance and the in vivo triggering signal for lytic induction have yet to be elucidated. Previously, we have shown that the EBV microRNA miR-BART20-5p directly targets the immediate early genes BRLF1 and BZLF1 as well as Bcl-2-associated death promoter (BAD) in EBV-associated gastric carcinoma. In this study, we found that both mRNA and protein levels of BRLF1 and BZLF1 were suppressed in cells following BAD knockdown and increased after BAD overexpression. Progeny virus production was also downregulated by specific knockdown of BAD. Our results demonstrated that caspase-3-dependent apoptosis is a prerequisite for BAD-mediated EBV lytic cycle induction. Therefore, our data suggest that miR-BART20-5p plays an important role in latency maintenance and tumor persistence of EBV-associated gastric carcinoma by inhibiting BAD-mediated caspase-3-dependent apoptosis, which would trigger immediate early gene expression. IMPORTANCE EBV has an ability to remain latent in host cells, including EBV-associated tumor cells hiding from immune surveillance. However, the exact molecular mechanisms of EBV latency maintenance remain poorly understood. Here, we demonstrated that miR-BART20-5p inhibited the expression of EBV immediate early genes indirectly, by suppressing BAD-induced caspase-3-dependent apoptosis, in addition to directly, as we previously reported. Our study suggests that EBV-associated tumor cells might endure apoptotic stress to some extent and remain latent with the aid of miR-BART20-5p. Blocking the expression or function of BART20-5p may expedite EBV-associated tumor cell death via immune attack and apoptosis. PMID:26581978
Giffin, Louise; West, John A.
2015-01-01
ABSTRACT Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi’s sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman’s disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6’s impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. PMID:26646010
Epstein-Barr Virus Hijacks DNA Damage Response Transducers to Orchestrate Its Life Cycle.
Hau, Pok Man; Tsao, Sai Wah
2017-11-16
The Epstein-Barr virus (EBV) is a ubiquitous virus that infects most of the human population. EBV infection is associated with multiple human cancers, including Burkitt's lymphoma, Hodgkin's lymphoma, a subset of gastric carcinomas, and almost all undifferentiated non-keratinizing nasopharyngeal carcinoma. Intensive research has shown that EBV triggers a DNA damage response (DDR) during primary infection and lytic reactivation. The EBV-encoded viral proteins have been implicated in deregulating the DDR signaling pathways. The consequences of DDR inactivation lead to genomic instability and promote cellular transformation. This review summarizes the current understanding of the relationship between EBV infection and the DDR transducers, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase), and discusses how EBV manipulates the DDR signaling pathways to complete the replication process of viral DNA during lytic reactivation.
Sifford, Jeffrey M.; Stahl, James A.; Salinas, Eduardo
2015-01-01
ABSTRACT Tumor suppressor p53 is activated in response to numerous cellular stresses, including viral infection. However, whether murine gammaherpesvirus 68 (MHV68) provokes p53 during the lytic replication cycle has not been extensively evaluated. Here, we demonstrate that MHV68 lytic infection induces p53 phosphorylation and stabilization in a manner that is dependent on the DNA damage response (DDR) kinase ataxia telangiectasia mutated (ATM). The induction of p53 during MHV68 infection occurred in multiple cell types, including splenocytes of infected mice. ATM and p53 activation required early viral gene expression but occurred independently of viral DNA replication. At early time points during infection, p53-responsive cellular genes were induced, coinciding with p53 stabilization and phosphorylation. However, p53-related gene expression subsided as infection progressed, even though p53 remained stable and phosphorylated. Infected cells also failed to initiate p53-dependent gene expression and undergo apoptosis in response to treatment with exogenous p53 agonists. The inhibition of p53 responses during infection required the expression of the MHV68 homologs of the shutoff and exonuclease protein (muSOX) and latency-associated nuclear antigen (mLANA). Interestingly, mLANA, but not muSOX, was necessary to prevent p53-mediated death in MHV68-infected cells under the conditions tested. This suggests that muSOX and mLANA are differentially required for inhibiting p53 in specific settings. These data reveal that DDR responses triggered by MHV68 infection promote p53 activation. However, MHV68 encodes at least two proteins capable of limiting the potential consequences of p53 function. IMPORTANCE Gammaherpesviruses are oncogenic herpesviruses that establish lifelong chronic infections. Defining how gammaherpesviruses overcome host responses to infection is important for understanding how these viruses infect and cause disease. Here, we establish that murine gammaherpesvirus 68 induces the activation of tumor suppressor p53. p53 activation was dependent on the DNA damage response kinase ataxia telangiectasia mutated. Although active early after infection, p53 became dominantly inhibited as the infection cycle progressed. Viral inhibition of p53 was mediated by the murine gammaherpesvirus 68 homologs of muSOX and mLANA. The inhibition of the p53 pathway enabled infected cells to evade p53-mediated cell death responses. These data demonstrate that a gammaherpesvirus encodes multiple proteins to limit p53-mediated responses to productive viral infection, which likely benefits acute viral replication and the establishment of chronic infection. PMID:26676792
Dynamic interactions between prophages induce lysis in Propionibacterium acnes.
L Brown, Teagan; Tucci, Joseph; Dyson, Zoe A; Lock, Peter; Adda, Christopher G; Petrovski, Steve
Progress in next-generation sequencing technologies has facilitated investigations into microbial dynamics. An important bacterium in the dairy industry is Propionibacterium freudenreichii, which is exploited to manufacture Swiss cheeses. A healthy culture of these bacteria ensures a consistent cheese with formed 'eyes' and pleasant flavour profile, and the investigation of prophages and their interactions with these bacteria could assist in the maintenance of the standard of this food product. Two bacteriophages, termed PFR1 and PFR2, were chemically induced using mitomycin C from two different dairy strains of P. freudenreichii. Both phages have identical genomes; however, PFR2 was found to contain an insertion sequence, IS204. Host range characterisation showed that PFR1 was able to form plaques on a wild type Propionibacterium acnes strain, whereas PFR2 could not. The lytic plaques observed on P. acnes were a result of PFR1 inducing the lytic cycle of a pseudolysogenic phage in P. acnes. Further investigation revealed that both PFR1 and PFR2 could infect P. acnes but not replicate. This study demonstrates the dynamic interactions between phages, which may alter their lytic capacity under certain conditions. To our knowledge, this is the first report of two phages interacting to kill their host. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
El Hajj, Hiba; Ali, Jihane; Ghantous, Akram; Hodroj, Dana; Daher, Ahmad; Zibara, Kazem; Journo, Chloé; Otrock, Zaher; Zaatari, Ghazi; Mahieux, Renaud; El Sabban, Marwan; Bazarbachi, Ali; Abou Merhi, Raghida
2013-01-01
Background Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphomas (PEL). PEL cell lines infected with KSHV, but negative for Epstein-Barr virus have a tumorigenic potential in non-obese diabetic/severe combined immunodeficient mice and result in efficient engraftment and formation of malignant ascites with notable abdominal distension, consistent with the clinical manifestations of PEL in humans. Methodology/Principal Findings Using this preclinical mouse model, we demonstrate that the combination of arsenic trioxide and interferon-alpha (IFN) inhibits proliferation, induces apoptosis and downregulates the latent viral transcripts LANA-1, v-FLIP and v-Cyc in PEL cells derived from malignant ascites. Furthermore, this combination decreases the peritoneal volume and synergistically increases survival of PEL mice. Conclusion/Significance These results provide a promising rationale for the therapeutic use of arsenic/IFN in PEL patients. PMID:24250827
El Hajj, Hiba; Ali, Jihane; Ghantous, Akram; Hodroj, Dana; Daher, Ahmad; Zibara, Kazem; Journo, Chloé; Otrock, Zaher; Zaatari, Ghazi; Mahieux, Renaud; El Sabban, Marwan; Bazarbachi, Ali; Abou Merhi, Raghida
2013-01-01
Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphomas (PEL). PEL cell lines infected with KSHV, but negative for Epstein-Barr virus have a tumorigenic potential in non-obese diabetic/severe combined immunodeficient mice and result in efficient engraftment and formation of malignant ascites with notable abdominal distension, consistent with the clinical manifestations of PEL in humans. Using this preclinical mouse model, we demonstrate that the combination of arsenic trioxide and interferon-alpha (IFN) inhibits proliferation, induces apoptosis and downregulates the latent viral transcripts LANA-1, v-FLIP and v-Cyc in PEL cells derived from malignant ascites. Furthermore, this combination decreases the peritoneal volume and synergistically increases survival of PEL mice. These results provide a promising rationale for the therapeutic use of arsenic/IFN in PEL patients.
The Conundrum of Causality in Tumor Virology: The Cases of KSHV and MCV
Moore, Patrick S.; Chang, Yuan
2014-01-01
Controversy has plagued tumor virology since the first tumor viruses were described over 100 years ago. Methods to establish cancer causation, such as Koch’s postulates, work poorly or not at all for these viruses. Kaposi’s sarcoma herpesvirus (KSHV/HHV8) and Merkel cell polyomavirus (MCV) were both found using nucleic acid identification methods but they represent opposite poles in the patterns for tumor virus epidemiology. KSHV is uncommon and has specific risk factors that contribute to infection and subsequent cancers. MCV and Merkel cell carcinoma (MCC), in contrast, is an example in which mutations to our normal viral flora contribute to cancer. Given the near-ubiquity of human MCV infection, establishing cancer causality relies on molecular evidence that does not fit comfortably within traditional infectious disease epidemiological models. These two viruses reveal some of the challenges and opportunities for inferring viral cancer causation in the age of molecular biology. PMID:24304907
Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6.
Aoki, Y; Jones, K D; Tosato, G
2000-04-01
Since the discovery of the virus in 1994, the rapid pace with which Karposi's sarcoma-associated herpesvirus (KSHV) research has progressed has quickly led to a broad understanding of the structure of the virus and its biology and pathology in humans. Molecular piracy of potentially useful cellular genes has emerged as a characteristic feature of this virus. The viral homolog of human IL-6, vIL-6 is an example in kind. Studies in vitro and in vivo have shown that vIL-6 can stimulate the growth of KSHV-infected primary infusion lymphoma (PEL) cells, can promote hematopoiesis, and act as an angiogenic factor through the induction of vascular endothelial growth factor (VEGF). It is not difficult to envision how vIL-6, through these properties and perhaps others yet to be identified, can contribute to KSHV survival and spread in the human population.
Using Proteomics to Identify Viral microRNA-Regulated Genes | Center for Cancer Research
Kaposi sarcoma is a soft tissue malignancy that affects the skin, the mucous membranes, the lymph nodes and other organs of individuals with compromised immune systems. It is caused by infection with human herpesvirus-8 also known as Kaposi sarcoma-associated herpesvirus or KSHV. The herpesvirus family is unique in that it is the only viral family currently known to express multiple microRNAs (miRNAs); KSHV produces 12 pre-miRNAs, which are processed into at least 25 mature miRNAs. While their functions are not well understood, these miRNAs may be a way for the virus to alter the host immune response without producing proteins that could be recognized and targeted by the immune system. Joseph Ziegelbauer, Ph.D., in CCR’s HIV and AIDS Malignancy Branch, and his colleagues set out to identify human targets of KSHV miRNAs and to understand their functional importance.
Identification and Analysis of Expression of Novel MicroRNAs of Murine Gammaherpesvirus 68▿ †
Zhu, Jia Yun; Strehle, Martin; Frohn, Anne; Kremmer, Elisabeth; Höfig, Kai P.; Meister, Gunter; Adler, Heiko
2010-01-01
Murine gammaherpesvirus 68 (MHV-68) is closely related to Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) and provides a small-animal model with which to study the pathogenesis of gammaherpesvirus (γHV) infections. To completely explore the potential of the MHV-68 system for the investigation of γHV microRNAs (miRNAs), it would be desirable to know the number and expression patterns of all miRNAs encoded by MHV-68. By deep sequencing of small RNAs, we systematically investigated the expression profiles of MHV-68 miRNAs in both lytically and persistently infected cells. In addition to the nine known MHV-68 miRNAs, we identified six novel MHV-68 miRNA genes and analyzed the expression levels of all MHV-68 miRNAs. Furthermore, we also characterized the cellular miRNA expression signatures in MHV-68-infected versus noninfected NIH 3T3 fibroblasts and in 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-treated versus nontreated S11 cells. We found that mmu-mir-15b and mmu-mir-16 are highly upregulated upon MHV-68 infection of NIH 3T3 cells, indicating a potential role for cellular miRNAs during MHV-68 infection. Our data will aid in the full exploration of the functions of γHV miRNAs. PMID:20668074
Analysis of JC virus DNA replication using a quantitative and high-throughput assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jong; Phelan, Paul J.; Chhum, Panharith
2014-11-15
Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCVmore » DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.« less
Ryon, J J; Fixman, E D; Houchens, C; Zong, J; Lieberman, P M; Chang, Y N; Hayward, G S; Hayward, S D
1993-01-01
Herpesvirus papio (HVP) is a B-lymphotropic baboon virus with an estimated 40% homology to Epstein-Barr virus (EBV). We have cloned and sequenced ori-Lyt of herpesvirus papio and found a striking degree of nucleotide homology (89%) with ori-Lyt of EBV. Transcriptional elements form an integral part of EBV ori-Lyt. The promoter and enhancer domains of EBV ori-Lyt are conserved in herpesvirus papio. The EBV ori-Lyt promoter contains four binding sites for the EBV lytic cycle transactivator Zta, and the enhancer includes one Zta and two Rta response elements. All five of the Zta response elements and one of the Rta motifs are conserved in HVP ori-Lyt, and the HVP DS-L leftward promoter and the enhancer were activated in transient transfection assays by the EBV Zta and Rta transactivators. The EBV ori-Lyt enhancer contains a palindromic sequence, GGTCAGCTGACC, centered on a PvuII restriction site. This sequence, with a single base change, is also present in the HVP ori-Lyt enhancer. DNase I footprinting demonstrated that the PvuII sequence was bound by a protein present in a Raji nuclear extract. Mobility shift and competition assays using oligonucleotide probes identified this sequence as a binding site for the cellular transcription factor MLTF. Mutagenesis of the binding site indicated that MLTF contributes significantly to the constitutive activity of the ori-Lyt enhancer. The high degree of conservation of cis-acting signal sequences in HVP ori-Lyt was further emphasized by the finding that an HVP ori-Lyt-containing plasmid was replicated in Vero cells by a set of cotransfected EBV replication genes. The central domain of EBV ori-Lyt contains two related AT-rich palindromes, one of which is partially duplicated in the HVP sequence. The AT-rich palindromes are functionally important cis-acting motifs. Deletion of these palindromes severely diminished replication of an ori-Lyt target plasmid. Images PMID:8389916
Wang, Yuchen; Sima, Linshan; Lv, Jie; Huang, Suiyuan; Liu, Ying; Wang, Jiao; Krupovic, Mart; Chen, Xiangdong
2016-07-15
The temperate haloarchaeal virus SNJ1 displays lytic and lysogenic life cycles. During the lysogenic cycle, the virus resides in its host, Natrinema sp. strain J7-1, in the form of an extrachromosomal circular plasmid, pHH205. In this study, a 3.9-kb region containing seven predicted genes organized in two operons was identified as the minimal replicon of SNJ1. Only RepA, encoded by open reading frame 11-12 (ORF11-12), was found to be essential for replication, and its expression increased during the lytic cycle. Sequence analysis suggested that RepA is a distant homolog of HUH endonucleases, a superfamily that includes rolling-circle replication initiation proteins from various viruses and plasmids. In addition to RepA, two genetic elements located within both termini of the 3.9-kb replicon were also required for SNJ1 replication. SNJ1 genome and SNJ1 replicon-based shuttle vectors were present at 1 to 3 copies per chromosome. However, the deletion of ORF4 significantly increased the SNJ1 copy number, suggesting that the product of ORF4 is a negative regulator of SNJ1 abundance. Shuttle vectors based on the SNJ1 replicon were constructed and validated for stable expression of heterologous proteins, both in J7 derivatives and in Natrinema pallidum JCM 8980(T), suggesting their broad applicability as genetic tools for Natrinema species. Archaeal viruses exhibit striking morphological diversity and unique gene content. In this study, the minimal replicon of the temperate haloarchaeal virus SNJ1 was identified. A number of ORFs and genetic elements controlling virus genome replication, maintenance, and copy number were characterized. In addition, based on the replicon, a novel expression shuttle vector has been constructed and validated for protein expression and purification in Natrinema sp. CJ7 and Natrinema pallidum JCM 8980(T) This study not only provided mechanistic and functional insights into SNJ1 replication but also led to the development of useful genetic tools to investigate SNJ1 and other viruses infecting Natrinema species as well as their hosts. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Dolcetti, Riccardo
2014-01-01
Human Immunodeficiency Virus (HIV)+ patients have an increased risk to develop lymphomas, including a significant fraction of histotypes associated with Epstein-Barr Virus (EBV) infection. Although restoration of EBV-specific T-cell function induced by HAART has led to a decreased incidence of the more immunogenic EBV-associated lymphomas, such as immunoblastic and primary central nervous system lymphomas, other EBV+ histotypes are still prevalent in the HAART era, particularly Hodgkin’s lymphoma. Therefore, factors other than HIV-induced immune suppression are probably required for the development of EBV-related lymphomas in this setting. Particular attention is being given to the identification of microenvironmental stimuli able to up-regulate critical EBV latency proteins or to induce/enhance EBV replication. In fact, recent evidence indicates that, although latency programs predominate in EBV-driven tumors, lytic EBV replication may also be of pathogenic relevance, at least in the early phases of cell transformation. This is particularly relevant for HIV-related lymphomagenesis since the underlying impairment of immune responses may favour uncontrolled activation of EBV lytic replication in latently-infected B lymphocytes. Available data indicate that local expression of distinct cytokines, including IL-4 and IL-13, may up-regulate the expression of the LMP-1 oncoprotein in B cells, thus favoring lymphomagenesis. In the search of microenvironmental factors that may promote the development of EBV-driven lymphomas in HIV+ patients, we obtained evidence supporting a pathogenic role for HIV matrix protein p17, which accumulates in lymphoid tissues of HIV+ individuals, even during HAART. Our findings support a direct contribution of HIV p17 to the development of EBV-driven lymphomagenesis and may provide the rationale for new strategies of clinical intervention in this setting.
Davis, David A; Naiman, Nicole E; Wang, Victoria; Shrestha, Prabha; Haque, Muzammel; Hu, Duosha; Anagho, Holda A; Carey, Robert F; Davidoff, Katharine S; Yarchoan, Robert
2015-07-01
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causative agent of three hyperproliferative disorders: Kaposi's sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman's disease. During viral latency a small subset of viral genes are produced, including KSHV latency-associated nuclear antigen (LANA), which help the virus thwart cellular defense responses. We found that exposure of KSHV-infected cells to oxidative stress, or other inducers of apoptosis and caspase activation, led to processing of LANA and that this processing could be inhibited with the pan-caspase inhibitor Z-VAD-FMK. Using sequence, peptide, and mutational analysis, two caspase cleavage sites within LANA were identified: a site for caspase-3 type caspases at the N-terminus and a site for caspase-1 and-3 type caspases at the C-terminus. Using LANA expression plasmids, we demonstrated that mutation of these cleavage sites prevents caspase-1 and caspase-3 processing of LANA. This indicates that these are the principal sites that are susceptible to caspase cleavage. Using peptides spanning the identified LANA cleavage sites, we show that caspase activity can be inhibited in vitro and that a cell-permeable peptide spanning the C-terminal cleavage site could inhibit cleavage of poly (ADP-ribose) polymerase and increase viability in cells undergoing etoposide-induced apoptosis. The C-terminal peptide of LANA also inhibited interleukin-1 beta (IL-1β) production from lipopolysaccharide-treated THP-1 cells by more than 50%. Furthermore, mutation of the two cleavage sites in LANA led to a significant increase in IL-1β production in transfected THP-1 cells; this provides evidence that these sites function to blunt the inflammasome, which is known to be activated in latently infected PEL cells. These results suggest that specific caspase cleavage sites in KSHV LANA function to blunt apoptosis as well as interfere with the caspase-1-mediated inflammasome, thus thwarting key cellular defense mechanisms.
Paul, Arun George; Sharma-Walia, Neelam; Kerur, Nagaraj; White, Carl; Chandran, Bala
2010-01-01
KSHV is implicated in the pathogenesis of KS, a chronic inflammation associated malignancy. COX-2 and its metabolite PGE2, two pivotal proinflammatory/oncogeneic molecules, are proposed to play roles in the expression of major KSHV latency associated nuclear antigen-1 (LANA-1). Microsomal prostaglandin E2 synthase (mPGES), PGE2 and its receptors (EP1, EP2, EP3, and EP4) were detected in KS lesions with the distinct staining of EP2/EP4 in KS lesions. In latently infected endothelial TIVE-LTC cells, EP receptor antagonists down-regulated LANA-1 expression as well as Ca2+, p-Src, p-PI3K, p-PKCζ/λ, and p-NF-κB, which are also some of the signal molecules proposed to be important in KS pathogenesis. Exogenous PGE2 and EP receptor agonists induced the LANA-1 promoter in 293 cells, and YY1, Sp1, Oct-1, Oct-6, C/EBP and c-Jun transcription factors appear to be involved in this induction. PGE2/EP receptor induced LANA-1 promoter activity was down-regulated significantly by the inhibition of Ca2+, p-Src, p-PI3K, p-PKCζ/λ, and p-NF-κB. These findings implicate the inflammatory PGE2/EP receptors and the associated signal molecules in herpes virus latency and uncover a novel paradigm that demonstrates the evolution of KSHV genome plasticity to utilize inflammatory response for its survival advantage of maintaining latent gene expression. This data also suggests that potential use of anti-COX-2 and anti-EP receptor therapy may not only ameliorate the chronic inflammation associated with KS but could also lead to elimination of the KSHV latent infection and the associated KS lesions. PMID:20388794
Nitzsche, Richard; Zagoriy, Vyacheslav; Lucius, Richard; Gupta, Nishith
2016-01-01
Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure the parasite survival. The parasite can counteract genetic ablation of its glucose transporter by increasing the flux of glutamine-derived carbon through the tricarboxylic acid cycle and by concurrently activating gluconeogenesis, which guarantee a continued biogenesis of ATP and biomass for host-cell invasion and parasite replication, respectively. In accord, a pharmacological inhibition of glutaminolysis or oxidative phosphorylation arrests the lytic cycle of the glycolysis-deficient mutant, which is primarily a consequence of impaired invasion due to depletion of ATP. Unexpectedly, however, intracellular parasites continue to proliferate, albeit slower, notwithstanding a simultaneous deprivation of glucose and glutamine. A growth defect in the glycolysis-impaired mutant is caused by a compromised synthesis of lipids, which cannot be counterbalanced by glutamine but can be restored by acetate. Consistently, supplementation of parasite cultures with exogenous acetate can amend the lytic cycle of the glucose transport mutant. Such plasticity in the parasite's carbon flux enables a growth-and-survival trade-off in assorted nutrient milieus, which may underlie the promiscuous survival of T. gondii tachyzoites in diverse host cells. Our results also indicate a convergence of parasite metabolism with cancer cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Nitzsche, Richard; Zagoriy, Vyacheslav; Lucius, Richard; Gupta, Nishith
2016-01-01
Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure the parasite survival. The parasite can counteract genetic ablation of its glucose transporter by increasing the flux of glutamine-derived carbon through the tricarboxylic acid cycle and by concurrently activating gluconeogenesis, which guarantee a continued biogenesis of ATP and biomass for host-cell invasion and parasite replication, respectively. In accord, a pharmacological inhibition of glutaminolysis or oxidative phosphorylation arrests the lytic cycle of the glycolysis-deficient mutant, which is primarily a consequence of impaired invasion due to depletion of ATP. Unexpectedly, however, intracellular parasites continue to proliferate, albeit slower, notwithstanding a simultaneous deprivation of glucose and glutamine. A growth defect in the glycolysis-impaired mutant is caused by a compromised synthesis of lipids, which cannot be counterbalanced by glutamine but can be restored by acetate. Consistently, supplementation of parasite cultures with exogenous acetate can amend the lytic cycle of the glucose transport mutant. Such plasticity in the parasite's carbon flux enables a growth-and-survival trade-off in assorted nutrient milieus, which may underlie the promiscuous survival of T. gondii tachyzoites in diverse host cells. Our results also indicate a convergence of parasite metabolism with cancer cells. PMID:26518878
Nanbo, Asuka; Ohashi, Makoto; Yoshiyama, Hironori; Ohba, Yusuke
2018-01-01
Infection of Epstein-Barr virus (EBV), a ubiquitous human gamma herpesvirus, is closely linked to various lymphoid and epithelial malignancies. Previous studies demonstrated that the efficiency of EBV infection in epithelial cells is significantly enhanced by coculturing them with latently infected B cells relative to cell-free infection, suggesting that cell-to-cell contact-mediated viral transmission is the dominant mode of infection by EBV in epithelial cells. However, a detailed mechanism underlying this process has not been fully understood. In the present study, we assessed the role of transforming growth factor β (TGF-β), which is known to induce EBV's lytic cycle by upregulation of EBV's latent-lytic switch BZLF1 gene. We have found that 5 days of cocultivation facilitated cell-to-cell contact-mediated EBV transmission. Replication of EBV was induced in cocultured B cells both with and without a direct cell contact in a time-dependent manner. Treatment of a blocking antibody for TGF-β suppressed both induction of the lytic cycle in cocultured B cells and subsequent viral transmission. Cocultivation with epithelial cells facilitated expression of TGF-β receptors in B cells and increased their susceptibility to TGF-β. Finally, we confirmed the spontaneous secretion of TGF-β from epithelial cells, which was not affected by cell-contact. In contrast, the extracellular microvesicles, exosomes derived from cocultured cells partly contributed to cell-to-cell contact-mediated viral transmission. Taken together, our findings support a role for TGF-β derived from epithelial cells in efficient viral transmission, which fosters induction of the viral lytic cycle in the donor B cells.
Kim, Hyoji; Choi, Hoyun; Lee, Suk Kyeong
2016-02-01
Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with a variety of tumor types. EBV can establish latency or undergo lytic replication in host cells. In general, EBV remains latent in tumors and expresses a limited repertoire of latent proteins to avoid host immune surveillance. When the lytic cycle is triggered by some as-yet-unknown form of stimulation, lytic gene expression and progeny virus production commence. Thus far, the exact mechanism of EBV latency maintenance and the in vivo triggering signal for lytic induction have yet to be elucidated. Previously, we have shown that the EBV microRNA miR-BART20-5p directly targets the immediate early genes BRLF1 and BZLF1 as well as Bcl-2-associated death promoter (BAD) in EBV-associated gastric carcinoma. In this study, we found that both mRNA and protein levels of BRLF1 and BZLF1 were suppressed in cells following BAD knockdown and increased after BAD overexpression. Progeny virus production was also downregulated by specific knockdown of BAD. Our results demonstrated that caspase-3-dependent apoptosis is a prerequisite for BAD-mediated EBV lytic cycle induction. Therefore, our data suggest that miR-BART20-5p plays an important role in latency maintenance and tumor persistence of EBV-associated gastric carcinoma by inhibiting BAD-mediated caspase-3-dependent apoptosis, which would trigger immediate early gene expression. EBV has an ability to remain latent in host cells, including EBV-associated tumor cells hiding from immune surveillance. However, the exact molecular mechanisms of EBV latency maintenance remain poorly understood. Here, we demonstrated that miR-BART20-5p inhibited the expression of EBV immediate early genes indirectly, by suppressing BAD-induced caspase-3-dependent apoptosis, in addition to directly, as we previously reported. Our study suggests that EBV-associated tumor cells might endure apoptotic stress to some extent and remain latent with the aid of miR-BART20-5p. Blocking the expression or function of BART20-5p may expedite EBV-associated tumor cell death via immune attack and apoptosis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question
Koonin, Eugene V.; Starokadomskyy, Petro
2016-01-01
The question whether or not “viruses are alive” has caused considerable debate over many years. Yet, the question is effectively without substance because the answer depends entirely on the definition of life or the state of “being alive” that is bound to be arbitrary. In contrast, the status of viruses among biological entities is readily defined within the replicator paradigm. All biological replicators form a continuum along the selfishness-cooperativity axis, from the completely selfish to fully cooperative forms. Within this range, typical, lytic viruses represent the selfish extreme whereas temperate viruses and various mobile elements occupy positions closer to the middle of the range. Selfish replicators not only belong to the biological realm but are intrinsic to any evolving system of replicators. No such system can evolve without the emergence of parasites, and moreover, parasites drive the evolution of biological complexity at multiple levels. The history of life is a story of parasite-host coevolution that includes both the incessant arms race and various forms of cooperation. All organisms are communities of interacting, coevolving replicators of different classes. A complete theory of replicator coevolution remains to be developed, but it appears likely that not only the differentiation between selfish and cooperative replicators but the emergence of the entire range of replication strategies, from selfish to cooperative, is intrinsic to biological evolution. PMID:26965225
Curreli, Francesca; Robles, Monica A; Friedman-Kien, Alvin E; Flore, Ornella
2003-02-01
Kaposi's sarcoma-associated herpesvirus is a novel herpesvirus linked to AIDS-related neoplasms. Currently it is difficult to evaluate the number of virions in viral preparation or in samples obtained from patients with Kaposi's sarcoma (KS), since no protocol for determining the plaque forming units of KSHV exists. We constructed a fragment of a different size than the target viral DNA to carry out a competitive-quantitative PCR. Both fragment and viral DNA were added to a single PCR reaction to compete for the same set of primers. By knowing the amount of the competitor added to the reaction, we could determine the number of viral DNA molecules. We used this assay successfully to detect and quantify KSHV genomes from KS skin biopsies and pleural effusion lymphoma, and from different viral preparations. To date, this is the most convenient and economic method that allows an accurate and fast viral detection/quantitation with a single PCR.
The conundrum of causality in tumor virology: the cases of KSHV and MCV.
Moore, Patrick S; Chang, Yuan
2014-06-01
Controversy has plagued tumor virology since the first tumor viruses were described over 100 years ago. Methods to establish cancer causation, such as Koch's postulates, work poorly or not at all for these viruses. Kaposi's sarcoma herpesvirus (KSHV/HHV8) and Merkel cell polyomavirus (MCV) were both found using nucleic acid identification methods but they represent opposite poles in the patterns for tumor virus epidemiology. KSHV is uncommon and has specific risk factors that contribute to infection and subsequent cancers. MCV and Merkel cell carcinoma (MCC), in contrast, is an example in which mutations to our normal viral flora contribute to cancer. Given the near-ubiquity of human MCV infection, establishing cancer causality relies on molecular evidence that does not fit comfortably within traditional infectious disease epidemiological models. These two viruses reveal some of the challenges and opportunities for inferring viral cancer causation in the age of molecular biology. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kristie, Thomas M.; Vogel, Jodi L.; Sears, Amy E.
1999-02-01
After a primary infection, herpes simplex virus is maintained in a latent state in neurons of sensory ganglia until complex stimuli reactivate viral lytic replication. Although the mechanisms governing reactivation from the latent state remain unknown, the regulated expression of the viral immediate early genes represents a critical point in this process. These genes are controlled by transcription enhancer complexes whose assembly requires and is coordinated by the cellular C1 factor (host cell factor). In contrast to other tissues, the C1 factor is not detected in the nuclei of sensory neurons. Experimental conditions that induce the reactivation of herpes simplex virus in mouse model systems result in rapid nuclear localization of the protein, indicating that the C1 factor is sequestered in these cells until reactivation signals induce a redistribution of the protein. The regulated localization suggests that C1 is a critical switch determinant of the viral lytic-latent cycle.
Fink, Susanne; Tsai, Ming-Han; Schnitzler, Paul; Zeier, Martin; Dreger, Peter; Wuchter, Patrick; Bulut, Olcay C; Behrends, Uta; Delecluse, Henri-Jacques
2017-01-01
Transplant recipients frequently exhibit an increased Epstein-Barr virus (EBV) load in the peripheral blood. Here, we quantitated the EBV-infected cells in the peripheral blood of these patients and defined the mode of viral infection, latent or lytic. These data indicated that there is no strong correlation between the number of infected cells and the EBV load (EBVL). This can be explained by a highly variable number of EBV copies per infected cell and by lytic replication in some cells. The plasma of these patients did not contain any free infectious viruses, but contained nevertheless EBV DNA, sometimes in large amounts, that probably originates from cell debris and contributed to the total EBVL. Some of the investigated samples carried a highly variable number of infected cells in active latency, characterized by an expression of the Epstein-Barr nuclear antigens (EBNA2) protein. However, a third of the samples expressed neither EBNA2 nor lytic proteins. Patients with an increased EBVL represent a heterogeneous group of patients whose infection cannot be characterized by this method alone. Precise characterization of the origin of an increased EBVL, in particular, in terms of the number of EBV-infected cells, requires additional investigations including the number of EBV-encoded small RNA-positive cells. © 2016 Steunstichting ESOT.
Epigenetic dysregulation of epstein-barr virus latency and development of autoimmune disease.
Niller, Hans Helmut; Wolf, Hans; Ay, Eva; Minarovits, Janos
2011-01-01
Epstein-Barr virus (EBV) is ahumanherpesvirus thatpersists in the memory B-cells of the majority of the world population in a latent form. Primary EBV infection is asymptomatic or causes a self-limiting disease, infectious mononucleosis. Virus latency is associated with a wide variety of neoplasms whereof some occur in immune suppressed individuals. Virus production does not occur in strict latency. The expression of latent viral oncoproteins and nontranslated RNAs is under epigenetic control via DNA methylation and histone modifications that results either in a complete silencing of the EBV genome in memory B cells, or in a cell-type dependent usage of a couple of latency promoters in tumor cells, germinal center B cells and lymphoblastoid cells (LCL, transformed by EBV in vitro). Both, latent and lytic EBV proteins elicit a strong immune response. In immune suppressed and infectious mononucleosis patients, an increased viral load can be detected in the blood. Enhanced lytic replication may result in new infection- and transformation-events and thus is a risk factor both for malignant transformation and the development of autoimmune diseases. An increased viral load or a changed presentation of a subset of lytic or latent EBV proteins that cross-react with cellular antigens may trigger pathogenic processes through molecular mimicry that result in multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA).
Sawtell, Nancy M; Thompson, Richard L
2014-01-01
Two important components to a useful strategy to examine viral gene regulation in vivo are (1) a highly efficient protocol to generate viral mutants that limits undesired mutation and retains full replication competency in vivo and (2) an efficient system to detect and quantify viral promoter activity in rare cells in vivo. Our strategy and protocols for generating, characterizing, and employing HSV viral promoter/reporter mutants in vivo are provided in this two-part chapter.
Maribavir Inhibits Epstein-Barr Virus Transcription through the EBV Protein Kinase
Whitehurst, Christopher B.; Sanders, Marcia K.; Law, Mankit; Wang, Fu-Zhang; Xiong, Jie; Dittmer, Dirk P.
2013-01-01
Maribavir (MBV) inhibits Epstein-Barr virus (EBV) replication and the enzymatic activity of the viral protein kinase BGLF4. MBV also inhibits expression of multiple EBV transcripts during EBV lytic infection. Here we demonstrate, with the use of a BGLF4 knockout virus, that effects of MBV on transcription take place primarily through inhibition of BGLF4. MBV inhibits viral genome copy numbers and infectivity to levels similar to and exceeding levels produced by BGLF4 knockout virus. PMID:23449792
Identification of Cellular Proteins Required for Replication of Human Immunodeficiency Virus Type 1
Dziuba, Natallia; Ferguson, Monique R.; O'Brien, William A.; Sanchez, Anthony; Prussia, Andrew J.; McDonald, Natalie J.; Friedrich, Brian M.; Li, Guangyu; Shaw, Michael W.; Sheng, Jinsong; Hodge, Thomas W.; Rubin, Donald H.
2012-01-01
Abstract Cellular proteins are essential for human immunodeficiency virus type 1 (HIV-1) replication and may serve as viable new targets for treating infection. Using gene trap insertional mutagenesis, a high-throughput approach based on random inactivation of cellular genes, candidate genes were found that limit virus replication when mutated. Disrupted genes (N=87) conferring resistance to lytic infection with several viruses were queried for an affect on HIV-1 replication by utilizing small interfering RNA (siRNA) screens in TZM-bl cells. Several genes regulating diverse pathways were found to be required for HIV-1 replication, including DHX8, DNAJA1, GTF2E1, GTF2E2, HAP1, KALRN, UBA3, UBE2E3, and VMP1. Candidate genes were independently tested in primary human macrophages, toxicity assays, and/or Tat-dependent β-galactosidase reporter assays. Bioinformatics analyses indicated that several host factors present in this study participate in canonical pathways and functional processes implicated in prior genome-wide studies. However, the genes presented in this study did not share identity with those found previously. Novel antiviral targets identified in this study should open new avenues for mechanistic investigation. PMID:22404213
Identification of cellular proteins required for replication of human immunodeficiency virus type 1.
Dziuba, Natallia; Ferguson, Monique R; O'Brien, William A; Sanchez, Anthony; Prussia, Andrew J; McDonald, Natalie J; Friedrich, Brian M; Li, Guangyu; Shaw, Michael W; Sheng, Jinsong; Hodge, Thomas W; Rubin, Donald H; Murray, James L
2012-10-01
Cellular proteins are essential for human immunodeficiency virus type 1 (HIV-1) replication and may serve as viable new targets for treating infection. Using gene trap insertional mutagenesis, a high-throughput approach based on random inactivation of cellular genes, candidate genes were found that limit virus replication when mutated. Disrupted genes (N=87) conferring resistance to lytic infection with several viruses were queried for an affect on HIV-1 replication by utilizing small interfering RNA (siRNA) screens in TZM-bl cells. Several genes regulating diverse pathways were found to be required for HIV-1 replication, including DHX8, DNAJA1, GTF2E1, GTF2E2, HAP1, KALRN, UBA3, UBE2E3, and VMP1. Candidate genes were independently tested in primary human macrophages, toxicity assays, and/or Tat-dependent β-galactosidase reporter assays. Bioinformatics analyses indicated that several host factors present in this study participate in canonical pathways and functional processes implicated in prior genome-wide studies. However, the genes presented in this study did not share identity with those found previously. Novel antiviral targets identified in this study should open new avenues for mechanistic investigation.
Bacteriophage P2 ogr and P4 delta genes act independently and are essential for P4 multiplication.
Halling, C; Calendar, R
1990-01-01
Satellite bacteriophage P4 requires the products of the late genes of a helper phage such as P2 for lytic growth. Expression of the P2 late genes is positively regulated by the P2 ogr gene in a process requiring P2 DNA replication. Transactivation of P2 late gene expression by P4 requires the P4 delta gene product and works even in the absence of P2 DNA replication. We have made null mutants of the P2 ogr and P4 delta genes. In the absence of the P4 delta gene product, P4 multiplication required both the P2 ogr protein and P2 DNA replication. In the absence of the P2 ogr gene product, P4 multiplication required the P4 delta protein. In complementation experiments, we found that the P2 ogr protein was made in the absence of P2 DNA replication but could not function unless P2 DNA replicated. We produced P4 delta protein from a plasmid and found that it complemented the null P4 delta and P2 ogr mutants. Images PMID:2193911
Fragment-based protein-protein interaction antagonists of a viral dimeric protease
Gable, Jonathan E.; Lee, Gregory M.; Acker, Timothy M.; Hulce, Kaitlin R.; Gonzalez, Eric R.; Schweigler, Patrick; Melkko, Samu; Farady, Christopher J.; Craik, Charles S.
2016-01-01
Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi’s sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose response determination was performed as a confirmation screen and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed via NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80% of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogs. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces. PMID:26822284
Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8)
Russo, James J.; Bohenzky, Roy A.; Chien, Ming-Cheng; Chen, Jing; Yan, Ming; Maddalena, Dawn; Parry, J. Preston; Peruzzi, Daniela; Edelman, Isidore S.; Chang, Yuan; Moore, Patrick S.
1996-01-01
The genome of the Kaposi sarcoma-associated herpesvirus (KSHV or HHV8) was mapped with cosmid and phage genomic libraries from the BC-1 cell line. Its nucleotide sequence was determined except for a 3-kb region at the right end of the genome that was refractory to cloning. The BC-1 KSHV genome consists of a 140.5-kb-long unique coding region flanked by multiple G+C-rich 801-bp terminal repeat sequences. A genomic duplication that apparently arose in the parental tumor is present in this cell culture-derived strain. At least 81 ORFs, including 66 with homology to herpesvirus saimiri ORFs, and 5 internal repeat regions are present in the long unique region. The virus encodes homologs to complement-binding proteins, three cytokines (two macrophage inflammatory proteins and interleukin 6), dihydrofolate reductase, bcl-2, interferon regulatory factors, interleukin 8 receptor, neural cell adhesion molecule-like adhesin, and a D-type cyclin, as well as viral structural and metabolic proteins. Terminal repeat analysis of virus DNA from a KS lesion suggests a monoclonal expansion of KSHV in the KS tumor. PMID:8962146
Rates of spontaneous mutation.
Drake, J W; Charlesworth, B; Charlesworth, D; Crow, J F
1998-01-01
Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates. PMID:9560386
Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines.
Offerdahl, Danielle K; Dorward, David W; Hansen, Bryan T; Bloom, Marshall E
2017-01-15
The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60-100nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20-30nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. Published by Elsevier Inc.
Oncolytic Herpes Simplex Viral Therapy: A Stride toward Selective Targeting of Cancer Cells.
Sanchala, Dhaval S; Bhatt, Lokesh K; Prabhavalkar, Kedar S
2017-01-01
Oncolytic viral therapy, which makes use of replication-competent lytic viruses, has emerged as a promising modality to treat malignancies. It has shown meaningful outcomes in both solid tumor and hematologic malignancies. Advancements during the last decade, mainly genetic engineering of oncolytic viruses have resulted in improved specificity and efficacy of oncolytic viruses in cancer therapeutics. Oncolytic viral therapy for treating cancer with herpes simplex virus-1 has been of particular interest owing to its range of benefits like: (a) large genome and power to infiltrate in the tumor, (b) easy access to manipulation with the flexibility to insert multiple transgenes, (c) infecting majority of the malignant cell types with quick replication in the infected cells and (d) as Anti-HSV agent to terminate HSV replication. This review provides an exhaustive list of oncolytic herpes simplex virus-1 along with their genetic alterations. It also encompasses the major developments in oncolytic herpes simplex-1 viral therapy and outlines the limitations and drawbacks of oncolytic herpes simplex viral therapy.
Smura, Teemu; Natri, Olli; Ylipaasto, Petri; Hellman, Marika; Al-Hello, Haider; Piemonti, Lorenzo; Roivainen, Merja
2015-12-02
Enterovirus infections have been suspected to be involved in the development of type 1 diabetes. However, the pathogenetic mechanism of enterovirus-induced type 1 diabetes is not known. Pancreatic ductal cells are closely associated with pancreatic islets. Therefore, enterovirus infections in ductal cells may also affect beta-cells and be involved in the induction of type 1 diabetes. The aim of this study was to assess the ability of different enterovirus strains to infect, replicate and produce cytopathic effect in human pancreatic ductal cells. Furthermore, the viral factors that affect these capabilities were studied. The pancreatic ductal cells were highly susceptible to enterovirus infections. Both viral growth and cytolysis were detected for several enterovirus serotypes. However, the viral growth and capability to induce cytopathic effect (cpe) did not correlate completely. Some of the virus strains replicated in ductal cells without apparent cpe. Furthermore, there were strain-specific differences in the growth kinetics and the ability to cause cpe within some serotypes. Viral adaptation experiments were carried out to study the potential genetic determinants behind these phenotypic differences. The blind-passage of non-lytic CV-B6-Schmitt strain in HPDE-cells resulted in lytic phenotype and increased progeny production. This was associated with the substitution of a single amino acid (K257E) in the virus capsid protein VP1 and the viral ability to use decay accelerating factor (DAF) as a receptor. This study demonstrates considerable plasticity in the cell tropism, receptor usage and cytolytic properties of enteroviruses and underlines the strong effect of single or few amino acid substitutions in cell tropism and lytic capabilities of a given enterovirus. Since ductal cells are anatomically close to pancreatic islets, the capability of enteroviruses to infect and destroy pancreatic ductal cells may also implicate in respect to enterovirus induced type 1 diabetes. In addition, the capability for rapid adaptation to different cell types suggests that, on occasion, enterovirus strains with different pathogenetic properties may arise from less pathogenic ancestors. Copyright © 2015 Elsevier B.V. All rights reserved.
Kalia, Vandana; Sarkar, Surojit; Gupta, Phalguni; Montelaro, Ronald C
2003-03-01
Two highly conserved cationic amphipathic alpha-helical motifs, designated lentivirus lytic peptides 1 and 2 (LLP-1 and LLP-2), have been characterized in the carboxyl terminus of the transmembrane (TM) envelope glycoprotein (Env) of lentiviruses. Although various properties have been attributed to these domains, their structural and functional significance is not clearly understood. To determine the specific contributions of the Env LLP domains to Env expression, processing, and incorporation and to viral replication and syncytium induction, site-directed LLP mutants of a primary dualtropic infectious human immunodeficiency virus type 1 (HIV-1) isolate (ME46) were examined. Substitutions were made for highly conserved arginine residues in either the LLP-1 or LLP-2 domain (MX1 or MX2, respectively) or in both domains (MX4). The HIV-1 mutants with altered LLP domains demonstrated distinct phenotypes. The LLP-1 mutants (MX1 and MX4) were replication defective and showed an average of 85% decrease in infectivity, which was associated with an evident decrease in gp41 incorporation into virions without a significant decrease in Env expression or processing in transfected 293T cells. In contrast, MX2 virus was replication competent and incorporated a full complement of Env into its virions, indicating a differential role for the LLP-1 domain in Env incorporation. Interestingly, the replication-competent MX2 virus was impaired in its ability to induce syncytia in T-cell lines. This defect in cell-cell fusion did not correlate with apparent defects in the levels of cell surface Env expression, oligomerization, or conformation. The lack of syncytium formation, however, correlated with a decrease of about 90% in MX2 Env fusogenicity compared to that of wild-type Env in quantitative luciferase-based cell-cell fusion assays. The LLP-1 mutant MX1 and MX4 Envs also exhibited an average of 80% decrease in fusogenicity. Altogether, these results demonstrate for the first time that the highly conserved LLP domains perform critical but distinct functions in Env incorporation and fusogenicity.
Lymph Node Macrophages Restrict Murine Cytomegalovirus Dissemination
Farrell, Helen E.; Davis-Poynter, Nick; Bruce, Kimberley; Lawler, Clara; Dolken, Lars; Mach, Michael
2015-01-01
ABSTRACT Cytomegaloviruses (CMVs) establish chronic infections that spread from a primary entry site to secondary vascular sites, such as the spleen, and then to tertiary shedding sites, such as the salivary glands. Human CMV (HCMV) is difficult to analyze, because its spread precedes clinical presentation. Murine CMV (MCMV) offers a tractable model. It is hypothesized to spread from peripheral sites via vascular endothelial cells and associated monocytes. However, viral luciferase imaging showed footpad-inoculated MCMV first reaching the popliteal lymph nodes (PLN). PLN colonization was rapid and further spread was slow, implying that LN infection can be a significant bottleneck. Most acutely infected PLN cells were CD169+ subcapsular sinus macrophages (SSM). Replication-deficient MCMV also reached them, indicating direct infection. Many SSM expressed viral reporter genes, but few expressed lytic genes. SSM expressed CD11c, and MCMV with a cre-sensitive fluorochrome switch showed switched infected cells in PLN of CD11c-cre mice but yielded little switched virus. SSM depletion with liposomal clodronate or via a CD169-diphtheria toxin receptor transgene shifted infection to ER-TR7+ stromal cells, increased virus production, and accelerated its spread to the spleen. Therefore, MCMV disseminated via LN, and SSM slowed this spread by shielding permissive fibroblasts and poorly supporting viral lytic replication. IMPORTANCE HCMV chronically infects most people, and it can cause congenital disability and harm the immunocompromised. A major goal of vaccination is to prevent systemic infection. How this is established is unclear. Restriction to humans makes HCMV difficult to analyze. We show that peripheral MCMV infection spreads via lymph nodes. Here, MCMV infected filtering macrophages, which supported virus replication poorly. When these macrophages were depleted, MCMV infected susceptible fibroblasts and spread faster. The capacity of filtering macrophages to limit MCMV spread argued that their infection is an important bottleneck in host colonization and might be a good vaccine target. PMID:25926638
NASA Astrophysics Data System (ADS)
Tsiola, Anastasia; Pitta, Paraskevi; Giannakourou, Antonia; Bourdin, Guillaume; Marro, Sophie; Maugendre, Laure; Pedrotti, Maria Luiza; Gazeau, Frédéric
2017-02-01
The frequency of lytically infected and lysogenic cells (FLIC and FLC, respectively) was estimated during an in situ mesocosm experiment studying the impact of ocean acidification on the plankton community of a low nutrient low chlorophyll (LNLC) system in the north-western Mediterranean Sea (Bay of Villefranche, France) in February/March 2013. No direct effect of elevated partial pressure of CO2 (pCO2) on viral replication cycles could be detected. FLC variability was negatively correlated to heterotrophic bacterial and net community production as well as the ambient bacterial abundance, confirming that lysogeny is a prevailing life strategy under unfavourable-for-the-hosts conditions. Further, the phytoplankton community, assessed by chlorophyll a concentration and the release of >0.4 μm transparent exopolymeric particles, was correlated with the occurrence of lysogeny, indicating a possible link between photosynthetic processes and bacterial growth. Higher FLC was found occasionally at the highest pCO2-treated mesocosm in parallel to subtle differences in the phytoplankton community. This observation suggests that elevated pCO2 could lead to short-term alterations in lysogenic dynamics coupled to phytoplankton-derived processes. Correlation of FLIC with any environmental parameter could have been obscured by the sampling time or the synchronization of lysis to microbial processes not assessed in this experiment. Furthermore, alterations in microbial and viral assemblage composition and gene expression could be a confounding factor. Viral-induced modifications in organic matter flow affect bacterial growth and could interact with ocean acidification with unpredictable ecological consequences.
Wagenknecht, Nadine; Reuter, Nina; Scherer, Myriam; Reichel, Anna; Müller, Regina; Stamminger, Thomas
2015-01-01
Promyelocytic leukemia nuclear bodies, also termed nuclear domain 10 (ND10), have emerged as nuclear protein accumulations mediating an intrinsic cellular defense against viral infections via chromatin-based mechanisms, however, their contribution to the control of herpesviral latency is still controversial. In this study, we utilized the monocytic cell line THP-1 as an in vitro latency model for human cytomegalovirus infection (HCMV). Characterization of THP-1 cells by immunofluorescence and Western blot analysis confirmed the expression of all major ND10 components. THP-1 cells with a stable, individual knockdown of PML, hDaxx or Sp100 were generated. Importantly, depletion of the major ND10 proteins did not prevent the terminal cellular differentiation of THP-1 monocytes. After construction of a recombinant, endotheliotropic human cytomegalovirus expressing IE2-EYFP, we investigated whether the depletion of ND10 proteins affects the onset of viral IE gene expression. While after infection of differentiated, THP-1-derived macrophages as well as during differentiation-induced reactivation from latency an increase in the number of IE-expressing cells was readily detectable in the absence of the major ND10 proteins, no effect was observed in non-differentiated monocytes. We conclude that PML, hDaxx and Sp100 primarily act as cellular restriction factors during lytic HCMV replication and during the dynamic process of reactivation but do not serve as key determinants for the establishment of HCMV latency. PMID:26057166
Fragment-Based Protein-Protein Interaction Antagonists of a Viral Dimeric Protease.
Gable, Jonathan E; Lee, Gregory M; Acker, Timothy M; Hulce, Kaitlin R; Gonzalez, Eric R; Schweigler, Patrick; Melkko, Samu; Farady, Christopher J; Craik, Charles S
2016-04-19
Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose-response determination was performed as a confirmation screen, and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed by NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80 % of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogues. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sexton, Brittany S.; Druliner, Brooke R.; Vera, Daniel L.; Avey, Denis; Zhu, Fanxiu; Dennis, Jonathan H.
2016-01-01
Nucleosome occupancy is critically important in regulating access to the eukaryotic genome. Few studies in human cells have measured genome-wide nucleosome distributions at high temporal resolution during a response to a common stimulus. We measured nucleosome distributions at high temporal resolution following Kaposi's-sarcoma-associated herpesvirus (KSHV) reactivation using our newly developed mTSS-seq technology, which maps nucleosome distribution at the transcription start sites (TSS) of all human genes. Nucleosomes underwent widespread changes in organization 24 hours after KSHV reactivation and returned to their basal nucleosomal architecture 48 hours after KSHV reactivation. The widespread changes consisted of an indiscriminate remodeling event resulting in the loss of nucleosome rotational phasing signals. Additionally, one in six TSSs in the human genome possessed nucleosomes that are translationally remodeled. 72% of the loci with translationally remodeled nucleosomes have nucleosomes that moved to positions encoded by the underlying DNA sequence. Finally we demonstrated that these widespread alterations in nucleosomal architecture potentiated regulatory factor binding. These descriptions of nucleosomal architecture changes provide a new framework for understanding the role of chromatin in the genomic response, and have allowed us to propose a hierarchical model for chromatin-based regulation of genome response. PMID:26771136
Yang, Yajie; Boss, Isaac W; McIntyre, Lauren M; Renne, Rolf
2014-08-08
Kaposi's sarcoma associated herpes virus (KSHV) is associated with tumors of endothelial and lymphoid origin. During latent infection, KSHV expresses miR-K12-11, an ortholog of the human tumor gene hsa-miR-155. Both gene products are microRNAs (miRNAs), which are important post-transcriptional regulators that contribute to tissue specific gene expression. Advances in target identification technologies and molecular interaction databases have allowed a systems biology approach to unravel the gene regulatory networks (GRNs) triggered by miR-K12-11 in endothelial and lymphoid cells. Understanding the tissue specific function of miR-K12-11 will help to elucidate underlying mechanisms of KSHV pathogenesis. Ectopic expression of miR-K12-11 differentially affected gene expression in BJAB cells of lymphoid origin and TIVE cells of endothelial origin. Direct miRNA targeting accounted for a small fraction of the observed transcriptome changes: only 29 genes were identified as putative direct targets of miR-K12-11 in both cell types. However, a number of commonly affected biological pathways, such as carbohydrate metabolism and interferon response related signaling, were revealed by gene ontology analysis. Integration of transcriptome profiling, bioinformatic algorithms, and databases of protein-protein interactome from the ENCODE project identified different nodes of GRNs utilized by miR-K12-11 in a tissue-specific fashion. These effector genes, including cancer associated transcription factors and signaling proteins, amplified the regulatory potential of a single miRNA, from a small set of putative direct targets to a larger set of genes. This is the first comparative analysis of miRNA-K12-11's effects in endothelial and B cells, from tissues infected with KSHV in vivo. MiR-K12-11 was able to broadly modulate gene expression in both cell types. Using a systems biology approach, we inferred that miR-K12-11 establishes its GRN by both repressing master TFs and influencing signaling pathways, to counter the host anti-viral response and to promote proliferation and survival of infected cells. The targeted GRNs are more reproducible and informative than target gene identification, and our approach can be applied to other regulatory factors of interest.
A Gammaherpesviral Internal Repeat Contributes to Latency Amplification
Thakur, Nagendra N.; El-Gogo, Susanne; Steer, Beatrix; Freimüller, Klaus; Waha, Andreas; Adler, Heiko
2007-01-01
Background Gammaherpesviruses cause important infections of humans, in particular in immunocompromised patients. The genomes of gammaherpesviruses contain variable numbers of internal repeats whose precise role for in vivo pathogenesis is not well understood. Methodology/Principal Findings We used infection of laboratory mice with murine gammaherpesvirus 68 (MHV-68) to explore the biological role of the 40 bp internal repeat of MHV-68. We constructed several mutant viruses partially or completely lacking this repeat. Both in vitro and in vivo, the loss of the repeat did not substantially affect lytic replication of the mutant viruses. However, the extent of splenomegaly, which is associated with the establishment of latency, and the number of ex vivo reactivating and genome positive splenocytes were reduced. Since the 40 bp repeat is part of the hypothetical open reading frame (ORF) M6, it might function as part of M6 or as an independent structure. To differentiate between these two possibilities, we constructed an N-terminal M6STOP mutant, leaving the repeat structure intact but rendering ORF M6 unfunctional. Disruption of ORF M6 did neither affect lytic nor latent infection. In contrast to the situation in lytically infected NIH3T3 cells, the expression of the latency-associated genes K3 and ORF72 was reduced in the latently infected murine B cell line Ag8 in the absence of the 40 bp repeat. Conclusions/Significance These data suggest that the 40 bp repeat contributes to latency amplification and might be involved in the regulation of viral gene expression. PMID:17710133
Venter, E; van der Merwe, C F; Buys, A V; Huismans, H; van Staden, V
2014-03-01
African horse sickness virus (AHSV) is an arbovirus capable of successfully replicating in both its mammalian host and insect vector. Where mammalian cells show a severe cytopathic effect (CPE) following AHSV infection, insect cells display no CPE. These differences in cell death could be linked to the method of viral release, i.e. lytic or non-lytic, that predominates in a specific cell type. Active release of AHSV, or any related orbivirus, has, however, not yet been documented from insect cells. We applied an integrated microscopy approach to compare the nanomechanical and morphological response of mammalian and insect cells to AHSV infection. Atomic force microscopy revealed plasma membrane destabilization, integrity loss and structural deformation of the entire surface of infected mammalian cells. Infected insect cells, in contrast, showed no morphological differences from mock-infected cells other than an increased incidence of circular cavities present on the cell surface. Transmission electron microscopy imaging identified a novel large vesicle-like compartment within infected insect cells, not present in mammalian cells, containing viral proteins and virus particles. Extracellular clusters of aggregated virus particles were visualized adjacent to infected insect cells with intact plasma membranes. We propose that foreign material is accumulated within these vesicles and that their subsequent fusion with the cell membrane releases entrapped viruses, thereby facilitating a non-lytic virus release mechanism different from the budding previously observed in mammalian cells. This insect cell-specific defence mechanism contributes to the lack of cell damage observed in AHSV-infected insect cells.
A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export.
Gong, Danyang; Kim, Yong Hoon; Xiao, Yuchen; Du, Yushen; Xie, Yafang; Lee, Kevin K; Feng, Jun; Farhat, Nisar; Zhao, Dawei; Shu, Sara; Dai, Xinghong; Chanda, Sumit K; Rana, Tariq M; Krogan, Nevan J; Sun, Ren; Wu, Ting-Ting
2016-11-09
Nuclear mRNA export is highly regulated to ensure accurate cellular gene expression. Viral inhibition of cellular mRNA export can enhance viral access to the cellular translation machinery and prevent anti-viral protein production but is generally thought to be nonselective. We report that ORF10 of Kaposi's sarcoma-associated herpesvirus (KSHV), a nuclear DNA virus, inhibits mRNA export in a transcript-selective manner to control cellular gene expression. Nuclear export inhibition by ORF10 requires an interaction with an RNA export factor, Rae1. Genome-wide analysis reveals a subset of cellular mRNAs whose nuclear export is blocked by ORF10 with the 3' UTRs of ORF10-targeted transcripts conferring sensitivity to export inhibition. The ORF10-Rae1 interaction is important for the virus to express viral genes and produce infectious virions. These results suggest that a nuclear DNA virus can selectively interfere with RNA export to restrict host gene expression for optimal replication. Published by Elsevier Inc.
Spectrum of Kaposi's Sarcoma-Associated Herpesvirus, or Human Herpesvirus 8, Diseases
Ablashi, Dharam V.; Chatlynne, Louise G.; Whitman, Jr., James E.; Cesarman, Ethel
2002-01-01
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), discovered in 1994, is a human rhadinovirus (gamma-2 herpesvirus). Unlike other human herpesviruses (herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, cytomegalovirus, HHV-6, and HHV-7), it is not widespread in the general population and has many unique proteins. HHV-8 is strongly associated with all subtypes of Kaposi's sarcoma (KS), multicentric Castleman's disease, and a rare form of B-cell lymphoma, primary effusion lymphoma. In addition, HHV-8 DNA sequences have been found in association with other diseases, but the role of the virus in these diseases is largely unconfirmed and remains controversial. The seroprevalence of HHV-8, based on detection of latent and lytic proteins, is 2 to 5% in healthy donors except in certain geographic areas where the virus is endemic, 80 to 95% in classic KS patients, and 40 to 50% in HIV-1 patients without KS. This virus can be transmitted both sexually and through body fluids (e.g., saliva and blood). HHV-8 is a transforming virus, as evidenced by its presence in human malignancies, by the in vitro transforming properties of several of its viral genes, and by its ability to transform some primary cells in culture. It is not, however, sufficient for transformation, and other cofactors such as immunosuppressive cytokines are involved in the development of HHV-8-associated malignancies. In this article, we review the biology, molecular virology, epidemiology, transmission, detection methods, pathogenesis, and antiviral therapy of this newly discovered human herpesvirus. PMID:12097251
HSV as a vector in vaccine development and gene therapy.
Marconi, Peggy; Argnani, Rafaela; Epstein, Alberto L; Manservigi, Roberto
2009-01-01
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), major human pathogen whose lifestyle is based on a long-term dual interaction with the infected host characterized by the existence of lytic and latent infections, has allowed the development of potential vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous system, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases and targeted infection of specific tissues or organs. Three different classes of vectors can be derived from HSV-1: replication-competent attenuated vectors, replication-incompetent recombinant vectors and defective helper-dependent vectors known as amplicons. This chapter highlights the current knowledge concerning design, construction and recent applications, as well as the potential and current limitations of the three different classes of HSV-1-based vectors.
Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene.
Gergen, Janina; Coulon, Flora; Creneguy, Alison; Elain-Duret, Nathan; Gutierrez, Alejandra; Pinkenburg, Olaf; Verhoeyen, Els; Anegon, Ignacio; Nguyen, Tuan Huy; Halary, Franck Albert; Haspot, Fabienne
2018-01-01
Anti-HCMV treatments used in immunosuppressed patients reduce viral replication, but resistant viral strains can emerge. Moreover, these drugs do not target latently infected cells. We designed two anti-viral CRISPR/Cas9 strategies to target the UL122/123 gene, a key regulator of lytic replication and reactivation from latency. The singleplex strategy contains one gRNA to target the start codon. The multiplex strategy contains three gRNAs to excise the complete UL122/123 gene. Primary fibroblasts and U-251 MG cells were transduced with lentiviral vectors encoding Cas9 and one or three gRNAs. Both strategies induced mutations in the target gene and a concomitant reduction of immediate early (IE) protein expression in primary fibroblasts. Further detailed analysis in U-251 MG cells showed that the singleplex strategy induced 50% of indels in the viral genome, leading to a reduction in IE protein expression. The multiplex strategy excised the IE gene in 90% of all viral genomes and thus led to the inhibition of IE protein expression. Consequently, viral genome replication and late protein expression were reduced by 90%. Finally, the production of new viral particles was nearly abrogated. In conclusion, the multiplex anti-UL122/123 CRISPR/Cas9 system can target the viral genome efficiently enough to significantly prevent viral replication.
Snodgrass, Ryan; Gardner, Andrea; Jiang, Li; Fu, Cheng; Cesarman, Ethel; Erickson, David
2016-01-01
Resource-limited settings present unique engineering challenges for medical diagnostics. Diagnosis is often needed for those unable to reach central healthcare systems, making portability and independence from traditional energy infrastructure essential device parameters. In 2014, our group presented a microfluidic device that performed a solar-powered variant of the polymerase chain reaction, which we called solar thermal PCR. In this work, we expand on our previous effort by presenting an integrated, portable, solar thermal PCR system targeted towards the diagnosis of Kaposi’s sarcoma. We call this system KS-Detect, and we now report the system’s performance as a diagnostic tool using pseudo-biopsy samples made from varying concentrations of human lymphoma cell lines positive for the KS herpesvirus (KSHV). KS-Detect achieved 83% sensitivity and 70% specificity at high (≥10%) KSHV+ cell concentrations when diagnosing pseudo-biopsy samples by smartphone image. Using histology, we confirm that our prepared pseudo-biopsies contain similar KSHV+ cell concentrations as human biopsies positive for KS. Through our testing of samples derived from human cell lines, we validate KS-Detect as a viable, portable KS diagnostic tool, and we identify critical engineering considerations for future solar-thermal PCR devices. PMID:26799834
Tesfalul, Martha; Simbiri, Kenneth; Wheat, Chikoti M.; Motsepe, Didintle; Goldbach, Hayley; Armstrong, Kathleen; Hudson, Kathryn; Kayembe, Mukendi K.; Robertson, Erle; Kovarik, Carrie
2014-01-01
Objective The primary aim of this study is to describe the prevalence of select oncogenic viruses within vulvar squamous cell carcinoma (VSCC) and their association with Human Immunodeficiency Virus (HIV) status in women in Botswana, where the national HIV prevalence is the third highest in the world. Methods/materials A cross-sectional study of biopsy-confirmed VSCC specimens and corresponding clinical data was conducted in Gaborone, Botswana. Polymerase Chain Reaction (PCR) and Immunohistochemistry (IHC) viral testing were done for Epstein-Barr Virus (EBV), Human Papilloma Virus (HPV) strains, and Kaposi's Sarcoma Herpesvirus (KSHV), and PCR viral testing alone was done for John Cunningham Virus (JCV). Results HPV prevalence by PCR was 100% (39/39 35/35) among tested samples. HPV16 was the most prevalent HPV strain (82.9% by PCR, 94.7% by either PCR or IHC). KSHV prevalence by PCR had a significant association with HIV status (p = 0.013), but not by IHC (p = 0.650). Conclusions The high burden of HPV, specifically HPV16, in VSCC in Botswana suggests a distinct HPV profile that differs from other studied populations, which provides increased motivation for HPV vaccination efforts. Oncogenic viruses KSHV and EBV were also more prevalent in our study population though their potential role in VSCC pathology is unclear. PMID:24651632
NASA Astrophysics Data System (ADS)
Mancuso, Matthew; Jiang, Li; Cesarman, Ethel; Erickson, David
2013-01-01
Kaposi's sarcoma (KS) is an infectious cancer occurring most commonly in human immunodeficiency virus (HIV) positive patients and in endemic regions, such as Sub-Saharan Africa, where KS is among the top four most prevalent cancers. The cause of KS is the Kaposi's sarcoma-associated herpesvirus (KSHV, also called HHV-8), an oncogenic herpesvirus that while routinely diagnosed in developed nations, provides challenges to developing world medical providers and point-of-care detection. A major challenge in the diagnosis of KS is the existence of a number of other diseases with similar clinical presentation and histopathological features, requiring the detection of KSHV in a biopsy sample. In this work we develop an answer to this challenge by creating a multiplexed one-pot detection system for KSHV DNA and DNA from a frequently confounding disease, bacillary angiomatosis. Gold and silver nanoparticle aggregation reactions are tuned for each target and a multi-color change system is developed capable of detecting both targets down to levels between 1 nM and 2 nM. The system developed here could later be integrated with microfluidic sample processing to create a final device capable of solving the two major challenges in point-of-care KS detection.
Simian Homologues of Human Gamma-2 and Betaherpesviruses in Mandrill and Drill Monkeys
Lacoste, Vincent; Mauclere, Philippe; Dubreuil, Guy; Lewis, John; Georges-Courbot, Marie-Claude; Rigoulet, Jacques; Petit, Thierry; Gessain, Antoine
2000-01-01
Recent serological and molecular surveys of different primate species allowed the characterization of several Kaposi's sarcoma-associated herpesvirus (KSHV) homologues in macaques, African green monkeys, chimpanzees, and gorillas. Identification of these new primate rhadinoviruses revealed the existence of two distinct genogroups, called RV1 and RV2. Using a degenerate consensus primer PCR method for the herpesvirus DNA polymerase gene, the presence of KSHV homologues has been investigated in two semi-free-ranging colonies of eight drill (Mandrillus leucophaeus), five mandrill (Mandrillus sphinx), and two hybrid (Mandrillus leucophaeus-Mandrillus sphinx) monkeys, living in Cameroon and Gabon, Central Africa. This search revealed the existence of not only two distinct KSHV homologues, each one belonging to one of the two rhadinovirus genogroups, but also of two new betaherpesvirus sequences, one being close to cytomegaloviruses and the other being related to human herpesviruses 6 and 7 (HHV-6 and -7). The latter viruses are the first simian HHV-6 and -7 homologues identified to date. These data show that mandrill and drill monkeys are the hosts of at least four novel distinct herpesviruses. Moreover, mandrills, like macaques and African green monkeys, harbor also two distinct gamma-2 herpesviruses, thus strongly suggesting that a second gamma-2 herpesvirus, belonging to the RV2 genogroup, may exist in humans. PMID:11090203
Zebra Alphaherpesviruses (EHV-1 and EHV-9): Genetic Diversity, Latency and Co-Infections.
Abdelgawad, Azza; Damiani, Armando; Ho, Simon Y W; Strauss, Günter; Szentiks, Claudia A; East, Marion L; Osterrieder, Nikolaus; Greenwood, Alex D
2016-09-20
Alphaherpesviruses are highly prevalent in equine populations and co-infections with more than one of these viruses' strains frequently diagnosed. Lytic replication and latency with subsequent reactivation, along with new episodes of disease, can be influenced by genetic diversity generated by spontaneous mutation and recombination. Latency enhances virus survival by providing an epidemiological strategy for long-term maintenance of divergent strains in animal populations. The alphaherpesviruses equine herpesvirus 1 (EHV-1) and 9 (EHV-9) have recently been shown to cross species barriers, including a recombinant EHV-1 observed in fatal infections of a polar bear and Asian rhinoceros. Little is known about the latency and genetic diversity of EHV-1 and EHV-9, especially among zoo and wild equids. Here, we report evidence of limited genetic diversity in EHV-9 in zebras, whereas there is substantial genetic variability in EHV-1. We demonstrate that zebras can be lytically and latently infected with both viruses concurrently. Such a co-occurrence of infection in zebras suggests that even relatively slow-evolving viruses such as equine herpesviruses have the potential to diversify rapidly by recombination. This has potential consequences for the diagnosis of these viruses and their management in wild and captive equid populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakao, Kazufumi; Watanabe, Tadashi; Takadama, Tadatoshi
Highlights: • Sangivamycin induces the apoptosis of B cell lymphoma PEL cells. • Sangivamycin suppresses Erk signaling by inhibiting Erk phosphorylation in PEL cells. • The activation of Erk signaling is essential for PEL cell survival. • Sangivamycin induces the apoptosis of PEL cells without production of progeny virus. • Sangivamycin may serve as a novel drug for the treatment of PEL. - Abstract: Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’smore » sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that sangivamycin may find clinical utility as a novel anti-cancer agent targeting PEL.« less
Brehm, Sylvia P.; Welker, N. E.
1974-01-01
Phage TP-8 lysates of Bacillus stearothermophilus 4S or 4S(8) contain lytic activity exhibiting two pH optima, one at pH 6.5 and the other at pH 7.5. Using a variety of fractionation procedures, the two lytic activities could not be separated. At pH 7.5 the lytic enzyme is an endopeptidase which hydrolyzes the l-alanyl-d-glutamyl linkage in the peptide subunits of the cell wall peptidoglycan and at pH 6.5 it exhibits N-acetylmuramidase activity. Endopeptidase activity is inhibited by NaCl and neither lytic activity was significantly affected by divalent cations or ethylenediaminetetraacetic acid. Crude lysates contain 2.5 to 3.0 times more endopeptidase activity than N-acetylmuramidase activity. The ratio of the two lytic activities (endopeptidase/N-acetylmuramidase) changes to 1.3 to 1.7 during the course of purification, to 1.0 after isoelectric focusing, and 3.9 and 6.00 after exposure for 2 h at 60 and 65 C, respectively. We conclude that the two lytic activities may be associated with a single protein or a lytic enzyme complex composed of two enzymes. Lytic activity at pH 7.5 is more effective in solubilizing cells or cell walls than the lytic activity at pH 6.5. LiCl extracts of 4S and 4S(8) cells contain lytic activity exhibiting endopeptidase activity at pH 7.5 and N-acetylmuramidase activity at pH 6.5. Lytic activity in these LiCl extracts also has a number of other properties in common with those in lysates of phage TP-8. We proposed that the lytic enzyme(s) are not coded for by the phage genome but are part of the host autolytic system. PMID:4218232
Dynamic Epstein-Barr Virus Gene Expression on the Path to B-Cell Transformation
Price, Alexander M.; Luftig, Micah A.
2016-01-01
Epstein-Barr Virus is an oncogenic human herpesvirus in the γ-herpesvirinae sub-family that contains a 170–180 kb double stranded DNA genome. In vivo, EBV commonly infects B and epithelial cells and persists for the life of the host in a latent state in the memory B cell compartment of the peripheral blood. EBV can be reactivated from its latent state leading to increased expression of lytic genes that primarily encode for enzymes necessary to replicate the viral genome as well as structural components of the virion. Lytic cycle proteins also aid in immune evasion, inhibition of apoptosis, and the modulation of other host responses to infection. In vitro, EBV has the potential to infect primary human B cells and induce cellular proliferation to yield effectively immortalized lymphoblastoid cell lines, or LCLs. EBV immortalization of B cells in vitro serves as a model system for studying EBV-mediated lymphomagenesis. While much is known about the steady state viral gene expression within EBV immortalized LCLs and other EBV-positive cell lines, relatively little is known about the early events after primary B-cell infection. It was previously thought that upon latent infection EBV only expressed the well-characterized latency associated transcripts found in LCLs. However, recent work has characterized the early, but transient, expression of lytic genes necessary for efficient transformation as well as delayed responses in the known latency genes. This review summarizes these recent findings that show how dynamic and controlled expression of multiple EBV genes can control the activation of B cells, entry into the cell cycle, inhibition of apoptosis, and control of innate and adaptive immune responses. PMID:24373315
Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes.
Koganti, Siva; Clark, Carissa; Zhi, Jizu; Li, Xiaofan; Chen, Emily I; Chakrabortty, Sharmistha; Hill, Erik R; Bhaduri-McIntosh, Sumita
2015-05-01
A major hurdle to killing Epstein-Barr virus (EBV)-infected tumor cells using oncolytic therapy is the presence of a substantial fraction of EBV-infected cells that does not support the lytic phase of EBV despite exposure to lytic cycle-promoting agents. To determine the mechanism(s) underlying this refractory state, we developed a strategy to separate lytic from refractory EBV-positive (EBV(+)) cells. By examining the cellular transcriptome in separated cells, we previously discovered that high levels of host STAT3 (signal transducer and activator of transcription 3) curtail the susceptibility of latently infected cells to lytic cycle activation signals. The goals of the present study were 2-fold: (i) to determine the mechanism of STAT3-mediated resistance to lytic activation and (ii) to exploit our findings to enhance susceptibility to lytic activation. We therefore analyzed our microarray data set, cellular proteomes of separated lytic and refractory cells, and a publically available STAT3 chromatin immunoprecipitation sequencing (ChIP-Seq) data set to identify cellular PCBP2 [poly(C)-binding protein 2], an RNA-binding protein, as a transcriptional target of STAT3 in refractory cells. Using Burkitt lymphoma cells and EBV(+) cell lines from patients with hypomorphic STAT3 mutations, we demonstrate that single cells expressing high levels of PCBP2 are refractory to spontaneous and induced EBV lytic activation, STAT3 functions via cellular PCBP2 to regulate lytic susceptibility, and suppression of PCBP2 levels is sufficient to increase the number of EBV lytic cells. We expect that these findings and the genome-wide resources that they provide will accelerate our understanding of a longstanding mystery in EBV biology and guide efforts to improve oncolytic therapy for EBV-associated cancers. Most humans are infected with Epstein-Barr virus (EBV), a cancer-causing virus. While EBV generally persists silently in B lymphocytes, periodic lytic (re)activation of latent virus is central to its life cycle and to most EBV-related diseases. However, a substantial fraction of EBV-infected B cells and tumor cells in a population is refractory to lytic activation. This resistance to lytic activation directly and profoundly impacts viral persistence and the effectiveness of oncolytic therapy for EBV(+) cancers. To identify the mechanisms that underlie susceptibility to EBV lytic activation, we used host gene and protein expression profiling of separated lytic and refractory cells. We find that STAT3, a transcription factor overactive in many cancers, regulates PCBP2, a protein important in RNA biogenesis, to regulate susceptibility to lytic cycle activation signals. These findings advance our understanding of EBV persistence and provide important leads on devising methods to improve viral oncolytic therapies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Cohen, Camille; Streichenberger, Nathalie; Texier, Pascale; Takissian, Julie; Rousseau, Antoine; Poccardi, Nolwenn; Welsch, Jérémy; Corpet, Armelle; Schaeffer, Laurent; Labetoulle, Marc; Lomonte, Patrick
2016-01-01
Herpes simplex virus 1 (HSV-1) establishes latency in trigeminal ganglia (TG) sensory neurons of infected individuals. The commitment of infected neurons toward the viral lytic or latent transcriptional program is likely to depend on both viral and cellular factors, and to differ among individual neurons. In this study, we used a mouse model of HSV-1 infection to investigate the relationship between viral genomes and the nuclear environment in terms of the establishment of latency. During acute infection, viral genomes show two major patterns: replication compartments or multiple spots distributed in the nucleoplasm (namely “multiple-acute”). Viral genomes in the “multiple-acute” pattern are systematically associated with the promyelocytic leukemia (PML) protein in structures designated viral DNA-containing PML nuclear bodies (vDCP-NBs). To investigate the viral and cellular features that favor the acquisition of the latency-associated viral genome patterns, we infected mouse primary TG neurons from wild type (wt) mice or knock-out mice for type 1 interferon (IFN) receptor with wt or a mutant HSV-1, which is unable to replicate due to the synthesis of a non-functional ICP4, the major virus transactivator. We found that the inability of the virus to initiate the lytic program combined to its inability to synthesize a functional ICP0, are the two viral features leading to the formation of vDCP-NBs. The formation of the “multiple-latency” pattern is favored by the type 1 IFN signaling pathway in the context of neurons infected by a virus able to replicate through the expression of a functional ICP4 but unable to express functional VP16 and ICP0. Analyses of TGs harvested from HSV-1 latently infected humans showed that viral genomes and PML occupy similar nuclear areas in infected neurons, eventually forming vDCP-NB-like structures. Overall our study designates PML protein and PML-NBs to be major cellular components involved in the control of HSV-1 latency, probably during the entire life of an individual. PMID:27618691
Selective inhibition of Bacillus subtilis sporulation by acridine orange and promethazine.
Burke, W F; Spizizen, J
1977-03-01
Two structurally similar compounds were found to inhibit sporulation in Bacillus subtilis 168. A dye, acridine orange, and an antischizophrenic drug, promethazine, blocked spore formation at concentrations subinhibitory to vegetative growth, while allowing synthesis of serine protease, antibiotic, and certain catabolite-repressed enzymes. The sporulation process was sensitive to promethazine through T2, whereas acridine orange was inhibitory until T4. The drug-treated cells were able to support the replication of phages phie and phi29, although the lytic cycles were altered slightly. The selective inhibition of sporulation by these compounds may be related to the affinity of some sporulation-specific genes to intercalating compounds.
Identification of two novel functional p53 responsive elements in the Herpes Simplex Virus-1 genome
Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R.; Boehmer, Paul E.
2014-01-01
Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. PMID:25010269
The eIF4AIII RNA helicase is a critical determinant of human cytomegalovirus replication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziehr, Ben; Lenarcic, Erik; Cecil, Chad
Human cytomegalovirus (HCMV) was recently shown to encode a large number of spliced mRNAs. While the nuclear export of unspliced viral transcripts has been extensively studied, the role of host mRNA export factors in HCMV mRNA trafficking remains poorly defined. We found that the eIF4AIII RNA helicase, a component of the exon junction complex, was necessary for efficient virus replication. Depletion of eIF4AIII limited viral DNA accumulation, export of viral mRNAs from the nucleus, and the production of progeny virus. However eIF4AIII was dispensable for the association of viral transcripts with ribosomes. We found that pateamine A, a natural compoundmore » that inhibits both eIF4AI/II and eIF4AIII, has potent antiviral activity and inhibits HCMV replication throughout the virus lytic cycle. Our results demonstrate that eIF4AIII is required for efficient HCMV replication, and suggest that eIF4A family helicases may be a new class of targets for the development of host-directed antiviral therapeutics. - Highlights: • The host eIF4AIII RNA helicase is required for efficient HCMV replication. • Depleting eIF4AIII inhibited the nuclear export of HCMV mRNAs. • HCMV mRNAs did not require eIF4AIII to associate with polyribosomes. • The eIF4A family helicases may be new targets for host-directed antiviral drugs.« less
Drug Modulators of B Cell Signaling Pathways and Epstein-Barr Virus Lytic Activation.
Kosowicz, John G; Lee, Jaeyeun; Peiffer, Brandon; Guo, Zufeng; Chen, Jianmeng; Liao, Gangling; Hayward, S Diane; Liu, Jun O; Ambinder, Richard F
2017-08-15
Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that establishes a latency reservoir in B cells. In this work, we show that ibrutinib, idelalisib, and dasatinib, drugs that block B cell receptor (BCR) signaling and are used in the treatment of hematologic malignancies, block BCR-mediated lytic induction at clinically relevant doses. We confirm that the immunosuppressive drugs cyclosporine and tacrolimus also inhibit BCR-mediated lytic induction but find that rapamycin does not inhibit BCR-mediated lytic induction. Further investigation shows that mammalian target of rapamycin complex 2 (mTORC2) contributes to BCR-mediated lytic induction and that FK506-binding protein 12 (FKBP12) binding alone is not adequate to block activation. Finally, we show that BCR signaling can activate EBV lytic induction in freshly isolated B cells from peripheral blood mononuclear cells (PBMCs) and that activation can be inhibited by ibrutinib or idelalisib. IMPORTANCE EBV establishes viral latency in B cells. Activation of the B cell receptor pathway activates lytic viral expression in cell lines. Here we show that drugs that inhibit important kinases in the BCR signaling pathway inhibit activation of lytic viral expression but do not inhibit several other lytic activation pathways. Immunosuppressant drugs such as cyclosporine and tacrolimus but not rapamycin also inhibit BCR-mediated EBV activation. Finally, we show that BCR activation of lytic infection occurs not only in tumor cell lines but also in freshly isolated B cells from patients and that this activation can be blocked by BCR inhibitors. Copyright © 2017 American Society for Microbiology.
[Potentialization of antibiotics by lytic enzymes].
Brisou, J; Babin, P; Babin, R
1975-01-01
Few lytic enzymes, specially papaine and lysozyme, acting on the membrane and cell wall structures facilitate effects of bacitracine, streptomycine and other antibiotics. Streptomycino resistant strains became sensibles to this antibiotic after contact with papaine and lysozyme. The results of tests in physiological suspensions concern only the lytic activity of enzymes. The results on nutrient medium concern together lytic, and antibiotic activities.
Ramakrishna, Vivek A S; Chamoli, Uphar; Viglione, Luke L; Tsafnat, Naomi; Diwan, Ashish D
2018-04-02
Spondylolytic (or lytic) spondylolisthesis is often associated with disc degeneration at the index-level; however, it is not clear if disc degeneration is the cause or the consequence of lytic spondylolisthesis. The main objective of this computed tomography based finite element modelling study was to examine the role of different grades of disc degeneration in the progression of a bilateral L5-lytic defect to spondylolisthesis. High-resolution computed tomography data of the lumbosacral spine from an anonymised healthy male subject (26 years old) were segmented to build a 3D-computational model of an INTACT L1-S1 spine. The INTACT model was manipulated to generate four more models representing a bilateral L5-lytic defect and the following states of the L5-S1 disc: nil degeneration (NOR LYTIC), mild degeneration (M-DEG LYTIC), mild degeneration with 50% disc height collapse (M-DEG-COL LYTIC), and severe degeneration with 50% disc height collapse(S-COL LYTIC). The models were imported into a finite element modelling software for pre-processing, running nonlinear-static solves, and post-processing of the results. Compared with the baseline INTACT model, M-DEG LYTIC model experienced the greatest increase in kinematics (Fx range of motion: 73% ↑, Fx intervertebral translation: 53%↑), shear stresses in the annulus (Fx anteroposterior: 163%↑, Fx posteroanterior: 31%↑), and strain in the iliolumbar ligament (Fx: 90%↑). The S-COL LYTIC model experienced a decrease in mobility (Fx range of motion: 48%↓, Fx intervertebral translation: 69%↓) and an increase in normal stresses in the annulus (Fx Tensile: 170%↑; Fx Compressive: 397%↑). No significant difference in results was noted between M-DEG-COL LYTIC and S-COL LYTIC models. In the presence of a bilateral L5 spondylolytic defect, a mildly degenerate index-level disc experienced greater intervertebral motions and shear stresses compared with a severely degenerate index-level disc in flexion and extension bending motions. Disc height collapse, with or without degenerative changes in the stiffness properties of the disc, is one of the plausible re-stabilisation mechanisms available to the L5-S1 motion segment to mitigate increased intervertebral motions and shear stresses due to a bilateral L5 lytic defect.
Bogani, Federica; Boehmer, Paul E.
2008-01-01
Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymerase (Pol) (UL30) exhibits apurinic/apyrimidinic (AP) and 5′-deoxyribose phosphate (dRP) lyase activities. These activities are integral to BER and lead to DNA cleavage on the 3′ side of abasic sites and 5′-dRP residues that remain after cleavage by 5′-AP endonuclease. The UL30-catalyzed reaction occurs independently of divalent cation and proceeds via a Schiff base intermediate, indicating that it occurs via a lyase mechanism. Partial proteolysis of the Schiff base shows that the DNA lyase activity resides in the Pol domain of UL30. These observations together with the presence of a virus-encoded uracil DNA glycosylase indicates that HSV-1 has the capacity to perform critical steps in BER. These findings have implications on the role of BER in viral genome maintenance during lytic replication and reactivation from latency. PMID:18695225
In vitro atrazine-exposure inhibits human natural killer cell lytic granule release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, Alexander M.; Brundage, Kathleen M.; Center for Immunopathology and Microbial Pathogenesis, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
2007-06-01
The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesizedmore » that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells.« less
Lytic and Chemotactic Features of the Plaque-Forming Bacterium KD531 on Phaeodactylum tricornutum
Chen, Zhangran; Zheng, Wei; Yang, Luxi; Boughner, Lisa A.; Tian, Yun; Zheng, Tianling; Xu, Hong
2017-01-01
Phaeodactylum tricornutum is a dominant bloom forming species and potential biofuel feedstock. To control P. tricornutum bloom or to release lipids from P. tricornutum, we previously screened and identified the lytic bacterium Labrenzia sp. KD531 toward P. tricornutum. In the present study, we evaluated the lytic activity of Labrenzia sp. KD531 on microalgae and investigated its lytic mechanism. The results indicated that the lytic activity of KD531 was temperature- and pH-dependent, but light-independent. In addition to P. tricornutum, KD531 also showed lytic activity against other algal species, especially green algae. A quantitative analysis of algal cellular protein, carbohydrate and lipid content together with measurements of dry weight after exposure to bacteria-infected algal lysate indicated that the bacterium KD531 influenced the algal biomass by disrupting the algal cells. Both chemotactic analysis and microscopic observations of subsamples from different regions of formed plaques showed that KD531 could move toward and then directly contact algal cells. Direct contact between P. tricornutum and KD531 cells was essential for the lytic process. PMID:29312256
The great escape: viral strategies to counter BST-2/tetherin.
Douglas, Janet L; Gustin, Jean K; Viswanathan, Kasinath; Mansouri, Mandana; Moses, Ashlee V; Früh, Klaus
2010-05-13
The interferon-induced BST-2 protein has the unique ability to restrict the egress of HIV-1, Kaposi's sarcoma-associated herpesvirus (KSHV), Ebola virus, and other enveloped viruses. The observation that virions remain attached to the surface of BST-2-expressing cells led to the renaming of BST-2 as "tetherin". However, viral proteins such as HIV-1 Vpu, simian immunodeficiency virus Nef, and KSHV K5 counteract BST-2, thereby allowing mature virions to readily escape from infected cells. Since the anti-viral function of BST-2 was discovered, there has been an explosion of research into several aspects of this intriguing interplay between host and virus. This review focuses on recent work addressing the molecular mechanisms involved in BST-2 restriction of viral egress and the species-specific countermeasures employed by various viruses.
Molecular piracy: manipulation of the ubiquitin system by Kaposi's sarcoma-associated herpesvirus.
Fujimuro, Masahiro; Hayward, S Diane; Yokosawa, Hideyoshi
2007-01-01
Ubiquitination, one of several post-translational protein modifications, plays a key role in the regulation of cellular events, including protein degradation, signal transduction, endocytosis, protein trafficking, apoptosis and immune responses. Ubiquitin attachment at the lysine residue of cellular factors acts as a signal for endocytosis and rapid degradation by the 26S proteasome. It has recently been observed that viruses, especially oncogenic herpesviruses, utilise molecular piracy by encoding their own proteins to interfere with regulation of cell signalling. Kaposi's sarcoma- associated herpesvirus (KSHV) manipulates the ubiquitin system to facilitate cell proliferation, anti-apoptosis and evasion from immunity. In this review, we will describe the strategies used by KSHV at distinct stages of the viral life-cycle to control the ubiquitin system and promote oncogenesis and viral persistence. (c) 2007 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hu, Linzhen; Zhu, Hucheng; Li, Lei; Huang, Jinfeng; Sun, Weiguang; Liu, Junjun; Li, Hua; Luo, Zengwei; Wang, Jianping; Xue, Yongbo; Zhang, Yu; Zhang, Yonghui
2016-06-01
Two pairs of new enantiomers with unusual 5,5-spiroketal cores, termed (±)-japonones A and B [(±)-1 and (±)-2], were obtained from Hypericum japonicum Thunb. The absolute configurations of (±)-1 and (±)-2 were characterized by extensive analyses of spectroscopic data and calculated electronic circular dichroism (ECD) spectra, the application of modified Mosher’s methods, and the assistance of quantum chemical predictions (QCP) of 13C NMR chemical shifts. Among these metabolites, (+)-1 exhibited some inhibitory activity on Kaposi’s sarcoma associated herpesvirus (KSHV). Virtual screening of (±)-1 and (±)-2 were conducted using the Surflex-Dock module in the Sybyl software, and (+)-1 exhibited ability to bind with ERK to form key interactions with residues Lys52, Pro56, Ile101, Asp165, Gly167 and Val99.
Emmprin and KSHV: new partners in viral cancer pathogenesis
Dai, Lu; Bai, Lihua; Lu, Ying; Xu, Zengguang; Reiss, Krys; Valle, Luis Del; Kaleeba, Johnan; Toole, Bryan P.; Parsons, Chris; Qin, Zhiqiang
2013-01-01
Emmprin (CD147; basigin) is a multifunctional glycoprotein expressed at higher levels by cancer cells and stromal cells in the tumor microenvironment. Through direct effects within tumor cells and promotion of tumor-stroma interactions, emmprin participates in induction of tumor cell invasiveness, angiogenesis, metastasis and chemoresistance. Although its contribution to cancer progression has been widely studied, the role of emmprin in viral oncogenesis still remains largely unclear, and only a small body of available literature implicates emmprin-associated mechanisms in viral pathogenesis and tumorigenesis. We summarize these data in this review, focusing on the role of emmprin in pathogenesis associated with the Kaposi sarcoma-associated herpesvirus (KSHV), a common etiology for cancers arising in the setting of immune suppression. We also discuss future directions for mechanistic studies exploring roles for emmprin in viral cancer pathogenesis. PMID:23743354
Husseneder, Claudia; Sethi, Amit; Foil, Lane; Delatte, Jennifer
2010-12-29
We are developing a novel approach to subterranean termite control that would lead to reduced reliance on the use of chemical pesticides. Subterranean termites are dependent on protozoa in the hindguts of workers to efficiently digest wood. Lytic peptides have been shown to kill a variety of protozoan parasites (Mutwiri et al. 2000) and also protozoa in the gut of the Formosan subterranean termite, Coptotermes formosanus (Husseneder and Collier 2009). Lytic peptides are part of the nonspecific immune system of eukaryotes, and destroy the membranes of microorganisms (Leuschner and Hansel 2004). Most lytic peptides are not likely to harm higher eukaryotes, because they do not affect the electrically neutral cholesterol-containing cell membranes of higher eukaryotes (Javadpour et al. 1996). Lytic peptide action can be targeted to specific cell types by the addition of a ligand. For example, Hansel et al. (2007) reported that lytic peptides conjugated with cancer cell membrane receptor ligands could be used to destroy breast cancer cells, while lytic peptides alone or conjugated with non-specific peptides were not effective. Lytic peptides also have been conjugated to human hormones that bind to receptors on tumor cells for targeted destruction of prostate and testicular cancer cells (Leuschner and Hansel 2004). In this article we present techniques used to demonstrate the protozoacidal activity of a lytic peptide (Hecate) coupled to a heptapeptide ligand that binds to the surface membrane of protozoa from the gut of the Formosan subterranean termite. These techniques include extirpation of the gut from termite workers, anaerobic culture of gut protozoa (Pseudotrichonympha grassii, Holomastigotoides hartmanni,Spirotrichonympha leidyi), microscopic confirmation that the ligand marked with a fluorescent dye binds to the termite gut protozoa and other free-living protozoa but not to bacteria or gut tissue. We also demonstrate that the same ligand coupled to a lytic peptide efficiently kills termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into hindgut of workers), but is less bacteriacidal than the lytic peptide alone. The loss of protozoa leads to the death of the termites in less than two weeks. In the future, we will genetically engineer microorganisms that can survive in the termite hindgut and spread through a termite colony as "Trojan Horses" to express ligand-lytic peptides that would kill the protozoa in the termite gut and subsequently kill the termites in the colony. Ligand-lytic peptides also could be useful for drug development against protozoan parasites.
Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro.
Liu, Yannan; Mi, Zhiqiang; Niu, Wenkai; An, Xiaoping; Yuan, Xin; Liu, Huiying; Wang, Yong; Feng, Yuzhong; Huang, Yong; Zhang, Xianglilan; Zhang, Zhiyi; Fan, Hang; Peng, Fan; Li, Puyuan; Tong, Yigang; Bai, Changqing
2016-10-01
The ability of Acinetobacter baumannii to form biofilms and develop antibiotic resistance makes it difficult to control infections caused by this bacterium. In this study, we explored the potential of a lytic bacteriophage to disrupt A. baumannii biofilms. The potential of the lytic bacteriophage to disrupt A. baumannii biofilms was assessed by performing electron microscopy, live/dead bacterial staining, crystal violet staining and by determining adenosine triphosphate release. The bacteriophage inhibited the formation of and disrupted preformed A. baumannii biofilms. Results of disinfection assay showed that the lytic bacteriophage lysed A. baumannii cells suspended in blood or grown on metal surfaces. These results suggest the potential of the lytic bacteriophage to disrupt A. baumannii biofilms.
Phage lytic proteins: biotechnological applications beyond clinical antimicrobials
USDA-ARS?s Scientific Manuscript database
Most bacteriophages encode two types of cell wall lytic proteins: Endolysins (lysins) and virion-associated peptidoglycan hydrolases. Both enzymes have the ability to degrade the peptidoglycan of Gram positive bacteria resulting in cell lysis when they are applied externally. Bacteriophage lytic p...
2017-01-01
The current cytomegalovirus (CMV) prevention strategies in solid organ transplantation (SOT) recipients have contributed towards overcoming the detrimental effects caused by CMV lytic infection, and improving the long-term success rate of graft survival. Although the quantification of CMV in peripheral blood is the standard method, and an excellent end-point for diagnosing CMV replication and modulating the anti-CMV prevention strategies in SOT recipients, a novel biomarker mimicking the CMV control mechanism is required. CMV-specific immune monitoring can be employed as a basic tool predicting CMV infection or disease after SOT, since uncontrolled CMV replication mostly originates from the impairment of immune responses against CMV under immunosuppressive conditions in SOT recipients. Several studies conducted during the past few decades have indicated the possibility of measuring the CMV-specific cell-mediated immune response in clinical situations. Among several analytical assays, the most advancing standardized tool is the QuantiFERON®-CMV assay. The T-Track® CMV kit that uses the standardized enzyme-linked immunospot assay is also widely employed. In addition to these assays, immunophenotyping and intracellular cytokine analysis using flow cytometry (with fluorescence-labeled monoclonal antibodies or peptide-major histocompatibility complex multimers) needs to be adequately standardized and validated for potential clinical applications. PMID:29027383
Mossel, Eric C.; Huang, Cheng; Narayanan, Krishna; Makino, Shinji; Tesh, Robert B.; Peters, C. J.
2005-01-01
Of 30 cell lines and primary cells examined, productive severe acute respiratory syndrome coronavirus (Urbani strain) (SARS-CoV) infection after low-multiplicity inoculation was detected in only six: three African green monkey kidney epithelial cell lines (Vero, Vero E6, and MA104), a human colon epithelial line (CaCo-2), a porcine kidney epithelial line [PK(15)], and mink lung epithelial cells (Mv 1 Lu). SARS-CoV produced a lytic infection in Vero, Vero E6, and MA104 cells, but there was no visible cytopathic effect in Caco-2, Mv 1 Lu, or PK(15) cells. Multistep growth kinetics were identical in Vero E6 and MA104 cells, with maximum titer reached 24 h postinoculation (hpi). Virus titer was maximal 96 hpi in CaCo-2 cells, and virus was continually produced from infected CaCo-2 cells for at least 6 weeks after infection. CaCo-2 was the only human cell type of 13 tested that supported efficient SARS-CoV replication. Expression of the SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), resulted in SARS-CoV replication in all refractory cell lines examined. Titers achieved were variable and dependent upon the method of ACE2 expression. PMID:15731278
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Amr; Present address: Genomics Facility, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619; Hutchens, Heather M.
2012-11-25
To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed withmore » P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.« less
Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome.
Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R; Boehmer, Paul E
2014-07-01
Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. Copyright © 2014 Elsevier Inc. All rights reserved.
Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Offerdahl, Danielle K.
The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranesmore » to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60–100 nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20–30 nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. - Highlights: •First electron tomography of Zika virus cytoarchitecture. •Comparison of Zika virus infection in human neuroblastoma and mosquito cells. •Ultrastructure of Zika virus infection in human neuroblastoma and mosquito cells.« less
Alkalay, Ron N; von Stechow, Dietrich; Hackney, David B
2015-07-01
Lytic spinal lesions reduce vertebral strength and may result in their fracture. Vertebral augmentation is employed clinically to provide mechanical stability and pain relief for vertebrae with lytic lesions. However, little is known about its efficacy in strengthening fractured vertebrae containing lytic metastasis. Eighteen unembalmed human lumbar vertebrae, having simulated uncontained lytic defects and tested to failure in a prior study, were augmented using a transpedicular approach and re-tested to failure using a wedge fracture model. Axial and moment based strength and stiffness parameters were used to quantify the effect of augmentation on the structural response of the failed vertebrae. Effects of cement volume, bone mineral density and vertebral geometry on the change in structural response were investigated. Augmentation increased the failed lytic vertebral strength [compression: 85% (P<0.001), flexion: 80% (P<0.001), anterior-posterior shear: 95%, P<0.001)] and stiffness [(40% (P<0.05), 53% (P<0.05), 45% (P<0.05)]. Cement volume correlated with the compressive strength (r(2)=0.47, P<0.05) and anterior-posterior shear strength (r(2)=0.52, P<0.05) and stiffness (r(2)=0.45, P<0.05). Neither the geometry of the failed vertebrae nor its pre-fracture bone mineral density correlated with the volume of cement. Vertebral augmentation is effective in bolstering the failed lytic vertebrae compressive and axial structural competence, showing strength estimates up to 50-90% of historical values of osteoporotic vertebrae without lytic defects. This modest increase suggests that lytic vertebrae undergo a high degree of structural damage at failure, with strength only partially restored by vertebral augmentation. The positive effect of cement volume is self-limiting due to extravasation. Copyright © 2015. Published by Elsevier Ltd.
Bruce, A. Gregory; Thouless, Margaret E.; Haines, Anthony S.; Pallen, Mark J.; Grundhoff, Adam
2015-01-01
ABSTRACT Two rhadinovirus lineages have been identified in Old World primates. The rhadinovirus 1 (RV1) lineage consists of human herpesvirus 8, Kaposi's sarcoma-associated herpesvirus (KSHV), and closely related rhadinoviruses of chimpanzees, gorillas, macaques and other Old World primates. The RV2 rhadinovirus lineage is distinct and consists of closely related viruses from the same Old World primate species. Rhesus macaque rhadinovirus (RRV) is the RV2 prototype, and two RRV isolates, 26-95 and 17577, were sequenced. We determined that the pig-tailed macaque RV2 rhadinovirus, MneRV2, is highly associated with lymphomas in macaques with simian AIDS. To further study the role of rhadinoviruses in the development of lymphoma, we sequenced the complete genome of MneRV2 and identified 87 protein coding genes and 17 candidate microRNAs (miRNAs). A strong genome colinearity and sequence homology were observed between MneRV2 and RRV26-95, although the open reading frame (ORF) encoding the KSHV ORFK15 homolog was disrupted in RRV26-95. Comparison with MneRV2 revealed several genomic anomalies in RRV17577 that were not present in other rhadinovirus genomes, including an N-terminal duplication in ORF4 and a recombinative exchange of more distantly related homologs of the ORF22/ORF47 interacting glycoprotein genes. The comparison with MneRV2 has revealed novel genes and important conservation of protein coding domains and transcription initiation, termination, and splicing signals, which have added to our knowledge of RV2 rhadinovirus genetics. Further comparisons with KSHV and other RV1 rhadinoviruses will provide important avenues for dissecting the biology, evolution, and pathology of these closely related tumor-inducing viruses in humans and other Old World primates. IMPORTANCE This work provides the sequence characterization of MneRV2, the pig-tailed macaque homolog of rhesus rhadinovirus (RRV). MneRV2 and RRV belong to the rhadinovirus 2 (RV2) rhadinovirus lineage of Old World primates and are distinct but related to Kaposi's sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi's sarcoma. Pig-tailed macaques provide important models of human disease, and our previous studies have indicated that MneRV2 plays a causal role in AIDS-related lymphomas in macaques. Delineation of the MneRV2 sequence has allowed a detailed characterization of the genome structure, and evolutionary comparisons with RRV and KSHV have identified conserved promoters, splice junctions, and novel genes. This comparison provides insight into RV2 rhadinovirus biology and sets the groundwork for more intensive next-generation (Next-Gen) transcript and genetic analysis of this class of tumor-inducing herpesvirus. This study supports the use of MneRV2 in pig-tailed macaques as an important model for studying rhadinovirus biology, transmission and pathology. PMID:25609822
Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei; Chen, Mei-Ru
2014-08-01
Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at the right time and the right place in DNA replication forks, complex formation with other components in the DNA replication machinery provides an important regulation for UDG function. In this study, we provide the mechanism for EBV UDG BKRF3 nuclear targeting and the interacting domains of BKRF3 with viral DNA replication proteins. Through knockout and complementation approaches, we further demonstrate that in addition to UDG activity, the interaction of BKRF3 with viral proteins in the replication compartment is crucial for efficient viral DNA replication. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Emmprin and KSHV: new partners in viral cancer pathogenesis.
Dai, Lu; Bai, Lihua; Lu, Ying; Xu, Zengguang; Reiss, Krys; Del Valle, Luis; Kaleeba, Johnan; Toole, Bryan P; Parsons, Chris; Qin, Zhiqiang
2013-09-01
Emmprin (CD147; basigin) is a multifunctional glycoprotein expressed at higher levels by cancer cells and stromal cells in the tumor microenvironment. Through direct effects within tumor cells and promotion of tumor-stroma interactions, emmprin participates in induction of tumor cell invasiveness, angiogenesis, metastasis and chemoresistance. Although its contribution to cancer progression has been widely studied, the role of emmprin in viral oncogenesis still remains largely unclear, and only a small body of available literature implicates emmprin-associated mechanisms in viral pathogenesis and tumorigenesis. We summarize these data in this review, focusing on the role of emmprin in pathogenesis associated with the Kaposi sarcoma-associated herpesvirus (KSHV), a common etiology for cancers arising in the setting of immune suppression. We also discuss future directions for mechanistic studies exploring roles for emmprin in viral cancer pathogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Girons, Isabelle Saint; Bourhy, Pascale; Ottone, Catherine; Picardeau, Mathieu; Yelton, David; Hendrix, Roger W.; Glaser, Philippe; Charon, Nyles
2000-01-01
We have discovered that LE1, one of the plaque-forming phages previously described as lytic for the Leptospira biflexa saprophytic spirochete (I. Saint Girons, D. Margarita, P. Amouriaux, and G. Baranton, Res. Microbiol. 141:1131–1138, 1990), was indeed temperate. LE1 was found to be unusual, as Southern blot analysis indicated that it is one of the few phages to replicate in the prophage state as a circular plasmid. The unavailability of such small endogenous replicons has hindered genetic experimentation in Leptospira. We have developed a shuttle vector with DNA derived from LE1. Random LE1 DNA fragments were cloned into a pGEM 7Zf(+) derivative devoid of most of the bla gene but carrying a kanamycin resistance marker from the gram-positive bacterium Enterococcus (Streptococcus) faecalis. These constructs were transformed into L. biflexa strain Patoc 1 by electroporation, giving rise to kanamycin-resistant transformants. A 2.2-kb fragment from LE1 was responsible for replication of the vector in L. biflexa. However, a larger region including an intact parA gene homologue was necessary for the stability of the shuttle vector. Direct repeats and AT-rich regions characterized the LE1 origin of replication. Our data indicate that the replicon derived from the LE1 leptophage, together with the kanamycin resistance gene, is a promising tool with which to develop the genetics of Leptospira species. PMID:11004167
Phage lytic enzymes: a history.
Trudil, David
2015-02-01
There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.
Mark, Linda; Spiller, O Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A; Wong, Scott W; Damania, Blossom; Blom, Anna M; Blackbourn, David J
2007-04-01
The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model.
Mark, Linda; Spiller, O. Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A.; Wong, Scott W.; Damania, Blossom; Blom, Anna M.; Blackbourn, David J.
2007-01-01
The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model. PMID:17287274
Grant, Margaret J; Loftus, Matthew S; Stoja, Aiola P; Kedes, Dean H; Smith, M Mitchell
2018-05-08
By tethering their circular genomes (episomes) to host chromatin, DNA tumor viruses ensure retention and segregation of their genetic material during cell divisions. Despite functional genetic and crystallographic studies, there is little information addressing the 3D structure of these tethers in cells, issues critical for understanding persistent infection by these viruses. Here, we have applied direct stochastic optical reconstruction microscopy (dSTORM) to establish the nanoarchitecture of tethers within cells latently infected with the oncogenic human pathogen, Kaposi's sarcoma-associated herpesvirus (KSHV). Each KSHV tether comprises a series of homodimers of the latency-associated nuclear antigen (LANA) that bind with their C termini to the tandem array of episomal terminal repeats (TRs) and with their N termini to host chromatin. Superresolution imaging revealed that individual KSHV tethers possess similar overall dimensions and, in aggregate, fold to occupy the volume of a prolate ellipsoid. Using plasmids with increasing numbers of TRs, we found that tethers display polymer power law scaling behavior with a scaling exponent characteristic of active chromatin. For plasmids containing a two-TR tether, we determined the size, separation, and relative orientation of two distinct clusters of bound LANA, each corresponding to a single TR. From these data, we have generated a 3D model of the episomal half of the tether that integrates and extends previously established findings from epifluorescent, crystallographic, and epigenetic approaches. Our findings also validate the use of dSTORM in establishing novel structural insights into the physical basis of molecular connections linking host and pathogen genomes.
The Epstein-Barr Virus (EBV) in T Cell and NK Cell Lymphomas: Time for a Reassessment
Gru, A. A.; Haverkos, B. H.; Freud, A. G.; Hastings, J.; Nowacki, N. B.; Barrionuevo, C.; Vigil, C. E.; Rochford, R.; Natkunam, Y.; Baiocchi, R. A.
2015-01-01
While Epstein-Barr virus (EBV) was initially discovered and characterized as an oncogenic virus in B cell neoplasms, it also plays a complex and multifaceted role in T/NK cell lymphomas. In B cell lymphomas, EBV-encoded proteins have been shown to directly promote immortalization and proliferation through stimulation of the NF-κB pathway and increased expression of anti-apoptotic genes. In the context of mature T/NK lymphomas (MTNKL), with the possible exception on extranodal NK/T cell lymphoma (ENKTL), the virus likely plays a more diverse and nuanced role. EBV has been shown to shape the tumor microenvironment by promoting Th2-skewed T cell responses and by increasing the expression of the immune checkpoint ligand PD-L1. The type of cell infected, the amount of plasma EBV DNA, and the degree of viral lytic replication have all been proposed to have prognostic value in T/NK cell lymphomas. Latency patterns of EBV infection have been defined using EBV-infected B cell models and have not been definitively established in T/NK cell lymphomas. Identifying the expression profile of EBV lytic proteins could allow for individualized therapy with the use of antiviral medications. More work needs to be done to determine whether EBV-associated MTNKL have distinct biological and clinical features, which can be leveraged for risk stratification, disease monitoring, and therapeutic purposes. PMID:26449716
Epitope Specificity Delimits the Functional Capabilities of Vaccine-Induced CD8 T Cell Populations
Hill, Brenna J.; Darrah, Patricia A.; Ende, Zachary; Ambrozak, David R.; Quinn, Kylie M.; Darko, Sam; Gostick, Emma; Wooldridge, Linda; van den Berg, Hugo A.; Venturi, Vanessa; Larsen, Martin; Davenport, Miles P.; Seder, Robert A.
2014-01-01
Despite progress toward understanding the correlates of protective T cell immunity in HIV infection, the optimal approach to Ag delivery by vaccination remains uncertain. We characterized two immunodominant CD8 T cell populations generated in response to immunization of BALB/c mice with a replication-deficient adenovirus serotype 5 vector expressing the HIV-derived Gag and Pol proteins at equivalent levels. The Gag-AI9/H-2Kd epitope elicited high-avidity CD8 T cell populations with architecturally diverse clonotypic repertoires that displayed potent lytic activity in vivo. In contrast, the Pol-LI9/H-2Dd epitope elicited motif-constrained CD8 T cell repertoires that displayed lower levels of physical avidity and lytic activity despite equivalent measures of overall clonality. Although low-dose vaccination enhanced the functional profiles of both epitope-specific CD8 T cell populations, greater polyfunctionality was apparent within the Pol-LI9/H-2Dd specificity. Higher proportions of central memory-like cells were present after low-dose vaccination and at later time points. However, there were no noteworthy phenotypic differences between epitope-specific CD8 T cell populations across vaccine doses or time points. Collectively, these data indicate that the functional and phenotypic properties of vaccine-induced CD8 T cell populations are sensitive to dose manipulation, yet constrained by epitope specificity in a clonotype-dependent manner. PMID:25348625
Immunology: Is Actin at the Lytic Synapse a Friend or a Foe?
Hammer, John A
2018-02-19
Cytotoxic T cells and natural killer cells defend us against disease by secreting lytic granules. Whether actin facilitates or thwarts lytic granule secretion has been an open question. Recent results now indicate that the answer depends on the maturation stage of the immune cell-target cell contact. Published by Elsevier Ltd.
Moon, Ho-Jin; Nikapitiya, Chamilani; Lee, Hyun-Cheol; Park, Min-Eun; Kim, Jae-Hoon; Kim, Tae-Hwan; Yoon, Ji-Eun; Cho, Won-Kyung; Ma, Jin Yeul; Kim, Chul-Joong; Jung, Jae U; Lee, Jong-Soo
2017-07-07
The antiviral activities of synthesized Kα2-helix peptide, which was derived from the viral FLICE-like inhibitor protein (vFLIP) of Kaposi's sarcoma-associated herpesvirus (KSHV), against influenza A virus (IAV) were investigated in vitro and in vivo, and mechanisms of action were suggested. In addition to the robust autophagy activity of the Kα2-helix peptide, the present study showed that treatment with the Kα2 peptide fused with the TAT peptide significantly inhibited IAV replication and transmission. Moreover, TAT-Kα2 peptide protected the mice, that were challenged with lethal doses of highly pathogenic influenza A H5N1 or H1N1 viruses. Mechanistically, we found that TAT-Kα2 peptide destabilized the viral membranes, depending on their lipid composition of the viral envelop. In addition to IAV, the Kα2 peptide inhibited infections with enveloped viruses, such as Vesicular Stomatitis Virus (VSV) and Respiratory Syncytial Virus (RSV), without cytotoxicity. These results suggest that TAT-Kα2 peptide is a potential antiviral agent for controlling emerging or re-emerging enveloped viruses, particularly diverse subtypes of IAVs.
Kuppuswamy, M; Spencer, J F; Doronin, K; Tollefson, A E; Wold, W S M; Toth, K
2005-11-01
We have constructed a novel oncolytic adenovirus (Ad) vector, named VRX-011, in which the replication of the vector is targeted to cancer cells by the replacement of the wild-type Ad E4 promoter with the human telomerase reverse transcriptase (hTERT) promoter. Genes in the Ad E4 transcription unit are essential for Ad replication; therefore, VRX-011 will grow efficiently only in cells in which the hTERT promoter is active, that is, in a wide range of cancer and immortalized cells but not in most somatic cells. Consistent with these expectations, VRX-011 replicated efficiently in all cancer cell lines examined, while its growth was restricted in various primary and normal cells. VRX-011 overexpresses ADP (also known as E3-11.6K), an Ad protein required for efficient cell lysis and release of virions from cells at late stages of infection. This overexpression enhances cell-to-cell spread and could significantly increase antitumor efficacy. In a xenograft model in nude mice, both intratumoral and intravenous administration of VRX-011 effectively suppressed the growth of subcutaneous Hep3B human liver tumors. Also, intravenous delivery of VRX-011 greatly reduced the number and size of A549 human lung cancer cell nodules in a disseminated lung tumor model in nude mice. Importantly, tail vein administration of different doses of VRX-011 in C57BL/6 mice showed minimal liver toxicity. Considering its broad range of lytic replication in cancer cells, its attenuated phenotype in primary cells, its efficacy in suppressing xenografts, and its low toxicity in mouse liver, VRX-011 is a promising candidate for further evaluation as an anticancer therapeutic.
Chang, Ling-Shih; Wang, Jiin-Tarng; Doong, Shin-Lian; Lee, Chung-Pei; Chang, Chou-Wei; Tsai, Ching-Hwa; Yeh, Sheng-Wen; Hsieh, Ching-Yueh
2012-01-01
Epstein-Barr virus (EBV) BGLF4 is a member of the conserved herpesvirus kinases that regulate multiple cellular and viral substrates and play an important role in the viral lytic cycles. BGLF4 has been found to phosphorylate several cellular and viral transcription factors, modulate their activities, and regulate downstream events. In this study, we identify an NF-κB coactivator, UXT, as a substrate of BGLF4. BGLF4 downregulates not only NF-κB transactivation in reporter assays in response to tumor necrosis factor alpha (TNF-α) and poly(I·C) stimulation, but also NF-κB-regulated cellular gene expression. Furthermore, BGLF4 attenuates NF-κB-mediated repression of the EBV lytic transactivators, Zta and Rta. In EBV-positive NA cells, knockdown of BGLF4 during lytic progression elevates NF-κB activity and downregulates the activity of the EBV oriLyt BHLF1 promoter, which is the first promoter activated upon lytic switch. We show that BGLF4 phosphorylates UXT at the Thr3 residue. This modification interferes with the interaction between UXT and NF-κB. The data also indicate that BGLF4 reduces the interaction between UXT and NF-κB and attenuates NF-κB enhanceosome activity. Upon infection with short hairpin RNA (shRNA) lentivirus to knock down UXT, a spontaneous lytic cycle was observed in NA cells, suggesting UXT is required for maintenance of EBV latency. Overexpression of wild-type, but not phosphorylation-deficient, UXT enhances the expression of lytic proteins both in control and UXT knockdown cells. Taking the data together, transcription involving UXT may also be important for EBV lytic protein expression, whereas BGLF4-mediated phosphorylation of UXT at Thr3 plays a critical role in promoting the lytic cycle. PMID:22933289
Lapsia, Sameer; Koganti, Siva; Spadaro, Salvatore; Rajapakse, Ramona; Chawla, Anupama; Bhaduri-McIntosh, Sumita
2016-02-01
Anti-TNFα therapy, known to suppress T-cell immunity, is increasingly gaining popularity for treatment of autoimmune diseases including inflammatory bowel diseases (IBD). T-cell suppression increases the risk of B-cell EBV-lymphoproliferative diseases and lymphomas. Since EBV-lytic activation is essential for development of EBV-lymphomas and there have been reports of EBV-lymphomas in patients treated with anti-TNFα therapy, we investigated if patients treated with anti-TNFα antibodies demonstrate greater EBV-lytic activity in blood. Peripheral blood mononuclear cells from 10 IBD patients solely on anti-TNFα therapy compared to 3 control groups (10 IBD patients not on immunosuppressive therapy, 10 patients with abdominal pain but without IBD, and 10 healthy subjects) were examined for the percentage of T-cells, EBV load and EBV-lytic transcripts. Patients on anti-TNFα therapy had significantly fewer T-cells, greater EBV load, and increased levels of transcripts from EBV-lytic genes of all kinetic classes compared to controls. Furthermore, exposure of EBV-infected B-cell lines to anti-TNFα antibodies resulted in increased levels of BZLF1 mRNA; BZLF1 encodes for ZEBRA, the viral latency-to-lytic cycle switch. Thus, IBD patients treated with anti-TNFα antibodies have greater EBV loads likely due to enhanced EBV-lytic gene expression and anti-TNFα antibodies may be sufficient to activate the EBV lytic cycle. Findings from this pilot study lay the groundwork for additional scientific and clinical investigation into the effects of anti-TNFα therapy on the life cycle of EBV, a ubiquitous oncovirus that causes lymphomas in the setting of immunocompromise. © 2015 Wiley Periodicals, Inc.
Robinson, Amanda R.; Kwek, Swee Sen; Kenney, Shannon C.
2012-01-01
The Epstein-Barr virus (EBV) latent-lytic switch is mediated by the BZLF1 immediate-early protein. EBV is normally latent in memory B cells, but cellular factors which promote viral latency specifically in B cells have not been identified. In this report, we demonstrate that the B-cell specific transcription factor, Oct-2, inhibits the function of the viral immediate-early protein, BZLF1, and prevents lytic viral reactivation. Co-transfected Oct-2 reduces the ability of BZLF1 to activate lytic gene expression in two different latently infected nasopharyngeal carcinoma cell lines. Furthermore, Oct-2 inhibits BZLF1 activation of lytic EBV promoters in reporter gene assays, and attenuates BZLF1 binding to lytic viral promoters in vivo. Oct-2 interacts directly with BZLF1, and this interaction requires the DNA-binding/dimerization domain of BZLF1 and the POU domain of Oct-2. An Oct-2 mutant (Δ262–302) deficient for interaction with BZLF1 is unable to inhibit BZLF1-mediated lytic reactivation. However, an Oct-2 mutant defective for DNA-binding (Q221A) retains the ability to inhibit BZLF1 transcriptional effects and DNA-binding. Importantly, shRNA-mediated knockdown of endogenous Oct-2 expression in several EBV-positive Burkitt lymphoma and lymphoblastoid cell lines increases the level of lytic EBV gene expression, while decreasing EBNA1 expression. Moreover, treatments which induce EBV lytic reactivation, such as anti-IgG cross-linking and chemical inducers, also decrease the level of Oct-2 protein expression at the transcriptional level. We conclude that Oct-2 potentiates establishment of EBV latency in B cells. PMID:22346751
Powell, Jeralyn J.; Davis, McLisa V.; Whalen, Margaret M.
2008-01-01
This study investigated whether reduced glutathione (GSH) was able to alter the negative effects of tributyltin (TBT) or dibutyltin (DBT) on the lytic function of human natural killer (NK) cells. NK cells are an intital immune defense against the development of tumors or viral infections. TBT and DBT are widespread environmental contaminants, due to their various industrial applications. Both TBT and DBT have been shown to decrease the ability of NK cells to lyse tumor cells (lytic function). The results indicated that the presence of GSH during exposure of NK cells to TBT or DBT diminished the negative effect of the BT on the lytic function of NK cells. This suggests that interaction TBT and DBT with functionally relevant sulfhydryl groups in NK cells may be part of the mechanism by which they decrease NK lytic function. PMID:18821099
Powell, Jeralyn J; Davis, McLisa V; Whalen, Margaret M
2009-01-01
This study investigated whether reduced glutathione (GSH) was able to alter the negative effects of tributyltin (TBT) or dibutyltin (DBT) on the lytic function of human natural killer (NK) cells. NK cells are an initial immune defense against the development of tumors or viral infections. TBT and DBT are widespread environmental contaminants, due to their various industrial applications. Both TBT and DBT have been shown to decrease the ability of NK cells to lyse tumor cells (lytic function). The results indicated that the presence of GSH during the exposure of NK cells to TBT or DBT diminished the negative effect of the butyltin on the lytic function of NK cells. This suggests that the interaction of TBT and DBT with functionally relevant sulfhydryl groups in NK cells may be part of the mechanism by which they decrease NK lytic function.
Misstear, Karen; Chanas, Simon A.; Rezaee, S. A. Rahim; Colman, Rachel; Quinn, Laura L.; Long, Heather M.; Goodyear, Oliver; Lord, Janet M.; Hislop, Andrew D.
2012-01-01
Regulating appropriate activation of the immune response in the healthy host despite continual immune surveillance dictates that immune responses must be either self-limiting and therefore negatively regulated following their activation or prevented from developing inappropriately. In the case of antigen-specific T cells, their response is attenuated by several mechanisms, including ligation of CTLA-4 and PD-1. Through the study of the viral OX2 (vOX2) immunoregulator encoded by Kaposi's sarcoma-associated herpesvirus (KSHV), we have identified a T cell-attenuating role both for this protein and for CD200, a cellular orthologue of the viral vOX2 protein. In vitro, antigen-presenting cells (APC) expressing either native vOX2 or CD200 suppressed two functions of cognate antigen-specific T cell clones: gamma interferon (IFN-γ) production and mobilization of CD107a, a cytolytic granule component and measure of target cell killing ability. Mechanistically, vOX2 and CD200 expression on APC suppressed the phosphorylation of ERK1/2 mitogen-activated protein kinase in responding T cells. These data provide the first evidence for a role of both KSHV vOX2 and cellular CD200 in the negative regulation of antigen-specific T cell responses. They suggest that KSHV has evolved to harness the host CD200-based mechanism of attenuation of T cell responses to facilitate virus persistence and dissemination within the infected individual. Moreover, our studies define a new paradigm in immune modulation by viruses: the provision of a negative costimulatory signal to T cells by a virus-encoded orthologue of CD200. PMID:22491458
Han, Sang Hoon
2017-09-01
The current cytomegalovirus (CMV) prevention strategies in solid organ transplantation (SOT) recipients have contributed towards overcoming the detrimental effects caused by CMV lytic infection, and improving the long-term success rate of graft survival. Although the quantification of CMV in peripheral blood is the standard method, and an excellent end-point for diagnosing CMV replication and modulating the anti-CMV prevention strategies in SOT recipients, a novel biomarker mimicking the CMV control mechanism is required. CMV-specific immune monitoring can be employed as a basic tool predicting CMV infection or disease after SOT, since uncontrolled CMV replication mostly originates from the impairment of immune responses against CMV under immunosuppressive conditions in SOT recipients. Several studies conducted during the past few decades have indicated the possibility of measuring the CMV-specific cell-mediated immune response in clinical situations. Among several analytical assays, the most advancing standardized tool is the QuantiFERON®-CMV assay. The T-Track® CMV kit that uses the standardized enzyme-linked immunospot assay is also widely employed. In addition to these assays, immunophenotyping and intracellular cytokine analysis using flow cytometry (with fluorescence-labeled monoclonal antibodies or peptide-major histocompatibility complex multimers) needs to be adequately standardized and validated for potential clinical applications. Copyright © 2017 by The Korean Society of Infectious Diseases and Korean Society for Chemotherapy.
Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming
2009-01-01
Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators. PMID:19851479
Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming
2009-01-01
Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators.
Multicentric Castleman Disease: Where are we now?
Wang, Hao-Wei; Pittaluga, Stefania; Jaffe, Elaine S.
2016-01-01
Multicentric Castleman disease (MCD) encompasses a spectrum of conditions that give rise to overlapping clinicopathological manifestations. The fundamental pathogenetic mechanism involves dysregulated cytokine activity, which causes systemic inflammatory symptoms as well as lymphadenopathy. The histological changes in lymph nodes resemble in part the findings originally described in the unicentric forms Castleman disease, both hyaline vascular and plasma cell variants. In MCD caused by Kaposi sarcoma-associated herpesvirus/human herpesvirus-8 (KSHV/HHV8), the cytokine over activity is caused by viral products, which can also lead to atypical lymphoproliferations and potential progression to lymphoma. In cases negative for KSHV/HHV8, so-called idiopathic MCD, the hypercytokinemia can result from various mechanisms, which ultimately lead to different constellations of clinical presentations and varied pathology in lymphoid tissues. In this article, we review the evolving concepts and definitions of the various conditions under the eponym of Castleman disease, and summarize current knowledge regarding the histopathology and pathogenesis of lesions within the MCD spectrum. PMID:27296355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp; Eizuru, Yoshito
2010-06-04
Kaposi's sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein has been reported to interact with glycogen synthase kinase 3{beta} (GSK-3{beta}) and to negatively regulate its activity, leading to stimulation of GSK-3{beta}-dependent {beta}-catenin degradation. We show here that the I-mfa domain proteins, HIC (human I-mfa domain-containing protein) and I-mfa (inhibitor of MyoD family a), interacted in vivo with LANA through their C-terminal I-mfa domains. This interaction affected the intracellular localization of HIC, inhibited the LANA-dependent transactivation of a {beta}-catenin-regulated reporter construct, and decreased the level of the LANA.GSK-3{beta} complex. These data reveal for the first time that I-mfa domain proteinsmore » interact with LANA and negatively regulate LANA-mediated activation of Wnt signaling-dependent transcription by inhibiting the formation of the LANA.GSK-3{beta} complex.« less
Gershman, S N; Barnett, C A; Pettinger, A M; Weddle, C B; Hunt, J; Sakaluk, S K
2010-04-01
Trade-offs between life-history variables can be manifested at either the phenotypic or genetic level, with vastly different evolutionary consequences. Here, we examined whether male decorated crickets (Gryllodes sigillatus) from eight inbred lines and the outbred founder population from which they were derived, trade-off immune effort [lytic activity, phenoloxidase (PO) activity or encapsulation] to produce spermatophylaxes: costly nuptial food gifts essential for successful sperm transfer. Canonical correlation analysis of the outbred population revealed a trade-off between spermatophylax mass and lytic activity. Analysis of our inbred lines, however, revealed that although PO activity, encapsulation, body mass, spermatophylax mass and ampulla (sperm capsule) mass were all highly heritable, lytic activity was not, and there was, therefore, no negative genetic correlation between lytic activity and spermatophylax mass. Thus, males showed a phenotypic but not a genetic trade-off between spermatophylax mass and lytic activity, suggesting that this trade-off is mediated largely by environmental factors.
A Cell Culture Model of Latent and Lytic Herpes Simplex Virus Type 1 Infection in Spiral Ganglion.
Liu, Yuehong; Li, Shufeng
2015-01-01
Reactivation of latent herpes simplex virus type 1 (HSV-1) in spiral ganglion neurons (SGNs) is supposed to be one of the causes of idiopathic sudden sensorineural hearing loss. This study aims to establish a cell culture model of latent and lytic HSV-1 infection in spiral ganglia. In the presence of acyclovir, primary cultures of SGNs were latently infected with HSV-1 expressing green fluorescent protein. Four days later, these cells were treated with trichostatin A (TSA), a known chemical reactivator of HSV-1. TCID50 was used to measure the titers of virus in cultures on Vero cells. RNA from cultures was detected for the presence of transcripts of ICP27 and latency-associated transcript (LAT) using reverse transcription polymerase chain reaction. There is no detectable infectious HSV-1 in latently infected cultures, whereas they could be observed in both lytically infected and latently infected/TSA-treated cultures. LAT was the only detectable transcript during latent infection, whereas lytic ICP27 transcript was detected in lytically infected and latently infected/TSA-treated cultures. Cultured SGNs can be both latently and lytically infected with HSV-1. Furthermore, latently infected SGNs can be reactivated using TSA, yielding infectious virus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it; Germini, Diego; Rodighiero, Isabella
2013-05-25
Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promotingmore » cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.« less
Mann, Nicholas H.; Clokie, Martha R. J.; Millard, Andrew; Cook, Annabel; Wilson, William H.; Wheatley, Peter J.; Letarov, Andrey; Krisch, H. M.
2005-01-01
Bacteriophage S-PM2 infects several strains of the abundant and ecologically important marine cyanobacterium Synechococcus. A large lytic phage with an isometric icosahedral head, S-PM2 has a contractile tail and by this criterion is classified as a myovirus (1). The linear, circularly permuted, 196,280-bp double-stranded DNA genome of S-PM2 contains 37.8% G+C residues. It encodes 239 open reading frames (ORFs) and 25 tRNAs. Of these ORFs, 19 appear to encode proteins associated with the cell envelope, including a putative S-layer-associated protein. Twenty additional S-PM2 ORFs have homologues in the genomes of their cyanobacterial hosts. There is a group I self-splicing intron within the gene encoding the D1 protein. A total of 40 ORFs, organized into discrete clusters, encode homologues of T4 proteins involved in virion morphogenesis, nucleotide metabolism, gene regulation, and DNA replication and repair. The S-PM2 genome encodes a few surprisingly large (e.g., 3,779 amino acids) ORFs of unknown function. Our analysis of the S-PM2 genome suggests that many of the unknown S-PM2 functions may be involved in the adaptation of the metabolism of the host cell to the requirements of phage infection. This hypothesis originates from the identification of multiple phage-mediated modifications of the host's photosynthetic apparatus that appear to be essential for maintaining energy production during the lytic cycle. PMID:15838046
Yakimovich, Artur; Gumpert, Heidi; Burckhardt, Christoph J; Lütschg, Verena A; Jurgeit, Andreas; Sbalzarini, Ivo F; Greber, Urs F
2012-09-01
Viruses spread between cells, tissues, and organisms by cell-free and cell-cell transmissions. Both mechanisms enhance disease development, but it is difficult to distinguish between them. Here, we analyzed the transmission mode of human adenovirus (HAdV) in monolayers of epithelial cells by wet laboratory experimentation and a computer simulation. Using live-cell fluorescence microscopy and replication-competent HAdV2 expressing green fluorescent protein, we found that the spread of infection invariably occurred after cell lysis. It was affected by convection and blocked by neutralizing antibodies but was independent of second-round infections. If cells were overlaid with agarose, convection was blocked and round plaques developed around lytic infected cells. Infected cells that did not lyse did not give rise to plaques, highlighting the importance of cell-free transmission. Key parameters for cell-free virus transmission were the time from infection to lysis, the dose of free viruses determining infection probability, and the diffusion of single HAdV particles in aqueous medium. With these parameters, we developed an in silico model using multiscale hybrid dynamics, cellular automata, and particle strength exchange. This so-called white box model is based on experimentally determined parameters and reproduces viral infection spreading as a function of the local concentration of free viruses. These analyses imply that the extent of lytic infections can be determined by either direct plaque assays or can be predicted by calculations of virus diffusion constants and modeling.
Stanczak-Mrozek, Kinga I.; Laing, Ken G.
2017-01-01
Objectives: Horizontal gene transfer of antimicrobial resistance (AMR) genes between clinical isolates via transduction is poorly understood. MRSA are opportunistic pathogens resistant to all classes of antimicrobial agents but currently no strains are fully drug resistant. AMR gene transfer between Staphylococcus aureus isolates is predominantly due to generalized transduction via endogenous bacteriophage, and recent studies have suggested transfer is elevated during host colonization. The aim was to investigate whether exposure to sub-MIC concentrations of antimicrobials triggers bacteriophage induction and/or increased efficiency of AMR gene transfer. Methods: Isolates from MRSA carriers were exposed to nine antimicrobials and supernatants were compared for lytic phage particles and ability to transfer an AMR gene. A new technology, droplet digital PCR, was used to measure the concentration of genes in phage particles. Results: All antibiotics tested induced lytic phage and AMR gene transduction, although the ratio of transducing particles to lytic particles differed substantially for each antibiotic. Mupirocin induced the highest ratio of transducing versus lytic particles. Gentamicin and novobiocin reduced UV-induced AMR transduction. The genes carried in phage particles correlated with AMR transfer or lytic particle activity, suggesting antimicrobials influence which DNA sequences are packaged into phage particles. Conclusions: Sub-inhibitory antibiotics induce AMR gene transfer between clinical MRSA, while combination therapy with an inhibiting antibiotic could potentially alter AMR gene packaging into phage particles, reducing AMR transfer. In a continually evolving environment, pathogens have an advantage if they can transfer DNA while lowering the risk of lytic death. PMID:28369562
Cousins, Emily; Nicholas, John
2014-01-01
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman's disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of "accessory" genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus-host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein-coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
2011-01-01
Background Transferrin receptor (TfR) is a cell membrane-associated glycoprotein involved in the cellular uptake of iron and the regulation of cell growth. Recent studies have shown the elevated expression levels of TfR on cancer cells compared with normal cells. The elevated expression levels of this receptor in malignancies, which is the accessible extracellular protein, can be a fascinating target for the treatment of cancer. We have recently designed novel type of immunotoxin, termed "hybrid peptide", which is chemically synthesized and is composed of target-binding peptide and lytic peptide containing cationic-rich amino acids components that disintegrates the cell membrane for the cancer cell killing. The lytic peptide is newly designed to induce rapid killing of cancer cells due to conformational change. In this study, we designed TfR binding peptide connected with this novel lytic peptide and assessed the cytotoxic activity in vitro and in vivo. Methods In vitro: We assessed the cytotoxicity of TfR-lytic hybrid peptide for 12 cancer and 2 normal cell lines. The specificity for TfR is demonstrated by competitive assay using TfR antibody and siRNA. In addition, we performed analysis of confocal fluorescence microscopy and apoptosis assay by Annexin-V binding, caspase activity, and JC-1 staining to assess the change in mitochondria membrane potential. In vivo: TfR-lytic was administered intravenously in an athymic mice model with MDA-MB-231 cells. After three weeks tumor sections were histologically analyzed. Results The TfR-lytic hybrid peptide showed cytotoxic activity in 12 cancer cell lines, with IC50 values as low as 4.0-9.3 μM. Normal cells were less sensitive to this molecule, with IC50 values > 50 μM. Competition assay using TfR antibody and knockdown of this receptor by siRNA confirmed the specificity of the TfR-lytic hybrid peptide. In addition, it was revealed that this molecule can disintegrate the cell membrane of T47D cancer cells just in 10 min, to effectively kill these cells and induce approximately 80% apoptotic cell death but not in normal cells. The intravenous administration of TfR-lytic peptide in the athymic mice model significantly inhibited tumor progression. Conclusions TfR-lytic peptide might provide a potent and selective anticancer therapy for patients. PMID:21849092
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thibault, Isabelle; Department of Radiation Oncology, Centre Hospitalier de L'Universite de Québec–Université Laval, Quebec, Quebec; Whyne, Cari M.
Purpose: To determine a threshold of vertebral body (VB) osteolytic or osteoblastic tumor involvement that would predict vertebral compression fracture (VCF) risk after stereotactic body radiation therapy (SBRT), using volumetric image-segmentation software. Methods and Materials: A computational semiautomated skeletal metastasis segmentation process refined in our laboratory was applied to the pretreatment planning CT scan of 100 vertebral segments in 55 patients treated with spine SBRT. Each VB was segmented and the percentage of lytic and/or blastic disease by volume determined. Results: The cumulative incidence of VCF at 3 and 12 months was 14.1% and 17.3%, respectively. The median follow-up was 7.3 months (range,more » 0.6-67.6 months). In all, 56% of segments were determined lytic, 23% blastic, and 21% mixed, according to clinical radiologic determination. Within these 3 clinical cohorts, the segmentation-determined mean percentages of lytic and blastic tumor were 8.9% and 6.0%, 0.2% and 26.9%, and 3.4% and 15.8% by volume, respectively. On the basis of the entire cohort (n=100), a significant association was observed for the osteolytic percentage measures and the occurrence of VCF (P<.001) but not for the osteoblastic measures. The most significant lytic disease threshold was observed at ≥11.6% (odds ratio 37.4, 95% confidence interval 9.4-148.9). On multivariable analysis, ≥11.6% lytic disease (P<.001), baseline VCF (P<.001), and SBRT with ≥20 Gy per fraction (P=.014) were predictive. Conclusions: Pretreatment lytic VB disease volumetric measures, independent of the blastic component, predict for SBRT-induced VCF. Larger-scale trials evaluating our software are planned to validate the results.« less
Curcuminoids as EBV Lytic Activators for Adjuvant Treatment in EBV-Positive Carcinomas
Ramayanti, Octavia; Brinkkemper, Mitch; Verkuijlen, Sandra A. W. M.; Ritmaleni, Leni; Go, Mei Lin
2018-01-01
Epstein-Barr virus (EBV) persists in nasopharyngeal (NPC) and gastric carcinomas (EBVaGC) in a tightly latent form. Cytolytic virus activation (CLVA) therapy employs gemcitabine and valproic acid (GCb+VPA) to reactivate latent EBV into the lytic phase and antiviral valganciclovir to enhance cell death and prevent virus production. CLVA treatment has proven safe in phase-I/II trials with promising clinical responses in patients with recurrent NPC. However, a major challenge is to maximize EBV lytic reactivation by CLVA. Curcumin, a dietary spice used in Asian countries, is known for its antitumor property and therapeutic potential. Novel curcuminoids that were developed to increase efficacy and bioavailability may serve as oral CLVA adjuvants. We investigated the potential of curcumin and its analogs (curcuminoids) to trigger the EBV lytic cycle in EBVaGC and NPC cells. EBV-reactivating effects were measured by immunoblot and immunofluorescence using monoclonal antibodies specific for EBV lytic proteins. Two of the hit compounds (41, EF24) with high lytic inducing activity were further studied for their synergistic or antagonistic effects when combined with GCb+VPA and analyzed by cytotoxicity and mRNA profiling assays to measure the EBV reactivation. Curcuminoid as a single agent significantly induced EBV reactivation in recombinant GC and NPC lines. The drug effects were dose- and time-dependent. Micromolar concentration of curcuminoid EF24 enhanced the CLVA effect in all cell systems except SNU719, a naturally infected EBVaGC cell that carries a more tightly latent viral genome. These findings indicated that EF24 has potential as EBV lytic activator and may serve as an adjuvant in CLVA treatment. PMID:29565326
Curcuminoids as EBV Lytic Activators for Adjuvant Treatment in EBV-Positive Carcinomas.
Ramayanti, Octavia; Brinkkemper, Mitch; Verkuijlen, Sandra A W M; Ritmaleni, Leni; Go, Mei Lin; Middeldorp, Jaap M
2018-03-22
Epstein-Barr virus (EBV) persists in nasopharyngeal (NPC) and gastric carcinomas (EBVaGC) in a tightly latent form. Cytolytic virus activation (CLVA) therapy employs gemcitabine and valproic acid (GCb+VPA) to reactivate latent EBV into the lytic phase and antiviral valganciclovir to enhance cell death and prevent virus production. CLVA treatment has proven safe in phase-I/II trials with promising clinical responses in patients with recurrent NPC. However, a major challenge is to maximize EBV lytic reactivation by CLVA. Curcumin, a dietary spice used in Asian countries, is known for its antitumor property and therapeutic potential. Novel curcuminoids that were developed to increase efficacy and bioavailability may serve as oral CLVA adjuvants. We investigated the potential of curcumin and its analogs (curcuminoids) to trigger the EBV lytic cycle in EBVaGC and NPC cells. EBV-reactivating effects were measured by immunoblot and immunofluorescence using monoclonal antibodies specific for EBV lytic proteins. Two of the hit compounds ( 41 , EF24 ) with high lytic inducing activity were further studied for their synergistic or antagonistic effects when combined with GCb+VPA and analyzed by cytotoxicity and mRNA profiling assays to measure the EBV reactivation. Curcuminoid as a single agent significantly induced EBV reactivation in recombinant GC and NPC lines. The drug effects were dose- and time-dependent. Micromolar concentration of curcuminoid EF24 enhanced the CLVA effect in all cell systems except SNU719, a naturally infected EBVaGC cell that carries a more tightly latent viral genome. These findings indicated that EF24 has potential as EBV lytic activator and may serve as an adjuvant in CLVA treatment.
Rocchetti, Andrea; Di Matteo, Luigi; Bottino, Paolo; Foret, Benjamin; Gamalero, Elisa; Calabresi, Alessandra; Guido, Gianluca; Casagranda, Ivo
2016-11-01
The performance of 3 blood culture bottles (BACTEC Plus Aerobic/F, Plus Anaerobic/F, and Anaerobic Lytic/F) were analyzed with clinical specimens collected from 688 Emergency Department patients. A total of 270 strains belonging to 33 species were identified, with E. coli and S. aureus as the most frequently detected. Overall recovery rate (RR) of bacteria and yeast was equivalent in the Plus Aerobic/F vials (208 of 270 isolates; 77.0%) and Anaerobic Lytic/F vials (206 isolates; 76.3%) and significantly better than in the Plus Anaerobic/F vials (189 isolates; 70.0%). Median time to detection (TTD) was earliest with the Anaerobic Lytic/F vials (12.0h) compared with the Plus Aerobic/F (14.6h) and Plus Anaerobic/F vials (15.4h). Positivity rate (PR) was similar for Anaerobic Lytic/F vials (76.9%) and Plus Aerobic/F vials (76.5%), but better if compared with Plus Anaerobic/F vials (69.4%). The PR and TTD for the combination of Plus Aerobic/F with Anaerobic Lytic/F (94.5% and 12.3h, respectively) was significantly better than with Plus Aerobic/F with Plus Anaerobic/F (87.8% and 14.1h). Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Min S; Nitin, Nitin
2014-10-01
Bacteriophage contamination of starter culture and raw material poses a major problem in the fermentation industry. In this study, a rapid detection of lytic phage contamination in starter culture using water-in-oil-in-water (W/O/W) emulsion microdroplets was described. A model bacteria with varying concentrations of lytic phages were encapsulated in W/O/W emulsion microdroplets using a simple needle-in-tube setup. The detection of lytic phage contamination was accomplished in 1 h using the propidium iodide labeling of the phage-infected bacteria inside the W/O/W emulsion microdroplets. Using this approach, a detection limit of 10(2) PFU/mL of phages was achieved quantitatively, while 10(4) PFU/mL of phages could be detected qualitatively based on visual comparison of the fluorescence images. Given the simplicity and sensitivity of this approach, it is anticipated that this method can be adapted to any strains of bacteria and lytic phages that are commonly used for fermentation, and has potential for a rapid detection of lytic phage contamination in the fermentation industry.
Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry
Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.
2015-01-01
Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702
Kubo, Shuji; Kawasaki, Yoshiko; Yamaoka, Norie; Tagawa, Masatoshi; Kasahara, Noriyuki; Terada, Nobuyuki; Okamura, Haruki
2010-01-01
Background Malignant mesothelioma is a highly aggressive tumor with poor prognosis. Conventional therapies for mesothelioma are generally non-curative, and new treatment paradigms are urgently needed. We hypothesized that the tumor-specific midkine (Mdk) promoter could confer transcriptional targeting to oncolytic adenoviruses for effective treatment of malignant mesothelioma. Methods We analyzed Mdk expression by quantitative RT-PCR in six human mesothelioma cell lines, and tested Mdk promoter activity by luciferase reporter assay. Based on these data, we constructed a replication-selective oncolytic adenovirus, designated AdMdk-E1-iresTK, which contains an Mdk promoter-driven adenoviral E1 gene and HSV-thymidine kinase (TK) suicide gene, and CMV promoter-driven green fluorescent protein (GFP) marker gene. Selectivity of viral replication and cytolysis were characterized in normal vs. mesothelioma cells in vitro, and intratumoral spread and antitumor efficacy were investigated in vivo. Results Mdk promoter activity was restricted in normal cells, but highly activated in mesothelioma cell lines. AdMdk-E1-iresTK was seen to efficiently replicate, produce viral progeny, and spread in multiple mesothelioma cell lines. Lytic spread of AdMdk-E1-iresTK mediated efficient killing of these mesothelioma cells, and its in vitro cytocidal effect was significantly enhanced by treatment with the prodrug, ganciclovir. Intratumoral injection of AdMdk-E1-iresTK caused complete regression of MESO4 and MSTO human mesothelioma xenografts in athymic mice. In vivo fluorescence imaging demonstrated intratumoral spread of AdMdk-E1-iresTK-derived signals, which vanished after tumor eradication. Conclusions These data indicate that transcriptional targeting of viral replication by the Mdk promoter represents a promising general strategy for oncolytic virotherapy of cancers with upregulated Mdk expression, including malignant mesothelioma. PMID:20635326
Genomic analysis of Staphylococcus phage Stau2 isolated from medical specimen.
Hsieh, Sue-Er; Tseng, Yi-Hsiung; Lo, Hsueh-Hsia; Chen, Shui-Tu; Wu, Cheng-Nan
2016-02-01
Stau2 is a lytic myophage of Staphylococcus aureus isolated from medical specimen. Exhibiting a broad host range against S. aureus clinical isolates, Stau2 is potentially useful for topical phage therapy or as an additive in food preservation. In this study, Stau2 was firstly revealed to possess a circularly permuted linear genome of 133,798 bp, with low G + C content, containing 146 open reading frames, but encoding no tRNA. The genome is organized into several modules containing genes for packaging, structural proteins, replication/transcription and host-cell-lysis, with the structural proteins and DNA polymerase modules being organized similarly to that in Twort-like phages of Staphylococcus. With the encoded DNA replication genes, Stau2 can possibly use its own system for replication. In addition, analysis in silico found several introns in seven genes, including those involved in DNA metabolism, packaging, and structure, while one of them (helicase gene) is experimentally confirmed to undergo splicing. Furthermore, phylogenetic analysis suggested Stau2 to be most closely related to Staphylococcus phages SA11 and Remus, members of Twort-like phages. The results of sodium dodecyl sulfate polyacrylamide gel electrophoresis showed 14 structural proteins of Stau2 and N-terminal sequencing identified three of them. Importantly, this phage does not encode any proteins which are known or suspected to be involved in toxicity, pathogenicity, or antibiotic resistance. Therefore, further investigations of feasible therapeutic application of Stau2 are needed.
Lee, Cleo Y F; Bu, Luke X X; DeBenedetti, Arrigo; Williams, B Jill; Rennie, Paul S; Jia, William W G
2010-05-01
The aim of this project was to demonstrate that an oncolytic herpes simplex virus type 1 (HSV-1) can replicate in a tissue- and tumor-specific fashion through both transcriptional (prostate-specific promoter, ARR(2)PB) and translational (5'-untranslated regions (5'UTRs) of rFGF-2) regulation of an essential viral gene, ICP27. We generated two recombinant viruses, ARR(2)PB-ICP27 (A27) and ARR(2)PB-5'UTR-ICP27 (AU27) and tested their efficacy and toxicity both in vitro and in vivo. The ARR(2)PB promoter caused overexpression of ICP27 gene in the presence of activated androgen receptors (ARs) and increased viral replication in prostate cells. However, this transcriptional upregulation was effectively constrained by the 5'UTR-mediated translational regulation. Mice bearing human prostate LNCaP tumors, treated with a single intravenous injection of 5 x 10(7) plaque-forming units (pfu) of AU27 virus exhibited a >85% reduction in tumor size at day 28 after viral injection. Although active viral replication was readily evident in the tumors, no viral DNA was detectable in normal organs as measured by real-time PCR analyses. In conclusion, a transcriptional and translational dual-regulated (TTDR) viral essential gene expression can increase both viral lytic activity and tumor specificity, and this provides a basis for the development of a novel tumor-specific oncolytic virus for systemic treatment of locally advanced and metastatic prostate cancers.
Bioactive activities of natural products against herpesvirus infection.
Son, Myoungki; Lee, Minjung; Sung, Gi-Ho; Lee, Taeho; Shin, Yu Su; Cho, Hyosun; Lieberman, Paul M; Kang, Hyojeung
2013-10-01
More than 90% of adults have been infected with at least one human herpesvirus, which establish long-term latent infection for the life of the host. While anti-viral drugs exist that limit herpesvirus replication, many of these are ineffective against latent infection. Moreover, drug-resistant strains of herpesvirus emerge following chemotherapeutic treatment. For example, resistance to acyclovir and related nucleoside analogues can occur when mutations arise in either HSV thymidine kinase or DNA polymerases. Thus, there exists an unmet medical need to develop new anti-herpesvirus agents with different mechanisms of action. In this Review, we discuss the promise of anti-herpetic substances derived from natural products including extracts and pure compounds from potential herbal medicines. One example is Glycyrrhizic acid isolated from licorice that shows promising antiviral activity towards human gammaherpesviruses. Secondly, we discuss anti-herpetic mechanisms utilized by several natural products in molecular level. While nucleoside analogues inhibit replicating herpesviruses in lytic replication, some natural products can disrupt the herpesvirus latent infection in the host cell. In addition, natural products can stimulate immune responses against herpesviral infection. These findings suggest that natural products could be one of the best choices for development of new treatments for latent herpesvirus infection, and may provide synergistic anti-viral activity when supplemented with nucleoside analogues. Therefore, it is important to identify which natural products are more efficacious anti-herpetic agents, and to understand the molecular mechanism in detail for further advance in the anti-viral therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwun, Hyun Jin; Ramos da Silva, Suzane; Department of Pathology, Botucatu School of Medicine at Sao Paulo State University, Sao Paulo
KSHV LANA1, a latent protein expressed during chronic infection to maintain a viral genome, inhibits major histocompatibility complex class I (MHC I) peptide presentation in cis as a means of immune evasion. Through deletional cloning, we localized this function to the LANA1 central repeat 1 (CR1) subregion. Other CR subregions retard LANA1 translation and proteasomal processing but do not markedly inhibit LANA1 peptide processing by MHC I. Inhibition of proteasomal processing ablates LANA1 peptide presentation. Direct expression of LANA1 within the endoplasmic reticulum (ER) overcomes CR1 inhibition suggesting that CR1 acts prior to translocation of cytoplasmic peptides into the ER.more » By physically separating CR1 from other subdomains, we show that LANA1 evades MHC I peptide processing by a mechanism distinct from other herpesviruses including Epstein-Barr virus (EBV). Although LANA1 and EBV EBNA1 are functionally similar, they appear to use different mechanisms to evade host cytotoxic T lymphocyte surveillance.« less
Matusali, Giulia; Arena, Giuseppe; De Leo, Alessandra; Di Renzo, Livia; Mattia, Elena
2009-01-01
Background EBV lytic cycle activators, such as phorbol esters, anti-immunoglobulin, transforming growth factor β (TGFβ), sodium butyrate, induce apoptosis in EBV-negative but not in EBV-positive Burkitt's lymphoma (BL) cells. To investigate the molecular mechanisms allowing EBV-infected cells to be protected, we examined the expression of viral and cellular antiapoptotic proteins as well as the activation of signal transduction pathways in BL-derived Raji cells exposed to lytic cycle inducing agents. Results Our data show that, following EBV activation, the latent membrane protein 1 (LMP1) and the cellular anti-apoptotic proteins MCL-1 and BCL-2 were quickly up-regulated and that Raji cells remained viable even when exposed simultaneously to P(BU)2, sodium butyrate and TGFβ. We report here that inhibition of p38 pathway, during EBV activation, led to a three fold increment of apoptosis and largely prevented lytic gene expression. Conclusion These findings indicate that, during the switch from the latent to the lytic phase of EBV infection, p38 MAPK phosphorylation plays a key role both for protecting the host cells from apoptosis as well as for inducing viral reactivation. Because Raji cells are defective for late antigens expression, we hypothesize that the increment of LMP1 gene expression in the early phases of EBV lytic cycle might contribute to the survival of the EBV-positive cells. PMID:19272151
Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics.
Mitchell, Gabriel J; Nelson, Daniel C; Weitz, Joshua S
2010-10-04
The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics.
Cytotoxic and hemolytic effects of Tritrichomonas foetus on mammalian cells.
Burgess, D E; Knoblock, K F; Daugherty, T; Robertson, N P
1990-01-01
Geographically distinct lines of Tritrichomonas foetus were assayed for their ability to cause cytotoxicity in nucleated mammalian cells and lysis of bovine erythrocytes. T. foetus was highly cytotoxic toward a human cervical cell line (HeLa) and early bovine lymphosarcoma (BL-3) but displayed low levels of cytotoxicity against African green monkey kidney (Vero) cells. In addition to variation in the extent of cytotoxicity toward different targets, differences in the levels of cytotoxicity in the same nucleated target occurred with different parasite lines. Whole T. foetus, unfractionated whole-cell extracts, and parasite-conditioned medium (RPMI 1640 without serum) all caused lysis of bovine erythrocytes. Lytic activity in the conditioned medium was substantially reduced by repeated freezing and thawing or heating to 90 degrees C for 30 min. Damage of mammalian target cells by live T. foetus could be reduced by the presence of protease inhibitors; however, such inhibitors did not diminish the lytic effects of conditioned medium. These results suggested that proteolytic enzymes were necessary for the lytic mechanism of the live parasites but were not required once lytic factors were released into the parasite-conditioned medium. They further suggested that the lytic molecules were either proteins or had proteinaceous components. Images PMID:2228233
Yao, Jianhua; Burns, Joseph E.; Sanoria, Vic; Summers, Ronald M.
2017-01-01
Abstract. Bone metastases are a frequent occurrence with cancer, and early detection can guide the patient’s treatment regimen. Metastatic bone disease can present in density extremes as sclerotic (high density) and lytic (low density) or in a continuum with an admixture of both sclerotic and lytic components. We design a framework to detect and characterize the varying spectrum of presentation of spine metastasis on positron emission tomography/computed tomography (PET/CT) data. A technique is proposed to synthesize CT and PET images to enhance the lesion appearance for computer detection. A combination of watershed, graph cut, and level set algorithms is first run to obtain the initial detections. Detections are then sent to multiple classifiers for sclerotic, lytic, and mixed lesions. The system was tested on 44 cases with 225 sclerotic, 139 lytic, and 92 mixed lesions. The results showed that sensitivity (false positive per patient) was 0.81 (2.1), 0.81 (1.3), and 0.76 (2.1) for sclerotic, lytic, and mixed lesions, respectively. It also demonstrates that using PET/CT data significantly improves the computer aided detection performance over using CT alone. PMID:28612036
Angelini, Daniela F.; Serafini, Barbara; Piras, Eleonora; Severa, Martina; Coccia, Eliana M.; Rosicarelli, Barbara; Ruggieri, Serena; Gasperini, Claudio; Buttari, Fabio; Centonze, Diego; Mechelli, Rosella; Salvetti, Marco; Borsellino, Giovanna; Aloisi, Francesca; Battistini, Luca
2013-01-01
It has long been known that multiple sclerosis (MS) is associated with an increased Epstein-Barr virus (EBV) seroprevalence and high immune reactivity to EBV and that infectious mononucleosis increases MS risk. This evidence led to postulate that EBV infection plays a role in MS etiopathogenesis, although the mechanisms are debated. This study was designed to assess the prevalence and magnitude of CD8+ T-cell responses to EBV latent (EBNA-3A, LMP-2A) and lytic (BZLF-1, BMLF-1) antigens in relapsing-remitting MS patients (n = 113) and healthy donors (HD) (n = 43) and to investigate whether the EBV-specific CD8+ T cell response correlates with disease activity, as defined by clinical evaluation and gadolinium-enhanced magnetic resonance imaging. Using HLA class I pentamers, lytic antigen-specific CD8+ T cell responses were detected in fewer untreated inactive MS patients than in active MS patients and HD while the frequency of CD8+ T cells specific for EBV lytic and latent antigens was higher in active and inactive MS patients, respectively. In contrast, the CD8+ T cell response to cytomegalovirus did not differ between HD and MS patients, irrespective of the disease phase. Marked differences in the prevalence of EBV-specific CD8+ T cell responses were observed in patients treated with interferon-β and natalizumab, two licensed drugs for relapsing-remitting MS. Longitudinal studies revealed expansion of CD8+ T cells specific for EBV lytic antigens during active disease in untreated MS patients but not in relapse-free, natalizumab-treated patients. Analysis of post-mortem MS brain samples showed expression of the EBV lytic protein BZLF-1 and interactions between cytotoxic CD8+ T cells and EBV lytically infected plasma cells in inflammatory white matter lesions and meninges. We therefore propose that inability to control EBV infection during inactive MS could set the stage for intracerebral viral reactivation and disease relapse. PMID:23592979
Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria
Yosef, Ido; Manor, Miriam; Kiro, Ruth
2015-01-01
The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones. PMID:26060300
Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria.
Yosef, Ido; Manor, Miriam; Kiro, Ruth; Qimron, Udi
2015-06-09
The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones.
Sethi, Amit; Delatte, Jennifer; Foil, Lane; Husseneder, Claudia
2014-01-01
For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a 'Trojan-Horse' that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite's gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates.
Lytic agents, cell permeability, and monolayer penetrability.
Salton, M R
1968-07-01
Cell lysis induced by lytic agents is the terminal phase of a series of events leading to membrane disorganization and breadkdown with the release of cellular macromolecules. Permeability changes following exposure to lytic systems may range from selective effects on ion fluxes to gross membrane damage and cell leakage. Lysis can be conceived as an interfacial phenomenon, and the action of surface-active agents on erythrocytes has provided a model in which to investigate relationships between hemolysis and chemical structure, ionic charge, surface tension lowering, and ability to penetrate monolayers of membrane lipid components. Evidence suggests that lysis follows the attainment of surface pressures exceeding a "critical collapse" level and could involve membrane cholesterol or phospholipid. Similarities of chemical composition of membranes from various cell types could account for lytic responses observed on interaction with surface-active agents. Cell membranes usually contain about 20-30 % lipid and 50-75 % protein. One or two major phospholipids are present in all cell membranes, but sterols are not detectable in bacterial membranes other than those of the Mycoplasma group. The rigid cell wall in bacteria has an important bearing on their response to treatment with lytic agents. Removal of the wall renders the protoplast membrane sensitive to rapid lysis with surfactants. Isolated membranes of erythrocytes and bacteria are rapidly dissociated by surface-active agents. Products of dissociation of bacterial membranes have uniform behavior in the ultracentrifuge (sedimentation coefficients 2-3S). Dissociation of membrane proteins from lipids and the isolation and characterization of these proteins will provide a basis for investigating the specificity of interaction of lytic agents with biomembranes.
Abraha, Abraham B.; Whalen, Margaret M.
2008-01-01
Destruction of tumor cells is a key function of NK cells. Previous studies have shown that tributyltin (TBT) can significantly reduce the lytic function of the human NK cells with accompanying increases in the phosphorylation (activation) states of the mitogen activated protein kinases (MAPKs), p44/42. The current studies examine the role of p44/42 activation in the TBT-induced reduction of NK-lytic function, by using MAPK kinase (MEK) inhibitors, PD98059 and U0126. A 1 h treatment with PD98059 or U0126 or both decreased the ability of NK cells to lyse K562 tumor cells. PD98059, U0126 or a combination of both inhibitors were able to completely block TBT-induced activation of p44/42. However, when p44/42 activation was blocked by the presence of PD98059, U0126, or the combination, subsequent exposure to TBT was still able to decrease the lytic function of NK cells. These results indicate that TBT-induced activation of p44/42 occurs via the activation of its upstream activator, MEK, and not by a TBT-induced inhibition of p44/42 phosphatase activity. Additionally, as lytic function was never completely blocked by MEK inhibitors, the results indicate that activation of p44/42 pathway is not solely responsible for the activation of lytic function of freshly isolated human NK cells. Finally, the results showed that TBT-induced activation of p44/42 is not solely responsible for the loss of lytic function. PMID:18989867
Dudimah, Fred D; Griffey, Denisha; Wang, Xiaofei; Whalen, Margaret M
2010-10-01
Natural killer (NK) cells destroy (lyse) tumor cells, virally infected cells, and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen-activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen Toxicology 209:263-277, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function ((51)Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1-h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1-h exposure to 5 nM PMA caused a sixfold increase in phospho-p44/42 levels. Previous studies showed a fivefold increase in phospho-p44/42 in response to a 1-h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function.
Dudimah, Fred D.; Griffey, Denisha; Wang, Xiaofei; Whalen, Margaret M.
2009-01-01
Natural Killer (NK) cells destroy (lyse) tumor cells, virally infected cells and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as Phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function (51Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1 h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1 h exposure to 5 nM PMA caused a 6 fold increase in phospho-p44/42 levels. Previous studies showed a 5 fold increase in phospho-p44/42 in response to a 1 h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function. PMID:20213532
Genetic characterization of ØVC8 lytic phage for Vibrio cholerae O1.
Solís-Sánchez, Alejandro; Hernández-Chiñas, Ulises; Navarro-Ocaña, Armando; De la Mora, Javier; Xicohtencatl-Cortes, Juan; Eslava-Campos, Carlos
2016-03-22
Epidemics and pandemics of cholera, a diarrheal disease, are attributed to Vibrio cholera serogroups O1 and O139. In recent years, specific lytic phages of V. cholera have been proposed to be important factors in the cyclic occurrence of cholera in endemic areas. However, the role and potential participation of lytic phages during long interepidemic periods of cholera in non-endemic regions have not yet been described. The purpose of this study was to isolate and characterize specific lytic phages of V. cholera O1 strains. Sixteen phages were isolated from wastewater samples collected at the Endhó Dam in Hidalgo State, Mexico, concentrated with PEG/NaCl, and purified by density gradient. The lytic activity of the purified phages was tested using different V. cholerae O1 and O139 strains. Phage morphology was visualized by transmission electron microscopy (TEM), and phage genome sequencing was performed using the Genome Analyzer IIx System. Genome assembly and bioinformatics analysis were performed using a set of high-throughput programs. Phage structural proteins were analyzed by mass spectrometry. Sixteen phages with lytic and lysogenic activity were isolated; only phage ØVC8 showed specific lytic activity against V. cholerae O1 strains. TEM images of ØVC8 revealed a phage with a short tail and an isometric head. The ØVC8 genome comprises linear double-stranded DNA of 39,422 bp with 50.8 % G + C. Of the 48 annotated ORFs, 16 exhibit homology with sequences of known function and several conserved domains. Bioinformatics analysis showed multiple conserved domains, including an Ig domain, suggesting that ØVC8 might adhere to different mucus substrates such as the human intestinal epithelium. The results suggest that ØVC8 genome utilize the "single-stranded cohesive ends" packaging strategy of the lambda-like group. The two structural proteins sequenced and analyzed are proteins of known function. ØVC8 is a lytic phage with specific activity against V. cholerae O1 strains and is grouped as a member of the VP2-like phage subfamily. The encoding of an Ig domain by ØVC8 makes this phage a good candidate for use in phage therapy and an alternative tool for monitoring V. cholerae populations.
Paglino, Justin; Tattersall, Peter
2011-01-01
Members of the rodent subgroup of the genus Parvovirus exhibit lytic replication and spread in many human tumor cells and are therefore attractive candidates for oncolytic virotherapy. However, the significant variation in tumor tropism observed for these viruses remains largely unexplained. We report here that LuIII kills BJ-ELR ‘stepwise-transformed’ human fibroblasts efficiently, while MVM does not. Using viral chimeras, we mapped this property to the LuIII capsid gene, VP2, which is necessary and sufficient to confer the killer phenotype on MVM. LuIII VP2 facilitates a post-entry, pre-DNA-amplification step early in the life cycle, suggesting the existence of an intracellular moiety whose efficient interaction with the incoming capsid shell is critical to infection. Thus targeting of human cancers of different tissue-type origins will require use of parvoviruses with capsids that effectively make this critical interaction. PMID:21600623
Bacteriophage endolysins as novel antimicrobials
Schmelcher, Mathias; Donovan, David M; Loessner, Martin J
2013-01-01
Endolysins are enzymes used by bacteriophages at the end of their replication cycle to degrade the peptidoglycan of the bacterial host from within, resulting in cell lysis and release of progeny virions. Due to the absence of an outer membrane in the Gram-positive bacterial cell wall, endolysins can access the peptidoglycan and destroy these organisms when applied externally, making them interesting antimicrobial candidates, particularly in light of increasing bacterial drug resistance. This article reviews the modular structure of these enzymes, in which cell wall binding and catalytic functions are separated, as well as their mechanism of action, lytic activity and potential as antimicrobials. It particularly focuses on molecular engineering as a means of optimizing endolysins for specific applications, highlights new developments that may render these proteins active against Gram-negative and intracellular pathogens and summarizes the most recent applications of endolysins in the fields of medicine, food safety, agriculture and biotechnology. PMID:23030422
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myllys, Markko; Ruokolainen, Visa; Aho, Vesa
Lytic infection with herpes simplex virus type 1 (HSV-1) induces profound modification of the cell nucleus including formation of a viral replication compartment and chromatin marginalization into the nuclear periphery. Here, we used three-dimensional soft X-ray tomography, combined with cryogenic fluorescence, confocal and electron microscopy, to analyse the transformation of peripheral chromatin during HSV-1 infection. Our data showed an increased presence of low-density gaps in the marginalized chromatin at late infection. Advanced data analysis indicated the formation of virus-nucleocapsid-sized (or wider) channels extending through the compacted chromatin of the host. Importantly, confocal and electron microscopy analysis showed that these gapsmore » frequently contained viral nucleocapsids. Our results demonstrated that HSV-1 infection induces the formation of channels penetrating the compacted layer of cellular chromatin and allowing for the passage of progeny viruses to the nuclear envelope, their site of nuclear egress.« less
Johnston, Simon A; May, Robin C
2013-03-01
Cryptococcus is a potentially fatal fungal pathogen and a leading cause of death in immunocompromised patients. As an opportunistic and facultative intracellular pathogen of humans, Cryptococcus exhibits a complex set of interactions with the host immune system in general, and macrophages in particular. Cryptococcus is resistant to phagocytosis but is also able to survive and proliferate within the mature phagolysosome. It can cause the lysis of host cells, can be transferred between macrophages or exit non-lytically via vomocytosis. Efficient phagocytosis is reliant on opsonization and Cryptococcus has a number of anti-phagocytic strategies including formation of titan cells and a thick polysaccharide capsule. Following uptake, phagosome maturation appears to occur normally, but the internalized pathogen is able to survive and replicate. Here we review the interactions and host manipulation processes that occur within cryptococcal-infected macrophages and highlight areas for future research. © 2012 Blackwell Publishing Ltd.
Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection.
Gan, Jin; Qiao, Niu; Strahan, Roxanne; Zhu, Caixia; Liu, Lei; Verma, Subhash C; Wei, Fang; Cai, Qiliang
2016-11-01
Post-translational modification of proteins with ubiquitin/small ubiquitin-like modifier (SUMO) molecules triggers multiple signaling pathways that are critical for many aspects of cellular physiology. Given that viruses hijack the biosynthetic and degradative systems of their host, it is not surprising that viruses encode proteins to manipulate the host's cellular machinery for ubiquitin/SUMO modification at multiple levels. Infection with a herpesvirus, among the most ubiquitous human DNA viruses, has been linked to many human diseases, including cancers. The interplay between human herpesviruses and the ubiquitylation/SUMOylation modification system has been extensively investigated in the past decade. In this review, we present an overview of recent advances to address how the ubiquitin/SUMO-modified system alters the latency and lytic replication of herpesvirus and how herpesviruses usurp the ubiquitin/SUMO pathways against the host's intrinsic and innate immune response to favor their pathogenesis. Copyright © 2016 John Wiley & Sons, Ltd.
Herpes simplex virus 1 induces egress channels through marginalized host chromatin
Myllys, Markko; Ruokolainen, Visa; Aho, Vesa; ...
2016-06-28
Lytic infection with herpes simplex virus type 1 (HSV-1) induces profound modification of the cell nucleus including formation of a viral replication compartment and chromatin marginalization into the nuclear periphery. Here, we used three-dimensional soft X-ray tomography, combined with cryogenic fluorescence, confocal and electron microscopy, to analyse the transformation of peripheral chromatin during HSV-1 infection. Our data showed an increased presence of low-density gaps in the marginalized chromatin at late infection. Advanced data analysis indicated the formation of virus-nucleocapsid-sized (or wider) channels extending through the compacted chromatin of the host. Importantly, confocal and electron microscopy analysis showed that these gapsmore » frequently contained viral nucleocapsids. Our results demonstrated that HSV-1 infection induces the formation of channels penetrating the compacted layer of cellular chromatin and allowing for the passage of progeny viruses to the nuclear envelope, their site of nuclear egress.« less
Komatsu, Tetsuro; Will, Hans; Nagata, Kyosuke; Wodrich, Harald
2016-04-22
Recent studies involving several viral systems have highlighted the importance of cellular intrinsic defense mechanisms through nuclear antiviral proteins that restrict viral propagation. These factors include among others components of PML nuclear bodies, the nuclear DNA sensor IFI16, and a potential restriction factor PHF13/SPOC1. For several nuclear replicating DNA viruses, it was shown that these factors sense and target viral genomes immediately upon nuclear import. In contrast to the anticipated view, we recently found that incoming adenoviral genomes are not targeted by PML nuclear bodies. Here we further explored cellular responses against adenoviral infection by focusing on specific conditions as well as additional nuclear antiviral factors. In line with our previous findings, we show that neither interferon treatment nor the use of specific isoforms of PML nuclear body components results in co-localization between incoming adenoviral genomes and the subnuclear domains. Furthermore, our imaging analyses indicated that neither IFI16 nor PHF13/SPOC1 are likely to target incoming adenoviral genomes. Thus our findings suggest that incoming adenoviral genomes may be able to escape from a large repertoire of nuclear antiviral mechanisms, providing a rationale for the efficient initiation of lytic replication cycle. Copyright © 2016 Elsevier Inc. All rights reserved.
Harausz, Elizabeth; Lusiba, John Kafuluma; Nsereko, Mary; Johnson, John L; Toossi, Zahra; Ogwang, Sam; Boom, W Henry; Joloba, Moses L
2015-04-01
The specificities and sensitivities of the Bactec mycobacterial growth indicator tube (MGIT) system for the recovery of Mycobacterium tuberculosis from pleural fluid are not statistically different than those of the Myco/F lytic liquid culture system. The time to positivity is shorter in the MGIT system (12.7 versus 20.7 days, respectively; P=0.007). The Myco/F lytic culture system may be an alternative to the MGIT system for diagnosing pleural tuberculosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Gene Expression of Lytic Endopeptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonads.
Tsfasman, Irina M; Lapteva, Yulia S; Krasovskaya, Ludmila A; Kudryakova, Irina V; Vasilyeva, Natalia V; Granovsky, Igor E; Stepnaya, Olga A
2015-01-01
Development of an efficient expression system for (especially secreted) bacterial lytic enzymes is a complicated task due to the specificity of their action. The substrate for such enzymes is peptidoglycan, the main structural component of bacterial cell walls. For this reason, expression of recombinant lytic proteins is often accompanied with lysis of the producing bacterium. This paper presents data on the construction of an inducible system for expression of the lytic peptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonas fluorescens Q2-87, which provides for the successful secretion of these proteins into the culture liquid. In this system, the endopeptidase gene under control of the T7lac promoter was integrated into the bacterial chromosome, as well as the Escherichia coli lactose operon repressor protein gene. The T7 pol gene under lac promoter control, which encodes the phage T7 RNA polymerase, is maintained in Pseudomonas cells on the plasmids. Media and cultivation conditions for the recombinant strains were selected to enable the production of AlpA and AlpB by a simple purification protocol. Production of recombinant lytic enzymes should contribute to the development of new-generation antimicrobial drugs whose application will not be accompanied by selection of resistant microorganisms. © 2015 S. Karger AG, Basel.
Frappier, Lori
2013-01-01
The reactivation of Epstein-Barr virus (EBV) from latent to lytic infection begins with the expression of the viral BZLF1 gene, leading to a subsequent cascade of viral gene expression and amplification of the EBV genome. Using RNA interference, we show that nucleosome assembly proteins NAP1 and TAF-I positively contribute to EBV reactivation in epithelial cells through the induction of BZLF1 expression. In addition, overexpression of NAP1 or the β isoform of TAF-I (TAF-Iβ) in AGS cells latently infected with EBV was sufficient to induce BZLF1 expression. Chromatin immunoprecipitation experiments performed in AGS-EBV cells showed that TAF-I associated with the BZLF1 promoter upon lytic induction and affected local histone modifications by increasing H3K4 dimethylation and H4K8 acetylation. MLL1, the host protein known to dimethylate H3K4, was found to associate with the BZLF1 promoter upon lytic induction in a TAF-I-dependent manner, and MLL1 depletion decreased BZLF1 expression, confirming its contribution to lytic reactivation. The results indicate that TAF-Iβ promotes BZLF1 expression and subsequent lytic infection by affecting chromatin at the BZLF1 promoter. PMID:23691099
Mansouri, Sheila; Wang, Shan; Frappier, Lori
2013-01-01
The reactivation of Epstein-Barr virus (EBV) from latent to lytic infection begins with the expression of the viral BZLF1 gene, leading to a subsequent cascade of viral gene expression and amplification of the EBV genome. Using RNA interference, we show that nucleosome assembly proteins NAP1 and TAF-I positively contribute to EBV reactivation in epithelial cells through the induction of BZLF1 expression. In addition, overexpression of NAP1 or the β isoform of TAF-I (TAF-Iβ) in AGS cells latently infected with EBV was sufficient to induce BZLF1 expression. Chromatin immunoprecipitation experiments performed in AGS-EBV cells showed that TAF-I associated with the BZLF1 promoter upon lytic induction and affected local histone modifications by increasing H3K4 dimethylation and H4K8 acetylation. MLL1, the host protein known to dimethylate H3K4, was found to associate with the BZLF1 promoter upon lytic induction in a TAF-I-dependent manner, and MLL1 depletion decreased BZLF1 expression, confirming its contribution to lytic reactivation. The results indicate that TAF-Iβ promotes BZLF1 expression and subsequent lytic infection by affecting chromatin at the BZLF1 promoter.
Brown, Teagan L; Thomas, Tereen; Odgers, Jessica; Petrovski, Steve; Spark, Marion Joy; Tucci, Joseph
2017-03-01
Resistance of bacteria to antimicrobial agents is of grave concern. Further research into the development of bacteriophage as therapeutic agents against bacterial infections may help alleviate this problem. To formulate bacteriophage into a range of semisolid and solid dosage forms and investigate the capacity of these preparations to kill bacteria under laboratory conditions. Bacteriophage suspensions were incorporated into dosage forms such as creams, ointments, pastes, pessaries and troches. These were applied to bacterial lawns in order to ascertain lytic capacity. Stability of these formulations containing phage was tested under various storage conditions. A range of creams and ointments were able to support phage lytic activity against Propionibacterium acnes. Assessment of the stability of these formulations showed that storage at 4 °C in light-protected containers resulted in optimal phage viability after 90 days. Pessaries/suppositories and troches were able to support phage lytic activity against Rhodococcus equi. We report here the in-vitro testing of semisolid and solid formulations of bacteriophage lytic against a range of bacteria known to contribute to infections of the epithelia. This study provides a basis for the future formulation of diverse phage against a range of bacteria that infect epithelial tissues. © 2016 Royal Pharmaceutical Society.
Cao, Yueyu; Qiao, Jing; Lin, Zhen; Zabaleta, Jovanny; Dai, Lu; Qin, Zhiqiang
2017-02-28
Primary effusion lymphoma (PEL) is a rare and highly aggressive B-cell malignancy with Kaposi's sarcoma-associated herpesvirus (KSHV) infection, while lack of effective therapies. Our recent data indicated that targeting the sphingolipid metabolism by either sphingosine kinase inhibitor or exogenous ceramide species induces PEL cell apoptosis and suppresses tumor progression in vivo. However, the underlying mechanisms for these exogenous ceramides "killing" PEL cells remain largely unknown. Based on the microarray analysis, we found that exogenous dhC16-Cer treatment affected the expression of many cellular genes with important functions within PEL cells such as regulation of cell cycle, cell survival/proliferation, and apoptosis/anti-apoptosis. Interestingly, we found that a subset of tumor suppressor genes (TSGs) was up-regulated from dhC16-Cer treated PEL cells. One of these elevated TSGs, Thrombospondin-1 (THBS1) was required for dhC16-Cer induced PEL cell cycle arrest. Moreover, dhC16-Cer up-regulation of THBS1 was through the suppression of multiple KSHV microRNAs expression. Our data demonstrate that exogenous ceramides display anti-cancer activities for PEL through regulation of both host and oncogenic virus factors.
USDA-ARS?s Scientific Manuscript database
Initial screening for bacteriophages lytic for Clostridium perfringens was performed utilizing filtered samples obtained from poultry (intestinal material), soil, sewage and poultry processing drainage water. Lytic phage preparations were initially characterized by transmission electron microscopy ...
The Genome Sequence of Bacteriophage CPV1 Virulent for Clostridium perfringens
USDA-ARS?s Scientific Manuscript database
Application of bacteriophages and their lytic enzymes to control Clostridium perfringens is one potential approach to reduce the pathogen on poultry farms and in poultry-processing facilities. Bacteriophages lytic for C. perfringens were isolated from sewage, feces and broiler intestinal contents. P...
Using Phage Lytic Enzymes to Destroy Pathogenic and BW Bacteria
2005-07-14
against antibiotic resistant Enterococcus faecalis and Enterococcus faecium . J Bacteriol. 186:4808-12. Cheng, Q., D. Nelson, S. Zhu, and V.A...Lysins from Enterococcus faecalis RU-654 3. Fischetti, Vincent A. Schuch, Raymond Lytic Enzymes and spore surface antigens for detection and
Sharma, Manan
2013-01-01
Foodborne illnesses resulting from the consumption of produce commodities contaminated with enteric pathogens continue to be a significant public health issue. Lytic bacteriophages may provide an effective and natural intervention to reduce bacterial pathogens on fresh and fresh-cut produce commodities. The use of multi-phage cocktails specific for a single pathogen has been most frequently assessed on produce commodities to minimize the development of bacteriophage insensitive mutants (BIM) in target pathogen populations. Regulatory approval for the use of several lytic phage products specific for bacterial pathogens such as Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes in foods and on food processing surfaces has been granted by various agencies in the US and other countries, possibly allowing for the more widespread use of bacteriophages in the decontamination of fresh and minimally processed produce. Research studies have shown lytic bacteriophages specific for E. coli O157:H7, Salmonella spp. and Listeria monocytogenes have been effective in reducing pathogen populations on leafy greens, sprouts and tomatoes. PMID:24228223
PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter.
Lupey-Green, Lena N; Moquin, Stephanie A; Martin, Kayla A; McDevitt, Shane M; Hulse, Michael; Caruso, Lisa B; Pomerantz, Richard T; Miranda, Jj L; Tempera, Italo
2017-07-01
The Epstein Barr virus (EBV) genome persists in infected host cells as a chromatinized episome and is subject to chromatin-mediated regulation. Binding of the host insulator protein CTCF to the EBV genome has an established role in maintaining viral latency type, and in other herpesviruses, loss of CTCF binding at specific regions correlates with viral reactivation. Here, we demonstrate that binding of PARP1, an important cofactor of CTCF, at the BZLF1 lytic switch promoter restricts EBV reactivation. Knockdown of PARP1 in the Akata-EBV cell line significantly increases viral copy number and lytic protein expression. Interestingly, CTCF knockdown has no effect on viral reactivation, and CTCF binding across the EBV genome is largely unchanged following reactivation. Moreover, EBV reactivation attenuates PARP activity, and Zta expression alone is sufficient to decrease PARP activity. Here we demonstrate a restrictive function of PARP1 in EBV lytic reactivation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing
Hsu, Hsiang-Ting; Viswanath, Dixita I.; Önfelt, Björn
2016-01-01
Natural killer (NK) cell activation triggers sequential cellular events leading to destruction of diseased cells. We previously identified lytic granule convergence, a dynein- and integrin signal–dependent movement of lysosome-related organelles to the microtubule-organizing center, as an early step in the cell biological process underlying NK cell cytotoxicity. Why lytic granules converge during NK cell cytotoxicity, however, remains unclear. We experimentally controlled the availability of human ligands to regulate NK cell signaling and promote granule convergence with either directed or nondirected degranulation. By the use of acoustic trap microscopy, we generated specific effector–target cell arrangements to define the impact of the two modes of degranulation. NK cells with converged granules had greater targeted and less nonspecific “bystander” killing. Additionally, NK cells in which dynein was inhibited or integrin blocked under physiological conditions demonstrated increased nondirected degranulation and bystander killing. Thus, NK cells converge lytic granules and thereby improve the efficiency of targeted killing and prevent collateral damage to neighboring healthy cells. PMID:27903610
Sethi, Amit; Delatte, Jennifer; Foil, Lane; Husseneder, Claudia
2014-01-01
For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a ‘Trojan-Horse’ that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite's gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates. PMID:25198727
Kraus, Richard J.; Cordes, Blue-leaf A.; Nawandar, Dhananjay M.; Ma, Shidong; McChesney, Kyle G.; Lin, Zhen; Makielski, Kathleen R.; Lee, Denis L.; Lambert, Paul F.; Johannsen, Eric C.; Kenney, Shannon C.
2017-01-01
When confronted with poor oxygenation, cells adapt by activating survival signaling pathways, including the oxygen-sensitive transcriptional regulators called hypoxia-inducible factor alphas (HIF-αs). We report here that HIF-1α also regulates the life cycle of Epstein-Barr virus (EBV). Incubation of EBV-positive gastric carcinoma AGS-Akata and SNU-719 and Burkitt lymphoma Sal and KemIII cell lines with a prolyl hydroxylase inhibitor, L-mimosine or deferoxamine, or the NEDDylation inhibitor MLN4924 promoted rapid and sustained accumulation of both HIF-1α and lytic EBV antigens. ShRNA knockdown of HIF-1α significantly reduced deferoxamine-mediated lytic reactivation. HIF-1α directly bound the promoter of the EBV primary latent-lytic switch BZLF1 gene, Zp, activating transcription via a consensus hypoxia-response element (HRE) located at nt -83 through -76 relative to the transcription initiation site. HIF-1α did not activate transcription from the other EBV immediate-early gene, BRLF1. Importantly, expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV, but not in cells infected with variants containing base-pair substitution mutations within this HRE. Human oral keratinocyte (NOK) and gingival epithelial (hGET) cells induced to differentiate by incubation with either methyl cellulose or growth in organotypic culture accumulated both HIF-1α and Blimp-1α, another cellular factor implicated in lytic reactivation. HIF-1α activity also accumulated along with Blimp-1α during B-cell differentiation into plasma cells. Furthermore, most BZLF1-expressing cells observed in lymphomas induced by EBV in NSG mice with a humanized immune system were located distal to blood vessels in hypoxic regions of the tumors. Thus, we conclude that HIF-1α plays central roles in both EBV’s natural life cycle and EBV-associated tumorigenesis. We propose that drugs that induce HIF-1α protein accumulation are good candidates for development of a lytic-induction therapy for treating some EBV-associated malignancies. PMID:28617871
Herlihey, Francesca A.; Osorio-Valeriano, Manuel; Dreyfus, Georges
2016-01-01
ABSTRACT SltF was identified previously as an autolysin required for the assembly of flagella in the alphaproteobacteria, but the nature of its peptidoglycan lytic activity remained unknown. Sequence alignment analyses suggest that it could function as either a muramidase, lytic transglycosylase, or β-N-acetylglucosaminidase. Recombinant SltF from Rhodobacter sphaeroides was purified to apparent homogeneity, and it was demonstrated to function as a lytic transglycosylase based on enzymatic assays involving mass spectrometric analyses. Circular dichroism (CD) analysis determined that it is composed of 83.4% α-structure and 1.48% β-structure and thus is similar to family 1A lytic transglycosylases. However, alignment of apparent SltF homologs identified in the genome database defined a new subfamily of the family 1 lytic transglycosylases. SltF was demonstrated to be endo-acting, cleaving within chains of peptidoglycan, with optimal activity at pH 7.0. Its activity is modulated by two flagellar rod proteins, FlgB and FlgF: FlgB both stabilizes and stimulates SltF activity, while FlgF inhibits it. Invariant Glu57 was confirmed as the sole catalytic acid/base residue of SltF. IMPORTANCE The bacterial flagellum is comprised of a basal body, hook, and helical filament, which are connected by a rod structure. With a diameter of approximately 4 nm, the rod is larger than the estimated pore size within the peptidoglycan sacculus, and hence its insertion requires the localized and controlled lysis of this essential cell wall component. In many beta- and gammaproteobacteria, this lysis is catalyzed by the β-N-acetylglucosaminidase domain of FlgJ. However, FlgJ of the alphaproteobacteria lacks this activity and instead it recruits a separate enzyme, SltF, for this purpose. In this study, we demonstrate that SltF functions as a newly identified class of lytic transglycosylases and that its autolytic activity is uniquely modulated by two rod proteins, FlgB and FlgF. PMID:27114466
The DNA helicase–primase complex as a target for herpes viral infection
Weller, Sandra K; Kuchta, Robert D
2014-01-01
Introduction The Herpesviridae are responsible for debilitating acute and chronic infections, and some members of this family are associated with human cancers. Conventional anti-herpesviral therapy targets the viral DNA polymerase and has been extremely successful; however, the emergence of drug-resistant virus strains, especially in neonates and immunocompromised patients, underscores the need for continued development of anti-herpes drugs. In this article, we explore an alternative target for antiviral therapy, the HSV helicase/primase complex. Areas covered This review addresses the current state of knowledge of HSV DNA replication and the important roles played by the herpesvirus helicase–primase complex. In the last 10 years several helicase/primase inhibitors (HPIs) have been described, and in this article, we discuss and contrast these new agents with established inhibitors. Expert opinion The outstanding safety profile of existing nucleoside analogues for a-herpesvirus infection make the development of new therapeutic agents a challenge. Currently used nucleoside analogues exhibit few side effects and have low occurrence of clinically relevant resistance. For HCMV, however, existing drugs have significant toxicity issues and the frequency of drug resistance is high, and no antiviral therapies are available for EBV and KSHV. The development of new anti-herpesvirus drugs is thus well worth pursuing especially for immunocompromised patients and those who develop drug-resistant infections. Although the HPIs are promising, limitations to their development into a successful drug strategy remain. PMID:23930666
Analysis of Epstein-Barr Virus Genomes and Expression Profiles in Gastric Adenocarcinoma.
Borozan, Ivan; Zapatka, Marc; Frappier, Lori; Ferretti, Vincent
2018-01-15
Epstein-Barr virus (EBV) is a causative agent of a variety of lymphomas, nasopharyngeal carcinoma (NPC), and ∼9% of gastric carcinomas (GCs). An important question is whether particular EBV variants are more oncogenic than others, but conclusions are currently hampered by the lack of sequenced EBV genomes. Here, we contribute to this question by mining whole-genome sequences of 201 GCs to identify 13 EBV-positive GCs and by assembling 13 new EBV genome sequences, almost doubling the number of available GC-derived EBV genome sequences and providing the first non-Asian EBV genome sequences from GC. Whole-genome sequence comparisons of all EBV isolates sequenced to date (85 from tumors and 57 from healthy individuals) showed that most GC and NPC EBV isolates were closely related although American Caucasian GC samples were more distant, suggesting a geographical component. However, EBV GC isolates were found to contain some consistent changes in protein sequences regardless of geographical origin. In addition, transcriptome data available for eight of the EBV-positive GCs were analyzed to determine which EBV genes are expressed in GC. In addition to the expected latency proteins (EBNA1, LMP1, and LMP2A), specific subsets of lytic genes were consistently expressed that did not reflect a typical lytic or abortive lytic infection, suggesting a novel mechanism of EBV gene regulation in the context of GC. These results are consistent with a model in which a combination of specific latent and lytic EBV proteins promotes tumorigenesis. IMPORTANCE Epstein-Barr virus (EBV) is a widespread virus that causes cancer, including gastric carcinoma (GC), in a small subset of individuals. An important question is whether particular EBV variants are more cancer associated than others, but more EBV sequences are required to address this question. Here, we have generated 13 new EBV genome sequences from GC, almost doubling the number of EBV sequences from GC isolates and providing the first EBV sequences from non-Asian GC. We further identify sequence changes in some EBV proteins common to GC isolates. In addition, gene expression analysis of eight of the EBV-positive GCs showed consistent expression of both the expected latency proteins and a subset of lytic proteins that was not consistent with typical lytic or abortive lytic expression. These results suggest that novel mechanisms activate expression of some EBV lytic proteins and that their expression may contribute to oncogenesis. Copyright © 2018 American Society for Microbiology.
Quinn, Laura L.; Williams, Luke R.; White, Claire; Forrest, Calum; Rowe, Martin
2015-01-01
ABSTRACT The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8+ cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8+ cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8+ cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4+ cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8+ and CD4+ T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8+ T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8+ T cells specific for early lytic cycle antigens. The present work identifies an additional immune evasion protein, BDLF3, that is expressed late in the lytic cycle and impairs CD8+ T cell recognition by targeting cell surface MHC class I molecules for ubiquitination and proteasome-dependent downregulation. Interestingly, BDLF3 also targets MHC class II molecules to impair CD4+ T cell recognition. BDLF3 is therefore a rare example of a viral protein that impairs both the MHC class I and class II antigen-presenting pathways. PMID:26468525
Quinn, Laura L; Williams, Luke R; White, Claire; Forrest, Calum; Zuo, Jianmin; Rowe, Martin
2016-01-01
The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8(+) cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8(+) cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8(+) cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4(+) cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8(+) and CD4(+) T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8(+) T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8(+) T cells specific for early lytic cycle antigens. The present work identifies an additional immune evasion protein, BDLF3, that is expressed late in the lytic cycle and impairs CD8(+) T cell recognition by targeting cell surface MHC class I molecules for ubiquitination and proteasome-dependent downregulation. Interestingly, BDLF3 also targets MHC class II molecules to impair CD4(+) T cell recognition. BDLF3 is therefore a rare example of a viral protein that impairs both the MHC class I and class II antigen-presenting pathways. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Adenovirus Death Protein (ADP) Is Required for Lytic Infection of Human Lymphocytes
Murali, V. K.; Ornelles, D. A.; Gooding, L. R.; Wilms, H. T.; Huang, W.; Tollefson, A. E.; Wold, W. S. M.
2014-01-01
The adenovirus death protein (ADP) is expressed at late times during a lytic infection of species C adenoviruses. ADP promotes the release of progeny virus by accelerating the lysis and death of the host cell. Since some human lymphocytes survive while maintaining a persistent infection with species C adenovirus, we compared ADP expression in these cells with ADP expression in lymphocytes that proceed with a lytic infection. Levels of ADP were low in KE37 and BJAB cells, which support a persistent infection. In contrast, levels of ADP mRNA and protein were higher in Jurkat cells, which proceed with a lytic infection. Epithelial cells infected with an ADP-overexpressing virus died more quickly than epithelial cells infected with an ADP-deleted virus. However, KE37, and BJAB cells remained viable after infection with the ADP-overexpressing virus. Although the levels of ADP mRNA increased in KE37 and BJAB cells infected with the ADP-overexpressing virus, the fraction of cells with detectable ADP was unchanged, suggesting that the control of ADP expression differs between epithelial and lymphocytic cells. When infected with an ADP-deleted adenovirus, Jurkat cells survived and maintained viral DNA for greater than 1 month. These findings are consistent with the notion that the level of ADP expression determines whether lymphocytic cells proceed with a lytic or a persistent adenovirus infection. PMID:24198418
Comparative lytic efficacy of rt-PA and ultrasound in porcine versus human clots.
Huang, Shenwen; Shekhar, Himanshu; Holland, Christy K
2017-01-01
Porcine thrombi are employed routinely in preclinical models of ischemic stroke. In this study, we examined the differential lytic susceptibility of porcine and human whole blood clots with and without the use of microbubbles and ultrasound (US) as an adjuvant. An in vitro system equipped with time-lapse microscopy was used to evaluate recombinant tissue-plasminogen activator (rt-PA) lysis of porcine and human clots in the same species or cross species plasma. Human and porcine whole blood clots were treated with rt-PA and an echo contrast agent, Definity®, and exposed to intermittent 120 kHz US. The rt-PA lytic efficacy observed for porcine clots in porcine plasma was 22 times lower than for human clots in human plasma reported previously. Further, porcine clots did not exhibit increased lysis with adjuvant Definity® and US exposure. However, the rt-PA lytic susceptibility of the porcine clots in human plasma was similar to that of human clots in human plasma. Human clots perfused with porcine plasma did not respond to rt-PA, but adjuvant use of Definity® and US enhanced lysis. These results reveal considerable differences in lytic susceptibility of porcine clots and human clots to rt-PA. The use of porcine clot models to test new human thrombolytic therapies may necessitate modulation of coagulation and thrombolytic factors to reflect human hemostasis accurately.
Hydroxyapatite crystals as a bone graft substitute in benign lytic lesions of bone
Gupta, Anil Kumar; Kumar, Praganesh; Keshav, Kumar; Singh, Anant
2015-01-01
Background: Bone grafts are required to fill a cavity created after curettage of benign lytic lesions of the bone. To avoid the problems associated at donor site with autologous bone graft, we require allograft or bone graft substitutes. We evaluated the healing of lytic lesions after hydroxyapatite (HA) grafting by serial radiographs. Materials and Methods: Forty cases of benign lytic lesions of bone were managed by simple curettage and grafting using HA blocks. Commercially available HA of bovine origin (Surgiwear Ltd., Shahjahanpur, India) was used for this purpose. Mean duration of followup was 34.8 months (range 12–84 months). Mean patient age was 19.05 years (range 3–55 years). Radiological staging of graft incorporation was done as per criteria of Irwin et al. 2001. Results: In our series, two cases were in stage I. A total of 11 cases were in stage II and 27 were in stage III. Graft incorporation was radiologically complete by 15 months. Clinical recovery was observed before radiological healing. The average time taken to return to preoperative function was 3 months. Recurrence was observed in giant cell tumor (n = 3) and chondromyxoid fibroma (n = 1). There was no incidence of graft rejection, collapse, growth plate disturbances or antigenic response. Conclusions: We conclude that calcium HA is biologically acceptable bone graft substitute in the management of benign lytic lesions of bone. PMID:26806973
Bogdanow, Boris; Weisbach, Henry; von Einem, Jens; Straschewski, Sarah; Voigt, Sebastian; Winkler, Michael; Hagemeier, Christian; Wiebusch, Lüder
2013-10-22
Upon cell entry, herpesviruses deliver a multitude of premade virion proteins to their hosts. The interplay between these incoming proteins and cell-specific regulatory factors dictates the outcome of infections at the cellular level. Here, we report a unique type of virion-host cell interaction that is essential for the cell cycle and differentiation state-dependent onset of human cytomegalovirus (HCMV) lytic gene expression. The major tegument 150-kDa phosphoprotein (pp150) of HCMV binds to cyclin A2 via a functional RXL/Cy motif resulting in its cyclin A2-dependent phosphorylation. Alanine substitution of the RXL/Cy motif prevents this interaction and allows the virus to fully escape the cyclin-dependent kinase (CDK)-mediated block of immediate early (IE) gene expression in S/G2 phase that normally restricts the onset of the HCMV replication cycle to G0/G1. Furthermore, the cyclin A2-CDK-pp150 axis is also involved in the establishment of HCMV quiescence in NTera2 cells, showing the importance of this molecular switch for differentiation state-dependent regulation of IE gene expression. Consistent with the known nucleocapsid-binding function of pp150, its RXL/Cy-dependent phosphorylation affects gene expression of the parental virion only, suggesting a cis-acting, virus particle-associated mechanism of control. The pp150 homologs of other primate and mammalian CMVs lack an RXL/Cy motif and accordingly even the nearest relative of HCMV, chimpanzee CMV, starts its lytic cycle in a cell cycle-independent manner. Thus, HCMV has evolved a molecular sensor for cyclin A2-CDK activity to restrict its IE gene expression program as a unique level of self-limitation and adaptation to its human host.
Al Tabaa, Yassine; Tuaillon, Edouard; Jeziorski, Eric; Ouedraogo, David Eric; Bolloré, Karine; Rubbo, Pierre-Alain; Foulongne, Vincent; Rodière, Michel; Vendrell, Jean-Pierre
2011-09-01
Acute infectious mononucleosis (AIM) is generally associated with a large EBV B cell reservoir cells and an intense B-cell polyclonal activation whereas the number of quiescent EBV-infected memory B cells in chronically EBV-infected healthy controls is very low. To evaluate the extent and functionality of ex vivo B-cell polyclonal activation, quantify the EBV DNA integrated in B cells, enumerate the functional EBV DNA reservoir in B cells and circulating B cells spontaneously secreting EBV antigens in AIM. Circulating B cells and B cells differentiating into plamablasts and plasma cells, early (BZLF1)- and late viral antigen (gp350)-secreting-cells (SCs) were enumerated in six AIM patients and seven healthy EBV carriers. In vitro B-cell polyclonal activation induced 8000-24,000 BZLF1- and 1000-3000gp350-SCs/10(6) B cells, respectively. These data suggest that only 11.1-19.5% of cells expressing BZLF1 synthesized gp350 and so completed the EBV-lytic cycle. Furthermore, circulating spontaneous BZLF1- and gp350-SCs that reflect ongoing viral replication were rare (20-120 and 10-30/10(6) B cells, respectively), and their low numbers contrasted with the high levels of circulating plasma cells (1.1-10.2% of CD19(+) B cells). The in vivo terminal-B-cell differentiation into plasma cells could unmask EBV B-cell reservoir to specific cytotoxic T-cell response and combined with a predominant abortive functional-EBV-reservoir, strongly contribute to rapid decay of cellular EBV reservoir in AIM. Copyright © 2011 Elsevier B.V. All rights reserved.
Survival of Salmonella Newport on whole and fresh-cut cucumbers treated with lytic bacteriophages
USDA-ARS?s Scientific Manuscript database
Salmonella enterica associated with consumption of cucumbers (Cucumis sativus) has led to foodborne outbreaks in the U.S. Whole and fresh-cut cucumbers are susceptible to Salmonella spp. contamination during growing and harvesting. The application of lytic bacteriophages specific for Salmonella spp...
Liang, Xiaozhen; Collins, Christopher M; Mendel, Justin B; Iwakoshi, Neal N; Speck, Samuel H
2009-11-01
Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by manipulating the cellular milieu to provide a reactivation competent environment.
Using Proteomics to Identify Viral microRNA-Regulated Genes | Center for Cancer Research
Kaposi sarcoma is a soft tissue malignancy that affects the skin, the mucous membranes, the lymph nodes and other organs of individuals with compromised immune systems. It is caused by infection with human herpesvirus-8 also known as Kaposi sarcoma-associated herpesvirus or KSHV. The herpesvirus family is unique in that it is the only viral family currently known to express
Corcoran, Jennifer A.; Johnston, Benjamin P.; McCormick, Craig
2015-01-01
Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of several AIDS-related cancers, including the endothelial cell (EC) neoplasm Kaposi's sarcoma (KS). KSHV-infected ECs secrete abundant host-derived pro-inflammatory molecules and angiogenic factors that contribute to tumorigenesis. The precise contributions of viral gene products to this secretory phenotype remain to be elucidated, but there is emerging evidence for post-transcriptional regulation. The Kaposin B (KapB) protein is thought to contribute to the secretory phenotype in infected cells by binding and activating the stress-responsive kinase MK2, thereby selectively blocking decay of AU-rich mRNAs (ARE-mRNAs) encoding pro-inflammatory cytokines and angiogenic factors. Processing bodies (PBs) are cytoplasmic ribonucleoprotein foci in which ARE-mRNAs normally undergo rapid 5′ to 3′ decay. Here, we demonstrate that PB dispersion is a feature of latent KSHV infection, which is dependent on kaposin protein expression. KapB is sufficient to disperse PBs, and KapB-mediated ARE-mRNA stabilization could be partially reversed by treatments that restore PBs. Using a combination of genetic and chemical approaches we provide evidence that KapB-mediated PB dispersion is dependent on activation of a non-canonical Rho-GTPase signaling axis involving MK2, hsp27, p115RhoGEF and RhoA. PB dispersion in latently infected cells is likewise dependent on p115RhoGEF. In addition to PB dispersion, KapB-mediated RhoA activation in primary ECs caused actin stress fiber formation, increased cell motility and angiogenesis; these effects were dependent on the activity of the RhoA substrate kinases ROCK1/2. By contrast, KapB-mediated PB dispersion occurred in a ROCK1/2-independent manner. Taken together, these observations position KapB as a key contributor to viral reprogramming of ECs, capable of eliciting many of the phenotypes characteristic of KS tumor cells, and strongly contributing to the post-transcriptional control of EC gene expression and secretion. PMID:25569678
Phenoloxidase but not lytic activity reflects resistance against Pasteuria ramosa in Daphnia magna
Pauwels, Kevin; De Meester, Luc; Decaestecker, Ellen; Stoks, Robby
2011-01-01
The field of ecological immunology strongly relies on indicators of immunocompetence. Two major indicators in invertebrates, the activity of phenoloxidase (PO) and lytic activity have recently been questioned in studies showing that, across a natural range of baseline levels, these indicators did not predict resistance against a manipulated challenge with natural parasites. We confirmed this finding by showing that baseline levels of PO and lytic activity in the host Daphnia magna were not related to spore load of the parasite Pasteuria ramosa. Yet, PO levels in infected hosts did predict spore load, indicating PO activity can be useful as an indicator of immunocompetence in this model parasite–host system. PMID:20810432
Phenoloxidase but not lytic activity reflects resistance against Pasteuria ramosa in Daphnia magna.
Pauwels, Kevin; De Meester, Luc; Decaestecker, Ellen; Stoks, Robby
2011-02-23
The field of ecological immunology strongly relies on indicators of immunocompetence. Two major indicators in invertebrates, the activity of phenoloxidase (PO) and lytic activity have recently been questioned in studies showing that, across a natural range of baseline levels, these indicators did not predict resistance against a manipulated challenge with natural parasites. We confirmed this finding by showing that baseline levels of PO and lytic activity in the host Daphnia magna were not related to spore load of the parasite Pasteuria ramosa. Yet, PO levels in infected hosts did predict spore load, indicating PO activity can be useful as an indicator of immunocompetence in this model parasite-host system.
USDA-ARS?s Scientific Manuscript database
Increases in the prevalence of antibiotic resistant strains of Staphylococcus (S.) aureus have elicited efforts to develop novel antimicrobials to treat these drug-resistant pathogens. One potential treatment repurposes the lytic enzymes produced by bacteriophages as antimicrobials. The phage Twor...
Ozaki, Tatsuro; Abe, Naoki; Kimura, Keitarou; Suzuki, Atsuto; Kaneko, Jun
2017-01-01
Bacillus subtilis strains including the fermented soybean (natto) starter produce capsular polymers consisting of poly-γ-glutamate and levan. Capsular polymers may protect the cells from phage infection. However, bacteriophage ϕNIT1 carries a γ-PGA hydrolase gene (pghP) that help it to counteract the host cell's protection strategy. ϕNIT had a linear double stranded DNA genome of 155,631-bp with a terminal redundancy of 5,103-bp, containing a gene encoding an active levan hydrolase. These capsule-lytic enzyme genes were located in the possible foreign gene cluster regions between central core and terminal redundant regions, and were expressed at the late phase of the phage lytic cycle. All tested natto origin Spounavirinae phages carried both genes for capsule degrading enzymes similar to ϕNIT1. A comparative genomic analysis revealed the diversity among ϕNIT1 and Bacillus phages carrying pghP-like and levan-hydrolase genes, and provides novel understanding on the acquisition mechanism of these enzymatic genes.
Du, Yinping; Yu, Jieshi; Du, Li; Tang, Jun; Feng, Wen-Hai
2016-07-01
The consistent latent presence of Epstein-Barr virus (EBV) in tumor cells offers potential for virus-targeted therapies. The switch from the latent form of EBV to the lytic form in tumor cells can lead to tumor cell lysis. In this study, we report that a natural small molecule compound, cordycepin, can induce lytic EBV infection in tumor cells. Subsequently, we demonstrate that cordycepin can enhance EBV reactivating capacity and EBV-positive tumor cell killing ability of low dose doxorubicin. The combination of cordycepin and doxorubicin phosphorylates CCAAT/enhancer binding protein β (C/EBPβ) through protein kinase C (PKC)-p38 mitogen activated protein kinases (p38 MAPK) signaling pathway, and C/EBPβ is required for the activation of lytic EBV infection. Most importantly, an in vivo experiment demonstrates that the combination of cordycepin and doxorubicin is more effective in inhibiting tumor growth in SCID mice than is doxorubicin alone. Our findings establish that cordycepin can enhance the efficacy of conventional chemotherapy for treatment of EBV-positive tumors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes
Núñez-Andrade, Norman; Iborra, Salvador; Trullo, Antonio; Moreno-Gonzalo, Olga; Calvo, Enrique; Catalán, Elena; Menasche, Gaël; Sancho, David; Vázquez, Jesús; Yao, Tso-Pang
2016-01-01
HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4+ T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8+ T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6-/- CD8+ T cells to Rag1-/- mice demonstrated specific impairment in CD8+ T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin 1 – dynactin mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFNγ) production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs. PMID:26869226
Comparative lytic efficacy of rt-PA and ultrasound in porcine versus human clots
Shekhar, Himanshu; Holland, Christy K.
2017-01-01
Introduction Porcine thrombi are employed routinely in preclinical models of ischemic stroke. In this study, we examined the differential lytic susceptibility of porcine and human whole blood clots with and without the use of microbubbles and ultrasound (US) as an adjuvant. Materials and methods An in vitro system equipped with time-lapse microscopy was used to evaluate recombinant tissue-plasminogen activator (rt-PA) lysis of porcine and human clots in the same species or cross species plasma. Human and porcine whole blood clots were treated with rt-PA and an echo contrast agent, Definity®, and exposed to intermittent 120 kHz US. Results and conclusions The rt-PA lytic efficacy observed for porcine clots in porcine plasma was 22 times lower than for human clots in human plasma reported previously. Further, porcine clots did not exhibit increased lysis with adjuvant Definity® and US exposure. However, the rt-PA lytic susceptibility of the porcine clots in human plasma was similar to that of human clots in human plasma. Human clots perfused with porcine plasma did not respond to rt-PA, but adjuvant use of Definity® and US enhanced lysis. These results reveal considerable differences in lytic susceptibility of porcine clots and human clots to rt-PA. The use of porcine clot models to test new human thrombolytic therapies may necessitate modulation of coagulation and thrombolytic factors to reflect human hemostasis accurately. PMID:28545055
Almuhayawi, Mohammed; Altun, Osman; Abdulmajeed, Adam Dilshad; Ullberg, Måns; Özenci, Volkan
2015-01-01
Detection and identification of anaerobic bacteria in blood cultures (BC) is a well-recognized challenge in clinical microbiology. We studied 100 clinical anaerobic BC isolates to evaluate the performance of BacT/ALERT-FN, -FN Plus (BioMérieux), BACTEC-Plus and -Lytic (Becton Dickinson BioSciences) BC bottles in detection and time to detection (TTD) of anaerobic bacteria. BACTEC Lytic had higher detection rate (94/100, 94%) than BacT/ALERT FN Plus (80/100, 80%) (p<0.01) in the studied material. There was no significant difference in detection of anaerobic bacteria among the remaining bottle types. The 67 anaerobic bacteria that signalled positive in all four bottle types were analyzed to compare the time to detection (TTD) and isolates were directly identified by MALDI-TOF MS. There was a significant difference in TTD among the four bottle types (p<0.0001). The shortest median TTD was 18 h in BACTEC Lytic followed by BacT/ALERT FN (23.5 h), BACTEC Plus (27 h) and finally BacT/ALERT FN Plus (38 h) bottles. In contrast, MALDI-TOF MS performed similarly in all bottle types with accurate identification in 51/67 (76%) BacT/ALERT FN, 51/67 (76%) BacT/ALERT FN Plus, 53/67 (79%) BACTEC Plus and 50/67 (75%) BACTEC Lytic bottles. In conclusion, BACTEC Lytic bottles have significantly better detection rates and shorter TTD compared to the three other bottle types. The anaerobic BC bottles are equally suitable for direct MALDI-TOF MS for rapid and reliable identification of common anaerobic bacteria. Further clinical studies are warranted to investigate the performance of anaerobic BC bottles in detection of anaerobic bacteria and identification by direct MALDI-TOF MS. PMID:26554930
Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M
2010-11-01
Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.
Abraha, Abraham B.; Rana, Krupa; Whalen, Margaret M.
2010-01-01
Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposures of NK cells to tributyltin (TBT) greatly diminish their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in the NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C (PKC) as well as MAPK activity. The TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in the inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposures. TBT caused a 2–3 fold activation of PKC at concentrations ranging from 50–300 nM (16–98 ng/mL), indicating that activation of PKC occurs in response to TBT exposures. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that in NK cells where PKC activation was blocked there was no activation of the MAPK, p44/42 in response to TBT. However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including the activation of p44/42 by TBT in NK cells. PMID:20390410
Almuhayawi, Mohammed; Altun, Osman; Abdulmajeed, Adam Dilshad; Ullberg, Måns; Özenci, Volkan
2015-01-01
Detection and identification of anaerobic bacteria in blood cultures (BC) is a well-recognized challenge in clinical microbiology. We studied 100 clinical anaerobic BC isolates to evaluate the performance of BacT/ALERT-FN, -FN Plus (BioMérieux), BACTEC-Plus and -Lytic (Becton Dickinson BioSciences) BC bottles in detection and time to detection (TTD) of anaerobic bacteria. BACTEC Lytic had higher detection rate (94/100, 94%) than BacT/ALERT FN Plus (80/100, 80%) (p<0.01) in the studied material. There was no significant difference in detection of anaerobic bacteria among the remaining bottle types. The 67 anaerobic bacteria that signalled positive in all four bottle types were analyzed to compare the time to detection (TTD) and isolates were directly identified by MALDI-TOF MS. There was a significant difference in TTD among the four bottle types (p<0.0001). The shortest median TTD was 18 h in BACTEC Lytic followed by BacT/ALERT FN (23.5 h), BACTEC Plus (27 h) and finally BacT/ALERT FN Plus (38 h) bottles. In contrast, MALDI-TOF MS performed similarly in all bottle types with accurate identification in 51/67 (76%) BacT/ALERT FN, 51/67 (76%) BacT/ALERT FN Plus, 53/67 (79%) BACTEC Plus and 50/67 (75%) BACTEC Lytic bottles. In conclusion, BACTEC Lytic bottles have significantly better detection rates and shorter TTD compared to the three other bottle types. The anaerobic BC bottles are equally suitable for direct MALDI-TOF MS for rapid and reliable identification of common anaerobic bacteria. Further clinical studies are warranted to investigate the performance of anaerobic BC bottles in detection of anaerobic bacteria and identification by direct MALDI-TOF MS.
Oncotargeting by Vesicular Stomatitis Virus (VSV): Advances in Cancer Therapy.
Bishnoi, Suman; Tiwari, Ritudhwaj; Gupta, Sharad; Byrareddy, Siddappa N; Nayak, Debasis
2018-02-23
Modern oncotherapy approaches are based on inducing controlled apoptosis in tumor cells. Although a number of apoptosis-induction approaches are available, site-specific delivery of therapeutic agents still remain the biggest hurdle in achieving the desired cancer treatment benefit. Additionally, systemic treatment-induced toxicity remains a major limiting factor in chemotherapy. To specifically address drug-accessibility and chemotherapy side effects, oncolytic virotherapy (OV) has emerged as a novel cancer treatment alternative. In OV, recombinant viruses with higher replication capacity and stronger lytic properties are being considered for tumor cell-targeting and subsequent cell lysing. Successful application of OVs lies in achieving strict tumor-specific tropism called oncotropism, which is contingent upon the biophysical interactions of tumor cell surface receptors with viral receptors and subsequent replication of oncolytic viruses in cancer cells. In this direction, few viral vector platforms have been developed and some of these have entered pre-clinical/clinical trials. Among these, the Vesicular stomatitis virus (VSV)-based platform shows high promise, as it is not pathogenic to humans. Further, modern molecular biology techniques such as reverse genetics tools have favorably advanced this field by creating efficient recombinant VSVs for OV; some have entered into clinical trials. In this review, we discuss the current status of VSV based oncotherapy, challenges, and future perspectives regarding its therapeutic applications in the cancer treatment.
Oncotargeting by Vesicular Stomatitis Virus (VSV): Advances in Cancer Therapy
Bishnoi, Suman; Tiwari, Ritudhwaj; Gupta, Sharad; Byrareddy, Siddappa N.; Nayak, Debasis
2018-01-01
Modern oncotherapy approaches are based on inducing controlled apoptosis in tumor cells. Although a number of apoptosis-induction approaches are available, site-specific delivery of therapeutic agents still remain the biggest hurdle in achieving the desired cancer treatment benefit. Additionally, systemic treatment-induced toxicity remains a major limiting factor in chemotherapy. To specifically address drug-accessibility and chemotherapy side effects, oncolytic virotherapy (OV) has emerged as a novel cancer treatment alternative. In OV, recombinant viruses with higher replication capacity and stronger lytic properties are being considered for tumor cell-targeting and subsequent cell lysing. Successful application of OVs lies in achieving strict tumor-specific tropism called oncotropism, which is contingent upon the biophysical interactions of tumor cell surface receptors with viral receptors and subsequent replication of oncolytic viruses in cancer cells. In this direction, few viral vector platforms have been developed and some of these have entered pre-clinical/clinical trials. Among these, the Vesicular stomatitis virus (VSV)-based platform shows high promise, as it is not pathogenic to humans. Further, modern molecular biology techniques such as reverse genetics tools have favorably advanced this field by creating efficient recombinant VSVs for OV; some have entered into clinical trials. In this review, we discuss the current status of VSV based oncotherapy, challenges, and future perspectives regarding its therapeutic applications in the cancer treatment. PMID:29473868
Pan, Dongli; Pesola, Jean M; Li, Gang; McCarron, Seamus; Coen, Donald M
2017-01-15
Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since miR-H2's discovery as a viral microRNA bearing complete sequence complementarity to the mRNA for the important viral gene activator ICP0, inhibition of ICP0 expression by miR-H2 has been a major hypothesis to help explain the repression of lytic gene expression during latency. However, this hypothesis remained untested in latently infected animals. Using a miR-H2-deficient mutant virus, we found no evidence that miR-H2 represses the expression of ICP0 or other lytic genes in cells or mice infected with HSV-1. Although miR-H2 can repress ICP0 expression in transfection assays, such repression is weak. The results suggest that other mechanisms for miR-H2 activity and for the repression of lytic gene expression during latency deserve investigation. Copyright © 2017 American Society for Microbiology.
Comparative study of murid gammaherpesvirus 4 infection in mice and in a natural host, bank voles.
François, Sylvie; Vidick, Sarah; Sarlet, Michaël; Michaux, Johan; Koteja, Pawel; Desmecht, Daniel; Stevenson, Philip G; Vanderplasschen, Alain; Gillet, Laurent
2010-10-01
Gammaherpesviruses are archetypal pathogenic persistent viruses. The known human gammaherpesviruses (Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus) are host-specific and therefore lack a convenient in vivo infection model. This makes related animal gammaherpesviruses an important source of information. Infection by murid herpesvirus 4 (MuHV-4), a virus originally isolated from bank voles (Myodes glareolus), was studied here. MuHV-4 infection of inbred laboratory mouse strains (Mus musculus) is commonly used as a general model of gammaherpesvirus pathogenesis. However, MuHV-4 has not been isolated from house mice, and no systematic comparison has been made between experimental MuHV-4 infections of mice and bank voles. This study therefore characterized MuHV-4 (strain MHV-68) infection of bank voles through global luciferase imaging and classical virological methods. As in mice, intranasal virus inoculation led to productive replication in bank vole lungs, accompanied by massive cellular infiltrates. However, the extent of lytic virus replication was approximately 1000-fold lower in bank voles than in mice. Peak latency titres in lymphoid tissue were also lower, although latency was still established. Finally, virus transmission was tested between animals maintained in captivity. However, as observed in mice, MuHV-4 was not transmitted between voles under these conditions. In conclusion, this study revealed that, despite quantitative differences, replication and the latency sites of MuHV-4 are comparable in bank voles and mice. Therefore, it appears that, so far, Mus musculus represents a suitable host for studying gammaherpesvirus pathogenesis with MuHV-4. Establishing transmission conditions in captivity will be a vital step for further research in this field.
O’Connell, David; Kaliaperumal, Chandrasekaran; Wyse, Gerald; McCarthy, Julie; Ryan, Aisling
2011-01-01
The authors describe a rare case of metastatic bronchogenic adenocarcinoma in a 55-year-old man presenting with concomittant solitary lytic skull lesion and ischaemic stroke. Metastatic bronchogenic carcinoma is known to present as lytic skull lesions. Primary brain tumours are also known to cause ischaemic brain injury. An underlying stroke risk may be exagerated by cranial tumour surgery. Patients with brain tumours are well known to be predisposed to an increased risk of developing thromboembolic disease. It is unusual to see metastatic bronchogenic adenocarcinoma presenting as ischaemic stroke with a background of concomittant cerebral metastasis. The aetio-pathogenesis of this rare occurrence is discussed with a review of literature. PMID:22669998
2011-05-01
genome was determined and compared to simian and human herpesvirus genomes representing alpha-herpesvi- ruses, beta- herpesviruses and gamma-1 and...of JMRV Genome with Select Simian and Human Herpesvirus Genomes Showing Percent Nucleotide Sequence Identity Virus JMRV RRV KSHV HVS RhLCV EBV RhCMV...2 - Introduction Particular viruses, especially gama- herpesviruses , may act as a trigger of multiple sclerosis (MS) (Levin et
Lin, Zhen; Zabaleta, Jovanny; Dai, Lu; Qin, Zhiqiang
2017-01-01
Primary effusion lymphoma (PEL) is a rare and highly aggressive B-cell malignancy with Kaposi's sarcoma-associated herpesvirus (KSHV) infection, while lack of effective therapies. Our recent data indicated that targeting the sphingolipid metabolism by either sphingosine kinase inhibitor or exogenous ceramide species induces PEL cell apoptosis and suppresses tumor progression in vivo. However, the underlying mechanisms for these exogenous ceramides “killing” PEL cells remain largely unknown. Based on the microarray analysis, we found that exogenous dhC16-Cer treatment affected the expression of many cellular genes with important functions within PEL cells such as regulation of cell cycle, cell survival/proliferation, and apoptosis/anti-apoptosis. Interestingly, we found that a subset of tumor suppressor genes (TSGs) was up-regulated from dhC16-Cer treated PEL cells. One of these elevated TSGs, Thrombospondin-1 (THBS1) was required for dhC16-Cer induced PEL cell cycle arrest. Moreover, dhC16-Cer up-regulation of THBS1 was through the suppression of multiple KSHV microRNAs expression. Our data demonstrate that exogenous ceramides display anti-cancer activities for PEL through regulation of both host and oncogenic virus factors. PMID:28146424
Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahayu, Retno; Ohsaki, Eriko; Omori, Hiroko
In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy–electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres,more » and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division. - Highlights: • This is the first report showing LANA dots on mitotic chromosomes by fluorescent microscopy followed by electron microscopy. • LANA dots localized randomly on condensed chromosomes other than centromere/pericentromere and telomere/peritelomre. • Cellular mitotic checkpoint should not be always involved in the segregation of KSHV genomes in the latency.« less
EBV and Apoptosis: The Viral Master Regulator of Cell Fate?
Kelly, Gemma L.
2017-01-01
Epstein–Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1–2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions. PMID:29137176
Carcinoma-risk variant of EBNA1 deregulates Epstein-Barr Virus episomal latency.
Dheekollu, Jayaraju; Malecka, Kimberly; Wiedmer, Andreas; Delecluse, Henri-Jacques; Chiang, Alan K S; Altieri, Dario C; Messick, Troy E; Lieberman, Paul M
2017-01-31
Epstein-Barr Virus (EBV) latent infection is a causative co-factor for endemic Nasopharyngeal Carcinoma (NPC). NPC-associated variants have been identified in EBV-encoded nuclear antigen EBNA1. Here, we solve the X-ray crystal structure of an NPC-derived EBNA1 DNA binding domain (DBD) and show that variant amino acids are found on the surface away from the DNA binding interface. We show that NPC-derived EBNA1 is compromised for DNA replication and episome maintenance functions. Recombinant virus containing the NPC EBNA1 DBD are impaired in their ability to immortalize primary B-lymphocytes and suppress lytic transcription during early stages of B-cell infection. We identify Survivin as a host protein deficiently bound by the NPC variant of EBNA1 and show that Survivin depletion compromises EBV episome maintenance in multiple cell types. We propose that endemic variants of EBNA1 play a significant role in EBV-driven carcinogenesis by altering key regulatory interactions that destabilize latent infection.
The molecular basis of herpes simplex virus latency
Nicoll, Michael P; Proença, João T; Efstathiou, Stacey
2012-01-01
Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency. PMID:22150699
Effect of caffeine on the ultraviolet light induction of SV40 virus from transformed hamster cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamansky, G.B.; Kleinman, L.F.; Little, J.B.
1976-01-01
The effect of caffeine on the uv light induction of SV40 virus from two transformed hamster cell lines heterogeneous for the induction of infectious virus was studied. The amount of virus induced was significantly increased in both cell lines when exposure to uv light was followed by treatment with caffeine. Caffeine in the absence of uv irradiation did not stimulate virus induction, nor did it stimulate SV40 replication in a lytic infection. There was an apparent difference in the concentrations of caffeine which maximally stimulated SV40 virus induction in the two cell lines. This effect could not be explained bymore » differences in cell survival after exposure to uv light and caffeine. Since caffeine is known to cause the accumulation of gaps formed in DNA during postreplication repair of uv-irradiated rodent cells, our results support the hypothesis that the formation of gaps or breaks in DNA is an important early step in virus induction.« less
2018-01-01
ABSTRACT Herpes simplex virus 1 (HSV-1) establishes latent infection in neurons via a variety of epigenetic mechanisms that silence its genome. The cellular CCCTC-binding factor (CTCF) functions as a mediator of transcriptional control and chromatin organization and has binding sites in the HSV-1 genome. We constructed an HSV-1 deletion mutant that lacked a pair of CTCF-binding sites (CTRL2) within the latency-associated transcript (LAT) coding sequences and found that loss of these CTCF-binding sites did not alter lytic replication or levels of establishment of latent infection, but their deletion reduced the ability of the virus to reactivate from latent infection. We also observed increased heterochromatin modifications on viral chromatin over the LAT promoter and intron. We therefore propose that CTCF binding at the CTRL2 sites acts as a chromatin insulator to keep viral chromatin in a form that is poised for reactivation, a state which we call poised latency. PMID:29437926
Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH.
Nicola, Anthony V
2016-09-01
Herpesviral pathogenesis stems from infection of multiple cell types including the site of latency and cells that support lytic replication. Herpesviruses utilize distinct cellular pathways, including low pH endocytic pathways, to enter different pathophysiologically relevant target cells. This review details the impact of the mildly acidic milieu of endosomes on the entry of herpesviruses, with particular emphasis on herpes simplex virus 1 (HSV-1). Epithelial cells, the portal of primary HSV-1 infection, support entry via low pH endocytosis mechanisms. Mildly acidic pH triggers reversible conformational changes in the HSV-1 class III fusion protein glycoprotein B (gB). In vitro treatment of herpes simplex virions with a similar pH range inactivates infectivity, likely by prematurely activating the viral entry machinery in the absence of a target membrane. How a given herpesvirus mediates both low pH and pH-independent entry events is a key unresolved question. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Halter, Mathew C; Zahn, James A
2018-03-01
Bacterial-bacteriophage interactions are a well-studied and ecologically-important aspect of microbiology. Many commercial fermentation processes are susceptible to bacteriophage infections due to the use of high-density, clonal cell populations. Lytic infections of bacterial cells in these fermentations are especially problematic due to their negative impacts on product quality, asset utilization, and fouling of downstream equipment. Here, we report the isolation and characterization of a novel lytic bacteriophage, referred to as bacteriophage DTL that is capable of rapid lytic infections of an Escherichia coli K12 strain used for commercial production of 1,3-propanediol (PDO). The bacteriophage genome was sequenced and annotated, which identified 67 potential open-reading frames (ORF). The tail fiber ORF, the largest in the genome, was most closely related to bacteriophage RTP, a T1-like bacteriophage reported from a commercial E. coli fermentation process in Germany. To eliminate virulence, both a fully functional Streptococcus thermophilus CRISPR3 plasmid and a customized S. thermophilus CRISPR3 plasmid with disabled spacer acquisition elements and seven spacers targeting the bacteriophage DTL genome were constructed. Both plasmids were separately integrated into a PDO production strain, which was subsequently infected with bacteriophage DTL. The native S. thermophilus CRISPR3 operon was shown to decrease phage susceptibility by approximately 96%, while the customized CRISPR3 operon provided complete resistance to bacteriophage DTL. The results indicate that the heterologous bacteriophage-resistance system described herein is useful in eliminating lytic infections of bacteriophage DTL, which was prevalent in environment surrounding the manufacturing facility.
Hurd-Brown, Tasia; Udoji, Felicia; Martin, Tamara; Whalen, Margaret M.
2012-01-01
1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) and triclosan (TCS) are organochlorine (OC) compounds that contaminate the environment, are found in human blood, and have been shown to decrease the tumor-cell killing (lytic) function of human natural killer (NK) cells. NK cells defend against tumor cells and virally infected cells. They bind to these targets, utilizing a variety of cell surface proteins. This study examined concentrations of DDT and TCS that decrease lytic function for alteration of NK binding to tumor targets. Levels of either compound that caused loss of binding function were then examined for effects on expression of cell-surface proteins needed for binding. NK cells exposed to 2.5 μM DDT for 24 h (which caused a greater than 55% loss of lytic function) showed a decrease in NK binding function of about 22%, and a decrease in CD16 cell-surface protein of 20%. NK cells exposed to 5 μM TCS for 24 h showed a decrease in ability to bind tumor cells of 37% and a decrease in expression of CD56 of about 34%. This same treatment caused a decrease in lytic function of greater than 87%. These results indicated that only a portion of the loss of NK lytic function seen with exposures to these compounds could be accounted for by loss of binding function. They also showed that loss of binding function is accompanied by a loss cell-surface proteins important in binding function. PMID:22729613
Oglesbee, M; Jackwood, D; Perrine, K; Axthelm, M; Krakowka, S; Rice, J
1986-11-01
A cDNA library was prepared from canine distemper viral (CDV) messenger RNA (mRNA) derived from Vero cells lytically infected with the Onderstepoort strain (Ond) of CDV. A 300 base pair insert was identified which, by Northern blot analysis and Sanger sequence data, was shown to be specific to the nucleocapsid gene. The nucleocapsid (NC) clone was radiolabelled with 32P using nick translation and used to detect viral RNA in both dot-blot and in situ preparations of Vero cells lytically infected with Onderstepoort CDV (Ond-CDV) and immortalized mink lung cells persistently infected with racoon origin CDV (CCL64-RCDV). Dot-blot hybridization results paralleled immunofluorescent results in the lytically infected cells. In 18 persistently infected cell lines from the RCDV-CCL64 parental stock, 13 lines were positive and two were negative on both immunofluorescence and dot-blot hybridization analysis for CDV antigen and RNA, respectively. Viral nucleic acid was detected in these persistently infected cells, where as few as 1.9% of the members of a line were positive on immunofluorescence. A dot-blot autoradiographic signal was obtained in three lines which were negative for CDV antigen. CDV RNA was detected in both lytically and persistently infected cell lines by in situ hybridization, where decreasing probe length was important in increasing the sensitivity of this assay. Viral RNA was detected in over 90% of the lytically infected cells, where only 70% were positive for viral antigen by immunofluorescence.
Estrella, Luis A.; Quinones, Javier; Henry, Matthew; Hannah, Ryan M.; Pope, Robert K.; Hamilton, Theron; Teneza-mora, Nimfa; Hall, Eric; Biswajit, Biswas
2016-01-01
ABSTRACT Skin and soft tissue infections (SSTI) caused by methicillin resistant Staphylococcus aureus (MRSA) are difficult to treat. Bacteriophage (phage) represent a potential alternate treatment for antibiotic resistant bacterial infections. In this study, 7 novel phage with broad lytic activity for S. aureus were isolated and identified. Screening of a diverse collection of 170 clinical isolates by efficiency of plating (EOP) assays shows that the novel phage are virulent and effectively prevent growth of 70–91% of MRSA and methicillin sensitive S. aureus (MSSA) isolates. Phage K, which was previously identified as having lytic activity on S. aureus was tested on the S. aureus collection and shown to prevent growth of 82% of the isolates. These novel phage group were examined by electron microscopy, the results of which indicate that the phage belong to the Myoviridae family of viruses. The novel phage group requires β-N-acetyl glucosamine (GlcNac) moieties on cell wall teichoic acids for infection. The phage were distinct from, but closely related to, phage K as characterized by restriction endonuclease analysis. Furthermore, growth rate analysis via OmniLog® microplate assay indicates that a combination of phage K, with phage SA0420ᶲ1, SA0456ᶲ1 or SA0482ᶲ1 have a synergistic phage-mediated lytic effect on MRSA and suppress formation of phage resistance. These results indicate that a broad spectrum lytic phage mixture can suppress the emergence of resistant bacterial populations and hence have great potential for combating S. aureus wound infections. PMID:27738555
Pérez Pulido, Rubén; Grande Burgos, Maria José; Gálvez, Antonio; Lucas López, Rosario
2016-10-01
Bacteriophages have attracted great attention for application in food biopreservation. Lytic bacteriophages specific for human pathogenic bacteria can be isolated from natural sources such as animal feces or industrial wastes where the target bacteria inhabit. Lytic bacteriophages have been tested in different food systems for inactivation of main food-borne pathogens including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica, Shigella spp., Campylobacter jejuni and Cronobacter sakazkii, and also for control of spoilage bacteria. Application of lytic bacteriophages could selectively control host populations of concern without interfering with the remaining food microbiota. Bacteriophages could also be applied for inactivation of bacteria attached to food contact surfaces or grown as biofilms. Bacteriophages may receive a generally recognized as safe status based on their lack of toxicity and other detrimental effects to human health. Phage preparations specific for L. monocytogenes, E. coli O157:H7 and S. enterica serotypes have been commercialized and approved for application in foods or as part of surface decontamination protocols. Phage endolysins have a broader host specificity compared to lytic bacteriophages. Cloned endolysins could be used as natural preservatives, singly or in combination with other antimicrobials such as bacteriocins.
2002-01-01
A filterable lytic agent (FLA) was obtained from seawater in the southeastern Gulf of Mexico during a red tide bloom that caused lysis of Karenia brevis (formerly Gymnodinium breve) Piney Island. This agent was obtained from <0.2µ filtrates that were concentrated by ultrafiltration using a 100 kDa filter. The FLA was propagated by passage on K. brevis cultures, and the filtered supernatants of such cultures resulted in K. brevis lysis when added to such cultures. The lytic activity was lost upon heating to 65°C or by 0.02 µm filtration. Epifluorescence and transmission electron microscopy (TEM) of supernatants of K. brevis cultures treated with the lytic agent indicated a high abundance of viral particles (4 × 109 to 7 × 109 virus-like particles [VLPs] ml–1) compared to control cultures (~107 ml–1). However, viral particles were seldom found in TEM photomicrograph thin sections of lysing K. brevis cells. Although a virus specific for K. brevis may have been the FLA, other explanations such as filterable bacteria or bacteriophages specific for bacteria associated with the K. brevis cultures cannot be discounted.
Constructing bioactive peptides with pH-dependent activities.
Tu, Zhigang; Volk, Melanie; Shah, Khushali; Clerkin, Kevin; Liang, Jun F
2009-08-01
Many bioactive peptides are featured by their arginine and lysine rich contents. In this study, lysine and arginine residues in lytic peptides were selectively replaced by histidines. Although resulting histidine-containing lytic peptides had decreased activity, they did show pH-dependent cytotoxicity. The activity of the constructed histidine-containing lytic peptides increased 2-8 times as the solution pH changed from 7.4 to 5.5. More importantly, these histidine-containing peptides maintain the same cell killing mechanism as their parent peptides by causing cell lysis. Both the activity and pH-sensitivity of histidine-containing peptides are tunable by adjusting histidine substitution numbers and positions. This study has presented a general strategy to create bioactive peptides with desired pH-sensitivity to meet the needs of various applications such as cancer treatments.
Chijioke, Obinna; Müller, Anne; Feederle, Regina; Barros, Mario Henrique M.; Krieg, Carsten; Emmel, Vanessa; Marcenaro, Emanuela; Leung, Carol S.; Antsiferova, Olga; Landtwing, Vanessa; Bossart, Walter; Moretta, Alessandro; Hassan, Rocio; Boyman, Onur; Niedobitek, Gerald; Delecluse, Henri-Jacques; Capaul, Riccarda; Münz, Christian
2014-01-01
SUMMARY Primary infection with the human oncogenic Epstein Barr virus (EBV) can result in infectious mononucleosis (IM), a self-limiting disease caused by massive lymphocyte expansion, which predisposes for the development of distinct EBV-associated lymphomas. It remains unclear why some individuals experience this symptomatic primary EBV infection, while the majority acquires the virus asymptomatically. Using a mouse model with reconstituted human immune system components, we show here that depletion of human natural killer (NK) cells enhances IM symptoms and promotes EBV-associated tumorigenesis, mainly due to loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies. PMID:24360958
Attai, Hedieh; Rimbey, Jeanette; Smith, George P; Brown, Pamela J B
2017-12-01
To provide food security, innovative approaches to preventing plant disease are currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis proteins are effective at triggering lysis of the phytopathogen Agrobacterium tumefaciens Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induced lysis of C58-derived strains of A. tumefaciens The coinoculation of A. tumefaciens with phages on potato discs limited tumor formation. The genomes of Atu_ph02 and Atu_ph03 are nearly identical and are ∼42% identical to those of T7 supercluster phages. In silico attempts to find a canonical lysis cassette were unsuccessful; however, we found a putative p hage p eptidoglycan h ydrolase (PPH), which contains a C-terminal transmembrane domain. Remarkably, the endogenous expression of pph in the absence of additional phage genes causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the presumed active site of the N -acetylmuramidase domain carries an inactivating mutation, PPH expression causes extensive cell branching due to a block in cell division but does not trigger rapid cell lysis. In contrast, the mutation of positively charged residues at the extreme C terminus of PPH causes more rapid cell lysis. Together, these results suggest that PPH causes a block in cell division and triggers cell lysis through two distinct activities. Finally, the potent killing activity of this single lysis protein can be modulated, suggesting that it could be engineered to be an effective enzybiotic. IMPORTANCE The characterization of bacteriophages such as Atu_ph02 and Atu_ph03, which infect plant pathogens such as Agrobacterium tumefaciens , may be the basis of new biocontrol strategies. First, cocktails of diverse bacteriophages could be used as a preventative measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to simultaneously develop resistances to multiple bacteriophage species. The specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens. Copyright © 2017 American Society for Microbiology.
Zhou, Yan; Bao, Hongduo; Zhang, Hui; Wang, Ran
2015-01-01
To characterize the lytic coliphage vB_EcoM_JS09 (phage JS09) isolated from sewage samples of a swine farm in Jiangsu Province, China, which infects antibiotic-resistant avian pathogenic Escherichia coli (APEC) and enterotoxigenic E. coli (ETEC). Transmission electron microscopy revealed that phage JS09 has an isometric icosahedral head (76 nm in diameter) and a long contractile tail (140 nm in length) and features a T-even morphology. Its latent period was 30 min and the average burst size was 79 phage particles per infected cell. It attached to the host cells within 9 min. JS09 could infect 16 clinically isolated APEC and ETEC strains and the laboratory-engineered E. coli K and B strains. Ten of the clinical isolates of E. coli were resistant to antibiotics. At a multiplicity of infection of 10, 3, 1, or 0.3, the phage caused rapid cell lysis within 2 h, resulting in 5- to 10-fold reductions in cell concentration. Sequencing of the JS09 genome revealed a 169.148-kb linear but circularly permuted and terminally redundant dsDNA with 37.98% G+C content. Two hundred seventy-three open reading frames were predicted to be coding sequences, 135 of which were functionally defined and organized in a modular format which includes modules for DNA replication, DNA packaging, structural proteins, and host cell lysis proteins. Phage JS09 is assigned to the Caudovirales order (Myoviridae phage family), and it is considered a T4-like phage based on its morphological, genomic, and growth characteristics. JS09 gp37, a receptor-binding protein (RBP) important for host cell infection, shares little homology with other RBP in the NCBI database, which suggests that the variable regions in gp37 determine the unique host range of phage JS09. Protein sequence comparisons cluster the putative 'RBP' of JS09 much more closely with those of Yersinia phage phiD1, phage TuIa, and phage TuIb. A novel lytic coliphage named JS09 was isolated from sewage samples of a swine farm in Jiangsu Province, China. It could infect antibiotic-resistant APEC and ETEC. The morphological, genomic, and growth characteristics of JS09 were studied, and this will be helpful for phage therapy in controlling diseases caused by APEC and ETEC. © 2015 S. Karger AG, Basel.
Attai, Hedieh; Rimbey, Jeanette; Smith, George P.
2017-01-01
ABSTRACT To provide food security, innovative approaches to preventing plant disease are currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis proteins are effective at triggering lysis of the phytopathogen Agrobacterium tumefaciens. Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induced lysis of C58-derived strains of A. tumefaciens. The coinoculation of A. tumefaciens with phages on potato discs limited tumor formation. The genomes of Atu_ph02 and Atu_ph03 are nearly identical and are ∼42% identical to those of T7 supercluster phages. In silico attempts to find a canonical lysis cassette were unsuccessful; however, we found a putative phage peptidoglycan hydrolase (PPH), which contains a C-terminal transmembrane domain. Remarkably, the endogenous expression of pph in the absence of additional phage genes causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the presumed active site of the N-acetylmuramidase domain carries an inactivating mutation, PPH expression causes extensive cell branching due to a block in cell division but does not trigger rapid cell lysis. In contrast, the mutation of positively charged residues at the extreme C terminus of PPH causes more rapid cell lysis. Together, these results suggest that PPH causes a block in cell division and triggers cell lysis through two distinct activities. Finally, the potent killing activity of this single lysis protein can be modulated, suggesting that it could be engineered to be an effective enzybiotic. IMPORTANCE The characterization of bacteriophages such as Atu_ph02 and Atu_ph03, which infect plant pathogens such as Agrobacterium tumefaciens, may be the basis of new biocontrol strategies. First, cocktails of diverse bacteriophages could be used as a preventative measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to simultaneously develop resistances to multiple bacteriophage species. The specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens. PMID:28970228
A20 Functional Domains Regulate Subcellular Localization and NF-Kappa B Activation
2013-08-15
that the first function to be described for A20 was that of an anti -apoptotic protein (55). They based their choice of experiments and preliminary...mediated apoptosis (55). After positive selection of the resulting clones with neomycin and verification of A20 expression, they compared the...Karposi sarcoma herpesvirus (KSHV) mediated cell transformation (72). K13 can directly activate NF-κB by interacting with the IKK complex and is
Heilingloh, Christiane S; Kummer, Mirko; Mühl-Zürbes, Petra; Drassner, Christina; Daniel, Christoph; Klewer, Monika; Steinkasserer, Alexander
2015-11-01
Mature dendritic cells (mDCs) are known as the most potent antigen-presenting cells (APCs) since they are also able to prime/induce naive T cells. Thus, mDCs play a pivotal role during the induction of antiviral immune responses. Remarkably, the cell surface molecule CD83, which was shown to have costimulatory properties, is targeted by herpes simplex virus 1 (HSV-1) for viral immune escape. Infection of mDCs with HSV-1 results in downmodulation of CD83, resulting in reduced T cell stimulation. In this study, we report that not only infected mDCs but also uninfected bystander cells in an infected culture show a significant CD83 reduction. We demonstrate that this effect is independent of phagocytosis and transmissible from infected to uninfected mDCs. The presence of specific viral proteins found in these uninfected bystander cells led to the hypothesis that viral proteins are transferred from infected to uninfected cells via L particles. These L particles are generated during lytic replication in parallel with full virions, called H particles. L particles contain viral proteins but lack the viral capsid and DNA. Therefore, these particles are not infectious but are able to transfer several viral proteins. Incubation of mDCs with L particles indeed reduced CD83 expression on uninfected bystander DCs, providing for the first time evidence that functional viral proteins are transmitted via L particles from infected mDCs to uninfected bystander cells, thereby inducing CD83 downmodulation. HSV-1 has evolved a number of strategies to evade the host's immune system. Among others, HSV-1 infection of mDCs results in an inhibited T cell activation caused by degradation of CD83. Interestingly, CD83 is lost not only from HSV-1-infected mDCs but also from uninfected bystander cells. The release of so-called L particles, which contain several viral proteins but lack capsid and DNA, during infection is a common phenomenon observed among several viruses, such as human cytomegalovirus (HCMV), Epstein-Barr virus, and HSV-1. However, the detailed function of these particles is poorly understood. Here, we provide for the first time evidence that functional viral proteins can be transferred to uninfected bystander mDCs via L particles, revealing important biological functions of these particles during lytic replication. Therefore, the transfer of viral proteins by L particles to modulate uninfected bystander cells may represent an additional strategy for viral immune escape. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Solovieva, Ekaterina V; Myakinina, Vera P; Kislichkina, Angelina A; Krasilnikova, Valentina M; Verevkin, Vladimir V; Mochalov, Vladimir V; Lev, Anastasia I; Fursova, Nadezhda K; Volozhantsev, Nikolay V
2018-01-02
Hypermucoviscous (HV) strains of capsular types K1, K2 and K57 are the most virulent representatives of the Klebsiella pneumoniae species. Eight novel bacteriophages lytic for HV K. pneumoniae were isolated and characterized. Three bacteriophages, KpV41, KpV475, and KpV71 were found to have a lytic activity against mainly K. pneumoniae of capsular type K1. Two phages, KpV74, and KpV763 were lytic for K2 capsular type K. pneumoniae, and the phage KpV767 was specific to K57-type K. pneumoniae only. Two more phages, KpV766, and KpV48 had no capsular specificity. The phage genomes consist of a linear double-stranded DNA of 40,395-44,623bp including direct terminal repeats of 180-246 bp. The G + C contents are 52.3-54.2 % that is slightly lower than that of genomes of K. pneumoniae strains being used for phage propagation. According to the genome structures, sequence similarity and phylogenetic data, the phages are classified within the genus Kp32virus and Kp34virus of subfamily Autographivirinae, family Podoviridae. In the phage genomes, genes encoding proteins with putative motifs of polysaccharide depolymerase were identified. Depolymerase genes of phages KpV71 and KpV74 lytic for hypermucoviscous K. pneumoniae of K1 and K2 capsular type, respectively, were cloned and expressed in Escherichia coli, and the recombinant gene products were purified. The specificity and polysaccharide-degrading activity of the recombinant depolymerases were demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Human herpesvirus 8 infection among various population groups in southern Israel.
Margalith, Miriam; Chatlynne, Louise G; Fuchs, Efrat; Owen, Carole; Lee, Cheng-Rei Ruth; Yermiyahu, Tikva; Whitman, James E; Ablashi, Dharam V
2003-12-15
To compare the prevalence of antibodies to human herpesvirus 8 (HHV-8) or Kaposi sarcoma-associated herpesvirus among Israeli and Ethiopian subjects. Serum samples were obtained from 98 Israeli Jewish students aged 18-30 years, 100 HIV-1-seronegative Ethiopian immigrants to Israel of the same age, and 100 HIV-1-seronegative Ethiopian children 1-12 years old upon their arrival in southern Israel. Plasma samples were obtained from 3 hospitalized patients with multicentric Castleman disease (MCD) as positive controls. All serum samples were tested for antibodies to both latent and lytic antigens. Antibodies to the lytic antigens and the latency-associated nuclear antigen (LANA) of HHV-8 were detected by enzyme linked immunosorbent assay and by immunofluorescence assay. HHV-8 DNA from serum or plasma samples was detected by polymerase chain reaction analysis. Antibodies to HHV-8 LANA were detected in 2.9% of the Israeli subjects aged 18-30 years and in 26% of the Ethiopian subjects from both age groups tested. Antibodies to the lytic antigens were detected in all 3 MCD patients, in 4% of the Ethiopian children, and in 2% of the 18- to 30-year-old Ethiopians. No antibodies to the lytic antigens were detected in the Israeli students. HHV-8 DNA was detected in all 3 MCD patients and in 2 of 4 of the Ethiopian children positive for the lytic antigens. HHV-8 is highly prevalent in Ethiopian immigrants to Israel as compared with Israeli students. Antibodies to HHV-8 in Ethiopia are acquired before puberty. The results of this study indicate the association of HHV-8 with MCD, as has been documented by many other researchers.
Hemolysis by surfactants--A review.
Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine
2016-02-01
An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency. Copyright © 2015 Elsevier B.V. All rights reserved.
Chijioke, Obinna; Müller, Anne; Feederle, Regina; Barros, Mario Henrique M; Krieg, Carsten; Emmel, Vanessa; Marcenaro, Emanuela; Leung, Carol S; Antsiferova, Olga; Landtwing, Vanessa; Bossart, Walter; Moretta, Alessandro; Hassan, Rocio; Boyman, Onur; Niedobitek, Gerald; Delecluse, Henri-Jacques; Capaul, Riccarda; Münz, Christian
2013-12-26
Primary infection with the human oncogenic Epstein-Barr virus (EBV) can result in infectious mononucleosis (IM), a self-limiting disease caused by massive lymphocyte expansion that predisposes for the development of distinct EBV-associated lymphomas. Why some individuals experience this symptomatic primary EBV infection, whereas the majority acquires the virus asymptomatically, remains unclear. Using a mouse model with reconstituted human immune system components, we show that depletion of human natural killer (NK) cells enhances IM symptoms and promotes EBV-associated tumorigenesis mainly because of a loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Welker, N. E.
1971-01-01
The mode of action of a bacteriophage lytic enzyme on cell walls of Bacillus stearothermophilus (NCA 1503-4R) has been investigated. The enzyme is an endopeptidase which catalyzes the hydrolysis of the l-alanyl-d-glutamyl linkage in peptide subunits of the cell wall peptidoglycan. Preliminary studies on the soluble components in lytic cell wall digests indicate that the glycan moiety is composed of alternating glucosamine and muramic acid; one half of the muramic acid residues contain the tripeptide, l-alanyl-d-glutamyldiaminopimelic acid, and the remaining residues contain the tetrapeptide, l-alanyl-d-glutamyldiaminopimeyl-d-alanine. Almost one half of the peptide subunits are involved in cross-linkages of chemotype I. A structure for the cell wall peptidoglycan is proposed in the light of these findings. PMID:4255338
Letang, Emilio; Lewis, James J; Bower, Mark; Mosam, Anisa; Borok, Margareth; Campbell, Thomas B; Naniche, Denise; Newsom-Davis, Tom; Shaik, Fahmida; Fiorillo, Suzanne; Miro, Jose M; Schellenberg, David; Easterbrook, Philippa J
2013-06-19
To assess the incidence, predictors, and outcomes of Kaposi sarcoma-associated paradoxical immune reconstitution inflammatory syndrome (KS-IRIS) in antiretroviral therapy (ART)-naive HIV-infected patients with Kaposi sarcoma initiating ART in both well resourced and limited-resourced settings. Pooled analysis of three prospective cohorts of ART-naive HIV-infected patients with Kaposi sarcoma from sub-Saharan Africa (SSA) and one from the UK. KS-IRIS case definition was standardized across sites. Cox regression and Kaplan-Meier survival analysis were used to identify the incidence and predictors of KS-IRIS and Kaposi sarcoma-associated mortality. Fifty-eight of 417 (13.9%) eligible individuals experienced KS-IRIS with an incidence 2.5 times higher in the African vs. European cohorts (P=0.001). ART alone as initial Kaposi sarcoma treatment (hazard ratio 2.97, 95% confidence interval (CI) 1.02-8.69); T1 Kaposi sarcoma stage (hazard ratio 2.96, 95% CI 1.26-6.94); and plasma HIV-1 RNA more than 5 log₁₀ copies/ml (hazard ratio 2.14, 95% CI 1.25-3.67) independently predicted KS-IRIS at baseline. Detectable plasma Kaposi sarcoma-associated herpes virus (KSHV) DNA additionally predicted KS-IRIS among the 259 patients with KSHV DNA assessed (hazard ratio 2.98, 95% CI 1.23-7.19). Nineteen KS-IRIS patients died, all in SSA. Kaposi sarcoma mortality was 3.3-fold higher in Africa, and was predicted by KS-IRIS (hazard ratio 19.24, CI 7.62-48.58), lack of chemotherapy (hazard ratio 2.35, 95% CI 1.09-5.05), pre-ART CD4 cell count less than 200 cells/μl (hazard ratio 2.04, 95% CI 0.99-4.2), and detectable baseline KSHV DNA (hazard ratio 2.12, 95% CI 0.94-4.77). KS-IRIS incidence and mortality are higher in SSA than in the UK. This is largely explained by the more advanced Kaposi sarcoma disease and lower chemotherapy availability. KS-IRIS is a major contributor to Kaposi sarcoma-associated mortality in Africa. Our results support the need to increase awareness on KS-IRIS, encourage earlier presentation, referral and diagnosis of Kaposi sarcoma, and advocate on access to systemic chemotherapy in Africa. © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins
Briggs, Louise C; Chan, A W Edith; Davis, Christopher A; Whitelock, Nicholas; Hotiana, Hajira A; Baratchian, Mehdi; Bagnéris, Claire; Selwood, David L; Collins, Mary K; Barrett, Tracey E
2017-12-01
Primary effusion lymphoma (PEL) is a lymphogenic disorder associated with Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Key to the survival and proliferation of PEL is the canonical NF-κB pathway, which becomes constitutively activated following overexpression of the viral oncoprotein KSHV vFLIP (ks-vFLIP). This arises from its capacity to form a complex with the modulatory subunit of the IκB kinase (IKK) kinase, IKKγ (or NEMO), resulting in the overproduction of proteins that promote cellular survival and prevent apoptosis, both of which are important drivers of tumorigenesis. Using a combination of cell-based and biophysical assays together with structural techniques, we showed that the observed resistance to cell death is largely independent of autophagy or major death receptor signaling pathways and demonstrated that direct targeting of the ks-vFLIP-IKKγ interaction both in cells and in vitro can be achieved using IKKγ-mimetic peptides. Our results further reveal that these peptides not only induce cell killing but also potently sensitize PEL to the proapoptotic agents tumor necrosis factor alpha and etoposide and are the first to confirm ks-vFLIP as a tractable target for the treatment of PEL and related disorders. IMPORTANCE KSHV vFLIP (ks-vFLIP) has been shown to have a crucial role in cellular transformation, in which it is vital for the survival and proliferation of primary effusion lymphoma (PEL), an aggressive malignancy associated with infection that is resistant to the majority of chemotherapeutic drugs. It operates via subversion of the canonical NF-κB pathway, which requires a physical interaction between ks-vFLIP and the IKK kinase modulatory subunit IKKγ. While this interaction has been directly linked to protection against apoptosis, it is unclear whether the suppression of other cell death pathways implicated in ks-vFLIP pathogenesis is an additional contributor. We demonstrate that the interaction between ks-vFLIP and IKKγ is pivotal in conferring resistance to apoptosis. Additionally, we show that the ks-vFLIP-IKKγ complex can be disrupted using peptides leading to direct killing and the sensitization of PEL cells to proapoptotic agents. Our studies thus provide a framework for future therapeutic interventions. Copyright © 2017 Briggs et al.
Hobbs, Zack; Abedon, Stephen T
2016-04-01
Bacteriophages, or phages, are viruses of members of domain Bacteria. These viruses play numerous roles in shaping the diversity of microbial communities, with impact differing depending on what infection strategies specific phages employ. From an applied perspective, these especially are communities containing undesired or pathogenic bacteria that can be modified through phage-mediated bacterial biocontrol, that is, through phage therapy. Here we seek to categorize phages in terms of their infection strategies as well as review or suggest more descriptive, accurate or distinguishing terminology. Categories can be differentiated in terms of (1) whether or not virion release occurs (productive infections versus lysogeny, pseudolysogeny and/or the phage carrier state), (2) the means of virion release (lytic versus chronic release) and (3) the degree to which phages are genetically equipped to display lysogenic cycles (temperate versus non-temperate phages). We address in particular the use or overuse of what can be a somewhat equivocal phrase, 'Lytic or lysogenic', especially when employed as a means of distinguishing among phages types. We suggest that the implied dichotomy is inconsistent with both modern as well as historical understanding of phage biology. We consider, therefore, less ambiguous terminology for distinguishing between 'Lytic' versus 'Lysogenic' phage types. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Tuli, Amit; Thiery, Jerome; James, Ashley M; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B; Orange, Jordan S; Lieberman, Judy; Brenner, Michael B
2013-12-01
Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell-mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.
Tuli, Amit; Thiery, Jerome; James, Ashley M.; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B.; Orange, Jordan S.; Lieberman, Judy; Brenner, Michael B.
2013-01-01
Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell–mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity. PMID:24088571
Nagata, Keiko; Okuno, Keisuke; Ochi, Marika; Kumata, Keisuke; Sano, Hitoshi; Yoneda, Naohiro; Ueyama, Jun-Ichi; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Kanzaki, Susumu; Hayashi, Kazuhiko
2015-01-01
Various autoantibodies have been reported to be detected during the progression of infectious mononucleosis. We observed a case of infectious mononucleosis due to Epstein-Barr virus primary infection for 2 months, and noticed the transiently increased titer of thyrotropin receptor autoantibodies detected at the acute phase on the 3rd day after admission. At that time, real-time quantitative PCR also revealed the mRNA expressions of an immediate early lytic gene, BZLF1, and a latent gene, EBNA2. The expression of BZLF1 mRNA means that Epstein-Barr virus infects lytically, and EBNA2 protein has an important role in antibody production as well as the establishment of Epstein-Barr virus latency. These results suggest that Epstein-Barr virus lytic infection is relevant to thyrotropin receptor autoantibody production. Thyrotropin receptor autoantibodies stimulate thyroid follicular cells to produce excessive thyroid hormones and cause Graves' disease. Recently, we reported the thyrotropin receptor autoantibody production from thyrotropin receptor autoantibody-predisposed Epstein-Barr virus-infected B cells by the induction of Epstein-Barr virus lytic infection in vitro. This case showed in vivo findings consistent with our previous reports, and is important to consider the pathophysiology of Graves' disease and one of the mechanisms of autoimmunity.
[KAPOSI'S SARCOMA OF THE VULVA].
Chokoeva, Aa; Tchernev, G; Wollina, U
2015-01-01
Kaposi's sarcoma represents multiple idiopathic hemorrhagic sarcoma--a mesenchymal tumor that affects the blood and lymph vessels. Its performance is associated with an infection with human herpes virus type 8--the so called KSHV (Kaposi's sarcoma -associated virus), and with the human immunodeficiency virus. Kaposi's sarcoma is considered as a typical clinical manifestation in male homosexuals suffering from acquired immune deficiency syndrome (AIDS), while his performance in HIV-positive women is unusual, with a ratio of men to women--10-15: 1. Vulvar localization is much rarer. It is up to 5 times more frequent in HIV- positive patients. It is clinically represented in most of the cases by the clinical picture of nonspecific tumor mass. Biopsy and further virological testing for establishing KSHV in lesional tissue is essential for confirming the diagnosis. Serological testing for HIV/AIDS in affected patients is required. Local treatment includes surgical excision of solitary lesions, cryotherapy as well as radiotherapy. The use of interferon alpha resulted in complete remission in approximately 40% of the affected patients. New trends in treatment tend to be pathogenetically directed as in the process of studies to date are inhibitors of angiogenesis. Due to the rarity of the occurrence, non-specific clinical picture and histological findings, Kaposi's sarcoma should be considered in the differential diagnosis of tumor masses with vulvar localization, especially in HIV-positive patients.
Work, Thierry M.; Dagenais, Julie; Balazs, George H.; Schumacher, Joanne; Lewis, Teresa D.; Leong, Jo-Ann C.; Casey, Rufina N.; Casey, James W.
2009-01-01
Fibropapillomatosis (FP) of green turtles has a global distribution and causes debilitating tumours of the skin and internal organs in several species of marine turtles. FP is associated with a presently non-cultivable alphaherpesvirus Chelonid fibropapilloma-associated herpesvirus (CFPHV). Our aims were to employ quantitative PCR targeted to pol DNA of CFPHV to determine (i) if DNA sequesters by tumour size and/or cell type, (ii) whether subculturing of cells is a viable strategy for isolating CFPHV and (iii) whether CFPHV can be induced to a lytic growth cycle in vitro using chemical modulators of replication (CMRs), temperature variation or co-cultivation. Additional objectives included determining whether non-tumour and tumour cells behave differently in vitro and confirming the phenotype of cultured cells using cell-type-specific antigens. CFPHV pol DNA was preferentially concentrated in dermal fibroblasts of skin tumours and the amount of viral DNA per cell was independent of tumour size. Copy number of CFPHV pol DNA per cell rapidly decreased with cell doubling of tumour-derived fibroblasts in culture. Attempts to induce viral replication in known CFPHV-DNA-positive cells using temperature or CMR failed. No significant differences were seen in in vitro morphology or growth characteristics of fibroblasts from tumour cells and paired normal skin, nor from CFPHV pol-DNA-positive intestinal tumour cells. Tumour cells were confirmed as fibroblasts or keratinocytes by positive staining with anti-vimentin and anti-pancytokeratin antibodies, respectively. CFPHV continues to be refractory to in vitro cultivation.
Human cytomegalovirus UL76 induces chromosome aberrations
2009-01-01
Background Human cytomegalovirus (HCMV) is known to induce chromosome aberrations in infected cells, which can lead to congenital abnormalities in infected fetuses. HCMV UL76 belongs to a conserved protein family from herpesviruses. Some reported roles among UL76 family members include involvement in virulence determination, lytic replication, reactivation of latent virus, modulation of gene expression, induction of apoptosis, and perturbation of cell cycle progression, as well as potential nuclease activity. Previously, we have shown that stable expression of UL76 inhibits HCMV replication in glioblastoma cells. Methods To examine chromosomal integrity and the DNA damage signal γ-H2AX in cells constitutively expressing UL76, immunofluorescent cell staining and Western blotting were performed. The comet assay was employed to assess DNA breaks in cells transiently expressing UL76. Results We report that stably transfected cells expressing UL76 developed chromosome aberrations including micronuclei and misaligned chromosomes, lagging and bridging. In mitotic cells expressing UL76, aberrant spindles were increased compared to control cells. However, cells with supernumerary centrosomes were marginally increased in UL76-expressing cells relative to control cells. We further demonstrated that UL76-expressing cells activated the DNA damage signal γ-H2AX and caused foci formation in nuclei. In addition, the number of cells with DNA breaks increased in proportion to UL76 protein levels. Conclusion Our findings suggest that the virus-associated protein UL76 induces DNA damage and the accumulation of chromosome aberrations. PMID:19930723
Tsai, Ching-Yi; Chen, Chang-Yu; Chiou, Yee-Hsuan; Shyu, Huey-Wen; Lin, Kuan-Hua; Chou, Miao-Chen; Huang, Mei-Han; Wang, Yi-Fen
2017-01-01
Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, has been shown to induce cell death in cancer cells. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by human herpesvirus 8 (HHV8). In this study, we examined the role of EGCG on PEL cells in cell death and HHV8 replication. We performed trypan blue exclusion assay to assess the cell viability of PEL cells, flow cytometry analysis to examine the cell cycle distribution and reactive oxygen species (ROS) generation, caspase-3 activity to assay apoptosis, acridine orange staining to determine autophagy, and immunoblotting to detect the protein levels involved in apoptosis and autophagy as well as mitogen activated protein kinases (MAPKs) activation upon EGCG treatment. The expression of the HHV8 lytic gene was determined by luciferase reporter assay and reverse transcription-PCR, and viral progeny production was determined by PCR. Results revealed that EGCG induced cell death and ROS generation in PEL cells in a dose-dependent manner. N-acetylcysteine (NAC) inhibited the EGCG-induced ROS and rescued the cell from EGCG-induced cell death. Even though EGCG induced ROS generation in PEL cells, it reduced the production of progeny virus from PEL cells without causing HHV8 reactivation. These results suggest that EGCG may represent a novel strategy for the treatment of HHV8 infection and HHV8-associated lymphomas. PMID:29267216
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Thomas E.; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Kenney, Shannon C.
We have previously demonstrated that the Epstein-Barr virus immediate-early BZLF1 protein interacts with, and is inhibited by, the NF-{kappa}B family member p65. However, the effects of BZLF1 on NF-{kappa}B activity have not been intensively studied. Here we show that BZLF1 inhibits p65-dependent gene expression. BZLF1 inhibited the ability of IL-1, as well as transfected p65, to activate the expression of two different NF-{kappa}B-responsive genes, ICAM-1 and I{kappa}B-{alpha}. BZLF1 also reduced the constitutive level of I{kappa}B-{alpha} protein in HeLa and A549 cells, and increased the amount of nuclear NF-{kappa}B to a similar extent as tumor necrosis factor-alpha (TNF-{alpha}) treatment. In spitemore » of this BZLF1-associated increase in the nuclear form of NF-{kappa}B, BZLF1 did not induce binding of NF-{kappa}B to NF-{kappa}B responsive promoters (as determined by chromatin immunoprecipitation assay) in vivo, although TNF-{alpha} treatment induced NF-{kappa}B binding as expected. Overexpression of p65 dramatically inhibited the lytic replication cycle of EBV in 293-EBV cells, confirming that NF-{kappa}B also inhibits BZLF1 transcriptional function. Our results are consistent with a model in which BZLF1 inhibits the transcriptional function of p65, resulting in decreased transcription of I{kappa}B-{alpha}, decreased expression of I{kappa}B-{alpha} protein, and subsequent translocation of NF-{kappa}B to the nucleus. This nuclear translocation of NF-{kappa}B may promote viral latency by negatively regulating BZLF1 transcriptional activity. In situations where p65 activity is limiting in comparison to BZLF1, the ability of BZLF1 to inhibit p65 transcriptional function may protect the virus from the host immune system during the lytic form of infection.« less
Development of Drugs for Epstein - Barr virus using High-Throughput in silico Virtual Screening
Li, Ning; Thompson, Scott; Jiang, Hualiang; Lieberman, Paul M.; Luo, Cheng
2010-01-01
Importance of the field Epstein-Barr virus (EBV) is a ubiquitious human herpesvirus that is causally associated with endemic forms of Burkitt’s lymphoma (BL), nasopharyngeal carcinoma, and lymphoproliferative disease in immunosuppressed individuals. On a global scale, EBV infects over 90% of the adult population and is responsible for ~1% of all human cancers. To date, there is no efficacious drug or therapy for the treatment of EBV infection and EBV-related diseases. Areas covered in this review In this review, we discuss the existing anti-EBV inhibitors and those under development. We discuss the value of different molecular targets, including EBV lytic DNA replication enzymes, as well as proteins that are expressed exclusively during latent infection, like EBNA1 and LMP1. Since the atomic structure of the EBNA1 DNA binding domain has been described, it is an attractive target for in silico methods of drug design and small molecule screening. We discuss the use of computational methods that can greatly facilitate the development of novel inhibitors and how in silico screening methods can be applied to target proteins with known structures, like EBNA1, to treat EBV infection and disease. What the reader will gain The reader will be familiarized with the problems in targeting of EBV for inhibition by small molecules and how computational methods can greatly facilitate this process. Take home message Despite the impressive efficacy of nucleoside analogues for the treatment of herpesvirus lytic infection, there remain few effective treatments for latent infections. Since EBV-latent infection persists within and contributes to the formation of EBV-associated cancers, targeting EBV latent proteins is an unmet medical need. High throughput in silico screening can accelerate the process of drug discovery for novel and selective agents that inhibit EBV latent infection and associated disease. PMID:22822721
1985-09-01
pectinase . Lytic enzyme-positive isolates were successively subcultured on restrictive media in the laboratory to enhance enzyme production. Twenty-two...candidate microorganisms by testing isolates for produc- tion of cellulase and pectinase . c. Taxonomically characterize candidates. d. Enhance production of...present study, but could become necessary if results of this study indicate that cellulase-enhanced v ,isolates are capable of damaging hydrilla. Pectinase
2011-03-29
QCM system was employed to study bacteria-phage interactions. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 1 18... QCM -D system (Sweden) was employed to study bacteria-phage interactions. Lytic phages were constructed into hollow spherical particles upon exposure to...a chloroform-water interface. These particles were converted into monolayers and deposited onto QCM -D crystals using Langmuir-Blodgett technique [I
THE PROTEIN COATS OR "GHOSTS" OF COLIPHAGE T2
Herriott, Roger M.; Barlow, James L.
1957-01-01
A method of preparing the protein coats or ghosts of phage T2 is described along with proof that the lytic action is a property of the ghost. An assay based on the lytic action toward host cells has been developed which permits a rapid evaluation of the number of ghosts with a reliability of ±15 per cent. The antigenic and certain physicochemical properties of the ghost have been determined. PMID:13428990
Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Dell, William B.; Agarwal, Pratul K.; Meilleur, Flora
Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygenmore » activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.« less
Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase
O'Dell, William B.; Agarwal, Pratul K.; Meilleur, Flora
2016-12-22
Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. Here, we determined the high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed “pre-bound” molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygenmore » activation. Our results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme–substrate complex.« less
Open C2 Vertebroplasty: Case Report, Technique, and Review of Literature
Shetty, Sathwik Raviraj; Ganigi, Praveen Mahadev; Mandanna, Bopanna Kanjithanda
2017-01-01
Osteolytic lesions of C2 are challenging pathologies to manage. Vertebroplasty, a minimally invasive technique has been widely used in lytic lesions of thoracic and lumbar spine. However, there has been limited experience with percutaneous vertebroplasty at C2, and the procedure is technically difficult. We describe a safer alternative technique of open vertebroplasty for lytic lesions involving the axis. Methods: The procedure was performed in a 49-year-old male with a metastatic lytic lesion involving the body and dens of C2 using an anterior cervical approach. The patient had an immediate reduction in pain with complete pain relief at 2 weeks and good stability at 3-month follow-up. The patient did not have any perioperative or postoperative complications. The anterior cervical approach open C2 vertebroplasty is a safe and effective option in the management of C2 osteolytic lesions. PMID:29114290
[Cranial metastasis of thyroid follicular carcinoma. Report of a case].
Calderón-Garcidueñas, A L; González-Schaffinni, M A; Farías-García, R; Rey-Laborde, R
2001-01-01
Thyroid follicular carcinoma is able to produce metastatic lesions before the vanishing of the primary lesion. We present a case of a woman with a lytic, solitary, asymptomatic parietal bone lesion of 2 years of evolution. Autopsy revealed a thyroid gland with two small cystic areas and renal metastasis. Thyroid carcinoma should be included in the differential diagnosis in cases of lytic bone lesions with long evolution in patients 60 years of age or older.
Radiation-induced Epstein-Barr virus reactivation in gastric cancer cells with latent EBV infection.
Nandakumar, Athira; Uwatoko, Futoshi; Yamamoto, Megumi; Tomita, Kazuo; Majima, Hideyuki J; Akiba, Suminori; Koriyama, Chihaya
2017-07-01
Epstein-Barr virus, a ubiquitous human herpes virus with oncogenic activity, can be found in 6%-16% of gastric carcinomas worldwide. In Epstein-Barr virus-associated gastric carcinoma, only a few latent genes of the virus are expressed. Ionizing irradiation was shown to induce lytic Epstein-Barr virus infection in lymphoblastoid cell lines with latent Epstein-Barr virus infection. In this study, we examined the effect of ionizing radiation on the Epstein-Barr virus reactivation in a gastric epithelial cancer cell line (SNU-719, an Epstein-Barr virus-associated gastric carcinoma cell line). Irradiation with X-ray (dose = 5 and 10 Gy; dose rate = 0.5398 Gy/min) killed approximately 25% and 50% of cultured SNU-719 cells, respectively, in 48 h. Ionizing radiation increased the messenger RNA expression of immediate early Epstein-Barr virus lytic genes (BZLF1 and BRLF1), determined by real-time reverse transcription polymerase chain reaction, in a dose-dependent manner at 48 h and, to a slightly lesser extent, at 72 h after irradiation. Similar findings were observed for other Epstein-Barr virus lytic genes (BMRF1, BLLF1, and BcLF1). After radiation, the expression of transforming growth factor beta 1 messenger RNA increased and reached a peak in 12-24 h, and the high-level expression of the Epstein-Barr virus immediate early genes can convert latent Epstein-Barr virus infection into the lytic form and result in the release of infectious Epstein-Barr virus. To conclude, Ionizing radiation activates lytic Epstein-Barr virus gene expression in the SNU-719 cell line mainly through nuclear factor kappaB activation. We made a brief review of literature to explore underlying mechanism involved in transforming growth factor beta-induced Epstein-Barr virus reactivation. A possible involvement of nuclear factor kappaB was hypothesized.
Lear, A L; Rowe, M; Kurilla, M G; Lee, S; Henderson, S; Kieff, E; Rickinson, A B
1992-01-01
In Epstein-Barr virus (EBV)-positive Burkitt's lymphoma cell lines exhibiting the latency I form of infection (i.e., EBV nuclear antigen 1 [EBNA1] positive in the absence of other latent proteins), the EBNA1 mRNA has a unique BamHI Q/U/K splice structure and is expressed from a novel promoter, Fp, located near the BamHI FQ boundary. This contrasts with the situation in EBV-transformed lymphoblastoid cell lines (LCLs) exhibiting the latency III form of infection (i.e., positive for all latent proteins), in which transcription from the upstream Cp or Wp promoters is the principal source of EBNA mRNAs. We carried out cDNA amplifications with oligonucleotide primer-probe combinations to determine whether Fp is ever active in an LCL environment. The results clearly showed that some LCLs express a Q/U/K-spliced EBNA1 mRNA in addition to the expected Cp/Wp-initiated transcripts; this seemed inconsistent with the concept of Cp/Wp and Fp as mutually exclusive promoters. Here we show that Fp is indeed silent in latency III cells but is activated at an early stage following the switch from latency III into the virus lytic cycle. Four pieces of evidence support this conclusion: (i) examples of coincident Cp/Wp and Fp usage in LCLs are restricted to those lines in which a small subpopulation of cells have spontaneously entered the lytic cycle; (ii) transcripts initiating from Fp can readily be demonstrated in spontaneously productive lines by S1 nuclease protection; (iii) the presence of Fp-initiated transcripts is not affected by acyclovir blockade of the late lytic cycle; and (iv) infection of latently infected LCLs with a recombinant vaccinia virus encoding the EBV immediate-early protein BZLF1, a transcriptional transactivator which normally initiates the lytic cycle, results in the appearance of the diagnostic Q/U/K-spliced transcripts. Images PMID:1331531
Management of herpesvirus infections.
Evans, Cariad M; Kudesia, Goura; McKendrick, Mike
2013-08-01
Management of human herpesviruses remains a considerable clinical challenge, in part due to their ability to cause both lytic and latent disease. Infection with the Herpesviridae results in lifelong infection, which can reactivate at any time. Control of herpesviruses is by the innate and adaptive immune systems. Herpesviruses must evade the host innate immune system to establish infection. Once infected, the adaptive immune response, primarily CD8(+) T-cells, is crucial in establishing and maintaining latency. Latent herpesviruses are characterised by the presence of viral DNA in infected cells and limited or no viral replication. These characteristics provide a challenge to clinicians and those developing antiviral agents. The scope of this review is two-fold. First, to provide an overview of all antivirals used against herpesviruses, including their mechanism of action, pharmacokinetics, side effects, resistance and clinical uses. And second, to address the management of each of the eight herpesviruses both in the immunocompetent and immunocompromised host, providing evidence for clinical management and therapeutic options, which is important to the clinician engaged in the management of these infections. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Nogusa, Shoko; Thapa, Roshan J.; Dillon, Christopher P.; Liedmann, Swantje; Oguin, Thomas H.; Ingram, Justin P.; Rodriguez, Diego A.; Kosoff, Rachelle; Sharma, Shalini; Sturm, Oliver; Verbist, Katherine; Gough, Peter J.; Bertin, John; Hartmann, Boris M.; Sealfon, Stuart C.; Kaiser, William J.; Mocarski, Edward S.; López, Carolina B.; Thomas, Paul G.; Oberst, Andrew; Green, Douglas R.; Balachandran, Siddharth
2016-01-01
Summary Influenza A virus (IAV) is a lytic virus in primary cultures of many cell types and in vivo. We report that the kinase RIPK3 is essential for IAV-induced lysis of mammalian fibroblasts and lung epithelial cells. Replicating IAV drives assembly of a RIPK3-containing complex that includes the kinase RIPK1, the pseudokinase MLKL, and the adaptor protein FADD, and forms independently of signaling by RNA-sensing innate immune receptors (RLRs, TLRs, PKR), or the cytokines type I interferons and TNF-α. Downstream of RIPK3, IAV activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis, with the former reliant on RIPK3 kinase activity and neither on RIPK1 activity. Mice deficient in RIPK3 or doubly-deficient in MLKL and FADD, but not MLKL alone, are more susceptible to IAV than their wild-type counterparts, revealing an important role for RIPK3-mediated apoptosis in antiviral immunity. Collectively, these results outline RIPK3-activated cytolytic mechanisms essential for controlling respiratory IAV infection. PMID:27321907
Lista, María José; Voisset, Cécile; Contesse, Marie-Astrid; Friocourt, Gaëlle; Daskalogianni, Chrysoula; Bihel, Frédéric; Fåhraeus, Robin; Blondel, Marc
2015-09-01
The Epstein-Barr gammaherpesvirus (EBV) is the first oncogenic virus discovered in human. Indeed, EBV has been known for more than 50 years to be tightly associated with certain human cancers. As such, EBV has been the subject of extensive studies aiming at deciphering various aspects of its biological cycle, ranging from the regulation of its genome replication and maintenance to the induction of its lytic cycle, including the mechanisms that allow its immune evasion or that are related to its tumorogenicity. For more than 30 years the budding yeast Saccharomyces cerevisiae has fruitfully contributed to a number of these studies. The aim of this article is to review the various aspects of EBV biology for which yeast has been instrumental, and to propose new possible applications for these yeast-based assays, as well as the creation of further yeast models dedicated to EBV. This review article illustrates the tremendous potential of S. cerevisiae in integrated chemobiological approaches for the biomedical research. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pagarete, António; Le Corguillé, Gildas; Tiwari, Bela; Ogata, Hiroyuki; de Vargas, Colomban; Wilson, William H; Allen, Michael J
2011-12-01
Lytic viruses have been implicated in the massive cellular lysis observed during algal blooms, through which they assume a prominent role in oceanic carbon and nutrient flows. Despite their impact on biogeochemical cycling, the transcriptional dynamics of these important oceanic events is still poorly understood. Here, we employ an oligonucleotide microarray to monitor host (Emiliania huxleyi) and virus (coccolithovirus) transcriptomic features during the course of E. huxleyi blooms induced in seawater-based mesocosm enclosures. Host bloom development and subsequent coccolithovirus infection was associated with a major shift in transcriptional profile. In addition to the expected metabolic requirements typically associated with viral infection (amino acid and nucleotide metabolism, as well as transcription- and replication-associated functions), the results strongly suggest that the manipulation of lipid metabolism plays a fundamental role during host-virus interaction. The results herein reveal the scale, so far massively underestimated, of the transcriptional domination that occurs during coccolithovirus infection in the natural environment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Rosenwasser, Shilo; Mausz, Michaela A.; Schatz, Daniella; Sheyn, Uri; Malitsky, Sergey; Aharoni, Asaph; Weinstock, Eyal; Tzfadia, Oren; Ben-Dor, Shifra; Feldmesser, Ester; Pohnert, Georg; Vardi, Assaf
2014-01-01
Marine viruses are major ecological and evolutionary drivers of microbial food webs regulating the fate of carbon in the ocean. We combined transcriptomic and metabolomic analyses to explore the cellular pathways mediating the interaction between the bloom-forming coccolithophore Emiliania huxleyi and its specific coccolithoviruses (E. huxleyi virus [EhV]). We show that EhV induces profound transcriptome remodeling targeted toward fatty acid synthesis to support viral assembly. A metabolic shift toward production of viral-derived sphingolipids was detected during infection and coincided with downregulation of host de novo sphingolipid genes and induction of the viral-encoded homologous pathway. The depletion of host-specific sterols during lytic infection and their detection in purified virions revealed their novel role in viral life cycle. We identify an essential function of the mevalonate-isoprenoid branch of sterol biosynthesis during infection and propose its downregulation as an antiviral mechanism. We demonstrate how viral replication depends on the hijacking of host lipid metabolism during the chemical “arms race” in the ocean. PMID:24920329
CMV immune evasion and manipulation of the immune system with aging.
Jackson, Sarah E; Redeker, Anke; Arens, Ramon; van Baarle, Debbie; van den Berg, Sara P H; Benedict, Chris A; Čičin-Šain, Luka; Hill, Ann B; Wills, Mark R
2017-06-01
Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to elicit conventional and unconventional T cell responses.
Genomic Approaches for Detection and Treatment of Breast Cancer
2006-07-01
display vectors to allow for both lytic and filamentous versions of the library. For lytic phage display, we chose the T7 -based vector T7Select®10-3b... phage , which do not display a FLAG epitope (data not shown). These data suggest that peptides can be displayed on the surface of T7 using this system...Auto-Antibodies as Breast Cancer Biomarkers To identify auto-antibodies that could be used as breast cancer biomarkers, we are generating a phage
Enzyme specificity under dynamic control
NASA Astrophysics Data System (ADS)
Ota, Nobuyuki; Agard, David A.
2002-03-01
The contributions of conformational dynamics to substrate specificity have been examined by the application of principal component analysis to molecular dynamics trajectories of alpha-lytic protease. The wild-type alpha-lytic protease is highly specific for substrates with small hydrophobic side chains at the specificity pocket, while the Met190Ala binding pocket mutant has a much broader specificity, actively hydrolyzing substrates ranging from Ala to Phe. We performed a principal component analysis using 1-nanosecond molecular dynamics simulations using solvent boundary condition. We found that the walls of the wild-type substrate binding pocket move in tandem with one another, causing the pocket size to remain fixed so that only small substrates are recognized. In contrast, the M190A mutant shows uncoupled movement of the binding pocket walls, allowing the pocket to sample both smaller and larger sizes, which appears to be the cause of the observed broad specificity. The results suggest that the protein dynamics of alpha-lytic protease may play a significant role in defining the patterns of substrate specificity.
Long-term evolution of viruses: A Janus-faced balance.
Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo
2017-08-01
The popular textbook image of viruses as noxious and selfish genetic parasites greatly underestimates the beneficial contributions of viruses to the biosphere. Given the crucial dependency of viruses to reproduce in an intracellular environment, viruses that engage in excessive killing (lysis) can drive their cellular hosts to extinction and will not survive. The lytic mode of virus propagation must, therefore, be tempered and balanced by non-lytic modes of virus latency and symbiosis. Here, we review recent bioinformatics and metagenomic studies to argue that viral endogenization and domestication may be more frequent mechanisms of virus persistence than lysis. We use a triangle diagram to explain the three major virus persistence strategies that explain the global scope of virus-cell interactions including lysis, latency and virus-cell symbiosis. This paradigm can help identify novel directions in virology research where scientists could artificially gain control over switching lytic and beneficial viral lifestyles. Also see the Video Abstract: http://youtu.be/GwXWz4N8o8. © 2017 WILEY Periodicals, Inc.
Zhang, Minggang; March, Michael E.; Lane, William S.; Long, Eric O.
2014-01-01
Cytotoxic lymphocyte skill target cells by polarized release of the content of perforin-containing granules. In natural killer cells, the binding of β2 integrin to its ligand ICAM-1 is sufficient to promote not only adhesion but also lytic granule polarization. This provided a unique opportunity to study polarization in the absence of degranulation, and β2 integrin signaling independently of inside-out signals from other receptors. Using an unbiased proteomics approach we identified a signaling network centered on an integrin-linked kinase (ILK)–Pyk2–Paxillin core that was required for granule polarization. Downstream of ILK, the highly conserved Cdc42–Par6 signaling pathway that controls cell polarity was activated and required for granule polarization. These results delineate two connected signaling networks induced upon β2 integrin engagement alone, which are integrated to control polarization of the microtubule organizing center and associated lytic granules toward the site of contact with target cells during cellular cytotoxicity. PMID:25292215
Shi, Yibo; Li, Ning; Yan, Yaxian; Wang, Hengan; Li, Yan; Lu, Chengping; Sun, Jianhe
2012-07-01
Development of novel antibacterial agents is required to control infection with multidrug-resistant Streptococcus suis. HolSMP and LySMP, the holin and lysin of S. suis serotype 2 bacteriophage, named SMP, are responsible for lysis of host cells and release of progeny phage. HolSMP and LySMP expressed in Escherichia coli BL21(DE3) exerted efficient activity at 37 °C, pH 5.2, with addition of 0.8 % β-mercaptoethanol. Lytic spectra of purified HolSMP, LySMP or HolSMP + LySMP mixture were investigated. HolSMP, exhibiting a narrow lytic spectrum, was effective against Staphylococcus aureus and Bacillus subtilis, which were insensitive to LySMP. Moreover, HolSMP was identified as a promising antibacterial agent which was able to extend the spectrum of LySMP. The data suggest that combined use of holin and lysin could be a candidate strategy for resolution of drug resistance.
Banawas, Saeed; Korza, George; Paredes-Sabja, Daniel; Li, Yunfeng; Hao, Bing; Setlow, Peter; Sarker, Mahfuzur R
2015-09-01
The protease CspB and the cortex-lytic enzyme SleC are essential for peptoglycan cortex hydrolysis during germination of spores of the Clostridium perfringens food poisoning isolate SM101. In this study, Western blot analyses were used to demonstrate that CspB and SleC are present exclusively in the C. perfringens SM101 spore coat layer fraction and absent in the lysate from decoated spores and from the purified inner spore membrane. These results indicate why decoating treatments greatly reduce both germination and apparent viability of C. perfringens spores in the absence of an exogenous lytic enzyme. In addition, quantitative Western blot analyses showed that there are approximately 2000 and 130,000 molecules of CspB and pro-SleC, respectively, per C. perfringens SM101 spore, consistent with CspB's role in acting catalytically on pro-SleC to convert this zymogen to the active enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brown, Teagan L; Petrovski, Steve; Hoyle, Dannielle; Chan, Hiu Tat; Lock, Peter; Tucci, Joseph
2017-01-01
To isolate and characterize bacteriophage lytic for the opportunistic pathogen Klebsiella oxytoca and their formulation into a range of solid dosage forms for in-vitro testing. We report the isolation, genomic and functional characterization of a novel bacteriophage lytic for Klebsiella oxytoca, which does not infect the closely related Klebsiella pneumoniae. This bacteriophage was formulated into suppositories and troches and shown to be released and lyse underlying Klebsiella oxytoca bacteria in an in-vitro model. These bacteriophage formulations were stable for at least 49 days at 4°C. The successful in-vitro assay of these formulations here suggests that they could potentially be tested in-vivo to determine whether such a therapeutic approach could modulate the gut microbiome, and control Klebsiella oxytoca overgrowth, during antibiotic therapy regimes. This study reports a novel bacteriophage specific for Klebsiella oxytoca which can be formulated into solid dosage forms appropriate for potential delivery in testing as a therapy to modulate gut microbiome during antibiotic therapies.
Identification of herpesvirus proteins that contribute to G1/S arrest.
Paladino, Patrick; Marcon, Edyta; Greenblatt, Jack; Frappier, Lori
2014-04-01
Lytic infection by herpesviruses induces cell cycle arrest at the G1/S transition. This appears to be a function of multiple herpesvirus proteins, but only a minority of herpesvirus proteins have been examined for cell cycle effects. To gain a more comprehensive understanding of the viral proteins that contribute to G1/S arrest, we screened a library of over 200 proteins from herpes simplex virus type 1, human cytomegalovirus, and Epstein-Barr virus (EBV) for effects on the G1/S interface, using HeLa fluorescent, ubiquitination-based cell cycle indicator (Fucci) cells in which G1/S can be detected colorimetrically. Proteins from each virus were identified that induce accumulation of G1/S cells, predominantly tegument, early, and capsid proteins. The identification of several capsid proteins in this screen suggests that incoming viral capsids may function to modulate cellular processes. The cell cycle effects of selected EBV proteins were further verified and examined for effects on p53 and p21 as regulators of the G1/S transition. Two EBV replication proteins (BORF2 and BMRF1) were found to induce p53 but not p21, while a previously uncharacterized tegument protein (BGLF2) was found to induce p21 protein levels in a p53-independent manner. Proteomic analyses of BGLF2-interacting proteins identified interactions with the NIMA-related protein kinase (NEK9) and GEM-interacting protein (GMIP). Silencing of either NEK9 or GMIP induced p21 without affecting p53 and abrogated the ability of BGLF2 to further induce p21. Collectively, these results suggest multiple viral proteins contribute to G1/S arrest, including BGLF2, which induces p21 levels likely by interfering with the functions of NEK9 and GMIP. Most people are infected with multiple herpesviruses, whose proteins alter the infected cells in several ways. During lytic infection, the viral proteins block cell proliferation just before the cellular DNA replicates. We used a novel screening method to identify proteins from three different herpesviruses that contribute to this block. Several of the proteins we identified had previously unknown functions or were structural components of the virion. Subsets of these proteins from Epstein-Barr virus were studied for their effects on the cell cycle regulatory proteins p53 and p21, thereby identifying two proteins that induce p53 and one that induces p21 (BGLF2). We identified interactions of BGLF2 with two human proteins, both of which regulate p21, suggesting that BGLF2 induces p21 by interfering with the functions of these two host proteins. Our study indicates that multiple herpesvirus proteins contribute to the cell proliferation block, including components of the incoming virions.
Nakamura, Tomohiro; Furusawa, Takaaki; Ohno, Hazuki; Takahashi, Hiromichi; Kitana, Junya; Usui, Masaru; Higuchi, Hidetoshi; Tamura, Yutaka
2018-01-01
Antibiotic-resistant bacteria (ARB) have spread widely and rapidly, with their increased occurrence corresponding with the increased use of antibiotics. Infections caused by Staphylococcus aureus have a considerable negative impact on human and livestock health. Bacteriophages and their peptidoglycan hydrolytic enzymes (endolysins) have received significant attention as novel approaches against ARB, including S. aureus. In the present study, we purified an endolysin, Lys-phiSA012, which harbors a cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) domain, an amidase domain, and a SH3b cell wall binding domain, derived from a polyvalent S. aureus bacteriophage which we reported previously. We demonstrate that Lys-phiSA012 exhibits high lytic activity towards staphylococcal strains, including methicillin-resistant S. aureus (MRSA). Analysis of deletion mutants showed that only mutants possessing the CHAP and SH3b domains could lyse S. aureus, indicating that lytic activity of the CHAP domain depended on the SH3b domain. The presence of at least 1 mM Ca2+ and 100 µM Zn2+ enhanced the lytic activity of Lys-phiSA012 in a turbidity reduction assay. Furthermore, a minimum inhibitory concentration (MIC) assay showed that the addition of Lys-phiSA012 decreased the MIC of oxacillin. Our results suggest that endolysins are a promising approach for replacing current antimicrobial agents and may contribute to the proper use of antibiotics, leading to the reduction of ARB. PMID:29495305
Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean
NASA Astrophysics Data System (ADS)
Li, Y.; Luo, T.; Sun, J.; Cai, L.; Liang, Y.; Jiao, N.; Zhang, R.
2014-05-01
As the most abundant biological entities in the ocean, viruses influence host mortality and nutrient recycling mainly through lytic infection. Yet, the ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In the present study, viral abundance and lytic infection were investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21 to 16.23 to 2.45-23.40, at the surface and 2000 m, respectively. Lytic viral production rates in surface and 2000 m waters were, on average, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1. Relatively high percentages of prokaryotic cells lysed by viruses at 1000 and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in the deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in these deep waters and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.
Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean
NASA Astrophysics Data System (ADS)
Li, Y.; Luo, T.; Sun, J.; Cai, L.; Jiao, N.; Zhang, R.
2013-12-01
As the most abundant biological entities in the ocean, viruses can influence host mortality and nutrients recycling mainly through lytic infection. Yet ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In present study, viral abundance and lytic infection was investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21-16.23 to 2.45-23.40, at surface and 2000 m depth, respectively. The lytic viral production rates in surface and 2000 m waters were, averagely, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1, respectively. Relatively high percentages of prokaryotic cells lysed by virus in 1000 m and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in the deep western Pacific Ocean and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.
Are Phage Lytic Proteins the Secret Weapon To Kill Staphylococcus aureus?
Gutiérrez, Diana; Fernández, Lucía; Rodríguez, Ana; García, Pilar
2018-01-23
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most threatening microorganisms for global human health. The current strategies to reduce the impact of S. aureus include a restrictive control of worldwide antibiotic use, prophylactic measures to hinder contamination, and the search for novel antimicrobials to treat human and animal infections caused by this bacterium. The last strategy is currently the focus of considerable research. In this regard, phage lytic proteins (endolysins and virion-associated peptidoglycan hydrolases [VAPGHs]) have been proposed as suitable candidates. Indeed, these proteins display narrow-spectrum antimicrobial activity and a virtual lack of bacterial-resistance development. Additionally, the therapeutic use of phage lytic proteins in S. aureus animal infection models is yielding promising results, showing good efficacy without apparent side effects. Nonetheless, human clinical trials are still in progress, and data are not available yet. This minireview also analyzes the main obstacles for introducing phage lytic proteins as human therapeutics against S. aureus infections. Besides the common technological problems derived from large-scale production of therapeutic proteins, a major setback is the lack of a proper legal framework regulating their use. In that sense, the relevant health authorities should urgently have a timely discussion about these new antimicrobials. On the other hand, the research community should provide data to dispel any doubts regarding their efficacy and safety. Overall, the appropriate scientific data and regulatory framework will encourage pharmaceutical companies to invest in these promising antimicrobials. Copyright © 2018 Gutiérrez et al.
Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater.
Eydal, Hallgerd S C; Jägevall, Sara; Hermansson, Malte; Pedersen, Karsten
2009-10-01
Viruses were earlier found to be 10-fold more abundant than prokaryotes in deep granitic groundwater at the Aspö Hard Rock Laboratory (HRL). Using a most probable number (MPN) method, 8-30 000 cells of sulphate-reducing bacteria per ml were found in groundwater from seven boreholes at the Aspö HRL. The content of lytic phages infecting the indigenous bacterium Desulfovibrio aespoeensis in Aspö groundwater was analysed using the MPN technique for phages. In four of 10 boreholes, 0.2-80 phages per ml were found at depths of 342-450 m. Isolates of lytic phages were made from five cultures. Using transmission electron microscopy, these were characterized and found to be in the Podoviridae morphology group. The isolated phages were further analysed regarding host range and were found not to infect five other species of Desulfovibrio or 10 Desulfovibrio isolates with up to 99.9% 16S rRNA gene sequence identity to D. aespoeensis. To further analyse phage-host interactions, using a direct count method, growth of the phages and their host was followed in batch cultures, and the viral burst size was calculated to be approximately 170 phages per lytic event, after a latent period of approximately 70 h. When surviving cells from infected D. aespoeensis batch cultures were inoculated into new cultures and reinfected, immunity to the phages was found. The parasite-prey system found implies that viruses are important for microbial ecosystem diversity and activity, and for microbial numbers in deep subsurface groundwater.
Fong, Stephanie A.; Drilling, Amanda; Morales, Sandra; Cornet, Marjolein E.; Woodworth, Bradford A.; Fokkens, Wytske J.; Psaltis, Alkis J.; Vreugde, Sarah; Wormald, Peter-John
2017-01-01
Introduction: Pseudomonas aeruginosa infections are prevalent amongst chronic rhinosinusitis (CRS) sufferers. Many P. aeruginosa strains form biofilms, leading to treatment failure. Lytic bacteriophages (phages) are viruses that infect, replicate within, and lyse bacteria, causing bacterial death. Aim: To assess the activity of a phage cocktail in eradicating biofilms of ex vivo P.aeruginosa isolates from CRS patients. Methods: P. aeruginosa isolates from CRS patients with and without cystic fibrosis (CF) across three continents were multi-locus sequence typed and tested for antibiotic resistance. Biofilms grown in vitro were treated with a cocktail of four phages (CT-PA). Biofilm biomass was measured after 24 and 48 h, using a crystal violet assay. Phage titrations were performed to confirm replication of the phages. A linear mixed effects model was applied to assess the effects of treatment, time, CF status, and multidrug resistance on the biomass of the biofilm. Results: The isolates included 44 strain types. CT-PA treatment significantly reduced biofilm biomass at both 24 and 48 h post-treatment (p < 0.0001), regardless of CF status or antibiotic resistance. Biomass was decreased by a median of 76% at 48 h. Decrease in biofilm was accompanied by a rise in phage titres for all except one strain. Conclusion: A single dose of phages is able to significantly reduce biofilms formed in vitro by a range of P.aeruginosa isolates from CRS patients. This represents an exciting potential and novel targeted treatment for P. aeruginosa biofilm infections and multidrug resistant bacteria. PMID:29018773
Liu, Binyan; Gu, Shiling; Liang, Nengsong; Xiong, Mei; Xue, Qizhen; Lu, Shuguang; Hu, Fuquan; Zhang, Huidong
2016-08-01
Most phages contain DNA polymerases, which are essential for DNA replication and propagation in infected host bacteria. However, our knowledge on phage-encoded DNA polymerases remains limited. This study investigated the function of a novel DNA polymerase of PaP1, which is the lytic phage of Pseudomonas aeruginosa. PaP1 encodes its sole DNA polymerase called Gp90 that was predicted as an A-family DNA polymerase with polymerase and 3'-5' exonuclease activities. The sequence of Gp90 is homologous but not identical to that of other A-family DNA polymerases, such as T7 DNA polymerases (Pol) and DNA Pol I. The purified Gp90 demonstrated a polymerase activity. The processivity of Gp90 in DNA replication and its efficiency in single-dNTP incorporation are similar to those of T7 Pol with processive thioredoxin (T7 Pol/trx). Gp90 can degrade ssDNA and dsDNA in 3'-5' direction at a similar rate, which is considerably lower than that of T7 Pol/trx. The optimized conditions for polymerization were a temperature of 37 °C and a buffer consisting of 40 mM Tris-HCl (pH 8.0), 30 mM MgCl2, and 200 mM NaCl. These studies on DNA polymerase encoded by PaP1 help advance our knowledge on phage-encoded DNA polymerases and elucidate PaP1 propagation in infected P. aeruginosa.
Lee, A; Eschenbruch, R; Waller, J
1985-09-01
The effect of phenolic compounds, ethyl alcohol, and sodium metabisulphite on the lytic activity of virulent bacteriophage PL-1 on a Lactobacillus casei S strain isolated from a lactic acid beverage fermentation was investigated. Catechin, caffeic, and gallic acids, commercially produced red, white, and champagne tannins, ethyl alcohol, and sodium metabisulphite inhibited plaque formation. Catechin, caffeic, and gallic acids were the most effective inhibitors of plaque formation. Commercially supplied oenocyanin was not effective.
Bohara, Sangita; Agarwal, Swapnil; Khurana, Nita; Pandey, P N
2016-01-01
Primary extradural meningiomas of the skull comprise 1% of all meningiomas, and lytic skull meningiomas are still rarer and are said to be more aggressive. We present a case of 38-year-old male with an extradural tumor which on histopathological examination showed features of inflammatory atypical meningioma (WHO Grade II). The intense inflammatory nature of osteolytic primary intraosseous meningioma has not been reported before. This entity deserves special mention because of the need for adjuvant therapy and proper follow-up.
Lytic bacteriophages reduce Escherichia coli O157
Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan
2013-01-01
The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm2) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm2). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p < 0.05) reduced E. coli O157:H7 populations after 24 h when stored at 4°C compared with controls. Immersion of lettuce in suspensions containing high concentrations of EcoShield™ (9.8 log PFU/ml) resulted in the deposition of high concentrations (7.8 log log PFU/cm2) of bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm2) on day 0 compared with control treatments (4.10 log CFU/cm2). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce. PMID:23819106
Li, John; Weissberg, Zoe; Bevilacqua, Thomas A; Yu, Gordon; Weber, Kristy; Sebro, Ronnie
2018-04-01
To compare the concordance between fine-needle aspiration and core biopsies for osseous lesions by lesion imaging appearance and CT attenuation. Retrospective review of 215 FNAs of osseous lesions performed in conjunction with core biopsy at our institution over a 6-year period (2011-2016). FNAs were interpreted independently of core biopsies. We assessed if FNA in conjunction with core biopsy increased diagnostic accuracy compared to core biopsy alone. We also calculated the concordance between FNA and core biopsy by lesion appearance, lesion CT attenuation, lesion histology, lesion location and FNA needle gauge size. Core biopsy alone provided the diagnosis in 207/215 cases (96.3%), however, the FNA provided the diagnosis in the remaining 8/215 cases (3.7%) where the core biopsy was non-diagnostic. There were 154 (71.6%) lytic lesions, 21 (9.8%) blastic lesions, 25 (11.6%) mixed lytic and blastic lesions and 15 (7.0%) lesions that were neither lytic nor blastic. The concordance between FNA and core biopsy for lytic osseous lesions (136/154 cases, 88.3%) was statistically significantly higher than that for blastic osseous lesions (13/21 cases, 61.9%) [P = 4.2 × 10 -3 ; 95% CI (0.02, 0.50)]. The concordance between FNA and core biopsy was higher for low-attenuation- (110/126) than high-attenuation (58/77) lesions (P = 0.028). The concordance between FNA and core biopsy was also higher for metastases (102/119 cases, 85.7%) than non-metastases (78/96, 81.3%) [P = 0.487; 95% CI (- 0.15, 0.065)]. There was no difference in the rate of concordance between FNA and core biopsy by lesion location or FNA needle gauge size (P > 0.05). FNA with core biopsy increases diagnostic rate compared to core biopsy alone or FNA alone. The concordance between FNA and core biopsy is higher for lytic lesions than for blastic lesions; and higher for low-attenuation lesions than for high-attenuation lesions.
Taylor, Sidney D; Sanders, Melissa E; Tullos, Nathan A; Stray, Stephen J; Norcross, Erin W; McDaniel, Larry S; Marquart, Mary E
2013-01-01
Streptococcus pneumoniae (pneumococcus) is an opportunistic bacterial pathogen responsible for causing several human diseases including pneumonia, meningitis, and otitis media. Pneumococcus is also a major cause of human ocular infections and is commonly isolated in cases of bacterial keratitis, an infection of the cornea. The ocular pathology that occurs during pneumococcal keratitis is partly due to the actions of pneumolysin (Ply), a cholesterol-dependent cytolysin produced by pneumococcus. The lytic mechanism of Ply is a three step process beginning with surface binding to cholesterol. Multiple Ply monomers then oligomerize to form a prepore. The prepore then undergoes a conformational change that creates a large pore in the host cell membrane, resulting in cell lysis. We engineered a collection of single amino acid substitution mutants at residues (A370, A406, W433, and L460) that are crucial to the progression of the lytic mechanism and determined the effects that these mutations had on lytic function. Both Ply(WT) and the mutant Ply molecules (Ply(A370G), Ply(A370E), Ply(A406G), Ply(A406E), Ply(W433G), Ply(W433E), Ply(W433F), Ply(L460G), and Ply(L460E)) were able to bind to the surface of human corneal epithelial cells (HCECs) with similar efficiency. Additionally, Ply(WT) localized to cholesterol-rich microdomains on the HCEC surface, however, only one mutant (Ply(A370G)) was able to duplicate this behavior. Four of the 9 mutant Ply molecules (Ply(A370E), Ply(W433G), Ply(W433E), and Ply(L460E)) were deficient in oligomer formation. Lastly, all of the mutant Ply molecules, except Ply(A370G), exhibited significantly impaired lytic activity on HCECs. The other 8 mutants all experienced a reduction in lytic activity, but 4 of the 8 retained the ability to oligomerize. A thorough understanding of the molecular interactions that occur between Ply and the target cell, could lead to targeted treatments aimed to reduce the pathology observed during pneumococcal keratitis.
Taylor, Sidney D.; Sanders, Melissa E.; Tullos, Nathan A.; Stray, Stephen J.; Norcross, Erin W.; McDaniel, Larry S.; Marquart, Mary E.
2013-01-01
Streptococcus pneumoniae (pneumococcus) is an opportunistic bacterial pathogen responsible for causing several human diseases including pneumonia, meningitis, and otitis media. Pneumococcus is also a major cause of human ocular infections and is commonly isolated in cases of bacterial keratitis, an infection of the cornea. The ocular pathology that occurs during pneumococcal keratitis is partly due to the actions of pneumolysin (Ply), a cholesterol-dependent cytolysin produced by pneumococcus. The lytic mechanism of Ply is a three step process beginning with surface binding to cholesterol. Multiple Ply monomers then oligomerize to form a prepore. The prepore then undergoes a conformational change that creates a large pore in the host cell membrane, resulting in cell lysis. We engineered a collection of single amino acid substitution mutants at residues (A370, A406, W433, and L460) that are crucial to the progression of the lytic mechanism and determined the effects that these mutations had on lytic function. Both PlyWT and the mutant Ply molecules (PlyA370G, PlyA370E, PlyA406G, PlyA406E, PlyW433G, PlyW433E, PlyW433F, PlyL460G, and PlyL460E) were able to bind to the surface of human corneal epithelial cells (HCECs) with similar efficiency. Additionally, PlyWT localized to cholesterol-rich microdomains on the HCEC surface, however, only one mutant (PlyA370G) was able to duplicate this behavior. Four of the 9 mutant Ply molecules (PlyA370E, PlyW433G, PlyW433E, and PlyL460E) were deficient in oligomer formation. Lastly, all of the mutant Ply molecules, except PlyA370G, exhibited significantly impaired lytic activity on HCECs. The other 8 mutants all experienced a reduction in lytic activity, but 4 of the 8 retained the ability to oligomerize. A thorough understanding of the molecular interactions that occur between Ply and the target cell, could lead to targeted treatments aimed to reduce the pathology observed during pneumococcal keratitis. PMID:23577214
Laabei, Maisem; Young, Amber; Jenkins, Toby A
2012-05-01
The main etiologic agent of toxic shock syndrome is the toxic shock syndrome toxin-1 (TSST-1) protein secreted by Staphylococcus aureus. Diagnosis of toxic shock syndrome is difficult and is significantly underdiagnosed in young children with burns due to the nonspecific presentation coupled with a rapid deterioration in patient condition. The lytic and cytolytic activity of a number of clinical and laboratory TSST-1-positive strains of methicillin-susceptible S. aureus (101, 253, 279 and RN4282, respectively) and Pseudomonas aeruginosa PAO1 strain were tested in vitro using an assay designed to assess the relative exotoxin activity of bacteria using phospholipid vesicles and a T cell toxicity assay. In addition, the activity of lytic exotoxins such as δ -toxin and the secretion of nonlytic TSST-1 toxin from S. aureus was measured using the vesicle assay and Western blotting over the 20-hour growth of TSST-1-positive S. aureus culture. Both the vesicle and T cell assays suggest a lytic exotoxin-mediated mechanism of vesicle rupture and T cell death, with high levels of vesicle lysis and T cell toxicity. It is important to note that the clinical TSST-1-positive methicillin-susceptible S. aureus strains exhibited lytic exotoxin production as well as TSST-1 expression as confirmed by Western blot. We suggest that there is no correlation between the expression of TSST-1 and lack of exotoxin production. We also suggest that apurulence in an S. aureus-infected burn wound in a child should not be used to rule out toxic shock syndrome.
Gajera, H. P.; Vakharia, D. N.
2012-01-01
Twelve isolates of Trichoderma (six of T. harzianum, five of T. viride, one of T. virens), which reduced variably the incidence of collar rot disease caused in peanut by Aspergillus niger Van Tieghem, were evaluated for their potential to produce lytic enzymes during in vitro antagonism. T. viride 60 inhibited highest (86.2%) growth of test fungus followed by T. harzianum 2J (80.4%) at 6 days after inoculation (DAI) on PDA media. The specific activities of chitinase, β-1,3-glucanase and protease were 11, 3.46 and 9 folds higher in T6 antagonist (T. viride 60 and A. niger interactions) followed by 8.72, 2.85 and 9 folds in T8antagonist (T. harzianum 2J and A. niger interactions), respectively, compared to the activity produced by control petri plate T13 (A. niger alone) at 6 DAI. Activity of these lytic enzymes induced in antagonists’ plates comprises the growth of Trichoderma isolates. However, cellulase and poly galacturonase were found least amount in these antagonists treatment. A significant positive correlation (p=0.01) between percentage growth inhibition of test fungus and lytic enzymes – (chitinase, β-1,3-glucanase and protease) in the culture medium of antagonist treatment established a relationship to inhibit growth of fungal pathogen by increasing the levels of these enzymes. Among the Trichoderma isolates, T. viride 60 was found best strain to be used in biological control of plant pathogen A. niger. PMID:24031802
Wide Host Range and Strong Lytic Activity of Staphylococcus aureus Lytic Phage Stau2▿
Hsieh, Sue-Er; Lo, Hsueh-Hsia; Chen, Shui-Tu; Lee, Mong-Chuan; Tseng, Yi-Hsiung
2011-01-01
In searching for an alternative antibacterial agent against multidrug-resistant Staphylococcus aureus, we have isolated and characterized a lytic staphylophage, Stau2. It possesses a double-stranded DNA genome estimated to be about 134.5 kb and a morphology resembling that of members of the family Myoviridae. With an estimated latency period of 25 min and a burst size of 100 PFU/infected cell, propagation of Stau2 in liquid culture gave a lysate of ca. 6 × 1010 PFU/ml. It was stable at pH 5 to 13 in normal saline at room temperature for at least 4 weeks and at −85°C for more than 2 years, while 1 × 109 out of 2 × 1012 PFU/ml retained infectivity after 36 months at 4°C. Stau2 could lyse 80% of the S. aureus isolates (164/205) obtained from hospitals in Taiwan, with complete lysis of most of the isolates tested within 3 h; however, it was an S. aureus-specific phage because no lytic infection could be found in the coagulase-negative staphylococci tested. Its host range among S. aureus isolates was wider than that of polyvalent phage K (47%), which can also lyse many other staphylococcal species. Experiments with mice demonstrated that Stau2 could provide 100% protection from lethal infection when a multiplicity of infection of 10 was administered immediately after a challenge with S. aureus S23. Considering these results, Stau2 could be considered at least as a candidate for topical phage therapy or an additive in the food industry. PMID:21148689
Wide host range and strong lytic activity of Staphylococcus aureus lytic phage Stau2.
Hsieh, Sue-Er; Lo, Hsueh-Hsia; Chen, Shui-Tu; Lee, Mong-Chuan; Tseng, Yi-Hsiung
2011-02-01
In searching for an alternative antibacterial agent against multidrug-resistant Staphylococcus aureus, we have isolated and characterized a lytic staphylophage, Stau2. It possesses a double-stranded DNA genome estimated to be about 134.5 kb and a morphology resembling that of members of the family Myoviridae. With an estimated latency period of 25 min and a burst size of 100 PFU/infected cell, propagation of Stau2 in liquid culture gave a lysate of ca. 6 × 10(10) PFU/ml. It was stable at pH 5 to 13 in normal saline at room temperature for at least 4 weeks and at -85°C for more than 2 years, while 1 × 10(9) out of 2 × 10(12) PFU/ml retained infectivity after 36 months at 4°C. Stau2 could lyse 80% of the S. aureus isolates (164/205) obtained from hospitals in Taiwan, with complete lysis of most of the isolates tested within 3 h; however, it was an S. aureus-specific phage because no lytic infection could be found in the coagulase-negative staphylococci tested. Its host range among S. aureus isolates was wider than that of polyvalent phage K (47%), which can also lyse many other staphylococcal species. Experiments with mice demonstrated that Stau2 could provide 100% protection from lethal infection when a multiplicity of infection of 10 was administered immediately after a challenge with S. aureus S23. Considering these results, Stau2 could be considered at least as a candidate for topical phage therapy or an additive in the food industry.
Lapteva, Y. S.; Zolova, O. E.; Shlyapnikov, M. G.; Tsfasman, I. M.; Muranova, T. A.; Stepnaya, O. A.; Kulaev, I. S.
2012-01-01
Lytic enzymes are the group of hydrolases that break down structural polymers of the cell walls of various microorganisms. In this work, we determined the nucleotide sequences of the Lysobacter sp. strain XL1 alpA and alpB genes, which code for, respectively, secreted lytic endopeptidases L1 (AlpA) and L5 (AlpB). In silico analysis of their amino acid sequences showed these endopeptidases to be homologous proteins synthesized as precursors similar in structural organization: the mature enzyme sequence is preceded by an N-terminal signal peptide and a pro region. On the basis of phylogenetic analysis, endopeptidases AlpA and AlpB were assigned to the S1E family [clan PA(S)] of serine peptidases. Expression of the alpA and alpB open reading frames (ORFs) in Escherichia coli confirmed that they code for functionally active lytic enzymes. Each ORF was predicted to have the Shine-Dalgarno sequence located at a canonical distance from the start codon and a potential Rho-independent transcription terminator immediately after the stop codon. The alpA and alpB mRNAs were experimentally found to be monocistronic; transcription start points were determined for both mRNAs. The synthesis of the alpA and alpB mRNAs was shown to occur predominantly in the late logarithmic growth phase. The amount of alpA mRNA in cells of Lysobacter sp. strain XL1 was much higher, which correlates with greater production of endopeptidase L1 than of L5. PMID:22865082
Lapteva, Y S; Zolova, O E; Shlyapnikov, M G; Tsfasman, I M; Muranova, T A; Stepnaya, O A; Kulaev, I S; Granovsky, I E
2012-10-01
Lytic enzymes are the group of hydrolases that break down structural polymers of the cell walls of various microorganisms. In this work, we determined the nucleotide sequences of the Lysobacter sp. strain XL1 alpA and alpB genes, which code for, respectively, secreted lytic endopeptidases L1 (AlpA) and L5 (AlpB). In silico analysis of their amino acid sequences showed these endopeptidases to be homologous proteins synthesized as precursors similar in structural organization: the mature enzyme sequence is preceded by an N-terminal signal peptide and a pro region. On the basis of phylogenetic analysis, endopeptidases AlpA and AlpB were assigned to the S1E family [clan PA(S)] of serine peptidases. Expression of the alpA and alpB open reading frames (ORFs) in Escherichia coli confirmed that they code for functionally active lytic enzymes. Each ORF was predicted to have the Shine-Dalgarno sequence located at a canonical distance from the start codon and a potential Rho-independent transcription terminator immediately after the stop codon. The alpA and alpB mRNAs were experimentally found to be monocistronic; transcription start points were determined for both mRNAs. The synthesis of the alpA and alpB mRNAs was shown to occur predominantly in the late logarithmic growth phase. The amount of alpA mRNA in cells of Lysobacter sp. strain XL1 was much higher, which correlates with greater production of endopeptidase L1 than of L5.
Kohler, Petra L; Hamilton, Holly L; Cloud-Hansen, Karen; Dillard, Joseph P
2007-08-01
Type IV secretion systems require peptidoglycan lytic transglycosylases for efficient secretion, but the function of these enzymes is not clear. The type IV secretion system gene cluster of Neisseria gonorrhoeae encodes two peptidoglycan transglycosylase homologues. One, LtgX, is similar to peptidoglycan transglycosylases from other type IV secretion systems. The other, AtlA, is similar to endolysins from bacteriophages and is not similar to any described type IV secretion component. We characterized the enzymatic function of AtlA in order to examine its role in the type IV secretion system. Purified AtlA was found to degrade macromolecular peptidoglycan and to produce 1,6-anhydro peptidoglycan monomers, characteristic of lytic transglycosylase activity. We found that AtlA can functionally replace the lambda endolysin to lyse Escherichia coli. In contrast, a sensitive measure of lysis demonstrated that AtlA does not lyse gonococci expressing it or gonococci cocultured with an AtlA-expressing strain. The gonococcal type IV secretion system secretes DNA during growth. A deletion of ltgX or a substitution in the putative active site of AtlA severely decreased DNA secretion. These results indicate that AtlA and LtgX are actively involved in type IV secretion and that AtlA is not involved in lysis of gonococci to release DNA. This is the first demonstration that a type IV secretion peptidoglycanase has lytic transglycosylase activity. These data show that AtlA plays a role in type IV secretion of DNA that requires peptidoglycan breakdown without cell lysis.
Ross, A M
1988-12-06
The logical hypothesis that early angioplasty after lytic therapy would be of considerable clinical value flows from the recognized shortcomings of pharmacologic reperfusion efforts. These shortcomings are: (1) failure to lyse some thrombotic occlusions; (2) limited quantifiable salvage relative to risk area, possibly related to low magnitude or reperfusion coronary flow through a tight residual stenosis; (3) frequent early postlytic reocclusion and reinfarction; and (4) common postinfarction angina after lysis and some degree of salvage. Recently however, important controlled clinical trials of percutaneous transluminal coronary angioplasty (PTCA) after lytic therapy (most notably Thrombolysis and Angioplasty in Myocardial Infarction study group, Thrombolysis in Myocardial Infarction trial and the European Cooperative trial) have not confirmed this hypothesis. Very early PTCA after intravenous lytic therapy has not produced a favorable short-term outcome compared with delayed PTCA or a more conservative approach. Where is the flaw? Is it the hypothesis, the patient selection criteria or the specifics of therapeutic algorithms? While these issues are further investigated, current prudent clinical recommendations are best modified downward from enthusiastic rapid postlytic dilatation.
Thomason, Lynn C; Court, Donald L
2016-02-01
We describe a genetic β-galactoside reporter system using a disk diffusion assay on MacConkey Lactose agar petri plates to monitor maintenance of the bacteriophage λ prophage state and viral induction in Escherichia coli K-12. Evidence is presented that the phage λ major lytic promoters, pL and pR, are activated when cells containing the reporters are exposed to the energy poison carbonyl cyanide m-chlorophenyl hydrazine, CCCP. This uncoupler of oxidative phosphorylation inhibits ATP synthesis by collapsing the proton motive force. Expression of the λ lytic promoters in response to CCCP requires host RecA function and an autocleavable CI repressor, as does SOS induction of the λ prophage that occurs by a DNA damage-dependent pathway. λ Cro function is required for CCCP-mediated activation of the λ lytic promoters. CCCP does not induce an sfi-lacZ SOS reporter. Published by Oxford University Press on behalf of FEMS 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Calcium Signaling throughout the Toxoplasma gondii Lytic Cycle
Borges-Pereira, Lucas; Budu, Alexandre; McKnight, Ciara A.; Moore, Christina A.; Vella, Stephen A.; Hortua Triana, Miryam A.; Liu, Jing; Garcia, Celia R. S.; Pace, Douglas A.; Moreno, Silvia N. J.
2015-01-01
Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca2+ oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca2+ enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca2+ changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca2+ oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca2+ influx. This is the first study showing, in real time, Ca2+ signals preceding egress and their direct link with motility, an essential virulence trait. PMID:26374900
Paul, Carsten; Pohnert, Georg
2013-01-01
Marine lytic bacteria can have a substantial effect on phytoplankton and are even capable to terminate blooms of microalgae. The bacterium Kordia algicida was reported to lyse cells of the diatom Skeletonema costatum and several other diatoms by a quorum sensing controlled excretion of proteases. However the diatom Chaetoceros didymus is fully resistant against the bacterial enzymes. We show that the growth curve of this diatom is essentially unaffected by addition of bacterial filtrates that are active against other diatoms. By monitoring proteases from the medium using zymography and fluorescence based activity assays we demonstrate that C. didymus responds to the presence of the lytic bacteria with the induced production of algal proteases. These proteases exhibit a substantially increased activity compared to the bacterial counterparts. The induction is also triggered by signals in the supernatant of a K. algicida culture. Size fractionation shows that only the >30 kD fraction of the bacterial exudates acts as an inducing cue. Implications for a potential induced defense of the diatom C. didymus are discussed. PMID:23469204
Ayaz, Sevin; Ayaz, Ümit Yaşar
2016-01-01
We aimed to present unusual cranial FDG PET/CT findings of a 56-year-old female with multiple myeloma (MM). Plain CT images revealed a lytic lesion in the right parietal bone, filled with an oval-shaped, large, extra-axial, extradural, intracranial mass which measured 75×75×40 mm and had smooth borders. The right parietal lobe was compressed by the mass. The maximum standardized uptake value (SUV max ) of the mass lesion was 8.94 on FDG PET/CT images. Multiple lytic lesions with an increased uptake were also detected in other calvarial bones, in several vertebras and in the proximal left femur. After seven months, a control FDG PET/CT following radiotherapy and chemotherapy revealed almost complete regression of the right parietal extra-axial mass lesion. The number, size and metabolism of lytic lesions in other bones also decreased. FDG PET/CT was useful for an initial evaluation of MM lesions and was effective in monitoring the response of these lesions to therapy.
Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin.
Wu, Chung-Chun; Fang, Chih-Yeu; Cheng, Yu-Jhen; Hsu, Hui-Yu; Chou, Sheng-Ping; Huang, Sheng-Yen; Tsai, Ching-Hwa; Chen, Jen-Yang
2017-01-05
Lytic reactivation of EBV has been reported to play an important role in human diseases, including NPC carcinogenesis. Inhibition of EBV reactivation is considered to be of great benefit in the treatment of virus-associated diseases. For this purpose, we screened for inhibitory compounds and found that apigenin, a flavonoid, seemed to have the ability to inhibit EBV reactivation. We performed western blotting, immunofluorescence and luciferase analyses to determine whether apigenin has anti-EBV activity. Apigenin inhibited expression of the EBV lytic proteins, Zta, Rta, EAD and DNase in epithelial and B cells. It also reduced the number of EBV-reactivating cells detectable by immunofluorescence analysis. In addition, apigenin has been found to reduce dramatically the production of EBV virions. Luciferase reporter analysis was performed to determine the mechanism by which apigenin inhibits EBV reactivation: apigenin suppressed the activity of the immediate-early (IE) gene Zta and Rta promoters, suggesting it can block initiation of the EBV lytic cycle. Taken together, apigenin inhibits EBV reactivation by suppressing the promoter activities of two viral IE genes, suggesting apigenin is a potential dietary compound for prevention of EBV reactivation.
Well-temperate phage: Optimal bet-hedging against local environmental collapses
Maslov, Sergei; Sneppen, Kim
2015-06-02
Upon infection of their bacterial hosts temperate phages must chose between lysogenic and lytic developmental strategies. Here we apply the game-theoretic bet-hedging strategy introduced by Kelly to derive the optimal lysogenic fraction of the total population of phages as a function of frequency and intensity of environmental downturns affecting the lytic subpopulation. “Well-temperate” phage from our title is characterized by the best long-term population growth rate. We show that it is realized when the lysogenization frequency is approximately equal to the probability of lytic population collapse. We further predict the existence of sharp boundaries in system’s environmental, ecological, and biophysicalmore » parameters separating the regions where this temperate strategy is optimal from those dominated by purely virulent or dormant (purely lysogenic) strategies. We show that the virulent strategy works best for phages with large diversity of hosts, and access to multiple independent environments reachable by diffusion. Conversely, progressively more temperate or even dormant strategies are favored in the environments, that are subject to frequent and severe temporal downturns.« less
Well-temperate phage: Optimal bet-hedging against local environmental collapses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslov, Sergei; Sneppen, Kim
Upon infection of their bacterial hosts temperate phages must chose between lysogenic and lytic developmental strategies. Here we apply the game-theoretic bet-hedging strategy introduced by Kelly to derive the optimal lysogenic fraction of the total population of phages as a function of frequency and intensity of environmental downturns affecting the lytic subpopulation. “Well-temperate” phage from our title is characterized by the best long-term population growth rate. We show that it is realized when the lysogenization frequency is approximately equal to the probability of lytic population collapse. We further predict the existence of sharp boundaries in system’s environmental, ecological, and biophysicalmore » parameters separating the regions where this temperate strategy is optimal from those dominated by purely virulent or dormant (purely lysogenic) strategies. We show that the virulent strategy works best for phages with large diversity of hosts, and access to multiple independent environments reachable by diffusion. Conversely, progressively more temperate or even dormant strategies are favored in the environments, that are subject to frequent and severe temporal downturns.« less
Comparative whole genome analysis of six diagnostic brucellaphages.
Farlow, Jason; Filippov, Andrey A; Sergueev, Kirill V; Hang, Jun; Kotorashvili, Adam; Nikolich, Mikeljon P
2014-05-15
Whole genome sequencing of six diagnostic brucellaphages, Tbilisi (Tb), Firenze (Fz), Weybridge (Wb), S708, Berkeley (Bk) and R/C, was followed with genomic comparisons including recently described genomes of the Tb phage from Mexico (TbM) and Pr phage to elucidate genomic diversity and candidate host range determinants. Comparative whole genome analysis revealed high sequence homogeneity among these brucellaphage genomes and resolved three genetic groups consistent with defined host range phenotypes. Group I was composed of Tb and Fz phages that are predominantly lytic for Brucella abortus and Brucella neotomae; Group II included Bk, R/C, and Pr phages that are lytic mainly for B. abortus, Brucella melitensis and Brucella suis; Group III was composed of Wb and S708 phages that are lytic for B. suis, B. abortus and B. neotomae. We found that the putative phage collar protein is a variable locus with features that may be contributing to the host specificities exhibited by different brucellaphage groups. The presence of several candidate host range determinants is illustrated herein for future dissection of the differential host specificity observed among these phages. Published by Elsevier B.V.
Petrovski, Steve; Hoyle, Dannielle; Chan, Hiu Tat; Lock, Peter; Tucci, Joseph
2017-01-01
Aim To isolate and characterize bacteriophage lytic for the opportunistic pathogen Klebsiella oxytoca and their formulation into a range of solid dosage forms for in-vitro testing. Methods and results We report the isolation, genomic and functional characterization of a novel bacteriophage lytic for Klebsiella oxytoca, which does not infect the closely related Klebsiella pneumoniae. This bacteriophage was formulated into suppositories and troches and shown to be released and lyse underlying Klebsiella oxytoca bacteria in an in-vitro model. These bacteriophage formulations were stable for at least 49 days at 4°C. Conclusions The successful in-vitro assay of these formulations here suggests that they could potentially be tested in-vivo to determine whether such a therapeutic approach could modulate the gut microbiome, and control Klebsiella oxytoca overgrowth, during antibiotic therapy regimes. Significance and impact of the study This study reports a novel bacteriophage specific for Klebsiella oxytoca which can be formulated into solid dosage forms appropriate for potential delivery in testing as a therapy to modulate gut microbiome during antibiotic therapies. PMID:28817689
Hu, Jianmin; Li, Hongde; Luo, Xiangjian; Li, Yueshuo; Bode, Ann; Cao, Ya
2017-11-01
Epstein-Barr virus (EBV) is an important cancer causing virus. Cancer associated with EBV account for approximately 1.5% of all cancers, and represent 1.8% of all cancer deaths worldwide. EBV reactivation plays an important role in the development of EBV-related diseases and is closely related with patients' survival and clinical stages of EBV-related cancers. The therapy regarding to EBV-related cancers is very urgent, especially in endemic areas. Generating oxidative stress is a critical mechanism by which host cells defend against infection by virus. In addition, ROS-mediated oxidative stress plays a significant but paradoxical role acting as a "double-edged sword" to regulate cellular response to radiation, which is the main therapy strategy for EBV-related cancers, especially nasopharyngeal carcinoma. Therefore, in this review we primarily discuss the possible interplay among the oxidative stress, EBV lytic reactivation and radioresistance. Understanding the role of oxidative stress in EBV lytic reactivation and radioresistance will assist in the development of effective strategies for prevention and treatment of EBV-related cancers. © 2017 UICC.
Epidemiology of virus infection and human cancer.
Chen, Chien-Jen; Hsu, Wan-Lun; Yang, Hwai-I; Lee, Mei-Hsuan; Chen, Hui-Chi; Chien, Yin-Chu; You, San-Lin
2014-01-01
The International Agency for Research on Cancer (IARC) has comprehensively assessed the human carcinogenicity of biological agents. Seven viruses including Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), Kaposi's sarcoma herpes virus (KSHV), human immunodeficiency virus, type-1 (HIV-1), human T cell lymphotrophic virus, type-1 (HTLV-1), and human papillomavirus (HPV) have been classified as Group 1 human carcinogens by IARC. The conclusions are based on the findings of epidemiological and mechanistic studies. EBV, HPV, HTLV-1, and KSHV are direct carcinogens; HBV and HCV are indirect carcinogens through chronic inflammation; HIV-1 is an indirect carcinogen through immune suppression. Some viruses may cause more than one cancer, while some cancers may be caused by more than one virus. However, only a proportion of persons infected by these oncogenic viruses will develop specific cancers. A series of studies have been carried out to assess the viral, host, and environmental cofactors of EBV-associated nasopharyngeal carcinoma, HBV/HCV-associated hepatocellular carcinoma, and HPV-associated cervical carcinoma. Persistent infection and high viral load are important risk predictors of these virus-caused cancers. Risk calculators incorporating host and viral factors have also been developed for the prediction of long-term risk of hepatocellular carcinoma. These risk calculators are useful for the triage and clinical management of infected patients. Both clinical trials and national programs of immunization or antiviral therapy have demonstrated a significant reduction in the incidence of cancers caused by HBV, HCV, and HPV. Future researches on gene-gene and gene-environment interaction of oncogenic viruses and human host are in urgent need.
Farina, Antonella; Peruzzi, Giovanna; Lacconi, Valentina; Lenna, Stefania; Quarta, Silvia; Rosato, Edoardo; Vestri, Anna Rita; York, Michael; Dreyfus, David H; Faggioni, Alberto; Morrone, Stefania; Trojanowska, Maria; Farina, G Alessandra
2017-02-28
Monocytes/macrophages are activated in several autoimmune diseases, including systemic sclerosis (scleroderma; SSc), with increased expression of interferon (IFN)-regulatory genes and inflammatory cytokines, suggesting dysregulation of the innate immune response in autoimmunity. In this study, we investigated whether the lytic form of Epstein-Barr virus (EBV) infection (infectious EBV) is present in scleroderma monocytes and contributes to their activation in SSc. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) depleted of the CD19+ cell fraction, using CD14/CD16 negative-depletion. Circulating monocytes from SSc and healthy donors (HDs) were infected with EBV. Gene expression of innate immune mediators were evaluated in EBV-infected monocytes from SSc and HDs. Involvement of Toll-like receptor (TLR)8 in viral-mediated TLR8 response was investigated by comparing the TLR8 expression induced by infectious EBV to the expression stimulated by CL075/TLR8/agonist-ligand in the presence of TLR8 inhibitor in THP-1 cells. Infectious EBV strongly induced TLR8 expression in infected SSc and HD monocytes in vitro. Markers of activated monocytes, such as IFN-regulated genes and chemokines, were upregulated in SSc- and HD-EBV-infected monocytes. Inhibiting TLR8 expression reduced virally induced TLR8 in THP-1 infected cells, demonstrating that innate immune activation by infectious EBV is partially dependent on TLR8. Viral mRNA and proteins were detected in freshly isolated SSc monocytes. Microarray analysis substantiated the evidence of an increased IFN signature and altered level of TLR8 expression in SSc monocytes carrying infectious EBV compared to HD monocytes. This study provides the first evidence of infectious EBV in monocytes from patients with SSc and links EBV to the activation of TLR8 and IFN innate immune response in freshly isolated SSc monocytes. This study provides the first evidence of EBV replication activating the TLR8 molecular pathway in primary monocytes. Immunogenicity of infectious EBV suggests a novel mechanism mediating monocyte inflammation in SSc, by which EBV triggers the innate immune response in infected cells.
KDM1 Class Flavin-Dependent Protein Lysine Demethylases
Burg, Jonathan M.; Link, Jennifer E.; Morgan, Brittany S.; Heller, Frederick J.; Hargrove, Amanda E.; McCafferty, Dewey G.
2015-01-01
Flavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency. Interestingly, KDM1s function as catalytic subunits within complexes with coregulatory molecules that modulate enzymatic activity of the demethylases and coordinate their access to specific substrates at distinct sites within the cell and chromatin. Although several classes of KDM1 -selective small molecule inhibitors have been recently developed, these pan-active site inhibition strategies lack the ability to selectively discriminate between KDM1 activity in specific, and occasionally opposing, functional contexts within these complexes. Here we review the discovery of this class of demethylases, their structures, chemical mechanisms, and specificity. Additionally, we review inhibition of this class of enzymes as well as emerging interactions with coregulatory molecules that regulate demethylase activity in highly specific functional contexts of biological and potential therapeutic importance. PMID:25787087
Huenges, M; Rölz, C; Gschwind, R; Peteranderl, R; Berglechner, F; Richter, G; Bacher, A; Kessler, H; Gemmecker, G
1998-01-01
The NusB protein of Escherichia coli is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. In cooperation with several other proteins, it binds to a dodecamer motif designated rrn boxA on the nascent rRNA. The antitermination proteins of E.coli are recruited in the replication cycle of bacteriophage lambda, where they play an important role in switching from the lysogenic to the lytic cycle. Multidimensional heteronuclear NMR experiments were performed with recombinant NusB protein labelled with 13C, 15N and 2H. The three-dimensional structure of the protein was solved from 1926 NMR-derived distances and 80 torsion angle restraints. The protein folds into an alpha/alpha-helical topology consisting of six helices; the arginine-rich N-terminus appears to be disordered. Complexation of the protein with an RNA dodecamer equivalent to the rrn boxA site results in chemical shift changes of numerous amide signals. The overall packing of the protein appears to be conserved, but the flexible N-terminus adopts a more rigid structure upon RNA binding, indicating that the N-terminus functions as an arginine-rich RNA-binding motif (ARM). PMID:9670024
Overexpression of the ADP (E3-11.6K) protein increases cell lysis and spread of adenovirus.
Doronin, Konstantin; Toth, Karoly; Kuppuswamy, Mohan; Krajcsi, Peter; Tollefson, Ann E; Wold, William S M
2003-01-20
Adenoviruses replicate in the nucleus and induce lytic cell death. We have shown previously that efficient cell lysis and release of adenovirus from infected cells requires an 11.6-kDa protein named Adenovirus Death Protein (ADP). The adp gene is located in the early E3 transcription unit, but the gene is expressed primarily at very late stages of infection. The putative function of ADP was discerned previously from the use of virus mutants that lack functional ADP. Here we describe two adenovirus mutants, named VRX-006 and VRX-007, that overexpress ADP. VRX-006 lacks all other genes in the E3 region, and VRX-007 lacks all other E3 genes except 12.5K. VRX-006 and VRX-007 display the phenotype predicted by the proposed function for ADP: they produce early cytopathic effect, early cell lysis, large plaques, and increased cell-to-cell spread. They grow as well in cultured cells as does adenovirus type 5. These results are consistent with the conclusion that ADP functions in adenovirus infections to promote virus release from cells at the culmination of infection.
Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages
Adair, Tamarah L.; Afram, Patricia; Allen, Katherine G.; Archambault, Megan L.; Aziz, Rahat M.; Bagnasco, Filippa G.; Ball, Sarah L.; Barrett, Natalie A.; Benjamin, Robert C.; Blasi, Christopher J.; Borst, Katherine; Braun, Mary A.; Broomell, Haley; Brown, Conner B.; Brynell, Zachary S.; Bue, Ashley B.; Burke, Sydney O.; Casazza, William; Cautela, Julia A.; Chen, Kevin; Chimalakonda, Nitish S.; Chudoff, Dylan; Connor, Jade A.; Cross, Trevor S.; Curtis, Kyra N.; Dahlke, Jessica A.; Deaton, Bethany M.; Degroote, Sarah J.; DeNigris, Danielle M.; DeRuff, Katherine C.; Dolan, Milan; Dunbar, David; Egan, Marisa S.; Evans, Daniel R.; Fahnestock, Abby K.; Farooq, Amal; Finn, Garrett; Fratus, Christopher R.; Gaffney, Bobby L.; Garlena, Rebecca A.; Garrigan, Kelly E.; Gibbon, Bryan C.; Goedde, Michael A.; Guerrero Bustamante, Carlos A.; Harrison, Melinda; Hartwell, Megan C.; Heckman, Emily L.; Huang, Jennifer; Hughes, Lee E.; Hyduchak, Kathryn M.; Jacob, Aswathi E.; Kaku, Machika; Karstens, Allen W.; Kenna, Margaret A.; Khetarpal, Susheel; King, Rodney A.; Kobokovich, Amanda L.; Kolev, Hannah; Konde, Sai A.; Kriese, Elizabeth; Lamey, Morgan E.; Lantz, Carter N.; Lapin, Jonathan S.; Lawson, Temiloluwa O.; Lee, In Young; Lee, Scott M.; Lee-Soety, Julia Y.; Lehmann, Emily M.; London, Shawn C.; Lopez, A. Javier; Lynch, Kelly C.; Mageeney, Catherine M.; Martynyuk, Tetyana; Mathew, Kevin J.; Mavrich, Travis N.; McDaniel, Christopher M.; McDonald, Hannah; McManus, C. Joel; Medrano, Jessica E.; Mele, Francis E.; Menninger, Jennifer E.; Miller, Sierra N.; Minick, Josephine E.; Nabua, Courtney T.; Napoli, Caroline K.; Nkangabwa, Martha; Oates, Elizabeth A.; Ott, Cassandra T.; Pellerino, Sarah K.; Pinamont, William J.; Pirnie, Ross T.; Pizzorno, Marie C.; Plautz, Emilee J.; Pope, Welkin H.; Pruett, Katelyn M.; Rickstrew, Gabbi; Rimple, Patrick A.; Rinehart, Claire A.; Robinson, Kayla M.; Rose, Victoria A.; Russell, Daniel A.; Schick, Amelia M.; Schlossman, Julia; Schneider, Victoria M.; Sells, Chloe A.; Sieker, Jeremy W.; Silva, Morgan P.; Silvi, Marissa M.; Simon, Stephanie E.; Staples, Amanda K.; Steed, Isabelle L.; Stowe, Emily L.; Stueven, Noah A.; Swartz, Porter T.; Sweet, Emma A.; Sweetman, Abigail T.; Tender, Corrina; Terry, Katrina; Thomas, Chrystal; Thomas, Daniel S.; Thompson, Allison R.; Vanderveen, Lorianna; Varma, Rohan; Vaught, Hannah L.; Vo, Quynh D.; Vonberg, Zachary T.; Ware, Vassie C.; Warrad, Yasmene M.; Wathen, Kaitlyn E.; Weinstein, Jonathan L.; Wyper, Jacqueline F.; Yankauskas, Jakob R.; Zhang, Christine
2017-01-01
The vast bacteriophage population harbors an immense reservoir of genetic information. Almost 2000 phage genomes have been sequenced from phages infecting hosts in the phylum Actinobacteria, and analysis of these genomes reveals substantial diversity, pervasive mosaicism, and novel mechanisms for phage replication and lysogeny. Here, we describe the isolation and genomic characterization of 46 phages from environmental samples at various geographic locations in the U.S. infecting a single Arthrobacter sp. strain. These phages include representatives of all three virion morphologies, and Jasmine is the first sequenced podovirus of an actinobacterial host. The phages also span considerable sequence diversity, and can be grouped into 10 clusters according to their nucleotide diversity, and two singletons each with no close relatives. However, the clusters/singletons appear to be genomically well separated from each other, and relatively few genes are shared between clusters. Genome size varies from among the smallest of siphoviral phages (15,319 bp) to over 70 kbp, and G+C contents range from 45–68%, compared to 63.4% for the host genome. Although temperate phages are common among other actinobacterial hosts, these Arthrobacter phages are primarily lytic, and only the singleton Galaxy is likely temperate. PMID:28715480
Antrobus, Robin; Boutell, Chris
2008-10-01
The Herpes simplex virus type-1 (HSV-1) regulatory protein ICP0, a RING-finger E3 ubiquitin ligase, stimulates the onset of viral lytic replication and the reactivation of quiescent viral genomes from latency. Like many ubiquitin ligases ICP0 induces its own ubiquitination, a process that can lead to its proteasome-dependent degradation. ICP0 counteracts this activity by recruiting the cellular ubiquitin-specific protease USP7/HAUSP. Here we show that ICP0 can also interact with a previously unidentified isoform of USP7 (termed here USP7(beta)). This isoform is not a predominantly ubiquitinated, SUMO-modified, or phosphorylated species of USP7 but is constitutively expressed in a number of different cell types. Like USP7, USP7(beta) binds specifically to an electrophilic ubiquitin probe, indicating that it contains an accessible catalytic core with potential ubiquitin-protease activity. The interaction formed between ICP0 and USP7(beta) requires ICP0 to have an intact USP7-binding domain and results in its susceptibility to ICP0-mediated degradation during HSV-1 infection.
Dying for Good: Virus-Bacterium Biofilm Co-evolution Enhances Environmental Fitness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Hongjun; Squier, Thomas C.; Long, Philip E.
Commonly used in biotechnology applications, filamentous M13 phage are non-lytic viruses that infect E. coli and other bacteria, with the potential to promote horizontal gene transfer in natural populations with synthetic biology implications for engineering community systems. Using the E. coli strain TG1, we have investigated how a selective pressure involving elevated levels of toxic chromate, mimicking that found in some superfund sites, alters population dynamics following infection with either wild-type M13 phage or an M13-phage encoding a chromate reductase (Gh-ChrR) capable of the reductive immobilization of chromate (ie, M13-phageGh-ChrR). In the absence of a selective pressure, M13-phage infection resultsmore » in a reduction in bacterial growth rate; in comparison, in the presence of chromate there are substantial increases in both cellular killing and biomass formation following infection of E. coli strain TG1with M13-phageGh-ChrR that is dependent on chromate-reductase activity. These results are discussed in terms of community structures that facilitate lateral gene transfer of beneficial traits that enhance phage replication, infectivity, and stability against environmental change.« less
Greenberg, Edward F; Vatolin, Sergei
2018-06-01
Normally aging cells are characterized by an unbalanced mitochondrial dynamic skewed toward punctate mitochondria. Genetic and pharmacological manipulation of mitochondrial fission/fusion cycles can contribute to both accelerated and decelerated cellular or organismal aging. In this work, we connect these experimental data with the symbiotic theory of mitochondrial origin to generate new insight into the evolutionary origin of aging. Mitochondria originated from autotrophic α-proteobacteria during an ancient endosymbiotic event early in eukaryote evolution. To expand beyond individual host cells, dividing α-proteobacteria initiated host cell lysis; apoptosis is a product of this original symbiont cell lytic exit program. Over the course of evolution, the host eukaryotic cell attenuated the harmful effect of symbiotic proto-mitochondria, and modern mitochondria are now functionally interdependent with eukaryotic cells; they retain their own circular genomes and independent replication timing. In nondividing differentiated or multipotent eukaryotic cells, intracellular mitochondria undergo repeated fission/fusion cycles, favoring fission as organisms age. The discordance between cellular quiescence and mitochondrial proliferation generates intracellular stress, eventually leading to a gradual decline in host cell performance and age-related pathology. Hence, aging evolved from a conflict between maintenance of a quiescent, nonproliferative state and the evolutionarily conserved propagation program driving the life cycle of former symbiotic organisms: mitochondria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komatsu, Tetsuro; Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575; Will, Hans
2016-04-22
Recent studies involving several viral systems have highlighted the importance of cellular intrinsic defense mechanisms through nuclear antiviral proteins that restrict viral propagation. These factors include among others components of PML nuclear bodies, the nuclear DNA sensor IFI16, and a potential restriction factor PHF13/SPOC1. For several nuclear replicating DNA viruses, it was shown that these factors sense and target viral genomes immediately upon nuclear import. In contrast to the anticipated view, we recently found that incoming adenoviral genomes are not targeted by PML nuclear bodies. Here we further explored cellular responses against adenoviral infection by focusing on specific conditions asmore » well as additional nuclear antiviral factors. In line with our previous findings, we show that neither interferon treatment nor the use of specific isoforms of PML nuclear body components results in co-localization between incoming adenoviral genomes and the subnuclear domains. Furthermore, our imaging analyses indicated that neither IFI16 nor PHF13/SPOC1 are likely to target incoming adenoviral genomes. Thus our findings suggest that incoming adenoviral genomes may be able to escape from a large repertoire of nuclear antiviral mechanisms, providing a rationale for the efficient initiation of lytic replication cycle. - Highlights: • Host nuclear antiviral factors were analyzed upon adenovirus genome delivery. • Interferon treatments fail to permit PML nuclear bodies to target adenoviral genomes. • Neither Sp100A nor B targets adenoviral genomes despite potentially opposite roles. • The nuclear DNA sensor IFI16 does not target incoming adenoviral genomes. • PHF13/SPOC1 targets neither incoming adenoviral genomes nor genome-bound protein VII.« less
Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs
Braidwood, Lynne; Graham, Sheila V; Graham, Alex; Conner, Joe
2013-01-01
Oncolytic viruses are emerging as a potential new way of treating cancers. They are selectively replication-competent viruses that propagate only in actively dividing tumor cells but not in normal cells and, as a result, destroy the tumor cells by consequence of lytic infection. At least six different oncolytic herpes simplex viruses (oHSVs) have undergone clinical trials worldwide to date, and they have demonstrated an excellent safety profile and intimations of efficacy. The first pivotal Phase III trial with an oHSV, talimogene laherparepvec (T-Vec [OncoVexGM-CSF]), is almost complete, with extremely positive early results reported. Intuitively, therapeutically beneficial interactions between oHSV and chemotherapeutic and targeted therapeutic drugs would be limited as the virus requires actively dividing cells for maximum replication efficiency and most anticancer agents are cytotoxic or cytostatic. However, combinations of such agents display a range of responses, with antagonistic, additive, or, perhaps most surprisingly, synergistic enhancement of antitumor activity. When synergistic interactions in cancer cell killing are observed, chemotherapy dose reductions that achieve the same overall efficacy may be possible, resulting in a valuable reduction of adverse side effects. Therefore, the combination of an oHSV with “standard-of-care” drugs makes a logical and reasonable approach to improved therapy, and the addition of a targeted oncolytic therapy with “standard-of-care” drugs merits further investigation, both preclinically and in the clinic. Numerous publications report such studies of oncolytic HSV in combination with other drugs, and we review their findings here. Viral interactions with cellular hosts are complex and frequently involve intracellular signaling networks, thus creating diverse opportunities for synergistic or additive combinations with many anticancer drugs. We discuss potential mechanisms that may lead to synergistic interactions. PMID:27512658
Herpesvirus capsid assembly and DNA packaging
Heming, Jason D.; Conway, James F.; Homa, Fred L.
2017-01-01
Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. The virion of all herpesviruses consists of an external membrane envelope, a proteinaceous layer called the tegument, and an icosahedral capsid containing the double-stranded linear DNA genome. The capsid shell of HSV-1 is built from four structural proteins: a major capsid protein, VP5, which forms the capsomers (hexons and pentons), the triplex consisting of VP19C and VP23 found between the capsomers, and VP26 which binds to VP5 on hexons but not pentons. In addition, the dodecameric pUL6 portal complex occupies one of the 12 capsid vertices, and the capsid vertex specific component (CVSC), a heterotrimer complex of pUL17, pUL25 and pUL36 binds specifically to the triplexes adjacent to each penton. The capsid is assembled in the nucleus where the viral genome is packaged into newly assembled closed capsid shells. Cleavage and packaging of replicated, concatemeric viral DNA requires the seven viral proteins encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes. Considerable advances have been made in understanding the structure of the herpesvirus capsid and the function of several of the DNA packaging proteins by applying biochemical, genetic, and structural techniques. This review is a summary of recent advances with respect to the structure of the HSV-1 virion capsid and what is known about the function of the seven packaging proteins and their interactions with each other and with the capsid shell. PMID:28528442
Seo, Byoung-Joo; Song, Eu-Tteum; Lee, Kichan; Kim, Jong-Won; Jeong, Chang-Gi; Moon, Sung-Hyun; Son, Jee Soo; Kang, Sang Hyeon; Cho, Ho-Seong; Jung, Byeong Yeal; Kim, Won-Il
2018-06-06
The broad-spectrum lytic capability of Salmonella bacteriophages against various Salmonella species was evaluated to determine their potential as an alternative for antibiotics, and the safety and preventive effects of the bacteriophages were assessed on mice and pigs. Four bacteriophage cocktails were prepared using 13 bacteriophages, and the lytic capability of the four bacteriophage cocktails was tested using Salmonella reference strains and field isolates. Bacteriophage cocktail C (SEP-1, SGP-1, STP-1, SS3eP-1, STP-2, SChP-1, SAP-1, SAP-2; ≥10 9 pfu/ml) showed the best lytic activity against the Salmonella reference strains (100% of 34) and field isolates (92.5% of 107). Fifty mice were then orally inoculated with bacteriophage cocktail C to determine the distribution of bacteriophages in various organs, blood and feces. The effects of bacteriophages on Salmonella infection in weaned pigs (n=15) were also evaluated through an experimental challenge with Salmonella Typhimurium after treatment with bacteriophage cocktail C. All mice exhibited distribution of the bacteriophages in all organs, blood and feces until 15 days post infection (dpi). After 35 dpi, bacteriophages were not detected in any of these specimens. As demonstrated in a pig challenge study, treatment with bacteriophage cocktail C reduced the level of Salmonella shedding in feces. The metagenomic analyses of these pig feces also revealed that bacteriophage treatment decreased the number of species of the Enterobacteriaceae family without significant disturbance to the normal fecal flora. This study showed that bacteriophages effectively controlled Salmonella in a pig challenge model and could be a good alternative for antibiotics to control Salmonella infection.
Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M.
2014-01-01
NK cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 µM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA. PMID:25341744
Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M
2014-12-01
Natural killer (NK) cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 μM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA.
Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide.
Alvares, Dayane S; Ruggiero Neto, João; Ambroggio, Ernesto E
2017-06-01
Polybia-MP1 (IDWKKLLDAAKQIL-NH 2 ) is a lytic peptide from the Brazilian wasp venom with known anti-cancer properties. Previous evidence indicates that phosphatidylserine (PS) lipids are relevant for the lytic activity of MP1. In agreement with this requirement, phosphatidylserine lipids are translocated to the outer leaflet of cells, and are available for MP1 binding, depending on the presence of liquid-ordered domains. Here, we investigated the effect of PS on MP1 activity when this lipid is reconstituted in membranes of giant or large liposomes with different lipid-phase states. By monitoring the membrane and soluble luminal content of giant unilamellar vesicles (GUVs), using fluorescence confocal microscopy, we were able to determine that MP1 has a pore-forming activity at the membrane level. Liquid-ordered domains, which were phase-separated within the membrane of GUVs, influenced the pore-forming activity of MP1. Experiments evaluating the membrane-binding and lytic activity of MP1 on large unilamellar vesicles (LUVs), with the same lipid composition as GUVs, demonstrated that there was synergy between liquid-ordered domains and PS, which enhanced both activities. Based on our findings, we propose that the physicochemical properties of cancer cell membranes, which possess a much higher concentration of PS than normal cells, renders them susceptible to MP1 binding and lytic pore formation. These results can be correlated with MP1's potent and selective anti-cancer activity and pave the way for future research to develop cancer therapies that harness and exploit the properties of MP1. Copyright © 2017 Elsevier B.V. All rights reserved.