Sample records for kubo method

  1. On the Kubo-Greenwood model for electron conductivity

    NASA Astrophysics Data System (ADS)

    Dufty, James; Wrighton, Jeffrey; Luo, Kai; Trickey, S. B.

    2018-02-01

    Currently, the most common method to calculate transport properties for materials under extreme conditions is based on the phenomenological Kubo-Greenwood method. The results of an inquiry into the justification and context of that model are summarized here. Specifically, the basis for its connection to equilibrium DFT and the assumption of static ions are discussed briefly.

  2. The calculation of viscosity of liquid n-decane and n-hexadecane by the Green-Kubo method

    NASA Astrophysics Data System (ADS)

    Cui, S. T.; Cummings, P. T.; Cochran, H. D.

    This short commentary presents the result of long molecular dynamics simulation calculations of the shear viscosity of liquid n-decane and n-hexadecane using the Green-Kubo integration method. The relaxation time of the stress-stress correlation function is compared with those of rotation and diffusion. The rotational and diffusional relaxation times, which are easy to calculate, provide useful guides for the required simulation time in viscosity calculations. Also, the computational time required for viscosity calculations of these systems by the Green-Kubo method is compared with the time required for previous non-equilibrium molecular dynamics calculations of the same systems. The method of choice for a particular calculation is determined largely by the properties of interest, since the efficiencies of the two methods are comparable for calculation of the zero strain rate viscosity.

  3. Goal-Oriented Probability Density Function Methods for Uncertainty Quantification

    DTIC Science & Technology

    2015-12-11

    approximations or data-driven approaches. We investigated the accuracy of analytical tech- niques based Kubo -Van Kampen operator cumulant expansions for...analytical techniques based Kubo -Van Kampen operator cumulant expansions for Langevin equations driven by fractional Brownian motion and other noises

  4. Determining Quiescent Colloidal Suspension Viscosities Using the Green-Kubo Relation and Image-Based Stress Measurements

    NASA Astrophysics Data System (ADS)

    Lin, Neil Y. C.; Bierbaum, Matthew; Cohen, Itai

    2017-09-01

    By combining confocal microscopy and stress assessment from local structural anisotropy, we directly measure stresses in 3D quiescent colloidal liquids. Our noninvasive and nonperturbative method allows us to measure forces ≲50 fN with a small and tunable probing volume, enabling us to resolve the stress fluctuations arising from particle thermal motions. We use the Green-Kubo relation to relate these measured stress fluctuations to the bulk Brownian viscosity at different volume fractions, comparing against simulations and conventional rheometry measurements. We find that the Green-Kubo analysis gives excellent agreement with these prior results, suggesting that similar methods could be applied to investigations of local flow properties in many poorly understood far-from-equilibrium systems, including suspensions that are glassy, strongly sheared, or highly confined.

  5. Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method.

    PubMed

    Zhang, Yong; Otani, Akihito; Maginn, Edward J

    2015-08-11

    Equilibrium molecular dynamics is often used in conjunction with a Green-Kubo integral of the pressure tensor autocorrelation function to compute the shear viscosity of fluids. This approach is computationally expensive and is subject to a large amount of variability because the plateau region of the Green-Kubo integral is difficult to identify unambiguously. Here, we propose a time decomposition approach for computing the shear viscosity using the Green-Kubo formalism. Instead of one long trajectory, multiple independent trajectories are run and the Green-Kubo relation is applied to each trajectory. The averaged running integral as a function of time is fit to a double-exponential function with a weighting function derived from the standard deviation of the running integrals. Such a weighting function minimizes the uncertainty of the estimated shear viscosity and provides an objective means of estimating the viscosity. While the formal Green-Kubo integral requires an integration to infinite time, we suggest an integration cutoff time tcut, which can be determined by the relative values of the running integral and the corresponding standard deviation. This approach for computing the shear viscosity can be easily automated and used in computational screening studies where human judgment and intervention in the data analysis are impractical. The method has been applied to the calculation of the shear viscosity of a relatively low-viscosity liquid, ethanol, and relatively high-viscosity ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([BMIM][Tf2N]), over a range of temperatures. These test cases show that the method is robust and yields reproducible and reliable shear viscosity values.

  6. Method to manage integration error in the Green-Kubo method.

    PubMed

    Oliveira, Laura de Sousa; Greaney, P Alex

    2017-02-01

    The Green-Kubo method is a commonly used approach for predicting transport properties in a system from equilibrium molecular dynamics simulations. The approach is founded on the fluctuation dissipation theorem and relates the property of interest to the lifetime of fluctuations in its thermodynamic driving potential. For heat transport, the lattice thermal conductivity is related to the integral of the autocorrelation of the instantaneous heat flux. A principal source of error in these calculations is that the autocorrelation function requires a long averaging time to reduce remnant noise. Integrating the noise in the tail of the autocorrelation function becomes conflated with physically important slow relaxation processes. In this paper we present a method to quantify the uncertainty on transport properties computed using the Green-Kubo formulation based on recognizing that the integrated noise is a random walk, with a growing envelope of uncertainty. By characterizing the noise we can choose integration conditions to best trade off systematic truncation error with unbiased integration noise, to minimize uncertainty for a given allocation of computational resources.

  7. Method to manage integration error in the Green-Kubo method

    NASA Astrophysics Data System (ADS)

    Oliveira, Laura de Sousa; Greaney, P. Alex

    2017-02-01

    The Green-Kubo method is a commonly used approach for predicting transport properties in a system from equilibrium molecular dynamics simulations. The approach is founded on the fluctuation dissipation theorem and relates the property of interest to the lifetime of fluctuations in its thermodynamic driving potential. For heat transport, the lattice thermal conductivity is related to the integral of the autocorrelation of the instantaneous heat flux. A principal source of error in these calculations is that the autocorrelation function requires a long averaging time to reduce remnant noise. Integrating the noise in the tail of the autocorrelation function becomes conflated with physically important slow relaxation processes. In this paper we present a method to quantify the uncertainty on transport properties computed using the Green-Kubo formulation based on recognizing that the integrated noise is a random walk, with a growing envelope of uncertainty. By characterizing the noise we can choose integration conditions to best trade off systematic truncation error with unbiased integration noise, to minimize uncertainty for a given allocation of computational resources.

  8. Equivalence of quantum Boltzmann equation and Kubo formula for dc conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Z.B.; Chen, L.Y.

    1990-02-01

    This paper presents a derivation of the quantum Boltzmann equation for linear dc transport with a correction term to Mahan-Hansch's equations and derive a formal solution to it. Based on this formal solution, the authors find the electric conductivity can be expressed as the retarded current-current correlation. Therefore, the authors explicitly demonstrate the equivalence of the two most important theoretical methods: quantum Boltzmann equation and Kubo formula.

  9. Optical characterization of chemistry in shocked nitromethane with time-dependent density functional theory.

    PubMed

    Pellouchoud, Lenson A; Reed, Evan J

    2013-11-27

    We compute the optical properties of the liquid-phase energetic material nitromethane (CH3NO2) for the first 100 ps behind the front of a simulated shock at 6.5 km/s, close to the experimentally observed detonation shock speed of the material. We utilize molecular dynamics trajectories computed using the multiscale shock technique (MSST) for time-resolved optical spectrum calculations based on both linear response time-dependent DFT (TDDFT) and the Kubo-Greenwood formula with Kohn-Sham DFT wave functions. We find that the TDDFT method predicts an optical conductivity 25-35% lower than the Kubo-Greenwood calculation and provides better agreement with the experimentally measured index of refraction of unreacted nitromethane. We investigate the influence of electronic temperature on the Kubo-Greenwood spectra and find no significant effect at optical wavelengths. In both Kubo-Greenwood and TDDFT, the spectra evolve nonmonotonically in time as shock-induced chemistry takes place. We attribute the time-resolved absorption at optical wavelengths to time-dependent populations of molecular decomposition products, including NO, CNO, CNOH, H2O, and larger molecules. These calculations offer direction for guiding and interpreting ultrafast optical measurements on reactive materials.

  10. Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics.

    PubMed

    Danel, J-F; Kazandjian, L; Zérah, G

    2012-06-01

    Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.

  11. Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics

    NASA Astrophysics Data System (ADS)

    Danel, J.-F.; Kazandjian, L.; Zérah, G.

    2012-06-01

    Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.

  12. Directly calculated electrical conductivity of hot dense hydrogen from molecular dynamics simulation beyond Kubo-Greenwood formula

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Kang, Dongdong; Zhao, Zengxiu; Dai, Jiayu

    2018-01-01

    Electrical conductivity of hot dense hydrogen is directly calculated by molecular dynamics simulation with a reduced electron force field method, in which the electrons are represented as Gaussian wave packets with fixed sizes. Here, the temperature is higher than electron Fermi temperature ( T > 300 eV , ρ = 40 g / cc ). The present method can avoid the Coulomb catastrophe and give the limit of electrical conductivity based on the Coulomb interaction. We investigate the effect of ion-electron coupled movements, which is lost in the static method such as density functional theory based Kubo-Greenwood framework. It is found that the ionic dynamics, which contributes to the dynamical electrical microfield and electron-ion collisions, will reduce the conductivity significantly compared with the fixed ion configuration calculations.

  13. Density-matrix renormalization group method for the conductance of one-dimensional correlated systems using the Kubo formula

    NASA Astrophysics Data System (ADS)

    Bischoff, Jan-Moritz; Jeckelmann, Eric

    2017-11-01

    We improve the density-matrix renormalization group (DMRG) evaluation of the Kubo formula for the zero-temperature linear conductance of one-dimensional correlated systems. The dynamical DMRG is used to compute the linear response of a finite system to an applied ac source-drain voltage; then the low-frequency finite-system response is extrapolated to the thermodynamic limit to obtain the dc conductance of an infinite system. The method is demonstrated on the one-dimensional spinless fermion model at half filling. Our method is able to replicate several predictions of the Luttinger liquid theory such as the renormalization of the conductance in a homogeneous conductor, the universal effects of a single barrier, and the resonant tunneling through a double barrier.

  14. Spatial resolution of the electrical conductance of ionic fluids using a Green-Kubo method.

    PubMed

    Jones, R E; Ward, D K; Templeton, J A

    2014-11-14

    We present a Green-Kubo method to spatially resolve transport coefficients in compositionally heterogeneous mixtures. We develop the underlying theory based on well-known results from mixture theory, Irving-Kirkwood field estimation, and linear response theory. Then, using standard molecular dynamics techniques, we apply the methodology to representative systems. With a homogeneous salt water system, where the expectation of the distribution of conductivity is clear, we demonstrate the sensitivities of the method to system size, and other physical and algorithmic parameters. Then we present a simple model of an electrochemical double layer where we explore the resolution limit of the method. In this system, we observe significant anisotropy in the wall-normal vs. transverse ionic conductances, as well as near wall effects. Finally, we discuss extensions and applications to more realistic systems such as batteries where detailed understanding of the transport properties in the vicinity of the electrodes is of technological importance.

  15. University of California Conference on Statistical Mechanics (4th) Held March 26-28, 1990

    DTIC Science & Technology

    1990-03-28

    and S. Lago, Chem. Phys., Z, 5750 (1983) Shear Viscosity Calculation via Equilibrium Molecular Dynamics: Einstenian vs. Green - Kubo Formalism by Adel A...through the application of the Green - Kubo approach. Although the theoretical equivalence between both formalisms was demonstrated by Helfand [3], their...like equations and of different expressions based on the Green - Kubo formalism. In contrast to Hoheisel and Vogelsang’s conclusions [2], we find that

  16. The Impact of Sino-Indian Energy Security Ambitions on Burma’s Domestic and Foreign Politics

    DTIC Science & Technology

    2011-12-01

    and India. 142 As summarized in: Koji Kubo, “Natural Gas Export Revenue, Fiscal Balance and Inflation in Myanmar,” IDE Discussion Paper, no.225 (March...The Arab State, 87. 162 Luciani, ed., The Arab State, 89. 163 As summarized in: Koji Kubo, “Natural Gas Export Revenue, Fiscal Balance and...Inflation in Myanmar,” IDE Discussion Paper, no.225 (March 2011): 3. 164 As summarized in: Koji Kubo, “Natural Gas Export Revenue, Fiscal Balance and

  17. Harvard-Lead Phase of Multi- Qubit Systems Based on Electron Spins in Coupled Quantum Dots Project Meeting

    DTIC Science & Technology

    2014-03-24

    8.00 9.00 T. Hatano, T. Kubo , Y. Tokura, S. Amaha, S. Teraoka, S. Tarucha. Aharonov-Bohm Oscillations Changed by Indirect Interdot Tunneling via...M. Pioro-Ladrière, T. Kubo , K. Yoshida, T. Taniyama, Y. Tokura, S. Tarucha. Two-Qubit Gate of Combined Single-Spin Rotation and Interdot Spin...1 2012): 0. doi: 10.1103/PhysRevB.85.035306 S. Amaha, T. Hatano, H. Tamura, S. Teraoka, T. Kubo , Y. Tokura, D. G. Austing, S. Tarucha. Resonance

  18. Correlation functions for Hermitian many-body systems: Necessary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E.B.

    1994-02-01

    Lee [Phys. Rev. B 47, 8293 (1993)] has shown that the odd-numbered derivatives of the Kubo autocorrelation function vanish at [ital t]=0. We show that this condition is based on a more general property of nondiagonal Kubo correlation functions. This general property provides that certain functional forms (e.g., simple exponential decay) are not admissible for any symmetric or antisymmetric Kubo correlation function in a Hermitian many-body system. Lee's result emerges as a special case of this result. Applications to translationally invariant systems and systems with rotational symmetries are also demonstrated.

  19. Quasi-classical approaches to vibronic spectra revisited

    NASA Astrophysics Data System (ADS)

    Karsten, Sven; Ivanov, Sergei D.; Bokarev, Sergey I.; Kühn, Oliver

    2018-03-01

    The framework to approach quasi-classical dynamics in the electronic ground state is well established and is based on the Kubo-transformed time correlation function (TCF), being the most classical-like quantum TCF. Here we discuss whether the choice of the Kubo-transformed TCF as a starting point for simulating vibronic spectra is as unambiguous as it is for vibrational ones. Employing imaginary-time path integral techniques in combination with the interaction representation allowed us to formulate a method for simulating vibronic spectra in the adiabatic regime that takes nuclear quantum effects and dynamics on multiple potential energy surfaces into account. Further, a generalized quantum TCF is proposed that contains many well-established TCFs, including the Kubo one, as particular cases. Importantly, it also provides a framework to construct new quantum TCFs. Applying the developed methodology to the generalized TCF leads to a plethora of simulation protocols, which are based on the well-known TCFs as well as on new ones. Their performance is investigated on 1D anharmonic model systems at finite temperatures. It is shown that the protocols based on the new TCFs may lead to superior results with respect to those based on the common ones. The strategies to find the optimal approach are discussed.

  20. Equivalence of the equilibrium and the nonequilibrium molecular dynamics methods for thermal conductivity calculations: From bulk to nanowire silicon

    NASA Astrophysics Data System (ADS)

    Dong, Haikuan; Fan, Zheyong; Shi, Libin; Harju, Ari; Ala-Nissila, Tapio

    2018-03-01

    Molecular dynamics (MD) simulations play an important role in studying heat transport in complex materials. The lattice thermal conductivity can be computed either using the Green-Kubo formula in equilibrium MD (EMD) simulations or using Fourier's law in nonequilibrium MD (NEMD) simulations. These two methods have not been systematically compared for materials with different dimensions and inconsistencies between them have been occasionally reported in the literature. Here we give an in-depth comparison of them in terms of heat transport in three allotropes of Si: three-dimensional bulk silicon, two-dimensional silicene, and quasi-one-dimensional silicon nanowire. By multiplying the correlation time in the Green-Kubo formula with an appropriate effective group velocity, we can express the running thermal conductivity in the EMD method as a function of an effective length and directly compare it to the length-dependent thermal conductivity in the NEMD method. We find that the two methods quantitatively agree with each other for all the systems studied, firmly establishing their equivalence in computing thermal conductivity.

  1. Estimation of Kubo number and correlation length of fluctuating magnetic fields and pressure in BOUT + + edge pedestal collapse simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jaewook; Lee, W.-J.; Jhang, Hogun; Kaang, H. H.; Ghim, Y.-C.

    2017-10-01

    Stochastic magnetic fields are thought to be as one of the possible mechanisms for anomalous transport of density, momentum and heat across the magnetic field lines. Kubo number and Chirikov parameter are quantifications of the stochasticity, and previous studies show that perpendicular transport strongly depends on the magnetic Kubo number (MKN). If MKN is smaller than one, diffusion process will follow Rechester-Rosenbluth model; whereas if it is larger than one, percolation theory dominates the diffusion process. Thus, estimation of Kubo number plays an important role to understand diffusion process caused by stochastic magnetic fields. However, spatially localized experimental measurement of fluctuating magnetic fields in a tokamak is difficult, and we attempt to estimate MKNs using BOUT + + simulation data with pedestal collapse. In addition, we calculate correlation length of fluctuating pressures and Chirikov parameters to investigate variation correlation lengths in the simulation. We, then, discuss how one may experimentally estimate MKNs.

  2. Car and Parrinello meet Green and Kubo: simulating atomic heat transport from equilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Baroni, Stefano

    Modern simulation methods based on electronic-structure theory have long been deemed unfit to compute heat transport coefficients within the Green-Kubo formalism. This is so because the quantum-mechanical energy density from which the heat flux is derived is inherently ill defined, thus allegedly hampering the use of the Green-Kubo formula. While this objection would actually apply to classical systems as well, I will demonstrate that the thermal conductivity is indeed independent of the specific microscopic expression for the energy density and current from which it is derived. This fact results from a kind of gauge invariance stemming from energy conservation and extensivity, which I will illustrate numerically for a classical Lennard-Jones fluid. I will then introduce an expression for the adiabatic energy flux, derived within density-functional theory, that allows simulating atomic heat transport using equilibrium ab initio molecular dynamics. The resulting methodology is demonstrated by comparing results from ab-initio and classical molecular-dynamics simulations of a model liquid-Argon system, for which accurate inter-atomic potentials are derived by the force-matching method, and applied to compute the thermal conductivity of heavy water at ambient conditions. The problem of evaluating transport coefficients along with their accuracy from relatively short trajectories is finally addressed and discussed with a few representative examples. Partially funded by the European Union through the MaX Centre of Excellence (Grant No. 676598).

  3. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis.

    PubMed

    Jones, Reese E; Mandadapu, Kranthi K

    2012-04-21

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)] and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  4. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis

    NASA Astrophysics Data System (ADS)

    Jones, Reese E.; Mandadapu, Kranthi K.

    2012-04-01

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  5. An Efficient numerical method to calculate the conductivity tensor for disordered topological matter

    NASA Astrophysics Data System (ADS)

    Garcia, Jose H.; Covaci, Lucian; Rappoport, Tatiana G.

    2015-03-01

    We propose a new efficient numerical approach to calculate the conductivity tensor in solids. We use a real-space implementation of the Kubo formalism where both diagonal and off-diagonal conductivities are treated in the same footing. We adopt a formulation of the Kubo theory that is known as Bastin formula and expand the Green's functions involved in terms of Chebyshev polynomials using the kernel polynomial method. Within this method, all the computational effort is on the calculation of the expansion coefficients. It also has the advantage of obtaining both conductivities in a single calculation step and for various values of temperature and chemical potential, capturing the topology of the band-structure. Our numerical technique is very general and is suitable for the calculation of transport properties of disordered systems. We analyze how the method's accuracy varies with the number of moments used in the expansion and illustrate our approach by calculating the transverse conductivity of different topological systems. T.G.R, J.H.G and L.C. acknowledge Brazilian agencies CNPq, FAPERJ and INCT de Nanoestruturas de Carbono, Flemish Science Foundation for financial support.

  6. Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems.

    PubMed

    Guérin, T; Dean, D S

    2015-12-01

    We consider the dispersion properties of tracer particles moving in nonequilibrium heterogeneous periodic media. The tracer motion is described by a Fokker-Planck equation with arbitrary spatially periodic (but constant in time) local diffusion tensors and drifts, eventually with the presence of obstacles. We derive a Kubo-like formula for the time-dependent effective diffusion tensor valid in any dimension. From this general formula, we derive expressions for the late time effective diffusion tensor and drift in these systems. In addition, we find an explicit formula for the late finite-time corrections to these transport coefficients. In one dimension, we give a closed analytical formula for the transport coefficients. The formulas derived here are very general and provide a straightforward method to compute the dispersion properties in arbitrary nonequilibrium periodic advection-diffusion systems.

  7. Stochastic field-line wandering in magnetic turbulence with shear. II. Decorrelation trajectory method

    NASA Astrophysics Data System (ADS)

    Negrea, M.; Petrisor, I.; Shalchi, A.

    2017-11-01

    We study the diffusion of magnetic field lines in turbulence with magnetic shear. In the first part of the series, we developed a quasi-linear theory for this type of scenario. In this article, we employ the so-called DeCorrelation Trajectory method in order to compute the diffusion coefficients of stochastic magnetic field lines. The magnetic field configuration used here contains fluctuating terms which are described by the dimensionless functions bi(X, Y, Z), i = (x, y) and they are assumed to be Gaussian processes and are perpendicular with respect to the main magnetic field B0. Furthermore, there is also a z-component of the magnetic field depending on radial coordinate x (representing the gradient of the magnetic field) and a poloidal average component. We calculate the diffusion coefficients for magnetic field lines for different values of the magnetic Kubo number K, the dimensionless inhomogeneous magnetic parallel and perpendicular Kubo numbers KB∥, KB⊥ , as well as Ka v=bya vKB∥/KB⊥ .

  8. Kubo conductivity of a strongly magnetized two-dimensional plasma.

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Tappert, F.

    1971-01-01

    The Kubo formula is used to evaluate the bulk electrical conductivity of a two-dimensional guiding-center plasma in a strong dc magnetic field. The particles interact only electrostatically. An ?anomalous' electrical conductivity is derived for this system, which parallels a recent result of Taylor and McNamara for the coefficient of spatial diffusion.

  9. Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heusen, M.; Shalchi, A., E-mail: husseinm@myumanitoba.ca, E-mail: andreasm4@yahoo.com

    In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to smallmore » Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.« less

  10. Shear flow simulations of biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1997-08-01

    We have calculated the viscosities of a biaxial nematic liquid crystal phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] by performing molecular dynamics simulations. The equations of motion have been augmented by a director constraint torque that fixes the orientation of the directors. This makes it possible to fix them at different angles relative to the stream lines in shear flow simulations. In equilibrium simulations the constraints generate a new ensemble. One finds that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals in this ensemble whereas they are complicated rational functions in the conventional canonical ensemble. We have evaluated these Green-Kubo relations for all the shear viscosities and all the twist viscosities. We have also calculated the alignment angles, which are functions of the viscosity coefficients. We find that there are three real alignment angles but a linear stability analysis shows that only one of them corresponds to a stable director orientation. The Green-Kubo results have been cross checked by nonequilibrium shear flow simulations. The results from the different methods agree very well. Finally, we have evaluated the Miesowicz viscosities [D. Baalss, Z. Naturforsch. Teil A 45, 7 (1990)]. They vary by more than 2 orders of magnitude. The viscosity is consequently highly orientation dependent.

  11. Estimates of crystalline LiF thermal conductivity at high temperature and pressure by a Green-Kubo method

    DOE PAGES

    Jones, R. E.; Ward, D. K.

    2016-07-18

    Here, given the unique optical properties of LiF, it is often used as an observation window in high-temperature and -pressure experiments; hence, estimates of its transmission properties are necessary to interpret observations. Since direct measurements of the thermal conductivity of LiF at the appropriate conditions are difficult, we resort to molecular simulation methods. Using an empirical potential validated against ab initio phonon density of states, we estimate the thermal conductivity of LiF at high temperatures (1000–4000 K) and pressures (100–400 GPa) with the Green-Kubo method. We also compare these estimates to those derived directly from ab initio data. To ascertainmore » the correct phase of LiF at these extreme conditions, we calculate the (relative) phase stability of the B1 and B2 structures using a quasiharmonic ab initio model of the free energy. We also estimate the thermal conductivity of LiF in an uniaxial loading state that emulates initial stages of compression in high-stress ramp loading experiments and show the degree of anisotropy induced in the conductivity due to deformation.« less

  12. Crystal Chemistry of the Potassium and Rubidium Uranyl Borate Families Derived from Boric Acid Fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuao; Alekseev, Evgeny V.; Stritzinger, Jared T.

    2010-07-19

    The reaction of uranyl nitrate with a large excess of molten boric acid in the presence of potassium or rubidium nitrate results in the formation of three new potassium uranyl borates, K{sub 2}[(UO{sub 2}){sub 2}B{sub 12}O{sub 19}(OH){sub 4}]·0.3H{sub 2}O (KUBO-1), K[(UO{sub 2}){sub 2}B{sub 10}O{sub 15}(OH){sub 5}] (KUBO-2), and K[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}]·0.7H{sub 2}O (KUBO-3) and two new rubidium uranyl borates Rb{sub 2}[(UO{sub 2}){sub 2}B{sub 13}O{sub 20}(OH){sub 5}] (RbUBO-1) and Rb[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}]·0.7H{sub 2}O (RbUBO-2). The latter is isotypic with KUBO-3. These compounds share a common structural motif consisting of a linear uranyl, UO{sub 2}{sup 2+},more » cation surrounded by BO{sub 3} triangles and BO{sub 4} tetrahedra to create an UO{sub 8} hexagonal bipyramidal environment around uranium. The borate anions bridge between uranyl units to create sheets. Additional BO{sub 3} triangles extend from the polyborate layers and are directed approximately perpendicular to the sheets. All of these compounds adopt layered structures. With the exception of KUBO-1, the structures are all centrosymmetric. All of these compounds fluoresce when irradiated with long-wavelength UV light. The fluorescence spectrum yields well-defined vibronically coupled charge-transfer features.« less

  13. The Kubo-Greenwood expression and 2d MIT transport

    NASA Astrophysics Data System (ADS)

    Castner, Theodore

    2010-03-01

    The 2d MIT in GaAs heterostructures (p- and n-type)features a mobility that drops continuously as the reduced density x= n/nc-1 is decreased. The Kubo-Greenwood result [1] predicts μ = (eɛh/hnc)α^2(x) where α is a normalized DOS. α(x)is obtained from the data [p-type, Gao et al. [2]; n-type Lilly et al. [3

  14. Rheological Predictions of Network Systems Swollen with Entangled Solvent

    DTIC Science & Technology

    2014-04-01

    represent binary entanglements and the crosses represent cross-links. Both of which are fixed in space for Green– Kubo calculations or moved affinely for...Two types of calculations can be performed, equilibrium (or Green– Kubo ) calculations in which the rate of deformation tensor21,22 is set to zero and the...autocorrelation function of stress at equilibrium is followed; or flow calculations in which a specific flow field is applied and the stress as a

  15. Kubo-Greenwood electrical conductivity formulation and implementation for projector augmented wave datasets

    NASA Astrophysics Data System (ADS)

    Calderín, L.; Karasiev, V. V.; Trickey, S. B.

    2017-12-01

    As the foundation for a new computational implementation, we survey the calculation of the complex electrical conductivity tensor based on the Kubo-Greenwood (KG) formalism (Kubo, 1957; Greenwood, 1958), with emphasis on derivations and technical aspects pertinent to use of projector augmented wave datasets with plane wave basis sets (Blöchl, 1994). New analytical results and a full implementation of the KG approach in an open-source Fortran 90 post-processing code for use with Quantum Espresso (Giannozzi et al., 2009) are presented. Named KGEC ([K]ubo [G]reenwood [E]lectronic [C]onductivity), the code calculates the full complex conductivity tensor (not just the average trace). It supports use of either the original KG formula or the popular one approximated in terms of a Dirac delta function. It provides both Gaussian and Lorentzian representations of the Dirac delta function (though the Lorentzian is preferable on basic grounds). KGEC provides decomposition of the conductivity into intra- and inter-band contributions as well as degenerate state contributions. It calculates the dc conductivity tensor directly. It is MPI parallelized over k-points, bands, and plane waves, with an option to recover the plane wave processes for their use in band parallelization as well. It is designed to provide rapid convergence with respect to k-point density. Examples of its use are given.

  16. Bulk diffusion in a kinetically constrained lattice gas

    NASA Astrophysics Data System (ADS)

    Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone

    2018-03-01

    In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.

  17. The Kubo-Greenwood formula as a result of the random phase approximation for the electrons of the metal

    NASA Astrophysics Data System (ADS)

    Ivliev, S. V.

    2017-12-01

    For calculation of short laser pulse absorption in metal the imaginary part of permittivity, which is simply related to the conductivity, is required. Currently to find the static and dynamic conductivity the Kubo-Greenwood formula is most commonly used. It describes the electromagnetic energy absorption in the one-electron approach. In the present study, this formula is derived directly from the expression for the permittivity expression in the random phase approximation, which in fact is equivalent to the method of the mean field. The detailed analysis of the role of electron-electron interaction in the calculation of the matrix elements of the velocity operator is given. It is shown that in the one-electron random phase approximation the single-particle conductive electron wave functions in the field of fixed ions should be used. The possibility of considering the exchange and correlation effects by means of an amendment to a local function field is discussed.

  18. Kubo formulas for the shear and bulk viscosity relaxation times and the scalar field theory shear τπ calculation

    NASA Astrophysics Data System (ADS)

    Czajka, Alina; Jeon, Sangyong

    2017-06-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.

  19. Fluid transport properties by equilibrium molecular dynamics. I. Methodology at extreme fluid states

    NASA Astrophysics Data System (ADS)

    Dysthe, D. K.; Fuchs, A. H.; Rousseau, B.

    1999-02-01

    The Green-Kubo formalism for evaluating transport coefficients by molecular dynamics has been applied to flexible, multicenter models of linear and branched alkanes in the gas phase and in the liquid phase from ambient conditions to close to the triple point. The effects of integration time step, potential cutoff and system size have been studied and shown to be small compared to the computational precision except for diffusion in gaseous n-butane. The RATTLE algorithm is shown to give accurate transport coefficients for time steps up to a limit of 8 fs. The different relaxation mechanisms in the fluids have been studied and it is shown that the longest relaxation time of the system governs the statistical precision of the results. By measuring the longest relaxation time of a system one can obtain a reliable error estimate from a single trajectory. The accuracy of the Green-Kubo method is shown to be as good as the precision for all states and models used in this study even when the system relaxation time becomes very long. The efficiency of the method is shown to be comparable to nonequilibrium methods. The transport coefficients for two recently proposed potential models are presented, showing deviations from experiment of 0%-66%.

  20. Green-Kubo relations for the viscosity of biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1996-09-01

    We derive Green-Kubo relations for the viscosities of a biaxial nematic liquid crystal. In this system there are seven shear viscosities, three twist viscosities, and three cross coupling coefficients between the antisymmetric strain rate and the symmetric traceless pressure tensor. According to the Onsager reciprocity relations these couplings are equal to the cross couplings between the symmetric traceless strain rate and the antisymmetric pressure. Our method is based on a comparison of the microscopic linear response generated by the SLLOD equations of motion for planar Couette flow (so named because of their close connection to the Doll's tensor Hamiltonian) and the macroscopic linear phenomenological relations between the pressure tensor and the strain rate. In order to obtain simple Green-Kubo relations we employ an equilibrium ensemble where the angular velocities of the directors are identically zero. This is achieved by adding constraint torques to the equations for the molecular angular accelerations. One finds that all the viscosity coefficients can be expressed as linear combinations of time correlation function integrals (TCFIs). This is much simpler compared to the expressions in the conventional canonical ensemble, where the viscosities are complicated rational functions of the TCFIs. The reason for this is, that in the constrained angular velocity ensemble, the thermodynamic forces are given external parameters whereas the thermodynamic fluxes are ensemble averages of phase functions. This is not the case in the canonical ensemble. The simplest way of obtaining numerical estimates of viscosity coefficients of a particular molecular model system is to evaluate these fluctuation relations by equilibrium molecular dynamics simulations.

  1. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faussurier, Gérald, E-mail: gerald.faussurier@cea.fr; Blancard, Christophe

    2016-01-15

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  2. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holst, Bastian; French, Martin; Redmer, Ronald

    2011-06-15

    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.

  3. Intrinsic trapping of stochastic sheared magnetic field lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negrea, M.; Petrisor, I.; Balescu, R.

    2004-10-01

    The decorrelation trajectory method is applied to the diffusion of magnetic field lines in a perturbed sheared slab magnetic configuration. Some interesting decorrelation trajectories for several values of the magnetic Kubo number and of the shear parameter are exhibited. The asymmetry of the decorrelation trajectories appears in comparison with those obtained in the purely electrostatic case studied in earlier work. The running and asymptotic diffusion tensor components are calculated and displayed.

  4. Shear viscosity of the quark-gluon plasma in a kinetic theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puglisi, A.; Plumari, S.; Scardina, F.

    2014-05-09

    One of the main results of heavy ions collision (HIC) at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s=1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green-Kubo relations give us an exact expression to compute these coefficients. We compute shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigate a system of particlesmore » interacting via anisotropic and energy dependent cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. The correct analytic formula for shear viscosity can be used to develop a transport theory with a fixed η/s and have a comparison with physical observables like elliptic flow.« less

  5. GMR in magnetic multilayers from a first principles band structure Kubo-Greenwood approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, F.; Freeman, A.J.

    1998-07-01

    The authors employ the Kubo-Greenwood formula to investigate from first-principles the giant magnetoresistance in Fe{sub m}M{sub n} (M = V, Cr, Mn and Cu) superlattices. The results indicate that MR can arise from band structure changes from ferromagnetic to anti-ferromagnetic alignments. Quantum confinement in the perpendicular direction is induced by the potential steps between the Fe and spacer layers and causes a much larger MR in the current-perpendicular-to-the-plane (CPP) geometry than in the current-in-plane (CIP) geometry. In the presence of the spin-orbit coupling interaction, MR is found to be reduced by spin-channel mixing.

  6. Hamiltonian term for a uniform dc electric field under the adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Siu, Zhuo Bin; Jalil, Mansoor B. A.; Tan, Seng Ghee

    2018-02-01

    In this work, we show that the disorder-free Kubo formula for the nonequilibrium value of an observable due to a dc electric field, represented by Exx ̂ in the Hamiltonian, can be interpreted as the standard time-independent theory response of the observable due to a time- and position-independent perturbation HMF. We derive the explicit expression for HMF and show that it originates from the adiabatic approximation to

  7. DSMC Evaluation of the Navier-Stokes Shear Viscosity of a Granular Fluid

    DTIC Science & Technology

    2005-07-13

    transport coefficients of the HCS have been measured from DSMC by using the associated Green – Kubo formulas [8]. In the case of a system heated by the action...DSMC evaluation of the Navier–Stokes shear viscosity of a granular fluid José María Montanero∗, Andrés Santos† and Vicente Garzó† ∗Departamento de...proposed to measure the Navier–Stokes shear viscosity in a granular fluid described by the Enskog equation. The method is implemented in DSMC

  8. Free-free opacity in dense plasmas with an average atom model

    DOE PAGES

    Shaffer, Nathaniel R.; Ferris, Natalie G.; Colgan, James Patrick; ...

    2017-02-28

    A model for the free-free opacity of dense plasmas is presented. The model uses a previously developed average atom model, together with the Kubo-Greenwood model for optical conductivity. This, in turn, is used to calculate the opacity with the Kramers-Kronig dispersion relations. Furthermore, comparisons to other methods for dense deuterium results in excellent agreement with DFT-MD simulations, and reasonable agreement with a simple Yukawa screening model corrected to satisfy the conductivity sum rule.

  9. Free-free opacity in dense plasmas with an average atom model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, Nathaniel R.; Ferris, Natalie G.; Colgan, James Patrick

    A model for the free-free opacity of dense plasmas is presented. The model uses a previously developed average atom model, together with the Kubo-Greenwood model for optical conductivity. This, in turn, is used to calculate the opacity with the Kramers-Kronig dispersion relations. Furthermore, comparisons to other methods for dense deuterium results in excellent agreement with DFT-MD simulations, and reasonable agreement with a simple Yukawa screening model corrected to satisfy the conductivity sum rule.

  10. Aerospace Materials for Extreme Environments

    DTIC Science & Technology

    2013-03-07

    6.0% 8.0% 35.0 45.0 55.0 Zr [at%] Icosahedron Fraction • Chosen Method: Green - Kubo  =  t B t dstPstP Tk V 0 00 )()(lim  Zr Al Ni...1 DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution 15 February 2013 Integrity  Service  Excellence Dr. Ali Sayir Program Officer...c) (d) (e) (f) (g) (h) Band structure EELS spectra Kinetic parameters Thermal properties Mechanical prop’s W. Windl (OSU), K. Flores

  11. Superconductivity in the graphene monolayer calculated using the Kubo formulalism

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2018-03-01

    We have employed the massless Dirac's fermions formalism together with the Kubo's linear response theory to study the transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC electric conductivities of the system that is known to be a relativistic electron plasma. Our results show a superconductor behavior to the electron transport and consequently the spin transport for all values of T > 0 and a behavior of the AC conductivity tending to infinity in the limit ω → 0. In T = 0 our results show an insulator behavior with a transition from a superconductor state at T > 0 to an insulator state at T = 0 .

  12. Green-Kubo relation for viscosity tested using experimental data for a two-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Goree, J.; Liu, Bin; Cohen, E. G. D.

    2011-10-01

    The theoretical Green-Kubo relation for viscosity is tested using experimentally obtained data. In a dusty plasma experiment, micron-sized dust particles are introduced into a partially ionized argon plasma, where they become negatively charged. They are electrically levitated to form a single-layer Wigner crystal, which is subsequently melted using laser heating. In the liquid phase, these dust particles experience interparticle electric repulsion, laser heating, and friction from the ambient neutral argon gas, and they can be considered to be in a nonequilibrium steady state. Direct measurements of the positions and velocities of individual dust particles are then used to obtain a time series for an off-diagonal element of the stress tensor and its time autocorrelation function. This calculation also requires the interparticle potential, which was not measured experimentally but was obtained using a Debye-Hückel-type model with experimentally determined parameters. Integrating the autocorrelation function over time yields the viscosity for shearing motion among dust particles. The viscosity so obtained is found to agree with results from a previous experiment using a hydrodynamical Navier-Stokes equation. This comparison serves as a test of the Green-Kubo relation for viscosity. Our result is also compared to the predictions of several simulations.

  13. Dependence of the atomic level Green-Kubo stress correlation function on wavevector and frequency: molecular dynamics results from a model liquid.

    PubMed

    Levashov, V A

    2014-09-28

    We report on a further investigation of a new method that can be used to address vibrational dynamics and propagation of stress waves in liquids. The method is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the atomic level stress correlation functions. This decomposition, as was demonstrated previously for a model liquid studied in molecular dynamics simulations, reveals the presence of stress waves propagating over large distances and a structure that resembles the pair density function. In this paper, by performing the Fourier transforms of the atomic level stress correlation functions, we elucidate how the lifetimes of the stress waves and the ranges of their propagation depend on their frequency, wavevector, and temperature. These results relate frequency and wavevector dependence of the generalized viscosity to the character of propagation of the shear stress waves. In particular, the results suggest that an increase in the value of the frequency dependent viscosity at low frequencies with decrease of temperature is related to the increase in the ranges of propagation of the stress waves of the corresponding low frequencies. We found that the ranges of propagation of the shear stress waves of frequencies less than half of the Einstein frequency extend well beyond the nearest neighbor shell even above the melting temperature. The results also show that the crossover from quasilocalized to propagating behavior occurs at frequencies usually associated with the Boson peak.

  14. Transport Coefficients from Large Deviation Functions

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Limmer, David

    2017-10-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  15. Molecular dynamics of liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1997-02-01

    We derive Green-Kubo relations for the viscosities of a nematic liquid crystal. The derivation is based on the application of a Gaussian constraint algorithm that makes the director angular velocity of a liquid crystal a constant of motion. Setting this velocity equal to zero means that a director-based coordinate system becomes an inertial frame and that the constraint torques do not do any work on the system. The system consequently remains in equilibrium. However, one generates a different equilibrium ensemble. The great advantage of this ensemble is that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals, whereas they are complicated rational functions in the conventional canonical ensemble. This facilitates the numerical evaluation of the viscosities by molecular dynamics simulations.

  16. Calculation of shear viscosity using Green-Kubo relations within a parton cascade

    NASA Astrophysics Data System (ADS)

    Wesp, C.; El, A.; Reining, F.; Xu, Z.; Bouras, I.; Greiner, C.

    2011-11-01

    The shear viscosity of a gluon gas is calculated using the Green-Kubo relation. Time correlations of the energy-momentum tensor in thermal equilibrium are extracted from microscopic simulations using a parton cascade solving various Boltzmann collision processes. We find that the perturbation-QCD- (pQCD-) based gluon bremsstrahlung described by Gunion-Bertsch processes significantly lowers the shear viscosity by a factor of 3 to 8 compared to elastic scatterings. The shear viscosity scales with the coupling as η˜1/[αs2log(1/αs)]. For constant αs the shear viscosity to entropy density ratio η/s has no dependence on temperature. Replacing the pQCD-based collision angle distribution of binary scatterings by an isotropic form decreases the shear viscosity by a factor of 3.

  17. Tail shortening by discrete hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kiefer, J.; Visscher, P. B.

    1982-02-01

    A discrete formulation of hydrodynamics was recently introduced, whose most important feature is that it is exactly renormalizable. Previous numerical work has found that it provides a more efficient and rapidly convergent method for calculating transport coefficients than the usual Green-Kubo method. The latter's convergence difficulties are due to the well-known "long-time tail" of the time correlation function which must be integrated over time. The purpose of the present paper is to present additional evidence that these difficulties are really absent in the discrete equation of motion approach. The "memory" terms in the equation of motion are calculated accurately, and shown to decay much more rapidly with time than the equilibrium time correlations do.

  18. Determining transport coefficients for a microscopic simulation of a hadron gas

    NASA Astrophysics Data System (ADS)

    Pratt, Scott; Baez, Alexander; Kim, Jane

    2017-02-01

    Quark-gluon plasmas produced in relativistic heavy-ion collisions quickly expand and cool, entering a phase consisting of multiple interacting hadronic resonances just below the QCD deconfinement temperature, T ˜155 MeV. Numerical microscopic simulations have emerged as the principal method for modeling the behavior of the hadronic stage of heavy-ion collisions, but the transport properties that characterize these simulations are not well understood. Methods are presented here for extracting the shear viscosity and two transport parameters that emerge in Israel-Stewart hydrodynamics. The analysis is based on studying how the stress-energy tensor responds to velocity gradients. Results are consistent with Kubo relations if viscous relaxation times are twice the collision time.

  19. Stochastic field-line wandering in magnetic turbulence with shear. I. Quasi-linear theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalchi, A.; Negrea, M.; Petrisor, I.

    2016-07-15

    We investigate the random walk of magnetic field lines in magnetic turbulence with shear. In the first part of the series, we develop a quasi-linear theory in order to compute the diffusion coefficient of magnetic field lines. We derive general formulas for the diffusion coefficients in the different directions of space. We like to emphasize that we expect that quasi-linear theory is only valid if the so-called Kubo number is small. We consider two turbulence models as examples, namely, a noisy slab model as well as a Gaussian decorrelation model. For both models we compute the field line diffusion coefficientsmore » and we show how they depend on the aforementioned Kubo number as well as a shear parameter. It is demonstrated that the shear effect reduces all field line diffusion coefficients.« less

  20. Systematic errors in transport calculations of shear viscosity using the Green-Kubo formalism

    NASA Astrophysics Data System (ADS)

    Rose, J. B.; Torres-Rincon, J. M.; Oliinychenko, D.; Schäfer, A.; Petersen, H.

    2018-05-01

    The purpose of this study is to provide a reproducible framework in the use of the Green-Kubo formalism to extract transport coefficients. More specifically, in the case of shear viscosity, we investigate the limitations and technical details of fitting the auto-correlation function to a decaying exponential. This fitting procedure is found to be applicable for systems interacting both through constant and energy-dependent cross-sections, although this is only true for sufficiently dilute systems in the latter case. We find that the optimal fit technique consists in simultaneously fixing the intercept of the correlation function and use a fitting interval constrained by the relative error on the correlation function. The formalism is then applied to the full hadron gas, for which we obtain the shear viscosity to entropy ratio.

  1. Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures

    NASA Astrophysics Data System (ADS)

    Cancès, Eric; Cazeaux, Paul; Luskin, Mitchell

    2017-06-01

    We give an exact formulation for the transport coefficients of incommensurate two-dimensional atomic multilayer systems in the tight-binding approximation. This formulation is based upon the C* algebra framework introduced by Bellissard and collaborators [Coherent and Dissipative Transport in Aperiodic Solids, Lecture Notes in Physics (Springer, 2003), Vol. 597, pp. 413-486 and J. Math. Phys. 35(10), 5373-5451 (1994)] to study aperiodic solids (disordered crystals, quasicrystals, and amorphous materials), notably in the presence of magnetic fields (quantum Hall effect). We also present numerical approximations and test our methods on a one-dimensional incommensurate bilayer system.

  2. Statistical mechanical theory for steady state systems. II. Reciprocal relations and the second entropy.

    PubMed

    Attard, Phil

    2005-04-15

    The concept of second entropy is introduced for the dynamic transitions between macrostates. It is used to develop a theory for fluctuations in velocity, and is exemplified by deriving Onsager reciprocal relations for Brownian motion. The cases of free, driven, and pinned Brownian particles are treated in turn, and Stokes' law is derived. The second entropy analysis is applied to the general case of thermodynamic fluctuations, and the Onsager reciprocal relations for these are derived using the method. The Green-Kubo formulas for the transport coefficients emerge from the analysis, as do Langevin dynamics.

  3. Bulk viscosity of the Lennard-Jones fluid for a wide range of states computed by equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hoheisel, C.; Vogelsang, R.; Schoen, M.

    1987-12-01

    Accurate data for the bulk viscosity ηv have been obtained by molecular dynamics calculations. Many thermodynamic states of the Lennard-Jones fluid were considered. The Green-Kubo integrand of ηv is analyzed in terms of partial correlation functions constituting the total one. These partial functions behave rather differently from those found for the shear viscosity or the thermal conductivity. Generally the total autocorrelation function of ηv shows a steeper initial decay and a more pronounced long time form than those of the shear viscosity or the thermal conductivity. For states near transition to solid phases, like the pseudotriple point of argon, the Green-Kubo integrand of ηv has a significantly longer ranged time behavior than that of the shear viscosity. Hence, for the latter states, a systematic error is expected for ηv using equilibrium molecular dynamics for its computation.

  4. Correlation range in a supercooled liquid via Green-Kubo expression for viscosity, local atomic stresses, and MD simulations

    NASA Astrophysics Data System (ADS)

    Levashov, Valentin A.; Egami, Takeshi; Morris, James R.

    2009-03-01

    We present a new approach to the issue of correlation range in supercooled liquids based on Green-Kubo expression for viscosity. The integrand of this expression is the average stress-stress autocorrelation function. This correlation function could be rewritten in terms of correlations among local atomic stresses at different times and distances. The features of the autocorrelation function decay with time depend on temperature and correlation range. Through this approach we can study the development of spatial correlation with time, thus directly addressing the question of dynamic heterogeneity. We performed MD simulations on a single component system of particles interacting through short range pair potential. Our results indicate that even above the crossover temperature correlations extend well beyond the nearest neighbors. Surprisingly we found that the system size effects exist even on relatively large systems. We also address the role of diffusion in decay of stress-stress correlation function.

  5. Diffusion of test particles in stochastic magnetic fields for small Kubo numbers.

    PubMed

    Neuer, Marcus; Spatschek, Karl H

    2006-02-01

    Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the basis of the so-called A-Langevin equation. Compared to the previously used A-Langevin model, here finite Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function (in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity correlation function, being averaged with respect to the stochastic variables including collisions, leads to an implicit differential equation for the mean square displacement. From the latter, different transport regimes, including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius contributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small (or vanishing) mean fields is also discussed.

  6. Gauge Physics of Spin Hall Effect

    PubMed Central

    Tan, Seng Ghee; Jalil, Mansoor B. A.; Ho, Cong Son; Siu, Zhuobin; Murakami, Shuichi

    2015-01-01

    Spin Hall effect (SHE) has been discussed in the context of Kubo formulation, geometric physics, spin orbit force, and numerous semi-classical treatments. It can be confusing if the different pictures have partial or overlapping claims of contribution to the SHE. In this article, we present a gauge-theoretic, time-momentum elucidation, which provides a general SHE equation of motion, that unifies under one theoretical framework, all contributions of SHE conductivity due to the kinetic, the spin orbit force (Yang-Mills), and the geometric (Murakami-Fujita) effects. Our work puts right an ambiguity surrounding previously partial treatments involving the Kubo, semiclassical, Berry curvatures, or the spin orbit force. Our full treatment shows the Rashba 2DEG SHE conductivity to be instead of −, and Rashba heavy hole instead of −. This renewed treatment suggests a need to re-derive and re-calculate previously studied SHE conductivity. PMID:26689260

  7. Canonical Drude Weight for Non-integrable Quantum Spin Chains

    NASA Astrophysics Data System (ADS)

    Mastropietro, Vieri; Porta, Marcello

    2018-03-01

    The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.

  8. Brownian systems with spatially inhomogeneous activity

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Brader, J. M.

    2017-09-01

    We generalize the Green-Kubo approach, previously applied to bulk systems of spherically symmetric active particles [J. Chem. Phys. 145, 161101 (2016), 10.1063/1.4966153], to include spatially inhomogeneous activity. The method is applied to predict the spatial dependence of the average orientation per particle and the density. The average orientation is given by an integral over the self part of the Van Hove function and a simple Gaussian approximation to this quantity yields an accurate analytical expression. Taking this analytical result as input to a dynamic density functional theory approximates the spatial dependence of the density in good agreement with simulation data. All theoretical predictions are validated using Brownian dynamics simulations.

  9. Deterministic diffusion in flower-shaped billiards.

    PubMed

    Harayama, Takahisa; Klages, Rainer; Gaspard, Pierre

    2002-08-01

    We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.

  10. Therapeutic Approaches to the Treatment of Botulism

    DTIC Science & Technology

    1989-10-01

    of the clostridial neurotoxins (last report). It must now be reported that there is another unusual quality to the data on interactions. As just...636-640, 1986. Matsuoka, I., Syuto, B., Kurihara, K. and Kubo, S.: ADP- ribosylation of specific membrane proteins in pheochromocytoma and primary

  11. Diffusion and viscosity of liquid tin: Green-Kubo relationship-based calculations from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mouas, Mohamed; Gasser, Jean-Georges; Hellal, Slimane; Grosdidier, Benoît; Makradi, Ahmed; Belouettar, Salim

    2012-03-01

    Molecular dynamics (MD) simulations of liquid tin between its melting point and 1600 °C have been performed in order to interpret and discuss the ionic structure. The interactions between ions are described by a new accurate pair potential built within the pseudopotential formalism and the linear response theory. The calculated structure factor that reflects the main information on the local atomic order in liquids is compared to diffraction measurements. Having some confidence in the ability of this pair potential to give a good representation of the atomic structure, we then focused our attention on the investigation of the atomic transport properties through the MD computations of the velocity autocorrelation function and stress autocorrelation function. Using the Green-Kubo formula (for the first time to our knowledge for liquid tin) we determine the macroscopic transport properties from the corresponding microscopic time autocorrelation functions. The selfdiffusion coefficient and the shear viscosity as functions of temperature are found to be in good agreement with the experimental data.

  12. Therapeutic Approaches to the Treatment of Botulism

    DTIC Science & Technology

    1987-10-01

    dependence of various preparations of type C toxin. An absence of toxin-induced pa alysis, or an unusually long time for onset of paralysis, at low...Kurihara, K. and Kubo, S.: ADP- ribosylation of specific membrane proteins in pheochromocytoma and primary-cultured brain cells by botulinum neurotoxins

  13. Kinetic theory for strongly coupled Coulomb systems

    NASA Astrophysics Data System (ADS)

    Dufty, James; Wrighton, Jeffrey

    2018-01-01

    The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.

  14. Ratio of shear viscosity to entropy density in multifragmentation of Au + Au

    NASA Astrophysics Data System (ADS)

    Zhou, C. L.; Ma, Y. G.; Fang, D. Q.; Li, S. X.; Zhang, G. Q.

    2012-06-01

    The ratio of the shear viscosity (η) to entropy density (s) for the intermediate energy heavy-ion collisions has been calculated by using the Green-Kubo method in the framework of the quantum molecular dynamics model. The theoretical curve of η/s as a function of the incident energy for the head-on Au + Au collisions displays that a minimum region of η/s has been approached at higher incident energies, where the minimum η/s value is about 7 times Kovtun-Son-Starinets (KSS) bound (1/4π). We argue that the onset of minimum η/s region at higher incident energies corresponds to the nuclear liquid gas phase transition in nuclear multifragmentation.

  15. Valley-polarized quantum transport generated by gauge fields in graphene

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  16. Infrared study of vibrational relaxation in liquid benzene and its cyclohexane- d12 solutions

    NASA Astrophysics Data System (ADS)

    Akiyama, Minoru; Miyamae, Yuichi

    1997-10-01

    The infrared-band shapes and intensities were measured for the ν19 planar mode (the C-C stretching) of benzene both in the liquid phase and in cyclohexane- d12 solutions at 30°C. In order to investigate the vibrational dephasing dynamics, the data were analyzed on the bases of the Kubo-Rothschild theory. The rms magnitude of the Bohr frequency modulation and its correlation time were determined for the vibrational dephasing of the ν19 mode by using the modified simplex method so that the calculated band profile has the best fit with the observed. The parameters thus determined were compared with those obtained from time-resolved Raman scattering experiments.

  17. Onboard Flow Sensing For Downwash Detection and Avoidance On Small Quadrotor Helicopters

    DTIC Science & Technology

    2015-01-01

    onboard computers, one for flight stabilization and a Linux computer for sensor integration and control calculations . The Linux computer runs Robot...Hirokawa, D. Kubo , S. Suzuki, J. Meguro, and T. Suzuki. Small uav for immediate hazard map generation. In AIAA Infotech@Aerospace Conf, May 2007. 8F

  18. Spin-orbit driven phenomena in the isoelectronic L 10 -Fe(Pd,Pt) alloys from first principles

    NASA Astrophysics Data System (ADS)

    Kudrnovský, J.; Drchal, V.; Turek, I.

    2017-12-01

    The anomalous Hall effect (AHE) and the Gilbert damping (GD) are studied theoretically for the partially ordered L 10 -Fe(Pd,Pt) alloys. The varying alloy order and the spin-orbit coupling, which are due to the change in the Pd/Pt composition, allow for a chemical tuning of both phenomena which play an important role in the spintronic applications. The impact of the antisite disorder on the residual resistivity, AHE, and GD is studied from first principles using recently developed methods employing the Kubo-Bastin approach and the nonlocal torque operator method. The most interesting result is a different behavior of samples with low and high chemical orders. Good agreement between calculated and measured concentration trends is obtained for all quantities studied, while the absolute GD values are underestimated.

  19. Technical College Transition Experience from English as a Second Language through Graduation

    ERIC Educational Resources Information Center

    Solomon, Debra J.

    2012-01-01

    In the United States, adult students of English as a second language (ESL) comprise both the majority and the fastest growing group of adult education students (Crandall & Sheppard, 2007). After ESL, many must seek higher education to earn a sustainable living wage (Wrigley, Richer, Martinson, Kubo, & Strawn, 2003). This study described…

  20. Anomalous heat conduction in a one-dimensional ideal gas.

    PubMed

    Casati, Giulio; Prosen, Tomaz

    2003-01-01

    We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.

  1. Ichthyofauna of the Kubo, Tochikura, and Ichinono river systems (Kitakami River drainage, northern Japan), with a comparison of predicted and surveyed species richness

    PubMed Central

    Nakae, Masanori; Senou, Hiroshi

    2014-01-01

    Abstract The potential fish species pool of the Kubo, Tochikura, and Ichinono river systems (tributaries of the Iwai River, Kitakami River drainage), Iwate Prefecture, northern Japan, was compared with the observed ichthyofauna by using historical records and new field surveys. Based on the literature survey, the potential species pool comprised 24 species/subspecies but only 20, including 7 non-native taxa, were recorded during the fieldwork. The absence during the survey of 11 species/subspecies from the potential species pool suggested either that sampling effort was insufficient, or that accurate determination of the potential species pool was hindered by lack of biogeographic data and ecological data related to the habitat use of the species. With respect to freshwater fish conservation in the area, Lethenteron reissneri, Carassius auratus buergeri, Pseudorasbora pumila, Tachysurus tokiensis, Oryzias latipes, and Cottus nozawae are regarded as priority species, and Cyprinus rubrofuscus, Pseudorasbora parva, and Micropterus salmoides as targets for removal. PMID:25425932

  2. The Kubo-Greenwood spin-dependent electrical conductivity of 2D transition-metal dichalcogenides and group-IV materials: A Green's function study

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen

    2018-04-01

    The spin-dependent electrical conductivity of counterparts of graphene, transition-metal dichalcogenides (TMDs) and group-IV nanosheets, have investigated by a magnetic exchange field (MEF)-induction to gain the electronic transport properties of charge carriers. We have implemented a k.p Hamiltonian model through the Kubo-Greenwood formalism in order to address the dynamical behavior of correlated Dirac fermions. Tuning the MEF enables one to control the effective mass of carriers in group-IV and TMDs, differently. We have found the Dirac-like points in a new quantum anomalous Hall (QAH) state at strong MEFs for both structures. For both cases, a broad peak in electrical conductivity originated from the scattering rate and entropy is observed. Spin degeneracy at some critical MEFs is another remarkable point. We have found that in the limit of zero or uniform MEFs with respect to the spin-orbit interaction, the large resulting electrical conductivity depends on the spin sub-bands in group-IV and MLDs. Featuring spin-dependent electronic transport properties, one can provide a new scenario for future possible applications.

  3. Spin Nernst effect and intrinsic magnetization in two-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Gusynin, V. P.; Sharapov, S. G.; Varlamov, A. A.

    2015-05-01

    We begin with a brief description of the role of the Nernst-Ettingshausen effect in the studies of the high-temperature superconductors and Dirac materials such as graphene. The theoretical analysis of the NE effect is involved because the standard Kubo formalism has to be modified by the presence of magnetization currents in order to satisfy the third law of thermodynamics. A new generation of the low-buckled Dirac materials is expected to have a strong spin Nernst effect that represents the spintronics analog of the NE effect. These Dirac materials can be considered as made of two independent electron subsystems of the two-component gapped Dirac fermions. For each subsystem the gap breaks a time-reversal symmetry and thus plays a role of an effective magnetic field. We explicitly demonstrate how the correct thermoelectric coefficient emerges both by the explicit calculation of the magnetization and by a formal cancelation in the modified Kubo formula. We conclude by showing that the nontrivial dependences of the spin Nersnt signal on the carrier concentration and electric field applied are expected in silicene and other low-buckled Dirac materials.

  4. Exchange and spin-orbit induced phenomena in diluted (Ga,Mn)As from first principles

    NASA Astrophysics Data System (ADS)

    Kudrnovský, J.; Drchal, V.; Turek, I.

    2016-08-01

    Physical properties induced by exchange interactions (Curie temperature and spin stiffness) and spin-orbit coupling (anomalous Hall effect, anisotropic magnetoresistance, and Gilbert damping) in the diluted (Ga,Mn)As ferromagnetic semiconductor are studied from first principles. Recently developed Kubo-Bastin transport theory and nonlocal torque operator formulation of the Gilbert damping as formulated in the tight-binding linear muffin-tin orbital method are used. The first-principles Liechtenstein mapping is employed to construct an effective Heisenberg Hamiltonian and to estimate Curie temperature and spin stiffness in the real-space random-phase approximation. Good agreement of calculated physical quantities with experiments on well-annealed samples containing only a small amount of compensating defects is obtained.

  5. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture

    NASA Astrophysics Data System (ADS)

    Miller, Nicholas A. T.; Daivis, Peter J.; Snook, Ian K.; Todd, B. D.

    2013-10-01

    Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures.

  6. Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes.

    PubMed

    Kondratyuk, Nikolay D; Norman, Genri E; Stegailov, Vladimir V

    2016-11-28

    Diffusion is one of the key subjects of molecular modeling and simulation studies. However, there is an unresolved lack of consistency between Einstein-Smoluchowski (E-S) and Green-Kubo (G-K) methods for diffusion coefficient calculations in systems of complex molecules. In this paper, we analyze this problem for the case of liquid n-triacontane. The non-conventional long-time tails of the velocity autocorrelation function (VACF) are found for this system. Temperature dependence of the VACF tail decay exponent is defined. The proper inclusion of the long-time tail contributions to the diffusion coefficient calculation results in the consistency between G-K and E-S methods. Having considered the major factors influencing the precision of the diffusion rate calculations in comparison with experimental data (system size effects and force field parameters), we point to hydrogen nuclear quantum effects as, presumably, the last obstacle to fully consistent n-alkane description.

  7. The shear and bulk relaxation times from the general correlation functions

    NASA Astrophysics Data System (ADS)

    Czajka, Alina; Jeon, Sangyong

    2017-11-01

    In this paper we present two quantum field theoretical analyses on the shear and bulk relaxation times. First, we discuss how to find Kubo formulas for the shear and the bulk relaxation times. Next, we provide results on the shear viscosity relaxation time obtained within the diagrammatic approach for the massless λϕ4 theory.

  8. Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid.

    PubMed

    Cao, Bing-Yang; Dong, Ruo-Yu

    2014-01-21

    Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient.

  9. Magnetic field line random walk in models and simulations of reduced magnetohydrodynamic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snodin, A. P.; Ruffolo, D.; Oughton, S.

    2013-12-10

    The random walk of magnetic field lines is examined numerically and analytically in the context of reduced magnetohydrodynamic (RMHD) turbulence, which provides a useful description of plasmas dominated by a strong mean field, such as in the solar corona. A recently developed non-perturbative theory of magnetic field line diffusion is compared with the diffusion coefficients obtained by accurate numerical tracing of magnetic field lines for both synthetic models and direct numerical simulations of RMHD. Statistical analysis of an ensemble of trajectories confirms the applicability of the theory, which very closely matches the numerical field line diffusion coefficient as a functionmore » of distance z along the mean magnetic field for a wide range of the Kubo number R. This theory employs Corrsin's independence hypothesis, sometimes thought to be valid only at low R. However, the results demonstrate that it works well up to R = 10, both for a synthetic RMHD model and an RMHD simulation. The numerical results from the RMHD simulation are compared with and without phase randomization, demonstrating a clear effect of coherent structures on the field line random walk for a very low Kubo number.« less

  10. Transport coefficients of liquid CF4 and SF6 computed by molecular dynamics using polycenter Lennard-Jones potentials

    NASA Astrophysics Data System (ADS)

    Hoheisel, C.

    1989-01-01

    For several liquid states of CF4 and SF4, the shear and the bulk viscosity as well as the thermal conductivity were determined by equilibrium molecular dynamics (MD) calculations. Lennard-Jones four- and six-center pair potentials were applied, and the method of constraints was chosen for the MD. The computed Green-Kubo integrands show a steep time decay, and no particular longtime behavior occurs. The molecule number dependence of the results is found to be small, and 3×105 integration steps allow an accuracy of about 10% for the shear viscosity and the thermal conductivity coefficient. Comparison with experimental data shows a fair agreement for CF4, while for SF6 the transport coefficients fall below the experimental ones by about 30%.

  11. Isovector dipole resonance and shear viscosity in low energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Guo, C. Q.; Ma, Y. G.; He, W. B.; Cao, X. G.; Fang, D. Q.; Deng, X. G.; Zhou, C. L.

    2017-05-01

    The ratio of shear viscosity over entropy density in low energy heavy-ion collision has been calculated by using the Green-Kubo method in the framework of an extended quantum molecular dynamics model. After the system almost reaches a local equilibration for a head-on 40Ca+100Mo collision, thermodynamic and transport properties are extracted. Meanwhile, the isovector giant dipole resonance (IVGDR) of the collision system also is studied. By the Gaussian fits to the IVGDR photon spectra, the peak energies of the IVGDR are extracted at different incident energies. The result shows that the IVGDR peak energy has a positive correlation with the ratio of shear viscosity over entropy density. This is a quantum effect and indicates a difference between nuclear matter and classical fluid.

  12. Simultaneous sizing and electrophoretic mobility measurement of sub-micron particles using Brownian motion

    PubMed Central

    Palanisami, Akilan; Miller, John H.

    2011-01-01

    The size and surface chemistry of micron scale particles are of fundamental importance in studies of biology and air particulate pollution. However, typical electrophoretic measurements of these and other sub-micron scale particles (300 nm – 1 μm) cannot resolve size information within heterogeneous mixtures unambiguously. Using optical microscopy, we monitor electrophoretic motion together with the Brownian velocity fluctuations—using the latter to measure size by either the Green-Kubo relation or by calibration from known size standards. Particle diameters are resolved to ±12% with 95% confidence. Strikingly, the size resolution improves as particle size decreases due to the increased Brownian motion. The sizing ability of the Brownian assessed electrophoresis method described here complements the electrophoretic mobility resolution of traditional capillary electrophoresis. PMID:20882556

  13. Investigation of Single Events Upsets in Silicon and GaAs Structures Using Reaction Calculations

    DTIC Science & Technology

    1994-09-01

    T.L. Criswell, D.L. Oberg, J.L. Wert, P.R. Measel , and W.E. Wilson, "Measurement of SEU Thresholds and Cross Sec- tions at Fixed Incidence Angles...WOOD ATTN: E KUBO ATTN: 0 MULKEY IBM CORP BOEING TECHNICAL & MANAGEMENT SVCS, INC ATTN: DEPT L75 ATTN: E NORMAND IBM CORP ATTN: P R MEASEL ATTN: A

  14. Hyperfine Level Interactions of Diamond Nitrogen Vacancy Ensembles Under Transverse Magnetic Fields

    DTIC Science & Technology

    2015-10-06

    eigenvalues 0, ±h̄, corresponding to ms = 0,±1 [18]. Figure 1 shows the calculated energy levels as a function of axial field for a fixed transverse...Progress in 5 Physics 77, 056503 (2014). [9] G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo , H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, Nature 500

  15. Determination of Physical Properties of Ionic Liquids Using Molecular Simulations

    DTIC Science & Technology

    2010-08-20

    That is, most groups rely on relatively short (100-500 ps) simulations and evaluate the viscosity via conventional Green - Kubo integration . In this...and can contribute to higher than expected viscosities . The liquid structure of the energetic ionic liquid 2-hydroxyethylhydrizinium nitrate was...claimed previously that neglect of polarizability leads to inaccuracies in the computed transport properties of ionic liquids such as viscosities

  16. Molecular dynamics and vibrational relaxations in liquid nitromethane.

    NASA Astrophysics Data System (ADS)

    Grazia Giorgini, Maria; Mariani, Leonardo; Morresi, Assunta; Paliani, Giulio; Cataliotti, Rosario Sergio

    The vibrational relaxation processes of totally symmetric v1 (CH stretching and v5 (NO2 bending) motions of liquid nitromethane have been studied as a function of temperature and concentration in CD3NO2 and CCl4 solutions. The experimental vibrational correlation functions of these two modes have shown that relaxation is collision assisted and suitable for modelling with the stochastic Kubo-Rothschild theory.

  17. Anharmonicity Rise the Thermal Conductivity in Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Lv, Wei; Henry, Asegun

    We recently proposed a new method called Direct Green-Kubo Modal Analysis (GKMA) method, which has been shown to calculate the thermal conductivity (TC) of several amorphous materials accurately. A-F method has been widely used for amorphous materials. However, researchers have found out that it failed on several different materials. The missing component of A-F method is the harmonic approximation and considering only the interactions of modes with similar frequencies, which neglect interactions of modes with large frequency difference. On the contrary, GKMA method, which is based on molecular dynamics, intrinsically includes all types of phonon interactions. In GKMA method, each mode's TC comes from both mode self-correlations (autocorrelations) and mode-mode correlations (crosscorrelations). We have demonstrated that the GKMA predicted TC of a-Si from Tersoff potential is in excellent agreement with one of experimental results. In this work, we will present the GKMA applications on a-Si using multiple potentials and gives us more insight of the effect of anharmonicity on the TC of amorphous silicon. This research was supported Intel grant AGMT DTD 1-15-13 and computational resources by NSF supported XSEDE resources under allocations DMR130105 and TG- PHY130049.

  18. Multi-charge-state molecular dynamics and self-diffusion coefficient in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Fu, Yongsheng; Hou, Yong; Kang, Dongdong; Gao, Cheng; Jin, Fengtao; Yuan, Jianmin

    2018-01-01

    We present a multi-ion molecular dynamics (MIMD) simulation and apply it to calculating the self-diffusion coefficients of ions with different charge-states in the warm dense matter (WDM) regime. First, the method is used for the self-consistent calculation of electron structures of different charge-state ions in the ion sphere, with the ion-sphere radii being determined by the plasma density and the ion charges. The ionic fraction is then obtained by solving the Saha equation, taking account of interactions among different charge-state ions in the system, and ion-ion pair potentials are computed using the modified Gordon-Kim method in the framework of temperature-dependent density functional theory on the basis of the electron structures. Finally, MIMD is used to calculate ionic self-diffusion coefficients from the velocity correlation function according to the Green-Kubo relation. A comparison with the results of the average-atom model shows that different statistical processes will influence the ionic diffusion coefficient in the WDM regime.

  19. First- and second-order metal-insulator phase transitions and topological aspects of a Hubbard-Rashba system

    NASA Astrophysics Data System (ADS)

    Marcelino, Edgar

    2017-05-01

    This paper considers a model consisting of a kinetic term, Rashba spin-orbit coupling and short-range Coulomb interaction at zero temperature. The Coulomb interaction is decoupled by a mean-field approximation in the spin channel using field theory methods. The results feature a first-order phase transition for any finite value of the chemical potential and quantum criticality for vanishing chemical potential. The Hall conductivity is also computed using the Kubo formula in a mean-field effective Hamiltonian. In the limit of infinite mass the kinetic term vanishes and all the phase transitions are of second order; in this case the spontaneous symmetry-breaking mechanism adds a ferromagnetic metallic phase to the system and features a zero-temperature quantization of the Hall conductivity in the insulating one.

  20. Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp

    The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculatingmore » the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.« less

  1. Kubo Resistivity of magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Dehaas, Tim; Pribyl, Pat; Vincena, Stephen; van Compernolle, Bart; Sydora, Rick; Tang, Shawn Wenjie

    2017-10-01

    Magnetic flux ropes are bundles of twisted magnetic fields and their associated current. They are common on the surface of the sun (and presumably all other stars) and are observed to have a large range of sizes and lifetimes. They can become unstable and resulting in coronal mass ejections that can travel to earth and indeed, have been observed by satellites. Two side by side flux ropes are generated in the LAPD device at UCLA. Using a series of novel diagnostics the following key quantities, B, u, Vp, n, Te have been measured at more than 48,000 spatial locations and 7,000 time steps. Every term in Ohm's law is also evaluated across and along the local magnetic field and the plasma resistivity derived and it is shown that Ohms law is non-local. The electron distribution function parallel and antiparallel to the background magnetic field was measured and found to be a drifting Kappa function. The Kubo AC conductivity at the flux rope rotation frequency, a 3X3 tensor, was evaluated using velocity correlations and will be presented. This yields meaningful results for the global resistivity. Frequency spectra and the presence of time domain structures may offer a clue to the enhanced resistivity. Work supported by the Department of Energy and National Science Foundation.

  2. Kubo number and magnetic field line diffusion coefficient for anisotropic magnetic turbulence.

    PubMed

    Pommois, P; Veltri, P; Zimbardo, G

    2001-06-01

    The magnetic field line diffusion coefficients Dx and D(y) are obtained by numerical simulations in the case that all the magnetic turbulence correlation lengths l(x), l(y), and l(z) are different. We find that the variety of numerical results can be organized in terms of the Kubo number, the definition of which is extended from R=(deltaB/B(0))(l(parallel)/l(perpendicular)) to R=(deltaB/B(0))(l(z)/l(x)), for l(x) > or = l(y). Here, l(parallel) (l(perpendicular)) is the correlation length along (perpendicular to) the average field B(0)=B(0)ê(z). We have anomalous, non-Gaussian transport for R less, similar 0.1, in which case the mean square deviation scales nonlinearly with time. For R greater, similar 1 we have several Gaussian regimes: an almost quasilinear regime for 0.1 less, similar R less, similar 1, an intermediate, transition regime for 1 less, similar R less, similar 10, and a percolative regime for R greater, similar 10. An analytical form of the diffusion coefficient is proposed, D(i)=D(deltaBl(z)/B(0)l(x))(mu)(l(i)/l(x))(nu)l(2)(x)/l(z), which well describes the numerical simulation results in the quasilinear, intermediate, and percolative regimes.

  3. Japan, Indonesia to investigate condom plant feasibility.

    PubMed

    1981-04-01

    The Japanese government has begun investigations on the possibility of constructing a condom manufacturing plant in Indonesia in response to a request by the Indonesian government. Indonesia, which hopes to reduce its birthrate as of 1971 by 1/2 by 1990, asked for Japanese assistance in building a condom plant based on the expectation that demand for this contraceptive method, although quite low at present, will increase rapidly in the near future with stepped-up motivation campaigns. As a 1st step in the investigation, the Japan International Cooperation Agency (JICA) sent a study team of family planning experts headed by Family Planning Federation of Japan Chairman Dr. Hidebumi Kubo and including JOICFP International Division Director MR. Tameyoshi Katagiri to Indonesia from March 15-24. During its visit, the JICA team held discussions with representatives of BKKBN (the National Family Planning Coordinating Board) including its Chairman and Minister of Health Dr. Suwardjono and reached agreement on the scope and schedule of work toward determining the feasibility of building and operating a condom plant in Indonesia. In defining the scope of work and the schedule, the JICA team and the BKKBN representatives decided on specific issues to be investigated in the feasibility study to be carried out by JICA and scheduled to be completed by the end of October of this year. To be included in the feasibility study are: estimation of future domestic demand for condoms, examination of the domestic supply of latex capacity, chemicals and packaging materials, and collection of information on infrastructure relating to water, energy, transportation, etc. Actual data collection for the study is expected to begin in late May or early June. Dr. Kubo and Mr. Katagiri, upon returning to Japan, reported great enthusiasm for the project in Indonesia and expressed the hope that the plant construction will be feasible so that the country's family planning program can be given a boost and the cooperative relationship between Indonesia and Japan deepened. full text

  4. The time-local view of nonequilibrium statistical mechanics. I. Linear theory of transport and relaxation

    NASA Astrophysics Data System (ADS)

    der, R.

    1987-01-01

    The various approaches to nonequilibrium statistical mechanics may be subdivided into convolution and convolutionless (time-local) ones. While the former, put forward by Zwanzig, Mori, and others, are used most commonly, the latter are less well developed, but have proven very useful in recent applications. The aim of the present series of papers is to develop the time-local picture (TLP) of nonequilibrium statistical mechanics on a new footing and to consider its physical implications for topics such as the formulation of irreversible thermodynamics. The most natural approach to TLP is seen to derive from the Fourier-Laplace transformwidetilde{C}(z)) of pertinent time correlation functions, which on the physical sheet typically displays an essential singularity at z=∞ and a number of macroscopic and microscopic poles in the lower half-plane corresponding to long- and short-lived modes, respectively, the former giving rise to the autonomous macrodynamics, whereas the latter are interpreted as doorway modes mediating the transfer of information from relevant to irrelevant channels. Possible implications of this doorway mode concept for socalled extended irreversible thermodynamics are briefly discussed. The pole structure is used for deriving new kinds of generalized Green-Kubo relations expressing macroscopic quantities, transport coefficients, e.g., by contour integrals over current-current correlation functions obeying Hamiltonian dynamics, the contour integration replacing projection. The conventional Green-Kubo relations valid for conserved quantities only are rederived for illustration. Moreover,widetilde{C}(z) may be expressed by a Laurent series expansion in positive and negative powers of z, from which a rigorous, general, and straightforward method is developed for extracting all macroscopic quantities from so-called secularly divergent expansions ofwidetilde{C}(z) as obtained from the application of conventional many-body techniques to the calculation ofwidetilde{C}(z). The expressions are formulated as time scale expansions, which should rapidly converge if macroscopic and microscopic time scales are sufficiently well separated, i.e., if lifetime ("memory") effects are not too large.

  5. Relaxation Processes and Time Scale Transformation.

    DTIC Science & Technology

    1982-03-01

    the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...discussions of the master equation, 2and has recently been applied in cumulative damage models with discrete time parameter .3 However, it does not seem to...development parameter is taken tG be a positive, cumulative function that increases from an origin monotonically. Consider two continuous time scales e and t

  6. Relativistic diffusive motion in random electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2011-08-01

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  7. Molecular relaxation processes in dimethyldichlorosilane studied by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Bratu, I.; Grecu, Rodica; Iliescu, T.

    1995-04-01

    The paper presents the experimentally determined correlation functions ( CF) of the bands due to IR and Raman active vibrations ν asSiCl 2 and ν sSiCl 2 of dimethyldichlorosilane ( DMDCS) in pure liquid and in solutions. Both reorientational and vibrational relaxations (the last one being dominant) contribute to the profiles of these vibrational modes. Kubo-Rothschild's and Oxtoby's models compared with the experimental CF indicate an intermediate modulation regime.

  8. When is quasi-linear theory exact. [particle acceleration

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  9. Dynamical spin accumulation in large-spin magnetic molecules

    NASA Astrophysics Data System (ADS)

    Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej

    2018-01-01

    The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.

  10. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  11. Electron doping effects on the electrical conductivity of zigzag carbon nanotubes and corresponding unzipped armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Mousavi, Hamze; Jalilvand, Samira; Kurdestany, Jamshid Moradi; Grabowski, Marek

    2017-10-01

    The Kubo formula is used to extract the electrical conductivity (EC) of different diameters of doped zigzag carbon nanotubes and their corresponding unzipped armchair graphene nanoribbons, as a function of temperature and chemical potential, within the tight-binding Hamiltonian model and Green's functions approach. The results reveal more sensitivity to temperature for semiconducting systems in addition to a decrease in EC of all systems with increasing cross-sections.

  12. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DTIC Science & Technology

    2014-10-27

    Diamond. Phys. Rev. Lett. 2000, 84, 5160−5163. (31) Ownby, P. D.; Yang, X.; Liu, J. Calculated X-Ray-Diffraction Data for Diamond Polytypes. J. Am. Ceram...Surfaces from Ab-Initio Calculations . Phys. Rev. B 1995, 51, 14669−14685. (39) Ferrari, A. C.; Robertson, J. Raman Spectroscopy of Amorphous, Nanostructured...Y.; Takami, S.; Kubo , M.; Belosludov, R. V.; Miyamoto, A.; Imamura, A.; Gamo, M. N.; Ando, T. First-Principle Study on Reactions of Diamond (100

  13. The New Burma Road(s): How a Networked System of Roads will Best Orient Myanmar towards Economic Success

    DTIC Science & Technology

    2014-10-30

    figure calculated by reviewing a country’s performance in a number of factors such as customs clearance efficiency and tracking capabilities. 76...the transportation sector, marginal costs are calculated based on the total costs per one additional mile of a particular transportation mode. For...Myanmar: KPMG Advisory (Myanmar) Limited, 2013. Kubo , Koji. “Myanmar’s Two Decades of Partial Transition to a Market Economy: A Negative

  14. Field Line Random Walk in Isotropic Magnetic Turbulence up to Infinite Kubo Number

    NASA Astrophysics Data System (ADS)

    Sonsrettee, W.; Wongpan, P.; Ruffolo, D. J.; Matthaeus, W. H.; Chuychai, P.; Rowlands, G.

    2013-12-01

    In astrophysical plasmas, the magnetic field line random walk (FLRW) plays a key role in the transport of energetic particles. In the present, we consider isotropic magnetic turbulence, which is a reasonable model for interstellar space. Theoretical conceptions of the FLRW have been strongly influenced by studies of the limit of weak fluctuations (or a strong mean field) (e.g, Isichenko 1991a, b). In this case, the behavior of FLRW can be characterized by the Kubo number R = (b/B0)(l_∥ /l_ \\bot ) , where l∥ and l_ \\bot are turbulence coherence scales parallel and perpendicular to the mean field, respectively, and b is the root mean squared fluctuation field. In the 2D limit (R ≫ 1), there has been an apparent conflict between concepts of Bohm diffusion, which is based on the Corrsin's independence hypothesis, and percolative diffusion. Here we have used three non-perturbative analytic techniques based on Corrsin's independence hypothesis for B0 = 0 (R = ∞ ): diffusive decorrelation (DD), random ballistic decorrelation (RBD) and a general ordinary differential equation (ODE), and compared them with direct computer simulations. All the analytical models and computer simulations agree that isotropic turbulence for R = ∞ has a field line diffusion coefficient that is consistent with Bohm diffusion. Partially supported by the Thailand Research Fund, NASA, and NSF.

  15. Non-Markovian near-infrared Q branch of HCl diluted in liquid Ar.

    PubMed

    Padilla, Antonio; Pérez, Justo

    2013-08-28

    By using a non-Markovian spectral theory based in the Kubo cumulant expansion technique, we have qualitatively studied the infrared Q branch observed in the fundamental absorption band of HCl diluted in liquid Ar. The statistical parameters of the anisotropic interaction present in this spectral theory were calculated by means of molecular dynamics techniques, and found that the values of the anisotropic correlation times are significantly greater (by a factor of two) than those previously obtained by fitting procedures or microscopic cell models. This fact is decisive for the observation in the theoretical spectral band of a central Q resonance which is absent in the abundant previous researches carried out with the usual theories based in Kubo cumulant expansion techniques. Although the theory used in this work only allows a qualitative study of the Q branch, we can employ it to study the unknown characteristics of the Q resonance which are difficult to obtain with the quantum simulation techniques recently developed. For example, in this study we have found that the Q branch is basically a non-Markovian (or memory) effect produced by the spectral line interferences, where the PR interferential profile basically determines the Q branch spectral shape. Furthermore, we have found that the Q resonance is principally generated by the first rotational states of the first two vibrational levels, those more affected by the action of the dissolvent.

  16. Thermal conductivity calculation of nano-suspensions using Green-Kubo relations with reduced artificial correlations.

    PubMed

    Muraleedharan, Murali Gopal; Sundaram, Dilip Srinivas; Henry, Asegun; Yang, Vigor

    2017-04-20

    The presence of artificial correlations associated with Green-Kubo (GK) thermal conductivity calculations is investigated. The thermal conductivity of nano-suspensions is calculated by equilibrium molecular dynamics (EMD) simulations using GK relations. Calculations are first performed for a single alumina (Al 2 O 3 ) nanoparticle dispersed in a water medium. For a particle size of 1 nm and volume fraction of 9%, results show enhancements as high as 235%, which is much higher than the Maxwell model predictions. When calculations are done with multiple suspended particles, no such anomalous enhancement is observed. This is because the vibrations in alumina crystal can act as low frequency perturbations, which can travel long distances through the surrounding water medium, characterized by higher vibration frequencies. As a result of the periodic boundaries, they re-enter the system resulting in a circular resonance of thermal fluctuations between the alumina particle and its own image, eventually leading to artificial correlations in the heat current autocorrelation function (HCACF), which when integrated yields abnormally high thermal conductivities. Adding more particles presents 'obstacles' with which the fluctuations interact and get dissipated, before they get fed back to the periodic image. A systematic study of the temporal evolution of HCACF indicates that the magnitude and oscillations of artificial correlations decrease substantially with increase in the number of suspended nanoparticles.

  17. Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV-Visible and NMR) analysis using HF and DFT calculations.

    PubMed

    Ayeshamariam, A; Ramalingam, S; Bououdina, M; Jayachandran, M

    2014-01-24

    In this work, pure and singe phase SnO2 Nano powder is successfully prepared by simple sol-gel combustion route. The photo luminescence and XRD measurements are made and compared the geometrical parameters with calculated values. The FT-IR and FT-Raman spectra are recorded and the fundamental frequencies are assigned. The optimized parameters and the frequencies are calculated using HF and DFT (LSDA, B3LYP and B3PW91) theory in bulk phase of SnO2 and are compared with its Nano phase. The vibrational frequency pattern in nano phase gets realigned and the frequencies are shifted up to higher region of spectra when compared with bulk phase. The NMR and UV-Visible spectra are simulated and analyzed. Transmittance studies showed that the HOMO-LUMO band gap (Kubo gap) is reduced from 3.47 eV to 3.04 eV while it is heated up to 800°C. The Photoluminescence spectra of SnO2 powder showed a peak shift towards lower energy side with the change of Kubo gap from 3.73 eV to 3.229 eV for as-prepared and heated up to 800°C. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Thermal field theory and generalized light front quantization

    NASA Astrophysics Data System (ADS)

    Weldon, H. Arthur

    2003-04-01

    The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski coordinates. In the general coordinates the metric tensor gμν¯ is nondiagonal. The Kubo-Martin-Schwinger condition requires periodicity in thermal correlation functions when the temporal variable changes by an amount -i/(T(g00¯)). Light-front quantization fails since g00¯=0; however, various related quantizations are possible.

  19. Correlations and the Ring-Kinetic Equation in Dense Sheared Granular Flows

    NASA Astrophysics Data System (ADS)

    Kumaran, V.

    A formal way of deriving fluctuation-correlation relations in densesheared granular media, starting with the Enskog approximation for the collision integral in the Chapman-Enskog theory, is discussed. The correlation correction to the viscosity is obtained using the ring-kinetic equation, in terms of the correlations in the hydrodynamic modes of the linearised Enskog equation. It is shown that the Green-Kubo formula for the shear viscosity emerges from the two-body correlation function obtained from the ring-kinetic equation.

  20. Interplay between the Dzyaloshinskii-Moriya term and external fields on spin transport in the spin-1/2 one-dimensional antiferromagnet

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2018-05-01

    We study the effect of the uniform Dzyaloshinskii-Moriya interaction (symmetric exchange anisotropy) and arbitrary oriented external magnetic fields on spin conductivity in the spin-1/2 one-dimensional Heisenberg antiferromagnet. The spin conductivity is calculated employing abelian bosonization and the Kubo formalism of transport. We investigate the influence of three competing phases at zero-temperature, (Néel phase, dimerized phase and gapless Luttinger liquid phase) on the AC spin conductivity.

  1. Optical response in Weyl semimetal in model with gapped Dirac phase

    NASA Astrophysics Data System (ADS)

    Mukherjee, S. P.; Carbotte, J. P.

    2017-10-01

    We study the optical properties of Weyl semimetal (WSM) in a model which features, in addition to the usual term describing isolated Dirac cones proportional to the Fermi velocity v F, a gap term m and a Zeeman spin-splitting term b with broken time reversal symmetry. Transport is treated within Kubo formalism and particular attention is payed to the modifications that result from a finite m and b. We consider how these modifications change when a finite residual scattering rate \

  2. The non-commutative topology of two-dimensional dirty superconductors

    NASA Astrophysics Data System (ADS)

    De Nittis, Giuseppe; Schulz-Baldes, Hermann

    2018-01-01

    Non-commutative analysis tools have successfully been applied to the integer quantum Hall effect, in particular for a proof of the stability of the Hall conductance in an Anderson localization regime and of the bulk-boundary correspondence. In this work, these techniques are implemented to study two-dimensional dirty superconductors described by Bogoliubov-de Gennes Hamiltonians. After a thorough presentation of the basic framework and the topological invariants, Kubo formulas for the thermal, thermoelectric and spin Hall conductance are analyzed together with the corresponding edge currents.

  3. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    DTIC Science & Technology

    2014-10-01

    Kubo , T., Wada, T., Yamaguchi, Y., Shimizu, A. & Handa, H. Knock-down of 25 kDa subunit of cleavage factor Im inHela cells alters alternative...usage was calculated as 62normalized DDDCT. Oligonucleotides used for qRT–PCR. Cyclin D1 common forward, 59-CTGC CAGGAGCAGATCGAAG; reverse, 59...CTdeviation of either amplicon at all of the dilutions was calculated as a correction factor. d, The experiment shown in c was repeated for DICER1 and

  4. Study of 1/f Noise in Solids.

    DTIC Science & Technology

    1983-01-01

    Nyquist 1928, Callen and Greene 1952) or from a quantum statistical mechanical approach ( Kubo 1957). The other five properties are somewhat more subtle...then a continued decrease. LAJ The noise In GaAs n+n-n * mesas of submicron dimensions is very lc,.. 1he we * * Hooge parameter is of the order of W7...processes. + - + The noise in GaAs n n n mesas of submicron dimensions is very low. The Hooge parameter is of order 10- 7 , indicating that collisions are

  5. Quasi-linear theory via the cumulant expansion approach

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1974-01-01

    The cumulant expansion technique of Kubo was used to derive an intergro-differential equation for f , the average one particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the f equation degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory for this limited class of fluctuations. For more physically realistic fluctuations, however, quasi-linear theory is at best approximate.

  6. Maximal Sensitive Dependence and the Optimal Path to Epidemic Extinction

    DTIC Science & Technology

    2010-01-01

    1996; Elgart and Kamenev, 2004). Instead, in this article, we will employ an eikonal approximation to recast the problem in terms of an effective...a control strategy on the extinction rate can be determined by its effect on the optimal path (Dykman et al., 2008). Through the use of the eikonal ...the solution of Eqs. (6a)–(6b) in the eikonal form (Elgart and Kamenev, 2004; Doering et al., 2005; Kubo et al., 1973; Wentzell, 1976; Gang, 1987

  7. Scale-invariant Green-Kubo relation for time-averaged diffusivity

    NASA Astrophysics Data System (ADS)

    Meyer, Philipp; Barkai, Eli; Kantz, Holger

    2017-12-01

    In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.

  8. Domain Wall Formation in Ferromagnetic Layers: An Ab Initio Study

    NASA Astrophysics Data System (ADS)

    Herper, Heike C.

    Domain walls are an inherent feature of ferromagnetic (FM) films consisting of layers with different magnetic orientations. Since FM films are used in electrical devices the question of the influence of domain walls on, e.g., the magnetoresistance has attracted much interest. Besides discussing the resistance contribution of domain walls, it is appropriate to study different types of domain walls and their energy of formation. The behaviour of domain walls is usually discussed within model calculations. In the present paper it is done within an ab initio Green's function technique for layered systems, i.e., the fully relativistic, spin-polarized screened Korringa-Kohn Rostoker method. Results are presented for fcc Co layers covered by two semi-infinite fcc Pt(001) bulk systems or by bulk fcc Co(001), respectively. The resistance, which is caused by the different types of domain walls is discussed within a Kubo-Greenwood approach considering Co(001)/Co24/Co(001) as an example.

  9. Perspective: Maximum caliber is a general variational principle for dynamical systems

    NASA Astrophysics Data System (ADS)

    Dixit, Purushottam D.; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A.

    2018-01-01

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics—such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production—are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  10. Thermal conductivity of nanocrystalline SiGe alloys using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Abs da Cruz, Carolina; Katcho, Nebil A.; Mingo, Natalio; Veiga, Roberto G. A.

    2013-10-01

    We have studied the effect of nanocrystalline microstructure on the thermal conductivity of SiGe alloys using molecular dynamics simulations. Nanograins are modeled using both the coincidence site lattice and the Voronoi tessellation methods, and the thermal conductivity is computed using the Green-Kubo formalism. We analyze the dependence of the thermal conductivity with temperature, grain size L, and misorientation angle. We find a power dependence of L1/4 of the thermal conductivity with the grain size, instead of the linear dependence shown by non-alloyed nanograined systems. This dependence can be derived analytically underlines the important role that disorder scattering plays even when the grains are of the order of a few nm. This is in contrast to non-alloyed systems, where phonon transport is governed mainly by the boundary scattering. The temperature dependence is weak, in agreement with experimental measurements. The effect of angle misorientation is also small, which stresses the main role played by the disorder scattering.

  11. Perspective: Maximum caliber is a general variational principle for dynamical systems.

    PubMed

    Dixit, Purushottam D; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A

    2018-01-07

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics-such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production-are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  12. General Criterion for Harmonicity

    NASA Astrophysics Data System (ADS)

    Proesmans, Karel; Vandebroek, Hans; Van den Broeck, Christian

    2017-10-01

    Inspired by Kubo-Anderson Markov processes, we introduce a new class of transfer matrices whose largest eigenvalue is determined by a simple explicit algebraic equation. Applications include the free energy calculation for various equilibrium systems and a general criterion for perfect harmonicity, i.e., a free energy that is exactly quadratic in the external field. As an illustration, we construct a "perfect spring," namely, a polymer with non-Gaussian, exponentially distributed subunits which, nevertheless, remains harmonic until it is fully stretched. This surprising discovery is confirmed by Monte Carlo and Langevin simulations.

  13. Diffusion in Deterministic Interacting Lattice Systems

    NASA Astrophysics Data System (ADS)

    Medenjak, Marko; Klobas, Katja; Prosen, Tomaž

    2017-09-01

    We study reversible deterministic dynamics of classical charged particles on a lattice with hard-core interaction. It is rigorously shown that the system exhibits three types of transport phenomena, ranging from ballistic, through diffusive to insulating. By obtaining an exact expressions for the current time-autocorrelation function we are able to calculate the linear response transport coefficients, such as the diffusion constant and the Drude weight. Additionally, we calculate the long-time charge profile after an inhomogeneous quench and obtain diffusive profilewith the Green-Kubo diffusion constant. Exact analytical results are corroborated by Monte Carlo simulations.

  14. Nonlocal Ohms Law, Plasma Resistivity, and Reconnection During Collisions of Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; DeHaas, T.; Pribyl, P.; Vincena, S.; Van Compernolle, B.; Sydora, R.; Tripathi, S. K. P.

    2018-01-01

    The plasma resistivity was evaluated in an experiment on the collision of two magnetic flux ropes. Whenever the ropes collide, some magnetic energy is lost as a result of reconnection. Volumetric data, in which all the relevant time-varying quantities were recorded in detail, are presented. Ohm’s law is shown to be nonlocal and cannot be used to evaluate the plasma resistivity. The resistivity was instead calculated using the AC Kubo resistivity and shown to be anomalously high in certain regions of space.

  15. Charge redistribution from novel magneto-vorticity coupling in anomalous hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hattori, Koichi; Yin, Yi

    2017-11-01

    We discuss new transport phenomena in the presence of both a strong magnetic field and a vortex field. Their interplay induces a charge distribution and a current along the magnetic field. We show that the associated transport coefficients can be obtained from a simple analysis of the single-particle distribution functions and also from the Kubo formula calculation. The consistent results from these analyses suggest that the transport coefficients are tied to the chiral anomaly in the (1 + 1) dimension because of the dimensional reduction in the lowest Landau levels.

  16. History of ``NANO''-Scale VERY EARLY Solid-State (and Liquid-State) Physics/Chemistry/Metallurgy/ Ceramics; Interstitial-Alloys Carbides/Nitrides/Borides/...Powders and Cermets, Rock Shocks, ...

    NASA Astrophysics Data System (ADS)

    Maiden, Colin; Siegel, Edward

    History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)

  17. Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.

    PubMed

    Khrustalyov, Yu V; Vaulina, O S

    2012-04-01

    Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.

  18. Stress as an order parameter for the glass transition

    NASA Astrophysics Data System (ADS)

    Visscher, P. B.; Logan, W. T.

    1990-09-01

    The stress tensor has been considered as a possible order parameter for the liquid-glass transition, and its autocorrelation matrix (elements of which are the integrands in the Green-Kubo formulas for bulk and shear viscosity) have been measured in simulations. However, only the k=0 spatial Fourier component has apparently been previously measured. We have measured four Fourier components of all matrix elements of the stress-stress correlation function, and we find that some of those with nonzero wave vector are significantly more persistent (slower decaying) than the k=0 component.

  19. Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posch, H.A.; Hoover, W.G.; Kum, O.

    1995-08-01

    We simulate both microscopic and macroscopic shear flows in two space dimensions using nonequilibrium molecular dynamics and smooth-particle applied mechanics. The time-reversible {ital microscopic} equations of motion are isomorphic to the smooth-particle description of inviscid {ital macroscopic} continuum mechanics. The corresponding microscopic particle interactions are relatively weak and long ranged. Though conventional Green-Kubo theory suggests instability or divergence in two-dimensional flows, we successfully define and measure a finite shear viscosity coefficient by simulating stationary plane Couette flow. The special nature of the weak long-ranged smooth-particle functions corresponds to an unusual kind of microscopic transport. This microscopic analog is mainly kinetic,more » even at high density. For the soft Lucy potential which we use in the present work, nearly all the system energy is potential, but the resulting shear viscosity is nearly all kinetic. We show that the measured shear viscosities can be understood, in terms of a simple weak-scattering model, and that this understanding is useful in assessing the usefulness of continuum simulations using the smooth-particle method. We apply that method to the Rayleigh-Benard problem of thermally driven convection in a gravitational field.« less

  20. Effect of strain on the electron effective mobility in biaxially strained silicon inversion layers: An experimental and theoretical analysis via atomic force microscopy measurements and Kubo-Greenwood mobility calculations

    NASA Astrophysics Data System (ADS)

    Bonno, Olivier; Barraud, Sylvain; Mariolle, Denis; Andrieu, François

    2008-03-01

    Recently, in order to explain the long-channel electron effective mobility at a high sheet carrier density in strained silicon channel transistors, it has been suggested by [M. V. Fischetti, F. Gamiz, and W. Hansch, J. Appl. Phys. 92, 7230 (2002)] that biaxial tensile strain should smooth the Si/SiO2 interface. To address this topic, the roughness properties of biaxial strained silicon-on-insulator (s-SOI) films are investigated by means of atomic force microscopy. Through in-depth statistical analysis of the digitalized surface profiles, the roughness parameters are extracted for unstrained and strained SOI films, with 0.8% biaxial tensile strain. Especially, it is found that strain significantly reduces the roughness amplitude. Then, mobility calculations in SOI and s-SOI inversion layers are performed in the framework of the Kubo-Greenwood formalism. The model accounts for the main scattering mechanisms that are dominant in the high electron density range, namely phonon and surface roughness. Special attention has been paid to the modeling of the latter by accounting for all the contributions of the potential which arise from the deformed rough interface, and by using a multisubband wavelength-dependent screening model. This model is then applied to study the influence of the surface morphology on the mobility in s-SOI inversion layers. In this context, the mobility gain between s-SOI and unstrained SOI layers is found to agree significantly better with experimental data if the strain-induced decrease of the roughness amplitude is taken into account.

  1. Long-time tails of the green-kubo integrands for a binary mixture

    NASA Astrophysics Data System (ADS)

    Wood, W. W.

    1989-11-01

    The long-time tails for the mutual diffusion coefficient, the thermal diffusivity, the thermal conductivity, and the shear and longitudinal viscosities (from which the tail of the bulk viscosity can be calculated) of a nonreactive binary mixture are calculated from mode-coupling theory, and compared with a prior calculation by Pomeau. Three different choices of the thermal forces and currents are considered, with the results found to take their simplest form in the case of the de Groot "double-primed set". The decompositions into the kinetic, potential, and cross terms are given.

  2. A tight binding model study of tunneling conductance spectra of spin and orbitally ordered CMR manganites

    NASA Astrophysics Data System (ADS)

    Panda, Saswati; Sahoo, D. D.; Rout, G. C.

    2018-04-01

    We report here a tight binding model for colossal magnetoresistive (CMR) manganites to study the pseudo gap (PG) behavior near Fermi level. In the Kubo-Ohata type DE model, we consider first and second nearest neighbor interactions for transverse spin fluctuations in core band and hopping integrals in conduction band, in the presence of static band Jahn-Teller distortion. The model Hamiltonian is solved using Zubarev's Green's function technique. The electron density of states (DOS) is found out from the Green's functions. We observe clear PG near Fermi level in the electron DOS.

  3. Nonlinear transport theory in the metal with tunnel barrier

    NASA Astrophysics Data System (ADS)

    Zubov, E. E.

    2018-02-01

    Within the framework of the scattering matrix formalism, the nonlinear Kubo theory for electron transport in the metal with a tunnel barrier has been considered. A general expression for the mean electrical current was obtained. It significantly simplifies the calculation of nonlinear contributions to the conductivity of various hybrid structures. In the model of the tunnel Hamiltonian, all linear and nonlinear contributions to a mean electrical current are evaluated. The linear approximation agrees with results of other theories. For effective barrier transmission ?, the ballistic transport is realised with a value of the Landauer conductivity equal to ?.

  4. Electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state

    NASA Astrophysics Data System (ADS)

    Petrov, Yu V.; Inogamov, N. A.; Mokshin, A. V.; Galimzyanov, B. N.

    2018-01-01

    The electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state is calculated by using the relaxation time approach and structural factor of ions obtained by molecular dynamics simulation. Resistivity witin the Ziman-Evans approach is also considered to be higher than in the approach with previously calculated conductivity via the relaxation time. Calculations based on the construction of the ion structural factor through the classical molecular dynamics and kinetic equation for electrons are more economical in terms of computing resources and give results close to the Kubo-Greenwood with the quantum molecular dynamics calculations.

  5. Chaotic oscillations and noise transformations in a simple dissipative system with delayed feedback

    NASA Astrophysics Data System (ADS)

    Zverev, V. V.; Rubinstein, B. Ya.

    1991-04-01

    We analyze the statistical behavior of signals in nonlinear circuits with delayed feedback in the presence of external Markovian noise. For the special class of circuits with intense phase mixing we develop an approach for the computation of the probability distributions and multitime correlation functions based on the random phase approximation. Both Gaussian and Kubo-Andersen models of external noise statistics are analyzed and the existence of the stationary (asymptotic) random process in the long-time limit is shown. We demonstrate that a nonlinear system with chaotic behavior becomes a noise amplifier with specific statistical transformation properties.

  6. Response of two-band systems to a single-mode quantized field

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.

    2016-03-01

    The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.

  7. Lenard-Balescu calculations and classical molecular dynamics simulations of electrical and thermal conductivities of hydrogen plasmas

    DOE PAGES

    Whitley, Heather D.; Scullard, Christian R.; Benedict, Lorin X.; ...

    2014-12-04

    Here, we present a discussion of kinetic theory treatments of linear electrical and thermal transport in hydrogen plasmas, for a regime of interest to inertial confinement fusion applications. In order to assess the accuracy of one of the more involved of these approaches, classical Lenard-Balescu theory, we perform classical molecular dynamics simulations of hydrogen plasmas using 2-body quantum statistical potentials and compute both electrical and thermal conductivity from out particle trajectories using the Kubo approach. Our classical Lenard-Balescu results employing the identical statistical potentials agree well with the simulations.

  8. Linear response and Berry curvature in two-dimensional topological phases

    NASA Astrophysics Data System (ADS)

    Bradlyn, Barry J.

    In this thesis we examine the viscous and thermal transport properties of chiral topological phases, and their relationship to topological invariants. We start by developing a Kubo formalism for calculating the frequency dependent viscosity tensor of a general quantum system, both with and without a uniform external magnetic field. The importance of contact terms is emphasized. We apply this formalism to the study of integer and fractional quantum Hall states, as well as p + ip paired superfluids, and verify the relationship between the Hall viscosity and the mean orbital spin density. We also elucidate the connection between our Kubo formulas and prior adiabatic transport calculations of the Hall viscosity. Additionally, we derive a general relationship between the frequency dependent viscosity and conductivity tensors for Galilean-invariant systems. We comment on the implications of this relationship towards the measurement of Hall viscosity in solid-state systems. To address the question of thermal transport, we first review the standard Kubo formalism of Luttinger for computing thermoelectric coefficients. We apply this to the specific case of non-interacting electrons in the integer quantum Hall regime, paying careful attention to the roles of bulk and edge effects. In order to generalize our discussion to interacting systems, we construct a low-energy effective action for a two-dimensional non-relativistic topological phase of matter in a continuum, which completely describes all of its bulk thermoelectric and visco-elastic properties in the limit of low frequencies, long distances, and zero temperature, without assuming either Lorentz or Galilean invariance, by coupling the microscopic degrees of freedom to the background spacetime geometry. We derive the most general form of a local bulk induced action to first order in derivatives of the background fields, from which thermodynamic and transport properties can be obtained. We show that the gapped bulk cannot contribute to low-temperature thermoelectric transport other than the ordinary Hall conductivity; the other thermoelectric effects (if they occur) are thus purely edge effects. The stress response to time-dependent strains is given by the Hall viscosity, which is robust against perturbations and related to the spin current. Finally, we address the issue of calculating the topological central charge from bulk wavefunctions for a topological phase. Using the form of the topological terms in the induced action, we show that we can calculate the various coefficients of these terms as Berry curvatures associated to certain metric and electromagnetic vector potential perturbations. We carry out this computation explicitly for quantum Hall trial wavefunctions that can be represented as conformal blocks in a chiral conformal field theory (CFT). These calculations make use of the gauge and gravitational anomalies in the underlying chiral CFT.

  9. Transient Nonequilibrium Molecular Dynamic Simulations of Thermal Conductivity: 1. Simple Fluids

    NASA Astrophysics Data System (ADS)

    Hulse, R. J.; Rowley, R. L.; Wilding, W. V.

    2005-01-01

    Thermal conductivity has been previously obtained from molecular dynamics (MD) simulations using either equilibrium (EMD) simulations (from Green--Kubo equations) or from steady-state nonequilibrium (NEMD) simulations. In the case of NEMD, either boundary-driven steady states are simulated or constrained equations of motion are used to obtain steady-state heat transfer rates. Like their experimental counterparts, these nonequilibrium steady-state methods are time consuming and may have convection problems. Here we report a new transient method developed to provide accurate thermal conductivity predictions from MD simulations. In the proposed MD method, molecules that lie within a specified volume are instantaneously heated. The temperature decay of the system of molecules inside the heated volume is compared to the solution of the transient energy equation, and the thermal diffusivity is regressed. Since the density of the fluid is set in the simulation, only the isochoric heat capacity is needed in order to obtain the thermal conductivity. In this study the isochoric heat capacity is determined from energy fluctuations within the simulated fluid. The method is valid in the liquid, vapor, and critical regions. Simulated values for the thermal conductivity of a Lennard-Jones (LJ) fluid were obtained using this new method over a temperature range of 90 to 900 K and a density range of 1-35 kmol · m-3. These values compare favorably with experimental values for argon. The new method has a precision of ±10%. Compared to other methods, the algorithm is quick, easy to code, and applicable to small systems, making the simulations very efficient.

  10. Contribution to viscosity from the structural relaxation via the atomic scale Green-Kubo stress correlation function.

    PubMed

    Levashov, V A

    2017-11-14

    We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.

  11. Contribution to viscosity from the structural relaxation via the atomic scale Green-Kubo stress correlation function

    NASA Astrophysics Data System (ADS)

    Levashov, V. A.

    2017-11-01

    We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.

  12. Mitochondrial Genome Sequence of the Legume Vicia faba

    PubMed Central

    Negruk, Valentine

    2013-01-01

    The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for a detailed comparative study of different phylogenetic branches more plant mitochondrial genomes should be sequenced. This article presents sequencing data and comparative analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as 588,000 bp with a genome complexity of 387,745 bp and 52 conservative mitochondrial genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were highly homologous to chloroplast genome sequences. In addition to the 52 conservative genes, 114 unique open reading frames (ORFs) were found, 36 without significant homology to any known proteins and 29 with homology to the Medicago truncatula nuclear genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M. truncatula but possessed sequences with significant homology to other plant mitochondrial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known closely related legumes, but several sequence homologies were found between V. faba, Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about 45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear genome (more than to any sequenced plant mitochondrial genome), and 35% of this homology ranging from a few dozen to 12,806 bp are located on chromosome 1. Apparently, mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences are part of transcribed nuclear mosaic ORFs. PMID:23675376

  13. Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment

    NASA Astrophysics Data System (ADS)

    Heyes, David M.

    1988-04-01

    This study evaluates the shear viscosity, self-diffusion coefficient, and thermal conductivity of the Lennard-Jones (LJ) fluid over essentially the entire fluid range by molecular-dynamics (MD) computer simulation. The Green-Kubo (GK) method is mainly used. In addition, for shear viscosity, homogeneous shear nonequilibrium MD (NEMD) is also employed and compared with experimental data on argon along isotherms. Reasonable agreement between GK, NEMD, and experiment is found. Hard-sphere MD modified Chapman-Enskog expressions for these transport coefficients are tested with use of a temperature-dependent effective hard-sphere diameter. Excellent agreement is found for shear viscosity. The thermal conductivity and, more so, self-diffusion coefficient is less successful in this respect. This behavior is attributed to the attractive part to the LJ potential and its soft repulsive core. Expressions for the constant-volume and -pressure activation energies for these transport coefficients are derived solely in terms of the thermodynamic properties of the LJ fluid. Also similar expressions for the activation volumes are given, which should have a wider range of applications than just for the LJ system.

  14. Thermopower of thermoelectric materials with resonant levels: PbTe:Tl versus PbTe:Na and Cu1 -xNix

    NASA Astrophysics Data System (ADS)

    Wiendlocha, Bartlomiej

    2018-05-01

    Electronic transport properties of thermoelectric materials containing resonant levels are discussed by analyzing the two best known examples: copper-nickel metallic alloy (Cu-Ni, constantan) and thallium-doped lead telluride (PbTe:Tl). As a contrasting example of a material with a nonresonant impurity, sodium-doped PbTe is considered. Theoretical calculations of the electronic structure, Bloch spectral functions, and energy-dependent electrical conductivity at T =0 K are done using the Korringa-Kohn-Rostoker method with the coherent potential approximation and the Kubo-Greenwood formalism. The effect of a resonance on the residual resistivity and electronic lifetimes in PbTe is analyzed. By using the full Fermi integrals, room-temperature thermopower is calculated, confirming its increase in PbTe:Tl versus PbTe:Na, due to the presence of the resonant level. In addition, our calculations support the self-compensation model, in which the experimentally observed reduction of carrier concentration in PbTe:Tl against the nominal one is explained by the presence of n -type Te vacancies.

  15. Ion and impurity transport in turbulent, anisotropic magnetic fields

    NASA Astrophysics Data System (ADS)

    Negrea, M.; Petrisor, I.; Isliker, H.; Vogiannou, A.; Vlahos, L.; Weyssow, B.

    2011-08-01

    We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.

  16. Theoretical study on the perpendicular anisotropic magnetoresistance using Rashba-type ferromagnetic model

    NASA Astrophysics Data System (ADS)

    Yahagi, Y.; Miura, D.; Sakuma, A.

    2018-05-01

    We investigated the anisotropic magnetoresistance (AMR) effects in ferromagnetic-metal multi-layers stacked on non-magnetic insulators in the context of microscopic theory. We represented this situation with tight-binding models that included the exchange and Rashba fields, where the Rashba field was assumed to originate from spin-orbit interactions as junction effects with the insulator. To describe the AMR ratios, the DC conductivity was calculated based on the Kubo formula. As a result, we showed that the Rashba field induced both perpendicular and in-plane AMR effects and that the perpendicular AMR effect rapidly decayed with increasing film thickness.

  17. Brownian motion of classical spins: Anomalous dissipation and generalized Langevin equation

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Malay; Jayannavar, A. M.

    2017-10-01

    In this work, we derive the Langevin equation (LE) of a classical spin interacting with a heat bath through momentum variables, starting from the fully dynamical Hamiltonian description. The derived LE with anomalous dissipation is analyzed in detail. The obtained LE is non-Markovian with multiplicative noise terms. The concomitant dissipative terms obey the fluctuation-dissipation theorem. The Markovian limit correctly produces the Kubo and Hashitsume equation. The perturbative treatment of our equations produces the Landau-Lifshitz equation and the Seshadri-Lindenberg equation. Then we derive the Fokker-Planck equation corresponding to LE and the concept of equilibrium probability distribution is analyzed.

  18. Twisting dirac fermions: circular dichroism in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Suárez Morell, E.; Chico, Leonor; Brey, Luis

    2017-09-01

    Twisted bilayer graphene is a chiral system which has been recently shown to present circular dichroism. In this work we show that the origin of this optical activity is the rotation of the Dirac fermions’ helicities in the top and bottom layer. Starting from the Kubo formula, we obtain a compact expression for the Hall conductivity that takes into account the dephasing of the electromagnetic field between the top and bottom layers and gathers all the symmetries of the system. Our results are based in both a continuum and a tight-binding model, and they can be generalized to any two-dimensional Dirac material with a chiral stacking between layers.

  19. Thermal behaviour of nanofluids confined in nanochannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Michael, E-mail: d.drikakis@cranfield.ac.uk; Drikakis, Dimitris, E-mail: d.drikakis@cranfield.ac.uk; Asproulis, Nikolaos, E-mail: d.drikakis@cranfield.ac.uk

    2015-02-17

    This work investigates the effect of spatial restriction on the thermal properties of nanofluids. Using Molecular Dynamics simulations, a Copper-Argon nanofluid is restricted within idealized walls. The thermal conductivity of the suspension is calculated using the Green-Kubo relations and is correlated with the volume fraction of the copper particles within the system as well as the channel width. The thermal conductivity is further broken down into its individual components in the three dimensions, revealing anisotropy between the directions parallel and normal to the channel walls. The observed thermodynamic patterns are justified by considering how the spatial restriction affects the liquidmore » structure around the nanoparticle.« less

  20. Anomalous thermospin effect in the low-buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Gusynin, V. P.; Sharapov, S. G.; Varlamov, A. A.

    2014-10-01

    A strong spin Nernst effect with nontrivial dependences on the carrier concentration and electric field applied is expected in silicene and other low-buckled Dirac materials. These Dirac materials can be considered as being made of two independent electron subsystems of the two-component gapped Dirac fermions. For each subsystem, the gap breaks a time-reversal symmetry and thus plays the role of an effective magnetic field. Accordingly, the standard Kubo formalism has to be altered by including the effective magnetization in order to satisfy the third law of thermodynamics. We explicitly demonstrate this by calculating the magnetization and showing how the correct thermoelectric coefficient emerges.

  1. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations

    NASA Astrophysics Data System (ADS)

    Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.

    2015-05-01

    In the present research work, the FT-IR, FT-Raman and 13C and 1H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, 13C NMR and 1H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.

  2. Shear viscosity of an ultrarelativistic Boltzmann gas with isotropic inelastic scattering processes

    NASA Astrophysics Data System (ADS)

    El, A.; Lauciello, F.; Wesp, C.; Bouras, I.; Xu, Z.; Greiner, C.

    2014-05-01

    We derive an analytic expression for the shear viscosity of an ultra-relativistic gas in presence of both elastic 2→2 and inelastic 2↔3 processes with isotropic differential cross sections. The derivation is based on the entropy principle and Grad's approximation for the off-equilibrium distribution function. The obtained formula relates the shear viscosity coefficient η to the total cross sections σ22 and σ23 of the elastic resp. inelastic processes. The values of shear viscosity extracted using the Green-Kubo formula from kinetic transport calculations are shown to be in excellent agreement with the analytic results which demonstrates the validity of the derived formula.

  3. Quantum resonances of Landau damping in the electromagnetic response of metallic nanoslabs.

    PubMed

    Castillo-López, S G; Makarov, N M; Pérez-Rodríguez, F

    2018-05-15

    The resonant quantization of Landau damping in far-infrared absorption spectra of metal nano-thin films is predicted within the Kubo formalism. Specifically, it is found that the discretization of the electromagnetic and electron wave numbers inside a metal nanoslab produces quantum nonlocal resonances well-resolved at slab thicknesses smaller than the electromagnetic skin depth. Landau damping manifests itself precisely as such resonances, tracing the spectral curve obtained within the semiclassical Boltzmann approach. For slab thicknesses much greater than the skin depth, the classical regime emerges. Here the results of the quantum model and the Boltzmann approach coincide. Our analytical study is in perfect agreement with corresponding numerical simulations.

  4. Ab initio calculation of the shear viscosity of neon in the liquid and hypercritical state over a wide pressure and temperature range

    NASA Astrophysics Data System (ADS)

    Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc

    1992-08-01

    The shear viscosity is calculated ab initio for the liquid and hypercritical state, i.e. a previously published potential for Ne 2, obtained from ab initio calculations including electron correlation, is used in classical equilibrium molecular dynamics simulations to obtain the shear viscosity from a Green-Kubo integral. The quality of the results is quite uniform over a large pressure range up to 1000 MPa and a wide temperature range from 26 to 600 K. In most cases the calculated shear viscosity deviates by less than 10% from the experimental value, in general the error being only a few percent.

  5. Dynamic current susceptibility as a probe of Majorana bound states in nanowire-based Josephson junctions

    NASA Astrophysics Data System (ADS)

    Trif, Mircea; Dmytruk, Olesia; Bouchiat, Hélène; Aguado, Ramón; Simon, Pascal

    2018-02-01

    We theoretically study a Josephson junction based on a semiconducting nanowire subject to a time-dependent flux bias. We establish a general density-matrix approach for the dynamical response of the Majorana junction and calculate the resulting flux-dependent susceptibility using both microscopic and effective low-energy descriptions for the nanowire. We find that the diagonal component of the susceptibility, associated with the dynamics of the Majorana state populations, dominates over the standard Kubo contribution for a wide range of experimentally relevant parameters. The diagonal term, explored, in this Rapid Communication, in the context of Majorana physics, allows probing accurately the presence of Majorana bound states in the junction.

  6. Anisotropic dyonic black brane and its effects on holographic conductivity

    NASA Astrophysics Data System (ADS)

    Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong; Zhang, Yun-Long

    2017-10-01

    We investigate a massive gravity theory involving the SL(2 , R) symmetry and anisotropy. Due to the SL(2 , R) invariance of the equations of motion, the complex con-ductivity of this model transforms covariantly under the SL(2 , R) transformation and the ratio of DC conductivities in different spatial directions is preserved even after the SL(2 , R) transformation. We further investigate AC and Hall conductivities by utilizing the Kubo formula. There exists a Drude-like peak in the region with a small anisotropy, while such a Drude peak disappears when anisotropy becomes large. We also show that the complex conductivity can have a cyclotron frequency pole even beyond the hydrodynamic limit.

  7. Chemical disorder as an engineering tool for spin polarization in Mn3Ga -based Heusler systems

    NASA Astrophysics Data System (ADS)

    Chadov, S.; D'Souza, S. W.; Wollmann, L.; Kiss, J.; Fecher, G. H.; Felser, C.

    2015-03-01

    Our study highlights spin-polarization mechanisms in metals by focusing on the mobilities of conducting electrons with different spins instead of their quantities. Here, we engineer electron mobility by applying chemical disorder induced by nonstoichiometric variations. As a practical example, we discuss the scheme that establishes such variations in tetragonal Mn3Ga Heusler material. We justify this approach using first-principles calculations of the spin-projected conductivity components based on the Kubo-Greenwood formalism. It follows that, in the majority of cases, even a small substitution of some other transition element instead of Mn may lead to a substantial increase in spin polarization along the tetragonal axis.

  8. Similarity between the superconductivity in the graphene with the spin transport in the two-dimensional antiferromagnet in the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2017-02-01

    We have used the Dirac's massless quasi-particles together with the Kubo's formula to study the spin transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC currents of this system, that is a relativistic electron plasma. Our results show that the AC conductivity tends to infinity in the limit ω → 0 , similar to the behavior obtained for the spin transport in the two-dimensional frustrated antiferromagnet in the honeycomb lattice. We have made a diagrammatic expansion for the Green's function and we have not gotten significative change in the results.

  9. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide

    PubMed Central

    Lv, Wei; Henry, Asegun

    2016-01-01

    Thermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself becomes questionable when one cannot rigorously define the phonon velocities. In this report, we used our recently developed Green-Kubo modal analysis (GKMA) method to study amorphous silicon dioxide (a-SiO2). The predicted thermal conductivities exhibit excellent agreement with experiments and anharmonic effects are included in the thermal conductivity calculation for all the modes in a-SiO2 for the first time. Previously, localized modes (locons) have been thought to have a negligible contribution to thermal conductivity, due to their highly localized nature. However, in a-SiO2 our results indicate that locons contribute more than 10% to the total thermal conductivity from 400 K to 800 K and they are largely responsible for the increase in thermal conductivity of a-SiO2 above room temperature. This is an effect that cannot be explained by previous methods and therefore offers new insight into the nature of phonon transport in amorphous/glassy materials. PMID:27767082

  10. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impactmore » on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.« less

  11. Optical characterization of shock-induced chemistry in the explosive nitromethane using DFT and time-dependent DFT

    NASA Astrophysics Data System (ADS)

    Pellouchoud, Lenson; Reed, Evan

    2014-03-01

    With continual improvements in ultrafast optical spectroscopy and new multi-scale methods for simulating chemistry for hundreds of picoseconds, the opportunity is beginning to exist to connect experiments with simulations on the same timescale. We compute the optical properties of the liquid phase energetic material nitromethane (CH3NO2) for the first 100 picoseconds behind the front of a simulated shock at 6.5km/s, close to the experimentally observed detonation shock speed. We utilize molecular dynamics trajectories computed using the multi-scale shock technique (MSST) for time-resolved optical spectrum calculations based on both linear response time-dependent DFT (TDDFT) and the Kubo-Greenwood (KG) formula within Kohn-Sham DFT. We find that TDDFT predicts optical conductivities 25-35% lower than KG-based values and provides better agreement with the experimentally measured index of refraction of unreacted nitromethane. We investigate the influence of electronic temperature on the KG spectra and find no significant effect at optical wavelengths. With all methods, the spectra evolve non-monotonically in time as shock-induced chemistry takes place. We attribute the time-resolved absorption at optical wavelengths to time-dependent populations of molecular decomposition products, including NO, CNO, CNOH, H2O, and larger molecules. Supported by NASA Space Technology Research Fellowship (NSTRF) #NNX12AM48H.

  12. Formulation of state projected centroid molecular dynamics: Microcanonical ensemble and connection to the Wigner distribution.

    PubMed

    Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas

    2017-06-07

    A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.

  13. Formulation of state projected centroid molecular dynamics: Microcanonical ensemble and connection to the Wigner distribution

    NASA Astrophysics Data System (ADS)

    Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas

    2017-06-01

    A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.

  14. Thermal conductivity of an imperfect anharmonic crystal

    NASA Astrophysics Data System (ADS)

    Sahu, D. N.; Sharma, P. K.

    1983-09-01

    The thermal conductivity of an anharmonic crystal containing randomly distributed substitutional defects due to impurity-phonon scattering is theoretically investigated with the use of the method of double-time thermal Green's functions and the Kubo formalism considering all the terms, i.e., diagonal, nondiagonal, cubic anharmonic, and imperfection terms in the energy-flux operator as propounded by Hardy. The study uses cubic, quartic anharmonic, and defect terms in the Hamiltonian. Mass changes as well as force-constant changes between impurity and host-lattice atoms are taken into account explicitly. It is shown that the total conductivity can be written as a sum of contributions, namely diagonal, nondiagonal, anharmonic, and imperfection contributions. For phonons of small halfwidth, the diagonal contribution has precisely the same form which is obtained from Boltzmann's transport equation for impurity scattering in the relaxation-time approximation. The present study shows that there is a finite contribution of the nondiagonal term, cubic anharmonic term, and the term due to lattice imperfections in the energy-flux operator to the thermal conductivity although the contribution is small compared with that from the diagonal part. We have also discussed the feasibility of numerical evaluation of the various contributions to the thermal conductivity.

  15. First principles study of the structural, electronic, and transport properties of triarylamine-based nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akande, Akinlolu, E-mail: akandea@tcd.ie; Bhattacharya, Sandip; Cathcart, Thomas

    2014-02-21

    We investigate with state of the art density functional theory the structural, electronic, and transport properties of a class of recently synthesized nanostructures based on triarylamine derivatives. First, we consider the single molecule precursors in the gas phase and calculate their static properties, namely (i) the geometrical structure of the neutral and cationic ions, (ii) the electronic structure of the frontier molecular orbitals, and (iii) the ionization potential, hole extraction potential, and internal reorganization energy. This initial study does not evidence any direct correlation between the properties of the individual molecules and their tendency to self-assembly. Subsequently, we investigate themore » charge transport characteristics of the triarylamine derivatives nanowires, by using Marcus theory. For one derivative we further construct an effective Hamiltonian including intermolecular vibrations and evaluate the mobility from the Kubo formula implemented with Monte Carlo sampling. These two methods, valid respectively in the sequential hopping and polaronic band limit, give us values for the room-temperature mobility in the range 0.1–12 cm{sup 2}/Vs. Such estimate confirms the superior transport properties of triarylamine-based nanowires, and make them an attracting materials platform for organic electronics.« less

  16. Splitting of the zero-energy Landau level and universal dissipative conductivity at critical points in disordered graphene.

    PubMed

    Ortmann, Frank; Roche, Stephan

    2013-02-22

    We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.

  17. Analysis of structural correlations in a model binary 3D liquid through the eigenvalues and eigenvectors of the atomic stress tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levashov, V. A.

    2016-03-07

    It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids’ structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectorsmore » of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ{sub 1} ≥ λ{sub 2} ≥ λ{sub 3} ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ{sub 2}/λ{sub 1}) and (λ{sub 3}/λ{sub 2}) are essentially identical to each other in the liquids state. We also found that λ{sub 2} tends to be equal to the geometric average of λ{sub 1} and λ{sub 3}. In our view, correlations between the eigenvalues may represent “the Poisson ratio effect” at the atomic scale.« less

  18. Analysis of structural correlations in a model binary 3D liquid through the eigenvalues and eigenvectors of the atomic stress tensors.

    PubMed

    Levashov, V A

    2016-03-07

    It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids' structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectors of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ1 ≥ λ2 ≥ λ3 ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ2/λ1) and (λ3/λ2) are essentially identical to each other in the liquids state. We also found that λ2 tends to be equal to the geometric average of λ1 and λ3. In our view, correlations between the eigenvalues may represent "the Poisson ratio effect" at the atomic scale.

  19. Nonlinear response from transport theory and quantum field theory at finite temperature

    NASA Astrophysics Data System (ADS)

    Carrington, M. E.; Defu, Hou; Kobes, R.

    2001-07-01

    We study the nonlinear response in weakly coupled hot φ4 theory. We obtain an expression for a quadratic shear viscous response coefficient using two different formalisms: transport theory and response theory. The transport theory calculation is done by assuming a local equilibrium form for the distribution function and expanding in the gradient of the local four dimensional velocity field. By performing a Chapman-Enskog expansion on the Boltzmann equation we obtain a hierarchy of equations for the coefficients of the expanded distribution function. To do the response theory calculation we use Zubarev's techniques in nonequilibrium statistical mechanics to derive a generalized Kubo formula. Using this formula allows us to obtain the quadratic shear viscous response from the three-point retarded Green function of the viscous shear stress tensor. We use the closed time path formalism of real time finite temperature field theory to show that this three-point function can be calculated by writing it as an integral equation involving a four-point vertex. This four-point vertex can in turn be obtained from an integral equation which represents the resummation of an infinite series of ladder and extended-ladder diagrams. The connection between transport theory and response theory is made when we show that the integral equation for this four-point vertex has exactly the same form as the equation obtained from the Boltzmann equation for the coefficient of the quadratic term of the gradient expansion of the distribution function. We conclude that calculating the quadratic shear viscous response using transport theory and keeping terms that are quadratic in the gradient of the velocity field in the Chapman-Enskog expansion of the Boltzmann equation is equivalent to calculating the quadratic shear viscous response from response theory using the next-to-linear response Kubo formula, with a vertex given by an infinite resummation of ladder and extended-ladder diagrams.

  20. Understanding the atomic-level Green-Kubo stress correlation function for a liquid through phonons in a model crystal

    NASA Astrophysics Data System (ADS)

    Levashov, V. A.

    2014-11-01

    In order to gain insight into the connection between the vibrational dynamics and the atomic-level Green-Kubo stress correlation function in liquids, we consider this connection in a model crystal instead. Of course, vibrational dynamics in liquids and crystals are quite different and it is not expected that the results obtained on a model crystal should be valid for liquids. However, these considerations provide a benchmark to which the results of the previous molecular dynamics simulations can be compared. Thus, assuming that vibrations are plane waves, we derive analytical expressions for the atomic-level stress correlation functions in the classical limit and analyze them. These results provide, in particular, a recipe for analysis of the atomic-level stress correlation functions in Fourier space and extraction of the wave-vector and frequency-dependent information. We also evaluate the energies of the atomic-level stresses. The energies obtained are significantly smaller than the energies previously determined in molecular dynamics simulations of several model liquids. This result suggests that the average energies of the atomic-level stresses in liquids and glasses are largely determined by the structural disorder. We discuss this result in the context of equipartition of the atomic-level stress energies. Analysis of the previously published data suggests that it is possible to speak about configurational and vibrational contributions to the average energies of the atomic-level stresses in a glass state. However, this separation in a liquid state is problematic. We also introduce and briefly consider the atomic-level transverse current correlation function. Finally, we address the broadening of the peaks in the pair distribution function with increase of distance. We find that the peaks' broadening (by ≈40 % ) occurs due to the transverse vibrational modes, while contribution from the longitudinal modes does not change with distance.

  1. ms2: A molecular simulation tool for thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Deublein, Stephan; Eckl, Bernhard; Stoll, Jürgen; Lishchuk, Sergey V.; Guevara-Carrion, Gabriela; Glass, Colin W.; Merker, Thorsten; Bernreuther, Martin; Hasse, Hans; Vrabec, Jadran

    2011-11-01

    This work presents the molecular simulation program ms2 that is designed for the calculation of thermodynamic properties of bulk fluids in equilibrium consisting of small electro-neutral molecules. ms2 features the two main molecular simulation techniques, molecular dynamics (MD) and Monte-Carlo. It supports the calculation of vapor-liquid equilibria of pure fluids and multi-component mixtures described by rigid molecular models on the basis of the grand equilibrium method. Furthermore, it is capable of sampling various classical ensembles and yields numerous thermodynamic properties. To evaluate the chemical potential, Widom's test molecule method and gradual insertion are implemented. Transport properties are determined by equilibrium MD simulations following the Green-Kubo formalism. ms2 is designed to meet the requirements of academia and industry, particularly achieving short response times and straightforward handling. It is written in Fortran90 and optimized for a fast execution on a broad range of computer architectures, spanning from single processor PCs over PC-clusters and vector computers to high-end parallel machines. The standard Message Passing Interface (MPI) is used for parallelization and ms2 is therefore easily portable to different computing platforms. Feature tools facilitate the interaction with the code and the interpretation of input and output files. The accuracy and reliability of ms2 has been shown for a large variety of fluids in preceding work. Program summaryProgram title:ms2 Catalogue identifier: AEJF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Special Licence supplied by the authors No. of lines in distributed program, including test data, etc.: 82 794 No. of bytes in distributed program, including test data, etc.: 793 705 Distribution format: tar.gz Programming language: Fortran90 Computer: The simulation tool ms2 is usable on a wide variety of platforms, from single processor machines over PC-clusters and vector computers to vector-parallel architectures. (Tested with Fortran compilers: gfortran, Intel, PathScale, Portland Group and Sun Studio.) Operating system: Unix/Linux, Windows Has the code been vectorized or parallelized?: Yes. Message Passing Interface (MPI) protocol Scalability. Excellent scalability up to 16 processors for molecular dynamics and >512 processors for Monte-Carlo simulations. RAM:ms2 runs on single processors with 512 MB RAM. The memory demand rises with increasing number of processors used per node and increasing number of molecules. Classification: 7.7, 7.9, 12 External routines: Message Passing Interface (MPI) Nature of problem: Calculation of application oriented thermodynamic properties for rigid electro-neutral molecules: vapor-liquid equilibria, thermal and caloric data as well as transport properties of pure fluids and multi-component mixtures. Solution method: Molecular dynamics, Monte-Carlo, various classical ensembles, grand equilibrium method, Green-Kubo formalism. Restrictions: No. The system size is user-defined. Typical problems addressed by ms2 can be solved by simulating systems containing typically 2000 molecules or less. Unusual features: Feature tools are available for creating input files, analyzing simulation results and visualizing molecular trajectories. Additional comments: Sample makefiles for multiple operation platforms are provided. Documentation is provided with the installation package and is available at http://www.ms-2.de. Running time: The running time of ms2 depends on the problem set, the system size and the number of processes used in the simulation. Running four processes on a "Nehalem" processor, simulations calculating VLE data take between two and twelve hours, calculating transport properties between six and 24 hours.

  2. Strain-induced friction anisotropy between graphene and molecular liquids

    NASA Astrophysics Data System (ADS)

    Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent; Vo, Van-Hoang

    2017-01-01

    In this paper, we study the friction behavior of molecular liquids with anisotropically strained graphene. Due to the changes of lattice and the potential energy surface, the friction is orientation dependent and can be computed by tensorial Green-Kubo formula. Simple quantitative estimations are also proposed for the zero-time response and agree reasonably well with the molecular dynamics results. From simulations, we can obtain the information of structures, dynamics of the system, and study the influence of strain and molecular shapes on the anisotropy degree. It is found that unilateral strain can increase friction in all directions but the strain direction is privileged. Numerical evidences also show that nonspherical molecules are more sensitive to strain and give rise to more pronounced anisotropy effects.

  3. Some critical issues in the characterization of nanoscale thermal conductivity by molecular dynamics analysis

    NASA Astrophysics Data System (ADS)

    Ehsan Khaled, Mohammad; Zhang, Liangchi; Liu, Weidong

    2018-07-01

    The nanoscale thermal conductivity of a material can be significantly different from its value at the macroscale. Although a number of studies using the equilibrium molecular dynamics (EMD) with Green–Kubo (GK) formula have been conducted for nano-conductivity predictions, there are many problems in the analysis that have made the EMD results unreliable or misleading. This paper aims to clarify such critical issues through a thorough investigation on the effect and determination of the vital physical variables in the EMD-GK analysis, using the prediction of the nanoscale thermal conductivity of Si as an example. The study concluded that to have a reliable prediction, quantum correction, time step, simulation time, correlation time and system size are all crucial.

  4. Dynamics of Structures in Configuration Space and Phase Space: An Introductory Tutorial

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.; Kosuga, Y.; Lesur, M.

    2015-12-01

    Some basic ideas relevant to the dynamics of phase space and real space structures are presented in a pedagogical fashion. We focus on three paradigmatic examples, namely; G. I. Taylor's structure based re-formulation of Rayleigh's stability criterion and its implications for zonal flow momentum balance relations; Dupree's mechanism for nonlinear current driven ion acoustic instability and its implication for anomalous resistivity; and the dynamics of structures in drift and gyrokinetic turbulence and their relation to zonal flow physics. We briefly survey the extension of mean field theory to calculate evolution in the presence of localized structures for regimes where Kubo number K ≃ 1 rather than K ≪ 1, as is usual for quasilinear theory.

  5. Shear-rate dependence of the viscosity of the Lennard-Jones liquid at the triple point

    NASA Astrophysics Data System (ADS)

    Ferrario, M.; Ciccotti, G.; Holian, B. L.; Ryckaert, J. P.

    1991-11-01

    High-precision molecular-dynamics (MD) data are reported for the shear viscosity η of the Lennard-Jones liquid at its triple point, as a function of the shear rate ɛ˙ for a large system (N=2048). The Green-Kubo (GK) value η(ɛ˙=0)=3.24+/-0.04 is estimated from a run of 3.6×106 steps (40 nsec). We find no numerical evidence of a t-3/2 long-time tail for the GK integrand (stress-stress time-correlation function). From our nonequilibrium MD results, obtained both at small and large values of ɛ˙, a consistent picture emerges that supports an analytical (quadratic at low shear rate) dependence of the viscosity on ɛ˙.

  6. Dynamical properties and transport coefficients of one-dimensional Lennard-Jones fluids: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bazhenov, Alexiev M.; Heyes, David M.

    1990-01-01

    The thermodynamics, structure, and transport coefficients, as defined by the Green-Kubo integrals, of the one-dimensional Lennard-Jones fluid are evaluated for a wide range of state points by molecular dynamics computer simulation. These calculations are performed for the first time for thermal conductivity and the viscosity. We observe a transition from hard-rod behavior at low number density to harmonic-spring fluid behavior in the close-packed limit. The self-diffusion coefficient decays with increasing density to a finite limiting value. The thermal conductivity increases with density, tending to ∞ in the close-packed limit. The viscosity in contrast maximizes at intermediate density, tending to zero in the zero density and close-packed limits.

  7. The calculation of the viscosity from the autocorrelation function using molecular and atomic stress tensors

    NASA Astrophysics Data System (ADS)

    Cui, S. T.

    The stress-stress correlation function and the viscosity of a united-atom model of liquid decane are studied by equilibrium molecular dynamics simulation using two different formalisms for the stress tensor: the atomic and the molecular formalisms. The atomic and molecular correlation functions show dramatic difference in short-time behaviour. The integrals of the two correlation functions, however, become identical after a short transient period whichis significantly shorter than the rotational relaxation time of the molecule. Both reach the same plateau value in a time period corresponding to this relaxation time. These results provide a convenient guide for the choice of the upper integral time limit in calculating the viscosity by the Green-Kubo formula.

  8. Analysis of polariton dispersion in metal nanocomposite based novel superlattice system

    NASA Astrophysics Data System (ADS)

    DoniPon, V.; Joseph Wilson, K. S.; Malarkodi, A.

    2018-06-01

    The influence of metal nanoparticles in tuning the polaritonic gap in a novel piezoelectric superlattice is studied. Dielectric function of the metal nanoparticles is analyzed using Kawabata-Kubo effect and Drude's theory. The effective dielectric function of the nanocomposite system is studied using Maxwell Garnett approximation. Nanocomposite based LiTaO3 novel superlattice is formed by arranging the nanocomposite systems in such a way that their orientations are in the opposite direction. Hence there are two additional modes of propagation. The top most modes reflect the metal behavior of the nanoparticles. It is found that these modes of propagation vary with the filling factor. These additional modes of propagations can be exploited in the field of communication.

  9. Linear response approach to active Brownian particles in time-varying activity fields

    NASA Astrophysics Data System (ADS)

    Merlitz, Holger; Vuijk, Hidde D.; Brader, Joseph; Sharma, Abhinav; Sommer, Jens-Uwe

    2018-05-01

    In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied to derive fully analytical expressions for the torque-free polarization profiles of non-interacting particles. The activity waves induce fluxes that strongly depend on the particle size and may be employed to de-mix mixtures of ABPs or to drive the particles into selected areas of the system. Three-dimensional Langevin dynamics simulations are carried out to verify the accuracy of the linear response formalism, which is shown to work best when the particles are small (i.e., highly Brownian) or operating at low activity levels.

  10. Electronic transport coefficients in plasmas using an effective energy-dependent electron-ion collision-frequency

    NASA Astrophysics Data System (ADS)

    Faussurier, G.; Blancard, C.; Combis, P.; Decoster, A.; Videau, L.

    2017-10-01

    We present a model to calculate the electrical and thermal electronic conductivities in plasmas using the Chester-Thellung-Kubo-Greenwood approach coupled with the Kramers approximation. The divergence in photon energy at low values is eliminated using a regularization scheme with an effective energy-dependent electron-ion collision-frequency. Doing so, we interpolate smoothly between the Drude-like and the Spitzer-like regularizations. The model still satisfies the well-known sum rule over the electrical conductivity. Such kind of approximation is also naturally extended to the average-atom model. A particular attention is paid to the Lorenz number. Its nondegenerate and degenerate limits are given and the transition towards the Drude-like limit is proved in the Kramers approximation.

  11. Quantum theory of terahertz conductivity of semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Ostatnický, T.; Pushkarev, V.; Němec, H.; Kužel, P.

    2018-02-01

    Efficient and controlled charge carrier transport through nanoelements is currently a primordial question in the research of nanoelectronic materials and structures. We develop a quantum-mechanical theory of the conductivity spectra of confined charge carriers responding to an electric field from dc regime up to optical frequencies. The broken translation symmetry induces a broadband drift-diffusion current, which is not taken into account in the analysis based on Kubo formula and relaxation time approximation. We show that this current is required to ensure that the dc conductivity of isolated nanostructures correctly attains zero. It causes a significant reshaping of the conductivity spectra up to terahertz or multiterahertz spectral ranges, where the electron scattering rate is typically comparable to or larger than the probing frequency.

  12. Saturation and negative temperature coefficient of electrical resistivity in liquid iron-sulfur alloys at high densities from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wagle, Fabian; Steinle-Neumann, Gerd; de Koker, Nico

    2018-03-01

    We report results on electronic transport properties of liquid Fe-S alloys at conditions of planetary cores, computed using first-principle techniques in the Kubo-Greenwood formalism. We describe a combined effect of resistivity saturation due to temperature, compression, and chemistry by comparing the electron mean free path from the Drude response of optical conductivity to the mean interatomic distance. At high compression and high sulfur concentration the Ioffe-Regel condition is satisfied, and the temperature coefficient of resistivity changes sign from positive to negative. We show that this happens due to a decrease in the d density of states at the Fermi level in response to thermal broadening.

  13. Ultrafast Two-Dimensional Infrared Spectroscopy of a Quasifree Rotor: J Scrambling and Perfectly Anticorrelated Cross Peaks

    NASA Astrophysics Data System (ADS)

    Mandal, Aritra; Ng Pack, Greg; Shah, Parth P.; Erramilli, Shyamsunder; Ziegler, L. D.

    2018-03-01

    Ultrafast two-dimensional infrared (2DIR) spectra of the N2O ν3 mode in moderately dense SF6 gas exhibit complex line shapes with diagonal and antidiagonal features in contrast to condensed phase vibrational 2DIR spectroscopy. Observed spectra for this quasifree rotor system are well captured by a model that includes all 36 possible rovibrational pathways and treats P (Δ J =-1 ) and R (Δ J =+1 ) branch resonances as distinct Kubo line shape features. Transition frequency correlation decay is due to J scrambling within one to two gas collisions at each density. Studies of supercritical solvation and relaxation at high pressure and temperature are enabled by this methodology.

  14. Surface charge conductivity of a topological insulator in a magnetic field: The effect of hexagonal warping

    NASA Astrophysics Data System (ADS)

    Akzyanov, R. S.; Rakhmanov, A. L.

    2018-02-01

    We investigate the influence of hexagonal warping on the transport properties of topological insulators. We study the charge conductivity within Kubo formalism in the first Born approximation using low-energy expansion of the Hamiltonian near the Dirac point. The effects of disorder, magnetic field, and chemical-potential value are analyzed in detail. We find that the presence of hexagonal warping significantly affects the conductivity of the topological insulator. In particular, it gives rise to the growth of the longitudinal conductivity with the increase of the disorder and anisotropic anomalous in-plane magnetoresistance. Hexagonal warping also affects the quantum anomalous Hall effect and anomalous out-of-plane magnetoresistance. The obtained results are consistent with the experimental data.

  15. Intrinsic optical conductivity of a {{\\rm{C}}}_{2v} symmetric topological insulator

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Matsubara, Masahiko; Bellotti, Enrico; Shi, Junxia

    2017-07-01

    In this work we analytically investigate the longitudinal optical conductivity of the {{{C}}}2v symmetric topological insulator. The conductivity expressions at T = 0 are derived using the Kubo formula and expressed as a function of the ratio of the Dresselhaus and Rashba parameters that characterize the low-energy Hamiltonian. We find that the longitudinal inter-band conductivity vanishes when Dresselhaus and Rashba parameters are equal in strength, also called the persistent spin helix state. The calculations are extended to obtain the frequency-dependent real and imaginary components of the optical conductivity for the topological Kondo insulator SmB6 which exhibits {{{C}}}2v symmetric and anisotropic Dirac cones hosting topological states at \\overline{X} point on the surface Brillouin zone.

  16. Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2011-05-01

    A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems.

  17. Optical properties of graphene superlattices.

    PubMed

    Le, H Anh; Ho, S Ta; Nguyen, D Chien; Do, V Nam

    2014-10-08

    In this work, the optical responses of graphene superlattices, i.e. graphene subjected to a periodic scalar potential, are theoretically reported. The optical properties were studied by investigating the optical conductivity, which was calculated using the Kubo formalism. It was found that the optical conductivity becomes dependent on the photon polarization and is suppressed in the photon energy range of (0, Ub), where Ub is the potential barrier height. In the higher photon energy range, i.e. Ω > Ub, the optical conductivity is, however, almost identical to that of pristine graphene. Such behaviors of the optical conductivity are explained microscopically through the analysis of the elements of optical matrices and effectively through a simple model, which is based on the Pauli blocking mechanism.

  18. Commensurability resonances in two-dimensional magnetoelectric lateral superlattices

    NASA Astrophysics Data System (ADS)

    Schluck, J.; Fasbender, S.; Heinzel, T.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.

    2015-05-01

    Hybrid lateral superlattices composed of a square array of antidots and a periodic one-dimensional magnetic modulation are prepared in Ga [Al ]As heterostructures. The two-dimensional electron gases exposed to these superlattices are characterized by magnetotransport experiments in vanishing average perpendicular magnetic fields. Despite the absence of closed orbits, the diagonal magnetoresistivity in the direction perpendicular to the magnetic modulation shows pronounced classical resonances. They are located at magnetic fields where snake trajectories exist which are quasicommensurate with the antidot lattice. The diagonal magnetoresistivity in the direction of the magnetic modulation increases sharply above a threshold magnetic field and shows no fine structure. The experimental results are interpreted with the help of numerical simulations based on the semiclassical Kubo model.

  19. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations.

    PubMed

    Karthikeyan, N; Joseph Prince, J; Ramalingam, S; Periandy, S

    2015-05-15

    In the present research work, the FT-IR, FT-Raman and (13)C and (1)H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, (13)C NMR and (1)H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  20. Quantum calculations of the carrier mobility: Methodology, Matthiessen's rule, and comparison with semi-classical approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niquet, Yann-Michel, E-mail: yniquet@cea.fr; Nguyen, Viet-Hung; Duchemin, Ivan

    2014-02-07

    We discuss carrier mobilities in the quantum Non-Equilibrium Green's Functions (NEGF) framework. We introduce a method for the extraction of the mobility that is free from contact resistance contamination and with minimal needs for ensemble averages. We focus on silicon thin films as an illustration, although the method can be applied to various materials such as semiconductor nanowires or carbon nanostructures. We then introduce a new paradigm for the definition of the partial mobility μ{sub M} associated with a given elastic scattering mechanism “M,” taking phonons (PH) as a reference (μ{sub M}{sup −1}=μ{sub PH+M}{sup −1}−μ{sub PH}{sup −1}). We argue thatmore » this definition makes better sense in a quantum transport framework as it is free from long range interference effects that can appear in purely ballistic calculations. As a matter of fact, these mobilities satisfy Matthiessen's rule for three mechanisms [e.g., surface roughness (SR), remote Coulomb scattering (RCS) and phonons] much better than the usual, single mechanism calculations. We also discuss the problems raised by the long range spatial correlations in the RCS disorder. Finally, we compare semi-classical Kubo-Greenwood (KG) and quantum NEGF calculations. We show that KG and NEGF are in reasonable agreement for phonon and RCS, yet not for SR. We discuss the reasons for these discrepancies.« less

  1. Spin Polarization and Quantum Spins in Au Nanoparticles

    PubMed Central

    Li, Chi-Yen; Karna, Sunil K.; Wang, Chin-Wei; Li, Wen-Hsien

    2013-01-01

    The present study focuses on investigating the magnetic properties and the critical particle size for developing sizable spontaneous magnetic moment of bare Au nanoparticles. Seven sets of bare Au nanoparticle assemblies, with diameters from 3.5 to 17.5 nm, were fabricated with the gas condensation method. Line profiles of the X-ray diffraction peaks were used to determine the mean particle diameters and size distributions of the nanoparticle assemblies. The magnetization curves M(Ha) reveal Langevin field profiles. Magnetic hysteresis was clearly revealed in the low field regime even at 300 K. Contributions to the magnetization from different size particles in the nanoparticle assemblies were considered when analyzing the M(Ha) curves. The results show that the maximum particle moment will appear in 2.4 nm Au particles. A similar result of the maximum saturation magnetization appearing in 2.3 nm Au particles is also concluded through analysis of the dependency of the saturation magnetization MP on particle size. The MP(d) curve departs significantly from the 1/d dependence, but can be described by a log-normal function. Magnetization can be barely detected for Au particles larger than 27 nm. Magnetic field induced Zeeman magnetization from the quantum confined Kubo gap opening appears in Au nanoparticles smaller than 9.5 nm in diameter. PMID:23989607

  2. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    NASA Technical Reports Server (NTRS)

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  3. Disordered crystals from first principles I: Quantifying the configuration space

    NASA Astrophysics Data System (ADS)

    Kühne, Thomas D.; Prodan, Emil

    2018-04-01

    This work represents the first chapter of a project on the foundations of first-principle calculations of the electron transport in crystals at finite temperatures. We are interested in the range of temperatures, where most electronic components operate, that is, room temperature and above. The aim is a predictive first-principle formalism that combines ab-initio molecular dynamics and a finite-temperature Kubo-formula for homogeneous thermodynamic phases. The input for this formula is the ergodic dynamical system (Ω , G , dP) defining the thermodynamic crystalline phase, where Ω is the configuration space for the atomic degrees of freedom, G is the space group acting on Ω and dP is the ergodic Gibbs measure relative to the G-action. The present work develops an algorithmic method for quantifying (Ω , G , dP) from first principles. Using the silicon crystal as a working example, we find the Gibbs measure to be extremely well characterized by a multivariate normal distribution, which can be quantified using a small number of parameters. The latter are computed at various temperatures and communicated in the form of a table. Using this table, one can generate large and accurate thermally-disordered atomic configurations to serve, for example, as input for subsequent simulations of the electronic degrees of freedom.

  4. Dissipative hydrodynamics for multi-component systems

    NASA Astrophysics Data System (ADS)

    El, Andrej; Bouras, Ioannis; Wesp, Christian; Xu, Zhe; Greiner, Carsten

    2012-11-01

    Second-order dissipative hydrodynamic equations for each component of a multi-component system are derived using the entropy principle. Comparison of the solutions with kinetic transport results demonstrates validity of the obtained equations. We demonstrate how the shear viscosity of the total system can be calculated in terms of the involved cross-sections and partial densities. The presence of the inter-species interactions leads to a characteristic time dependence of the shear viscosity of the mixture, which also means that the shear viscosity of a mixture cannot be calculated using the Green-Kubo formalism the way it has been done recently. This finding is of interest for understanding of the shear viscosity of a quark-gluon plasma extracted from comparisons of hydrodynamic simulations with experimental results from RHIC and LHC.

  5. Hydrodynamic correlation functions of hard-sphere fluids at short times

    NASA Astrophysics Data System (ADS)

    Leegwater, Jan A.; van Beijeren, Henk

    1989-11-01

    The short-time behavior of the coherent intermediate scattering function for a fluid of hard-sphere particles is calculated exactly through order t 4, and the other hydrodynamic correlation functions are calculated exactly through order t 2. It is shown that for all of the correlation functions considered the Enskog theory gives a fair approximation. Also, the initial time behavior of various Green-Kubo integrands is studied. For the shear-viscosity integrand it is found that at density nσ3=0.837 the prediction of the Enskog theory is 32% too low. The initial value of the bulk viscosity integrand is nonzero, in contrast to the Enskog result. The initial value of the thermal conductivity integrand at high densities is predicted well by Enskog theory.

  6. Polaron mobility obtained by a variational approach for lattice Fröhlich models

    NASA Astrophysics Data System (ADS)

    Kornjača, Milan; Vukmirović, Nenad

    2018-04-01

    Charge carrier mobility for a class of lattice models with long-range electron-phonon interaction was investigated. The approach for mobility calculation is based on a suitably chosen unitary transformation of the model Hamiltonian which transforms it into the form where the remaining interaction part can be treated as a perturbation. Relevant spectral functions were then obtained using Matsubara Green's functions technique and charge carrier mobility was evaluated using Kubo's linear response formula. Numerical results were presented for a wide range of electron-phonon interaction strengths and temperatures in the case of one-dimensional version of the model. The results indicate that the mobility decreases with increasing temperature for all electron-phonon interaction strengths in the investigated range, while longer interaction range leads to more mobile carriers.

  7. Anomalous thermoelectric phenomena in lattice models of multi-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-10-01

    The thermoelectric transport coefficients are calculated in a generic lattice model of multi-Weyl semimetals with a broken time-reversal symmetry by using the Kubo's linear response theory. The contributions connected with the Berry curvature-induced electromagnetic orbital and heat magnetizations are systematically taken into account. It is shown that the thermoelectric transport is profoundly affected by the nontrivial topology of multi-Weyl semimetals. In particular, the calculation reveals a number of thermal coefficients of the topological origin which describe the anomalous Nernst and thermal Hall effects in the absence of background magnetic fields. Similarly to the anomalous Hall effect, all anomalous thermoelectric coefficients are proportional to the integer topological charge of the Weyl nodes. The dependence of the thermoelectric coefficients on the chemical potential and temperature is also studied.

  8. Photo-modulation of the spin Hall conductivity of mono-layer transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Parijat; Bellotti, Enrico

    2016-05-23

    We report on a possible optical tuning of the spin Hall conductivity in mono-layer transition metal dichalcogenides. Light beams of frequencies much higher than the energy scale of the system (the off-resonant condition) do not excite electrons but rearrange the band structure. The rearrangement is quantitatively established using the Floquet formalism. For such a system of mono-layer transition metal dichalcogenides, the spin Hall conductivity (calculated with the Kubo expression in presence of disorder) exhibits a drop at higher frequencies and lower intensities. Finally, we compare the spin Hall conductivity of the higher spin-orbit coupled WSe{sub 2} to MoS{sub 2}; themore » spin Hall conductivity of WSe{sub 2} was found to be larger.« less

  9. Semiclassical theory of Hall viscosity

    NASA Astrophysics Data System (ADS)

    Biswas, Rudro

    2014-03-01

    Hall viscosity is an intriguing stress response in quantum Hall systems and is predicted to be observable via the conductivity in an inhomogeneous electric field. This has been studied extensively using a range of techniques, such as adiabatic transport, effective field theories, and Kubo formulae. All of these are, however, agnostic as to the distinction between strongly correlated quantum Hall states and non-interacting ones, where the effect arises due to the fundamental non-commuting nature of velocities and orbit positions in a magnetic field. In this talk I shall develop the semiclassical theory of quantized cyclotron orbits drifting in an applied inhomogeneous electric field and use it to provide a clear physical picture of how single particle properties in a magnetic field contribute to the Hall viscosity-dependence of the conductivity.

  10. First principles molecular dynamics of molten NaCl

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-03-01

    First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.

  11. Diffusion coefficient and shear viscosity of rigid water models.

    PubMed

    Tazi, Sami; Boţan, Alexandru; Salanne, Mathieu; Marry, Virginie; Turq, Pierre; Rotenberg, Benjamin

    2012-07-18

    We report the diffusion coefficient and viscosity of popular rigid water models: two non-polarizable ones (SPC/E with three sites, and TIP4P/2005 with four sites) and a polarizable one (Dang-Chang, four sites). We exploit the dependence of the diffusion coefficient on the system size (Yeh and Hummer 2004 J. Phys. Chem. B 108 15873) to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang models overestimate the diffusion coefficient and underestimate the viscosity.

  12. Temperature Limit of the Deep Subseafloor Biosphere in the Nankai Trough Subduction Zone off Cape Muroto (IODP T-Limit Expedition 370)

    NASA Astrophysics Data System (ADS)

    Morono, Y.; Hauer, V. B.; Inagaki, F.; Kubo, Y.; Maeda, L.; Scientists, E.

    2017-12-01

    Expedition 370 of the International Ocean Discovery Program (IODP) aimed to explore the limits of life in the deep subseafloor biosphere at a location where elevated heat flow lets temperature increase with sediment depth beyond the known maximum of microbial life ( 120°C) at 1.2 km below the seafloor. Such conditions are met in the protothrust zone of the Nankai Trough off Cape Muroto, Japan, where Site C0023 was established in the vicinity of ODP Sites 808 and 1174 at a water depth of 4776 m using the drilling vessel DV Chikyu. Hole C0023A was cored down to a total depth of 1180 meters below seafloor, offshore sampling and research was combined with simultaneous shore-based investigations at the Kochi Core Center (KCC), and long-term temperature observations were started (Heuer et al., 2017). The primary scientific objectives of Expedition 370 are (a) to detect and investigate the presence or absence of life and biological processes at the biotic-abiotic transition of the deep subseafloor with unprecedented analytical sensitivity and precision; (b) to comprehensively study the factors that control biomass, activity, and diversity of microbial communities; and (c) to elucidate if continuous or episodic flow of fluids containing thermogenic and/or geogenic nutrients and energy substrates support subseafloor microbial communities in the Nankai Trough accretionary complex (Hinrichs et al., 2016). This contribution will highlight the scientific approach of our field-work and preliminary expedition results by shipboard and shorebased activities. Hinrichs K-U, Inagaki F, Heuer VB, Kinoshita M, Morono Y, Kubo Y (2016) Expedition 370 Scientific Prospectus: T-Limit of the Deep Biosphere off Muroto (T-Limit). International Ocean Discovery Program. http://dx.doi.org/10.14379/iodp.sp.370.2016 Heuer VB, Inagaki F, Morono Y, Kubo Y, Maeda L, the Expedition 370 Scientists (2017) Expedition 370 Preliminary Report: Temperature Limit of the Deep Biosphere off Muroto. International Ocean Discovery Program. http://dx.doi.org/10.14379/iodp.pr.370.2017

  13. Nonlinear Optical Spectroscopy in the Time Domain: Studies of Ultrafast Molecular Processes in the Condensed Phase.

    NASA Astrophysics Data System (ADS)

    Joo, Taiha

    Ultrafast molecular processes in the condensed phase at room temperature are studied in the time domain by four wave mixing spectroscopy. The structure/dynamics of various quantum states can be studied by varying the time ordering of the incident fields, their polarization, their colors, etc. In one, time-resolved coherent Stokes Raman spectroscopy of benzene is investigated at room temperature. The reorientational correlation time of benzene as well as the T_2 time of the nu _1 ring-breathing mode have been measured by using two different polarization geometries. Bohr frequency difference beats have also been resolved between the nu_1 modes of ^ {12}C_6H_6 and ^{12}C_5^{13 }CH_6.. The dephasing dynamics of the nu _1 ring-breathing mode of neat benzene is studied by time-resolved coherent anti-Stokes Raman scattering. Ultrafast time resolution reveals deviation from the conventional exponential decay. The correlation time, tau _{rm c}, and the rms magnitude, Delta, of the Bohr frequency modulation are determined for the process responsible for the vibrational dephasing by Kubo dephasing function analysis. The electronic dephasing of two oxazine dyes in ethylene glycol at room temperature is investigated by photon echo experiments. It was found that at least two stochastic processes are responsible for the observed electronic dephasing. Both fast (homogeneous) and slow (inhomogeneous) dynamics are recovered using Kubo line shape analysis. Moreover, the slow dynamics is found to spectrally diffuse over the inhomogeneous distribution on the time scale around a picosecond. Time-resolved degenerate four wave mixing signal of dyes in a population measurement geometry is reported. The vibrational coherences both in the ground and excited electronic states produced strong oscillations in the signal together with the usual population decay from the excited electronic state. Absolute frequencies and their dephasing times of the vibrational modes at ~590 cm^{-1} are obtained. Finally, a new inverse transform procedure is presented that calculates the absorption band (ABS) from an experimental Raman excitation profile (REP). An iterative solution is sought for an integral Hilbert transform relation. An exact ABS is recovered regardless of the starting ABS when sufficient iterations are performed.

  14. Modeling stochastic noise in gene regulatory systems

    PubMed Central

    Meister, Arwen; Du, Chao; Li, Ye Henry; Wong, Wing Hung

    2014-01-01

    The Master equation is considered the gold standard for modeling the stochastic mechanisms of gene regulation in molecular detail, but it is too complex to solve exactly in most cases, so approximation and simulation methods are essential. However, there is still a lack of consensus about the best way to carry these out. To help clarify the situation, we review Master equation models of gene regulation, theoretical approximations based on an expansion method due to N.G. van Kampen and R. Kubo, and simulation algorithms due to D.T. Gillespie and P. Langevin. Expansion of the Master equation shows that for systems with a single stable steady-state, the stochastic model reduces to a deterministic model in a first-order approximation. Additional theory, also due to van Kampen, describes the asymptotic behavior of multistable systems. To support and illustrate the theory and provide further insight into the complex behavior of multistable systems, we perform a detailed simulation study comparing the various approximation and simulation methods applied to synthetic gene regulatory systems with various qualitative characteristics. The simulation studies show that for large stochastic systems with a single steady-state, deterministic models are quite accurate, since the probability distribution of the solution has a single peak tracking the deterministic trajectory whose variance is inversely proportional to the system size. In multistable stochastic systems, large fluctuations can cause individual trajectories to escape from the domain of attraction of one steady-state and be attracted to another, so the system eventually reaches a multimodal probability distribution in which all stable steady-states are represented proportional to their relative stability. However, since the escape time scales exponentially with system size, this process can take a very long time in large systems. PMID:25632368

  15. Conductivity of disordered 2d binodal Dirac electron gas: effect of internode scattering

    NASA Astrophysics Data System (ADS)

    Sinner, Andreas; Ziegler, Klaus

    2018-07-01

    We study the dc conductivity of a weakly disordered 2d Dirac electron gas with two bands and two spectral nodes, employing a field theoretical version of the Kubo-Greenwood conductivity formula. In this paper, we are concerned with the question how the internode scattering affects the conductivity. We use and compare two established techniques for treating the disorder scattering: The perturbation theory, there ladder and maximally crossed diagrams are summed up, and the functional integral approach. Both turn out to be entirely equivalent. For a large number of random potential configurations we have found only two different conductivity scenarios. Both scenarios appear independently of whether the disorder does or does not create the internode scattering. In particular, we do not confirm the conjecture that the internode scattering tends to Anderson localisation.

  16. Anisotropic stress correlations in two-dimensional liquids

    DOE PAGES

    Wu, Bin; Iwashita, Takuya; Egami, Takeshi

    2015-03-01

    In this paper we demonstrate the presence of anisotropic stress correlations in the simulated 2D liquids. Whereas the temporal correlation of macroscopic shear stress is known to contribute to viscosity via the Green-Kubo formula, the general question regarding angular dependence of the spatial correlation among atomic level stresses in liquids without external shear has not been explored. Besides the apparent anisotropicity with well-defined symmetry, we found that the characteristic length of shear stress correlation depends on temperature and follows the power law, suggesting divergence around the glass transition temperature. The anisotropy of the stress correlations can be explained in termsmore » of the inclusion model by Eshelby, based upon which we suggest that the mismatch between the atom and its nearest neighbor cage produces the atomic level stress as well as the long-range stress fields.« less

  17. Molecular Dynamics Simulation of the Thermophysical Properties of Quantum Liquid Helium Using the Feynman-Hibbs Potential

    NASA Astrophysics Data System (ADS)

    Liu, J.; Lu, W. Q.

    2010-03-01

    This paper presents the detailed MD simulation on the properties including the thermal conductivities and viscosities of the quantum fluid helium at different state points. The molecular interactions are represented by the Lennard-Jones pair potentials supplemented by quantum corrections following the Feynman-Hibbs approach and the properties are calculated using the Green-Kubo equations. A comparison is made among the numerical results using LJ and QFH potentials and the existing database and shows that the LJ model is not quantitatively correct for the supercritical liquid helium, thereby the quantum effect must be taken into account when the quantum fluid helium is studied. The comparison of the thermal conductivity is also made as a function of temperatures and pressure and the results show quantum effect correction is an efficient tool to get the thermal conductivities.

  18. Temperature Dependence of the Spin-Hall Conductivity of a Two-Dimensional Impure Rashba Electron Gas in the Presence of Electron-Phonon and Electron-Electron Interactions

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Mokhtari, M.; Bayervand, A.

    2015-03-01

    Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.

  19. Shear viscosity in monatomic liquids: a simple mode-coupling approach

    NASA Astrophysics Data System (ADS)

    Balucani, Umberto

    The value of the shear-viscosity coefficient in fluids is controlled by the dynamical processes affecting the time decay of the associated Green-Kubo integrand, the stress autocorrelation function (SACF). These processes are investigated in monatomic liquids by means of a microscopic approach with a minimum use of phenomenological assumptions. In particular, mode-coupling effects (responsible for the presence in the SACF of a long-lasting 'tail') are accounted for by a simplified approach where the only requirement is knowledge of the structural properties. The theory readily yields quantitative predictions in its domain of validity, which comprises ordinary and moderately supercooled 'simple' liquids. The framework is applied to liquid Ar and Rb near their melting points, and quite satisfactory agreement with the simulation data is found for both the details of the SACF and the value of the shear-viscosity coefficient.

  20. Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation.

    PubMed

    Yamaguchi, T; Matsuoka, T; Koda, S

    2007-04-14

    A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.

  1. Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Matsuoka, T.; Koda, S.

    2007-04-01

    A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.

  2. All-temperature magnon theory of ferromagnetism

    NASA Astrophysics Data System (ADS)

    Datta, Sambhu N.; Panda, Anirban

    2009-08-01

    We present an all-temperature magnon formalism for ferromagnetic solids. To our knowledge, this is the first time that all-temperature spin statistics have been calculated. The general impression up to now is that the magnon formalism breaks down at the Curie point as it introduces a series expansion and unphysical states. Our treatment is based on an accurate quantum mechanical representation of the Holstein-Primakoff transformation. To achieve this end, we introduce the 'Kubo operator'. The treatment is valid for all 14 types of Bravais lattices, and not limited to simple cubic unit cells. In the present work, we carry out a zeroth-order treatment involving all possible spin states, and leaving out all unphysical states. In a subsequent paper we will show that the perturbed energy values are very different, but the magnetic properties undergo only small modifications from the zeroth-order results.

  3. Possible High Thermoelectric Power in Semiconducting Carbon Nanotubes ˜A Case Study of Doped One-Dimensional Semiconductors˜

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Fukuyama, Hidetoshi

    2018-02-01

    We have theoretically investigated the thermoelectric properties of impurity-doped one-dimensional semiconductors, focusing on nitrogen-substituted (N-substituted) carbon nanotubes (CNTs), using the Kubo formula combined with a self-consistent t-matrix approximation. N-substituted CNTs exhibit extremely high thermoelectric power factor (PF) values originating from a characteristic of one-dimensional materials where decrease in the carrier density increase both the electrical conductivity and the Seebeck coefficient in the low-N regime. The chemical potential dependence of the PF values of semiconducting CNTs has also been studied as a field-effect transistor and it turns out that the PF values show a noticeable maximum in the vicinity of the band edges. This result demonstrates that "band-edge engineering" will be crucial for solid development of high-performance thermoelectric materials.

  4. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, JOhn W.; Daw, Murray S.; Bauschlicher, Charles W.

    2011-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 are candidate materials for applications in extreme environments because of their high melting point, good mechanical properties and reasonable oxidation resistance. Unlike many ceramics, these materials have high thermal conductivity which can be advantageous, for example, to reduce thermal shock. Recently, we developed Tersoff style interatomic potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current. Results at room temperature and at elevated temperatures will be reported.

  5. Broken symmetries, zero-energy modes, and quantum transport in disordered graphene: from supermetallic to insulating regimes.

    PubMed

    Cresti, Alessandro; Ortmann, Frank; Louvet, Thibaud; Van Tuan, Dinh; Roche, Stephan

    2013-05-10

    The role of defect-induced zero-energy modes on charge transport in graphene is investigated using Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies either equally populating the two sublattices or exclusively located on a single sublattice, all conduction regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk disordered graphene. Depending on the transport measurement geometry, defect density, and broken sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (supermetallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes, whereas weak localization and the Anderson insulating regime are obtained for higher energies. These findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto controversial.

  6. Computational modeling of properties

    NASA Technical Reports Server (NTRS)

    Franz, Judy R.

    1994-01-01

    A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wise-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid II-VI semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.

  7. Computational modeling of properties

    NASA Technical Reports Server (NTRS)

    Franz, Judy R.

    1994-01-01

    A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wide-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid 2-6 semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.

  8. Asymptotic neutron scattering laws for anomalously diffusing quantum particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneller, Gerald R.; Université d’Orléans, Chateau de la Source-Ave. du Parc Floral, 45067 Orléans; Synchrotron-SOLEIL, L’Orme de Merisiers, 91192 Gif-sur-Yvette

    2016-07-28

    The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝t{sup α}, with 0 ≤ α < 2. Confined diffusion (α = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constantmore » can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baig, Mohammad Saad, E-mail: saad110baig@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    NaF-ZrF{sub 4} is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF{sub 4} system were studied along with Onsagercoefficients and Maxwell–Stefan (MS) Diffusivities applying Green–Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity Đ{sub Na-F} shows interesting behavior with the increase in concentration of ZrF{submore » 4}. This is because of network formation in NaF-ZrF{sub 4}. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.« less

  10. Molecular vibrational investigation [FT-IR, FT-Raman, UV-Visible and NMR] on Bis(thiourea) Nickel chloride using HF and DFT calculations.

    PubMed

    Anand, S; Sundararajan, R S; Ramachandraraja, C; Ramalingam, S; Durga, R

    2015-03-05

    In the present research work, the FT-IR, FT-Raman spectra of the Bis(thiourea) Nickel chloride (BTNC) were recorded and analyzed. The observed fundamental frequencies in finger print and functional group regions were assigned according to their uniqueness region. The computational calculations were carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The present organo-metallic compound was made up of covalent and coordination covalent bonds. The modified vibrational pattern of the complex molecule associated with ligand group was analyzed. Furthermore, the (13)C NMR and (1)H NMR spectral data were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP/6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A investigation on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  11. Equivalence of the EMD- and NEMD-based decomposition of thermal conductivity into microscopic building blocks.

    PubMed

    Matsubara, Hiroki; Kikugawa, Gota; Ishikiriyama, Mamoru; Yamashita, Seiji; Ohara, Taku

    2017-09-21

    Thermal conductivity of a material can be comprehended as being composed of microscopic building blocks relevant to the energy transfer due to a specific microscopic process or structure. The building block is called the partial thermal conductivity (PTC). The concept of PTC is essential to evaluate the contributions of various molecular mechanisms to heat conduction and has been providing detailed knowledge of the contribution. The PTC can be evaluated by equilibrium molecular dynamics (EMD) and non-equilibrium molecular dynamics (NEMD) in different manners: the EMD evaluation utilizes the autocorrelation of spontaneous heat fluxes in an equilibrium state whereas the NEMD one is based on stationary heat fluxes in a non-equilibrium state. However, it has not been fully discussed whether the two methods give the same PTC or not. In the present study, we formulate a Green-Kubo relation, which is necessary for EMD to calculate the PTCs equivalent to those by NEMD. Unlike the existing theories, our formulation is based on the local equilibrium hypothesis to describe a clear connection between EMD and NEMD simulations. The equivalence of the two derivations of PTCs is confirmed by the numerical results for liquid methane and butane. The present establishment of the EMD-NEMD correspondence makes the MD analysis of PTCs a robust way to clarify the microscopic origins of thermal conductivity.

  12. The validity of the potential model in predicting the structural, dynamical, thermodynamic properties of the unary and binary mixture of water-alcohol: Methanol-water case

    NASA Astrophysics Data System (ADS)

    Obeidat, Abdalla; Abu-Ghazleh, Hind

    2018-06-01

    Two intermolecular potential models of methanol (TraPPE-UA and OPLS-AA) have been used in order to examine their validity in reproducing the selected structural, dynamical, and thermodynamic properties in the unary and binary systems. These two models are combined with two water models (SPC/E and TIP4P). The temperature dependence of density, surface tension, diffusion and structural properties for the unary system has been computed over specific range of temperatures (200-300K). The very good performance of the TraPPE-UA potential model in predicting surface tension, diffusion, structure, and density of the unary system led us to examine its accuracy and performance in its aqueous solution. In the binary system the same properties were examined, using different mole fractions of methanol. The TraPPE-UA model combined with TIP4P-water shows a very good agreement with the experimental results for density and surface tension properties; whereas the OPLS-AA combined with SPCE-water shows a very agreement with experimental results regarding the diffusion coefficients. Two different approaches have been used in calculating the diffusion coefficient in the mixture, namely the Einstein equation (EE) and Green-Kubo (GK) method. Our results show the advantageous of applying GK over EE in reproducing the experimental results and in saving computer time.

  13. An Information Theory Approach to Nonlinear, Nonequilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Rogers, David M.; Beck, Thomas L.; Rempe, Susan B.

    2011-10-01

    Using the problem of ion channel thermodynamics as an example, we illustrate the idea of building up complex thermodynamic models by successively adding physical information. We present a new formulation of information algebra that generalizes methods of both information theory and statistical mechanics. From this foundation we derive a theory for ion channel kinetics, identifying a nonequilibrium `process' free energy functional in addition to the well-known integrated work functionals. The Gibbs-Maxwell relation for the free energy functional is a Green-Kubo relation, applicable arbitrarily far from equilibrium, that captures the effect of non-local and time-dependent behavior from transient thermal and mechanical driving forces. Comparing the physical significance of the Lagrange multipliers to the canonical ensemble suggests definitions of nonequilibrium ensembles at constant capacitance or inductance in addition to constant resistance. Our result is that statistical mechanical descriptions derived from a few primitive algebraic operations on information can be used to create experimentally-relevant and computable models. By construction, these models may use information from more detailed atomistic simulations. Two surprising consequences to be explored in further work are that (in)distinguishability factors are automatically predicted from the problem formulation and that a direct analogue of the second law for thermodynamic entropy production is found by considering information loss in stochastic processes. The information loss identifies a novel contribution from the instantaneous information entropy that ensures non-negative loss.

  14. Short-time microscopic dynamics of aqueous methanol solutions

    NASA Astrophysics Data System (ADS)

    Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.

    2012-12-01

    In this paper we present the picosecond vibrational dynamics of a series of methanol aqueous solutions over a wide concentration range from dense to dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating the time correlation functions of vibrational relaxation by fits in the frequency domain. This method is applied to aqueous methanol solutions xMeOH-(1 - x)H2O, where x = 0, 0.2, 0.4, 0.6, 0.8 and 1. The important finding is that the vibrational dynamics of the system become slower with increasing methanol concentration. The removal of many-body effects by having the molecules in less-crowded environments seems to be the key factor. The interpretation of the vibrational correlation function in the context of Kubo theory, which is based on the assumption that the environmental modulation arises from a single relaxation process and applied to simple liquids, is inadequate for all solutions studied. We found that the vibrational correlation functions of the solutions over the whole concentration range comply with the Rothschild approach, assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α with dilution indicates the deviation of the solutions from the model simple liquid and the results are discussed in the framework of the current phenomenological status of the field.

  15. Multiscale Modeling of Carbon Nanotube-Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.

    Epoxy-composites are widely used in the aerospace industry. In order to improve upon stiffness and thermal conductivity; carbon nanotube additives to epoxies are being explored. This dissertation presents multiscale modeling techniques to study the engineering properties of single walled carbon nanotube (SWNT)-epoxy nanocomposites, consisting of pristine and covalently functionalized systems. Using Molecular Dynamics (MD), thermomechanical properties were calculated for a representative polymer unit cell. Finite Element (FE) and orientation distribution function (ODF) based methods were used in a multiscale framework to obtain macroscale properties. An epoxy network was built using the dendrimer growth approach. The epoxy model was verified by matching the experimental glass transition temperature, density, and dilatation. MD, via the constant valence force field (CVFF), was used to explore the mechanical and dilatometric effects of adding pristine and functionalized SWNTs to epoxy. Full stiffness matrices and linear coefficient of thermal expansion vectors were obtained. The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for the various nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. To obtain continuum-scale elastic properties from the MD data, multiscale modeling was considered to give better control over the volume fraction of nanotubes, and investigate the effects of nanotube alignment. Two methods were considered; an FE based method, and an ODF based method. The FE method probabilistically assigned elastic properties of elements from the MD lattice results based on the desired volume fraction and alignment of the nanotubes. For the ODF method, a distribution function was generated based on the desired amount of nanotube alignment; and the stiffness matrix was calculated. A rule of mixture approach was implemented in the ODF model to vary the SWNT volume fraction. Both the ODF and FE models are compared and contrasted. ODF analysis is significantly faster for nanocomposites and is a novel contribution in this thesis. Multiscale modeling allows for the effects of nanofillers in epoxy systems to be characterized without having to run costly experiments.

  16. Multicomponent diffusion in molten salt NaF-ZrF4: Dynamical correlations and Maxwell-Stefan diffusivities

    NASA Astrophysics Data System (ADS)

    Baig, Mohammad Saad; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2016-05-01

    NaF-ZrF4 is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF4 system were studied along with Onsagercoefficients and Maxwell-Stefan (MS) Diffusivities applying Green-Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity ĐNa-F shows interesting behavior with the increase in concentration of ZrF4. This is because of network formation in NaF-ZrF4. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.

  17. Entropy Production and Non-Equilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    2013-01-01

    The long-term issue of entropy production in transport phenomena is solved by separating the symmetry of the non-equilibrium density matrix ρ(t) in the von Neumann equation, as ρ(t) = ρs(t) + ρa(t) with the symmetric part ρs(t) and antisymmetric part ρa(t). The irreversible entropy production (dS/dt)irr is given in M. Suzuki, Physica A 390(2011)1904 by (dS/dt)irr = Tr( {H}(dρ s{(t)/dt))}/T for the Hamiltonian {H} of the relevant system. The general formulation of the extended von Neumann equation with energy supply and heat extraction is reviewed from the author's paper (M. S.,Physica A391(2012)1074). irreversibility; entropy production; transport phenomena; electric conduction; thermal conduction; linear response; Kubo formula; steady state; non-equilibrium density matrix; energy supply; symmetry-separated von Neumann equation; unboundedness.

  18. Optical and transport properties of dense liquid silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Tingting; Millot, Marius; Kraus, Richard G.

    2015-06-15

    Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequencymore » dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.« less

  19. Enhanced t -3/2 long-time tail for the stress-stress time correlation function

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.

    1980-01-01

    Nonequilibrium molecular dynamics is used to calculate the spectrum of shear viscosity for a Lennard-Jones fluid. The calculated zero-frequency shear viscosity agrees well with experimental argon results for the two state points considered. The low-frequency behavior of shear viscosity is dominated by an ω 1/2 cusp. Analysis of the form of this cusp reveals that the stress-stress time correlation function exhibits a t -3/2 "long-time tail." It is shown that for the state points studied, the amplitude of this long-time tail is between 12 and 150 times larger than what has been predicted theoretically. If the low-frequency results are truly asymptotic, they imply that the cross and potential contributions to the Kubo-Green integrand for shear viscosity exhibit a t -3/2 long-time tail. This result contradicts the established theory of such processes.

  20. Transport coefficients of dense fluids composed of globular molecules. Equilibrium molecular dynamics investigations using more-center Lennard-Jones potentials

    NASA Astrophysics Data System (ADS)

    Hoheisel, C.

    1988-09-01

    Equilibrium molecular dynamics calculations with constraints have been performed for model liquids SF6 and CF4. The computations were carried out with four- and six-center Lennard-Jones potentials and up to 2×105 integration steps. Shear, bulk viscosity and the thermal conductivity have been calculated with use of Green-Kubo relations in the formulation of ``molecule variables.'' Various thermodynamic states were investigated. For SF6, a detailed comparison with experimental data was possible. For CF4, the MD results could only be compared with experiment for one liquid state. For the latter liquid, a complementary comparison was performed using MD results obtained with a one-center Lennard-Jones potential. A limited test of the particle number dependence of the results is presented. Partial and total correlations functions are shown and discussed with respect to findings obtained for the one-center Lennard-Jones liquid.

  1. Diffusion in shear flow

    NASA Astrophysics Data System (ADS)

    Dufty, J. W.

    1984-09-01

    Diffusion of a tagged particle in a fluid with uniform shear flow is described. The continuity equation for the probability density describing the position of the tagged particle is considered. The diffusion tensor is identified by expanding the irreversible part of the probability current to first order in the gradient of the probability density, but with no restriction on the shear rate. The tensor is expressed as the time integral of a nonequilibrium autocorrelation function for the velocity of the tagged particle in its local fluid rest frame, generalizing the Green-Kubo expression to the nonequilibrium state. The tensor is evaluated from results obtained previously for the velocity autocorrelation function that are exact for Maxwell molecules in the Boltzmann limit. The effects of viscous heating are included and the dependence on frequency and shear rate is displayed explicitly. The mode-coupling contributions to the frequency and shear-rate dependent diffusion tensor are calculated.

  2. Quantum transport in graphene in presence of strain-induced pseudo-Landau levels

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Leconte, Nicolas; Barrios-Vargas, Jose E.; Jauho, Antti-Pekka; Roche, Stephan

    2016-09-01

    We report on mesoscopic transport fingerprints in disordered graphene caused by strain-field induced pseudomagnetic Landau levels (pLLs). Efficient numerical real space calculations of the Kubo formula are performed for an ordered network of nanobubbles in graphene, creating pseudomagnetic fields up to several hundreds of Tesla, values inaccessible by real magnetic fields. Strain-induced pLLs yield enhanced scattering effects across the energy spectrum resulting in lower mean free path and enhanced localization effects. In the vicinity of the zeroth order pLL, we demonstrate an anomalous transport regime, where the mean free paths increases with disorder. We attribute this puzzling behavior to the low-energy sub-lattice polarization induced by the zeroth order pLL, which is unique to pseudomagnetic fields preserving time-reversal symmetry. These results, combined with the experimental feasibility of reversible deformation fields, open the way to tailor a metal-insulator transition driven by pseudomagnetic fields.

  3. Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Obadiah G.; Yang, Mengjin; Kopidakis, Nikos

    2016-09-09

    We report a systematic study of the gigahertz-frequency charge carrier mobility found in methylammonium lead iodide perovskite films as a function of average grain size using time-resolved microwave conductivity and a single processing chemistry. Our measurements are in good agreement with the Kubo formula for the AC mobility of charges confined within finite grains, suggesting (1) that the surface grains imaged via scanning electron microscopy are representative of the true electronic domain size and not substantially subdivided by twinning or other defects not visible by microscopy and (2) that the time scale of diffusive transport across grain boundaries is muchmore » slower than the period of the microwave field in this measurement (-100 ps). The intrinsic (infinite grain size) minimum mobility extracted form the model is 29 +/- 6 cm2 V-1 s-1 at the probe frequency (8.9 GHz).« less

  4. General equilibrium second-order hydrodynamic coefficients for free quantum fields

    NASA Astrophysics Data System (ADS)

    Buzzegoli, M.; Grossi, E.; Becattini, F.

    2017-10-01

    We present a systematic calculation of the corrections of the stress-energy tensor and currents of the free boson and Dirac fields up to second order in thermal vorticity, which is relevant for relativistic hydrodynamics. These corrections are non-dissipative because they survive at general thermodynamic equilibrium with non vanishing mean values of the conserved generators of the Lorentz group, i.e. angular momenta and boosts. Their equilibrium nature makes it possible to express the relevant coefficients by means of correlators of the angular-momentum and boost operators with stress-energy tensor and current, thus making simpler to determine their so-called "Kubo formulae". We show that, at least for free fields, the corrections are of quantum origin and we study several limiting cases and compare our results with previous calculations. We find that the axial current of the free Dirac field receives corrections proportional to the vorticity independently of the anomalous term.

  5. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  6. Thermal transport in strongly correlated multilayered nanostructures

    NASA Astrophysics Data System (ADS)

    Freericks, James; Zlatic, Veljko

    2006-03-01

    The formalism for thermal transport in strongly correlated multilayered nanostructures is developed. We employ inhomogeneous dynamical mean-field theory and the Kubo formula to derive relevant thermal transport coefficients, which take the form of matrices with respect to the planar indices. We show how to define the local versions of the current and heat current operators so that heat-current correlation functions can be easily evaluated via the Jonson-Mahan theorem. Thermal transport in nanostructures is complicated by the fact that the thermal current need not be conserved through the device, and a given experimental set-up determines both how the thermal current can change through the device and how the steady-state temperature profile can be determined. Formulae to analyze classic experiments such as the Peltier and Seebeck effects, the thermal conductivity, and for running a thermoelectric cooler or power generator are also discussed.

  7. Quantum transport properties of carbon nanotube field-effect transistors with electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2007-11-01

    We investigated the electron-phonon coupling effects on the electronic transport properties of metallic (5,5)- and semiconducting (10,0)-carbon nanotube devices. We calculated the conductance and mobility of the carbon nanotubes with micron-order lengths at room temperature, using the time-dependent wave-packet approach based on the Kubo-Greenwood formula within a tight-binding approximation. We investigated the scattering effects of both longitudinal acoustic and optical phonon modes on the transport properties. The electron-optical phonon coupling decreases the conductance around the Fermi energy for the metallic carbon nanotubes, while the conductance of semiconductor nanotubes is decreased around the band edges by the acoustic phonons. Furthermore, we studied the Schottky-barrier effects on the mobility of the semiconducting carbon nanotube field-effect transistors for various gate voltages. We clarified how the electron mobilities of the devices are changed by the acoustic phonon.

  8. Adiabatic Theorem for Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, S.; De Roeck, W.; Fraas, M.

    2017-08-01

    The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

  9. Magnetic-proximity-induced magnetoresistance on topological insulators

    NASA Astrophysics Data System (ADS)

    Chiba, Takahiro; Takahashi, Saburo; Bauer, Gerrit E. W.

    2017-03-01

    We theoretically study the magnetoresistance (MR) of two-dimensional massless Dirac electrons as found on the surface of three-dimensional topological insulators (TIs) that are capped by a ferromagnetic insulator (FI). We calculate charge and spin transport by Kubo and Boltzmann theories, taking into account the ladder-vertex correction and the in-scattering due to normal and magnetic disorder. The induced exchange splitting is found to generate an electric conductivity that depends on the magnetization orientation, but its form is very different from both the anisotropic and the spin Hall MR. The in-plane MR vanishes identically for nonmagnetic disorder, while out-of-plane magnetizations cause a large MR ratio. On the other hand, we do find an in-plane MR and planar Hall effect in the presence of magnetic disorder aligned with the FI magnetization. Our results may help us understand recent transport measurements on TI |FI systems.

  10. Echinobothrium chisholmae n. sp. (Cestoda, Diphyllidea) from the giant shovel-nose ray Rhinobatos typus from Australia, with observations on the ultrastructure of its scolex musculature and peduncular spines.

    PubMed

    Jones, M K; Beveridge, I

    2001-09-01

    Echinobothrium chisholmae n. sp. is described from Rhinobatos typus Bennett (Rhinobatidae), collected from Heron Island, Great Barrier Reef, Australia. E. chisholmae differs from all congeners in possessing 11 hooks in each dorsal and ventral group on the rostellum and groups of 3-6 hooklets on either side of the hooks. A single metacestode of E. chisholmae was collected from the decapod crustacean Penaeus longistylus Kubo. Yellow pigmentation of the cephalic peduncle in immature adults is caused by the accumulation of large vesicles in the distal cytoplasm of the tegument. The vesicles probably provide materials for spine formation. Ultrastructural examination of the rostellar musculature revealed that the muscles are stratified (striated-like), consisting of a periodic repetition of sarcomeres separated by perforated Z-like lines that are oblique to the long axes of the myofilaments.

  11. Intrinsic Viscosity of Dendrimers via Equilibrium Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Drew, Phil; Adolf, David

    2004-03-01

    Equilibrium molecular dynamics simulations of dendrimers in dilute solution have been performed using dl-poly. Analysis of the system stress tensor via the Green-Kubo formula produces the viscosity of the dendrimer solution which, when coupled with that of a solvent only system leads to the intrinsic viscosity of the dendrimer solute. Particular attention has been paid to error analysis as the auto-correlation of the stress tensor exhibits a long time tail, potentially leading to large uncertainties in the solution, and hence intrinsic, viscosities. In order to counter this effect and provide reliable statistical averaging, simulations have been run spanning very many times the longest system relaxation. Comparison is made to previous studies, using different techniques, which suggest a peak in the intrinsic viscosity of dendrimers at around generation four. Results are also presented from investigations in to the individual contributions to the system stress tensor from the solvent and the solute.

  12. Molecular relaxation processes of 2-bromopropane in solutions from IR ν(C-Br) band shape analysis

    NASA Astrophysics Data System (ADS)

    Bratu, I.; Grecu, R.; Constantinescu, R.; Iliescu, T.

    1998-03-01

    The infrared (C-Br) stretching band profile of 2-bromopropane in pure liquid and in solution was studied. The frequency shifts, described by the Buckingham equation, account for the influence of the polarity and polarizability of the solvents. To evaluate the importance of the last term in the Buckingham equation, which describes the mutual influence of these two effects, a linear multidimensional regression analysis was done. The correlation factor increased when the cross term was considered. The concentration dependence of the FWHH (full width at half height) can be related to the vibrational relaxation processes, among them vibrational dephasing being the most important. More information about mechanisms responsible for the vibrational bandshape can be obtained from the correlation function Φ( t). As a result of modelling the experimental CF with Kubo-Rothschild's model, the modulation of the vibrational frequencies is found to be of intermediate type.

  13. Calculation of Transport Coefficients in Dense Plasma Mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.

    2011-10-01

    We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  14. Effects of guest atomic species on the lattice thermal conductivity of type-I silicon clathrate studied via classical molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumagai, Tomohisa, E-mail: kumagai@criepi.denken.or.jp; Nakamura, Kaoru; Yamada, Susumu

    The effects of guest atomic species in Si clathrates on the lattice thermal conductivity were studied using classical molecular dynamics calculations. The interaction between a host atom and a guest atom was described by the Morse potential function while that between host atoms was described by the Tersoff potential. The parameters of the potentials were newly determined for this study such that the potential curves obtained from first-principles calculations for the insertion of a guest atom into a Si cage were successfully reproduced. The lattice thermal conductivities were calculated by using the Green-Kubo method. The experimental lattice thermal conductivity ofmore » Ba{sub 8}Ga{sub 16}Si{sub 30} can be successfully reproduced using the method. As a result, the lattice thermal conductivities of type-I Si clathrates, M{sub 8}Si{sub 46} (M = Na, Mg, K, Ca Rb, Sr, Cs, or Ba), were obtained. It is found that the lattice thermal conductivities of M{sub 8}Si{sub 46}, where M is IIA elements (i.e., M = Mg, Ca, Sr, or Ba) tend to be lower than those of M{sub 8}Si{sub 46}, where M is IA elements (i.e., M = Na, K, Rb, or Cs). Those of {sup m}M{sub 8}Si{sub 46}, where m was artificially modified atomic weight were also obtained. The obtained lattice thermal conductivity can be regarded as a function of a characteristic frequency, f{sub c}. That indicates minimum values around f{sub c}=2-4 THz, which corresponds to the center of the frequencies of the transverse acoustic phonon modes associated with Si cages.« less

  15. Chiral zero energy modes in two-dimensional disordered Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen

    2018-04-01

    The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.

  16. Multicomponent diffusion in molten salt LiF-BeF2: Dynamical correlations and Maxwell-Stefan diffusivities

    NASA Astrophysics Data System (ADS)

    Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2015-06-01

    Applying Green-Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell-Stefan (MS) Diffusivities of molten salt LiF-BeF2, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity ĐLi-F and ĐBe-F decreases sharply for higher concentration of LiF and BeF2 respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture at 1000K (except ĐBe-F at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.

  17. Strong anisotropic optical conductivity in two-dimensional puckered structures: The role of the Rashba effect

    NASA Astrophysics Data System (ADS)

    Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.; Peeters, F. M.

    2017-08-01

    We calculate the optical conductivity of an anisotropic two-dimensional system with Rashba spin-flip excitation within the Kubo formalism. We show that the anisotropic Rashba effect caused by an external field significantly changes the magnitude of the spin splitting. Furthermore, we obtain an analytical expression for the longitudinal optical conductivity associated with interband transitions as a function of the frequency for arbitrary polarization angle. We find that the diagonal components of the optical conductivity tensor are direction dependent and the optical absorption spectrum exhibits a strongly anisotropic absorption window. The height and width of this absorption window are very sensitive to the anisotropy of the system. While the height of absorption peak increases with increasing effective mass anisotropy ratio, the peak intensity is larger when the light polarization is along the armchair direction. Moreover, the absorption peak width becomes broader as the density-of-states mass or Rashba interaction is enhanced. These features in the optical absorption spectrum can be used to determine parameters relevant for spintronics.

  18. Phoretic forces on convex particles from kinetic theory and nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Hütter, Markus; Kröger, Martin

    2006-01-01

    In this article we derive the phoretic forces acting on a tracer particle, which is assumed to be small compared to the mean free path of the surrounding nonequilibrium gas, but large compared to the size of the surrounding gas molecules. First, we review and extend the calculations of Waldmann [Z. Naturforsch. A 14A, 589 (1959)] using half-sphere integrations and an accommodation coefficient characterizing the collision process. The presented methodology is applied to a gas subject to temperature, pressure, and velocity gradients. Corresponding thermophoretic, barophoretic, and rheophoretic forces are derived, and explicit expressions for spherical particles are compared to known results. Second, nonequilibrium thermodynamics is used to join the diffusion equation for the tracer particle with the continuum equations of nonisothermal hydrodynamics of the solvent. So doing, the distinct origin of the thermophoretic and barophoretic forces is demonstrated. While the latter enters similarly to an interaction potential, the former is given by flux-flux correlations in terms of a Green-Kubo relation, as shown in detail.

  19. Frequency and Wavevector Dependence of the Atomic Level Stress-Stress Correlation Function in a Model Supercooled Liquid

    NASA Astrophysics Data System (ADS)

    Levashov, Valentin A.; Morris, James R.; Egami, Takeshi

    2012-02-01

    Temporal and spatial correlations among the local atomic level shear stresses were studied for a model liquid iron by molecular dynamics simulation [PRL 106,115703]. Integration over time and space of the shear stress correlation function F(r,t) yields viscosity via Green-Kubo relation. The stress correlation function in time and space F(r,t) was Fourier transformed to study the dependence on frequency, E, and wave vector, Q. The results, F(Q,E), showed damped shear stress waves propagating in the liquid for small Q at high and low temperatures. We also observed additional diffuse feature that appears as temperature is reduced below crossover temperature of potential energy landscape at relatively low frequencies at small Q. We suggest that this additional feature might be related to dynamic heterogeneity and boson peaks. We also discuss a relation between the time-scale of the stress-stress correlation function and the alpha-relaxation time of the intermediate self-scattering function S(Q,E).

  20. Effect of interfaces on the nearby Brownian motion

    PubMed Central

    Huang, Kai; Szlufarska, Izabela

    2015-01-01

    Near-boundary Brownian motion is a classic hydrodynamic problem of great importance in a variety of fields, from biophysics to micro-/nanofluidics. However, owing to challenges in experimental measurements of near-boundary dynamics, the effect of interfaces on Brownian motion has remained elusive. Here we report a computational study of this effect using μs-long large-scale molecular dynamics simulations and our newly developed Green–Kubo relation for friction at the liquid–solid interface. Our computer experiment unambiguously reveals that the t−3/2 long-time decay of the velocity autocorrelation function of a Brownian particle in bulk liquid is replaced by a t−5/2 decay near a boundary. We discover a general breakdown of traditional no-slip boundary condition at short time scales and we show that this breakdown has a profound impact on the near-boundary Brownian motion. Our results demonstrate the potential of Brownian-particle-based micro-/nanosonar to probe the local wettability of liquid–solid interfaces. PMID:26438034

  1. Equation of State and Viscosity of Tantalum and Iron from First Principles

    NASA Astrophysics Data System (ADS)

    Miljacic, Ljubomir; Demers, Steven; van de Walle, Axel

    2011-03-01

    To understand and model at continuum level the high-energy-density dynamic response in transition metals like Tantalum and Iron, as it arises in hypervelocity impact experiments, an accurate prediction of the underlying thermodynamic and kinetic properties for a range of temperatures and pressures is of critical importance. The relevant time scale of atomic motion in a dense gas, liquid, and solid is accessible with ab-initio Molecular Dynamics (MD) simulations. We calculate EoS for Ta and Fe via Thermodynamical Integration in 2D (V,T) phase space throughout different single and two-component phases. To reduce the ab-initio demand in selected regions of the space, we fit available gas-liquid data to the Peng-Robinson model and treat the solid phase within the Boxed-quasi-harmonic approximation. In the fluid part of the 2D phase space, we calculate shear viscosity via Green-Kubo relations, as time integration of the stress autocorrelation function.

  2. Modeling the free energy surfaces of electron transfer in condensed phases

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.; Voth, Gregory A.

    2000-10-01

    We develop a three-parameter model of electron transfer (ET) in condensed phases based on the Hamiltonian of a two-state solute linearly coupled to a harmonic, classical solvent mode with different force constants in the initial and final states (a classical limit of the quantum Kubo-Toyozawa model). The exact analytical solution for the ET free energy surfaces demonstrates the following features: (i) the range of ET reaction coordinates is limited by a one-sided fluctuation band, (ii) the ET free energies are infinite outside the band, and (iii) the free energy surfaces are parabolic close to their minima and linear far from the minima positions. The model provides an analytical framework to map physical phenomena conflicting with the Marcus-Hush two-parameter model of ET. Nonlinear solvation, ET in polarizable charge-transfer complexes, and configurational flexibility of donor-acceptor complexes are successfully mapped onto the model. The present theory leads to a significant modification of the energy gap law for ET reactions.

  3. Impact of tensile strain on the thermal transport of zigzag hexagonal boron nitride nanoribbon: An equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia

    2018-02-01

    The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.

  4. Observation of Li Diffusion in Cathode Sheets of Li-ion Battery by μ+SR

    NASA Astrophysics Data System (ADS)

    Umegaki, Izumi; Kawauchi, Shigehiro; Nozaki, Hiroshi; Sawada, Hiroshi; Nakano, Hiroyuki; Harada, Masashi; Cottrell, Stephen P.; Coomer, Fiona C.; Telling, Mark; Sugiyama, Jun

    In order to know the change in Li diffusion during the operation of Li-ion batteries, we have initiated to measure Li diffusion not only in a powder sample but also in a cathode sheet with μ+SR. As the first step, we have measured μ+SR spectra on a cathode sheet, in which a mixture of a cathode material Li(Ni, Co)O2, a binder, and conducting additives is coated on an Al foil. The zero-field μ+SR spectrum exhibited a typical Kubo-Toyabe (KT) type relaxation at 100 K. By subtracting the contribution of the muons stopped in the Al foil, we found that Li+ ion starts to diffuse above 100 K in the Li(Ni, Co)O2. A self diffusion coefficient (DLi) at 300 K was estimated as 10-11 (cm2/s), which comparable with DLi (300 K) in the cathode materials previously reported. This leads to the future "in operando" measurements of DLi in Li-ion batteries.

  5. Li-Diffusion in Spinel Li[Ni1/2Mn3/2]O4 Powder and Film Studied with μ+SR

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Nozaki, Hiroshi; Umegaki, Izumi; Mukai, Kazuhiko; Cottrell, Stephen P.; Shiraki, Susumu; Hitosugi, Taro; Sassa, Yasmine; Suter, Andreas; Salman, Zaher; Prokscha, Thomas; Månsson, Martin

    A dynamic behavior in spinel Li[Ni1/2Mn3/2]O4 has been studied with μ+SR measurements in film and powder samples in the temperature range between 5 and 500 K. Both samples exhibited a broad ferromagnetic transition below 120 K, indicating the random distribution of Ni and Mn ions at the octahedral 16d site. Above 150 K, the ZF-μ+SR spectrum showed a dynamic behavior well explained by a dynamic Kubo-Toyabe function. Assuming a jump diffusion of Li+ at the tetrahedral 8a site to the vacant octahedral 16c site, a diffusion coefficient of Li+ is estimated as ˜5 × 10-11 cm2/s at 300 K and ˜8 × 10-11 cm2/s at 350 K and ˜14 × 10-11 cm2/s at 400 K, with thermal activation energy Ea ˜ 0.1 eV.

  6. Link between the photonic and electronic topological phases in artificial graphene

    NASA Astrophysics Data System (ADS)

    Lannebère, Sylvain; Silveirinha, Mário G.

    2018-04-01

    In recent years the study of topological phases of matter has emerged as a very exciting field of research, both in photonics and in electronics. However, up to now the electronic and photonic properties have been regarded as totally independent. Here we establish a link between the electronic and the photonic topological phases of the same material system and theoretically demonstrate that they are intimately related. We propose a realization of the Haldane model as a patterned two-dimensional electron gas and determine its optical response using the Kubo formula. It is shown that the electronic and photonic phase diagrams of the patterned electron gas are strictly related. In particular, the system has a trivial photonic topology when the inversion symmetry is the prevalent broken symmetry, whereas it has a nontrivial photonic topology for a dominant broken time-reversal symmetry, similar to the electronic case. To confirm these predictions, we numerically demonstrate the emergence of topologically protected unidirectional electromagnetic edge states at the interface with a trivial photonic material.

  7. A model study of tunneling conductance spectra of ferromagnetically ordered manganites

    NASA Astrophysics Data System (ADS)

    Panda, Saswati; Kar, J. K.; Rout, G. C.

    2018-02-01

    We report here the interplay of ferromagnetism (FM) and charge density wave (CDW) in manganese oxide systems through the study of tunneling conductance spectra. The model Hamiltonian consists of strong Heisenberg coupling in core t2g band electrons within mean-field approximation giving rise to ferromagnetism. Ferromagnetism is induced in the itinerant eg electrons due to Kubo-Ohata type double exchange (DE) interaction among the t2g and eg electrons. The charge ordering (CO) present in the eg band giving rise to CDW interaction is considered as the extra-mechanism to explain the colossal magnetoresistance (CMR) property of manganites. The magnetic and CDW order parameters are calculated using Zubarev's Green's function technique and solved self-consistently and numerically. The eg electron density of states (DOS) calculated from the imaginary part of the Green's function explains the experimentally observed tunneling conductance spectra. The DOS graph exhibits a parabolic gap near the Fermi energy as observed in tunneling conductance spectra experiments.

  8. Effect of interfaces on the nearby Brownian motion.

    PubMed

    Huang, Kai; Szlufarska, Izabela

    2015-10-06

    Near-boundary Brownian motion is a classic hydrodynamic problem of great importance in a variety of fields, from biophysics to micro-/nanofluidics. However, owing to challenges in experimental measurements of near-boundary dynamics, the effect of interfaces on Brownian motion has remained elusive. Here we report a computational study of this effect using μs-long large-scale molecular dynamics simulations and our newly developed Green-Kubo relation for friction at the liquid-solid interface. Our computer experiment unambiguously reveals that the t(-3/2) long-time decay of the velocity autocorrelation function of a Brownian particle in bulk liquid is replaced by a t(-5/2) decay near a boundary. We discover a general breakdown of traditional no-slip boundary condition at short time scales and we show that this breakdown has a profound impact on the near-boundary Brownian motion. Our results demonstrate the potential of Brownian-particle-based micro-/nanosonar to probe the local wettability of liquid-solid interfaces.

  9. Clasp/SJ Observation of Time Variations of Lyman-Alpha Emissions in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Ishikawa, S.; Kubo, M.; Katsukawa, Y.; Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Winebarger, A.; Kobayashi, K.; Trujillo Bueno, J.; hide

    2016-01-01

    The Chromospheric Lyman-alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on September 3, 2015 to investigate the solar chromosphere, and the slit-jaw (SJ) optical system took Lya images with the high time cadence of 0.6 s. By the CLASP/SJ observation, many time variations in the solar chromosphere with the time scale of <1 minute were discovered (see the poster by Kubo et al., Pa-13). We focused on an active region and investigated the short (<30 s) time variations and relation to the coronal structure observed by SDO/AIA. We compared the Ly(alpha) time variations at footpoints of coronal magnetic fields observed by AIA 211 Å (approx.2 MK) and AIA 171 Å (0.6 MK), and non-loop regions. As the result, we found the <30 s Ly(alpha) time variations had more in the footpoint regions. On the other hand, the <30 s time variations had no dependency on the temperature of the loop.

  10. Lepton asymmetry rate from quantum field theory: NLO in the hierarchical limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bödeker, D.; Sangel, M., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: msangel@physik.uni-bielefeld.de

    2017-06-01

    The rates for generating a matter-antimatter asymmetry in extensions of the Standard Model (SM) containing right-handed neutrinos are the most interesting and least trivial co\\-efficients in the rate equations for baryogenesis through thermal leptogenesis. We obtain a relation of these rates to finite-temperature real-time correlation functions, similar to the Kubo formulas for transport coefficients. Then we consider the case of hierarchical masses for the sterile neutrinos. At leading order in their Yukawa couplings we find a simple master formula which relates the rates to a single finite temperature three-point spectral function. It is valid to all orders in g ,more » where g denotes a SM gauge or quark Yukawa coupling. We use it to compute the rate for generating a matter-antimatter asymmetry at next-to-leading order in g in the non-relativistic regime. The corrections are of order g {sup 2}, and they amount to 4% or less.« less

  11. Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals.

    PubMed

    Zhang, Zhongwei; Chen, Jie; Li, Baowen

    2017-09-28

    From the mathematic category of surface Gaussian curvature, carbon allotropes can be classified into three types: zero curvature, positive curvature, and negative curvature. By performing Green-Kubo equilibrium molecular dynamics simulations, we found that surface curvature has a significant impact on the phonon vibration and thermal conductivity (κ) of carbon crystals. When curving from zero curvature to negative or positive curvature structures, κ is reduced by several orders of magnitude. Interestingly, we found that κ of negatively curved carbon crystals exhibits a monotonic dependence on curvature. Through phonon mode analysis, we show that curvature induces remarkable phonon softening in phonon dispersion, which results in the reduction of phonon group velocity and flattening of phonon band structure. Furthermore, the curvature was found to induce phonon mode hybridization, leading to the suppression of phonon relaxation time. Our study provides physical insight into thermal transport in curvature materials, and will be valuable in the modulation of phonon activity through surface curvature.

  12. Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface.

    PubMed

    Zhong, Shudan; Moore, Joel E; Souza, Ivo

    2016-02-19

    The current density j^{B} induced in a clean metal by a slowly-varying magnetic field B is formulated as the low-frequency limit of natural optical activity, or natural gyrotropy. Working with a multiband Pauli Hamiltonian, we obtain from the Kubo formula a simple expression for α_{ij}^{GME}=j_{i}^{B}/B_{j} in terms of the intrinsic magnetic moment (orbital plus spin) of the Bloch electrons on the Fermi surface. An alternate semiclassical derivation provides an intuitive picture of the effect, and takes into account the influence of scattering processes in dirty metals. This "gyrotropic magnetic effect" is fundamentally different from the chiral magnetic effect driven by the chiral anomaly and governed by the Berry curvature on the Fermi surface, and the two effects are compared for a minimal model of a Weyl semimetal. Like the Berry curvature, the intrinsic magnetic moment should be regarded as a basic ingredient in the Fermi-liquid description of transport in broken-symmetry metals.

  13. Band-gap tuning and optical response of two-dimensional Si x C 1 - x : A first-principles real-space study of disordered two-dimensional materials

    DOE PAGES

    Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda; ...

    2017-08-09

    We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen–Baerends corrected exchange potential. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene Si xC 1–x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussedmore » in the light of the available experimental and other theoretical data. As a result, our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.« less

  14. Interplay of temperature, spatial dispersion, and topology in silicene Casimir interactions

    NASA Astrophysics Data System (ADS)

    Woods, Lilia; Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton; Dalvit, Diego

    Graphene materials have given an impetus to the field of electromagnetic fluctuation interactions, such as Casimir forces. The discovery of unusual distance asymptotics, pronounced thermal effects, and strong dependence on the chemical potential in graphene Casimir interactions have shown new directions for control of this universal force. Recently discovered silicene, a graphene-like material with staggered lattice and significant spin-orbit coupling, offers new opportunities to re-evaluate these unusual Casimir interaction functionalities. Utilizing the Lifshitz formalism we investigate how the spatial dispersion and temperature affect the Casimir interaction in silicene undergoing various topological phase transitions under an applied electric field and laser illumination. This study is facilitated by the comprehensive examination of the conductivity components calculated via the Kubo formalism. We show that the interplay between temperature, spatial dispersion, and topology result in novel features in Casimir interactions involving staggered graphene-like lattices. Support from the US Department of Energy under Grant Number DE-FG02-06ER46297 and the LANL LDRD program is acknowledged.

  15. Strain effects on the optical conductivity of gapped graphene in the presence of Holstein phonons beyond the Dirac cone approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarmohammadi, Mohsen, E-mail: m.yarmohammadi69@gmail.com

    2016-08-15

    In this paper we study the optical conductivity and density of states (DOS) of doped gapped graphene beyond the Dirac cone approximation in the presence of electron-phonon (e-ph) interaction under strain, i.e., within the framework of a full π-band Holstein model, by using the Kubo linear response formalism that is established upon the retarded self-energy. A new peak in the optical conductivity for a large enough e-ph interaction strength is found which is associated to transitions between the midgap states and the Van Hove singularities of the main π-band. Optical conductivity decreases with strain and at large strains, the systemmore » has a zero optical conductivity at low energies due to optically inter-band excitations through the limit of zero doping. As a result, the Drude weight changes with e-ph interaction, temperature and strain. Consequently, DOS and optical conductivity remains stable with temperature at low e-ph coupling strengths.« less

  16. Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface

    NASA Astrophysics Data System (ADS)

    Zhong, Shudan; Moore, Joel E.; Souza, Ivo

    2016-02-01

    The current density jB induced in a clean metal by a slowly-varying magnetic field B is formulated as the low-frequency limit of natural optical activity, or natural gyrotropy. Working with a multiband Pauli Hamiltonian, we obtain from the Kubo formula a simple expression for αij GME=jiB/Bj in terms of the intrinsic magnetic moment (orbital plus spin) of the Bloch electrons on the Fermi surface. An alternate semiclassical derivation provides an intuitive picture of the effect, and takes into account the influence of scattering processes in dirty metals. This "gyrotropic magnetic effect" is fundamentally different from the chiral magnetic effect driven by the chiral anomaly and governed by the Berry curvature on the Fermi surface, and the two effects are compared for a minimal model of a Weyl semimetal. Like the Berry curvature, the intrinsic magnetic moment should be regarded as a basic ingredient in the Fermi-liquid description of transport in broken-symmetry metals.

  17. Density-functional calculations of transport properties in the nondegenerate limit and the role of electron-electron scattering

    DOE PAGES

    Desjarlais, Michael P.; Scullard, Christian R.; Benedict, Lorin X.; ...

    2017-03-13

    We compute electrical and thermal conductivities of hydrogen plasmas in the non-degenerate regime using Kohn-Sham Density Functional Theory (DFT) and an application of the Kubo- Greenwood response formula, and demonstrate that for thermal conductivity, the mean-field treatment of the electron-electron (e-e) interaction therein is insufficient to reproduce the weak-coupling limit obtained by plasma kinetic theories. An explicit e-e scattering correction to the DFT is posited by appealing to Matthiessen's Rule and the results of our computations of conductivities with the quantum Lenard-Balescu (QLB) equation. Further motivation of our correction is provided by an argument arising from the Zubarev quantum kineticmore » theory approach. Significant emphasis is placed on our efforts to produce properly converged results for plasma transport using Kohn-Sham DFT, so that an accurate assessment of the importance and efficacy of our e-e scattering corrections to the thermal conductivity can be made.« less

  18. Band-gap tuning and optical response of two-dimensional Si x C 1 - x : A first-principles real-space study of disordered two-dimensional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda

    We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen–Baerends corrected exchange potential. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene Si xC 1–x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussedmore » in the light of the available experimental and other theoretical data. As a result, our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.« less

  19. Vibrational and reorientationl relaxation in liquid tert-butyl bromide and tert-butyl bromide- d9

    NASA Astrophysics Data System (ADS)

    Szostak, R.; Hawranek, J. P.

    1992-12-01

    The vibrational and reorientational correlation functions of the ν s(CBr) mode in liquid tert-butyl bromide (TBBr) and in its deuterated analogue (TBBr- d9) were determined from Raman bandshapes. The Kubo product δτ m obtained by fitting the Rothschild equation to experimental data amounts to 0.36-0.45 for the studied bands, which indicates a fairly fast modulation regime in these systems. The approximation of experimental rotational correlation functions with the help of the J-diffusion model yields values of 0.11-0.12ps for the angular momentum correlation time. The second-order rotational correlation times (1.7-2.0ps) agree well with the NMR results of D.W. Aksnes, K. Ramstad and O.P. Björlykke, Magn. Reson. Chem., 25 (1987) 1063. Selected bandshape parameters for δ(CCC) in both compounds, ϱ(CH 3) in TBBr and ν s(CC) in TBBR- d9 were also quoted.

  20. First principles molecular dynamics of molten NaI: Structure, self-diffusion, polarization effects, and charge transfer

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-09-01

    The structure and self-diffusion of NaI and NaCl at temperatures close to their melting points are studied by first principles Hellmann-Feynman molecular dynamics (HFMD). The results are compared with classical MD using rigid-ion (RI) and shell-model (ShM) interionic potentials. HFMD for NaCl was reported before at a higher temperature [N. Galamba and B. J. Costa Cabral, J. Chem. Phys. 126, 124502 (2007)]. The main differences between the structures predicted by HFMD and RI MD for NaI concern the cation-cation and the anion-cation pair correlation functions. A ShM which allows only for the polarization of I- reproduces the main features of the HFMD structure of NaI. The inclusion of polarization effects for both ionic species leads to a more structured ionic liquid, although a good agreement with HFMD is also observed. HFMD Green-Kubo self-diffusion coefficients are larger than those obtained from RI and ShM simulations. A qualitative study of charge transfer in molten NaI and NaCl was also carried out with the Hirshfeld charge partitioning method. Charge transfer in molten NaI is comparable to that in NaCl, and results for NaCl at two temperatures support the view that the magnitude of charge transfer is weakly state dependent for ionic systems. Finally, Hirshfeld charge distributions indicate that differences between RI and HFMD results are mainly related to polarization effects, while the influence of charge transfer fluctuations is minimal for these systems.

  1. Molecular Simulation Studies of Covalently and Ionically Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hong, Bingbing

    Solvent-free covalently- or ionically-grafted nanoparticles (CGNs and IGNs) are a new class of organic-inorganic hybrid composite materials exhibiting fluid-like behaviors around room temperature. With similar structures to prior systems, e.g. nanocomposites, neutral or charged colloids, ionic liquids, etc, CGNs and IGNs inherit the functionality of inorganic nanopariticles, the facile processibility of polymers, as well as conductivity and nonvolatility from their constituent materials. In spite of the extensive prior experimental research having covered synthesis and measurements of thermal and dynamic properties, little progress in understanding of these new materials at the molecular level has been achieved, because of the lack of simulation work in this new area. Atomistic and coarse-grained molecular dynamics simulations have been performed in this thesis to investigate the thermodynamics, structure, and dynamics of these systems and to seek predictive methods predictable for their properties. Starting from poly(ethylene oxide) oligomers (PEO) melts, we established atomistic models based on united-atom representations of methylene. The Green-Kubo and Einstein-Helfand formulas were used to calculate the transport properties. The simulations generate densities, viscosities, diffusivities, in good agreement with experimental data. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. Coupled with thermodynamic integration methods, the models give good predictions of pressure-composition-density relations for CO 2 + PEO oligomers. Water effects on the Henry's constant of CO 2 in PEO have also been investigated. The dependence of the calculated Henry's constants on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. CGNs are modeled by the inclusion of solid-sphere nanoparticles into the atomistic oligomers. The calculated viscosities from Green-Kubo relationships and temperature extrapolation are of the same order of magnitude as experimental values, but show a smaller activation energy relative to real CGNs systems. Grafted systems have higher viscosities, smaller diffusion coefficients, and slower chain dynamics than the ungrafted counterparts - nanocomposites - at high temperatures. At lower temperatures, grafted systems exhibit faster dynamics for both nanoparticles and chains relative to ungrafted systems, because of lower aggregation of nanoparticles and enhanced correlations between nanoparticles and chains. This agrees with the experimental observation that the new materials have liquid-like behavior in the absence of a solvent. To lower the simulated temperatures into the experimental range, we established a coarse-grained CGNs model by matching structural distribution functions to atomistic simulation data. In contrast with linear polymer systems, for which coarse-graining always accelerate dynamics, coarse-graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This can be qualitatively predicted by a simple transition-state theory. Similar atomistic models to CGNs were developed for IGNs, with ammonium counterions described by an explicit-hydrogen way; these were in turn compared with "generic" coarse-grained IGNs. The elimination of chemical details in the coarse-grained models does not bring in qualitative changes to the radial distribution functions and diffusion of atomistic IGNs, but saves considerable simulation resources and make simulations near room temperatures affordable. The chain counterions in both atomistic and coarse-grained models are mobile, moving from site to site and from nanoparticle to nanoparticle. At the same temperature and the same core volume fractions, the nanoparticle diffusivities in coarse-grained IGNs are slower by a factor ten than the cores of CGNs. The coarse-grained IGNs models are later used to investigate the system dynamics through analysis of the dependence on temperature and structural parameters of the transport properties (self-diffusion coefficients, viscosities and conductivities). Further, migration kinetics of oligomeric counterions is analyzed in a manner analogous to unimer exchange between micellar aggregates. The counterion migrations follow the "double-core" mechanism and are kinetically controlled by neighboring-core collisions. (Abstract shortened by UMI.)

  2. Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field

    NASA Astrophysics Data System (ADS)

    Liwo, Adam; Czaplewski, Cezary; Pillardy, Jarosław; Scheraga, Harold A.

    2001-08-01

    A general method to derive site-site or united-residue potentials is presented. The basic principle of the method is the separation of the degrees of freedom of a system into the primary and secondary ones. The primary degrees of freedom describe the basic features of the system, while the secondary ones are averaged over when calculating the potential of mean force, which is hereafter referred to as the restricted free energy (RFE) function. The RFE can be factored into one-, two-, and multibody terms, using the cluster-cumulant expansion of Kubo. These factors can be assigned the functional forms of the corresponding lowest-order nonzero generalized cumulants, which can, in most cases, be evaluated analytically, after making some simplifying assumptions. This procedure to derive coarse-grain force fields is very valuable when applied to multibody terms, whose functional forms are hard to deduce in another way (e.g., from structural databases). After the functional forms have been derived, they can be parametrized based on the RFE surfaces of model systems obtained from all-atom models or on the statistics derived from structural databases. The approach has been applied to our united-residue force field for proteins. Analytical expressions were derived for the multibody terms pertaining to the correlation between local and electrostatic interactions within the polypeptide backbone; these expressions correspond to up to sixth-order terms in the cumulant expansion of the RFE. These expressions were subsequently parametrized by fitting to the RFEs of selected peptide fragments, calculated with the empirical conformational energy program for peptides force field. The new multibody terms enable not only the heretofore predictable α-helical segments, but also regular β-sheets, to form as the lowest-energy structures, as assessed by test calculations on a model helical protein A, as well as a model 20-residue polypeptide (betanova); the latter was not possible without introducing these new terms.

  3. Molecular simulations of diffusion in electrolytes

    NASA Astrophysics Data System (ADS)

    Wheeler, Dean Richard

    This work demonstrates new methodologies for simulating multicomponent diffusion in concentrated solutions using molecular dynamics (MD). Experimental diffusion data for concentrated multicomponent solutions are often lacking, as are accurate methods of predicting diffusion for nonideal solutions. MD can be a viable means of understanding and predicting multicomponent diffusion. While there have been several prior reports of MD simulations of mutual diffusion, no satisfactory expressions for simulating Stefan-Maxwell diffusivities for an arbitrary number of species exist. The approaches developed here allow for the computation of a full diffusion matrix for any number of species in both nonequilibrium and equilibrium MD ensembles. Our nonequilibrium approach is based on the application of constant external fields to drive species diffusion. Our equilibrium approach uses a newly developed Green-Kubo formula for Stefan-Maxwell diffusivities. In addition, as part of this work, we demonstrate a widely applicable means of increasing the computational efficiency of the Ewald sum, a technique for handling long-range Coulombic interactions in simulations. The theoretical development is applicable to any solution which can be simulated using MD; nevertheless, our primary interest is in electrochemical applications. To this end, the methods are tested by simulations of aqueous salt solutions and lithium-battery electrolytes. KCl and NaCl aqueous solutions were simulated over the concentration range 1 to 4 molal. Intermolecular-potential models were parameterized for these transport-based simulations. This work is the first to simulate all three independent diffusion coefficients for aqueous NaCl and KCl solutions. The results show that the nonequilibrium and equilibrium methods are consistent with each other, and in moderate agreement with experiment. We simulate lithium-battery electrolytes containing LiPF6 in propylene carbonate and mixed ethylene carbonate-dimethyl carbonate solvents. As with the aqueous-solution work, potential parameters were generated for these molecules. These nonaqueous electrolytes demonstrate rich transport behavior, which the simulations are able to reproduce qualitatively. In a mixed-solvent simulation we regress all six independent transport coefficients. The simulations show that strong ion pairing is responsible for the increase in viscosity and maximum in conductivity as ion concentrations are increased.

  4. ON THE APPROACH TO NON-EQUILIBRIUM STATIONARY STATES AND THE THEORY OF TRANSPORT COEFFICIENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.

    1961-07-01

    A general formula for the time dependent electric current arising from a constant electric field is derived similarly to Kubo's theory. This formula connects the time dependence of the current to the singularities of the resolvent of Liouville's operator of a classical system. Direct contact is made with the general theory of approach to equilibrium developed by Prigogine and his coworkers. It constitutes a framework for a diagram expansion of transport coefficients. A proof of the existence of a stationary state and of its stability (to first order in the field) are given. It is rigorously shown that, whereas themore » approach to the stationary state is in general governed by complicated non-markoffian equations, the stationary state itself (and thus the calculation of transport coefficients) is always determined by an asymptotic cross section. This implies that transport coefficients can always be calculated from a markoffian Boltzmann-like equation even in situations in which that equation does not describe properly the approach to the stationary state. (auth)« less

  5. Influence of defects on the thermal conductivity of compressed LiF

    DOE PAGES

    Jones, R. E.; Ward, D. K.

    2018-02-08

    We report defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a largemore » sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. Also, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.« less

  6. Optical Response of Warm Dense Matter Using Real-Time Electron Dynamics

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew; Shulenburger, Luke; Desjarlais, Michael; Magyar, Rudolph

    2014-03-01

    The extreme temperatures and solid-like densities in warm dense matter present a unique challenge for theory, wherein neither conventional models from condensed matter nor plasma physics capture all of the relevant phenomenology. While Kubo-Greenwood DFT calculations have proven capable of reproducing optical properties of WDM, they require a significant number of virtual orbitals to reach convergence due to their perturbative nature. Real-time TDDFT presents a complementary framework with a number of computationally favorable properties, including reduced cost complexity and better scalability, and has been used to reproduce the optical response of finite and ordered extended systems. We will describe the use of Ehrenfest-TDDFT to evolve coupled electron-nuclear dynamics in WDM systems, and the subsequent evaluation of optical response functions from the real-time electron dynamics. The advantages and disadvantages of this approach will be discussed relative to the current state-of-the-art. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  7. A molecular dynamics study of liquid layering and thermal conductivity enhancement in nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.

    2018-03-01

    Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.

  8. Thermal Conductivities in Solids from First Principles: Accurate Computations and Rapid Estimates

    NASA Astrophysics Data System (ADS)

    Carbogno, Christian; Scheffler, Matthias

    In spite of significant research efforts, a first-principles determination of the thermal conductivity κ at high temperatures has remained elusive. Boltzmann transport techniques that account for anharmonicity perturbatively become inaccurate under such conditions. Ab initio molecular dynamics (MD) techniques using the Green-Kubo (GK) formalism capture the full anharmonicity, but can become prohibitively costly to converge in time and size. We developed a formalism that accelerates such GK simulations by several orders of magnitude and that thus enables its application within the limited time and length scales accessible in ab initio MD. For this purpose, we determine the effective harmonic potential occurring during the MD, the associated temperature-dependent phonon properties and lifetimes. Interpolation in reciprocal and frequency space then allows to extrapolate to the macroscopic scale. For both force-field and ab initio MD, we validate this approach by computing κ for Si and ZrO2, two materials known for their particularly harmonic and anharmonic character. Eventually, we demonstrate how these techniques facilitate reasonable estimates of κ from existing MD calculations at virtually no additional computational cost.

  9. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Seungho; Kaviany, Massoud, E-mail: kaviany@umich.edu

    2014-02-14

    Using ab initio molecular dynamics, the atomic structure and transport properties of eutectic Ga-In and Ga-In-Sn are investigated. The Kubo-Greenwood (K-G) and the Ziman-Faber (Z-F) formulations and the Wiedemann-Franz (W-F) law are used for the electrical and electronic thermal conductivity. The species diffusivity and the viscosity are also predicted using the mean square displacement and the Stokes-Einstein (S-E) relation. Alloying Ga causes more disordered structure, i.e., broadening the atomic distance near the In and Sn atoms, which reduces the transport properties and the melting temperature. The K-G treatment shows excellent agreement with the experimental results while Z-F treatment formula slightlymore » overestimates the electrical conductivity. The predicted thermal conductivity also shows good agreement with the experiments. The species diffusivity and the viscosity are slightly reduced by the alloying of Ga with In and Sn atoms. Good agreements are found with available experimental results and new predicted transport-property results are provided.« less

  10. Chapman-Enskog expansion for the Vicsek model of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Ihle, Thomas

    2016-08-01

    Using the standard Vicsek model, I show how the macroscopic transport equations can be systematically derived from microscopic collision rules. The approach starts with the exact evolution equation for the N-particle probability distribution and, after making the mean-field assumption of molecular chaos, leads to a multi-particle Enskog-type equation. This equation is treated by a non-standard Chapman-Enskog expansion to extract the macroscopic behavior. The expansion includes terms up to third order in a formal expansion parameter ɛ, and involves a fast time scale. A self-consistent closure of the moment equations is presented that leads to a continuity equation for the particle density and a Navier-Stokes-like equation for the momentum density. Expressions for all transport coefficients in these macroscopic equations are given explicitly in terms of microscopic parameters of the model. The transport coefficients depend on specific angular integrals which are evaluated asymptotically in the limit of infinitely many collision partners, using an analogy to a random walk. The consistency of the Chapman-Enskog approach is checked by an independent calculation of the shear viscosity using a Green-Kubo relation.

  11. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  12. Lattice Thermal Conductivity from Atomistic Simulations: ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  13. DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder

    NASA Astrophysics Data System (ADS)

    Andelković, M.; Covaci, L.; Peeters, F. M.

    2018-03-01

    The in-plane dc conductivity of twisted bilayer graphene is calculated using an expansion of the real-space Kubo-Bastin conductivity in terms of Chebyshev polynomials. We investigate within a tight-binding approach the transport properties as a function of rotation angle, applied perpendicular electric field, and vacancy disorder. We find that for high-angle twists, the two layers are effectively decoupled, and the minimum conductivity at the Dirac point corresponds to double the value observed in monolayer graphene. This remains valid even in the presence of vacancies, hinting that chiral symmetry is still preserved. On the contrary, for low twist angles, the conductivity at the Dirac point depends on the twist angle and is not protected in the presence of disorder. Furthermore, for low angles and in the presence of an applied electric field, we find that the chiral boundary states emerging between AB and BA regions contribute to the dc conductivity, despite the appearance of localized states in the AA regions. The results agree qualitatively with recent transport experiments in low-angle twisted bilayer graphene.

  14. Nonlocal optical response in topological phase transitions in the graphene family

    NASA Astrophysics Data System (ADS)

    Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.; Woods, Lilia M.

    2018-01-01

    We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family and find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. We find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. The expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.

  15. Influence of defects on the thermal conductivity of compressed LiF

    NASA Astrophysics Data System (ADS)

    Jones, R. E.; Ward, D. K.

    2018-02-01

    Defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a large sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. In addition, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.

  16. Electrical resistivity of liquid iron with high concentration of light element impurities

    NASA Astrophysics Data System (ADS)

    Wagle, F.; Steinle-Neumann, G.

    2017-12-01

    The Earth's outer core mainly consists of liquid iron, enriched with several weight percent of lighter elements, such as silicon, oxygen, sulfur or carbon. Electrical resistivities of alloys of this type determine the stability of the geodynamo. Both computational and experimental results show that resistivites of Fe-based alloys deviate significantly from values of pure Fe. Using optical conductivity values computed with the Kubo-Greenwood formalism for DFT-based molecular dynamics results, we analyze the high-P and T behavior of resitivities for Fe-alloys containing various concentrations of sulfur, oxygen and silicon. As the electron mean free path length in amorphous and liquid material becomes comparable to interatomic distances at high P and T, electron scattering is expected to be dominated by the short-range order, rather than T-dependent vibrational contributions, and we describe such correlations in our results. In analogy to macroscopic porous media, we further show that resistivity of a liquid metal-nonmetal alloy is determined to first order by the resistivity of the metallic matrix and the volume fraction of non-metallic impurities.

  17. Entanglement properties of boundary state and thermalization

    NASA Astrophysics Data System (ADS)

    Guo, Wu-zhong

    2018-06-01

    We discuss the regularized boundary state {e}^{-{τ}_0H}\\Big|{.B>}_a on two aspects in both 2D CFT and higher dimensional free field theory. One is its entanglement and correlation properties, which exhibit exponential decay in 2D CFT, the parameter 1 /τ 0 works as a mass scale. The other concerns with its time evolution, i.e., {e}^{-itH}{e}^{-{τ}_0H}\\Big|{.B>}_a . We investigate the Kubo-Martin-Schwinger (KMS) condition on correlation function of local operators to detect the thermal properties. Interestingly we find the correlation functions in the initial state {e}^{-{τ}_0H}\\Big|{.B>}_a also partially satisfy the KMS condition. In the limit t → ∞, the correlators will exactly satisfy the KMS condition. We generally analyse quantum quench by a pure state and obtain some constraints on the possible form of 2-point correlation function in the initial state if assuming they satisfies KMS condition in the final state. As a byproduct we find in an large τ 0 limit the thermal property of 2-point function in {e}^{-{τ}_0H}\\Big|{.B>}_a also appears.

  18. μ SR study of NaCaNi2F7 in zero field and applied longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Cai, Yipeng; Wilson, Murray; Hallas, Alannah; Liu, Lian; Frandsen, Benjamin; Dunsiger, Sarah; Krizan, Jason; Cava, Robert; Uemura, Yasutomo; Luke, Graeme

    Rich physics of abundant magnetic ground states has been realized in the A2B2X7 geometrically frustrated magnetic pyrochlores. Recently, a new spin-1 Ni2+ pyrochlore, NaCaNi2F7, was synthesized and shown to have spin freezing at 3.6 K with a frustration index of f 36 and antiferromagnetic exchange interactions [1] . This structure has chemical disorder on the A site caused by randomly distributed Ca and Na ions, which causes bond disorder around the magnetic Ni sites. We present Zero Field (ZF) and Longitudinal Field (LF) muon spin rotation (μSR) measurements on this single crystal pyrochlore. Our data shows that the Ni2+ spins start freezing around 4 K giving a static local field of 140 G. The data show no oscillations down to 75 mK which indicates no long range magnetic order. They are well described by the dynamic Gaussian Kubo-Toyabe function with a non-zero hopping rate that is not easily decoupled with an applied longitudinal field, which implies persistent spin dynamics down to 75 mK.

  19. Longitudinal and bulk viscosities of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Tankeshwar, K.; Pathak, K. N.; Ranganathan, S.

    1996-12-01

    Expressions for the longitudinal and bulk viscosities have been derived using Green Kubo formulae involving the time integral of the longitudinal and bulk stress autocorrelation functions. The time evolution of stress autocorrelation functions are determined using the Mori formalism and a memory function which is obtained from the Mori equation of motion. The memory function is of hyperbolic secant form and involves two parameters which are related to the microscopic sum rules of the respective autocorrelation function. We have derived expressions for the zeroth-, second-and fourth- order sum rules of the longitudinal and bulk stress autocorrelation functions. These involve static correlation functions up to four particles. The final expressions for these have been put in a form suitable for numerical calculations using low- order decoupling approximations. The numerical results have been obtained for the sum rules of longitudinal and bulk stress autocorrelation functions. These have been used to calculate the longitudinal and bulk viscosities and time evolution of the longitudinal stress autocorrelation function of the Lennard-Jones fluids over wide ranges of densities and temperatures. We have compared our results with the available computer simulation data and found reasonable agreement.

  20. Nonlocal optical response in topological phase transitions in the graphene family

    DOE PAGES

    Rodriguez-Lopez, Pablo; de Melo Kort-Kamp, Wilton Junior; Dalvit, Diego Alejandro Roberto; ...

    2018-01-22

    We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family andmore » find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. Here, we find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. Finally, the expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.« less

  1. Second-order hydrodynamics and universality in non-conformal holographic fluids

    NASA Astrophysics Data System (ADS)

    Kleinert, Philipp; Probst, Jonas

    2016-12-01

    We study second-order hydrodynamic transport in strongly coupled non-conformal field theories with holographic gravity duals in asymptotically anti-de Sitter space. We first derive new Kubo formulae for five second-order transport coefficients in non-conformal fluids in (3 + 1) dimensions. We then apply them to holographic RG flows induced by scalar operators of dimension Δ = 3. For general background solutions of the dual bulk geometry, we find explicit expressions for the five transport coefficients at infinite coupling and show that a specific combination, tilde{H}=2η {τ}_{π }-2(κ -{κ}^{ast})-{λ}_2 , always vanishes. We prove analytically that the Haack-Yarom identity H = 2 ητ π - 4λ1 - λ2 = 0, which is known to be true for conformal holographic fluids at infinite coupling, also holds when taking into account leading non-conformal corrections. The numerical results we obtain for two specific families of RG flows suggest that H vanishes regardless of conformal symmetry. Our work provides further evidence that the Haack-Yarom identity H = 0 may be universally satisfied by strongly coupled fluids.

  2. Band-gap tuning and optical response of two-dimensional SixC1 -x : A first-principles real-space study of disordered two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda; Datta, Sujoy; Johnson, Duane D.; Mookerjee, Abhijit

    2017-08-01

    We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique [Mookerjee, J. Phys. C 6, 1340 (1973), 10.1088/0022-3719/6/8/003] formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen-Baerends corrected exchange potential [Singh, Harbola, Hemanadhan, Mookerjee, and Johnson, Phys. Rev. B 93, 085204 (2016), 10.1103/PhysRevB.93.085204]. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene SixC1 -x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussed in the light of the available experimental and other theoretical data. Our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.

  3. Nonlocal optical response in topological phase transitions in the graphene family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Lopez, Pablo; de Melo Kort-Kamp, Wilton Junior; Dalvit, Diego Alejandro Roberto

    We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family andmore » find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. Here, we find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. Finally, the expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.« less

  4. Dependence of the optical conductivity on the uniaxial and biaxial strains in black phosphorene

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Zhang, J. Y.; Wang, G. X.; Zhang, C.

    2018-06-01

    By using the Kubo formula, the optical conductivity of strained black phosphorene was studied. The anisotropic band dispersion gives rise to an orientation dependent optical conductivity. The energy gap can be tuned by the uniaxial and biaxial strains which can be observed from the interband optical conductivity polarized along the armchair (x ) direction. The preferential conducting direction is along the x direction. The dependence of the intraband optical conductivity along the zigzag (y ) direction on the Fermi energy and strain exhibits increasing or decreasing monotonously. However, along the x direction this dependence is complicated which originates from the carriers' inverse-direction movements obtained by two types of the nearest phosphorus atom interactions. The modification of the biaxial strain on the energy structure and optical-absorption property is more effective. The imaginary part of the total optical conductivity (Im σ ) can be negative around the threshold of the interband optical transition by modifying the chemical potential. Away from this frequency region, Im σ exhibits positive value. It can be used in the application of the surface plasmon propagations in multilayer dielectric structures.

  5. Thermally triggered phononic gaps in liquids at THz scale

    DOE PAGES

    Bolmatov, Dima; Zhernenkov, Mikhail; Zavyalov, Dmitry; ...

    2016-01-14

    In this study we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to themore » transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.« less

  6. Influence of defects on the thermal conductivity of compressed LiF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R. E.; Ward, D. K.

    We report defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a largemore » sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. Also, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.« less

  7. Multicomponent diffusion in molten salt LiF-BeF{sub 2}: Dynamical correlations and Maxwell–Stefan diffusivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Brahmananda, E-mail: brahma@barc.gov.in; Ramaniah, Lavanya M.

    2015-06-24

    Applying Green–Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell–Stefan (MS) Diffusivities of molten salt LiF-BeF{sub 2}, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity Đ{sub Li-F} and Đ{sub Be-F} decreases sharply for higher concentration of LiF and BeF{sub 2} respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture atmore » 1000K (except Đ{sub Be-F} at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.« less

  8. Molecular structure activity on pharmaceutical applications of Phenacetin using spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Madanagopal, A.; Periandy, S.; Gayathri, P.; Ramalingam, S.; Xavier, S.

    2017-01-01

    The pharmaceutical compound; Phenacetin was investigated by analyzing FT-IR, FT-Raman and 1H &13C NMR spectra. The hybrid efficient computational calculations performed for computing physical and chemical parameters. The cause of pharmaceutical activity due to the substitutions; carboxylic, methyl and amine groups in appropriate positions on the pedestal compound was deeply investigated. Moreover, 13C NMR and 1H NMR chemical shifts correlated with TMS standard to explain the truth of compositional ratio of base and ligand groups. The bathochromic shift due to chromophores over the energy levels in UV-Visible region was strongly emphasized the Anti-inflammatory chemical properties. The chemical stability was pronounced by the strong kubo gap which showed the occurring of charge transformation within the molecule. The occurrence of the chemical reaction was feasibly interpreted by Gibbs free energy profile. The standard vibrational analysis stressed the active participation of composed ligand groups for the existence of the analgesic as well as antipyretic properties of the Phenacetin compound. The strong dipole interaction energy utilization for the transition among non-vanishing donor and acceptor for composition of the molecular structure was interpreted.

  9. Study for Nuclear Structures of 22-35Na Isotopes via Measurements of Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Suzuki, Shinji

    2014-09-01

    T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn., Kochi Univ. of Tech.) Reaction cross sections (σR) for 22-35Na isotopes have been measured at around 240 MeV/nucleon. The σR for 22-35Na were measured for the first time. Enhancement in cross sections is clearly observed from the systematics for stable nuclei, for isotopes with large mass numbers. These enhancement can be mainly ascribed to the nuclear deformation. We will discuss the nuclear structure (neutron skin, nuclear shell structure) for neutron-excess Na isotopes. T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn., Kochi Univ. of Tech.) Reaction cross sections (σR) for 22-35Na isotopes have been measured at around 240 MeV/nucleon. The σR for 22-35Na were measured for the first time. Enhancement in cross sections is clearly observed from the systematics for stable nuclei, for isotopes with large mass numbers. These enhancement can be mainly ascribed to the nuclear deformation. We will discuss the nuclear structure (neutron skin, nuclear shell structure) for neutron-excess Na isotopes. JSPS KAKENHI Grant Number 24244024.

  10. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  11. Molecular dynamics studies of transport properties and equation of state of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Nwobi, Obika C.

    Many chemical propulsion systems operate with one or more of the reactants above the critical point in order to enhance their performance. Most of the computational fluid dynamics (CFD) methods used to predict these flows require accurate information on the transport properties and equation of state at these supercritical conditions. This work involves the determination of transport coefficients and equation of state of supercritical fluids by equilibrium molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. MD involves the solution of equations of motion of a system of molecules that interact with each other through an intermolecular potential. Provided that an accurate potential can be found for the system of interest, MD can be used regardless of the phase and thermodynamic conditions of the substances involved. The MD program uses the effective Lennard-Jones potential, with system sizes of 1000-1200 molecules and, simulations of 2,000,000 time-steps for computing transport coefficients and 200,000 time-steps for pressures. The computer code also uses linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Particle decomposition is used for distributing the molecules to different processors of a parallel computer. Simulations have been carried out on pure argon, nitrogen, oxygen and ethylene at various supercritical conditions, with self-diffusion coefficients, shear viscosity coefficients, thermal conductivity coefficients and pressures computed for most of the conditions. Results compare well with experimental and the National Institute of Standards and Technology (NIST) values. The results show that the number of molecules and the potential cut-off radius have no significant effect on the computed coefficients, while long-time integration is necessary for accurate determination of the coefficients.

  12. Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Merabia, Samy; Termentzidis, Konstantinos

    2012-09-01

    In this article, we compare the results of nonequilibrium (NEMD) and equilibrium (EMD) molecular dynamics methods to compute the thermal conductance at the interface between solids. We propose to probe the thermal conductance using equilibrium simulations measuring the decay of the thermally induced energy fluctuations of each solid. We also show that NEMD and EMD give generally speaking inconsistent results for the thermal conductance: Green-Kubo simulations probe the Landauer conductance between two solids which assumes phonons on both sides of the interface to be at equilibrium. On the other hand, we show that NEMD give access to the out-of-equilibrium interfacial conductance consistent with the interfacial flux describing phonon transport in each solid. The difference may be large and reaches typically a factor 5 for interfaces between usual semiconductors. We analyze finite size effects for the two determinations of the interfacial thermal conductance, and show that the equilibrium simulations suffer from severe size effects as compared to NEMD. We also compare the predictions of the two above-mentioned methods—EMD and NEMD—regarding the interfacial conductance of a series of mass mismatched Lennard-Jones solids. We show that the Kapitza conductance obtained with EMD can be well described using the classical diffuse mismatch model (DMM). On the other hand, NEMD simulation results are consistent with an out-of-equilibrium generalization of the acoustic mismatch model (AMM). These considerations are important in rationalizing previous results obtained using molecular dynamics, and help in pinpointing the physical scattering mechanisms taking place at atomically perfect interfaces between solids, which is a prerequisite to understand interfacial heat transfer across real interfaces.

  13. Phonon optimized interatomic potential for aluminum

    NASA Astrophysics Data System (ADS)

    Muraleedharan, Murali Gopal; Rohskopf, Andrew; Yang, Vigor; Henry, Asegun

    2017-12-01

    We address the problem of generating a phonon optimized interatomic potential (POP) for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA) to optimize the free parameters in an empirical interatomic potential (EIP). For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT) calculations. Existing potentials for aluminum, such as the embedded atom method (EAM) and charge-optimized many-body (COMB3) potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD) simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE), employing Fermi's Golden Rule to predict the phonon-phonon relaxation times.

  14. Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei

    2017-01-01

    We derive alternative Markov approximations for the projected (stochastic) force and memory function in the coarse-grained (CG) generalized Langevin equation, which describes the time evolution of the center-of-mass coordinates of clusters of particles in the microscopic ensemble. This is done with the aid of the Mori-Zwanzig projection operator method based on the recently introduced projection operator [S. Izvekov, J. Chem. Phys. 138, 134106 (2013), 10.1063/1.4795091]. The derivation exploits the "generalized additive fluctuating force" representation to which the projected force reduces in the adopted projection operator formalism. For the projected force, we present a first-order time expansion which correctly extends the static fluctuating force ansatz with the terms necessary to maintain the required orthogonality of the projected dynamics in the Markov limit to the space of CG phase variables. The approximant of the memory function correctly accounts for the momentum dependence in the lowest (second) order and indicates that such a dependence may be important in the CG dynamics approaching the Markov limit. In the case of CG dynamics with a weak dependence of the memory effects on the particle momenta, the expression for the memory function presented in this work is applicable to non-Markov systems. The approximations are formulated in a propagator-free form allowing their efficient evaluation from the microscopic data sampled by standard molecular dynamics simulations. A numerical application is presented for a molecular liquid (nitromethane). With our formalism we do not observe the "plateau-value problem" if the friction tensors for dissipative particle dynamics (DPD) are computed using the Green-Kubo relation. Our formalism provides a consistent bottom-up route for hierarchical parametrization of DPD models from atomistic simulations.

  15. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.

    PubMed

    Shim, Youngseon; Kim, Hyung J; Jung, Younjoon

    2012-01-01

    Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.

  16. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaoticmore » nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.« less

  17. Short-time vibrational dynamics of metaphosphate glasses

    NASA Astrophysics Data System (ADS)

    Kalampounias, Angelos G.

    2012-02-01

    In this paper we present the picosecond vibrational dynamics of a series of binary metaphosphate glasses, namely Na2O-P2O5, MO-P2O5 (M=Ba, Sr, Ca, Mg) and Al2O3-3P2O5 by means of Raman spectroscopy. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The fitting method used enables one to model the real line profiles intermediate between Lorentzian and Gaussian by an analytical function, which has an analytical counterpart in the time domain. The symmetric stretching modes νs(PO2-) and νs(P-O-P) of the PO2- entity of PØ2O2- units and of P-O-P bridges in metaphosphate arrangements have been investigated by Raman spectroscopy and we used them as probes of the dynamics of these glasses. The vibrational time correlation functions of both modes studied are rather adequately interpreted within the assumption of exponential modulation function in the context of Kubo-Rothschield theory and indicate that the system experiences an intermediate dynamical regime that gets only slower with an increase in the ionic radius of the cation-modifier. We found that the vibrational correlation functions of all glasses studied comply with the Rothschild approach assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α with increasing ionic radius of the cation indicates the deviation from the model simple liquid indicating the reduction of the coherence decay in the perturbation potential as a result of local short lived aggregates. The results are discussed in the framework of the current phenomenological status of the field.

  18. Period-dependent source rupture behavior of the 2011 Tohoku earthquake estimated by multi period-band Bayesian waveform inversion

    NASA Astrophysics Data System (ADS)

    Kubo, H.; Asano, K.; Iwata, T.; Aoi, S.

    2014-12-01

    Previous studies for the period-dependent source characteristics of the 2011 Tohoku earthquake (e.g., Koper et al., 2011; Lay et al., 2012) were based on the short and long period source models using different method. Kubo et al. (2013) obtained source models of the 2011 Tohoku earthquake using multi period-bands waveform data by a common inversion method and discussed its period-dependent source characteristics. In this study, to achieve more in detail spatiotemporal source rupture behavior of this event, we introduce a new fault surface model having finer sub-fault size and estimate the source models in multi period-bands using a Bayesian inversion method combined with a multi-time-window method. Three components of velocity waveforms at 25 stations of K-NET, KiK-net, and F-net of NIED are used in this analysis. The target period band is 10-100 s. We divide this period band into three period bands (10-25 s, 25-50 s, and 50-100 s) and estimate a kinematic source model in each period band using a Bayesian inversion method with MCMC sampling (e.g., Fukuda & Johnson, 2008; Minson et al., 2013, 2014). The parameterization of spatiotemporal slip distribution follows the multi-time-window method (Hartzell & Heaton, 1983). The Green's functions are calculated by the 3D FDM (GMS; Aoi & Fujiwara, 1999) using a 3D velocity structure model (JIVSM; Koketsu et al., 2012). The assumed fault surface model is based on the Pacific plate boundary of JIVSM and is divided into 384 subfaults of about 16 * 16 km^2. The estimated source models in multi period-bands show the following source image: (1) First deep rupture off Miyagi at 0-60 s toward down-dip mostly radiating relatively short period (10-25 s) seismic waves. (2) Shallow rupture off Miyagi at 45-90 s toward up-dip with long duration radiating long period (50-100 s) seismic wave. (3) Second deep rupture off Miyagi at 60-105 s toward down-dip radiating longer period seismic waves then that of the first deep rupture. (4) Deep rupture off Fukushima at 90-135 s. The dominant-period difference of the seismic-wave radiation between two deep ruptures off Miyagi may result from the mechanism that small-scale heterogeneities on the fault are removed by the first rupture. This difference can be also interpreted by the concept of multi-scale dynamic rupture (Ide & Aochi, 2005).

  19. Seismicity detection around the subduting seamount off Ibaraki the Japan Trench using dense OBS array data

    NASA Astrophysics Data System (ADS)

    Nakatani, Y.; Mochizuki, K.; Shinohara, M.; Yamada, T.; Hino, R.; Ito, Y.; Murai, Y.; Sato, T.

    2013-12-01

    A subducting seamount which has a height of about 3 km was revealed off Ibaraki in the Japan Trench by a seismic survey (Mochizuki et al., 2008). Mochizuki et al. (2008) also interpreted that interplate coupling was weak over the seamount because seismicity was low and the slip of the recent large earthquake did not propagate over it. To carry out further investigation, we deployed dense ocean bottom seismometers (OBSs) array around the seamount for about a year. During the observation period, seismicity off Ibaraki was activated due to the occurrence of the 2011 Tohoku earthquake. The southern edge of the mainshock rupture area was considered to be located around off Ibaraki by many source analyses. Moreover, Kubo et al. (2013) proposes the seamount played an important role in the rupture termination of the largest aftershock. Therefore, in this study, we try to understand about spatiotemporal variation of seismicity around the seamount before and after the Mw 9.0 event as a first step to elucidate relationship between the subducting seamount and seismogenic behavior. We used velocity waveforms of 1 Hz long-term OBSs which were densely deployed at station intervals of about 6 km. The sampling rate is 200 Hz and the observation period is from October 16, 2010 to September 19, 2011. Because of the ambient noise and effects of thick seafloor sediments, it is difficult to apply methods which have been used to on-land observational data for detecting seismicity to OBS data and to handle continuous waveforms automatically. We therefore apply back-projection method (e.g., Kiser and Ishii, 2012) to OBS waveform data which estimate energy-release source by stacking waveforms. Among many back-projection methods, we adopt a semblance analysis (e.g., Honda et al., 2008) which can detect feeble waves. First of all, we constructed a 3-D velocity structure model off Ibaraki by compiling the results of marine seismic surveys (e.g., Nakahigashi et al., 2012). Then, we divided a target area into small areas and calculated P-wave traveltimes between each station and all small areas by fast marching method (Rawlinson et al., 2006). After constructing theoretical travel-time tables, we applied a proper frequency filter to the observed waveforms and estimated seismic energy release by projecting semblance values. As the result of applying our method, we could successfully detect magnitude 2-3 earthquakes.

  20. Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory.

    PubMed

    Krüger, Matthias; Solon, Alexandre; Démery, Vincent; Rohwer, Christian M; Dean, David S

    2018-02-28

    Starting from the stochastic equation for the density operator, we formulate the exact (instantaneous) stress tensor for interacting Brownian particles and show that its average value agrees with expressions derived previously. We analyze the relation between the stress tensor and forces due to external potentials and observe that, out of equilibrium, particle currents give rise to extra forces. Next, we derive the stress tensor for a Landau-Ginzburg theory in generic, non-equilibrium situations, finding an expression analogous to that of the exact microscopic stress tensor, and discuss the computation of out-of-equilibrium (classical) Casimir forces. Subsequently, we give a general form for the stress tensor which is valid for a large variety of energy functionals and which reproduces the two mentioned cases. We then use these relations to study the spatio-temporal correlations of the stress tensor in a Brownian fluid, which we compute to leading order in the interaction potential strength. We observe that, after integration over time, the spatial correlations generally decay as power laws in space. These are expected to be of importance for driven confined systems. We also show that divergence-free parts of the stress tensor do not contribute to the Green-Kubo relation for the viscosity.

  1. Shear viscosity and imperfect fluidity in bosonic and fermionic superfluids

    NASA Astrophysics Data System (ADS)

    Boyack, Rufus; Guo, Hao; Levin, K.

    2014-12-01

    In this paper we address the ratio of the shear viscosity to entropy density η /s in bosonic and fermionic superfluids. A small η /s is associated with nearly perfect fluidity, and more general measures of the fluidity perfection/imperfection are of wide interest to a number of communities. We use a Kubo approach to concretely address this ratio via low-temperature transport associated with the quasiparticles. Our analysis for bosonic superfluids utilizes the framework of the one-loop Bogoliubov approximation, whereas for fermionic superfluids we apply BCS theory and its BCS-BEC extension. Interestingly, we find that the transport properties of strict BCS and Bogoliubov superfluids have very similar structures, albeit with different quasiparticle dispersion relations. While there is a dramatic contrast between the power law and exponential temperature dependence for η alone, the ratio η /s for both systems is more similar. Specifically, we find the same linear dependence (on the ratio of temperature T to inverse lifetime γ (T ) ) with η /s ∝T /γ (T ) , corresponding to imperfect fluidity. By contrast, near the unitary limit of BCS-BEC superfluids a very different behavior results, which is more consistent with near-perfect fluidity.

  2. Hydrodynamics with conserved current via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Yapeng; Sun Peng; Zhang Jianhui

    2011-06-15

    Using the AdS/CFT correspondence, we study the hydrodynamics with conserved current from the dual Maxwell-Gauss-Bonnet gravity. After constructing the perturbative solution to the first order based on the boosted black brane solution in the bulk Maxwell-Gauss-Bonnet gravity, we extract the stress tensor and conserved current of the dual conformal fluid on its boundary, and also find the effect of the Gauss-Bonnet term on the dual conformal fluid. Our results show that the Gauss-Bonnet term can affect the parameters such as the shear viscosity {eta}, entropy density s, thermal conductivity {kappa} and electrical conductivity {sigma}. However, it does not affect themore » so-called Wiedemann-Franz law which relates {kappa} to {sigma}, while it affects the ratio {eta}/s. In addition, another interesting result is that {eta}/s can also be affected by the bulk Maxwell field in our case, which is consistent with some previous results predicted through the Kubo formula. Moreover, the anomalous magnetic and vortical effects by adding the Chern-Simons term are also considered in our case in the Maxwell-Gauss-Bonnet gravity.« less

  3. Kinetic theory of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Leegwater, Jan A.

    1991-12-01

    A kinetic theory that describes the time evolution of a fluid consisting of Lennard-Jones particles at all densities is proposed. The kinetic equation assumes binary collisions, but takes into account the finite time duration of a collision. Furthermore, it is an extension of a kinetic equation for the square well fluid as well as the hard sphere Enskog theory. In the low density limit, the Boltzmann theory is obtained. It is shown that the proposed theory obeys all the conservation laws. The exchange of potential and kinetic energies is studied and it is shown that at high density this is a fast process. The dominant mechanism for energy exchange is found to be collisions at the strongly repulsive part of the potential that are disturbed by third particles. The kinetic equation is also used to calculate the Green-Kubo integrands for shear viscosity and heat conductivity. The major structures found in molecular dynamics simulations are reproduced at intermediate densities quantitatively and at high density semiquantitatively. It is found that at high density, not only correlated collisions have to be taken into account, but that even the concept of collisions in the sense of sudden changes in the velocity is no longer useful.

  4. Computation and analysis of the transverse current autocorrelation function, Ct(k,t), for small wave vectors: A molecular-dynamics study for a Lennard-Jones fluid

    NASA Astrophysics Data System (ADS)

    Vogelsang, R.; Hoheisel, C.

    1987-02-01

    Molecular-dynamics (MD) calculations are reported for three thermodynamic states of a Lennard-Jones fluid. Systems of 2048 particles and 105 integration steps were used. The transverse current autocorrelation function, Ct(k,t), has been determined for wave vectors of the range 0.5<||k||σ<1.5. Ct(k,t) was fitted by hydrodynamic-type functions. The fits returned k-dependent decay times and shear viscosities which showed a systematic behavior as a function of k. Extrapolation to the hydrodynamic region at k=0 gave shear viscosity coefficients in good agreement with direct Green-Kubo results obtained in previous work. The two-exponential model fit for the memory function proposed by other authors does not provide a reasonable description of the MD results, as the fit parameters show no systematic wave-vector dependence, although the Ct(k,t) functions are somewhat better fitted. Similarly, the semiempirical interpolation formula for the decay time based on the viscoelastic concept proposed by Akcasu and Daniels fails to reproduce the correct k dependence for the wavelength range investigated herein.

  5. Magnetic Susceptibility and Quantum Oscillations in a Buckled Honeycomb Lattice

    NASA Astrophysics Data System (ADS)

    Tabert, Calvin; Carbotte, Jules; Nicol, Elisabeth

    2015-03-01

    We calculate the magnetic response of a low-buckled honeycomb lattice with intrinsic spin-orbit coupling which is described by the Kane-Mele Hamiltonian (a model which would describe the low-energy physics of a material like silicene). Included in the Hamiltonian, is a sublattice potential difference term which may be induced by a perpendicular electric field; this field can tune the system from a topological insulator (TI), through a valley-spin polarized metal, to a trivial band insulator (BI). In an external magnetic field, a distinct signature of the phase transition is seen in the derivative of the magnetization with respect to chemical potential; this gives the quantization of the Hall plateaus through the Streda relation. The results are compared with the zero-frequency conductivity obtained from the Kubo formula. The magnetic susceptibility also displays signatures of the different topological phases. We also explore the de-Haas van-Alphen effect. At the transition point between the TI and BI, magnetic oscillations exist for any value of chemical potential. Away from the critical point, the chemical potential must be larger than the minimum gap. For large chemical potential (or small but finite sublattice potential difference), there is a strong beating pattern.

  6. Low-temperature thermal transport and thermopower of monolayer transition metal dichalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Tan, Yaohua; Klimeck, Gerhard; Shi, Junxia

    2017-10-01

    We study the low temperature thermal conductivity of single-layer transition metal dichalcogenides (TMDCs). In the low temperature regime where heat is carried primarily through transport of electrons, thermal conductivity is linked to electrical conductivity through the Wiedemann-Franz law (WFL). Using a k.p Hamiltonian that describes the K and K{\\prime} valley edges, we compute the zero-frequency electric (Drude) conductivity using the Kubo formula to obtain a numerical estimate for the thermal conductivity. The impurity scattering determined transit time of electrons which enters the Drude expression is evaluated within the self-consistent Born approximation. The analytic expressions derived show that low temperature thermal conductivity (1) is determined by the band gap at the valley edges in monolayer TMDCs and (2) in presence of disorder which can give rise to the variable range hopping regime, there is a distinct reduction. Additionally, we compute the Mott thermopower and demonstrate that under a high frequency light beam, a valley-resolved thermopower can be obtained. A closing summary reviews the implications of results followed by a brief discussion on applicability of the WFL and its breakdown in context of the presented calculations.

  7. Optical conductivity of three and two dimensional topological nodal-line semimetals

    NASA Astrophysics Data System (ADS)

    Barati, Shahin; Abedinpour, Saeed H.

    2017-10-01

    The peculiar shape of the Fermi surface of topological nodal-line semimetals at low carrier concentrations results in their unusual optical and transport properties. We analytically investigate the linear optical responses of three- and two-dimensional nodal-line semimetals using the Kubo formula. The optical conductivity of a three-dimensional nodal-line semimetal is anisotropic. Along the axial direction (i.e., the direction perpendicular to the nodal-ring plane), the Drude weight has a linear dependence on the chemical potential at both low and high carrier dopings. For the radial direction (i.e., the direction parallel to the nodal-ring plane), this dependence changes from linear into quadratic in the transition from low into high carrier concentration. The interband contribution into optical conductivity is also anisotropic. In particular, at large frequencies, it saturates to a constant value for the axial direction and linearly increases with frequency along the radial direction. In two-dimensional nodal-line semimetals, no interband optical transition could be induced and the only contribution to the optical conductivity arises from the intraband excitations. The corresponding Drude weight is independent of the carrier density at low carrier concentrations and linearly increases with chemical potential at high carrier doping.

  8. Bulk viscosity of molecular fluids

    NASA Astrophysics Data System (ADS)

    Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.

    2018-05-01

    The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

  9. Electrical and optical transport properties of single layer WSe2

    NASA Astrophysics Data System (ADS)

    Tahir, M.

    2018-03-01

    The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.

  10. Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System

    NASA Astrophysics Data System (ADS)

    Begum, M.; Das, N.

    2018-01-01

    The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.

  11. Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory

    NASA Astrophysics Data System (ADS)

    Krüger, Matthias; Solon, Alexandre; Démery, Vincent; Rohwer, Christian M.; Dean, David S.

    2018-02-01

    Starting from the stochastic equation for the density operator, we formulate the exact (instantaneous) stress tensor for interacting Brownian particles and show that its average value agrees with expressions derived previously. We analyze the relation between the stress tensor and forces due to external potentials and observe that, out of equilibrium, particle currents give rise to extra forces. Next, we derive the stress tensor for a Landau-Ginzburg theory in generic, non-equilibrium situations, finding an expression analogous to that of the exact microscopic stress tensor, and discuss the computation of out-of-equilibrium (classical) Casimir forces. Subsequently, we give a general form for the stress tensor which is valid for a large variety of energy functionals and which reproduces the two mentioned cases. We then use these relations to study the spatio-temporal correlations of the stress tensor in a Brownian fluid, which we compute to leading order in the interaction potential strength. We observe that, after integration over time, the spatial correlations generally decay as power laws in space. These are expected to be of importance for driven confined systems. We also show that divergence-free parts of the stress tensor do not contribute to the Green-Kubo relation for the viscosity.

  12. Self-diffusivity and interdiffusivity of molten aluminum-copper alloys under pressure, derived from molecular dynamics.

    PubMed

    Rudd, Robert E; Cabot, William H; Caspersen, Kyle J; Greenough, Jeffrey A; Richards, David F; Streitz, Frederick H; Miller, Paul L

    2012-03-01

    We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.

  13. Antimonene: Experiments and theory of surface conductivity

    NASA Astrophysics Data System (ADS)

    Palacios, Juan Jose; Ares, Pablo; Pakdel, Sahar; Paz, Wendel; Zamora, Felix; Gomez-Herrero, Julio

    Very recently antimony has been demonstrated to be amenable to standard exfoliation procedures opening the possibility of studying the electronic properties of isolated few-layers flakes of this material, a.k.a. antimonene. Antimony is a topological semimetal, meaning that its electronic structure presents spin-split helical states (or Dirac cones) on the surface, but it is still trivially metallic in bulk. Antimonene, on the other hand, may present a much reduced electronic bulk contribution for a small number of layers. A novel technique to make electrical contacts on the surface of individual thin flakes (5-10 monolayers) has allowed us to measure the (surface) conductivity of these in ambient conditions. Our measurements show a high conductivity in the range of 1 - 2e2 / h , which we attribute to the surface Dirac electrons. We have also carried out theoretical work to address the origin of this value, in particular, the importance of scattering between the Dirac electrons and the bulk bands. Our calculations are based on density functional theory for the electronic structure and Kubo formalism for the conductivity, the latter considering random disorder and the presence of water. Ministerio de Economia y Competitividad, Grant FIS2016-80434-P.

  14. Spin accumulation in disordered topological insulator ultrathin films

    NASA Astrophysics Data System (ADS)

    Siu, Zhuo Bin; Ho, Cong Son; Tan, Seng Ghee; Jalil, Mansoor B. A.

    2017-08-01

    Topological insulator (TI) ultrathin films differ from the more commonly studied semi-infinite bulk TIs in that the former possess both top and bottom surfaces where the surface states localized at different surfaces can couple to one another across the finite thickness of the film. In the presence of an in-plane magnetization, the TI thin films display two distinct phases depending on which of the inter-surface coupling or the magnetization is stronger. In this work, we consider a Bi2Se3 TI thin film system with an in-plane magnetization and numerically calculate the resulting spin accumulation on both surfaces of the film due to an in-plane electric field to linear order. We describe a numerical scheme for performing the Kubo formula calculation in which we include impurity scattering and vertex corrections. We find that the sums of the spin accumulation over the two surfaces in the in-plane direction perpendicular to the magnetization and in the out of plane direction are antisymmetric in Fermi energy around the charge neutrality point and are non-vanishing only when the symmetry between the top and bottom TI surfaces is broken. The impurity scattering, in general, diminishes the magnitude of the spin accumulation.

  15. Electric-field induced spin accumulation in the Landau level states of topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Siu, Zhuo Bin; Chowdhury, Debashree; Basu, Banasri; Jalil, Mansoor B. A.

    2017-08-01

    A topological insulator (TI) thin film differs from the more typically studied thick TI system in that the former has both a top and a bottom surface where the states localized at both surfaces can couple to one other across the finite thickness. An out-of-plane magnetic field leads to the formation of discrete Landau level states in the system, whereas an in-plane magnetization breaks the angular momentum symmetry of the system. In this work, we study the spin accumulation induced by the application of an in-plane electric field to the TI thin film system where the Landau level states and inter-surface coupling are simultaneously present. We show, via Kubo formula calculations, that the in-plane spin accumulation perpendicular to the magnetization due to the electric field vanishes for a TI thin film with symmetric top and bottom surfaces. A finite in-plane spin accumulation perpendicular to both the electric field and magnetization emerges upon applying either a differential magnetization coupling or a potential difference between the two film surfaces. This spin accumulation results from the breaking of the antisymmetry of the spin accumulation around the k-space equal-energy contours.

  16. Generalized global symmetries and dissipative magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Grozdanov, Sašo; Hofman, Diego M.; Iqbal, Nabil

    2017-05-01

    The conserved magnetic flux of U (1 ) electrodynamics coupled to matter in four dimensions is associated with a generalized global symmetry. We study the realization of such a symmetry at finite temperature and develop the hydrodynamic theory describing fluctuations of a conserved 2-form current around thermal equilibrium. This can be thought of as a systematic derivation of relativistic magnetohydrodynamics, constrained only by symmetries and effective field theory. We construct the entropy current and show that at first order in derivatives, there are seven dissipative transport coefficients. We present a universal definition of resistivity in a theory of dynamical electromagnetism and derive a direct Kubo formula for the resistivity in terms of correlation functions of the electric field operator. We also study fluctuations and collective modes, deriving novel expressions for the dissipative widths of magnetosonic and Alfvén modes. Finally, we demonstrate that a nontrivial truncation of the theory can be performed at low temperatures compared to the magnetic field: this theory has an emergent Lorentz invariance along magnetic field lines, and hydrodynamic fluctuations are now parametrized by a fluid tensor rather than a fluid velocity. Throughout, no assumption is made of weak electromagnetic coupling. Thus, our theory may have phenomenological relevance for dense electromagnetic plasmas.

  17. Self-diffusivity and interdiffusivity of molten aluminum-copper alloys under pressure, derived from molecular dynamics

    NASA Astrophysics Data System (ADS)

    Rudd, Robert E.; Cabot, William H.; Caspersen, Kyle J.; Greenough, Jeffrey A.; Richards, David F.; Streitz, Frederick H.; Miller, Paul L.

    2012-03-01

    We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Richa Naja, E-mail: ltprichanaja@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green–Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF–KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture.more » MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, Đ{sub Li-K} which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2{sup nd} law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.« less

  19. CDW fluctuations and the pseudogap in the single-particle conductivity of quasi-1D Peierls CDW systems: II.

    PubMed

    Kupčić, I; Rukelj, Z; Barišić, S

    2014-05-14

    The current-dipole Kubo formula for the dynamical conductivity of interacting multiband electronic systems derived in Kupčić et al (2013 J. Phys.: Condens. Matter 25 145602) is illustrated on the Peierls model for quasi-one-dimensional systems with the charge-density-wave (CDW) instability. Using the microscopic representation of the Peierls model, it is shown in which way the scattering of conduction electrons by CDW fluctuations affects the dynamical conductivity at temperatures above and well below the CDW transition temperature. The generalized Drude formula for the intraband conductivity is derived in the ordered CDW state well below the transition temperature. The natural extension of this formula to the case where the intraband memory function is dependent on frequency and wave vectors is also presented. It is shown that the main adventage of such a memory-function conductivity model is that it can be easily extended to study the dynamical conductivity and the electronic Raman scattering in more complicated multiband electronic systems in a way consistent with the law of conservation of energy. The incoherent interband conductivity in the CDW pseudogap state is briefly discussed as well.

  20. Electrical resistivity of substitutionally disordered hcp Fe-Si and Fe-Ni alloys: Chemically-induced resistivity saturation in the Earth's core

    NASA Astrophysics Data System (ADS)

    Gomi, Hitoshi; Hirose, Kei; Akai, Hisazumi; Fei, Yingwei

    2016-10-01

    The thermal conductivity of the Earth's core can be estimated from its electrical resistivity via the Wiedemann-Franz law. However, previously reported resistivity values are rather scattered, mainly due to the lack of knowledge with regard to resistivity saturation (violations of the Bloch-Grüneisen law and the Matthiessen's rule). Here we conducted high-pressure experiments and first-principles calculations in order to clarify the relationship between the resistivity saturation and the impurity resistivity of substitutional silicon in hexagonal-close-packed (hcp) iron. We measured the electrical resistivity of Fe-Si alloys (iron with 1, 2, 4, 6.5, and 9 wt.% silicon) using four-terminal method in a diamond-anvil cell up to 90 GPa at 300 K. We also computed the electronic band structure of substitutionally disordered hcp Fe-Si and Fe-Ni alloy systems by means of Korringa-Kohn-Rostoker method with coherent potential approximation (KKR-CPA). The electrical resistivity was then calculated from the Kubo-Greenwood formula. These experimental and theoretical results show excellent agreement with each other, and the first principles results show the saturation behavior at high silicon concentration. We further calculated the resistivity of Fe-Ni-Si ternary alloys and found the violation of the Matthiessen's rule as a consequence of the resistivity saturation. Such resistivity saturation has important implications for core dynamics. The saturation effect places the upper limit of the resistivity, resulting in that the total resistivity value has almost no temperature dependence. As a consequence, the core thermal conductivity has a lower bound and exhibits a linear temperature dependence. We predict the electrical resistivity at the top of the Earth's core to be 1.12 ×10-6 Ωm, which corresponds to the thermal conductivity of 87.1 W/m/K. Such high thermal conductivity suggests high isentropic heat flow, leading to young inner core age (<0.85 Gyr old) and high initial core temperature. It also strongly suppresses thermal convection in the core, which results in no convective motion in inner core and possibly thermally stratified layer in the outer core.

  1. Extraction of hot QCD matter transport coefficients utilizing microscopic transport theory

    NASA Astrophysics Data System (ADS)

    Demir, Nasser Soliman

    Ultrarelativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) are thought to have produced a state of matter called the Quark-Gluon-Plasma (QGP). The QGP forms when nuclear matter governed by Quantum Chromodynamics (QCD) reaches a temperature and baryochemical potential necessary to achieve the transition of hadrons (bound states of quarks and gluons) to deconfined quarks and gluons. Such conditions have been achieved at RHIC, and the resulting QGP created exhibits properties of a near perfect fluid. In particular, strong evidence shows that the QGP exhibits a very small shear viscosity to entropy density ratio eta/s, near the lower bound predicted for that quantity by Anti-deSitter space/Conformal Field Theory (AdS/CFT) methods of eta/s = ℎ4pkB , where h is Planck's constant and kB is Boltzmann's constant. As the produced matter expands and cools, it evolves through a phase described by a hadron gas with rapidly increasing eta/s. This thesis presents robust calculations of eta/s for hadronic and partonic media as a function of temperature using the Green-Kubo formalism. An analysis is performed for the behavior of eta/s to mimic situations of the hadronic media at RHIC evolving out of chemical equilibrium, and systematic uncertainties are assessed for our method. In addition, preliminary results are presented for the bulk viscosity to entropy density ratio zeta/s, whose behavior is not well-known in a relativistic heavy ion collisions. The diffusion coefficient for baryon number is investigated, and an algorithm is presented to improve upon the previous work of investigation of heavy quark diffusion in a thermal QGP. By combining the results of my investigations for eta/s from our microscopic transport models with what is currently known from the experimental results on elliptic flow from RHIC, I find that the trajectory of eta/s in a heavy ion collision has a rich structure, especially near the deconfinement transition temperature Tc. I have helped quantify the viscous hadronic effects to enable investigators to constrain the value of eta/s for the QGP created at RHIC.

  2. Maxwell-Stefan diffusion and dynamical correlation in molten LiF-KF: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Jain, Richa Naja; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2016-05-01

    In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green-Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF-KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture. MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, ĐLi-K which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2nd law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.

  3. Nonequilibrium transport in the pseudospin-1 Dirac-Weyl system

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Zhen; Xu, Hong-Ya; Huang, Liang; Lai, Ying-Cheng

    2017-09-01

    Recently, solid state materials hosting pseudospin-1 quasiparticles have attracted a great deal of attention. In these materials, the energy band contains a pair of Dirac cones and a flatband through the connecting point of the cones. As the "caging" of carriers with a zero group velocity, the flatband itself has zero conductivity. However, in a nonequilibrium situation where a constant electric field is suddenly switched on, the flatband can enhance the resulting current in both the linear and nonlinear response regimes through distinct physical mechanisms. Using the (2 +1 )-dimensional pseudospin-1 Dirac-Weyl system as a concrete setting, we demonstrate that, in the weak field regime, the interband current is about twice larger than that for pseudospin-1/2 system due to the interplay between the flatband and the negative band, with the scaling behavior determined by the Kubo formula. In the strong field regime, the intraband current is √{2 } times larger than that in the pseudospin-1/2 system, due to the additional contribution from particles residing in the flatband. In this case, the current and field follow the scaling law associated with Landau-Zener tunneling. These results provide a better understanding of the role of the flatband in nonequilibrium transport and are experimentally testable using electronic or photonic systems.

  4. On the transport coefficients of hydrogen in the inertial confinement fusion regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Flavien; Recoules, Vanina; Decoster, Alain

    2011-05-15

    Ab initio molecular dynamics is used to compute the thermal and electrical conductivities of hydrogen from 10 to 160 g cm{sup -3} and temperatures up to 800 eV, i.e., thermodynamical conditions relevant to inertial confinement fusion (ICF). The ionic structure is obtained using molecular dynamics simulations based on an orbital-free treatment for the electrons. The transport properties were computed using ab initio simulations in the DFT/LDA approximation. The thermal and electrical conductivities are evaluated using Kubo-Greenwood formulation. Particular attention is paid to the convergence of electronic transport properties with respect to the number of bands and atoms. These calculations aremore » then used to check various analytical models (Hubbard's, Lee-More's and Ichimaru's) widely used in hydrodynamics simulations of ICF capsule implosions. The Lorenz number, which is the ratio between thermal and electrical conductivities, is also computed and compared to the well-known Wiedemann-Franz law in different regimes ranging from the highly degenerate to the kinetic one. This allows us to deduce electrical conductivity from thermal conductivity for analytical model. We find that the coupling of Hubbard and Spitzer models gives a correct description of the behavior of electrical and thermal conductivities in the whole thermodynamic regime.« less

  5. Natural approach to quantum dissipation

    NASA Astrophysics Data System (ADS)

    Taj, David; Öttinger, Hans Christian

    2015-12-01

    The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.

  6. Diffusion of phonons through (along and across) the ultrathin crystalline films

    NASA Astrophysics Data System (ADS)

    Šetrajčić, J. P.; Jaćimovski, S. K.; Vučenović, S. M.

    2017-11-01

    Instead of usual approach, applying displacement-displacement Green's functions, the momentum-momentum Green's functions will be used to calculate the diffusion tensor. With this type of Green's function we have calculated and analyzed dispersion law in film-structures. A small number of phonon energy levels along the direction of boundary surfaces joint of the film are discrete-ones and in this case standing waves could occur. This is consequence of quantum size effects. These Green's functions enter into Kubo's formula defining diffusion properties of the system and possible heat transfer direction through observed structures. Calculation of the diffusion tensor for phonons in film-structure requires solving of the system of difference equations. Boundary conditions are included into mentioned system through the Hamiltonian of the film-structure. It has been shown that the diagonal elements of the diffusion tensor express discrete behavior of the dispersion law of elementary excitations. More important result is-that they are temperature independent and that their values are much higher comparing with bulk structures. This result favors better heat conduction of the film, but in direction which is perpendicular to boundary film surface. In the same time this significantly favors appearance 2D superconducting surfaces inside the ultra-thin crystal structure, which are parallel to the boundary surface.

  7. Pronounced low-frequency vibrational thermal transport in C60 fullerite realized through pressure-dependent molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Hopkins, Patrick E.

    2017-12-01

    Fullerene condensed-matter solids can possess thermal conductivities below their minimum glassy limit while theorized to be stiffer than diamond when crystallized under pressure. These seemingly disparate extremes in thermal and mechanical properties raise questions into the pressure dependence on the thermal conductivity of C60 fullerite crystals, and how the spectral contributions to vibrational thermal conductivity changes under applied pressure. To answer these questions, we investigate the effect of strain on the thermal conductivity of C60 fullerite crystals via pressure-dependent molecular dynamics simulations under the Green-Kubo formalism. We show that the thermal conductivity increases rapidly with compressive strain, which demonstrates a power-law relationship similar to their stress-strain relationship for the C60 crystals. Calculations of the density of states for the crystals under compressive strains reveal that the librational modes characteristic in the unstrained case are diminished due to densification of the molecular crystal. Over a large compression range (0-20 GPa), the Leibfried-Schlömann equation is shown to adequately describe the pressure dependence of thermal conductivity, suggesting that low-frequency intermolecular vibrations dictate heat flow in the C60 crystals. A spectral decomposition of the thermal conductivity supports this hypothesis.

  8. Spin- and valley-dependent electrical conductivity of ferromagnetic group-IV 2D sheets in the topological insulator phase

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos; Habibiyan, Hamidreza

    2018-03-01

    In this work, based on the Kubo-Greenwood formalism and the k . p Hamiltonian model, the impact of Rashba spin-orbit coupling on electronic band structure and electrical conductivity of spin-up and spin-down subbands in counterparts of graphene, including silicene, stanene, and germanene nanosheets has been studied. When Rashba coupling is considered, the effective mass of Dirac fermions decreases significantly and no significant change is caused by this coupling for the subband gaps. All these nanosheets are found to be in topological insulator quantum phase at low staggered on-site potentials due to the applied perpendicular external electric field. We point out that the electrical conductivity of germanene increases gradually with Rashab coupling, while silicene and stanene have some fluctuations due to their smaller Fermi velocity. Furthermore, some critical temperatures with the same electrical conductivity values for jumping to the higher energy levels are observed at various Rashba coupling strengths. For all structures, a broad peak appears at low temperatures in electrical conductivity curves corresponding to the large entropy of systems when the thermal energy reaches to the difference between the energy states. Finally, we have reported that silicene has the larger has the larger electrical conductivity than two others.

  9. Voltage tunable plasmon propagation in dual gated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Farzaneh, Seyed M.; Rakheja, Shaloo

    2017-10-01

    In this paper, we theoretically investigate plasmon propagation characteristics in AB and AA stacked bilayer graphene (BLG) in the presence of energy asymmetry due to an electrostatic field oriented perpendicularly to the plane of the graphene sheet. We first derive the optical conductivity of BLG using the Kubo formalism incorporating energy asymmetry and finite electron scattering. All results are obtained for room temperature (300 K) operation. By solving Maxwell's equations in a dual gate device setup, we obtain the wavevector of propagating plasmon modes in the transverse electric (TE) and transverse magnetic (TM) directions at terahertz frequencies. The plasmon wavevector allows us to compare the compression factor, propagation length, and the mode confinement of TE and TM plasmon modes in bilayer and monolayer graphene sheets and also to study the impact of material parameters on plasmon characteristics. Our results show that the energy asymmetry can be harnessed to increase the propagation length of TM plasmons in BLG. AA stacked BLG shows a larger increase in the propagation length than AB stacked BLG; conversely, it is very insensitive to the Fermi level variations. Additionally, the dual gate structure allows independent modulation of the energy asymmetry and the Fermi level in BLG, which is advantageous for reconfiguring plasmon characteristics post device fabrication.

  10. On some interesting marine decapod crustaceans (Alpheidae, Laomediidae, Strahlaxiidae) from Lombok, Indonesia.

    PubMed

    Anker, Arthur; Pratama, Idham Sumarto; Firdaus, Muhammad; Rahayu, Dwi Listyo

    2015-01-20

    Several rare or uncommon, mostly infaunal decapod crustaceans are reported from intertidal and shallow subtidal habitats of Lombok, Indonesia. The alpheid shrimps Alpheus angustilineatus Nomura & Anker, 2005, Athanas shawnsmithi Anker, 2011, Jengalpheops rufus Anker & Dworschak, 2007, Salmoneus alpheophilus Anker & Marin, 2006, Salmoneus colinorum De Grave, 2004, and the laomediid mud-shrimp Naushonia carinata Dworschak, Marin & Anker, 2006, are reported for the first time since their original descriptions and represent new records for the marine fauna of Indonesia. The alpheid shrimps Alpheus macellarius Chace, 1988, Alpheus platyunguiculatus (Banner, 1953), Athanas japonicus Kubo, 1936, Athanas polymorphus Kemp, 1915, Leptalpheus denticulatus Anker & Marin, 2009, Richalpheus palmeri Anker & Jeng, 2006, Salmoneus gracilipes Miya, 1972, Salmoneus tricristatus Banner, 1959 and the laomediid mudshrimps Laomedia astacina De Haan, 1841 and Naushonia lactoalbida Berggren, 1992 are new records for Indonesian waters. The remaining alpheid shrimps, namely Alpheopsis yaldwyni Banner & Banner, 1973, Alpheus savuensis De Man, 1908, Automate anacanthopus De Man, 1910, Automate dolichognatha De Man, 1888, Salmoneus serratidigitus (Coutière, 1896), and the strahlaxiid mud-shrimp Neaxius glyptocercus (von Martens, 1869), all previously known from Indonesia, are recorded for the first time from Lombok. Colour photographs are provided for all species reported, some shown in colour for the first time. 

  11. Clustering and relative velocity of heavy particles under gravitational settling in isotropic turbulent flows

    NASA Astrophysics Data System (ADS)

    Jin, Guodong; He, Guo-Wei

    2015-11-01

    Clustering and intermittency in radial relative velocity (RRV) of heavy particles of same size settling in turbulent flows can be remarkably changed due to gravity. Clustering is monotonically reduced at Stokes number less than 1 under gravity due to the disability of the centrifugal mechanism, however it is non-monotonically enhanced at Stokes number greater than 1 due to the multiplicative amplification in the case that the proposed effective Kubo number is less than 1. Although gravity causes monotonical reduction in the rms of RRV of particles at a given Stokes number with decreasing Froude number, the variation tendency in the tails of standardized PDF of RRV versus Froude number is obviously different: the tails become narrower at a small Stokes number, while they become broader at a large Stokes number. The mechanism of this variation stems from the compromise between the following two competing factors. The mitigation of correlation of particle positions and the regions of high strain rate which are more intermittent reduces the intermittency in RRV at small Stokes numbers, while the significant reduction in the backward-in-time relative separations will make particle pairs see small-scale structures, leading to a higher intermittency in RRV at large Stokes numbers. NSAF of China (grant number U1230126); NSFC (grant numbers 11072247 and 11232011).

  12. Tunable Intrinsic Spin Hall Conductivities in Bi2(Se,Te)3 Topological Insulators

    NASA Astrophysics Data System (ADS)

    Şahin, Cüneyt; Flatté, Michael E.

    2015-03-01

    It has been recently shown by spin-transfer torque measurements that Bi2Se3 exhibits a very large spin Hall conductivity (SHC). It is expected that Bi2Te3, a topological insulator with similar crystal and band structures as well as large spin-orbit coupling, would also exhibit a giant SHC. In this study we have calculated intrinsic spin Hall conductivities of Bi2Se3andBi2Te3 topological insulators from a tight-binding Hamiltonian including two nearest-neighbor interactions. We have calculated the Berry curvature, used the Kubo formula in the static, clean limit and shown that both materials exhibit giant spin Hall conductivities, consistent with the results of Ref. 1 and larger than previously reported Bi1-xSbx alloys. The density of Berry curvature has also been computed from the full Brillouin zone in order to compute the dependence of the SHC in these materials on the Fermi energy. Finally we report the intrinsic SHC for Bi2(Se,Te)3 topological insulators, which changes dramatically with doping or gate voltage. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  13. Extrinsic spin Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Rappoport, Tatiana

    The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  14. Refinements to the Graves and Pitarka (2010) Broadband Ground Motion Simulation Method

    USGS Publications Warehouse

    Graves, Robert; Arben Pitarka,

    2015-01-01

    This brief article describes refinements to the Graves and Pitarka (2010) broadband ground motion simulation methodology (GP2010 hereafter) that have been implemented in version 14.3 of the SCEC Broadband Platform (BBP). The updated version of our method on the current SCEC BBP is referred to as GP14.3. Our simulation technique is a hybrid approach that combines low-­‐frequency and high-­‐frequency motions computed with different methods into a single broadband response. The separate low-­‐ and high-­‐frequency components have traditionally been called “deterministic” and “stochastic”, respectively; however, this nomenclature is an oversimplification. In reality, the low-­‐frequency approach includes many stochastic elements, and likewise, the high-­‐frequency approach includes many deterministic elements (e.g., Pulido and Kubo, 2004; Hartzell et al., 2005; Liu et al., 2006; Frankel, 2009; Graves and Pitarka, 2010; Mai et al., 2010). While the traditional terminology will likely remain in use by the broader modeling community, in this paper we will refer to these using the generic terminology “low-­‐frequency” and “high-­‐ frequency” approaches. Furthermore, one of the primary goals in refining our methodology is to provide a smoother and more consistent transition between the low-­‐ and high-­‐ frequency calculations, with the ultimate objective being the development of a single unified modeling approach that can be applied over a broad frequency band. GP2010 was validated by modeling recorded strong motions from four California earthquakes. While the method performed well overall, several issues were identified including the tendency to over-­‐predict the level of longer period (2-­‐5 sec) motions and the effects of rupture directivity. The refinements incorporated in GP14.3 are aimed at addressing these issues with application to the simulation of earthquakes in Western US (WUS). These refinements include the addition of a deep weak zone (details in following section) to the rupture characterization and allowing perturbations in the correlation of rise time and rupture speed with the specified slip distribution. Additionally, we have extended the parameterization of GP14.3 so that it is also applicable for simulating Eastern North America (ENA) earthquakes. This work has been guided by the comprehensive set of validation studies described in Goulet and Abrahamson (2014) and Dreger et al. (2014). The GP14.3 method shows improved performance relative to GP2010, and we direct the interested reader to Dreger et al. (2014) for a detailed assessment of the current methodology. In this paper, we concentrate on describing the modifications in more detail, and also discussing additional refinements that are currently being developed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knyazev, D. V.; Moscow Institute of Physics and Technology; State Scientific Center of the Russian Federation – Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute,” Bolshaya Cheremushkinskaya 25, 117218 Moscow

    This work covers an ab initio calculation of thermodynamic, transport, and optical properties of plastics of the effective composition CH{sub 2} at density 0.954 g/cm{sup 3} in the temperature range from 5 kK up to 100 kK. The calculation is based on the quantum molecular dynamics, density functional theory, and the Kubo-Greenwood formula. The temperature dependence of the static electrical conductivity σ{sub 1{sub D{sub C}}}(T) has a step-like shape: σ{sub 1{sub D{sub C}}}(T) grows rapidly for 5 kK ≤ T ≤ 10 kK and is almost constant for 20 kK ≤ T ≤ 60 kK. The additional analysis based on the investigation of the electron density of states (DOS) is performed.more » The rapid growth of σ{sub 1{sub D{sub C}}}(T) at 5 kK ≤ T ≤ 10 kK is connected with the increase of DOS at the electron energy equal to the chemical potential ϵ = μ. The frequency dependence of the dynamic electrical conductivity σ{sub 1}(ω) at 5 kK has the distinct non-Drude shape with the peak at ω ≈ 10 eV. This behavior of σ{sub 1}(ω) was explained by the dip at the electron DOS.« less

  16. Generalised and Fractional Langevin Equations-Implications for Energy Balance Models

    NASA Astrophysics Data System (ADS)

    Watkins, N. W.; Chapman, S. C.; Chechkin, A.; Ford, I.; Klages, R.; Stainforth, D. A.

    2017-12-01

    Energy Balance Models (EBMs) have a long heritage in climate science, including their use in modelling anomalies in global mean temperature. Many types of EBM have now been studied, and this presentation concerns the stochastic EBMs, which allow direct treatment of climate fluctuations and noise. Some recent stochastic EBMs (e.g. [1]) map on to Langevin's original form of his equation, with temperature anomaly replacing velocity, and other corresponding replacements being made. Considerable sophistication has now been reached in the application of multivariate stochastic Langevin modelling in many areas of climate. Our work is complementary in intent and investigates the Mori-Kubo "Generalised Langevin Equation" (GLE) which incorporates non-Markovian noise and response in a univariate framework, as a tool for modelling GMT [2]. We show how, if it is present, long memory simplifies the GLE to a fractional Langevin equation (FLE). Evidence for long range memory in global temperature, and the success of fractional Gaussian noise in its prediction [5] has already motivated investigation of a power law response model [3,4,5]. We go beyond this work to ask whether an EBM of FLE-type exists, and what its solutions would be. [l] Padilla et al, J. Climate (2011); [2] Watkins, GRL (2013); [3] Rypdal, JGR (2012); [4] Rypdal and Rypdal, J. Climate (2014); [5] Lovejoy et al, ESDD (2015).

  17. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures.

    PubMed

    Haxhimali, Tomorr; Rudd, Robert E; Cabot, William H; Graziani, Frank R

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 10^{25} ions/cc. The motion of 30,000-120,000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  18. Study of shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  19. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  20. A molecular dynamics simulation study of chloroform

    NASA Astrophysics Data System (ADS)

    Tironi, Ilario G.; van Gunsteren, Wilfred F.

    Three different chloroform models have been investigated using molecular dynamics computer simulation. The thermodynamic, structural and dynamic properties of the various models were investigated in detail. In particular, the potential energies, diffusion coefficients and rotational correlation times obtained for each model are compared with experiment. It is found that the theory of rotational Brownian motion fails in describing the rotational diffusion of chloroform. The force field of Dietz and Heinzinger was found to give good overall agreement with experiment. An extended investigation of this chloroform model has been performed. Values are reported for the isothermal compressibility, the thermal expansion coefficient and the constant volume heat capacity. The values agree well with experiment. The static and frequency dependent dielectric permittivity were computed from a 1·2 ns simulation conducted under reaction field boundary conditions. Considering the fact that the model is rigid with fixed partial charges, the static dielectric constant and Debye relaxation time compare well with experiment. From the same simulation the shear viscosity was computed using the off-diagonal elements of the pressure tensor, both via an Einstein type relation and via a Green-Kubo equation. The calculated viscosities show good agreement with experimental values. The excess Helmholtz energy is calculated using the thermodynamic integration technique and simulations of 50 and 80 ps. The value obtained for the excess Helmholtz energy matches the theoretical value within a few per cent.

  1. Comparison of measured and modeled gas-puff emissions on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Gyou; Terry, J. L.; Stotler, D. P.; Labombard, B. L.; Brunner, D. F.

    2017-10-01

    Understanding neutral transport in tokamak boundary plasmas is important because of its possible effects on the pedestal and scrape-off layer (SOL). On Alcator C-Mod, measured neutral line emissions from externally-puffed deuterium and helium gases are compared with the synthetic results of a neutral transport code, DEGAS 2. The injected gas flow rate and the camera response are absolutely calibrated. Time-averaged SOL density and temperature profiles are input to a steady-state simulation. An updated helium atomic model is employed in DEGAS2. Good agreement is found for the D α peak brightness and profile shape. However, the measured helium I line brightness is found to be lower than that in the simulation results by a roughly a factor of three over a wide range of density particularly in the far SOL region. Two possible causes for this discrepancy are reviewed. First, local cooling due to gas puff may suppress the line emission. Second, time-dependent turbulence effect may impact the helium neutral transport. Unlike deuterium atoms that gain energy from charge exchange and dissociation processes, helium neutrals remain cold and have a relatively short mean free path, known to make them prone to turbulence based on the Kubo number criterion. Supported by USDoE awards: DE-FC02-99ER54512, DE-SC0014251, and DE-AC02-09CH11466.

  2. Summability of Connected Correlation Functions of Coupled Lattice Fields

    NASA Astrophysics Data System (ADS)

    Lukkarinen, Jani; Marcozzi, Matteo; Nota, Alessia

    2018-04-01

    We consider two nonindependent random fields ψ and φ defined on a countable set Z. For instance, Z=Z^d or Z=Z^d× I, where I denotes a finite set of possible "internal degrees of freedom" such as spin. We prove that, if the cumulants of ψ and φ enjoy a certain decay property, then all joint cumulants between ψ and φ are ℓ _2-summable in the precise sense described in the text. The decay assumption for the cumulants of ψ and φ is a restricted ℓ _1 summability condition called ℓ _1-clustering property. One immediate application of the results is given by a stochastic process ψ _t(x) whose state is ℓ _1-clustering at any time t: then the above estimates can be applied with ψ =ψ _t and φ =ψ _0 and we obtain uniform in t estimates for the summability of time-correlations of the field. The above clustering assumption is obviously satisfied by any ℓ _1-clustering stationary state of the process, and our original motivation for the control of the summability of time-correlations comes from a quest for a rigorous control of the Green-Kubo correlation function in such a system. A key role in the proof is played by the properties of non-Gaussian Wick polynomials and their connection to cumulants

  3. Empirical molecular-dynamics study of diffusion in liquid semiconductors

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wang, Z. Q.; Stroud, D.

    1996-11-01

    We report the results of an extensive molecular-dynamics study of diffusion in liquid Si and Ge (l-Si and l-Ge) and of impurities in l-Ge, using empirical Stillinger-Weber (SW) potentials with several choices of parameters. We use a numerical algorithm in which the three-body part of the SW potential is decomposed into products of two-body potentials, thereby permitting the study of large systems. One choice of SW parameters agrees very well with the observed l-Ge structure factors. The diffusion coefficients D(T) at melting are found to be approximately 6.4×10-5 cm2/s for l-Si, in good agreement with previous calculations, and about 4.2×10-5 and 4.6×10-5 cm2/s for two models of l-Ge. In all cases, D(T) can be fitted to an activated temperature dependence, with activation energies Ed of about 0.42 eV for l-Si, and 0.32 or 0.26 eV for two models of l-Ge, as calculated from either the Einstein relation or from a Green-Kubo-type integration of the velocity autocorrelation function. D(T) for Si impurities in l-Ge is found to be very similar to the self-diffusion coefficient of l-Ge. We briefly discuss possible reasons why the SW potentials give D(T)'s substantially lower than ab initio predictions.

  4. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states

    NASA Astrophysics Data System (ADS)

    Bolmatov, Dima; Zav'yalov, Dmitry; Zhernenkov, Mikhail; Musaev, Edvard T.; Cai, Yong Q.

    2015-12-01

    We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit (cV = 3kB), the ideal gas limit (cV =3/2 kB) and the new thermodynamic limit (cV = 2kB), dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.

  5. A kinetic approach to some quasi-linear laws of macroeconomics

    NASA Astrophysics Data System (ADS)

    Gligor, M.; Ignat, M.

    2002-11-01

    Some previous works have presented the data on wealth and income distributions in developed countries and have found that the great majority of population is described by an exponential distribution, which results in idea that the kinetic approach could be adequate to describe this empirical evidence. The aim of our paper is to extend this framework by developing a systematic kinetic approach of the socio-economic systems and to explain how linear laws, modelling correlations between macroeconomic variables, may arise in this context. Firstly we construct the Boltzmann kinetic equation for an idealised system composed by many individuals (workers, officers, business men, etc.), each of them getting a certain income and spending money for their needs. To each individual a certain time variable amount of money is associated this meaning him/her phase space coordinate. In this way the exponential distribution of money in a closed economy is explicitly found. The extension of this result, including states near the equilibrium, give us the possibility to take into account the regular increase of the total amount of money, according to the modern economic theories. The Kubo-Green-Onsager linear response theory leads us to a set of linear equations between some macroeconomic variables. Finally, the validity of such laws is discussed in relation with the time reversal symmetry and is tested empirically using some macroeconomic time series.

  6. Long-period Ground Motion Characteristics Inside and Outside of the Osaka Basin during the 2011 Great Tohoku Earthquake and Its Largest Aftershock

    NASA Astrophysics Data System (ADS)

    Sato, K.; Iwata, T.; Asano, K.; Kubo, H.; Aoi, S.

    2013-12-01

    The 2011 great Tohoku earthquake (Mw 9.0) occurred on March 11, 2011, and the largest aftershock (Mw 7.7) at the region adjacent to south boundary of the mainshock's source region. Long-period ground motions (1-10s) of large amplitude were observed in the Osaka sedimentary basin about 550-800km away from the source regions during both events. We studied propagation and site characteristics of these ground motions, and found some common features between these two events in the Osaka basin. (1) The amplitude of horizontal components of the ground motion at the site-specific period is amplified at each sedimentary station. The predominant period is around 7s in the bayside area where the largest pSv were observed. (2) The velocity Fourier spectra have their peak values around 7s at the bedrock sites surrounding the Osaka basin. (3) Two remarkable wave packets separated by 30s propagating from stations around the Nobi plain to the bedrock sites near the Osaka basin were seen in the pasted-up velocity waveforms from the source regions to the Osaka basin for both events (Sato et al., 2012). Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. Firstly, we simulate ground motions due to the largest aftershock using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). The reason we focus on the largest aftershock is that this event has a relatively small rupture area and simple rupture process compared to the mainshock. The source model is based on the model estimated by Kubo et al. (2013). The velocity structure model is a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (Koketsu et al., 2012) and the layer of Vs 350m/s in this model is replaced with one of Vs 500m/s. The minimum effective period in this computation is 3s. Then, we compare synthetic waveforms with observed ones. At CHBH14, the nearest station to the source and 60km away from the epicenter, the synthetic waveforms of the period-band 5-50s, where Kubo et al. (2013) studied, fit well to the observed ones. However, in our target period-band 5-8s, the earlier portion of the synthetic waveform of the main packet has smaller amplitude than the observation. At the bedrock sites near the Osaka basin, two wave packets which are appeared in the observation are qualitatively reproduced in the synthetics. However, the amplitudes are not well reproduced. Moreover, the amplitude ratio of horizontal components of synthetics between the rock and the bayside stations is underestimated compared to the observed one. Improvements of the source and velocity structure models for propagation-path and basin are needed. For that sake, we will analyze the characteristics of the synthetic waveforms, study how those wave packets are generated, and discuss the discrepancy between the synthetic and observed waveforms. We will also simulate the ground motion for the mainshock to study propagation characteristics of the mainshock. ACKNOWLEDGEMENTS We used strong motion data recorded by K-NET, KiK-net and F-net of NIED, CEORKA, BRI, JMA, and Osaka prefecture. GMS provided by NIED is used for the computation.

  7. Precision VUV Spectro-Polarimetry for Solar Chromospheric Magnetic Field Measurements

    NASA Astrophysics Data System (ADS)

    Ishikawa, R.; Bando, T.; Hara, H.; Ishikawa, S.; Kano, R.; Kubo, M.; Katsukawa, Y.; Kobiki, T.; Narukage, N.; Suematsu, Y.; Tsuneta, S.; Aoki, K.; Miyagawa, K.; Ichimoto, K.; Kobayashi, K.; Auchère, F.; Clasp Team

    2014-10-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a VUV spectro-polarimeter optimized for measuring the linear polarization of the Lyman-α line (121.6 nm) to be launched in 2015 with NASA's sounding rocket (Ishikawa et al. 2011; Narukage et al. 2011; Kano et al. 2012; Kobayashi et al. 2012). With this experiment, we aim to (1) observe the scattering polarization in the Lyman-α line, (2) detect the Hanle effect, and (3) assess the magnetic fields in the upper chromosphere and transition region for the first time. The polarization measurement error consists of scale error δ a (error in amplitude of linear polarization), azimuth error Δφ (error in the direction of linear polarization), and spurious polarization ɛ (false linear polarization signals). The error ɛ should be suppressed below 0.1% in the Lyman-α core (121.567 nm ±0.02 nm), and 0.5% in the Lyman-α wing (121.567 nm ±0.05 nm), based on our scientific requirements shown in Table 2 of Kubo et al. (2014). From scientific justification, we adopt Δ φ<2° and δ a<10% as the instrument requirements. The spectro-polarimeter features a continuously rotating MgF2 waveplate (Ishikawa et al. 2013), a dual-beam spectrograph with a spherical grating working also as a beam splitter, and two polarization analyzers (Bridou et al. 2011), which are mounted at 90 degree from each other to measure two orthogonal polarization simultaneously. For the optical layout of the CLASP instrument, see Figure 3 in Kubo et al. (2014). Considering the continuous rotation of the half-waveplate, the modulation efficiency is 0.64 both for Stokes Q and U. All the raw data are returned and demodulation (successive addition or subtraction of images) is done on the ground. We control the CLASP polarization performance in the following three steps. First, we evaluate the throughput and polarization properties of each optical component in the Lyman-α line, using the Ultraviolet Synchrotron ORbital Radiation Facility (UVSOR) at the Institute for Molecular Science. The second step is polarization calibration of the spectro-polarimeter after alignment. Since the spurious polarization caused by the axisymmetric telescope is estimated to be negligibly small because of the symmetry (Ishikawa et al. 2014), we do not perform end-to-end polarization calibration. As the final step, before the scientific observation near the limb, we make a short observation at the Sun center and verify the polarization sensitivity, because the scattering polarization is expected to be close to zero at the Sun center due to symmetric geometry. In order to clarify whether we will be able to achieve the required polarization sensitivity and accuracy via these steps, we exercise polarization error budget, by investigating all the possible causes and their magnitudes of polarization errors, all of which are not necessarily verified by the polarization calibration. Based on these error budgets, we conclude that a polarization sensitivity of 0.1% in the line core, δ a<10% and Δ φ<2° can be achieved combined with the polarization calibration of the spectro-polarimeter and the onboard calibration at the Sun center(refer to Ishikawa et al. 2014, for the detail). We are currently conducting verification tests of the flight components and development of the UV light source for the polarization calibration. From 2014 spring, we will begin the integration, alignment, and calibration. We will update the error budgets throughout the course of these tests.

  8. A general method for the derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. II. Backbone-local potentials of coarse-grained O 1 →4 -bonded polyglucose chains

    NASA Astrophysics Data System (ADS)

    Lubecka, Emilia A.; Liwo, Adam

    2017-09-01

    Based on the theory of the construction of coarse-grained force fields for polymer chains described in our recent work [A. K. Sieradzan et al., J. Chem. Phys. 146, 124106 (2017)], in this work effective coarse-grained potentials, to be used in the SUGRES-1P model of polysaccharides that is being developed in our laboratory, have been determined for the O ⋯O ⋯O virtual-bond angles (θ ) and for the dihedral angles for rotation about the O ⋯O virtual bonds (γ ) of 1 → 4 -linked glucosyl polysaccharides, for all possible combinations of [α ,β ]-[d,l]-glucose. The potentials of mean force corresponding to the virtual-bond angles and the virtual-bond dihedral angles were calculated from the free-energy surfaces of [α ,β ]-[d,l]-glucose pairs, determined by umbrella-sampling molecular-dynamics simulations with the AMBER12 force field, or combinations of the surfaces of two pairs sharing the overlapping residue, respectively, by integrating the respective Boltzmann factor over the dihedral angles λ for the rotation of the sugar units about the O ⋯O virtual bonds. Analytical expressions were subsequently fitted to the potentials of mean force. The virtual-bond-torsional potentials depend on both virtual-bond-dihedral angles and virtual-bond angles. The virtual-bond-angle potentials contain a single minimum at about θ =14 0° for all pairs except β -d-[α ,β ] -l-glucose, where the global minimum is shifted to θ =150° and a secondary minimum appears at θ =90°. The torsional potentials favor small negative γ angles for the α -d-glucose and extended negative angles γ for the β -d-glucose chains, as observed in the experimental structures of starch and cellulose, respectively. It was also demonstrated that the approximate expression derived based on Kubo's cluster-cumulant theory, whose coefficients depend on the identity of the disugar units comprising a trisugar unit that defines a torsional potential, fits simultaneously all torsional potentials very well, thus reducing the number of parameters significantly.

  9. Mutual diffusion coefficients of heptane isomers in nitrogen: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Chae, Kyungchan; Violi, Angela

    2011-01-01

    The accurate knowledge of transport properties of pure and mixture fluids is essential for the design of various chemical and mechanical systems that include fluxes of mass, momentum, and energy. In this study we determine the mutual diffusion coefficients of mixtures composed of heptane isomers and nitrogen using molecular dynamics (MD) simulations with fully atomistic intermolecular potential parameters, in conjunction with the Green-Kubo formula. The computed results were compared with the values obtained using the Chapman-Enskog (C-E) equation with Lennard-Jones (LJ) potential parameters derived from the correlations of state values: MD simulations predict a maximum difference of 6% among isomers while the C-E equation presents that of 3% in the mutual diffusion coefficients in the temperature range 500-1000 K. The comparison of two approaches implies that the corresponding state principle can be applied to the models, which are only weakly affected by the anisotropy of the interaction potentials and the large uncertainty will be included in its application for complex polyatomic molecules. The MD simulations successfully address the pure effects of molecular structure among isomers on mutual diffusion coefficients by revealing that the differences of the total mutual diffusion coefficients for the six mixtures are caused mainly by heptane isomers. The cross interaction potential parameters, collision diameter σ _{12}, and potential energy well depth \\varepsilon _{12} of heptane isomers and nitrogen mixtures were also computed from the mutual diffusion coefficients.

  10. Electrically tunable coherent optical absorption in graphene with ion gel.

    PubMed

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  11. High surface conductivity of Fermi-arc electrons in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Resta, Giacomo; Pi, Shu-Ting; Wan, Xiangang; Savrasov, Sergey Y.

    2018-02-01

    Weyl semimetals (WSMs), a new type of topological condensed matter, are currently attracting great interest due to their unusual electronic states and intriguing transport properties such as chiral anomaly induced negative magnetoresistance, a semiquantized anomalous Hall effect, and the debated chiral magnetic effect. These systems are close cousins of topological insulators (TIs) which are known for their disorder-tolerant surface states. Similarly, WSMs exhibit unique topologically protected Fermi-arc surface states. Here, we analyze electron-phonon scattering, a primary source of resistivity in metals at finite temperatures, as a function of the shape of the Fermi arc where we find that the impact on surface transport is significantly dependent on the arc curvature and disappears in the limit of a straight arc. Next, we discuss the effect of strong surface disorder on the resistivity by numerically simulating a tight-binding model with the presence of quenched surface vacancies using the coherent potential approximation and Kubo-Greenwood formalism. We find that the limit of a straight arc geometry is remarkably disorder tolerant, producing surface conductivity that is one to two orders of magnitude larger than a comparable setup with surface states of TI. This is primarily attributed to a significantly different hybridization strength of the surface states with the remaining electrons in two systems. Finally, a simulation of the effects of surface vacancies on TaAs is presented, illustrating the disorder tolerance of the topological surface states in a recently discovered WSM material.

  12. Transport coefficients of hard-sphere mixtures. II. Diameter ratio 0. 4 and mass ratio 0. 03 at low density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erpenbeck, J.J.

    1992-02-15

    The transport coefficients of shear viscosity, thermal conductivity, thermal diffusion, and mutual diffusion are estimated for a binary, equimolar mixture of hard spheres having a diameter ratio of 0.4 and a mass ratio of 0.03 at volumes of 5{ital V}{sub 0}, 10{ital V}{sub 0}, and 20{ital V}{sub 0} (where {ital V}{sub 0}=1/2 {radical}2 {ital N} {ital tsum}{sub {ital a}} x{sub {ital a}}{sigma}{sub {ital a}}{sup 3}, {ital x}{sub {ital a}} are mole fractions, {sigma}{sub {ital a}} are diameters, and {ital N} is the number of particles) through Monte Carlo, molecular-dynamics calculations using the Green-Kubo formulas. Calculations are reported for as fewmore » as 108 and as many as 4000 particles, but not for each value of the volume. Both finite-system and long-time-tail corrections are applied to obtain estimates of the transport coefficients in the thermodynamic limit; corrections of both types are found to be small. The results are compared with the predictions of the revised Enskog theory and the linear density corrections to that theory are reported. The mean free time is also computed as a function of density and the linear and quadratic corrections to the Boltzmann theory are estimated. The mean free time is also compared with the expression from the Mansoori-Carnahan-Starling-Leland equation of state.« less

  13. Electrical and optical properties of warm dense beryllium along the principal Hugoniot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chuan-Ying; Wu, Ze-Qing; Li, Zi

    2015-09-15

    The electrical and optical properties of warm dense beryllium along the principal Hugoniot for temperatures from 0.95 eV to 10.65 eV and densities from 3.8 to 6.0 g/cm{sup 3} are investigated by using quantum molecular dynamics (QMD) simulations combined with the Kubo-Greenwood formulation. The dc conductivity σ{sub dc} and the ionization fraction are yielded by fitting the optical conductivity with the Drude-Smith model. The first-principles transport coefficients are compared with results of the Lee-More model and the Brysk model [Plasma Phys. 17, 473 (1975)]. Compared with the QMD result, the Lee-More model underestimates σ{sub dc} by 87% at low temperatures, approaches the QMDmore » result gradually with the temperature rising, yet still underestimates σ{sub dc} by 49% corresponding to the temperature 10.65 eV. In the whole temperature range under investigation, the Brysk model overestimates the electronic thermal conductivity κ while the Lee-More model underestimates κ. The differences are reduced with the temperature increasing. At the temperature 10.65 eV, the Brysk κ is still around twice as large as the QMD result, and the Lee-More κ is smaller than the QMD data by about 40%. In addition, QMD Rosseland mean opacities are shown to be three orders of magnitude larger than results of the average-atom model.« less

  14. Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Chaudhri, Anuj; Lukes, Jennifer R.

    2010-02-01

    The velocity and stress autocorrelation decay in a dissipative particle dynamics ideal fluid model is analyzed in this paper. The autocorrelation functions are calculated at three different friction parameters and three different time steps using the well-known Groot/Warren algorithm and newer algorithms including self-consistent leap-frog, self-consistent velocity Verlet and Shardlow first and second order integrators. At low friction values, the velocity autocorrelation function decays exponentially at short times, shows slower-than exponential decay at intermediate times, and approaches zero at long times for all five integrators. As friction value increases, the deviation from exponential behavior occurs earlier and is more pronounced. At small time steps, all the integrators give identical decay profiles. As time step increases, there are qualitative and quantitative differences between the integrators. The stress correlation behavior is markedly different for the algorithms. The self-consistent velocity Verlet and the Shardlow algorithms show very similar stress autocorrelation decay with change in friction parameter, whereas the Groot/Warren and leap-frog schemes show variations at higher friction factors. Diffusion coefficients and shear viscosities are calculated using Green-Kubo integration of the velocity and stress autocorrelation functions. The diffusion coefficients match well-known theoretical results at low friction limits. Although the stress autocorrelation function is different for each integrator, fluctuates rapidly, and gives poor statistics for most of the cases, the calculated shear viscosities still fall within range of theoretical predictions and nonequilibrium studies.

  15. Is the scaling relationship between carbohydrate storage and leaf biomass in meadow plants affected by the disturbance regime?

    PubMed

    Klimešová, Jitka; Janecek, Štepán; Bartušková, Alena; Bartoš, Michael; Altman, Jan; Doležal, Jirí; Lanta, Vojtech; Latzel, Vít

    2017-11-28

    Below-ground carbohydrate storage is considered an adaptation of plants aimed at regeneration after disturbance. A theoretical model by Iwasa and Kubo was empirically tested which predicted (1) that storage of carbohydrates scales allometrically with leaf biomass and (2) when the disturbance regime is relaxed, the ratio of storage to leaf biomass increases, as carbohydrates are not depleted by disturbance. These ideas were tested on nine herbaceous species from a temperate meadow and the disturbance regime was manipulated to create recently abandoned and mown plots. Just before mowing in June and at the end of the season in October, plants with below-ground organs were sampled. The material was used to assess the pool of total non-structural carbohydrates and leaf biomass. In half of the cases, a mostly isometric relationship between below-ground carbohydrate storage and leaf biomass in meadow plants was found. The ratio of below-ground carbohydrate storage to leaf biomass did not change when the disturbance regime was less intensive than that for which the plants were adapted. These findings (isometric scaling relationship between below-ground carbohydrate storage and leaf biomass; no effect of a relaxed disturbance regime) imply that storage in herbs is probably governed by factors other than just the disturbance regime applied once in a growing season. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    DOE PAGES

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; ...

    2015-11-24

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100–500 eV and a number density of 10 25 ions/cc. The motion of 30 000–120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function,more » a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high- Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. Here, we develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. Finally, this hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.« less

  17. Phonon conductivity metrics for compact, linked-cage, layered, and filled-cage crystals, using ab initio, molecular dynamics and Boltzmann transport treatments

    NASA Astrophysics Data System (ADS)

    Huang, Baoling

    Atomic-level thermal transport in compact, layered, linked-cage, and filled-cage crystals is investigated using a multiscale approach, combines the ab initio calculation, molecular dynamics (MD), Boltzman transport equations (BTE), and the kinetic theory. These materials are of great interests in energy storage, transport, and conversion. The structural metrics of phonon conductivity of these crystals are then explored. An atomic structure-based model is developed for the understanding the relationship between the atomic structure and phonon transport in compact crystals at high temperatures. The elemental electronegativity, element mass, and the arrangement of bonds are found to be the dominant factors to determine the phonon conductivity. As an example of linked-cage crystals, the phonon conductivity of MOF-5 is investigated over a wide temperature range using MD simulations and the Green-Kubo method. The temperature dependence of the thermal conductivity of MOF-5 is found to be weak at high temperatures, which results from the suppression of the long-range acoustic phonon transport by the special linked-cage structure. The mean free path of the majority of phonons in MOF-5 is limited by the cage size. The phonon and electron transport in layered Bi2Te3 structure are investigated using the first-principle calculations, MD, and BTE. Strong anisotropy has been found for both phonon and electron transport due to the special layered structure. The long-range acoustic phonons dominate the phonon transport with a strong temperature and direction dependence. Temperature dependence of the energy gap and appropriate modelling of relaxation times are found to be important for the prediction of the electrical transport in the intrinsic regime. The scattering by the acoustic, optical, and polar-optical phonons are found to dominate the electron transport. For filled skutterudite structure, strong coupling between the filler and the host is found, which contradicts the traditional "rattler" concept. The interatomic bonds of the host are significantly affected by the filler. It is shown that without changing the interatomic potentials for the host, the filler itself can not result in a lower phonon conductivity for the filled structure. It is also found that the behavior of partially-filled skutterudites can be better understood by treating the partially-filled structure as a solid solution of the empty structure and fully-filled structure. The combination of theoretical-analysis methods used in this work, provides for comparative insight into the role of atomic structure on the phonon transport in a variety of crystals used in energy storage, transport, and conversion.

  18. Summary report on UO 2 thermal conductivity model refinement and assessment studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Cooper, Michael William Donald; Mcclellan, Kenneth James

    Uranium dioxide (UO 2) is the most commonly used fuel in light water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, therefore, governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models were replaced with models that incorporate explicit thermal conductivity degradation mechanisms during fuel burn-up. This approach is able to represent the degradation of thermal conductivity due to eachmore » individual defect type, rather than the overall burn-up measure typically used which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham type interatomic potential and a potential that combines the many-body embedded atom method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin scattering mechanism due to spins on the magnetic uranium ions have been introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel performance codes. The model is validated by comparison to low-temperature experimental measurements on single crystal hyper-stoichiometric UO 2+x samples and high-temperature literature data. Ongoing works include investigation of the effect of phase separation to UO 2+U 4O 9 on the low temperature thermal conductivity of UO 2+x, and modeling of thermal conductivity using the Green-Kubo method. Ultimately, this work will enable more accurate fuel performance simulations as well as extension to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less

  19. Spatial Transport of Magnetic Flux Surfaces in Strongly Anisotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Servidio, S.; Wan, M.; Ruffolo, D. J.; Rappazzo, A. F.; Oughton, S.

    2013-12-01

    Magnetic flux surfaces afford familiar descriptions of spatial structure, dynamics, and connectivity of magnetic fields, with particular relevance in contexts such as solar coronal flux tubes, magnetic field connectivity in the interplanetary and interstellar medium, as well as in laboratory plasmas and dynamo problems [1-4]. Typical models assume that field-lines are orderly, and flux tubes remain identifiable over macroscopic distances; however, a previous study has shown that flux tubes shred in the presence of fluctuations, typically losing identity after several correlation scales [5]. Here, the structure of magnetic flux surfaces is numerically investigated in a reduced magnetohydrodynamic (RMHD) model of homogeneous turbulence. Short and long-wavelength behavior is studied statistically by propagating magnetic surfaces along the mean field. At small scales magnetic surfaces become complex, experiencing an exponential thinning. At large scales, instead, the magnetic flux undergoes a diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established by means of a multiple scale analysis. Both large and small scales limits are controlled by the Kubo number. These results have consequences for understanding and interpreting processes such as magnetic reconnection and field-line diffusion in plasmas [6]. [1] E. N. Parker, Cosmical Magnetic Fields (Oxford Univ. Press, New York, 1979). [2] J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968). [3] R. Bruno et al., Planet. Space Sci. 49, 1201 (2001). [4] M. N. Rosenbluth et al., Nuclear Fusion 6, 297 (1966). [5] W. H. Matthaeus et al., Phys. Rev. Lett. 75, 2136 (1995). [6] S. Servidio et al., submitted (2013).

  20. Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Yang, F.; Yu, T.; Wu, M. W.

    2018-05-01

    By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.

  1. Computer simulation of thermal conductivity in vulcanized polyisoprene at variable strain and temperature

    NASA Astrophysics Data System (ADS)

    Engelmann, Sven; Meyer, Jan; Hentschke, Reinhard

    2017-08-01

    We study the thermal conductivity tensor in an atomistic model of vulcanized cis-1,4-polyisoprene (PI) rubber via molecular dynamics simulations. Our polymer force field is based on V. A. Harmandaris et al. [J. Chem. Phys. 116, 436 (2002), 10.1063/1.1416872], whereas the polymerization algorithm follows the description in J. Hager et al. [Macromolecules 48, 9039 (2015), 10.1021/acs.macromol.5b01864]. The polymer chains are chemically cross linked via sulfur bridges of adjustable cross-link density. A volume-conserving uniaxial strain of up to 200% is applied to the systems. The widely used GROMACS simulation package is adapted to allow using the Green-Kubo approach to calculate the thermal conductivity tensor components. Our analysis of the heat flux autocorrelation functions leads to the conclusion that the thermal conductivity in PI is governed by short-lived phonon modes at low wave numbers due to deformation of the monomers along the polymer backbone. Applying uniaxial strain causes increased orientation of monomers along the strain direction, which enhances the attendant thermal conductivity component. We find an exponential increase of the conductivity in stretch direction in terms of an attendant orientation order parameter. This is accompanied by a simultaneous decline of thermal conductivity in the orthogonal directions. Increase of the cross-link density only has a weak effect on thermal conductivity in the unstrained system, even at high cross-link density. In the strained system we do observed a rising thermal conductivity in the limit of high stress. This increase is attributed to enhanced coupling between chains rather than to their orientation.

  2. Major involvement of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells.

    PubMed

    Uchida, Yasuo; Ito, Katsuaki; Ohtsuki, Sumio; Kubo, Yoshiyuki; Suzuki, Takashi; Terasaki, Tetsuya

    2015-07-01

    The purpose of this study was to clarify the expression of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) and its contribution to the supply of biotin and pantothenic acid to the human brain via the blood-brain barrier. DNA microarray and immunohistochemical analyses confirmed that SLC5A6 is expressed in microvessels of human brain. The absolute expression levels of SLC5A6 protein in isolated human and monkey brain microvessels were 1.19 and 0.597 fmol/μg protein, respectively, as determined by a quantitative targeted absolute proteomics technique. Using an antibody-free method established by Kubo et al. (2015), we found that SLC5A6 was preferentially localized at the luminal membrane of brain capillary endothelium. Knock-down analysis using SLC5A6 siRNA showed that SLC5A6 accounts for 88.7% and 98.6% of total [(3) H]biotin and [(3) H]pantothenic acid uptakes, respectively, by human cerebral microvascular endothelial cell line hCMEC/D3. SLC5A6-mediated transport in hCMEC/D3 was markedly inhibited not only by biotin and pantothenic acid, but also by prostaglandin E2, lipoic acid, docosahexaenoic acid, indomethacin, ketoprofen, diclofenac, ibuprofen, phenylbutazone, and flurbiprofen. This study is the first to confirm expression of SLC5A6 in human brain microvessels and to provide evidence that SLC5A6 is a major contributor to luminal uptake of biotin and pantothenic acid at the human blood-brain barrier. In humans, it was unclear (not concluded) about what transport system at the blood-brain barrier (BBB) is responsible for the brain uptakes of two vitamins, biotin and pantothenic acid, which are necessary for brain proper function. This study clarified for the first time that the solute carrier 5A6/Na(+) -dependent multivitamin transporter SLC5A6/SMVT is responsible for the supplies of biotin and pantothenic acid into brain across the BBB in humans. DHA, docosahexaenoic acid; NSAID, non-steroidal anti-inflammatory drug; PGE2, prostaglandin E2. © 2015 International Society for Neurochemistry.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Paul B.

    Paralleling our recent computationally intensive (quasi-Monte Carlo) work for the case N=4 (e-print quant-ph/0308037), we undertake the task for N=6 of computing to high numerical accuracy, the formulas of Sommers and Zyczkowski (e-print quant-ph/0304041) for the (N{sup 2}-1)-dimensional volume and (N{sup 2}-2)-dimensional hyperarea of the (separable and nonseparable) NxN density matrices, based on the Bures (minimal monotone) metric--and also their analogous formulas (e-print quant-ph/0302197) for the (nonmonotone) flat Hilbert-Schmidt metric. With the same seven 10{sup 9} well-distributed ('low-discrepancy') sample points, we estimate the unknown volumes and hyperareas based on five additional (monotone) metrics of interest, including the Kubo-Mori and Wigner-Yanase.more » Further, we estimate all of these seven volume and seven hyperarea (unknown) quantities when restricted to the separable density matrices. The ratios of separable volumes (hyperareas) to separable plus nonseparable volumes (hyperareas) yield estimates of the separability probabilities of generically rank-6 (rank-5) density matrices. The (rank-6) separability probabilities obtained based on the 35-dimensional volumes appear to be--independently of the metric (each of the seven inducing Haar measure) employed--twice as large as those (rank-5 ones) based on the 34-dimensional hyperareas. (An additional estimate--33.9982--of the ratio of the rank-6 Hilbert-Schmidt separability probability to the rank-4 one is quite clearly close to integral too.) The doubling relationship also appears to hold for the N=4 case for the Hilbert-Schmidt metric, but not the others. We fit simple exact formulas to our estimates of the Hilbert-Schmidt separable volumes and hyperareas in both the N=4 and N=6 cases.« less

  4. Modal analysis of the thermal conductivity of nanowires: examining unique thermal transport features.

    PubMed

    Samaraweera, Nalaka; Larkin, Jason M; Chan, Kin L; Mithraratne, Kumar

    2018-06-06

    In this study, unique thermal transport features of nanowires over bulk materials are investigated using a combined analysis based on lattice dynamics and equilibrium molecular dynamics (EMD). The evaluation of the thermal conductivity (TC) of Lenard-Jones nanowires becomes feasible due to the multi-step normal mode decomposition (NMD) procedure implemented in the study. A convergence issue of the TC of nanowires is addressed by the NMD implementation for two case studies, which employ pristine nanowires (PNW) and superlattice nanowires. Interestingly, mode relaxation times at low frequencies of acoustic branches exhibit signs of approaching constant values, thus indicating the convergence of TC. The TC evaluation procedure is further verified by implementing EMD-based Green-Kubo analysis, which is based on a fundamentally different physical perspective. Having verified the NMD procedure, the non-monotonic trend of the TC of nanowires is addressed. It is shown that the principal cause for the observed trend is due to the competing effects of long wavelength phonons and phonon-surface scatterings as the nanowire's cross-sectional width is changed. A computational procedure is developed to decompose the different modal contribution to the TC of shell alloy nanowires (SANWs) using virtual crystal NMD and the Allen-Feldman theory. Several important conclusions can be drawn from the results. A propagons to non-propagons boundary appeared, resulting in a cut-off frequency (ω cut ); moreover, as alloy atomic mass is increased, ω cut shifts to lower frequencies. The existence of non-propagons partly causes the low TC of SANWs. It can be seen that modes with low frequencies demonstrate a similar behavior to corresponding modes of PNWs. Moreover, lower group velocities associated with higher alloy atomic mass resulted in a lower TC of SANWs.

  5. Nonlinear microrheology of dense colloidal suspensions: A mode-coupling theory

    NASA Astrophysics Data System (ADS)

    Gazuz, I.; Fuchs, M.

    2013-03-01

    A mode-coupling theory for the motion of a strongly forced probe particle in a dense colloidal suspension is presented. Starting point is the Smoluchowski equation for N bath and a single probe particle. The probe performs Brownian motion under the influence of a strong constant and uniform external force Fex. It is immersed in a dense homogeneous bath of (different) particles also performing Brownian motion. Fluid and glass states are considered; solvent flow effects are neglected. Based on a formally exact generalized Green-Kubo relation, mode coupling approximations are performed and an integration through transients approach applied. A microscopic theory for the nonlinear velocity-force relations of the probe particle in a dense fluid and for the (de-) localized probe in a glass is obtained. It extends the mode coupling theory of the glass transition to strongly forced tracer motion and describes active microrheology experiments. A force threshold is identified which needs to be overcome to pull the probe particle free in a glass. For the model of hard sphere particles, the microscopic equations for the threshold force and the probability density of the localized probe are solved numerically. Neglecting the spatial structure of the theory, a schematic model is derived which contains two types of bifurcation, the glass transition and the force-induced delocalization, and which allows for analytical and numerical solutions. We discuss its phase diagram, forcing effects on the time-dependent correlation functions, and the friction increment. The model was successfully applied to simulations and experiments on colloidal hard sphere systems [Gazuz , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.248302 102, 248302 (2009)], while we provide detailed information on its derivation and general properties.

  6. A comprehensive analysis about thermal conductivity of multi-layer graphene with N-doping, -CH3 group, and single vacancy

    NASA Astrophysics Data System (ADS)

    Si, Chao; Li, Liang; Lu, Gui; Cao, Bing-Yang; Wang, Xiao-Dong; Fan, Zhen; Feng, Zhi-Hai

    2018-04-01

    Graphene has received great attention due to its fascinating thermal properties. The inevitable defects in graphene, such as single vacancy, doping, and functional group, greatly affect the thermal conductivity. The sole effect of these defects on the thermal conductivity has been widely studied, while the mechanisms of the coupling effects are still open. We studied the combined effect of defects with N-doping, the -CH3 group, and single vacancy on the thermal conductivity of multi-layer graphene at various temperatures using equilibrium molecular dynamics with the Green-Kubo theory. The Taguchi orthogonal algorithm is used to evaluate the sensitivity of N-doping, the -CH3 group, and single vacancy. Sole factor analysis shows that the effect of single vacancy on thermal conductivity is always the strongest at 300 K, 700 K, and 1500 K. However, for the graphene with three defects, the single vacancy defect only plays a significant role in the thermal conductivity modification at 300 K and 700 K, while the -CH3 group dominates the thermal conductivity reduction at 1500 K. The phonon dispersion is calculated using a spectral energy density approach to explain such a temperature dependence. The combined effect of the three defects further decreases the thermal conductivity compared to any sole defect at both 300 K and 700 K. The weaker single vacancy effect is due to the stronger Umklapp scattering at 1500 K, at which the combined effect seriously covers almost all the energy gaps in the phonon dispersion relation, significantly reducing the phonon lifetimes. Therefore, the temperature dependence only appears on the multi-layer graphene with combined defects.

  7. Finite-part integration of the generalized Stieltjes transform and its dominant asymptotic behavior for small values of the parameter. I. Integer orders

    NASA Astrophysics Data System (ADS)

    Tica, Christian D.; Galapon, Eric A.

    2018-02-01

    The paper addresses the exact evaluation of the generalized Stieltjes transform Sn[f ] =∫0∞f (x ) (ω+x ) -nd x of integral order n = 1, 2, 3, … about ω = 0 from which the asymptotic behavior of Sn[f] for small parameters ω is directly extracted. An attempt to evaluate the integral by expanding the integrand (ω + x)-n about ω = 0 and then naively integrating the resulting infinite series term by term leads to an infinite series whose terms are divergent integrals. Assigning values to the divergent integrals, say, by analytic continuation or by Hadamard's finite part is known to reproduce only some of the correct terms of the expansion but completely misses out a group of terms. Here we evaluate explicitly the generalized Stieltjes transform by means of finite-part integration recently introduced in Galapon [Proc. R. Soc. A 473, 20160567 (2017)]. It is shown that, when f(x) does not vanish or has zero of order m at the origin such that (n - m) ≥ 1, the dominant terms of Sn[f] as ω → 0 come from contributions arising from the poles and branch points of the complex valued function f(z)(ω + z)-n. These dominant terms are precisely the terms missed out by naive term by term integration. Furthermore, it is demonstrated how finite-part integration leads to new series representations of special functions by exploiting their known Stieltjes integral representations. Finally, the application of finite part integration in obtaining asymptotic expansions of the effective diffusivity in the limit of high Peclet number, the Green-Kubo formula for the self-diffusion coefficient, and the antisymmetric part of the diffusion tensor in the weak noise limit is discussed.

  8. Search for d0-Magnetism in Amorphous MB6 (M = Ca, Sr, Ba) Thin Films

    NASA Astrophysics Data System (ADS)

    Suter, Andreas; Ackland, Karl; Stilp, Evelyn; Prokscha, Thomas; Salman, Zaher; Coey, Michael

    In the past decade there have been various reports on insulating or semi-conducting compounds showing weak ferromagnetic-like properties, even though none of their constituent have partially occupied d or f shells. Among them are HfO2 [1], highly oriented pyrolytic graphite [2], CaB2C2 [3], CaB6 [4,5], and ZnO2 [6]. From the very beginning it has been speculated that lattice defects might play a significant role. These effects can potentially be amplified when these materials are grown in thin film form, due to strain and interface effects. With low-energy μSR (LE-μSR) we studied various amorphous thin films of alkaline earth hexaborides MB6 (M = Ca, Sr, Ba) grown on Al2O3. Furthermore, we studied the starting materials which were used for the pulsed laser deposition (PLD) targets for the films with bulk μSR to ensure the quality of these powders. Similar to the results in Ref. [5] we find an increased second moment of the static width (ZF/LF dynamic Kubo-Toyabe function) compared to the nuclear width which suggest a very weak magnetic contribution which must originate from the electronic system (defect polarization, grain boundary effects, etc.). Two complications arise from the fact that a strong quadrupolar level crossing resonance is found in the hexaborides at rather low field values, and muon diffusion sets in at rather low temperature. The thin film results demonstrate a strong suppression of the muon diffusion which makes it more suitable to search for weak magnetic signatures. Indeed we find essentially a temperature independent second moment equal to the low temperature value found in the starting powders. This indicates that the weak magnetic state is stabilized up to much higher temperatures.

  9. Kinetic evolution and correlation of fluctuations in an expanding quark gluon plasma

    NASA Astrophysics Data System (ADS)

    Sarwar, Golam; Alam, Jan-E.

    2018-03-01

    Evolution of spatially anisotropic perturbation created in the system formed after Relativistic Heavy Ion Collisions has been studied. The microscopic evolution of the fluctuations has been examined within the ambit of Boltzmann Transport Equation (BTE) in a hydrodynamically expanding background. The expansion of the background composed of quark gluon plasma (QGP) is treated within the framework of relativistic hydrodynamics. Spatial anisotropic fluctuations with different geometries have been evolved through Boltzmann equation. It is observed that the trace of such fluctuation survives the evolution. Within the relaxation time approximation, analytical results have been obtained for the evolution of these anisotropies. Explicit relations between fluctuations and transport coefficients have been derived. The mixing of various Fourier (or k) modes of the perturbations during the evolution of the system has been explicitly demonstrated. This study is very useful in understanding the presumption that the measured anisotropies in the data from heavy ion collisions at relativistic energies imitate the initial state effects. The evolution of correlation function for the perturbation in pressure has been studied and shows that the initial correlation between two neighbouring points in real space evolves to a constant value at later time which gives rise to Dirac delta function for the correlation function in Fourier space. The power spectrum of the fluctuation in thermodynamic quantities (like temperature estimated in this work) can be connected to the fluctuation in transverse momentum of the thermal hadrons measured experimentally. The bulk viscous coefficient of the QGP has been estimated by using correlations of pressure fluctuation with the help of Green-Kubo relation. Angular power spectrum of the anisotropies has been estimated in the appendix.

  10. Transport properties of carbon dioxide and methane from molecular dynamics simulations.

    PubMed

    Aimoli, C G; Maginn, E J; Abreu, C R A

    2014-10-07

    Transport properties of carbon dioxide and methane are predicted for temperatures between (273.15 and 573.15) K and pressures up to 800 MPa by molecular dynamics simulations. Viscosities and thermal conductivities were obtained through the Green-Kubo formalism, whereas the Einstein relation was used to provide self-diffusion coefficient estimates. The differences in property predictions due to the force field nature and parametrization were investigated by the comparison of seven different CO2 models (two single-site models, three rigid three-site models, and two fully flexible three-site models) and three different CH4 models (two single-site models and one fully flexible five-site model). The simulation results show good agreement with experimental data, except for thermal conductivities at low densities. The molecular structure and force field parameters play an important role in the accuracy of the simulations, which is within the experimental deviations reported for viscosities and self-diffusion coefficients considering the most accurate CO2 and CH4 models studied. On the other hand, the molecular flexibility does not seem to improve accuracy, since the explicit account of vibrational and bending degrees of freedom in the CO2 flexible models leads to slightly less accurate results. Nonetheless, the use of a correctional term to account for vibrational modes in rigid models generally improves estimations of thermal conductivity values. At extreme densities, the caging effect observed with single-site representations of the molecules restrains mobility and leads to an unphysical overestimation of viscosities and, conversely, to the underestimation of self-diffusion coefficients. This result may help to better understand the limits of applicability of such force fields concerning structural and transport properties of dense systems.

  11. Stacking of purines in water: the role of dipolar interactions in caffeine.

    PubMed

    Tavagnacco, L; Di Fonzo, S; D'Amico, F; Masciovecchio, C; Brady, J W; Cesàro, A

    2016-05-11

    During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.

  12. Optical absorption in 3D topological insulator Bi2Te3 with applications to THz detectors (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Bellotti, Enrico

    2015-08-01

    Topological insulators (TI) are a new class of materials that have an energy gap in bulk but possess gapless states bound to the sample surface or edge that have been theoretically predicted and experimentally observed [1]. The topological state in Bi2Te3 is characterized by a linear dispersion and a Dirac cone at the Γpoint. The optical absorption on the surface of a TI is given by the standard graphene-like απ/2 when a linear dispersion is assumed. Realistically, at k-points away from Γ, higher order cubic terms in k that represent the underlying hexagonal symmetry [2] of the crystal dominate and give rise to warping of bands. The optical absorption of a ferromagnetic coated gapped 3D TI film with warping terms considered is longer απ/2 but significantly modified. We demonstrate, by using wave functions from a continuum-Hamiltonian and Fermi-golden rule, the absorption spectrum on the surface of a TI as a function of the chemical potential, film-thickness and incident photon energy. A linear response theory based calculation is also performed using the Kubo formula to determine the longitudinal optical conductivity whose real part gives absorption as a function of photon frequency. The absorption in materials with Dirac fermions which is significantly higher than in normal THz detectors [3] can be further modulated in a TI by explicitly including the warping term making them highly efficient and tunable photodetectors. [1] M.Hasan and C.Kane, Rev.Mod.Phys. 82, 3045(2010) [2] L.Fu, Phys.Rev.Lett.103, 266801(2009) [3] X.Zhang et al., Phys. Rev B, 82, 245107(2010)

  13. Modal analysis of the thermal conductivity of nanowires: examining unique thermal transport features

    NASA Astrophysics Data System (ADS)

    Samaraweera, Nalaka; Larkin, Jason M.; Chan, Kin L.; Mithraratne, Kumar

    2018-06-01

    In this study, unique thermal transport features of nanowires over bulk materials are investigated using a combined analysis based on lattice dynamics and equilibrium molecular dynamics (EMD). The evaluation of the thermal conductivity (TC) of Lenard–Jones nanowires becomes feasible due to the multi-step normal mode decomposition (NMD) procedure implemented in the study. A convergence issue of the TC of nanowires is addressed by the NMD implementation for two case studies, which employ pristine nanowires (PNW) and superlattice nanowires. Interestingly, mode relaxation times at low frequencies of acoustic branches exhibit signs of approaching constant values, thus indicating the convergence of TC. The TC evaluation procedure is further verified by implementing EMD-based Green–Kubo analysis, which is based on a fundamentally different physical perspective. Having verified the NMD procedure, the non-monotonic trend of the TC of nanowires is addressed. It is shown that the principal cause for the observed trend is due to the competing effects of long wavelength phonons and phonon–surface scatterings as the nanowire’s cross-sectional width is changed. A computational procedure is developed to decompose the different modal contribution to the TC of shell alloy nanowires (SANWs) using virtual crystal NMD and the Allen–Feldman theory. Several important conclusions can be drawn from the results. A propagons to non-propagons boundary appeared, resulting in a cut-off frequency (ω cut); moreover, as alloy atomic mass is increased, ω cut shifts to lower frequencies. The existence of non-propagons partly causes the low TC of SANWs. It can be seen that modes with low frequencies demonstrate a similar behavior to corresponding modes of PNWs. Moreover, lower group velocities associated with higher alloy atomic mass resulted in a lower TC of SANWs.

  14. Flow properties of liquid crystal phases of the Gay-Berne fluid

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1998-05-01

    We have calculated the viscosities of a variant of the Gay-Berne fluid as a function of the temperature by performing molecular dynamics simulations. We have evaluated the Green-Kubo relations for the various viscosity coefficients. The results have been cross-checked by performing shear flow simulations. At high temperatures there is a nematic phase that is transformed to a smectic A phase as the temperature is decreased. The nematic phase is found to be flow stable. Close to the nematic-smectic transition point the liquid crystal model system becomes flow unstable. This is in agreement with the theoretical predictions by Jähnig and Brochard [F. Jähnig and F. Brochard, J. Phys. 35, 301 (1974)]. In a planar Couette flow one can define the three Miesowicz viscosities or effective viscosities η1, η2, and η3. The coefficient η1 is the viscosity when the director is parallel to the streamlines, η2 is the viscosity when the director is perpendicular to the shear plane, and η3 is the viscosity when the director is perpendicular to the vorticity plane. In the smectic phase η1 is undefined because the strain rate field is incommensurate with the smectic layer structure when the director is parallel to the streamlines. The viscosity η3 is found to be fairly independent of the temperature. The coefficient η2 increases with the temperature. This is unusual because the viscosity of most isotropic liquids decreases with the temperature. This anomaly is due to the smectic layer structure that is present at low temperatures. This lowers the friction because the layers can slide past each other fairly easily.

  15. Pollen Killer Gene S35 Function Requires Interaction with an Activator That Maps Close to S24, Another Pollen Killer Gene in Rice.

    PubMed

    Kubo, Takahiko; Yoshimura, Atsushi; Kurata, Nori

    2016-05-03

    Pollen killer genes disable noncarrier pollens, and are responsible for male sterility and segregation distortion in hybrid populations of distantly related plant species. The genetic networks and the molecular mechanisms underlying the pollen killer system remain largely unknown. Two pollen killer genes, S24 and S35, have been found in an intersubspecific cross of Oryza sativa ssp. indica and japonica The effect of S24 is counteracted by an unlinked locus EFS Additionally, S35 has been proposed to interact with S24 to induce pollen sterility. These genetic interactions are suggestive of a single S24-centric genetic pathway (EFS-S24-S35) for the pollen killer system. To examine this hypothetical genetic pathway, the S35 and the S24 regions were further characterized and genetically dissected in this study. Our results indicated that S35 causes pollen sterility independently of both the EFS and S24 genes, but is dependent on a novel gene close to the S24 locus, named incentive for killing pollen (INK). We confirmed the phenotypic effect of the INK gene separately from the S24 gene, and identified the INK locus within an interval of less than 0.6 Mb on rice chromosome 5. This study characterized the genetic effect of the two independent genetic pathways of INK-S35 and EFS-S24 in indica-japonica hybrid progeny. Our results provide clear evidence that hybrid male sterility in rice is caused by several pollen killer networks with multiple factors positively and negatively regulating pollen killer genes. Copyright © 2016 Kubo et al.

  16. Confirmation of gravitationally induced attitude drift of spinning satellite Ajisai with Graz high repetition rate SLR data

    NASA Astrophysics Data System (ADS)

    Kucharski, Daniel; Kirchner, Georg; Otsubo, Toshimichi; Lim, Hyung-Chul; Bennett, James; Koidl, Franz; Kim, Young-Rok; Hwang, Joo-Yeon

    2016-02-01

    The high repetition rate Satellite Laser Ranging system Graz delivers the millimeter precision range measurements to the corner cube reflector panels of Ajisai. The analysis of 4599 passes measured from October 2003 until November 2014 reveals the secular precession and nutation of Ajisai spin axis due to the gravitational forces as predicted by Kubo (1987) with the periods of 35.6 years and 116.5 days respectively. The observed precession cone is oriented at RA = 88.9°, Dec = -88.85° (J2000) and has a radius of 1.08°. The radius of the nutation cone increases from 1.32° to 1.57° over the 11 years of the measurements. We also detect a draconitic wobbling of Ajisai orientation due to the 'motion' of the Sun about the satellite's orbit. The observed spin period of Ajisai increases exponentially over the investigated time span according to the trend function: T = 1.492277·exp(0.0148388·Y) [s], where Y is in years since launch (1986.6133), RMS = 0.412 ms. The physical simulation model fitted to the observed spin parameters proves a very low interaction between Ajisai and the Earth's magnetic field, what assures that the satellite's angular momentum vector will remain in the vicinity of the south celestial pole for the coming decades. The developed empirical model of the spin axis orientation can improve the accuracy of the range determination between the ground SLR systems and the satellite's center-of-mass (Kucharski et al., 2015) and enable the accurate attitude prediction of Ajisai for the laser time-transfer experiments (Kunimori et al., 1992).

  17. [An Investigation of Factors Associated with Emotional Exhaustion among Hospital Nurses: Adherence to "Maternal Affection" and Agreement with Stereotypical Gender Roles].

    PubMed

    Takai, Rei; Nomura, Kyoko; Hiraike, Haruko; Murakami, Aya; Tanabe, Ayumi; Tsuchiya, Akiko; Okinaga, Hiroko

    2018-01-01

    To investigate factors including adherence to "maternal affection" and stereotypical gender roles associated with emotional exhaustion among hospital nurses. In 2014, among 2,690 workers recruited for this study, 891 participated with written informed consent. Of these, we investigated 464 hospital nurses. Adherence to maternal affection and emotional exhaustion were measured using valid and reliable scales developed by Egami (2005, 12 items) and Kubo (1992, 5 items), respectively. Stereotypical gender role was measured by asking "how much do you agree with the idea that women should stay home and men should work?". Workfamily conflict was measured in terms of the discrepancy in priority in life (i.e., a work or a private life) between the participant's ideal and the real world. The majority of our participants were women (86%), aged 39 or younger (80%), and single (70%). About one-quarter had workfamily conflict (26%) and agreed with the stereotypical gender role (28%). The mean scores of emotional exhaustion and adherence to maternal affection were 17.2 (out of 25) and 30.8 (out of 48), respectively. A stepwise multivariable model showed that being a woman (p=0.028), being young (p=0.022), being single (p=0.007), and having workfamily conflict (p<0.001) were more likely to increase emotional exhaustion after adjusting for household income. Adherence to maternal affection and stereotypical gender role were not significantly associated with emotional exhaustion. This study demonstrated that adherence to "maternal affection" and stereotypical gender roles were not associated with psychological burnout. Special attention should be paid to hospital nurses who are women, young, or single, or who have workfamily conflict.

  18. Graphene Casimir Interactions and Some Possible Applications

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.

    Scientific development requires profound understandings of micromechanical and nanomechanical systems (MEMS/NEMS) due to their applications not only in the technological world, but also for scientific understanding. At the micro- or nano-scale, when two objects are brought close together, the existence of stiction or adhesion is inevitable and plays an important role in the behavior operation of these systems. Such effects are due to surface dispersion forces, such as the van der Waals or Casimir interactions. The scientific understanding of these forces is particularly important for low-dimensional materials. In addition, the discovery of materials, such as graphitic systems has provided opportunities for new classes of devices and challenging fundamental problems. Therefore, investigations of the van der Waals or Caismir forces in graphene-based systems, in particular, and the solution generating non-touching systems are needed. In this study, the Casimir force involving 2D graphene is investigated under various conditions. The Casimir interaction is usually studied in the framework of the Lifshitz theory. According to this theory, it is essential to know the frequency-dependent reflection coefficients of materials. Here, it is found that the graphene reflection coefficients strongly depend on the optical conductivity of graphene, which is described by the Kubo formalism. When objects are placed in vacuum, the Casimir force is attractive and leads to adhesion on the surface. We find that the Casimir repulsion can be obtained by replacing vacuum with a suitable liquid. Our studies show that bromobenzene is the liquid providing this effect. We also find that this long-range force is temperature dependent and graphene/bromobenzene/metal substrate configuration can be used to demonstrate merely thermal Casimir interaction at room temperature and micrometer distances. These findings would provide good guidance and predictions for practical studies.

  19. Strain induced novel quantum magnetotransport properties of topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ning, E-mail: maning@stu.xjtu.edu.cn; Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049; Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn

    Recent theoretical and experimental researches have revealed that the strained bulk HgTe can be regarded as a three-dimensional topological insulator (TI). Motivated by this, we explore the strain effects on the transport properties of the HgTe surface states, which are modulated by a weak 1D in-plane electrostatic periodic potential in the presence of a perpendicular magnetic field. We analytically derive the zero frequency (dc) diffusion conductivity for the case of quasielastic scattering in the Kubo formalism, and find that, in strong magnetic field regime, the Shubnikov–de Haas oscillations are superimposed on top of the Weiss oscillations due to the electricmore » modulation for null and finite strain. Furthermore, the strain is shown to remove the degeneracy in inversion symmetric Dirac cones on the top and bottom surfaces. This accordingly gives rise to the splitting and mixture of Landau levels, and the asymmetric spectrum of the dc conductivity. These phenomena, not known in a conventional 2D electron gas and even in a strainless TI and graphene, are a consequence of the anomalous spectrum of surface states in a fully stained TI. These results should be valuable for electronic and spintronic applications of TIs, and thus we fully expect to see them in the further experiment. - Highlights: • The strain removes the degeneracy in inversion symmetric Dirac cones. • The strain gives rise to the splitting and mixture of the Landau levels. • The strain leads to the asymmetric spectrum of the dc conductivity. • Shubnikov de Haas oscillations are shown to be superimposed on Weiss oscillations. • Interplay between strain and electric field causes different occupancy of TI states.« less

  20. Thermal conductivity of MgO and MgSiO3 at lower mantle conditions from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jahn, S.; Haigis, V.; Salanne, M.

    2011-12-01

    Thermal conductivity is an important physical parameter that controls the heat flow in the Earth's core and mantle. The heat flow from the core to the mantle influences mantle dynamics and the convective regime of the liquid outer core, which drives the geodynamo. Although thermal conductivities of important mantle minerals at ambient pressure are well-known (Hofmeister, 1999), experimentalists encounter major difficulties to measure thermal conductivities at high pressures and temperatures. Extrapolations of experimental data to high pressures have a large uncertainty and hence the heat transport in minerals at conditions of the deep mantle is not well constrained. Recently, the thermal conductivity of MgO at lower mantle conditions was computed from first-principles simulations (e.g. de Koker (2009), Stackhouse et al. (2010)). Here, we used classical molecular dynamics to calculate thermal conductivities of MgO and MgSiO3 in the perovskite and post-perovskite structures at different pressures and temperatures. The interactions between atoms were treated by an advanced ionic interaction model which was shown to describe the behavior of materials reliably within a wide pressure and temperature range (Jahn & Madden, 2007). Two alternative techniques were used and compared. In non-equilibrium MD, an energy flow is imposed on the system, and the thermal conductivity is taken to be inversely proportional to the temperature gradient that builds up in response to this flow. The other technique (which is still too expensive for first principles methods) uses standard equilibrium MD and extracts the thermal conductivity from energy current correlation functions, according to the Green-Kubo formula. As a benchmark for the interaction potential, we calculated the thermal conductivity of fcc MgO at 2000K and 149GPa, where data from ab-initio non-equilibrium MD are available (Stackhouse et al., 2010). The results agree within the error bars, which justifies the use of the model for the calculation of thermal conductivities. However, with the non-equilibrium technique, the conductivity depends strongly on the size of the simulation box. Therefore, a scaling to infinite system size has to be applied, which introduces some uncertainty to the final result. The equilibrium MD method, on the other hand, seems to be less sensitive to finite-size effects. We will present computed thermal conductivities of MgO and MgSiO3 in the perovskite and post-perovskite structures at 138 GPa and temperatures of 300 K and 3000 K, the latter corresponding to conditions in the D'' layer. This allows an assessment of the extrapolations to high pressures and temperatures used in the literature. Jahn S & Madden PA (2007) Phys. Earth Planet. Int. 162, 129 de Koker N (2009) Phys. Rev. Lett. 103, 125902 Hofmeister AM (1999) Science 283, 1699 Stackhouse S et al. (2010) Phys. Rev. Lett. 104, 208501

  1. Higher-order fluctuation-dissipation relations in plasma physics: Binary Coulomb systems

    NASA Astrophysics Data System (ADS)

    Golden, Kenneth I.

    2018-05-01

    A recent approach that led to compact frequency domain formulations of the cubic and quartic fluctuation-dissipation theorems (FDTs) for the classical one-component plasma (OCP) [Golden and Heath, J. Stat. Phys. 162, 199 (2016), 10.1007/s10955-015-1395-6] is generalized to accommodate binary ionic mixtures. Paralleling the procedure followed for the OCP, the basic premise underlying the present approach is that a (k ,ω ) 4-vector rotational symmetry, known to be a pivotal feature in the frequency domain architectures of the linear and quadratic fluctuation-dissipation relations for a variety of Coulomb plasmas [Golden et al., J. Stat. Phys. 6, 87 (1972), 10.1007/BF01023681; J. Stat. Phys. 29, 281 (1982), 10.1007/BF01020787; Golden, Phys. Rev. E 59, 228 (1999), 10.1103/PhysRevE.59.228], is expected to be a pivotal feature of the frequency domain architectures of the higher-order members of the FDT hierarchy. On this premise, each member, in its most tractable form, connects a single (p +1 )-point dynamical structure function to a linear combination of (p +1 )-order p density response functions; by definition, such a combination must also remain invariant under rotation of their (k1,ω1) ,(k2,ω2) ,...,(kp,ωp) , (k1+k2+⋯+kp,ω1+ω2+⋯+ωp) 4-vector arguments. Assigned to each 4-vector is a species index that corotates in lock step. Consistency is assured by matching the static limits of the resulting frequency domain cubic and quartic FDTs to their exact static counterparts independently derived in the present work via a conventional time-independent perturbation expansion of the Liouville distribution function in its macrocanonical form. The proposed procedure entirely circumvents the daunting issues of entangled Liouville space paths and nested Poisson brackets that one would encounter if one attempted to use the conventional time-dependent perturbation-theoretic Kubo approach to establish the frequency domain FDTs beyond quadratic order.

  2. Thermal conductivity switch: Optimal semiconductor/metal melting transition

    NASA Astrophysics Data System (ADS)

    Kim, Kwangnam; Kaviany, Massoud

    2016-10-01

    Scrutinizing distinct solid/liquid (s /l ) and solid/solid (s /s ) phase transitions (passive transitions) for large change in bulk (and homogenous) thermal conductivity, we find the s /l semiconductor/metal (S/M) transition produces the largest dimensionless thermal conductivity switch (TCS) figure of merit ZTCS (change in thermal conductivity divided by smaller conductivity). At melting temperature, the solid phonon and liquid molecular thermal conductivities are comparable and generally small, so the TCS requires localized electron solid and delocalized electron liquid states. For cyclic phase reversibility, the congruent phase transition (no change in composition) is as important as the thermal transport. We identify X Sb and X As (X =Al , Cd, Ga, In, Zn) and describe atomic-structural metrics for large ZTCS, then show the superiority of S/M phonon- to electron-dominated transport melting transition. We use existing experimental results and theoretical and ab initio calculations of the related properties for both phases (including the Kubo-Greenwood and Bridgman formulations of liquid conductivities). The 5 p orbital of Sb contributes to the semiconductor behavior in the solid-phase band gap and upon disorder and bond-length changes in the liquid phase this changes to metallic, creating the large contrast in thermal conductivity. The charge density distribution, electronic localization function, and electron density of states are used to mark this S/M transition. For optimal TCS, we examine the elemental selection from the transition, basic, and semimetals and semiconductor groups. For CdSb, addition of residual Ag suppresses the bipolar conductivity and its ZTCS is over 7, and for Zn3Sb2 it is expected to be over 14, based on the structure and transport properties of the better-known β -Zn4Sb3 . This is the highest ZTCS identified. In addition to the metallic melting, the high ZTCS is due to the electron-poor nature of II-V semiconductors, leading to the significantly low phonon conductivity.

  3. Sign Crossover in All Maxwell-Stefan Diffusivities for Molten Salt LiF-BeF2: A Molecular Dynamics Study.

    PubMed

    Chakraborty, Brahmananda

    2015-08-20

    Applying Green-Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied for the first time the dynamic correlation, Onsager coefficients, and Maxwell-Stefan (MS) diffusivities of molten salt LiF-BeF2, which is a potential candidate for a coolant in a high temperature reactor. We observe an unusual composition dependence and strikingly a crossover in sign for all the MS diffusivities at a composition of around 7% of LiF where the MS diffusivity between cation-anion pair (Đ(BeF) and Đ(LiF)) jumps from positive to negative value while the MS diffusivity between cation-cation pair (Đ(LiBe)) becomes positive from a negative value. Even though the negative MS diffusivities have been observed for electrolyte solutions between cation-cation pair, here we report negative MS diffusivity between cation-anion pair where Đ(BeF) shows a sharp rise around 66% of BeF2, reaches maximum value at 70% of BeF2, and then decreases almost exponentially with a sign change for BeF2 around 93%. For low mole fraction of LiF, Đ(BeF) follows the Debye-Huckel theory and rises with the square root of LiF mole fraction similar to the MS diffusivity between cation-anion pair in aqueous solution of electrolyte salt. Negative MS diffusivities while unusual are, however, shown to satisfy the non-negative entropy constraints at all thermodynamic states as required by the second law of thermodynamics. We have established a strong correlation between the structure and dynamics and predict that the formation of flouride polyanion network between Be and F ions and coulomb interaction is responsible for sharp variation of the MS diffusivities which controls the multicomponent diffusion phenomenon in LiF-BeF2 which has a strong impact on the performance of the reactor.

  4. Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes

    NASA Astrophysics Data System (ADS)

    Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.

    2015-01-01

    In this paper we present the picosecond vibrational dynamics and Raman shifts of hydrogen-bonded pyridine-water complexes present in aqueous solutions in a wide concentration range from dense to extreme dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The concentration induced variations in bandwidths, band frequencies and characteristic dephasing times have been estimated and interpreted as effects due to solute-solvent interactions. The time-correlation functions of vibrational dephasing were obtained for the ring breathing mode of both "free" and hydrogen-bonded pyridine molecules and it was found that sufficiently deviate from the Kubo model. There is a general agreement in the whole concentration range with the modeling proposed by the Rothschild approach, which applies to complex liquids. The results have shown that the reorientation of pyridine aqueous solutions is very slow and hence in both scattering geometries only vibrational dephasing is probed. It is proposed that the spectral changes depend on the perturbations induced by the dynamics of the water molecules in the first hydration cell and water in bulk, while at extreme dilution conditions, the number of bulk water molecules increases and the interchange between molecules belonging to the first hydration cell may not be the predominant modulation mechanism. The evolution of several parameters, such as the characteristic times, the percentage of Gaussian character in the peak shape and the a parameter are indicative of drastic variations at extreme dilution revealing changes in the vibrational relaxation of the pyridine complexes in the aqueous environment. The higher dilution is correlated to diffusion of water molecules into the reference pyridine system in agreement with the jump diffusion model, while at extreme dilutions, almost all pyridine molecules are elaborated in hydrogen bonding. The results are discussed in the framework of the current phenomenological status of the field.

  5. Fundamental aspects of steady-state conversion of heat to work at the nanoscale

    NASA Astrophysics Data System (ADS)

    Benenti, Giuliano; Casati, Giulio; Saito, Keiji; Whitney, Robert S.

    2017-06-01

    In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without interaction effects, (v) stochastic thermodynamic for fluctuating small systems. In all cases, we place particular emphasis on the fundamental questions about the bounds on ideal machines. Can magnetic-fields change the bounds on power or efficiency? What is the relationship between quantum theories of transport and the laws of thermodynamics? Does quantum mechanics place fundamental bounds on heat to work conversion which are absent in the thermodynamics of classical systems?

  6. Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results

    NASA Astrophysics Data System (ADS)

    Bertolini, Davide; Tani, Alessandro

    1997-10-01

    Equilibrium molecular dynamics simulations have been carried out in the microcanonical ensemble at 300 and 255 K on the extended simple point charge (SPC/E) model of water [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)]. In addition to a number of static and dynamic properties, thermal conductivity λ has been calculated via Green-Kubo integration of the heat current time correlation functions (CF's) in the atomic and molecular formalism, at wave number k=0. The calculated values (0.67+/-0.04 W/mK at 300 K and 0.52+/-0.03 W/mK at 255 K) are in good agreement with the experimental data (0.61 W/mK at 300 K and 0.49 W/mK at 255 K). A negative long-time tail of the heat current CF, more apparent at 255 K, is responsible for the anomalous decrease of λ with temperature. An analysis of the dynamical modes contributing to λ has shown that its value is due to two low-frequency exponential-like modes, a faster collisional mode, with positive contribution, and a slower one, which determines the negative long-time tail. A comparison of the molecular and atomic spectra of the heat current CF has suggested that higher-frequency modes should not contribute to λ in this temperature range. Generalized thermal diffusivity DT(k) decreases as a function of k, after an initial minor increase at k=kmin. The k dependence of the generalized thermodynamic properties has been calculated in the atomic and molecular formalisms. The observed differences have been traced back to intramolecular or intermolecular rotational effects and related to the partial structure functions. Finally, from the results we calculated it appears that the SPC/E model gives results in better agreement with experimental data than the transferable intermolecular potential with four points TIP4P water model [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)], with a larger improvement for, e.g., diffusion, viscosities, and dielectric properties and a smaller one for thermal conductivity. The SPC/E model shares, to a smaller extent, the insufficient slowing down of dynamics at low temperature already found for the TIP4P water model.

  7. Optical and Transport Properties of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Choi, Chang Sun

    1990-01-01

    The densities of Hydroxyl ammonium nitrate (HAN) based fast reacting liquids were measured as a function of pressure (up to 4.83 kbars) at several temperatures and the results of density measurements were fit to the Tait equation. Also the shear viscosities of this liquid were measured as a function of both pressure and temperature. The free volume model was applied to explain behavior of the shear viscosity with the assumption that only the reference temperature (T_0) in the Fulcher (1925), WLF (Williams, Landel, and Ferry) and Angell equations depends on pressure. The general relation to predict viscosity of this liquid at any temperature and pressure was derived and the difference between expected and measured values are about 5%. The phase diagrams of the HAN solution, Triethanol ammonium nitrate (TEAN) solution and LP-1845 were obtained through Differential Scanning Calorimetry (DSC) measurements. The TEAN solution has a eutectic temperature in the vicinity of 260^circK. The measured phase diagrams are in good agreement with the calculated phase diagrams. The TEAN solutions show a large supercooling effect. Some phase separation was observed in the TEAN solutions and this separation was believed to be due to eutectic composition of the TEAN solution. The expected freezing temperature of LP-1845 was almost the same with the calculated T_0 from the viscosity data. Raman spectra from the HAN solution, TEAN solution and LP-1845 were measured. Every peak in the spectra was assigned. These solutions show various interactions, such as ion-ion pairing and ion-water interaction. The strongest peak was a NO_3^- symmetric stretch mode at 1050 cm^{-1}. The time correlation functions were calculated from the Raman spectra of the 1050 cm^{-1} peak. The correlation time, which can be calculated from the linewidth, become shorter with decreasing temperatures and with increasing concentrations. The Kubo's stochastic theory explains the correlation functions very well if the solution is relatively dilute. The pressure dependence of the reaction rate was estimated by using the density data and Raman peak shift data.

  8. Coherence-enhanced phase-dependent dissipation in long SNS Josephson junctions: Revealing Andreev bound state dynamics

    NASA Astrophysics Data System (ADS)

    Dassonneville, B.; Murani, A.; Ferrier, M.; Guéron, S.; Bouchiat, H.

    2018-05-01

    One of the best known causes of dissipation in ac-driven quantum systems stems from photon absorption causing transitions between levels. Dissipation can also be caused by the retarded response to the time-dependent excitation, and in general gives insight into the system's relaxation times and mechanisms. Here we address the dissipation in a mesoscopic normal wire with superconducting contacts, that sustains a dissipationless supercurrent at zero frequency and that may therefore naively be expected to remain dissipationless at a frequency lower than the superconducting gap. We probe the high-frequency linear response of such a normal metal/superconductor (NS) ring to a time-dependent flux by coupling it to a highly sensitive multimode microwave resonator. Far from being the simple, dissipationless derivative of the supercurrent-versus-phase relation, the ring's ac susceptibility also displays a dissipative component whose phase dependence is a signature of the dynamical processes occurring within the Andreev spectrum. We show how dissipation is driven by the competition between two mechanisms. The first is the relaxation of the Andreev level distribution function, while the second corresponds to microwave-induced transitions within the spectrum. Depending on the relative strength of those contributions, dissipation can be maximal at π , a phase at which the proximity-induced minigap closes, or can be maximal near π /2 , a phase at which the dc supercurrent is maximal. We also find that the dissipative response paradoxically increases at low temperature and can even exceed the normal-state conductance. The results are successfully confronted with theoretical predictions of the Kubo linear response and time-dependent Usadel equations, derived from the Bogoliubov-de Gennes Hamiltonian describing the SNS junction. These experiments thus demonstrate the power of the ac susceptibility measurement of individual hybrid mesoscopic systems in probing in a controlled way the quantum dynamics of Andreev bound states. By spanning different physical regimes, our experiments provide unique access to inelastic scattering and spectroscopy of an isolated quantum coherent system, and reveal the associated relaxation times. This technique should be a tool of choice to investigate topological superconductivity and detect the topological protection of edge states.

  9. Microscopic theory for coupled atomistic magnetization and lattice dynamics

    NASA Astrophysics Data System (ADS)

    Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.

    2017-12-01

    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for the discussed exchanges in terms of integrals over the electronic structure and, moreover, analogous expressions for the damping within and between the subsystems are provided. The proposed formalism and types of couplings enable a step forward in the microscopic first principles modeling of coupled spin and lattice quantities in a consistent format.

  10. Stability of Fluvial and Gravity-flow Antidunes

    NASA Astrophysics Data System (ADS)

    Fedele, J. J.; Hoyal, D. C. J. D.; Demko, T. M.

    2017-12-01

    Antidunes develop as a consequence of interface (free surface) deformation and sediment transport feedback in supercritical flows. Fluvial (open-channel flow) antidunes have been studied extensively in the laboratory and the field, and recognized in ancient sedimentary deposits. Experiments on gravity flow (turbidity and density currents) antidunes indicate that they are more stable and long-lived than their fluvial counterpart but the mechanism controlling this stability is poorly understood. Sea floor bathymetric and subsurface data suggest that large-scale, antidune-like sediment waves are extremely common in deep-water, found in a wide range of settings and sediment characteristics. While most of these large features have been interpreted as cyclic steps, the term has been most likely overused due to the lack of recognition criteria and basic understanding on the differences between antidunes and cyclic steps formed under gravity flows. In principle, cyclic steps should be more common in confined or channel-lobe transition settings where flows tend to be more energetic or focused, while antidunes should prevail in regions of less confinement, under sheet-like or expanding flows. Using published, fluvial stable-antidune data, we show that the simplified 1D, mechanical-energy based analysis of flow over a localized fixed obstacle (Long, 1954; Baines, 1995; Kubo and Yokokawa, 2001) is inaccurate for representing flow over antidunes and their stability. Instead, a more detailed analysis of a flow along a long-wavelength (in relation to flow thickness) wavy bed that also considers the interactions between flow and sediment transport is used to infer conditions of antidune stability and the breaking of surface waves. In particular, the position of the surface wave crest in relation to the bedform crest, along with the role of average flow velocity, surface velocity, and surface wave celerity appear relevant in determining antidune instability. The analysis is extended to the case of gravity flow antidunes to explain differences with subaerial antidunes on the basis of the particularities of both velocity and density profiles in these flows. Laboratory experimental data on gravity flow antidunes are used to compare with the theory presented.

  11. Statistical Physics Experiments Using Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Goree, John

    2016-10-01

    Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states. Third, we performed the first experimental test of a statistical physics theory (the Green-Kubo model) that is widely used by physical chemists to compute viscosity coefficients, and we found that it fails. Work supported by the U.S. Department of Energy, NSF, and NASA.

  12. X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Bavand, R.; Yelon, A.; Sacher, E.

    2015-11-01

    Ruthenium nanoparticles (Ru NPs) function as effective catalysts in specific reactions, such as methanation and Fischer-Tropsch syntheses. It is our purpose to physicochemically characterize their surfaces, at which catalysis occurs, by surface-sensitive X-ray photoelectron spectroscopy (XPS), using the symmetric peak component anaylsis technique developed in our laboratory to reveal previously hidden components. Ru NPs were deposited by evaporation (0.25-1.5 nm nominal deposition range) onto highly oriented pyrolytic graphite (HOPG). In addition to their surfaces being characterized by XPS, an indication of morphology was obtained from transmission electron microscopy (TEM). Our use of symmetric peak component XPS analysis has revealed detailed information on a previously unidentified surface oxide initially formed, as well as on the valence electronic structure and its variation with NP size, information that is of potential importance in the use of these NPs in catalysis. Each of the several Ru core XPS spectra characterized (3d, 3p and 3s) was found to be composed of three symmetric components. Together with two metal oxide O1s components, these give evidence of a rather complex, previously unidentified oxide that is initially formed. The Ru valence band (4d and 5s) spectra clearly demonstrate a loss of metallicity, a simultaneous increase of the Kubo gap, and an abrupt transfer in valence electron density from the 4d to the 5s orbitals (known as electron spill-over), as the NP size decreases below 0.5 nm. TEM photomicrographs, as a function of deposition rate, show that, at a rate that gives insufficient time for the NP condensation energy to dissipate, the initially well-separated NPs are capable of diffusing laterally and aggregating. This indicates weak NP bonding to the HOPG substrate. Carbide is formed, at both high and low deposition rates, at Ru deposition thicknesses greater than 0.25 nm, its formation explained by Ru NPs reacting with residual hydrocarbon vapor, under the influence of the heat of condensation released on Ru deposition, and not by Ru reacting with the HOPG substrate.

  13. Relaxation processes of the liquid crystal ME6N in the isotropic phase studied by Raman scattering experiments

    NASA Astrophysics Data System (ADS)

    Giorgini, Maria Grazia; Arcioni, Alberto; Polizzi, Ciro; Musso, Maurizio; Ottaviani, Paolo

    2004-03-01

    We have investigated the Raman profiles of the ν(C≡N) and ν(C=O) vibrational modes of the nematic liquid crystal ME6N (4-cyanophenyl-4'-hexylbenzoate) in the isotropic phase at different temperatures and used them as probes of the dynamics and structural organization of this liquid. The vibrational time correlation functions of the ν(C≡N) mode, rather adequately interpreted within the assumption of exponential modulation function (the Kubo-Rothschild theory), indicate that the system experiences an intermediate dynamical regime that gets only slightly faster with increasing temperature. However, this theory fails in predicting the non-exponential behavior that the time correlation functions manifest in the long time range (t>3 ps). For this reason we have additionally approached the interpretation of vibrational correlation functions in terms of the theory formulated by Rothschild and co-workers for locally structured liquids. The application of this theory reveals that the molecular dynamics in this liquid crystal in the isotropic phase is that deriving from a distribution of differently sized clusters, which narrows as the temperature increases. Even at the highest temperature reached in this study (87 °C above the nematic-isotropic transition), the liquid has not yet achieved the structure of the simple liquid and the dynamics has not reached the limit of the single channel process. The vibrational and orientational relaxations occur in very different time scales. The temperature independence of the orientational dynamics in the whole range from 55 °C to 135 °C has been referred to the nonhydrodynamic behavior of the system, arising when local pseudonematic structures persist for times longer than the orientational relaxation. The occurrence of the process of resonant vibrational energy transfer between the C=O groups of adjacent molecules has been revealed in the isotropic phase by a slightly positive Raman noncoincidence effect in the band associated with the ν(C=O) mode. A qualitative interpretation is tentatively given in terms of partial cancellation of contributions deriving from structures having opposite orientations of their C=O groups.

  14. Teleseismic SKS splitting beneath East Antarctica using broad-band stations around Soya Coast

    NASA Astrophysics Data System (ADS)

    Usui, Y.; Kanao, M.

    2006-12-01

    We observed shear wave splitting of SKS waves from digital seismographs that are recorded at 5 stations around Soya Coast in the Lutzow-Holm Bay, East Antarctica. Their recording systems are composed of a three-component broadband seismometer (CMG-40T), a digital recording unit and a solar power battery supply. The events used were selected from 1999 to 2004 and phase arrival times were calculated using the IASPEI91 earth model (Kennet, 1995). In general, we chose the data from earthquakes with m>6.0 and a distance range 85° < Δ < 130° for the most prominent SKS waves We used the methods of Silver and Chan (1991) for the inversion of anisotropy parameters and estimated the splitting parameters φ (fast polarization direction) and δt (delay time between split waves) assuming a single layer of hexagonal symmetry with a horizontal symmetry axis. The weighted averages of all splitting parameters (φ, δt) for each station are AKR (30±4, 1.30±0.2), LNG (58±6, 1.27±0.2), SKL (67±10, 0.94±0.2), SKV (40±6, 1.28±0.3) and TOT (52±8, 1.26±0.3), where the weights are inversely proportional to the standard deviations for each solution. As compared to typical delay times of SKS waves which show 1.2s (Silver and Chan 1991; Vinnik et al., 1992), the result shows generally the same value. In previous study, Kubo and Hiramatsu (1998) estimate the splitting parameter for Syowa station (SYO), where is located near our using stations in East Antarctica, and the results are (49±3, 0.70±0.1). Although it is consistent with our results for fast polarization direction, δt for our results are large relatively to those of SYO. The difference may be due to either different incident angle or more complex anisotropic structure. We found that fast polarization direction is systematically parallel to coast line in the Lutzow-Holm Bay, East Antarctica, which is consistent with NE-SW paleo compressional stress. The absolute plate motion based on the HS2-NUVEL1 (Gripp and Gordon, 1990), that may reflect the present horizontal mantle flow, shows the direction of N120°E and velocity of 1cm/yr in this study region. Since it doesn't coincide with fast polarization direction (the difference is about 50°~90°), we conclude that the mechanism of observed anisotropy is lattice preferred orientation of olivine along the mantle flow which caused NE-SW paleo compressional stress. In future works, we will accomplish the analysis assumed more complex anisotropy systems, such as a two layer model of azimuthal anisotropy, because we could find there is the possibility of azimuthal variations of the splitting parameters in a few station.

  15. Thermal conductivity at the nanoscale: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Lyver, John W., IV

    With the growing use of nanotechnology and nanodevices in many fields of engineering and science, a need for understanding the thermal properties of such devices has increased. The ability for nanomaterials to conduct heat is highly dependent on the purity of the material, internal boundaries due to material changes and the structure of the material itself. Experimentally measuring the heat transport at the nanoscale is extremely difficult and can only be done as a macro output from the device. Computational methods such as various Monte Carlo (MC) and molecular dynamics (MD) techniques for studying the contribution of atomic vibrations associated with heat transport properties are very useful. The Green--Kubo method in conjunction with Fourier's law for calculating the thermal conductivity, kappa, has been used in this study and has shown promise as one approach well adapted for understanding nanosystems. Investigations were made of the thermal conductivity using noble gases, modeled with Lennard-Jones (LJ) interactions, in solid face-centered cubic (FCC) structures. MC and MD simulations were done to study homogeneous monatomic and binary materials as well as slabs of these materials possessing internal boundaries. Additionally, MD simulations were done on silicon carbide nanowires, nanotubes, and nanofilaments using a potential containing two-body and three-body terms. The results of the MC and MD simulations were matched against available experimental and other simulations and showed that both methods can accurately simulate real materials in a fraction of the time and effort. The results of the study show that in compositionally disordered materials the selection of atomic components by their mass, hard-core atomic diameter, well depth, and relative concentration can change the kappa by as much as an order of magnitude. It was found that a 60% increase in mass produces a 25% decrease in kappa. A 50% increase in interatomic strength produces a 25% increase in kappa, while as little as a 10% change in the hard core radius can almost totally suppress a materials ability to conduct heat. Additionally, for two LJ materials sharing an interface, the atomic vibrations altering the heat energy depend on the type of internal boundary in the material. Mass increases across the interfacial boundary enhance excitation of the very low frequency (ballistic) vibrational modes, while the opposite effect is seen as increases in hard core radius and interatomic strength enhance excitation of higher frequency vibrational modes. Additionally, it was found that this effect was diminished for higher temperatures around half the Debye temperatures. In nanodevices and nanomachines, there is an additional factor that degrades heat transport at the boundary. In fact, the interface induces a temperature jump consistent with a thermal resistance created by the boundary. It was found that the temperature jump, which is due to a boundary resistance, was significant in boundaries involving small mass changes, lesser in changes in hard core radii changes and even lesser for interatomic strength changes. The study of SiC nanowires and nanotubes showed that the structural changes produced vastly different kappa. The kappa in closely packed structures like nanowires and nanofilaments approximated that of the bulk SiC, yet were less sensitive to temperature than the 1/T relationship traditionally found in bulk systems. The more open nanostructures, like nanotubes, had vastly lower kappa values and are almost totally insensitive to temperature variation. The results of this study can be used in the design of nano-machines where heat generation and transport is a concern. Additionally, the design of nano-machines which transport heat like nano-refrigerators or nano-heaters may be possible due to a better selection of materials with the understanding of how the materials affect their nanothermal properties at the nano scale.

  16. Structure and transport at grain boundaries in polycrystalline olivine: An atomic-scale perspective

    NASA Astrophysics Data System (ADS)

    Mantisi, Boris; Sator, Nicolas; Guillot, Bertrand

    2017-12-01

    Structure and transport properties at grain boundaries in polycrystalline olivine have been investigated at the atomic scale by molecular dynamics simulation (MD) using an empirical ionocovalent interaction potential. On the time scale of the simulation (a few tens of nanoseconds for a system size of ∼650,000 atoms) grain boundaries and grain interior were identified by mapping the atomic displacements along the simulation run. In the investigated temperature range (1300-1700 K) the mean thickness of the grain boundary phase is evaluated between 0.5 and 2 nm, a value which depends on temperature and grain size. The structure of the grain boundary phase is found to be disordered (amorphous-like) and is different from the one exhibited by the supercooled liquid. The self-diffusion coefficients of major elements in the intergranular region range from ∼10-13 to 10-10 m2/s between 1300 and 1700 K (with DSigb < DOgb < DFegb < DMggb) and are only one order of magnitude smaller than those evaluated in the supercooled melt. In using a newly derived expression for the bulk self-diffusion coefficient it is concluded that the latter one is driven by the grain boundary contribution as long as the grain size is smaller than a centimeter. In assuming that the electrical conduction at grain boundaries is purely ionic, the macroscopic grain boundary conductivity is found to be two orders of magnitude lower than in molten olivine, and one order of magnitude higher than the lattice conductivity. A consequence is that the conductivity of the olivine polycrystal is dominated by the grain interior contribution as soon as the grain size is larger than a micrometer or so. The grain boundary viscosity has been evaluated from the Green-Kubo relation expressing the viscosity as function of the stress tensor time correlation function. In spite of a slow convergence of the calculation by MD, the grain boundary viscosity was estimated about ∼105 Pa s at 1500 K, a value in agreement with high-temperature viscoelastic relaxation data. An interesting information gained from MD is that sliding at grain boundaries is essentially controlled by the internal friction between the intergranular phase and the grain edges.

  17. Relationship between Al content and substitution mechanism of Al-bearing anhydrous bridgmanites

    NASA Astrophysics Data System (ADS)

    Noda, M.; Inoue, T.; Kakizawa, S.

    2017-12-01

    It is considered that two substitution mechanisms, Tschermak substitution and oxygen vacancy substitution, exist in MgSiO3 bridgmanite for the incorporation of Al in anhydrous condition. Kubo and Akaogi (2000) has conducted the phase equilibrium experiment in the system MgSiO3-Al2O3, and established the phase diagram up to 28 GPa. However the careful observation in the bridgmanite shows that the chemical compositions are slightly deviated from Tschermak substitution join. The same tendency can be also observed in the run products by Irifune et al. (1996). This result indicates that pure Tschermak substitution bridgmanite cannot be stable even in the MgSiO3-Al2O3 join experiment. However, the previous studies used powder samples as the starting materials, so the absorbed water may affect the results. Therefore, we tried to conduct the experiment in the join MgSiO3-Al2O3 in extremely anhydrous condition to clarify whether the pure Tschermak substitution bridgmanite can be stable or not. In addition, we also examined the stability of oxygen vacancy bridgmanite in the extremely anhydrous condition for the comparison. The high pressure synthesis experiments were conducted at 28 GPa and 1600-1700° for 1hour using a Kawai-type multi-anvil apparatus. Four different Al content samples were prepared as the starting materials along the ideal substitution line of Tschermak (Al=0.025, 0.05, 0.1, 0.15 mol) and oxygen-vacancy (Al=0.025, 0.05, 0.075, 0.1 mol) substitutions, respectively (when total cation of 2). The glass rods were used as the starting materials to eliminate the absorbed water on the sample surface. The chemical compositions of the synthesized bridgmanite could not be measured by EPMA because of small grain size less than submicron. Therefore the chemical compositions were estimated from the result of the XRD pattern by subtracting the amount of the other phases. The estimated chemical compositions of Tschermak substitution bridgmanites were consistent with the ideal compositions. On the other hand, oxygen-vacancy substitution bridgmanite was possible to be existed less than Al=0.25 mol on the basis of total cation of 2. These results show that both Tschermak and oxygen-vacancy substitution bridgmanites can exist in low Al content in anhydrous condition.

  18. Trapping of Li(+) Ions by [ThFn](4-n) Clusters Leading to Oscillating Maxwell-Stefan Diffusivity in the Molten Salt LiF-ThF4.

    PubMed

    Chakraborty, Brahmananda; Kidwai, Sharif; Ramaniah, Lavanya M

    2016-08-18

    A molten salt mixture of lithium fluoride and thorium fluoride (LiF-ThF4) serves as a fuel as well as a coolant in the most sophisticated molten salt reactor (MSR). Here, we report for the first time dynamic correlations, Onsager coefficients, Maxwell-Stefan (MS) diffusivities, and the concentration dependence of density and enthalpy of the molten salt mixture LiF-ThF4 at 1200 K in the composition range of 2-45% ThF4 and also at eutectic composition in the temperature range of 1123-1600 K using Green-Kubo formalism and equilibrium molecular dynamics simulations. We have observed an interesting oscillating pattern for the MS diffusivity for the cation-cation pair, in which ĐLi-Th oscillates between positive and negative values with the amplitude of the oscillation reducing as the system becomes rich in ThF4. Through the velocity autocorrelation function, vibrational density of states, radial distribution function analysis, and structural snapshots, we establish an interplay between the local structure and multicomponent dynamics and predict that formation of negatively charged [ThFn](4-n) clusters at a higher ThF4 mole % makes positively charged Li(+) ions oscillate between different clusters, with their range of motion reducing as the number of [ThFn](4-n) clusters increases, and finally Li(+) ions almost get trapped at a higher ThF4% when the electrostatic force on Li(+) exerted by various surrounding clusters gets balanced. Although reports on variations of density and enthalpy with temperature exist in the literature, for the first time we report variations of the density and enthalpy of LiF-ThF4 with the concentration of ThF4 (mole %) and fit them with the square root function of ThF4 concentration, which will be very useful for experimentalists to obtain data over a range of concentrations from fitting the formula for design purposes. The formation of [ThFn](4-n) clusters and the reduction in the diffusivity of the ions at a higher ThF4% may limit the percentage of ThF4 that can be used in the MSR to optimize the neutron economy.

  19. Capturing the effect of [PF3(C2F5)3]-vs. [PF6]-, flexible anion vs. rigid, and scaled charge vs. unit on the transport properties of [bmim]+-based ionic liquids: a comparative MD study.

    PubMed

    Kowsari, Mohammad H; Ebrahimi, Soraya

    2018-05-16

    Comprehensive molecular dynamics simulations are performed to study the average single-particle dynamics and the transport properties of 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], and 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [bmim][FAP], ionic liquids (ILs) at 400 K. We applied one of the most widely used nonpolarizable all-atom force fields for ILs, both with the original unit (±1) charges on each ion and with the partial charges uniformly scaled to 80-85%, taking into account the average polarizability and tracing the experimentally compatible transport properties. In all simulations, [bmim]+ was considered to be flexible, while the effect of a flexible vs. rigid structure of the anions and the effect of two applied charge sets on the calculated properties were separately investigated in detail. The simulation results showed that replacing [PF6]- with [FAP]-, considering anion flexibility, and applying the charge-scaled model significantly enhanced the ionic self-diffusion, ionic conductivity, inverse viscosity, and hyper anion preference (HAP). Both of the calculated self-diffusion coefficients from the long-time linear slope of the mean-square displacement (MSD) and from the integration of the velocity autocorrelation function (VACF) for the centers of mass of the ions were used for evaluation of the ionic transference number, HAP, ideal Nernst-Einstein ionic conductivity (σNE), and the Stokes-Einstein viscosity. In addition, for quantification of the degree of complicated ionic association (known as the Nernst-Einstein deviation parameter, Δ) and ionicity phenomena in the two studied ILs, the ionic conductivity was determined more rigorously by the Green-Kubo integral of the electric-current autocorrelation function (ECACF), and then the σGK/σNE ratio was evaluated. It was found that the correlated motion of the (cationanion) neighbors in [bmim][FAP] is smaller than in [bmim][PF6]. The relaxation times of the normalized reorientational autocorrelation functions were computed to gain a deep, molecular-level insight into the rotational motion of the ions. The geometric shape of the ion is a key factor in determining its reorientational dynamics. [bmim]+ shows faster translational and slower rotational dynamics in contrast to [PF6]-.

  20. Transport and optics at the node in a nodal loop semimetal

    NASA Astrophysics Data System (ADS)

    Mukherjee, S. P.; Carbotte, J. P.

    2017-06-01

    We use a Kubo formalism to calculate both AC conductivity and DC transport properties of a dirty nodal loop semimetal. The optical conductivity as a function of photon energy Ω exhibits an extended flat background σBG as in graphene provided the scattering rate Γ is small as compared to the radius of the nodal ring b (in energy units). Modifications to the constant background arise for Ω ≤Γ and the minimum DC conductivity σDC, which is approached as Ω2/Γ2 as Ω →0 , is found to be proportional to √{Γ/2+b2 }vF with vF the Fermi velocity. For b =0 we recover the known three-dimensional point node Dirac result σDC˜Γ/vF while for b >Γ , σDC becomes independent of Γ (universal) and the ratio σ/DCσBG=8/π2 where all reference to material parameters has dropped out. As b is reduced and becomes of the order Γ , the flat background is lost as the optical response evolves towards that of a three-dimensional point node Dirac semimetal which is linear in Ω for the clean limit. For finite Γ there are modifications from linearity in the photon region Ω ≤Γ . When the chemical potential μ (temperature T ) is nonzero the DC conductivity increases as μ2/Γ2 (T2/Γ2 ) for μ/Γ (T/Γ )≤1 . Such laws apply as well for thermal conductivity and thermopower with coefficients of the quadratic law only slightly modified from their value in the three-dimensional point node Dirac case. However in the μ =T =0 limit both have the same proportionality factor of √{Γ2+b2 } as does σDC. Consequently the Lorentz number is largely unmodified. For larger values of μ >Γ away from the nodal region the conductivity shows a Drude-like contribution about Ω ≊0 which is followed by a dip in the Pauli blocked region Ω ≤2 μ after which it increases to merge with the flat background (two-dimensional graphene like) for μ b .

  1. Quantum dynamics in strong fluctuating fields

    NASA Astrophysics Data System (ADS)

    Goychuk, Igor; Hänggi, Peter

    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins, can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. This may occur, for example, for the tunnelling coupling between the donor and acceptor states of the transferring electron, or for the corresponding energy difference between electronic states which assume via the coupling to the fluctuating environment an explicit stochastic or deterministic time-dependence. Here, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis, the influence of nonequilibrium fluctuations and periodic electrical fields on those already mentioned dynamics and related quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.ContentsPAGE1. Introduction5262. Quantum dynamics in stochastic fields531 2.1. Stochastic Liouville equation531 2.2. Non-Markovian vs. Markovian discrete state fluctuations531 2.3. Averaging the quantum propagator533  2.3.1. Kubo oscillator535  2.3.2. Averaged dynamics of two-level quantum systems exposed to two-state stochastic fields537 2.4. Projection operator method: a primer5403. Two-state quantum dynamics in periodic fields542 3.1. Coherent destruction of tunnelling542 3.2. Driving-induced tunnelling oscillations (DITO)5434. Dissipative quantum dynamics in strong time-dependent fields544 4.1. General formalism544  4.1.1. Weak-coupling approximation545  4.1.2. Markovian approximation: Generalised Redfield Equations5475. Application I: Quantum relaxation in driven, dissipative two-level systems548 5.1. Decoupling approximation for fast fluctuating energy levels550  5.1.1. Control of quantum rates551  5.1.2. Stochastic cooling and inversion of level populations552  5.1.3. Emergence of an effective energy bias553 5.2. Quantum relaxation in strong periodic fields554 5.3. Approximation of time-dependent rates554 5.4. Exact averaging for dichotomous Markovian fluctuations5556. Application II: Driven electron transfer within a spin-boson description557 6.1. Curve-crossing problems with dissipation558 6.2. Weak system-bath coupling559 6.3. Beyond weak-coupling theory: Strong system-bath coupling563  6.3.1. Fast fluctuating energy levels565  6.3.2. Exact averaging over dichotomous fluctuations of the energy levels566  6.3.3. Electron transfer in fast oscillating periodic fields567  6.3.4. Dichotomously fluctuating tunnelling barrier5687. Quantum transport in dissipative tight-binding models subjected tostrong external fields569 7.1. Noise-induced absolute negative mobility571 7.2. Dissipative quantum rectifiers573 7.3. Limit of vanishing dissipation575 7.4. Case of harmonic mixing drive5758. Summary576Acknowledgements578References579

  2. Hierarchical modeling of heat transfer in silicon-based electronic devices

    NASA Astrophysics Data System (ADS)

    Goicochea Pineda, Javier V.

    In this work a methodology for the hierarchical modeling of heat transfer in silicon-based electronic devices is presented. The methodology includes three steps to integrate the different scales involved in the thermal analysis of these devices. The steps correspond to: (i) the estimation of input parameters and thermal properties required to solve the Boltzmann transport equation (BTE) for phonons by means of molecular dynamics (MD) simulations, (ii) the quantum correction of some of the properties estimated with MD to make them suitable for BTE and (iii) the numerical solution of the BTE using the lattice Boltzmann method (LBM) under the single mode relaxation time approximation subject to different initial and boundary conditions, including non-linear dispersion relations and different polarizations in the [100] direction. Each step of the methodology is validated with numerical, analytical or experimental reported data. In the first step of the methodology, properties such as, phonon relaxation times, dispersion relations, group and phase velocities and specific heat are obtained with MD at of 300 and 1000 K (i.e. molecular temperatures). The estimation of the properties considers the anhamonic nature of the potential energy function, including the thermal expansion of the crystal. Both effects are found to modify the dispersion relations with temperature. The behavior of the phonon relaxation times for each mode (i.e. longitudinal and transverse, acoustic and optical phonons) is identified using power functions. The exponents of the acoustic modes are agree with those predicted theoretically perturbation theory at high temperatures, while those for the optical modes are higher. All properties estimated with MD are validated with values for the thermal conductivity obtained from the Green-Kubo method. It is found that the relative contribution of acoustic modes to the overall thermal conductivity is approximately 90% at both temperatures. In the second step, two new quantum correction alternatives are applied to correct the results obtained with MD. The alternatives consider the quantization of the energy per phonon mode. In addition, the effect of isotope scattering is included in the phonon-phonon relaxation time values previously determined in the first step. It is found that both the quantization of the energy and the inclusion of scattering with isotopes significant reduce the contribution of high-frequency modes to the overall thermal conductivity. After these two effects are considered, the contribution of optical modes reduces to less than 2.4%. In this step, two sets of properties are obtained. The first one results from the application of quantum corrections to abovementioned properties, while the second is obtained including also the isotope scattering. These sets of properties are identified in this work as isotope-enriched silicon (isoSi) and natural silicon (natSi) and are used along other phonon relaxation time models in the last step of our methodology. Before we solve the BTE using the LBM, a new dispersive lattice Boltzmann formulation is proposed. The new dispersive formulation is based on constant lattice spacings (CLS) and flux limiters, rather than constant time steps (as previously reported). It is found that the new formulation significantly reduces the computation cost and complexity of the solution of the BTE, without affecting the thermal predictions. Lastly, in the last step of our methodology, we solve the BTE. The equation is solved under the relaxation time approximation using our thermal properties estimated for isoSi and natSi and using two phonon formulations. The phonon formulations include a gray model and the new dispersive method. For comparison purposes, the BTE is also solved using the phenomenological and theoretical phonon relaxation time models of Holland, and Han and Klemens. Different thermal predictions in steady and transient states are performed to illustrate the application of the methodology in one- and two-dimensional silicon films and in silicon-over-insulator (SOI) transistors. These include the determination of bulk and film thermal conductivities (i.e. out-of-plane and in-plane), and the transient evolution of the wall heat flux and temperature for films of different thicknesses. In addition, the physics of phonons is further analyzed in terms of the influence and behavior of acoustic and optical modes in the thermal predictions and the effect of phonon confinement in the thermal response of SOI-like transistors subject to different self-heating conditions.

  3. Size effects and charge transport in metals: Quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces

    NASA Astrophysics Data System (ADS)

    Munoz, Raul C.; Arenas, Claudio

    2017-03-01

    We discuss recent progress regarding size effects and their incidence upon the coefficients describing charge transport (resistivity, magnetoresistance, and Hall effect) induced by electron scattering from disordered grain boundaries and from rough surfaces on metallic nanostructures; we review recent measurements of the magneto transport coefficients that elucidate the electron scattering mechanisms at work. We review as well theoretical developments regarding quantum transport theories that allow calculating the increase in resistivity induced by electron-rough surface scattering (in the absence of grain boundaries) from first principles—from the parameters that describe the surface roughness that can be measured with a Scanning Tunnelling Microscope (STM). We evaluate the predicting power of the quantum version of the Fuchs-Sondheimer theory and of the model proposed by Calecki, abandoning the method of parameter fitting used for decades, but comparing instead theoretical predictions with resistivity measured in thin films where surface roughness has also been measured with a STM, and where electron-grain boundary scattering can be neglected. We also review the theory of Mayadas and Shatzkes (MS) [Phys. Rev. B 1, 1382 (1970)] used for decades, and discuss its severe conceptual difficulties that arise out of the fact that: (i) MS employed plane waves to describe the electronic states within the metal sample having periodic grain boundaries, rather than the Bloch states known since the thirties to be the solutions of the Schrödinger equation describing electrons propagating through a Krönig-Penney [Proc. R. Soc. London Ser. A 130, 499 (1931)] periodic potential; (ii) MS ignored the fact that the wave functions describing electrons propagating through a 1-D disordered potential are expected to decay exponentially with increasing distance, a fact known since the work of Anderson [Phys. Rev. 109, 1492 (1958)] in 1958 for which he was awarded the Nobel Prize in 1977; (iii) The current in the sample should be proportional to TN, the probability that an electron traverses N consecutive (disordered) grains found along a mean free path; MS assumed that TN = 1. We review unpublished details of a quantum transport theory based upon a model of diffusive transport and Kubo's linear response formalism recently published [Arenas et al., Appl. Surf. Sci. 329, 184 (2015)], which permits estimating the increase in resistivity of a metallic specimen (over the bulk resistivity) under the combined effects of electron scattering by phonons, impurities, disordered grain boundaries, and rough surfaces limiting the sample. We evaluate the predicting power of both the MS theory and of the new quantum model on samples where the temperature dependence of the resistivity has been measured between 4 K and 300 K, and where surface roughness and grain size distribution has been measured on each sample via independent experiments. We find that the quantum theory does exhibit a predicting power, whereas the predicting power of the MS model as well as the significance and reliability of its fitting parameters seems questionable. We explore the power of the new theory by comparing, for the first time, the resistivity predicted and measured on nanometric Cu wires of (approximately) rectangular cross section employed in building integrated circuits, based upon a quantum description of electron motion.

  4. Deformation and seismic anisotropy of silicate post-perovskite in the Earth's lowermost mantle

    NASA Astrophysics Data System (ADS)

    wu, X.; Lin, J.; Mao, Z.; Liu, J.; Kaercher, P. M.; Wenk, H.; Prakapenka, V.; Zhuravlev, K. K.

    2013-12-01

    The D' layer in the Earth's lowermost mantle with an average thickness of 250 km right above the core-mantle boundary plays a significant role in the geophysics, geochemistry, and geodynamics of the planet's interior. Seismic observations of the region have shown a number of enigmatic features including shear wave discontinuity and seismic wave anisotropy. The seismic anisotropy, in which the horizontally-polarized shear wave (VSH) travels faster than the vertically-polarized shear wave (VSV) by 1%~3% in areas below the circum Pacific, has been proposed to be a result of the lattice-preferred orientation of silicate post-perovskite (PPv) that is to be the most abundant phase in the D' layer [1]. Therefore, understanding the elasticity and deformation of the PPv phase is critical under relevant P-T conditions of the region. However, experimental results on the textures and the elastic anisotropy of PPv remain largely limited and controversial. Specifically, a number of slip systems of PPv, such as (010), (100), (110) and (001), have been proposed based on experimental and theoretical results [2-4]. Here we have studied the textures and deformation mechanism of iron-bearing PPv ((Mg0.75,Fe0.25)SiO3) at relevant P-T conditions of the lowermost mantle using synchrotron radiation radial x-ray diffraction in a membrane-driven laser-heated diamond anvil cell. The diffraction patterns were recorded from the laser-heated PPv sample during further compression between 130 GPa and 150 GPa. Analyses of the diffraction patterns and simulation results from viscoplastic self-consistent polycrystal plasticity code (VPSC) show that the development of active slip systems can be strongly influenced by experimental pressure-temperature-time conditions. At relevant P-T conditions of the lowermost mantle, our results demonstrate that the dominant slip systems of PPv should be (001)[100] and (001)[010]. Combined these results with the elasticity of PPv, we provide more constrains on the geodynamic model and interpret the potential mechanism of the seismic anisotropy origin of the D' layer. [1] Nowacki A, Wookey J, and Kendall, Nature 467, 1091 (2010). [2] Merkel S, McNamara A K, Kubo A, Speziale S, Miyagi L, Meng Y, Duffy T S, and Wenk H R, Science 316, 1729 (2007). [3] Miyagi L, Kanitpanyacharoen W, Kaercher P, Lee K K M, and Wenk H R, Sicence 329, 1639 (2010). [4] Metsue A, and Tsuchiya T, Proc. Jpn. Acad., Ser. B89, 51 (2013).

  5. Stress tensor and viscosity of water: Molecular dynamics and generalized hydrodynamics results

    NASA Astrophysics Data System (ADS)

    Bertolini, Davide; Tani, Alessandro

    1995-08-01

    The time correlation functions (CF's) of diagonal and off-diagonal components of the stress tensor of water have been calculated at 245 and 298 K in a molecular dynamics (MD) study on 343 molecules in the microcanonical ensemble. We present results obtained at wave number k=0 and at a few finite values of k, in the atomic and molecular formalism. In all cases, more than 98% of these functions are due to the potential term of the stress tensor. At k=0, their main features are a fast oscillatory initial decay, followed by a long-time tail more apparent in the supercooled region. Bulk and shear viscosities, calculated via Green-Kubo integration of the relevant CF at k=0, are underestimated with respect to experimental data, mainly at low temperature, but their ratio (~=2) is correctly reproduced. Both shear and bulk viscosity decrease as a function of k, the latter more rapidly, so that they become almost equal at ~=1 Å-1. Also, both viscosities drop rapidly from their maximum at ω=0. This behavior has been related to the large narrowing observed in the acoustic band, mainly in the supercooled region. The infinite frequency bulk and shear rigidity moduli have been shown to be in fair agreement with the experimental data, provided the MD value used for comparison is that corresponding to the frequency range relevant to ultrasonic measurements. The MD results of stress-stress CF's compare well with those predicted by Bertolini and Tani [Phys. Rev. E 51, 1091 (1995)] at k=0, by an application of generalized hydrodynamics [de Schepper et al., Phys. Rev. A 38, 271 (1988)] in the molecular formalism, to the same model of water (TIP4P) [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)]. These CF's are essentially equal in the atomic and molecular formalism, the only minor difference being restricted to the high frequency librational region of the shear function. By a comparison of atomic and molecular results, we show here that neglecting libration has no effect on the density-density and longitudinal current CF's and very little effect on transverse properties. On the other hand, this study points out the importance of including the oscillation in the nearest-neighbor cage in the memory function of the longitudinal and transverse current CF. The oscillatory local motion turns out to play an important role in all CF's and hence contributes significantly to the value of viscosity and of rigidity moduli.

  6. Role of quantum coherence in shaping the line shape of an exciton interacting with a spatially and temporally correlated bath

    PubMed Central

    Dutta, Rajesh; Bagchi, Kaushik

    2017-01-01

    Kubo’s fluctuation theory of line shape forms the backbone of our understanding of optical and vibrational line shapes, through such concepts as static heterogeneity and motional narrowing. However, the theory does not properly address the effects of quantum coherences on optical line shape, especially in extended systems where a large number of eigenstates are present. In this work, we study the line shape of an exciton in a one-dimensional lattice consisting of regularly placed and equally separated optical two level systems. We consider both linear array and cyclic ring systems of different sizes. Detailed analytical calculations of line shape have been carried out by using Kubo’s stochastic Liouville equation (SLE). We make use of the observation that in the site representation, the Hamiltonian of our system with constant off-diagonal coupling J is a tridiagonal Toeplitz matrix (TDTM) whose eigenvalues and eigenfunctions are known analytically. This identification is particularly useful for long chains where the eigenvalues of TDTM help understanding crossover between static and fast modulation limits. We summarize the new results as follows. (i) In the slow modulation limit when the bath correlation time is large, the effects of spatial correlation are not negligible. Here the line shape is broadened and the number of peaks increases beyond the ones obtained from TDTM (constant off-diagonal coupling element J and no fluctuation). (ii) However, in the fast modulation limit when the bath correlation time is small, the spatial correlation is less important. In this limit, the line shape shows motional narrowing with peaks at the values predicted by TDTM (constant J and no fluctuation). (iii) Importantly, we find that the line shape can capture that quantum coherence affects in the two limits differently. (iv) In addition to linear chains of two level systems, we also consider a cyclic tetramer. The cyclic polymers can be designed for experimental verification. (v) We also build a connection between line shape and population transfer dynamics. In the fast modulation limit, both the line shape and the population relaxation, for both correlated and uncorrelated bath, show similar behavior. However, in slow modulation limit, they show profoundly different behavior. (vi) This study explains the unique role of the rate of fluctuation (inverse of the bath correlation time) in the sustenance and propagation of coherence. We also examine the effects of off-diagonal fluctuation in spectral line shape. Finally, we use Tanimura-Kubo formalism to derive a set of coupled equations to include temperature effects (partly neglected in the SLE employed here) and effects of vibrational mode in energy transfer dynamics. PMID:28527457

  7. Potential sulfate reduction in deeply buried coalbeds 2 km below the seafloor off the Shimokita Peninsula (Japan)

    NASA Astrophysics Data System (ADS)

    Glombitza, C.; Inagaki, F.; Lever, M. A.; Jørgensen, B. B.

    2013-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 337 aboard the drilling vessel Chikyu in summer 2012 was the first IODP expedition to drill into a deeply buried hydrocarbon system by riser drilling and, in the process, extended the depth record of scientific ocean drilling to 2466 meters below seafloor (mbsf). A main scientific goal of Expedition 337 was to explore microbial communities associated with deeply buried coalbeds 2 km below the seafloor at Site C0020 off the Shimokita Peninsula of Japan, northwestern coast of the Pacific Ocean. Four lithological units were defined according to sedimentological observations (Inagaki et al. 2012). Temperature measurements during wireline logging revealed in-situ temperatures in the range habitable for life, with ~40-45°C in 2km-deep coalbeds and 60°C at the bottom of the hole. To determine potential sulfate reduction rates (pSRRs) throughout the lower half of the borehole (1200-2466 mbsf; Units II - IV), we prepared slurries from fresh core material in artificial seawater medium containing 1 mM of sulfate and incubated these onboard with 35S-labeled sulfate at approximate in-situ temperatures (i.e., 25, 35, and 45°C). A duplicate set of incubations was started from each sample, one with only N2 in the headspace, and one with N2 + CH4 in the headspace. We incubated samples with 3.7 MBq 35S for a period of 10 days to achieve a detection limit of ca. 10 fmol sulfate cm-3 d-1. pSRRs were close to the detection limit in Unit II and increased by two orders of magnitude up to 2 pmol cm-3 d-1 in the coal-bearing strata (Unit III), decreasing again below in Unit IV. Maximum rates in Unit III reached values similar to those determined during the Chikyu shakedown cruise at 350 mbsf at the same site in 2006. In contrast to the pSRRs determined previously, however, addition of methane did not stimulate pSRRs, suggesting that potential sulfate reduction was supported by electron donors other than methane. The increase of pSRR in the coal-bearing unit is in accordance with other indicators of increased microbial activity in this depth interval, such as high C1/C2 ratios with low 13C/12C isotope ratios of methane observed by real-time mud gas logging during riser drilling. Inagaki, F., K.-U. Hinrichs, Y. Kubo, and the Expedition 337 Scientists (2012), Deep coalbed biosphere off Shimokita: microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean, IODP Prel. Rept., 337, doi: 10.2204/iodp.pr.337.2012

  8. Eutectic propeties of primitive Earth's magma ocean

    NASA Astrophysics Data System (ADS)

    Lo Nigro, G.; Andrault, D.; Bolfan-Casanova, N.; Perillat, J.-P.

    2009-04-01

    It is widely accepted that the early Earth was partially molten (if not completely) due to the high energy dissipated by terrestrial accretion [1]. After core formation, subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. The residual liquid corresponds to what is now called the fertile mantle or pyrolite. Melting relations of silicates have been extensively investigated using the multi-anvil press, for pressures between 3 and 25 GPa [2,3]. Using the quench technique, it has been shown that the pressure affects significantly the solidus and liquidus curves, and most probably the composition of the eutectic liquid. At higher pressures, up to 65 GPa, melting studies were performed on pyrolite starting material using the laser-heated diamond anvil cell (LH-DAC) technique [4]. However, the quench technique is not ideal to define melting criteria, and furthermore these studies were limited in pressure range of investigation. Finally, the use of pyrolite may not be relevant to study the melting eutectic temperature. At the core-mantle boundary conditions, melting temperature is documented by a single data point on (Mg,Fe)2SiO4 olivine, provided by shock wave experiments at around 130-140 GPa [5]. These previous results present large uncertainties of ~1000 K. The aim of this study is to determine the eutectic melting temperature in the chemically simplified system composed of the two major lower mantle phases, the MgSiO3 perovskite and MgO periclase. We investigated melting in-situ using the laser-heated diamond anvil cell coupled with angle dispersive X-ray diffraction at the ID27 beamline of the ESRF [6]. Melting relations were investigated in an extended P-T range comparable to those found in the Earth's lower mantle, i.e. from 25 to 120 GPa and up to more than 5000 K. Melting was evidenced from (a) disappearance of one of the two phases in the diffraction pattern, (b) drastic changes of the diffraction image itself, and/or (c) appearance of a broad band of diffuse X-ray scattering associated to the presence of silicate liquid. The pressure evolution of the eutectic temperature is found below the melting curve of pure MgSiO3 perovskite [7] for more than 500 K and also below the solidus curve of pyrolite [4] for 100-200 K at 60 GPa. References [1] B. T. Tonks, H. J. Melosh, Journal of Geophysical Research 98 5319 (1993). [2] Litasov, K., and Ohtani, E. Physics of The Earth and Planetary Interiors, 134(1-2), 105-127, (2002). [3] E. Ito, A. Kubo, T. Katsura et al., Phys. Earth Planet. Inter. 143-144 397 (2004). [4] A. Zerr, R. Boehler, Nature 506-508 (1994). [5] J. A. Akins, S. N. Luo, P. D. Asimov et al., Geophys. Res. Lett. 31 doi:10.1029/2004GL020237 (2004). [6] Schultz et al. International Journal of High Pressure Research. 25, 1, 71-83 (2005). [7] Zerr, A. and Boehler, R. Science, 262, 553-555 (1993).

  9. [The introduction of Western psychiatry into Korea (II). Psychiatric education in Korea during the forced Japanese annexation of Korea (1910-1945)].

    PubMed

    Chung, Wonyong; Lee, Nami; Rhi, Bou-Yong

    2006-12-01

    In the second report in our series on the historical investigation on the introduction of western psychiatry into Korea, authors deal with the status of psychiatric education during the Japanese forced annexation of Korea. The first lecture on psychiatry in Korea under the title "Mental Diseases" was held in Dae-han-eui-won around 1910. In 1913, the Department of Psychiatry branched off from the Department of Internal Medicine of Chosen-sotoku-fu-iing, the Colonial Governmental Clinic, the successor of Dae-han-eui-won. The chairman, Professor Suiju Sinji; and the Korean assistant Sim Ho-seop administered the psychiatric ward with 35 beds. Since 1913, an Australian missionary psychiatrist, Dr. McLaren began to teach neurology and psychiatry at Severance Union Medical College and established a Department of Psychiatry in 1923. Dr. McLaren was a faithful Christian and open minded toward Oriental religious thought such as in Buddhism and Taoism. He devoted himself to the humanitarian care of mentally ill patients and served there until 1937 when he had to leave the land due to Japanese persecution. His disciple, Dr. Lee Jung Cheol succeeded the chair of the Psychiatric Department of Severance Medical College and served until 1939. In 1916, Keijo (Seoul) Medical College was established and in 1928, Keijo Teikoku Daigaku (Imperial University). From 1929 to 1941, the Department of Neurology and Psychiatry of Keijo Imperial University grew under the chairmanship of Professor Kubo Kioji followed by Professor Watanabe until 1945. Many assistants including a few Koreans were gathered to the Department for training and research. The main textbook used for the psychiatric education for medical students in Korea was on Kraepelinian German Psychiatry translated and edited by Japanese psychiatrists. Lectures and clerkships for Neurology and Psychiatry were allocated generally in the curriculum for senior students for weekly 1-3 hours. Postgraduate professional training for the psychiatrists was carried out according to the tutorial system under the supervision of professors and staff. In regard to a wide range of references discovered in the library of the Department of Neurology and Psychiatry, Keijo Imperial University the trainees seem to have had opportunity to contact with diverse subspecialties of psychiatry and also to exercise specific laboratory examinations in the setting of the German linik". Comparisons of psychiatry in Korea and Japan during Japanese occupation suggest the following conclusions: 1. Extreme discrimination against Korean trainees in their academic careersprobably due to colonial policy. After 35 years of Japanese occupation of Korea only ten Korean neuro-psychiatrists and neurologists were left; 2. Somewhat narrow academic interests of psychiatrists in Korea in research fields focusing on neuropathology and opium addiction etc and the lackness of the interest in social psychiatric issues: for example, the rights of the mentally ill patient or non-restraining care systems as seen in Japanese psychiatry in Japan. 3. Extremely limited number of psychiatry teaching staffs in Korea. For a long time Keijo Imperial University's Department of Neurology and Psychiatry was the only center for training psychiatrists in Korea.

  10. Multi-scale analysis of collective behavior in 2D self-propelled particle models of swarms: An Advection-Diffusion with Memory Approach

    NASA Astrophysics Data System (ADS)

    Raghib, Michael; Levin, Simon; Kevrekidis, Ioannis

    2010-05-01

    Self-propelled particle models (SPP's) are a class of agent-based simulations that have been successfully used to explore questions related to various flavors of collective motion, including flocking, swarming, and milling. These models typically consist of particle configurations, where each particle moves with constant speed, but changes its orientation in response to local averages of the positions and orientations of its neighbors found within some interaction region. These local averages are based on `social interactions', which include avoidance of collisions, attraction, and polarization, that are designed to generate configurations that move as a single object. Errors made by the individuals in the estimates of the state of the local configuration are modeled as a random rotation of the updated orientation resulting from the social rules. More recently, SPP's have been introduced in the context of collective decision-making, where the main innovation consists of dividing the population into naïve and `informed' individuals. Whereas naïve individuals follow the classical collective motion rules, members of the informed sub-population update their orientations according to a weighted average of the social rules and a fixed `preferred' direction, shared by all the informed individuals. Collective decision-making is then understood in terms of the ability of the informed sub-population to steer the whole group along the preferred direction. Summary statistics of collective decision-making are defined in terms of the stochastic properties of the random walk followed by the centroid of the configuration as the particles move about, in particular the scaling behavior of the mean squared displacement (msd). For the region of parameters where the group remains coherent , we note that there are two characteristic time scales, first there is an anomalous transient shared by both purely naïve and informed configurations, i.e. the scaling exponent lies between 1 and 2. The long-time behavior of the msd of the centroid walk scales linearly with time for naïve groups (diffusion), but shows a sharp transition to quadratic scaling (advection) for informed ones. These observations suggest that the mesoscopic variables of interest are the magnitude of the drift, the diffusion coefficient and the time-scales at which the anomalous and the asymptotic behavior respectively dominate transport, the latter being linked to the time scale at which the group reaches a decision. In order to estimate these summary statistics from the msd, we assumed that the configuration centroid follows an uncoupled Continuous Time Random Walk (CTRW) with smooth jump and waiting time pdf's. The mesoscopic transport equation for this type of random walk corresponds to an Advection-Diffusion Equation with Memory (ADEM). The introduction of the memory, and thus non-Markovian effects, is necessary in order to correctly account for the two time scales present. Although we were not able to calculate the memory directly from the individual-level rules, we show that it can estimated from a single, relatively short, simulation run using a Mittag-Leffler function as template. With this function it is possible to predict accurately the behavior of the msd, as well as the full pdf for the position of the centroid. The resulting ADEM is self-consistent in the sense that transport parameters estimated from the memory via a Kubo relationship coincide with those estimated from the moments of the jump size pdf of the associated CTRW for a large number of group sizes, proportions of informed individuals, and degrees of bias along the preferred direction. We also discuss the phase diagrams for the transport coefficients estimated from this method, where we notice velocity-precision trade-offs, where precision is a measure of the deviation of realized group orientations with respect to the informed direction. We also note that the time scale to collective decision is invariant with respect to group size, and depends only on the proportion of informed individuals and the strength of the coupling along the informed direction.

  11. Specific applications of capillary electrochromatography to biopolymers, including proteins, nucleic acids, peptide mapping, antibodies, and so forth.

    PubMed

    Krull, I S; Sebag, A; Stevenson, R

    2000-07-28

    Separation of biopolymers is an obvious application of capillary electrochromatography (CEC) technology, since speed and resolution should increase significantly over high-performance liquid chromatography (HPLC). All too often, HPLC chromatograms of polymers show poorly resolved envelopes of overlapping peaks from oligomers. The practical limitation of column length and pressure drop has hindered development of high resolution separations of many polymers in HPLC. However, this generally applies only to packed beds of small particles, and not to continuous (or monolithic) beds, as introduced by Hjerten et al. [S. Hjerten, Ind. Eng. Chem. Res. 38 (1999) 1205; S. Hjerten, C. Ericson, Y.-M. Li, R. Zhang, Biomed. Chromatogr. 12 (1998) 120; C. Ericson, S. Hjerten, Anal. Chem. 71 (1999) 1621; J.-L. Liao, N. Chen, C. Ericson, S. Hjerten, Anal. Chem. 68 (1996) 3468; S. Hjerten, A. Vegvari, T. Srichaiyo, H.-X. Zhang, C. Ericson, D. Eaker, J. Capillary. Elec. 5 (1998) 13; C. Ericson, J.-L. Liao, K. Nakazato, S. Hjerten, J. Chromatogr. A 767 (1997) 33; S. Hjerten, D. Eaker, K. Elenbring, C. Ericson, K. Kubo, J.-L. Liao, C.-M. Zeng, P.-A. Lidstrom, C. Lindh, A. Palm, T. Srichiayo, L. Valtcheva, R. Zhang, Jpn. J. Electroph. 39 (1995) 1]. Throughout this review we will refer to such packings as monolithic or continuous beds, but they are identical type packings, formed by the in situ polymerization in the capillary or column. CEC capillaries can be much longer, and contain smaller particles than is practical for HPLC. This improves resolution significantly. CEC is able to capitalize on existing mobile phase technology developed over 30 years to improve separations. The requirement that the mobile phase simultaneously promote the separation and mobile phase mobility needs to be considered. In RPLC, this dual role is not much of a problem. It may be much more important in other modes, particularly ion-exchange (IEC). As the field develops, it is becoming clear that CEC is not just a simple extension of HPLC. Instruments, column technology and operating optima are clearly different than HPLC. CEC will develop into its own unique field. Open tubular HPLC is almost precluded by the high pressures required for forcing liquids through 10 microm or smaller capillaries. Electroosmotic pumping (EOF) avoids the pressure constraints and provides better flow profiles. Compared to HPCE, the ability to interact with the stationary phase may enable separations that would be difficult with electrophoresis alone. Since the mobile phase can be less complex than micellar electrokinetic chromatography (MEKC), CEC also avoids the problem of high background signals from the micelle forming compounds. Thus CEC-MS (mass spectrometry) is expected to be even more powerful than HPCE-MS. The fortuitous, simultaneous development of matrix assisted laser desorption-time of flight MS (MALDI-TOF-MS) technology will enable extension of the mass range to above 100 000 Da. Lack of familiarity is the perhaps the largest liability of CEC compared to other techniques. This paper critically compares the state-of-the-art of CEC with HPLC and HPCE, with a particular emphasis on separation of biopolymers. The goal is to help the reader overcome the fear of the unknown, in this case, CEC.

  12. PREFACE: Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Haozhe; Wenk, Hans-Rudolf; Duffy, Thomas S.

    2006-06-01

    One of the major goals of geophysical research is to understand deformation in the deep Earth. The COMPRES (Consortium for Materials Properties Research in Earth Sciences) workshop on `Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures' was held on 21-23 October 2005 at the Advanced Photon Source, Argonne National Laboratory, organized by Haozhe Liu, Hans-Rudolf Wenk and Thomas S Duffy, and provided an opportunity to assemble more than 50 scientists from six countries. Experts in diamond anvil cell (DAC) design, large-volume high-pressure apparatus and data analysis defined the current state of ultra-high pressure deformation studies and explored initiatives to push the technological frontier. The DAC, when used in radial diffraction geometry, emerges as a powerful tool for investigation of plasticity and elasticity of materials at high pressures. More information regarding this workshop can be found at the website: http://www.hpcat.aps.anl.gov/Hliu/Workshop/Index1.htm. In this special issue of Journal of Physics: Condensed Matter, 17 manuscripts review the state-of-the-art and we hope they will stimulate researchers to participate in this field and take it forward to a new level. A major incentive for high-pressure research has been the need of geophysicists to understand composition, physical properties and deformation in the deep Earth in order to interpret the macroscopically observed seismic anisotropy. In the mantle and core, materials deform largely in a ductile manner at low stresses and strain rates. From observational inferences and experiments at lower pressures, it is considered plausible that deformation occurs in the field of dislocation creep or diffusion creep and deformation mechanisms depend in a complex way on stress, strain rate, pressure, temperature, grain size and hydration state. With novel apparatus such as the rotational Drickamer press or deformation DIA (D-DIA) multianvil apparatus, large volumes (approximately 10 mm3) of materials can be deformed at pressure and temperature. Unfortunately these experiments do not currently extend to pressures of the lower mantle, which comprises most of the volume of the Earth. Thus deformation mechanisms of minerals such as perovskite (in the lower mantle), post-perovskite (in the anisotropic D" zone) and epsilon-iron (in the inner core) remain enigmatic. Here developments in the DAC offer new opportunities. At present, this is a novel, and in many ways still very primitive, method to deform minerals at high pressure, confined to room temperature and moderate strains. No doubt this will change in the near future as new technologies become implemented, for example laser heating, remote pressure control, especially fine control of strain rate during compression, decompression and cycling procedures for DAC radial diffraction studies. The first paper, by Bassett, gives a perspective on the significance of stress in DAC experiments. An issue once considered by many a nuisance has become a gold mine when it comes to unravelling material properties at very high pressures. At high pressures many silicates and oxides become ductile, even at room temperature, and ductile deformation results in development of preferred orientation that can be used to infer deformation mechanisms as illustrated in the reviews by Wenk et al and Merkel. Mao et al investigate the strength of solidified argon and find it increases greatly and exceeds 2.7~GPa with applied pressure at 55 GPa. Singh et al investigate the dependence of strength on grain size by studying nanocrystalline gold, while Yoneda and Kubo use axial diffraction geometry to determine both mean pressure and deviatoric stress of gold. Miyagi et al illustrate the Rietveld method for quantitative texture analysis of CaSiO3 perovskite. Speziale et al map strain gradients in the DAC by investigating texture variations in copper to 25 GPa. Naturally, efficient and accurate image processing is a requirement for reduction and analysis of diffraction data (Hinrichsen et al). A complementary study by Conil and Kavner explores DAC heterogeneities with numerical methods. Using the D-DIA multianvil apparatus, the differential lattice strains in polycrystalline Fe2SiO4 and MgO are measured to investigate the evolution of the weighting factor for Reuss and Voigt bounds during plastic flow by Chen et al, while Weidner and Li study MgO and mixtures of MgO and spinel (MgAl2O4) for fabric and residual stresses development during a plastic deformation cycle. Mao and Mao describe an ingenious device for remote pressure control and demonstrate it with a sample of platinum to 230 GPa. Large strains can be obtained with a rotational DAC and this influences the pressure at which the α-epsilon transition occurs in iron (Ma et al). Chesnut et al introduce a new DAC adapted for radial diffraction geometry. While much of the current DAC work in radial geometry is done with monochromatic x-rays and angle dispersive 2D detectors, the radial x-ray diffraction program at X17C of NSLS at energy dispersive XRD geometry is reviewed by Hu et al. Meng et al introduce the double-sided laser heating technique at ID-B of HPCAT, and propose a rotational design for applying the laser heating technique to radial x-ray diffraction studies at simultaneous high pressure-temperature (PT) conditions. These contributions provide a sound introduction and overview of the current science for anyone interested in elasticity and plasticity of materials at ultrahigh pressure. We are grateful to Dr Richard Palmer and Professor Marshall Stoneham for the opportunity to publish these carefully selected and reviewed proceedings in Journal of Physics: Condensed Matter where they reach a large audience. We acknowledge the authors for contributing exciting papers to this issue, to participants at the workshop for stimulating presentations and discussions, and to many reviewers whose suggestions improved the manuscripts. We are most grateful to COMPRES and its Director Dr Robert Liebermann for generous financial support of this workshop, and the support from local organizing committee Veronica O'Connor, Dave Mao, Guoyin Shen and other HPCAT staff. The goal of the project was not to provide final conclusions in a dynamic field but to stimulate progress.

  13. Muon-spin-relaxation and inelastic neutron scattering investigations of the caged-type Kondo semimetals: CeT2Al10 (T = Fe, Ru and Os)

    NASA Astrophysics Data System (ADS)

    Adroja, D. T.; Hillier, A. D.; Muro, Y.; Takabatake, T.; Strydom, A. M.; Bhattacharyya, A.; Daoud-Aladin, A.; Taylor, J. W.

    2013-12-01

    Recently, Ce-based caged-type compounds with the general formula CeT2Al10 (T = Fe, Ru and Os) have generated considerable interest due to the Kondo semiconducting paramagnetic ground state (down to 40 mK) observed in CeFe2Al10 and anomalously high magnetic ordering temperature with spin gap formation at low temperatures in Kondo semimetals CeRu2Al10 and CeOs2Al10. The formation of long-range magnetic ordering out of the Kondo semiconducting/semimetallic state itself is extraordinary and these are the first examples of this enigmatic coexistence of electronic ground states. These compounds also exhibit strong anisotropy in magnetic and transport properties, which has been explained on the basis of single-ion crystal electric field anisotropy in the presence of strongly anisotropic hybridization between localized 4f-electron and conduction electrons. Furthermore, they also exhibit a remarkable modification of magnetic and transport properties with doping on Ce, or T or Al sites. In this article, we briefly discuss the bulk properties of these compounds, giving a detailed discussion on our muon-spin-relaxation (μSR) investigations and inelastic neutron scattering (INS) results. We present the μSR and the INS results of Ce(Ru1-xFex)2Al10 and CeOs2Al10 as well as the μSR results of NdFe2Al10, NdOs2Al10 and YFe2Al10 for comparison. The zero-field μSR spectra clearly reveal coherent two-frequency oscillations at low temperatures in CeT2Al10 (T = Ru and Os) and Ce(Ru1-xFex)2Al10 (x = 0.3-0.5), which confirms the long-range magnetic ordering with a reduced moment of the Ce. On the other hand, the μSR spectra of Ce(Ru1-xFex)2Al10 (x = 0.8 and 1) down to 1.2 and 0.04 K, respectively, exhibit a temperature independent Kubo-Toyabe (KT) term confirming a paramagnetic ground state. INS measurements on CeT2Al10 (T = Ru and Os) exhibit sharp inelastic excitations at 8 and 11 meV at 5 K due to an opening of a gap in the spin excitation spectrum. A spin gap of 8-12 meV at 7 K, with a strong Q-dependent intensity, is observed in the magnetic ordered state of Ce(Ru1-xFex)2Al10 with x = 0.3 and 0.5 which remarkably extends into the paramagnetic state of x = 0.8 and 1. The observation of a spin gap in the paramagnetic samples (x = 0.8 and 1) is an interesting finding in this study and it challenges our understanding of the origin of the semiconducting energy gap in CeT2Al10 (T = Ru and Os) in terms of a hybridization gap opening only a small part of the Fermi surface, gapped spin waves or a spin-dimer gap. Furthermore, the μSR study of NdFe2Al10 below TN exhibits a clear sign of two frequency oscillations, which are absent in NdOs2Al10. Moreover, the μSR study of YFe2Al10, which has been proposed as a compound exhibiting ferromagnetic critical fluctuations did not reveal any clear sign of critical magnetic fluctuations down to 60 mK, within the ISIS μSR time window, which is unexpected for a T → 0 quantum phase transition (QPT).

  14. Propriétés d'un fil quantique connecté à des fils de mesure

    NASA Astrophysics Data System (ADS)

    Safi, Inès.

    We investigate a one-dimensional wire of interacting electrons connected to one-dimensional leads in the absence then in the presence of weak backscattering potential. The global system is treated as an inhomogenous Tomonaga-Luttinger liquid. The conductance of the clean wire is not renormalized by the interactions for any spatial variation of the interaction parameters as well as for Coulomb interactions restricted to the wire. This result contradicts the common believe that interactions renormalize the conductance. The most straightforward and physically appealing way to find the conductance is through its relation to the transmission. There is no general Landauer formula for an interacting one-dimensional wire; for the present model however it is established rigorously. A new concept is introduced by imposing the injected flux by the reservoirs as an initial condition for the equation of motion of the density. The total transmission turns out to be perfect. The conductance result can be also derived using Kubo formula, as long as the reservoirs impose the boundary conditions. If the interactions are switched abruptly at the contacts, an electron incident on the wire is reflected into a series of partial spatially separated charges that sum up to unity. The wire separates the charge and spin parts of the incident electron even in the noninteracting leads. The dynamic conductance coefficients are expressed through the transmission and reflection of plasmons, and global charge conservation is ensured by taking a close gate into account. The transmission process affects the density-density or pairing correlation functions: they are enhanced on the bulk of the wire as in an infinite Luttinger liquid, then extend to the external noninteracting leads in a way reminiscent of the proximity effect. In case interactions are attractive, the reflexion of an incident electron on the wire is the analogous of Andreev reflexion on a gapless superconductor. While the DC conductance of the clean wire is insensitive to interactions, the Tomonaga-Luttinger model features manifest in the presence of backscattering potential. The leading renormalization equations are derived explicitly at finite temperature for any weak backscattering potential; the developed formalism is suited to any noninvariant translational interactions. The role of impurities is found to be governed by the interactions in the wire, but is affected by the external leads, especially for very repulsive interactions because the tendency towards the Wigner crystal is suppressed at low temperature. The reduction in the conductance R=g- e2 /h has a non-trivial power law behavior. For randomly distributed weak impurities, we compute the conductance fluctuations; the ratio Var(R)/ < R > 2 saturates at 1/2 in the low temperature limit indicating that the relative fluctuations of R increases as one lowers the temperature. Recent remarkable experiments on quantum wires are discussed; the conductance in the ballistic limit seems in accordance with our prediction. Concerning the clean wire, other alternatives of measurement are also discussed. The Kubo formula as a response to the local field is reconsidered in a generic Luttinger liquid: the "intrinsic" conductance thus obtained is found to be determined by the same combination of interaction parameters as that which renormalizes the current. Une nouvelle approche du transport dans un fil quantique est proposée, fondée sur une adaptation de l'approche de diffusion à un fil avec interactions (liquide de Tomonaga-Luttinger). Une équation cinétique est développée, permettant de tenir compte des réservoirs, mais aussi d'obtenir des résultats d'une façon directe. Il est ainsi montré que la conductance DC du fil propre est indépendante des interactions à portée et profil arbitraires, et reste égale à e2/h. Les réservoirs sont simulés par le flux qu'ils injectent, lequel est introduit comme condition aux bords de l'équation cinétique. Afin d'identifier les flux d'électrons incident et transmis, des fils intermédiaires sans interactions sont introduits, et le système global est traité comme un liquide de Tomonaga-Luttinger inhomogène. La transmission du flux est parfaite dans la limite stationnaire : un électron incident est transmis en une série de charges partielles spatialement séparées dont la somme vaut l'unité. Il est par ailleurs remarquable que les parties charge et spin transmises restent séparées dans le fil externe sans interactions. La conductance est déduite de la transmission parfaite suivant un argument analogue à celui de l'approche de diffusion. Elle peut aussi être reliée exactement à la transmission en modélisant les réservoirs par un potentiel électrostatique externe fixé. Elle est donc égale à e2/h pour une portée finie arbitraire des interactions. Ce résultat de conductance a été confirmé par des observations expérimentales récentes sur les fils quantiques (Tarucha et al. et Yacoby et al.) dont la conductance présente un plateau à e2/h dans la limite balistique (haute température). Ceci contredit le consensus général jusque-là admis, prédisant en particulier une réduction de la conductance par des interactions répulsives qui devient encore plus importante pour des interactions à longue portée. Le transport dynamique est développé en présence des contacts. La conservation globale de la charge est assurée en tenant compte d'une grille avoisinante. Les coefficients de conductance dynamiques sont exprimés en fonction de la transmission et de la réflexion des plasmons, qui dépendent eux-mêmes des interactions. Il est possible d'étendre cette approche à des fils de mesure avec interactions, quoique des hypothèses supplémentaires sont nécessaires. Par ailleurs, dans le cas usuel d'interactions invariantes par translation, ce travail en donne une revue relativement complète, en suivant des méthodes différentes et en dérivant parfois des résultats distincts de la littérature courante sur le sujet. Nous discutons aussi d'autres procédures de mesure proposées plus récemment afin de retrouver le résultat de conductance DC e2/h. En particulier, nous montrons que la conductance ainsi redéfinie est déterminée par la rigidité de charge. Dans le liquide de Tomonaga-Luttinger connecté à des fils parfaits, le rôle de barrières ou de désordre faibles, ainsi que d'imperfections aux contacts, est étudié par des méthodes perturbatives renormalisées. Il s'avère que la conductance DC g devient contrôlée par les interactions. Bien que nous retrouvons dans certains cas les lois de puissance typiques du liquide de Luttinger, les contacts, brisant l'invariance par translation, interviennent d'une façon non-triviale : la conductance a un comportement non universel, dépendant de l'emplacement des impuretés et de la longueur du fil. Grâce à la taille finie, nous pouvons obtenir explicitement le comportement à basse température, et observer la saturation prédite par des arguments intuitifs dans le fil infini, mais aussi déceler les limitations de tels arguments. Pour un désordre étendu, nous montrons que les fluctuations relatives de e2/h-g sont de l'ordre de L T/L à haute température (L T=v F/T>L), mais saturent à 1/2 à basse température. Ce résultat s'applique avec ou sans spin, seule la dépendance en L T ou L de la variance change. De surcroît, un cadre formel et général est développé pour traiter un faible désordre à température finie, utile pour un fil non invariant par translation, mais aussi pour le liquide de Luttinger usuel. En particulier, les équations de renormalisation sont dérivées pour une ou deux barrières. En plus des propriétés de transport, d'autres phénomènes intéressants émanent de ce modèle d'interactions inhomogènes. En particulier, la réflexion à l'interface entre deux liquides de Luttinger de paramètres distincts est analogue à la réflexion d'Andreev ; le côté normal (supraconducteur) est celui où le paramètre est le plus petit (grand). Ainsi, dans un état de bord connecté à un liquide de Fermi, une quasi-particule de Laughlin est réfléchie en quasi-trou. D'autre part, le renforcement d'une fonction de corrélation d'onde de densité de charge ou de type supraconducteur s'étend au-delà de l'interface jusqu'à la longueur la plus petite (parmi L ou L T ou une autre longueur externe), renormalisée par le paramètre d'interaction. Ceci rappelle l'effet de proximité induit par un supracoducteur dans un métal normal. Enfin, il se produit aussi un autre effet intéressant : les fils externes sans interactions suppriment une tendance au cristal de Wigner au-dessous d'une température de crossover qui dépend de la position et augmente lorsqu'on s'approche des contacts.

  15. PREFACE: 6th International Conference on Inverse Problems in Engineering: Theory and Practice

    NASA Astrophysics Data System (ADS)

    Bonnet, Marc

    2008-07-01

    The 6th International Conference on Inverse Problems in Engineering: Theory and Practice (ICIPE 2008) belongs to a successful series of conferences held up to now following a three-year cycle. Previous conferences took place in Palm Coast, Florida, USA (1993), Le Croisic, France (1996), Port Ludlow, Washington, USA (1999), Angra dos Reis, Brazil (2002), and Cambridge, UK (2005). The conference has its roots on the informal seminars organized by Professor J V Beck at Michigan State University, which were initiated in 1987. The organization of this Conference, which took place in Dourdan (Paris) France, 15-19 June 2008, was made possible through a joint effort by four research departments from four different universities: LEMTA (Laboratoire de Mécanique Théorique et Appliquée, Nancy-Université) LMS (Laboratoire de Mécanique des Solides, Ecole Polytechnique, Paris) LMAC (Laboratoire de Mathématiques Appliquées, UTC Compiègne) LTN (Laboratoire de Thermocinétique, Université de Nantes) It received support from three organizations: SFT (Société Française de Thermique: French Heat Transfer Association) ACSM (Association Calcul de Structures et Simulation : Computational Structural Mechanics Association) GdR Ondes - CNRS (`Waves' Network, French National Center for Scientific Research) The objective of the conference was to provide the opportunity for interaction and cross-fertilization between designers of inverse methods and practitioners. The delegates came from very different fields, such as applied mathematics, heat transfer, solid mechanics, tomography.... Consequently the sessions were organised along mostly methodological topics in order to facilitate interaction among participants who might not meet otherwise. The present proceedings, published in the Journal of Physics: Conference Series, gathers the four plenary invited lectures and the full-length versions of 103 presentations. The latter have been reviewed by the scientific committee (see composition below) and additional reviewers we wish to thank here for their kind help. Among the 194 abstracts initially received, 121 communications have been accepted for presentation, 109 of which having been actually presented (oral or poster form) at the conference, as well as 4 invited plenary lectures. The presentations for each session topic, and the geographic distribution of the delegates, are given in tables below. It is our hope that ICIPE 2008 has contributed to maintaining existing interactions and fostering new ones. We take this opportunity to thank all the authors for their valuable contributions and the excellent atmosphere of the meeting. The next ICIPE conference is planned to take place in the USA in May 2010. It will be organized by Alain J Kassab of the University of Central Florida (UCF) in Orlando, and will take place on the UCF campus. Further details regarding ICIPE 2010 conference will be made available on the ICIPE 2008 website during the fall of 2008, and will also be disseminated directly to individuals having attended previous ICIPE meetings. The editorial committee of ICIPE 2008, Marc Bonnet - Guest Editor Stéphane André - Associate guest editor Andrei Constantinescu - Associate guest editor Abdellatif El Badia - Associate guest editor Yvon Jarny - Associate guest editor Denis Maillet - Associate guest editor Scientific Committee: ICIPE 2008 ChairmanM. Bonnet (Ecole Polytech., France) SecretariesS. André (Nancy-U., France) A. Constantinescu (Ecole Polytech., France) Honorary membersO. M. Alifanov (Moscow Aviation Institute, Russia) J. V. Beck (Mich. State U., USA) Members G. Alessandrini (U. Trieste, Italy)R. Kress (U. Goettingen, Germany) J. S. Alves (Inst. Sup. Tecnico, Portugal) S. Kubo (Osaka U., Japan) S. Andrieux (EDF, France) K. J. Langenberg (U. Kassel, Germany) S. Arridge (U. College, London, UK) C. Leniliot (U. Provence, France) M. Azaiez (U. Bordeaux, France) D. Lesnic (U. Leeds, UK) J.-C. Batsale (U. Bordeaux, France) W. Lionheart (U. Manchester, UK) M. Bertero (U. Genova, Italy) D. Maillet (Nancy-U., France) J. Blum (U. Nice, France) W. Marquardt (RWTH Aachen, Germany) H. D. Bui (Ecole Polytech., France) P. A. Martin (Col. School of Mines, USA) T. Burczynski (Silesian Tech. U., Gliwice, Poland) A. Michalak (U. of Michigan, USA) G. Dassios (U. Patras, Greece) A. Nenarokomov (Moscow Aviation Inst., Russia) D. Delaunay (U. Nantes, France) D. Murio (U. Cincinnati, USA) H. Dinh Nho (Hanoi Inst. Maths, Vietnam) A. J. Nowak (Silesian Tech. U. Gliwice, Poland) A. El Badia (U. Tech. Compiègne, France) H. R. B. Orlande (Federal U. Rio de Janeiro, Brazil) J. Frankel (U. Tennessee, USA) L. Päivärinta (U. Helsinki, Finland) O. Ghattas (Carnegie Mellon U., USA) D. Petit (U. Poitiers, France) B. Guzina (U. Minnesota, USA) L. Pronzato (U. Nice, France) A. Hasanov (Kocaeli U., Turkey) M. Prud'homme (Ecole Polytech. Montréal, Canada) F. Hild (ENS Cachan, France) O. Scherzer (U. Innsbruck, Austria) C.-H. Huang (National Cheng Kung U., Taiwan) V. Shutyaev (Inst. Num. Maths, Russia) M. Ikehata (Gunma U., Japan) A. J. Silva Neto (U. Estado Rio de Janeiro, Brazil) M. Jaoua (Ecole Nat. Ingé. Tunis, Tunisia) V. Steffen Jr (U. Federal Uberlandia, Brazil) Y. Jarny (U. Nantes, France) G. Uhlmann (U. Washington, USA) S. Kabanikhin (Sobolev Inst. Maths., Russia) K. A. Woodbury (U. Alabama, USA) J. Kaipio (U. Kuopio, Finland) A. Yagola (Moscow State U., Russia) Kyung Youn Kim (Cheju National U., South Korea) E. Zuazua (U. Complutense Madrid, Spain) Additional Reviewers H. Ammari (ESPCI and Ecole Polytech., France) Y. Favennec (U. Poitiers, France) S. Avril (Ecole Mines St. Etienne, France) O. Fudym (Ecole Mines Albi, France) G. Bal (U. Columbia, USA) M. Girault (U. Poitiers, France) J.-L. Battaglia (U. Bordeaux, France) F. Hemez (Los Alamos Natl. Lab., USA) F. Bauer (Johannes Kepler U., Linz, Austria) M. Janicki (RICAM, Linz, Austria & T.U. Lodz, Poland) C. Bissieux (U. Reims, France) N. Laraqi (U. Paris X, France) F. Ben Belgacem (U. Tech. Compiègne, France) P. Le Masson (U. Bretagne Sud, Lorient, France) L. Bourgeois (ENSTA, Paris, France) D. Lemonnier (U. Poitiers, France) M. Burger (U. Münster, Germany) A. Louis (U. Saarbrücken, Germany) F. Cakoni (U. Delaware, USA) C. Moyne (Nancy-U., France) S. Chaabane (ENIT, Tunisia) B. Rémy (Nancy-U., France) L. Cordier (U. Poitiers, France) J.-J. Serra (DGA, Odeillo, France) A. Degiovanni (Nancy-U., France) D. Stemmelen (Nancy-U., France)

  16. Controllable Quantum States Mesoscopic Superconductivity and Spintronics (MS+S2006)

    NASA Astrophysics Data System (ADS)

    Takayanagi, Hideaki; Nitta, Junsaku; Nakano, Hayato

    2008-10-01

    Mesoscopic effects in superconductors. Tunneling measurements of charge imbalance of non-equilibrium superconductors / R. Yagi. Influence of magnetic impurities on Josephson current in SNS junctions / T. Yokoyama. Nonlinear response and observable signatures of equilibrium entanglement / A. M. Zagoskin. Stimulated Raman adiabatic passage with a Cooper pair box / Giuseppe Falci. Crossed Andreev reflection-induced giant negative magnetoresistance / Francesco Giazotto -- Quantum modulation of superconducting junctions. Adiabatic pumping through a Josephson weak link / Fabio Taddei. Squeezing of superconducting qubits / Kazutomu Shiokawa. Detection of Berrys phases in flux qubits with coherent pulses / D. N. Zheng. Probing entanglement in the system of coupled Josephson qubits / A. S. Kiyko. Josephson junction with tunable damping using quasi-particle injection / Ryuta Yagi. Macroscopic quantum coherence in rf-SQUIDs / Alexey V. Ustinov. Bloch oscillations in a Josephson circuit / D. Esteve. Manipulation of magnetization in nonequilibrium superconducting nanostructures / F. Giazotto -- Superconducting qubits. Decoherence and Rabi oscillations in a qubit coupled to a quantum two-level system / Sahel Ashhab. Phase-coupled flux qubits: CNOT operation, controllable coupling and entanglement / Mun Dae Kim. Characteristics of a switchable superconducting flux transformer with a DC-SQUID / Yoshihiro Shimazu. Characterization of adiabatic noise in charge-based coherent nanodevices / E. Paladino -- Unconventional superconductors. Threshold temperatures of zero-bias conductance peak and zero-bias conductance dip in diffusive normal metal/superconductor junctions / Iduru Shigeta. Tunneling conductance in 2DEG/S junctions in the presence of Rashba spin-orbit coupling / T. Yokoyama. Theory of charge transport in diffusive ferromagnet/p-wave superconductor junctions / T. Yokoyama. Theory of enhanced proximity effect by the exchange field in FS bilayers / T. Yokoyama. Theory of Josephson effect in diffusive d-wave junctions / T. Yokoyama. Quantum dissipation due to the zero energy bound states in high-T[symbol] superconductor junctions / Shiro Kawabata. Spin-polarized heat transport in ferromagnet/unconventional superconductor junctions / T. Yokoyama. Little-Parks oscillations in chiral p-wave superconducting rings / Mitsuaki Takigawa. Theoretical study of synergy effect between proximity effect and Andreev interface resonant states in triplet p-wave superconductors / Yasunari Tanuma. Theory of proximity effect in unconventional superconductor junctions / Y. Tanaka -- Quantum information. Analyzing the effectiveness of the quantum repeater / Kenichiro Furuta. Architecture-dependent execution time of Shor's algorithm / Rodney Van Meter -- Quantum dots and Kondo effects. Coulomb blockade properties of 4-gated quantum dot / Shinichi Amaha. Order-N electronic structure calculation of n-type GaAs quantum dots / Shintaro Nomura. Transport through double-dots coupled to normal and superconducting leads / Yoichi Tanaka. A study of the quantum dot in application to terahertz single photon counting / Vladimir Antonov. Electron transport through laterally coupled double quantum dots / T. Kubo. Dephasing in Kondo systems: comparison between theory and experiment / F. Mallet. Kondo effect in quantum dots coupled with noncollinear ferromagnetic leads / Daisuke Matsubayashi. Non-crossing approximation study of multi-orbital Kondo effect in quantum dot systems / Tomoko Kita. Theoretical study of electronic states and spin operation in coupled quantum dots / Mikio Eto. Spin correlation in a double quantum dot-quantum wire coupled system / S. Sasaki. Kondo-assisted transport through a multiorbital quantum dot / Rui Sakano. Spin decay in a quantum dot coupled to a quantum point contact / Massoud Borhani -- Quantum wires, low-dimensional electrons. Control of the electron density and electric field with front and back gates / Masumi Yamaguchi. Effect of the array distance on the magnetization configuration of submicron-sized ferromagnetic rings / Tetsuya Miyawaki. A wide GaAs/GaAlAs quantum well simultaneously containing two dimensional electrons and holes / Ane Jensen. Simulation of the photon-spin quantum state transfer process / Yoshiaki Rikitake. Magnetotransport in two-dimensional electron gases on cylindrical surface / Friedland Klaus-Juergen. Full counting statistics for a single-electron transistor at intermediate conductance / Yasuhiro Utsumi. Creation of spin-polarized current using quantum point contacts and its detection / Mikio Eto. Density dependent electron effective mass in a back-gated quantum well / S. Nomura. The supersymmetric sigma formula and metal-insulator transition in diluted magnetic semiconductors / I. Kanazawa. Spin-photovoltaic effect in quantum wires / A. Fedorov -- Quantum interference. Nonequilibrium transport in Aharonov-Bohm interferometer with electron-phonon interaction / Akiko Ueda. Fano resonance and its breakdown in AB ring embedded with a molecule / Shigeo Fujimoto, Yuhei Natsume. Quantum resonance above a barrier in the presence of dissipation / Kohkichi Konno. Ensemble averaging in metallic quantum networks / F. Mallet -- Coherence and order in exotic materials. Progress towards an electronic array on liquid helium / David Rees. Measuring noise and cross correlations at high frequencies in nanophysics / T. Martin. Single wall carbon nanotube weak links / K. Grove-Rasmussen. Optical preparation of nuclear spins coupled to a localized electron spin / Guido Burkard. Topological effects in charge density wave dynamics / Toru Matsuura. Studies on nanoscale charge-density-wave systems: fabrication technique and transport phenomena / Katsuhiko Inagaki. Anisotropic behavior of hysteresis induced by the in-plane field in the v = 2/3 quantum Hall state / Kazuki Iwata. Phase diagram of the v = 2 bilayer quantum Hall state / Akira Fukuda -- Trapped ions (special talk). Quantum computation with trapped ions / Hartmut Häffner.

  17. Realizing Controllable Quantum States

    NASA Astrophysics Data System (ADS)

    Takayanagi, Hideaki; Nitta, Junsaku

    1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara -- 4. Mesoscopic superconductivity with unconventional superconductor or ferromagnet. Ultraefficient microrefrigerators realized with ferromagnet-superconductor junctions / F. Giazotto et al. Anomalous charge transport in triplet superconductor junctions by the synergy effect of the proximity effect and the mid gap Andreev resonant states / Y. Tanaka and S. Kashiwaya. Paramagnetic and glass states in superconductive YBa[symbol]Cu[symbol]O[symbol] ceramics of sub-micron scale grains / H. Deguchi et al. Quantum properties of single-domain triplet superconductors / A. M. Gulian and K. S. Wood. A numerical study of Josephson current in p wave superconducting junctions / Y. Asano et al. Tilted bi-crystal sapphire substrates improve properties of grain boundary YBa[symbol]Cu[symbol]O[symbol] junctions and extend their Josephson response to THZ frequencies / E. Stepantsov et al. Circuit theory analysis of AB-plane tunnel junctions of unconventional superconductor Bi[symbol]Sr[symbol]Ca[symbol]Cu[symbol]O[symbol] / I. Shigeta et al. Transport properties of normal metal/anisotropic superconductor junctions in the eutectic system Sr[symbol]RuO[symbol]Ru / M. Kawamura et al. Macroscopic quantum tunneling in d-wave superconductor Josephson / S. Kawabata et al. Quasiparticle states of high-T[symbol] oxides observed by a Zeeman magnetic field response / S. Kashiwaya et al. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors: vortex lenses, vortex diodes and vortex pumps / S. Savel'ev and F. Nori. Stability of vortex-antivortex "molecules" in mesoscopic superconducting triangles / V. R. Misko et al. Superconducting network with magnetic decoration - Hofstadter butterfly in spatially modulated magnetic field / Y. Iye et al. Observation of paramagnetic supercurrent in mesoscopic superconducting rings and disks using multiple-small-tunnel-junction method / A. Kanda et al. Guidance of vortices in high-T[stmbol] superconducting thin films with special arrangements of antidots / R. Wöerdenweber, P. Dymashevski and V. R. Misko. Quantum tunneling of relativistic fluxons / K. Konno et al. -- 6. Quantum information processing in solid states. Qubit decoherence by low-frequency noise / K. Rabenstein, V. A. Sverdlov and D. V. Averin. A critique of two-level approximation / K. Savran and T. Hakioǧlu. Josephson arrays as quantum channels / A. Romito, C. Bruder and R. Fazio. Fighting decoherence in a Josephson qubit circuit / E. Collin et al. Fast switching current detection at low critical currents / J. Walter, S. Corlevi and D. Haviland. Asymmetric flux bias for coupled qubits to observe entangled states / Y. Shimazu. Interaction of Josephson qubits with strong QED cavity modes: dynamical entanglement transfer and navigation / G. Falci et al. Controlling decoherence of transported quantum spin information in semiconductor spintronics / B. Nikolic and S. Souma. Decoherence due to telegraph and 1/f noise in Josephson qubits / E. Paladino et al. Detection of entanglement in NMR quantum information processing / R. Rahimi, K. Takeda and M. Kitagawa. Multiphoton absorption and SQUID switching current behaviors in superconducting flux-qubit experiments / H. Takayanagi et al. -- 7. Quantum information theory. Quantum query complexities / K. Iwama. A construction for non-stabilizer Clifford codes / M. Hagiwara and H. Imai. Quantum pushdown automata that can deterministically solve a certain problem / Y. Murakami et al. Trading classical for quantum computation using indirection / R. van Meter. Intractability of the initial arrangement of input data on qubits / Y. Kawano et al. Reversibility of modular squaring / N. Kunihiro, Y. Takahashi and Y. Kawano. Study of proximity effect at D-wave superconductors in quasiclassical methods / Y. Tanuma, Y. Tanaka and S. Kashiwaya -- 8. Spintronics in band electrons. Triplet superconductors: exploitable basis for scalable quantum computing / K. S. Wood et al. Spin excitations in low-dimensional electron gases studied by far-infrared photoconductivity spectroscopy / C.-M. Hu. Control of photogenerated carriers and spins using surface acoustic waves / P. V. Santos, J. A. H. Stotz and R. Hey. PbTe nanostructures for spin filtering and detecting / G. Grabecki. G-factor control in an Ids-inserted InGaAs/InAlAs heterostructure / J. Nitta et al. Spin hall effect in p-type semiconductors / S. Murakami. Spin diffusion in mesoscopic superconducting A1 wires / Y.-S. Shin. H.-J. Lee and H.-W. Lee. Magnetization processes revealed by in-plane DC magnetoresistance measurements on manganite bicrystal thin film devices / R. Gunnarsson. M. Hanson and T. Claeson. Giant magnetoconductance at interface between a two-dimensional hole system and a magnetic semiconductor (Ga, Mn)As / Y. Hashimoto, S. Katsumoto and Y. Iye. Diffusion modes of the transport in diluted magnetic semiconductors / I. Kanazawa. Effect of an invasive voltage probe on the spin polarized current / J. Ohe and T. Ohtsuki -- 9. Spintronics in quantum dots. Tunable exchange interaction and Kondo screening in quantum dot devices / H. Tamura et al. Kondo effect in quantum dots in presence of itinerant-electron magnetism / J. Martinek et al. Optical band edge of II-VI and III-V based diluted magnetic semiconductors / M. Takahashi. Spin-polarized transport properties through double quantum dots / Y. Tanaka and N. Kawakami. RKKY interaction between two quantum dots embedded in an Aharonov-Bohm ring / Y. Utsumi et al. Fabrication and characterization of quantum dot single electron spin resonance devices / T. Kodera et al. Kondo effect in quantum dots with two orbitals and spin 1/2 - crossover from SU (4) to SU (2) symmetry / M. Eto. Detecting spin polarization of electrons in quantum dot edge channels by photoluminescence / S. Nomura. Manipulation of exchange interaction in a double quantum dot / M. Stopa, S. Tarucha and T. Hatano. Electron-density dependence of photoluminescence from Be-[symbol]-doped GaAs quantum wells with a back gate / M. Yamaguchi et al. Direct observation of [symbol]Si nuclear-spin decoherence process / S. Sasaki and S. Watanabe.

  18. Evaluation of Two New Smoothing Methods in Equating: The Cubic B-Spline Presmoothing Method and the Direct Presmoothing Method

    ERIC Educational Resources Information Center

    Cui, Zhongmin; Kolen, Michael J.

    2009-01-01

    This article considers two new smoothing methods in equipercentile equating, the cubic B-spline presmoothing method and the direct presmoothing method. Using a simulation study, these two methods are compared with established methods, the beta-4 method, the polynomial loglinear method, and the cubic spline postsmoothing method, under three sample…

  19. Comparison of DNA extraction methods for meat analysis.

    PubMed

    Yalçınkaya, Burhanettin; Yumbul, Eylem; Mozioğlu, Erkan; Akgoz, Muslum

    2017-04-15

    Preventing adulteration of meat and meat products with less desirable or objectionable meat species is important not only for economical, religious and health reasons, but also, it is important for fair trade practices, therefore, several methods for identification of meat and meat products have been developed. In the present study, ten different DNA extraction methods, including Tris-EDTA Method, a modified Cetyltrimethylammonium Bromide (CTAB) Method, Alkaline Method, Urea Method, Salt Method, Guanidinium Isothiocyanate (GuSCN) Method, Wizard Method, Qiagen Method, Zymogen Method and Genespin Method were examined to determine their relative effectiveness for extracting DNA from meat samples. The results show that the salt method is easy to perform, inexpensive and environmentally friendly. Additionally, it has the highest yield among all the isolation methods tested. We suggest this method as an alternative method for DNA isolation from meat and meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Study of New Method Combined Ultra-High Frequency (UHF) Method and Ultrasonic Method on PD Detection for GIS

    NASA Astrophysics Data System (ADS)

    Li, Yanran; Chen, Duo; Zhang, Jiwei; Chen, Ning; Li, Xiaoqi; Gong, Xiaojing

    2017-09-01

    GIS (gas insulated switchgear), is an important equipment in power system. Partial discharge plays an important role in detecting the insulation performance of GIS. UHF method and ultrasonic method frequently used in partial discharge (PD) detection for GIS. It is necessary to investigate UHF method and ultrasonic method for partial discharge in GIS. However, very few studies have been conducted on the method combined this two methods. From the view point of safety, a new method based on UHF method and ultrasonic method of PD detection for GIS is proposed in order to greatly enhance the ability of anti-interference of signal detection and the accuracy of fault localization. This paper presents study aimed at clarifying the effect of the new method combined UHF method and ultrasonic method. Partial discharge tests were performed in laboratory simulated environment. Obtained results show the ability of anti-interference of signal detection and the accuracy of fault localization for this new method combined UHF method and ultrasonic method.

  1. The multigrid preconditioned conjugate gradient method

    NASA Technical Reports Server (NTRS)

    Tatebe, Osamu

    1993-01-01

    A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.

  2. Energy minimization in medical image analysis: Methodologies and applications.

    PubMed

    Zhao, Feng; Xie, Xianghua

    2016-02-01

    Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd.

  3. [Comparative study on four kinds of assessment methods of post-marketing safety of Danhong injection].

    PubMed

    Li, Xuelin; Tang, Jinfa; Meng, Fei; Li, Chunxiao; Xie, Yanming

    2011-10-01

    To study the adverse reaction of Danhong injection with four kinds of methods, central monitoring method, chart review method, literature study method and spontaneous reporting method, and to compare the differences between them, explore an appropriate method to carry out post-marketing safety evaluation of traditional Chinese medicine injection. Set down the adverse reactions' questionnaire of four kinds of methods, central monitoring method, chart review method, literature study method and collect the information on adverse reactions in a certain period. Danhong injection adverse reaction information from Henan Province spontaneous reporting system was collected with spontaneous reporting method. Carry on data summary and descriptive analysis. Study the adverse reaction of Danhong injection with four methods of central monitoring method, chart review method, literature study method and spontaneous reporting method, the rates of adverse events were 0.993%, 0.336%, 0.515%, 0.067%, respectively. Cyanosis, arrhythmia, hypotension, sweating, erythema, hemorrhage dermatitis, rash, irritability, bleeding gums, toothache, tinnitus, asthma, elevated aminotransferases, constipation, pain are new discovered adverse reactions. The central monitoring method is the appropriate method to carry out post-marketing safety evaluation of traditional Chinese medicine injection, which could objectively reflect the real world of clinical usage.

  4. Ensemble Methods for MiRNA Target Prediction from Expression Data.

    PubMed

    Le, Thuc Duy; Zhang, Junpeng; Liu, Lin; Li, Jiuyong

    2015-01-01

    microRNAs (miRNAs) are short regulatory RNAs that are involved in several diseases, including cancers. Identifying miRNA functions is very important in understanding disease mechanisms and determining the efficacy of drugs. An increasing number of computational methods have been developed to explore miRNA functions by inferring the miRNA-mRNA regulatory relationships from data. Each of the methods is developed based on some assumptions and constraints, for instance, assuming linear relationships between variables. For such reasons, computational methods are often subject to the problem of inconsistent performance across different datasets. On the other hand, ensemble methods integrate the results from individual methods and have been proved to outperform each of their individual component methods in theory. In this paper, we investigate the performance of some ensemble methods over the commonly used miRNA target prediction methods. We apply eight different popular miRNA target prediction methods to three cancer datasets, and compare their performance with the ensemble methods which integrate the results from each combination of the individual methods. The validation results using experimentally confirmed databases show that the results of the ensemble methods complement those obtained by the individual methods and the ensemble methods perform better than the individual methods across different datasets. The ensemble method, Pearson+IDA+Lasso, which combines methods in different approaches, including a correlation method, a causal inference method, and a regression method, is the best performed ensemble method in this study. Further analysis of the results of this ensemble method shows that the ensemble method can obtain more targets which could not be found by any of the single methods, and the discovered targets are more statistically significant and functionally enriched. The source codes, datasets, miRNA target predictions by all methods, and the ground truth for validation are available in the Supplementary materials.

  5. Ensemble Methods for MiRNA Target Prediction from Expression Data

    PubMed Central

    Le, Thuc Duy; Zhang, Junpeng; Liu, Lin; Li, Jiuyong

    2015-01-01

    Background microRNAs (miRNAs) are short regulatory RNAs that are involved in several diseases, including cancers. Identifying miRNA functions is very important in understanding disease mechanisms and determining the efficacy of drugs. An increasing number of computational methods have been developed to explore miRNA functions by inferring the miRNA-mRNA regulatory relationships from data. Each of the methods is developed based on some assumptions and constraints, for instance, assuming linear relationships between variables. For such reasons, computational methods are often subject to the problem of inconsistent performance across different datasets. On the other hand, ensemble methods integrate the results from individual methods and have been proved to outperform each of their individual component methods in theory. Results In this paper, we investigate the performance of some ensemble methods over the commonly used miRNA target prediction methods. We apply eight different popular miRNA target prediction methods to three cancer datasets, and compare their performance with the ensemble methods which integrate the results from each combination of the individual methods. The validation results using experimentally confirmed databases show that the results of the ensemble methods complement those obtained by the individual methods and the ensemble methods perform better than the individual methods across different datasets. The ensemble method, Pearson+IDA+Lasso, which combines methods in different approaches, including a correlation method, a causal inference method, and a regression method, is the best performed ensemble method in this study. Further analysis of the results of this ensemble method shows that the ensemble method can obtain more targets which could not be found by any of the single methods, and the discovered targets are more statistically significant and functionally enriched. The source codes, datasets, miRNA target predictions by all methods, and the ground truth for validation are available in the Supplementary materials. PMID:26114448

  6. 46 CFR 160.077-5 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., Breaking of Woven Cloth; Grab Method. (ii) Method 5132, Strength of Cloth, Tearing; Falling-Pendulum Method. (iii) Method 5134, Strength of Cloth, Tearing; Tongue Method. (iv) Method 5804.1, Weathering Resistance of Cloth; Accelerated Weathering Method. (v) Method 5762, Mildew Resistance of Textile Materials...

  7. 46 CFR 160.077-5 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Elongation, Breaking of Woven Cloth; Grab Method. (2) Method 5132, Strength of Cloth, Tearing; Falling-Pendulum Method. (3) Method 5134, Strength of Cloth, Tearing; Tongue Method. (4) Method 5804.1, Weathering Resistance of Cloth; Accelerated Weathering Method. (5) Method 5762, Mildew Resistance of Textile Materials...

  8. 46 CFR 160.077-5 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., Breaking of Woven Cloth; Grab Method. (ii) Method 5132, Strength of Cloth, Tearing; Falling-Pendulum Method. (iii) Method 5134, Strength of Cloth, Tearing; Tongue Method. (iv) Method 5804.1, Weathering Resistance of Cloth; Accelerated Weathering Method. (v) Method 5762, Mildew Resistance of Textile Materials...

  9. 46 CFR 160.077-5 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Elongation, Breaking of Woven Cloth; Grab Method. (2) Method 5132, Strength of Cloth, Tearing; Falling-Pendulum Method. (3) Method 5134, Strength of Cloth, Tearing; Tongue Method. (4) Method 5804.1, Weathering Resistance of Cloth; Accelerated Weathering Method. (5) Method 5762, Mildew Resistance of Textile Materials...

  10. Methods for analysis of cracks in three-dimensional solids

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.

  11. Development and validation of spectrophotometric methods for estimating amisulpride in pharmaceutical preparations.

    PubMed

    Sharma, Sangita; Neog, Madhurjya; Prajapati, Vipul; Patel, Hiren; Dabhi, Dipti

    2010-01-01

    Five simple, sensitive, accurate and rapid visible spectrophotometric methods (A, B, C, D and E) have been developed for estimating Amisulpride in pharmaceutical preparations. These are based on the diazotization of Amisulpride with sodium nitrite and hydrochloric acid, followed by coupling with N-(1-naphthyl)ethylenediamine dihydrochloride (Method A), diphenylamine (Method B), beta-naphthol in an alkaline medium (Method C), resorcinol in an alkaline medium (Method D) and chromotropic acid in an alkaline medium (Method E) to form a colored chromogen. The absorption maxima, lambda(max), are at 523 nm for Method A, 382 and 490 nm for Method B, 527 nm for Method C, 521 nm for Method D and 486 nm for Method E. Beer's law was obeyed in the concentration range of 2.5-12.5 microg mL(-1) in Method A, 5-25 and 10-50 microg mL(-1) in Method B, 4-20 microg mL(-1) in Method C, 2.5-12.5 microg mL(-1) in Method D and 5-15 microg mL(-1) in Method E. The results obtained for the proposed methods are in good agreement with labeled amounts, when marketed pharmaceutical preparations were analyzed.

  12. Reconstruction of fluorescence molecular tomography with a cosinoidal level set method.

    PubMed

    Zhang, Xuanxuan; Cao, Xu; Zhu, Shouping

    2017-06-27

    Implicit shape-based reconstruction method in fluorescence molecular tomography (FMT) is capable of achieving higher image clarity than image-based reconstruction method. However, the implicit shape method suffers from a low convergence speed and performs unstably due to the utilization of gradient-based optimization methods. Moreover, the implicit shape method requires priori information about the number of targets. A shape-based reconstruction scheme of FMT with a cosinoidal level set method is proposed in this paper. The Heaviside function in the classical implicit shape method is replaced with a cosine function, and then the reconstruction can be accomplished with the Levenberg-Marquardt method rather than gradient-based methods. As a result, the priori information about the number of targets is not required anymore and the choice of step length is avoided. Numerical simulations and phantom experiments were carried out to validate the proposed method. Results of the proposed method show higher contrast to noise ratios and Pearson correlations than the implicit shape method and image-based reconstruction method. Moreover, the number of iterations required in the proposed method is much less than the implicit shape method. The proposed method performs more stably, provides a faster convergence speed than the implicit shape method, and achieves higher image clarity than the image-based reconstruction method.

  13. A Generalized Pivotal Quantity Approach to Analytical Method Validation Based on Total Error.

    PubMed

    Yang, Harry; Zhang, Jianchun

    2015-01-01

    The primary purpose of method validation is to demonstrate that the method is fit for its intended use. Traditionally, an analytical method is deemed valid if its performance characteristics such as accuracy and precision are shown to meet prespecified acceptance criteria. However, these acceptance criteria are not directly related to the method's intended purpose, which is usually a gurantee that a high percentage of the test results of future samples will be close to their true values. Alternate "fit for purpose" acceptance criteria based on the concept of total error have been increasingly used. Such criteria allow for assessing method validity, taking into account the relationship between accuracy and precision. Although several statistical test methods have been proposed in literature to test the "fit for purpose" hypothesis, the majority of the methods are not designed to protect the risk of accepting unsuitable methods, thus having the potential to cause uncontrolled consumer's risk. In this paper, we propose a test method based on generalized pivotal quantity inference. Through simulation studies, the performance of the method is compared to five existing approaches. The results show that both the new method and the method based on β-content tolerance interval with a confidence level of 90%, hereafter referred to as the β-content (0.9) method, control Type I error and thus consumer's risk, while the other existing methods do not. It is further demonstrated that the generalized pivotal quantity method is less conservative than the β-content (0.9) method when the analytical methods are biased, whereas it is more conservative when the analytical methods are unbiased. Therefore, selection of either the generalized pivotal quantity or β-content (0.9) method for an analytical method validation depends on the accuracy of the analytical method. It is also shown that the generalized pivotal quantity method has better asymptotic properties than all of the current methods. Analytical methods are often used to ensure safety, efficacy, and quality of medicinal products. According to government regulations and regulatory guidelines, these methods need to be validated through well-designed studies to minimize the risk of accepting unsuitable methods. This article describes a novel statistical test for analytical method validation, which provides better protection for the risk of accepting unsuitable analytical methods. © PDA, Inc. 2015.

  14. Method Engineering: A Service-Oriented Approach

    NASA Astrophysics Data System (ADS)

    Cauvet, Corine

    In the past, a large variety of methods have been published ranging from very generic frameworks to methods for specific information systems. Method Engineering has emerged as a research discipline for designing, constructing and adapting methods for Information Systems development. Several approaches have been proposed as paradigms in method engineering. The meta modeling approach provides means for building methods by instantiation, the component-based approach aims at supporting the development of methods by using modularization constructs such as method fragments, method chunks and method components. This chapter presents an approach (SO2M) for method engineering based on the service paradigm. We consider services as autonomous computational entities that are self-describing, self-configuring and self-adapting. They can be described, published, discovered and dynamically composed for processing a consumer's demand (a developer's requirement). The method service concept is proposed to capture a development process fragment for achieving a goal. Goal orientation in service specification and the principle of service dynamic composition support method construction and method adaptation to different development contexts.

  15. Simultaneous determination of a binary mixture of pantoprazole sodium and itopride hydrochloride by four spectrophotometric methods.

    PubMed

    Ramadan, Nesrin K; El-Ragehy, Nariman A; Ragab, Mona T; El-Zeany, Badr A

    2015-02-25

    Four simple, sensitive, accurate and precise spectrophotometric methods were developed for the simultaneous determination of a binary mixture containing Pantoprazole Sodium Sesquihydrate (PAN) and Itopride Hydrochloride (ITH). Method (A) is the derivative ratio method ((1)DD), method (B) is the mean centering of ratio spectra method (MCR), method (C) is the ratio difference method (RD) and method (D) is the isoabsorptive point coupled with third derivative method ((3)D). Linear correlation was obtained in range 8-44 μg/mL for PAN by the four proposed methods, 8-40 μg/mL for ITH by methods A, B and C and 10-40 μg/mL for ITH by method D. The suggested methods were validated according to ICH guidelines. The obtained results were statistically compared with those obtained by the official and a reported method for PAN and ITH, respectively, showing no significant difference with respect to accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Simultaneous determination of a binary mixture of pantoprazole sodium and itopride hydrochloride by four spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Ramadan, Nesrin K.; El-Ragehy, Nariman A.; Ragab, Mona T.; El-Zeany, Badr A.

    2015-02-01

    Four simple, sensitive, accurate and precise spectrophotometric methods were developed for the simultaneous determination of a binary mixture containing Pantoprazole Sodium Sesquihydrate (PAN) and Itopride Hydrochloride (ITH). Method (A) is the derivative ratio method (1DD), method (B) is the mean centering of ratio spectra method (MCR), method (C) is the ratio difference method (RD) and method (D) is the isoabsorptive point coupled with third derivative method (3D). Linear correlation was obtained in range 8-44 μg/mL for PAN by the four proposed methods, 8-40 μg/mL for ITH by methods A, B and C and 10-40 μg/mL for ITH by method D. The suggested methods were validated according to ICH guidelines. The obtained results were statistically compared with those obtained by the official and a reported method for PAN and ITH, respectively, showing no significant difference with respect to accuracy and precision.

  17. Evaluating the efficiency of spectral resolution of univariate methods manipulating ratio spectra and comparing to multivariate methods: An application to ternary mixture in common cold preparation

    NASA Astrophysics Data System (ADS)

    Moustafa, Azza Aziz; Salem, Hesham; Hegazy, Maha; Ali, Omnia

    2015-02-01

    Simple, accurate, and selective methods have been developed and validated for simultaneous determination of a ternary mixture of Chlorpheniramine maleate (CPM), Pseudoephedrine HCl (PSE) and Ibuprofen (IBF), in tablet dosage form. Four univariate methods manipulating ratio spectra were applied, method A is the double divisor-ratio difference spectrophotometric method (DD-RD). Method B is double divisor-derivative ratio spectrophotometric method (DD-RD). Method C is derivative ratio spectrum-zero crossing method (DRZC), while method D is mean centering of ratio spectra (MCR). Two multivariate methods were also developed and validated, methods E and F are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods have the advantage of simultaneous determination of the mentioned drugs without prior separation steps. They were successfully applied to laboratory-prepared mixtures and to commercial pharmaceutical preparation without any interference from additives. The proposed methods were validated according to the ICH guidelines. The obtained results were statistically compared with the official methods where no significant difference was observed regarding both accuracy and precision.

  18. Methods for elimination of dampness in Building walls

    NASA Astrophysics Data System (ADS)

    Campian, Cristina; Pop, Maria

    2016-06-01

    Dampness elimination in building walls is a very sensitive problem, with high costs. Many methods are used, as: chemical method, electro osmotic method or physical method. The RECON method is a representative and a sustainable method in Romania. Italy has the most radical method from all methods. The technology consists in cutting the brick walls, insertion of a special plastic sheeting and injection of a pre-mixed anti-shrinking mortar.

  19. A comparison of several methods of solving nonlinear regression groundwater flow problems

    USGS Publications Warehouse

    Cooley, Richard L.

    1985-01-01

    Computational efficiency and computer memory requirements for four methods of minimizing functions were compared for four test nonlinear-regression steady state groundwater flow problems. The fastest methods were the Marquardt and quasi-linearization methods, which required almost identical computer times and numbers of iterations; the next fastest was the quasi-Newton method, and last was the Fletcher-Reeves method, which did not converge in 100 iterations for two of the problems. The fastest method per iteration was the Fletcher-Reeves method, and this was followed closely by the quasi-Newton method. The Marquardt and quasi-linearization methods were slower. For all four methods the speed per iteration was directly related to the number of parameters in the model. However, this effect was much more pronounced for the Marquardt and quasi-linearization methods than for the other two. Hence the quasi-Newton (and perhaps Fletcher-Reeves) method might be more efficient than either the Marquardt or quasi-linearization methods if the number of parameters in a particular model were large, although this remains to be proven. The Marquardt method required somewhat less central memory than the quasi-linearization metilod for three of the four problems. For all four problems the quasi-Newton method required roughly two thirds to three quarters of the memory required by the Marquardt method, and the Fletcher-Reeves method required slightly less memory than the quasi-Newton method. Memory requirements were not excessive for any of the four methods.

  20. Hybrid DFP-CG method for solving unconstrained optimization problems

    NASA Astrophysics Data System (ADS)

    Osman, Wan Farah Hanan Wan; Asrul Hery Ibrahim, Mohd; Mamat, Mustafa

    2017-09-01

    The conjugate gradient (CG) method and quasi-Newton method are both well known method for solving unconstrained optimization method. In this paper, we proposed a new method by combining the search direction between conjugate gradient method and quasi-Newton method based on BFGS-CG method developed by Ibrahim et al. The Davidon-Fletcher-Powell (DFP) update formula is used as an approximation of Hessian for this new hybrid algorithm. Numerical result showed that the new algorithm perform well than the ordinary DFP method and proven to posses both sufficient descent and global convergence properties.

  1. Generalization of the Engineering Method to the UNIVERSAL METHOD.

    ERIC Educational Resources Information Center

    Koen, Billy Vaughn

    1987-01-01

    Proposes that there is a universal method for all realms of knowledge. Reviews Descartes's definition of the universal method, the engineering definition, and the philosophical basis for the universal method. Contends that the engineering method best represents the universal method. (ML)

  2. Colloidal Electrolytes and the Critical Micelle Concentration

    ERIC Educational Resources Information Center

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  3. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.

    PubMed

    Huang, Jianhua

    2012-07-01

    There are three methods for calculating thermal insulation of clothing measured with a thermal manikin, i.e. the global method, the serial method, and the parallel method. Under the condition of homogeneous clothing insulation, these three methods yield the same insulation values. If the local heat flux is uniform over the manikin body, the global and serial methods provide the same insulation value. In most cases, the serial method gives a higher insulation value than the global method. There is a possibility that the insulation value from the serial method is lower than the value from the global method. The serial method always gives higher insulation value than the parallel method. The insulation value from the parallel method is higher or lower than the value from the global method, depending on the relationship between the heat loss distribution and the surface temperatures. Under the circumstance of uniform surface temperature distribution over the manikin body, the global and parallel methods give the same insulation value. If the constant surface temperature mode is used in the manikin test, the parallel method can be used to calculate the thermal insulation of clothing. If the constant heat flux mode is used in the manikin test, the serial method can be used to calculate the thermal insulation of clothing. The global method should be used for calculating thermal insulation of clothing for all manikin control modes, especially for thermal comfort regulation mode. The global method should be chosen by clothing manufacturers for labelling their products. The serial and parallel methods provide more information with respect to the different parts of clothing.

  4. Comparison of five methods for the estimation of methane production from vented in vitro systems.

    PubMed

    Alvarez Hess, P S; Eckard, R J; Jacobs, J L; Hannah, M C; Moate, P J

    2018-05-23

    There are several methods for estimating methane production (MP) from feedstuffs in vented in vitro systems. One method (A; "gold standard") measures methane proportions in the incubation bottle's head space (HS) and in the vented gas collected in gas bags. Four other methods (B, C, D and E) measure methane proportion in a single gas sample from HS. Method B assumes the same methane proportion in the vented gas as in HS, method C assumes constant methane to carbon dioxide ratio, method D has been developed based on empirical data and method E assumes constant individual venting volumes. This study aimed to compare the MP predictions from these methods to that of the gold standard method under different incubation scenarios, to validate these methods based on their concordance with a gold standard method. Methods C, D and E had greater concordance (0.85, 0.88 and 0.81), lower root mean square error (RMSE) (0.80, 0.72 and 0.85) and lower mean bias (0.20, 0.35, -0.35) with the gold standard than did method B (concordance 0.67, RMSE 1.49 and mean bias 1.26). Methods D and E were simpler to perform than method C and method D was slightly more accurate than method E. Based on precision, accuracy and simplicity of implementation, it is recommended that, when method A cannot be used, methods D and E are preferred to estimate MP from vented in vitro systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Kennard-Stone combined with least square support vector machine method for noncontact discriminating human blood species

    NASA Astrophysics Data System (ADS)

    Zhang, Linna; Li, Gang; Sun, Meixiu; Li, Hongxiao; Wang, Zhennan; Li, Yingxin; Lin, Ling

    2017-11-01

    Identifying whole bloods to be either human or nonhuman is an important responsibility for import-export ports and inspection and quarantine departments. Analytical methods and DNA testing methods are usually destructive. Previous studies demonstrated that visible diffuse reflectance spectroscopy method can realize noncontact human and nonhuman blood discrimination. An appropriate method for calibration set selection was very important for a robust quantitative model. In this paper, Random Selection (RS) method and Kennard-Stone (KS) method was applied in selecting samples for calibration set. Moreover, proper stoichiometry method can be greatly beneficial for improving the performance of classification model or quantification model. Partial Least Square Discrimination Analysis (PLSDA) method was commonly used in identification of blood species with spectroscopy methods. Least Square Support Vector Machine (LSSVM) was proved to be perfect for discrimination analysis. In this research, PLSDA method and LSSVM method was used for human blood discrimination. Compared with the results of PLSDA method, this method could enhance the performance of identified models. The overall results convinced that LSSVM method was more feasible for identifying human and animal blood species, and sufficiently demonstrated LSSVM method was a reliable and robust method for human blood identification, and can be more effective and accurate.

  6. A Novel Method to Identify Differential Pathways in Hippocampus Alzheimer's Disease.

    PubMed

    Liu, Chun-Han; Liu, Lian

    2017-05-08

    BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The objective of this paper is to propose a novel method to identify differential pathways in hippocampus AD. MATERIAL AND METHODS We proposed a combined method by merging existed methods. Firstly, pathways were identified by four known methods (DAVID, the neaGUI package, the pathway-based co-expressed method, and the pathway network approach), and differential pathways were evaluated through setting weight thresholds. Subsequently, we combined all pathways by a rank-based algorithm and called the method the combined method. Finally, common differential pathways across two or more of five methods were selected. RESULTS Pathways obtained from different methods were also different. The combined method obtained 1639 pathways and 596 differential pathways, which included all pathways gained from the four existing methods; hence, the novel method solved the problem of inconsistent results. Besides, a total of 13 common pathways were identified, such as metabolism, immune system, and cell cycle. CONCLUSIONS We have proposed a novel method by combining four existing methods based on a rank product algorithm, and identified 13 significant differential pathways based on it. These differential pathways might provide insight into treatment and diagnosis of hippocampus AD.

  7. Improved accuracy for finite element structural analysis via an integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  8. Study of comparison between Ultra-high Frequency (UHF) method and ultrasonic method on PD detection for GIS

    NASA Astrophysics Data System (ADS)

    Li, Yanran; Chen, Duo; Li, Li; Zhang, Jiwei; Li, Guang; Liu, Hongxia

    2017-11-01

    GIS (gas insulated switchgear), is an important equipment in power system. Partial discharge plays an important role in detecting the insulation performance of GIS. UHF method and ultrasonic method frequently used in partial discharge (PD) detection for GIS. However, few studies have been conducted on comparison of this two methods. From the view point of safety, it is necessary to investigate UHF method and ultrasonic method for partial discharge in GIS. This paper presents study aimed at clarifying the effect of UHF method and ultrasonic method for partial discharge caused by free metal particles in GIS. Partial discharge tests were performed in laboratory simulated environment. Obtained results show the ability of anti-interference of signal detection and the accuracy of fault localization for UHF method and ultrasonic method. A new method based on UHF method and ultrasonic method of PD detection for GIS is proposed in order to greatly enhance the ability of anti-interference of signal detection and the accuracy of detection localization.

  9. Comparison of four extraction/methylation analytical methods to measure fatty acid composition by gas chromatography in meat.

    PubMed

    Juárez, M; Polvillo, O; Contò, M; Ficco, A; Ballico, S; Failla, S

    2008-05-09

    Four different extraction-derivatization methods commonly used for fatty acid analysis in meat (in situ or one-step method, saponification method, classic method and a combination of classic extraction and saponification derivatization) were tested. The in situ method had low recovery and variation. The saponification method showed the best balance between recovery, precision, repeatability and reproducibility. The classic method had high recovery and acceptable variation values, except for the polyunsaturated fatty acids, showing higher variation than the former methods. The combination of extraction and methylation steps had great recovery values, but the precision, repeatability and reproducibility were not acceptable. Therefore the saponification method would be more convenient for polyunsaturated fatty acid analysis, whereas the in situ method would be an alternative for fast analysis. However the classic method would be the method of choice for the determination of the different lipid classes.

  10. Birth Control Methods

    MedlinePlus

    ... Z Health Topics Birth control methods Birth control methods > A-Z Health Topics Birth control methods fact ... To receive Publications email updates Submit Birth control methods Birth control (contraception) is any method, medicine, or ...

  11. 26 CFR 1.381(c)(5)-1 - Inventories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the dollar-value method, use the double-extension method, pool under the natural business unit method... double-extension method, pool under the natural business unit method, and value annual inventory... natural business unit method while P corporation pools under the multiple pool method. In addition, O...

  12. 26 CFR 1.381(c)(5)-1 - Inventories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the dollar-value method, use the double-extension method, pool under the natural business unit method... double-extension method, pool under the natural business unit method, and value annual inventory... natural business unit method while P corporation pools under the multiple pool method. In addition, O...

  13. 46 CFR 160.076-11 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... following methods: (1) Method 5100, Strength and Elongation, Breaking of Woven Cloth; Grab Method, 160.076-25; (2) Method 5132, Strength of Cloth, Tearing; Falling-Pendulum Method, 160.076-25; (3) Method 5134, Strength of Cloth, Tearing; Tongue Method, 160.076-25. Underwriters Laboratories (UL) Underwriters...

  14. Costs and Efficiency of Online and Offline Recruitment Methods: A Web-Based Cohort Study

    PubMed Central

    Riis, Anders H; Hatch, Elizabeth E; Wise, Lauren A; Nielsen, Marie G; Rothman, Kenneth J; Toft Sørensen, Henrik; Mikkelsen, Ellen M

    2017-01-01

    Background The Internet is widely used to conduct research studies on health issues. Many different methods are used to recruit participants for such studies, but little is known about how various recruitment methods compare in terms of efficiency and costs. Objective The aim of our study was to compare online and offline recruitment methods for Internet-based studies in terms of efficiency (number of recruited participants) and costs per participant. Methods We employed several online and offline recruitment methods to enroll 18- to 45-year-old women in an Internet-based Danish prospective cohort study on fertility. Offline methods included press releases, posters, and flyers. Online methods comprised advertisements placed on five different websites, including Facebook and Netdoktor.dk. We defined seven categories of mutually exclusive recruitment methods and used electronic tracking via unique Uniform Resource Locator (URL) and self-reported data to identify the recruitment method for each participant. For each method, we calculated the average cost per participant and efficiency, that is, the total number of recruited participants. Results We recruited 8252 study participants. Of these, 534 were excluded as they could not be assigned to a specific recruitment method. The final study population included 7724 participants, of whom 803 (10.4%) were recruited by offline methods, 3985 (51.6%) by online methods, 2382 (30.8%) by online methods not initiated by us, and 554 (7.2%) by other methods. Overall, the average cost per participant was €6.22 for online methods initiated by us versus €9.06 for offline methods. Costs per participant ranged from €2.74 to €105.53 for online methods and from €0 to €67.50 for offline methods. Lowest average costs per participant were for those recruited from Netdoktor.dk (€2.99) and from Facebook (€3.44). Conclusions In our Internet-based cohort study, online recruitment methods were superior to offline methods in terms of efficiency (total number of participants enrolled). The average cost per recruited participant was also lower for online than for offline methods, although costs varied greatly among both online and offline recruitment methods. We observed a decrease in the efficiency of some online recruitment methods over time, suggesting that it may be optimal to adopt multiple online methods. PMID:28249833

  15. Interior-Point Methods for Linear Programming: A Review

    ERIC Educational Resources Information Center

    Singh, J. N.; Singh, D.

    2002-01-01

    The paper reviews some recent advances in interior-point methods for linear programming and indicates directions in which future progress can be made. Most of the interior-point methods belong to any of three categories: affine-scaling methods, potential reduction methods and central path methods. These methods are discussed together with…

  16. The Relation of Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  17. [Baseflow separation methods in hydrological process research: a review].

    PubMed

    Xu, Lei-Lei; Liu, Jing-Lin; Jin, Chang-Jie; Wang, An-Zhi; Guan, De-Xin; Wu, Jia-Bing; Yuan, Feng-Hui

    2011-11-01

    Baseflow separation research is regarded as one of the most important and difficult issues in hydrology and ecohydrology, but lacked of unified standards in the concepts and methods. This paper introduced the theories of baseflow separation based on the definitions of baseflow components, and analyzed the development course of different baseflow separation methods. Among the methods developed, graph separation method is simple and applicable but arbitrary, balance method accords with hydrological mechanism but is difficult in application, whereas time series separation method and isotopic method can overcome the subjective and arbitrary defects caused by graph separation method, and thus can obtain the baseflow procedure quickly and efficiently. In recent years, hydrological modeling, digital filtering, and isotopic method are the main methods used for baseflow separation.

  18. Semi top-down method combined with earth-bank, an effective method for basement construction.

    NASA Astrophysics Data System (ADS)

    Tuan, B. Q.; Tam, Ng M.

    2018-04-01

    Choosing an appropriate method of deep excavation not only plays a decisive role in technical success, but also in economics of the construction project. Presently, we mainly base on to key methods: “Bottom-up” and “Top-down” construction method. Right now, this paper presents an another method of construction that is “Semi Top-down method combining with earth-bank” in order to take the advantages and limit the weakness of the above methods. The Bottom-up method was improved by using the earth-bank to stabilize retaining walls instead of the bracing steel struts. The Top-down method was improved by using the open cut method for the half of the earthwork quantities.

  19. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints.

    PubMed

    Klous, Miriam; Klous, Sander

    2010-07-01

    The aim of skin-marker-based motion analysis is to reconstruct the motion of a kinematical model from noisy measured motion of skin markers. Existing kinematic models for reconstruction of chains of segments can be divided into two categories: analytical methods that do not take joint constraints into account and numerical global optimization methods that do take joint constraints into account but require numerical optimization of a large number of degrees of freedom, especially when the number of segments increases. In this study, a new and largely analytical method for a chain of rigid bodies is presented, interconnected in spherical joints (chain-method). In this method, the number of generalized coordinates to be determined through numerical optimization is three, irrespective of the number of segments. This new method is compared with the analytical method of Veldpaus et al. [1988, "A Least-Squares Algorithm for the Equiform Transformation From Spatial Marker Co-Ordinates," J. Biomech., 21, pp. 45-54] (Veldpaus-method, a method of the first category) and the numerical global optimization method of Lu and O'Connor [1999, "Bone Position Estimation From Skin-Marker Co-Ordinates Using Global Optimization With Joint Constraints," J. Biomech., 32, pp. 129-134] (Lu-method, a method of the second category) regarding the effects of continuous noise simulating skin movement artifacts and regarding systematic errors in joint constraints. The study is based on simulated data to allow a comparison of the results of the different algorithms with true (noise- and error-free) marker locations. Results indicate a clear trend that accuracy for the chain-method is higher than the Veldpaus-method and similar to the Lu-method. Because large parts of the equations in the chain-method can be solved analytically, the speed of convergence in this method is substantially higher than in the Lu-method. With only three segments, the average number of required iterations with the chain-method is 3.0+/-0.2 times lower than with the Lu-method when skin movement artifacts are simulated by applying a continuous noise model. When simulating systematic errors in joint constraints, the number of iterations for the chain-method was almost a factor 5 lower than the number of iterations for the Lu-method. However, the Lu-method performs slightly better than the chain-method. The RMSD value between the reconstructed and actual marker positions is approximately 57% of the systematic error on the joint center positions for the Lu-method compared with 59% for the chain-method.

  20. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    2015-02-01

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  1. Determination of Slope Safety Factor with Analytical Solution and Searching Critical Slip Surface with Genetic-Traversal Random Method

    PubMed Central

    2014-01-01

    In the current practice, to determine the safety factor of a slope with two-dimensional circular potential failure surface, one of the searching methods for the critical slip surface is Genetic Algorithm (GA), while the method to calculate the slope safety factor is Fellenius' slices method. However GA needs to be validated with more numeric tests, while Fellenius' slices method is just an approximate method like finite element method. This paper proposed a new method to determine the minimum slope safety factor which is the determination of slope safety factor with analytical solution and searching critical slip surface with Genetic-Traversal Random Method. The analytical solution is more accurate than Fellenius' slices method. The Genetic-Traversal Random Method uses random pick to utilize mutation. A computer automatic search program is developed for the Genetic-Traversal Random Method. After comparison with other methods like slope/w software, results indicate that the Genetic-Traversal Random Search Method can give very low safety factor which is about half of the other methods. However the obtained minimum safety factor with Genetic-Traversal Random Search Method is very close to the lower bound solutions of slope safety factor given by the Ansys software. PMID:24782679

  2. Enumeration of total aerobic microorganisms in foods by SimPlate Total Plate Count-Color Indicator methods and conventional culture methods: collaborative study.

    PubMed

    Feldsine, Philip T; Leung, Stephanie C; Lienau, Andrew H; Mui, Linda A; Townsend, David E

    2003-01-01

    The relative efficacy of the SimPlate Total Plate Count-Color Indicator (TPC-CI) method (SimPlate 35 degrees C) was compared with the AOAC Official Method 966.23 (AOAC 35 degrees C) for enumeration of total aerobic microorganisms in foods. The SimPlate TPC-CI method, incubated at 30 degrees C (SimPlate 30 degrees C), was also compared with the International Organization for Standardization (ISO) 4833 method (ISO 30 degrees C). Six food types were analyzed: ground black pepper, flour, nut meats, frozen hamburger patties, frozen fruits, and fresh vegetables. All foods tested were naturally contaminated. Nineteen laboratories throughout North America and Europe participated in the study. Three method comparisons were conducted. In general, there was <0.3 mean log count difference in recovery among the SimPlate methods and their corresponding reference methods. Mean log counts between the 2 reference methods were also very similar. Repeatability (Sr) and reproducibility (SR) standard deviations were similar among the 3 method comparisons. The SimPlate method (35 degrees C) and the AOAC method were comparable for enumerating total aerobic microorganisms in foods. Similarly, the SimPlate method (30 degrees C) was comparable to the ISO method when samples were prepared and incubated according to the ISO method.

  3. Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation

    NASA Astrophysics Data System (ADS)

    Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab

    2015-05-01

    3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.

  4. Completed Suicide with Violent and Non-Violent Methods in Rural Shandong, China: A Psychological Autopsy Study

    PubMed Central

    Sun, Shi-Hua; Jia, Cun-Xian

    2014-01-01

    Background This study aims to describe the specific characteristics of completed suicides by violent methods and non-violent methods in rural Chinese population, and to explore the related factors for corresponding methods. Methods Data of this study came from investigation of 199 completed suicide cases and their paired controls of rural areas in three different counties in Shandong, China, by interviewing one informant of each subject using the method of Psychological Autopsy (PA). Results There were 78 (39.2%) suicides with violent methods and 121 (60.8%) suicides with non-violent methods. Ingesting pesticides, as a non-violent method, appeared to be the most common suicide method (103, 51.8%). Hanging (73 cases, 36.7%) and drowning (5 cases, 2.5%) were the only violent methods observed. Storage of pesticides at home and higher suicide intent score were significantly associated with choice of violent methods while committing suicide. Risk factors related to suicide death included negative life events and hopelessness. Conclusions Suicide with violent methods has different factors from suicide with non-violent methods. Suicide methods should be considered in suicide prevention and intervention strategies. PMID:25111835

  5. A review of propeller noise prediction methodology: 1919-1994

    NASA Technical Reports Server (NTRS)

    Metzger, F. Bruce

    1995-01-01

    This report summarizes a review of the literature regarding propeller noise prediction methods. The review is divided into six sections: (1) early methods; (2) more recent methods based on earlier theory; (3) more recent methods based on the Acoustic Analogy; (4) more recent methods based on Computational Acoustics; (5) empirical methods; and (6) broadband methods. The report concludes that there are a large number of noise prediction procedures available which vary markedly in complexity. Deficiencies in accuracy of methods in many cases may be related, not to the methods themselves, but the accuracy and detail of the aerodynamic inputs used to calculate noise. The steps recommended in the report to provide accurate and easy to use prediction methods are: (1) identify reliable test data; (2) define and conduct test programs to fill gaps in the existing data base; (3) identify the most promising prediction methods; (4) evaluate promising prediction methods relative to the data base; (5) identify and correct the weaknesses in the prediction methods, including lack of user friendliness, and include features now available only in research codes; (6) confirm the accuracy of improved prediction methods to the data base; and (7) make the methods widely available and provide training in their use.

  6. A different approach to estimate nonlinear regression model using numerical methods

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].

  7. Sorting protein decoys by machine-learning-to-rank

    PubMed Central

    Jing, Xiaoyang; Wang, Kai; Lu, Ruqian; Dong, Qiwen

    2016-01-01

    Much progress has been made in Protein structure prediction during the last few decades. As the predicted models can span a broad range of accuracy spectrum, the accuracy of quality estimation becomes one of the key elements of successful protein structure prediction. Over the past years, a number of methods have been developed to address this issue, and these methods could be roughly divided into three categories: the single-model methods, clustering-based methods and quasi single-model methods. In this study, we develop a single-model method MQAPRank based on the learning-to-rank algorithm firstly, and then implement a quasi single-model method Quasi-MQAPRank. The proposed methods are benchmarked on the 3DRobot and CASP11 dataset. The five-fold cross-validation on the 3DRobot dataset shows the proposed single model method outperforms other methods whose outputs are taken as features of the proposed method, and the quasi single-model method can further enhance the performance. On the CASP11 dataset, the proposed methods also perform well compared with other leading methods in corresponding categories. In particular, the Quasi-MQAPRank method achieves a considerable performance on the CASP11 Best150 dataset. PMID:27530967

  8. Sorting protein decoys by machine-learning-to-rank.

    PubMed

    Jing, Xiaoyang; Wang, Kai; Lu, Ruqian; Dong, Qiwen

    2016-08-17

    Much progress has been made in Protein structure prediction during the last few decades. As the predicted models can span a broad range of accuracy spectrum, the accuracy of quality estimation becomes one of the key elements of successful protein structure prediction. Over the past years, a number of methods have been developed to address this issue, and these methods could be roughly divided into three categories: the single-model methods, clustering-based methods and quasi single-model methods. In this study, we develop a single-model method MQAPRank based on the learning-to-rank algorithm firstly, and then implement a quasi single-model method Quasi-MQAPRank. The proposed methods are benchmarked on the 3DRobot and CASP11 dataset. The five-fold cross-validation on the 3DRobot dataset shows the proposed single model method outperforms other methods whose outputs are taken as features of the proposed method, and the quasi single-model method can further enhance the performance. On the CASP11 dataset, the proposed methods also perform well compared with other leading methods in corresponding categories. In particular, the Quasi-MQAPRank method achieves a considerable performance on the CASP11 Best150 dataset.

  9. Improved accuracy for finite element structural analysis via a new integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  10. Wideband characterization of the complex wave number and characteristic impedance of sound absorbers.

    PubMed

    Salissou, Yacoubou; Panneton, Raymond

    2010-11-01

    Several methods for measuring the complex wave number and the characteristic impedance of sound absorbers have been proposed in the literature. These methods can be classified into single frequency and wideband methods. In this paper, the main existing methods are revisited and discussed. An alternative method which is not well known or discussed in the literature while exhibiting great potential is also discussed. This method is essentially an improvement of the wideband method described by Iwase et al., rewritten so that the setup is more ISO 10534-2 standard-compliant. Glass wool, melamine foam and acoustical/thermal insulator wool are used to compare the main existing wideband non-iterative methods with this alternative method. It is found that, in the middle and high frequency ranges the alternative method yields results that are comparable in accuracy to the classical two-cavity method and the four-microphone transfer-matrix method. However, in the low frequency range, the alternative method appears to be more accurate than the other methods, especially when measuring the complex wave number.

  11. Methods for environmental change; an exploratory study.

    PubMed

    Kok, Gerjo; Gottlieb, Nell H; Panne, Robert; Smerecnik, Chris

    2012-11-28

    While the interest of health promotion researchers in change methods directed at the target population has a long tradition, interest in change methods directed at the environment is still developing. In this survey, the focus is on methods for environmental change; especially about how these are composed of methods for individual change ('Bundling') and how within one environmental level, organizations, methods differ when directed at the management ('At') or applied by the management ('From'). The first part of this online survey dealt with examining the 'bundling' of individual level methods to methods at the environmental level. The question asked was to what extent the use of an environmental level method would involve the use of certain individual level methods. In the second part of the survey the question was whether there are differences between applying methods directed 'at' an organization (for instance, by a health promoter) versus 'from' within an organization itself. All of the 20 respondents are experts in the field of health promotion. Methods at the individual level are frequently bundled together as part of a method at a higher ecological level. A number of individual level methods are popular as part of most of the environmental level methods, while others are not chosen very often. Interventions directed at environmental agents often have a strong focus on the motivational part of behavior change.There are different approaches targeting a level or being targeted from a level. The health promoter will use combinations of motivation and facilitation. The manager will use individual level change methods focusing on self-efficacy and skills. Respondents think that any method may be used under the right circumstances, although few endorsed coercive methods. Taxonomies of theoretical change methods for environmental change should include combinations of individual level methods that may be bundled and separate suggestions for methods targeting a level or being targeted from a level. Future research needs to cover more methods to rate and to be rated. Qualitative data may explain some of the surprising outcomes, such as the lack of large differences and the avoidance of coercion. Taxonomies should include the theoretical parameters that limit the effectiveness of the method.

  12. A comparison theorem for the SOR iterative method

    NASA Astrophysics Data System (ADS)

    Sun, Li-Ying

    2005-09-01

    In 1997, Kohno et al. have reported numerically that the improving modified Gauss-Seidel method, which was referred to as the IMGS method, is superior to the SOR iterative method. In this paper, we prove that the spectral radius of the IMGS method is smaller than that of the SOR method and Gauss-Seidel method, if the relaxation parameter [omega][set membership, variant](0,1]. As a result, we prove theoretically that this method is succeeded in improving the convergence of some classical iterative methods. Some recent results are improved.

  13. A review of parametric approaches specific to aerodynamic design process

    NASA Astrophysics Data System (ADS)

    Zhang, Tian-tian; Wang, Zhen-guo; Huang, Wei; Yan, Li

    2018-04-01

    Parametric modeling of aircrafts plays a crucial role in the aerodynamic design process. Effective parametric approaches have large design space with a few variables. Parametric methods that commonly used nowadays are summarized in this paper, and their principles have been introduced briefly. Two-dimensional parametric methods include B-Spline method, Class/Shape function transformation method, Parametric Section method, Hicks-Henne method and Singular Value Decomposition method, and all of them have wide application in the design of the airfoil. This survey made a comparison among them to find out their abilities in the design of the airfoil, and the results show that the Singular Value Decomposition method has the best parametric accuracy. The development of three-dimensional parametric methods is limited, and the most popular one is the Free-form deformation method. Those methods extended from two-dimensional parametric methods have promising prospect in aircraft modeling. Since different parametric methods differ in their characteristics, real design process needs flexible choice among them to adapt to subsequent optimization procedure.

  14. A Review and Comparison of Methods for Recreating Individual Patient Data from Published Kaplan-Meier Survival Curves for Economic Evaluations: A Simulation Study

    PubMed Central

    Wan, Xiaomin; Peng, Liubao; Li, Yuanjian

    2015-01-01

    Background In general, the individual patient-level data (IPD) collected in clinical trials are not available to independent researchers to conduct economic evaluations; researchers only have access to published survival curves and summary statistics. Thus, methods that use published survival curves and summary statistics to reproduce statistics for economic evaluations are essential. Four methods have been identified: two traditional methods 1) least squares method, 2) graphical method; and two recently proposed methods by 3) Hoyle and Henley, 4) Guyot et al. The four methods were first individually reviewed and subsequently assessed regarding their abilities to estimate mean survival through a simulation study. Methods A number of different scenarios were developed that comprised combinations of various sample sizes, censoring rates and parametric survival distributions. One thousand simulated survival datasets were generated for each scenario, and all methods were applied to actual IPD. The uncertainty in the estimate of mean survival time was also captured. Results All methods provided accurate estimates of the mean survival time when the sample size was 500 and a Weibull distribution was used. When the sample size was 100 and the Weibull distribution was used, the Guyot et al. method was almost as accurate as the Hoyle and Henley method; however, more biases were identified in the traditional methods. When a lognormal distribution was used, the Guyot et al. method generated noticeably less bias and a more accurate uncertainty compared with the Hoyle and Henley method. Conclusions The traditional methods should not be preferred because of their remarkable overestimation. When the Weibull distribution was used for a fitted model, the Guyot et al. method was almost as accurate as the Hoyle and Henley method. However, if the lognormal distribution was used, the Guyot et al. method was less biased compared with the Hoyle and Henley method. PMID:25803659

  15. Comparisons of Lagrangian and Eulerian PDF methods in simulations of non-premixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions

    NASA Astrophysics Data System (ADS)

    Jaishree, J.; Haworth, D. C.

    2012-06-01

    Transported probability density function (PDF) methods have been applied widely and effectively for modelling turbulent reacting flows. In most applications of PDF methods to date, Lagrangian particle Monte Carlo algorithms have been used to solve a modelled PDF transport equation. However, Lagrangian particle PDF methods are computationally intensive and are not readily integrated into conventional Eulerian computational fluid dynamics (CFD) codes. Eulerian field PDF methods have been proposed as an alternative. Here a systematic comparison is performed among three methods for solving the same underlying modelled composition PDF transport equation: a consistent hybrid Lagrangian particle/Eulerian mesh (LPEM) method, a stochastic Eulerian field (SEF) method and a deterministic Eulerian field method with a direct-quadrature-method-of-moments closure (a multi-environment PDF-MEPDF method). The comparisons have been made in simulations of a series of three non-premixed, piloted methane-air turbulent jet flames that exhibit progressively increasing levels of local extinction and turbulence-chemistry interactions: Sandia/TUD flames D, E and F. The three PDF methods have been implemented using the same underlying CFD solver, and results obtained using the three methods have been compared using (to the extent possible) equivalent physical models and numerical parameters. Reasonably converged mean and rms scalar profiles are obtained using 40 particles per cell for the LPEM method or 40 Eulerian fields for the SEF method. Results from these stochastic methods are compared with results obtained using two- and three-environment MEPDF methods. The relative advantages and disadvantages of each method in terms of accuracy and computational requirements are explored and identified. In general, the results obtained from the two stochastic methods (LPEM and SEF) are very similar, and are in closer agreement with experimental measurements than those obtained using the MEPDF method, while MEPDF is the most computationally efficient of the three methods. These and other findings are discussed in detail.

  16. AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION

    EPA Science Inventory

    Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...

  17. Capital investment analysis: three methods.

    PubMed

    Gapenski, L C

    1993-08-01

    Three cash flow/discount rate methods can be used when conducting capital budgeting financial analyses: the net operating cash flow method, the net cash flow to investors method, and the net cash flow to equity holders method. The three methods differ in how the financing mix and the benefits of debt financing are incorporated. This article explains the three methods, demonstrates that they are essentially equivalent, and recommends which method to use under specific circumstances.

  18. Effective description of a 3D object for photon transportation in Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Suganuma, R.; Ogawa, K.

    2000-06-01

    Photon transport simulation by means of the Monte Carlo method is an indispensable technique for examining scatter and absorption correction methods in SPECT and PET. The authors have developed a method for object description with maximum size regions (maximum rectangular regions: MRRs) to speed up photon transport simulation, and compared the computation time with that for conventional object description methods, a voxel-based (VB) method and an octree method, in the simulations of two kinds of phantoms. The simulation results showed that the computation time with the proposed method became about 50% of that with the VD method and about 70% of that with the octree method for a high resolution MCAT phantom. Here, details of the expansion of the MRR method to three dimensions are given. Moreover, the effectiveness of the proposed method was compared with the VB and octree methods.

  19. Region of influence regression for estimating the 50-year flood at ungaged sites

    USGS Publications Warehouse

    Tasker, Gary D.; Hodge, S.A.; Barks, C.S.

    1996-01-01

    Five methods of developing regional regression models to estimate flood characteristics at ungaged sites in Arkansas are examined. The methods differ in the manner in which the State is divided into subrogions. Each successive method (A to E) is computationally more complex than the previous method. Method A makes no subdivision. Methods B and C define two and four geographic subrogions, respectively. Method D uses cluster/discriminant analysis to define subrogions on the basis of similarities in watershed characteristics. Method E, the new region of influence method, defines a unique subregion for each ungaged site. Split-sample results indicate that, in terms of root-mean-square error, method E (38 percent error) is best. Methods C and D (42 and 41 percent error) were in a virtual tie for second, and methods B (44 percent error) and A (49 percent error) were fourth and fifth best.

  20. Scalable parallel elastic-plastic finite element analysis using a quasi-Newton method with a balancing domain decomposition preconditioner

    NASA Astrophysics Data System (ADS)

    Yusa, Yasunori; Okada, Hiroshi; Yamada, Tomonori; Yoshimura, Shinobu

    2018-04-01

    A domain decomposition method for large-scale elastic-plastic problems is proposed. The proposed method is based on a quasi-Newton method in conjunction with a balancing domain decomposition preconditioner. The use of a quasi-Newton method overcomes two problems associated with the conventional domain decomposition method based on the Newton-Raphson method: (1) avoidance of a double-loop iteration algorithm, which generally has large computational complexity, and (2) consideration of the local concentration of nonlinear deformation, which is observed in elastic-plastic problems with stress concentration. Moreover, the application of a balancing domain decomposition preconditioner ensures scalability. Using the conventional and proposed domain decomposition methods, several numerical tests, including weak scaling tests, were performed. The convergence performance of the proposed method is comparable to that of the conventional method. In particular, in elastic-plastic analysis, the proposed method exhibits better convergence performance than the conventional method.

Top