Science.gov

Sample records for kuiper airborne observatory

  1. Molecular spectroscopy from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Beckwith, S.

    1985-01-01

    Interstellar and circumstellar molecules are investigated through medium-resolution infrared spectrosocpy of the vibration-rotation and pure rotational transitions. A primary goal was the construction and improvement of instrumentation for the near and middle infrared regions, wavelengths between 2 and 10 microns. The main instrument was a cooled grating spectrometer with an interchangeable detector focal plane which could be used on the Kuiper Airborne Observatory (KAO) for airborne observations, and also at ground-based facilities. Interstellar shock waves were investigated by H2 emission from the Orion Nebula, W51, and the proto-planetary nebulae CRL 2688 and CRL 618. The observations determined the physical conditions in shocked molecular gas near these objects. From these it was possible to characterize the energetic history of mass loss from both pre- and post-main sequence stars in the regions.

  2. Far-Infrared Astronomy with The Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger, H.

    1997-01-01

    This report summarizes work made possible by NASA's Kuiper Airborne Observatory. The results of the work have appeared in over 80 papers. The publications fall in three main areas: instrumentation, observations, and analysis. Although there is considerable overlap between these categories it will be convenient to group them separately.

  3. Analysis of Polarization Data from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1999-01-01

    The purpose of this grant was to complete the analysis of data obtained with the polarimeter, Hertz, on the Kuiper Airborne Observatory. This has enabled us to complete and publish two student theses (one on Sgr B2 and one on Orion) and a paper on the first results on the far-infrared polarization-spectrum. In addition it has enabled us to analyze data for two additional papers (one on W3 and the other a complete archive of KAO polarization data) which have reached the stage of complete drafts but still need checking and editing before final submission.

  4. Mid-Infrared Spectroscopy of Mercury from the Kuiper Airborne Observatory

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Witteborn, F. C.; Kozlowski, R. W. H.; Wooden, D. H.

    1996-03-01

    We present mid-infrared (5 - 10mic) spectroscopic measurements of the planet Mercury obtained from the Kuiper Airborne Observatory (KAO) using the High Efficiency Infrared Faint Object Grating Spectrograph (HIFOGS). Spectra show features characteristic of plagioclase feldspar that was previously observed near 120 deg mercurian longitude. The spectra also show spectral features that could be interpreted indicative of the presence of pyrrhotite (pyrr). An analysis that fully accounts for the effects of large field of view (FOV), thermal gradients, rough surface and absolute calibration is still underway.

  5. Determination of the Telluric Water Vapor Absorption Correction for Astronomical Data Obtained from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Simpson, J. P.; Kuhn, P. M.; Stearns, L. P.

    1979-01-01

    The amount of telluric water vapor along the line of sight of the Kuiper Airborne Observatory telescope as obtained concommitantly on 23 flights is compared with the NASA-Ames Michelson interferometer and with the NOAA-Boulder radiometer. A strong correlation between the two determinations exists, and a method for computing the atmospheric transmission for a given radiometer reading is established.

  6. Real Time Data/Video/Voice Uplink and Downlink for Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Harper, Doyal A.

    1997-01-01

    LFS was an educational outreach adventure which brought the excitement of astronomical exploration on NASA's Kuiper Airborne Observatory (KAO) to a nationwide audience of children, parents and children through live, interactive television, broadcast from the KAO at an altitude of 41,000 feet during an actual scientific observing mission. The project encompassed three KAO flights during the fall of 1995, including a short practice mission, a daytime observing flight between Moffett Field, California to Houston, Texas, and a nighttime mission from Houston back to Moffett Field. The University of Chicago infrared research team participated in planning the program, developing auxiliary materials including background information and lesson plans, developing software which allowed students on the ground to control the telescope and on-board cameras via the Internet from the Adler Planetarium in Chicago, and acting as on-camera correspondents to explain and answer questions about the scientific research conducted during the flights.

  7. A hardware/software simulation for the video tracking system of the Kuiper Airborne Observatory telescope

    NASA Technical Reports Server (NTRS)

    Boozer, G. A.; Mckibbin, D. D.; Haas, M. R.; Erickson, E. F.

    1984-01-01

    This simulator was created so that C-141 Kuiper Airborne Observatory investigators could test their Airborne Data Acquisition and Management System software on a system which is generally more accessible than the ADAMS on the plane. An investigator can currently test most of his data acquisition program using the data computer simulator in the Cave. (The Cave refers to the ground-based computer facilities for the KAO and the associated support personnel.) The main Cave computer is interfaced to the data computer simulator in order to simulate the data-Exec computer communications. However until now, there has been no way to test the data computer interface to the tracker. The simulator described here simulates both the KAO Exec and tracker computers with software which runs on the same Hewlett-Packard (HP) computer as the investigator's data acquisition program. A simulator control box is hardwired to the computer to provide monitoring of tracker functions, to provide an operator panel similar to the real tracker, and to simulate the 180 deg phase shifting of the chopper squre-wave reference with beam switching. If run in the Cave, one can use their Exec simulator and this tracker simulator.

  8. Fiber-coupled high resolution infrared array spectrometer for the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Reuter, D.; Mumma, M. J.; Chin, G.; Wiedemann, G.; Jennings, D.

    1990-01-01

    A novel cryogenic grating spectrometer (FCAS) is being designed for observations of volatiles in cometary and planetary atmospheres, and in newly forming planetary systems. The instrument features two-dimensional detector arrays coupled to a high-dispersion echelle by infrared fibers, and will achieve a spectral resolving power of about 40,000. The primary observational platform for this instrument will be the Kuiper Airborne Observatory, but it will also be configured for use at ground-based observatories. Initially, the spectrometer will use a 58 x 62, 1- to 5-micron InSb array. Larger-format IR arrays and arrays of different composition, will later be incorporated as they become available. The instrument will be used in two modes. The first uses a large format IR array in the spectral image plane for the customary one-dimensional spectral-one-dimensional spatial coverage. In the second mode, a massive, coherent bundle of infrared transmitting ZrF4 fibers will be installed after the dispersive element, to reformat the two-dimensional array into an elongated one-dimensional array for wide spectral coverage, allowing multiple lines to be measured in a single integration with high sensitivity. The overall instrument design is discussed, and the system sensitivity is estimated.

  9. Kuiper Airborne Observatory's Telescope Stabilization System: Disturbance Sensitivity Reduction Via Velocity Loop Feedback

    NASA Technical Reports Server (NTRS)

    Lawrence, David P.; Tsui, K. C.; Tucker, John; Mancini, Ronald E. (Technical Monitor)

    1995-01-01

    In July of 1994 the Kuiper Airborne Observatory's (KAO) Telescope Stabilization System (TSS) was upgraded to meet performance goals necessary to view the Shoemaker-Levy 9 comet collision with Jupiter. The KAO is a modified C-141 Aircraft supporting a 36 inch Infrared telescope used to gather and analyze astronomical data. Before the upgrade, the TSS exhibited approximately a 10 arc-second resolution pointing accuracy. The majority of the inaccuracy was attributable to aircraft vibration and wind buffeting entering through the aircraft's telescope door opening; in other words, the TSS was overly sensitive to external disturbances. Because of power limitations and noise requirements, improving the pointing accuracy of the telescope required more sophistication than simply raising the bandwidth as some classical control strategies might suggest. Instead, relationships were developed between the disturbance sensitivity and closed loop transfer functions. These relationships suggested that employing velocity feedback along with an increase in current loop gain would dramatically improve the pointing resolution of the TSS by decreasing the control system's sensitivity to external disturbances. With the implementation of some classical control techniques and the above philosophy, the KAO's TSS's resolution was improved to approximately 2-3 arc-seconds.

  10. Airborne Astronomy Symposium. A symposium commemorating the tenth anniversary of operations of the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Thronson, H. A., Jr. (Editor); Erickson, E. F. (Editor)

    1984-01-01

    Airborne infrared astronomy is discussed with respect to observations of the solar system, stars, star formation, and the interstellar medium. Far infrared characteristics of the Milky Way, its center, and other galaxies are considered. The instrumentation associated with IR astronomy is addressed.

  11. The Planet Mercury Surface Spectroscopy and Analysis from the Kuiper Airborne Observatory and Analysis and Modeling to Determine Surface Composition

    NASA Technical Reports Server (NTRS)

    Sprague, Ann

    1997-01-01

    We had two successful flights to observe Mercury from the Kuiper Airborne Observatory (KAO) using High-efficiency Infrared Faint-Object Grating Spectrograph (HIFOGS). Flights were May 8, 1995 (eastern elongation) and July 6, 1995 (western elongation) For the observations one half of the primary mirror was covered to prevent sunlight from entering the telescope. All equipment and the airplane and its crew performed well. These flights were historical firsts for the KAO and for spectroscopy of Mercury in that it was the first time any spectroscopic observations of Mercury from above the Earth's atmosphere had been made. It was the first time the KAO had been used to @bserve an object less than 30 degrees from the Sun. Upon completion of the basic data reduction it became obvious that extensive modeling and analysis would be required to understand the data. It took three years of a graduate student's time and part time the PI to do the thermal modeling and the spectroscopic analysis. This resulted in a lengthy publication. A copy of this publication is attached and has all the data obtained in both KAO flights and the results clearly presented. Notable results are: (1) The observations found an as yet unexplained 5 micron emission enhancement that we think may be a real characteristic of Mercury's surface but could have an instrumental cause; (2) Ground-based measurements or an emission maximum at 7.7 microns were corroborated. The chemical composition of Mercury's surface must be feldspathic in order to explain spectra features found in the data obtained during the KAO flights.

  12. Molecular Shocks Associated with Massive Young Stars: CO Line Images with a New Far-Infrared Spectroscopic Camera on the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Watson, Dan M.

    1997-01-01

    Under the terms of our contract with NASA Ames Research Center, the University of Rochester (UR) offers the following final technical report on grant NAG 2-958, Molecular shocks associated with massive young stars: CO line images with a new far-infrared spectroscopic camera, given for implementation of the UR Far-Infrared Spectroscopic Camera (FISC) on the Kuiper Airborne Observatory (KAO), and use of this camera for observations of star-formation regions 1. Two KAO flights in FY 1995, the final year of KAO operations, were awarded to this program, conditional upon a technical readiness confirmation which was given in January 1995. The funding period covered in this report is 1 October 1994 - 30 September 1996. The project was supported with $30,000, and no funds remained at the conclusion of the project.

  13. Photometer dewar system for NASA C141 airborne telescope (Kuiper Flying Observatory). [design analysis/performance tests

    NASA Technical Reports Server (NTRS)

    Ney, E. P.

    1974-01-01

    The design, calibration, and testing of a photometer to be used in an airborne telescope is described. A description of the cryogenics of the photometer is given, and photographs and blueprints of the photometer are included. The photometer is designed with a focal plane beam switching system so that the airplane telescope can be used in a normal optical mode at the bent Cassegrain focus and with the photometer operating in the pressurized cabin of the airplane. The concept was to produce a system which could be used in almost the same manner as ground based infrared photometers and dewars of the O'Brien Observatory at the University of Minnesota.

  14. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  15. 10 meter airborne observatory

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Ritter, Joseph M.

    2008-07-01

    Inside an aircraft fuselage there is little room for the mass of all the instrumentation of a ground-based observatory much less a primary objective aperture at the scale of 10 meters. We have proposed a solution that uses a primary objective grating (POG) which matches the considerable length of the aircraft, approximately 10 meters, and conforms to aircraft aerodynamics. Light collected by the POG is diffracted at an angle of grazing exodus inside the aircraft where it is disambiguated by an optical train that fits within to the interior tunnel. Inside the aircraft, light is focused by a parabolic mirror onto a spectrograph slit. The design has a special benefit in that all objects in the field-of-view of the free spectral range of the POG can have their spectra taken as the aircraft changes orientation. We suggest flight planes that will improve integration times, angular resolution and spectral resolution to acquire targets of high stellar magnitudes or alternatively increase the number of sources acquired per flight at the cost of sensitivity.

  16. SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes Artwork. Concepts: Based on 18 Years of Experience of Kuiper Airborne Observatory (KAO) Operation, Characteristics, Operations and Science

  17. Comprehension and retrieval of failure cases in airborne observatories

    NASA Technical Reports Server (NTRS)

    Alvarado, Sergio J.; Mock, Kenrick J.

    1995-01-01

    This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.

  18. NASA’s Sense of Snow: the Airborne Snow Observatory

    NASA Video Gallery

    Water is a critical resource in the western U.S. NASA’s Airborne Snow Observatory is giving California water agencies the first complete measurements of the water available in the Sierra snowpack ...

  19. SOFIA's Choice: Scheduling Observations for an Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Kurklu, Elif; Koga, Dennis (Technical Monitor)

    2002-01-01

    We describe the problem of scheduling observations for an airborne observatory. The problem is more complex than traditional scheduling problems in that it incorporates complex constraints relating the feasibility of an astronomical observation to the position and time of a mobile observatory, as well as traditional temporal constraints and optimization criteria. We describe the problem, its proposed solution and the empirical validation of that solution.

  20. Quick Look Analysis of Broadband Aeronautical Data Obtained from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Satorius, Edgar; Abbe, Brian; Agan, Martin

    1996-01-01

    The ACTS aeronautical experiments include these purposes: (1) To test the viability of speech/data transmission at: 2.4, 4.8, 9.6, and 64, kbps; (2) To test the viability of high rate transmissions at 512, and 768 kbps; and (3) To test the viability of high data rate transmissions to/from turbojet up to 384 bps.

  1. Calibration of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Leisso, N.; Kampe, T. U.; Karpowicz, B. M.

    2014-12-01

    The National Ecological Observatory Network (NEON) is currently under construction by the National Science Foundation. NEON is designed to collect data on the causes and responses to change in the observed ecosystem. The observatory will combine site data collected by terrestrial, instrumental, and aquatic observation systems with airborne remote sensing data. The Airborne Observation Platform (AOP) is designed to collect high-resolution aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopic data over the NEON sites annually at or near peak-greenness. Three individual airborne sensor packages will be installed in leased Twin Otter aircraft and used to the collect the NEON sites as NEON enters operations. A key driver to the derived remote sensing data products is the calibration of the imaging spectrometers. This is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) grating spectrometer designed by NASA JPL. Spectroscopic data is collected at 5-nm intervals from 380-2500-nm. A single 480 by 640 pixel HgCdTe Focal Plane Array collects dispersed light from a grating tuned for efficiency across the solar-reflective utilized in a push-broom configuration. Primary calibration of the NIS consists of the characterizing the FPA behavior, spectral calibration, and radiometric calibration. To this end, NEON is constructing a Sensor Test Facility to calibrate the NEON sensors. This work discusses the initial NIS laboratory calibration and verification using vicarious calibration techniques during operations. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. A NIST traceable FEL bulb is used to radiometrically calibrate the imaging spectrometer. An On-board Calibration (OBC) system

  2. Automated Long - Term Scheduling for the SOFIA Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Civeit, Thomas

    2013-01-01

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the "Early Science" program as well as a deployment to Germany. The new observing period, known as Cycle 1, is scheduled to begin in 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA long-term schedules that will be used in operations from the Cycle 1 observing period. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.

  3. Automated long-term scheduling for the SOFIA airborne observatory

    NASA Astrophysics Data System (ADS)

    Civeit, Thomas

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the “ Early Science” program as well as a deployment to Germany. The next observing period, known as Cycle 1, is scheduled to begin in late fall 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA's long-term schedules. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.

  4. The NASA Airborne Snow Observatory: Demonstration Mission 2

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Berisford, D. F.; Boardman, J. W.; Bormann, K.; Deems, J. S.; Gehrke, F.; Horn, J.; Marks, D. G.; Mattmann, C. A.; McGurk, B. J.; Ramirez, P.; Richardson, M.; Skiles, M.; Winstral, A. H.; Zimdars, P.

    2014-12-01

    The NASA Jet Propulsion Laboratory developed the Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. This talk presents results from the second Demonstration Mission that occurred during the intense California drought of spring 2014. With the acquisition of the new cutting edge lidar system, ASO was able to fly higher and as such acquire complete basin coverage for the Tuolumne, Merced, Lakes, and South Fork of Kings River Basins in the California Sierra Nevada. Despite the intensity of the California drought, several snowfalls occurred during the Demonstration Mission and we were able to uniquely map snowfall distribution, providing unprecedented capability to test our understanding of orographics and redistribution of snowfall. A new snow density model and analysis were integrated into the ASO data system. Despite a > 4-fold increase in data volume from the new lidar, the landing-to-data delivery remained at < 24 hrs. ASO SWE and albedo data are assimilated into models of varying complexity and results presented here. We use the ASO data in the Sierra Nevada to evaluate SWE simulations from the NWS SNODAS and SWE reconstruction models. Finally, the ASO data were watched carefully during the drought, suggesting that the Hetch Hetchy reservoir original infrastructure's forecast of falling well short of fill would be biased low and that the reservoir would come close to filling.

  5. Stellar Occultations from Airborne Platforms: 1988 to 2016

    NASA Astrophysics Data System (ADS)

    Bosh, Amanda S.; Dunham, Edward W.; Zuluaga, Carlos; Levine, Stephen; Person, Michael J.; Van Cleve, Jeffrey E.

    2016-10-01

    Observing a stellar occultation by a solar system body with an airborne telescope requires precise positioning of the observer within the shadow cast onto the Earth. For small bodies like Pluto and Kuiper Belt objects, smaller than the Earth, the challenge is particularly intense, with the accuracy of the astrometric and flight planning determining whether the observation succeeds or fails. From our first airborne occultation by Pluto in 1988 aboard the Kuiper Airborne Observatory (KAO), to our most recent event by Pluto in 2015 aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA), we have refined our astrometric and flight planning systems to the point where we can now place an airborne observer into the small central flash zone. We will discuss the history of airborne observation of occultations while detailing the improvements in the astrometric processes. Support for this work was provided by NASA SSO grant NNX15AJ82G to Lowell Observatory.

  6. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Davidson, J. A.

    1993-01-01

    SOFIA, (Stratospheric Observatory for Infrared Astronomy) is a planned 2.5 meter telescope to be installed in a Boeing 747 aircraft and operated at altitudes from 41,000 to 46,000 feet. It will permit routine measurement of infrared radiation inaccessible from the ground-based sites, and observation of astronomical objects and transient events from anywhere in the world. The concept is based on 18 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA would replace.

  7. An analysis of water in galactic infrared sources using the NASA Lear Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Smith, L. L.; Hilgeman, T.

    1979-01-01

    The Michelson interferometer system on the NASA Lear Jet Airborne Observatory is described as well as the data reduction procedures. The objects observed (standard stars, M stars, a nebula, planets, and the moon) are discussed and the observing parameters are listed for each flight date. The spectra obtained from these data flights are presented, grouped by class of object.

  8. Kuiper Crater

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Mariner 10 Television-Science Team has proposed the name 'Kuiper' for this very conspicuous bright Mercury crater (top center) on the rim of a larger older crater. Prof. Gerard P. Kuiper, a pioneer in planetary astronomy and a member of the Mariner 10 TV team, died December 23, 1973, while the spacecraft was enroute to Venus and Mercury. Mariner took this picture (FDS 27304) from 88,450 kilometers (55,000 miles) some 2 1/2 hours before it passed Mercury on March 29. The bright-floored crater, 41 kilometers (25 miles) in diameter, is the center of a very large bright are which could be seen in pictures sent from Mariner 10 while Mercury was more than two million miles distant. The larger crater is 80 kilometers (50 miles) across.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  9. Thermal infrared spectroscopic observations of Mars from the Kuiper Airborne Observatory (KAO): Constraints on past climates and weathering products

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Pollack, James B.; Witteborn, Fred C.; Bregman, Jesse D.; Bell, James F., III; Sitton, Bradley

    1995-01-01

    Spectral observations providing evidence for the presence of volatile-bearing minerals on the surface of Mars were obtained in 1988 and 1990 from the KAO. The 1988 data suggest the presence of 1-3 weight percent (wt%) of carbonate/bicarbonate and 10-15 wt% sulfate/bisulfate associated with martian atmospheric dust. Estimates of the optical depths are approximately 0.60 and approximately 0.35 in 1988 and 1990, respectively.

  10. Progress in the development of airborne remote sensing instrumentation for the National Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.; McCorkel, Joel; Hamlin, Louise; Green, Robert O.; Krause, Keith S.; Johnson, Brian R.

    2011-09-01

    The National Ecological Observatory Network (NEON) is a planned facility of the National Science Foundation with the mission to enable understanding and forecasting of the impacts of climate change, land use change and invasive species on continental-scale ecology. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON Airborne Observation Platform is designed to bridge scales from organism and stand scales, as captured by plot and tower observations, to the scale of satellite based remote sensing. Fused airborne spectroscopy and waveform LiDAR is used to quantify vegetation composition and structure. Panchromatic photography at better than 30 cm resolution will retrieve fine-scale information on land use, roads, impervious surfaces, and built structures. NEON will build three airborne systems to allow for regular coverage of NEON sites and the capacity to respond to investigator requests for specific projects. The system design achieves a balance between performance and development cost and risk, taking full advantage of existing commercial airborne LiDAR and camera components. To reduce risk during NEON construction, an imaging spectrometer design verification unit is being developed at the Jet Propulsion Laboratory to demonstrate that operational and performance requirements can be met. As part of this effort, NEON is also focusing on science algorithm development, computing hardware prototyping and early airborne test flights with similar technologies. This paper presents an overview of the development status of the NEON airborne instrumentation in the context of the NEON mission.

  11. SOFIA: The Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.; Davidson, Jacqueline A.

    1990-01-01

    SOFIA, an airborne observatory intended to be carried aboard a Boeing 747 high performance aircraft, is described. The observatory is predicted to provide a threefold greater aperture than that of the Kuiper telescope. The Boeing aircraft will carry the 2.5 diameter telescope and its observers to altitudes of 14,000 and above where the atmosphere is very nearly transparent at all wavelengths. Various aspects and specific missions of the SOFIA project, a cooperative venture of the U.S. and Germany, are described.

  12. NASA Airborne Snow Observatory: Measuring Spatial Distribution of Snow Water Equivalent and Snow Albedo

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Laidlaw, R.; Bormann, K. J.; Skiles, M.; Richardson, M.; Berisford, D. F.

    2015-12-01

    The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still largely unquantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. NASA Jet Propulsion Laboratory, in partnership with the California Department of Water Resources, has developed the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties for cutting edge cryospheric science, and provide complete, robust inputs to water management models and systems of the future. This poster will describe the NASA Airborne Snow Observatory, its outputs and their uses and applications, along with recent advancements to the system and plans for the project's future. Specifically, we will look at how ASO uses its imaging spectrometer to quantify spectral albedo, broadband albedo, and radiative forcing by dust and black carbon in snow. Additionally, we'll see how the scanning LiDAR is used to determine snow depth against snow-free acquisitions and to quantify snow water equivalent when combined with in-situ constrained modeling of snow density.

  13. NASA Stratospheric Observatory For Infrared Astronomy (SOFIA) Airborne Astronomy Ambassador Program Evaluation Results To Date

    NASA Astrophysics Data System (ADS)

    Harman, Pamela K.; Backman, Dana E.; Clark, Coral

    2015-08-01

    SOFIA is an airborne observatory, capable of making observations that are impossible for even the largest and highest ground-based telescopes, and inspires instrumention development.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of a modified Boeing 747SP aircraft carrying a diameter of 2.5 meters (100 inches) reflecting telescope. The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program Office and Outreach Office is located at NASA Ames Research center. SOFIA is one of the programs in NASA's Science Mission Directorate, Astrophysics Division.SOFIA will be used to study many different kinds of astronomical objects and phenomena, including star birth and death, formation of new solar systems, identification of complex molecules in space, planets, comets and asteroids in our solar system, nebulae and dust in galaxies, and ecosystems of galaxies.Airborne Astronomy Ambassador Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to the elevation of public scientific and technical literacy.SOFIA’s Airborne Astronomy Ambassadors (AAA) effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; in three cohorts, Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Cycle 3 cohort of 28 educators will be completing their flight experience this fall. Evaluation has confirmed the program’s positive impact on the teacher participants, on their students, and in their communities. Teachers have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and

  14. A Compute Perspective: Delivering Decision Support Products in 24 Hours from the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Ramirez, P.; Mattmann, C. A.; Painter, T. H.; Seidel, F. C.; Trangsrud, A.; Hart, A. F.; Goodale, C. E.; Boardman, J. W.; Heneghan, C.; Verma, R.; Khudikyan, S.; Boustani, M.; Zimdars, P. A.; Horn, J.; Neely, S.

    2013-12-01

    The JPL Airborne Snow Observatory (ASO) must process 100s of GB of raw data to 100s of Terabytes of derived data in 24 hour Near Real Time (NRT) latency in a geographically distributed mobile compute and data-intensive processing setting. ASO provides meaningful information to water resource managers in the Western US letting them know how much water to maintain; or release, and what the prospectus of the current snow season is in the Sierra Nevadas. Providing decision support products processed from airborne data in a 24 hour timeframe is an emergent field and required the team to develop a novel solution as this process is typically done over months. We've constructed a system that combines Apache OODT; with Apache Tika; with the Interactive Data Analysis (IDL)/ENVI programming environment to rapidly and unobtrusively generate, distribute and archive ASO data as soon as the plane lands near Mammoth Lakes, CA. Our system is flexible, underwent several redeployments and reconfigurations, and delivered this critical information to stakeholders during the recent "Snow On" campaign March 2013 - June 2013. This talk will take you through a day in the life of the compute team from data acquisition, delivery, processing, and dissemination. Within this context, we will discuss the architecture of ASO; the open source software we used; the data we stored; and how it was delivered to its users. Moreover we will discuss the logistics, system engineering, and staffing that went into the developing, deployment, and operation of the mobile compute system.

  15. Calibration and Validation of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Leisso, N.

    2015-12-01

    The National Ecological Observatory Network (NEON) is being constructed by the National Science Foundation and is slated for completion in 2017. NEON is designed to collect data to improve the understanding of changes in observed ecosystems. The observatory will produce data products on a variety of spatial and temporal scales collected from individual sites strategically located across the U.S. including Alaska, Hawaii, and Puerto Rico. Data sources include standardized terrestrial, instrumental, and aquatic observation systems in addition to three airborne remote sensing observation systems installed into leased Twin Otter aircraft. The Airborne Observation Platforms (AOP) are designed to collect 3-band aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopy data over the NEON sites annually at or near peak-greenness. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) sensor designed by NASA JPL for ecological applications. Spectroscopic data is collected at 5-nm intervals across the solar-reflective spectral region (380-nm to 2500-nm) in a 34-degree FOV swath. A key uncertainty driver to the derived remote sensing NEON data products is the calibration of the imaging spectrometers. In addition, the calibration and accuracy of the higher-level data product algorithms is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The typical calibration workflow of the NIS consists of the characterizing the focal plane, spectral calibration, and radiometric calibration. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. The radiometric calibration is NIST traceable and transferred to the NIS with an integrating sphere calibrated through the use of transfer radiometers. The laboratory calibration is monitored and maintained through

  16. Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, volume 73

    NASA Technical Reports Server (NTRS)

    Haas, Michael R. (Editor); Davidson, Jacqueline A. (Editor); Erickson, Edwin F. (Editor)

    1995-01-01

    This symposium was organized to review the science related to NASA's Airborne Astronomy Program on the occasion of the twentieth anniversary of the Kuiper Airborne Observatory (KAO). The theme selected, 'The Galactic Ecosystem: From Gas to Stars to Dust,' was considered to capture the underlying commonality of much of the research discussed. The 8 sessions were as follows: The Interstellar Medium; The Life Cycle of the ISM in Other Galaxies; Star and Planetary System Formation; Our Planetary System: The Solar System; The Enrichment of the Interstellar Medium; The Galactic Center: A Unique Region of the Galactic Ecosystem; Instrumentation for Airborne Astronomy; KAO History and Education; and Missions and the Future of Infrared Astronomy.

  17. Kuiper Express: a sciencecraft

    NASA Astrophysics Data System (ADS)

    Rodgers, David H.; Alkalai, Leon; Beauchamp, Patricia M.; Chen, Gun-Shing; Crisp, Michael P.; Brown, Robert H.; Davidson, J. M.; Huxtable, Douglas D.; Penzo, P. A.; Petrick, Stanley W.; Soderblom, Laurance A.; Stewart, A.; Vane, Gregg; Yelle, Roger V.

    1996-10-01

    The Kuiper Express is a mission to achieve the first reconnaissance of one of the primitive objects that reside in the Kuiper Belt. The objects in the Kuiper Belt are the remnants of the planetesimal swarm that formed the four giant planets of the outer Solar System. These objects, because they are far from the Sun, have not been processed by solar heating and are essentially in their primordial state. This makes them unique objects and their study will provide information on the composition of the solar nebula that cannot be extracted from a study of other objects in the Solar System. The Kuiper Express is a sciencecraft mission. A sciencecraft is an integrated unit that combines into a single system the essential elements (but no more) necessary to achieve the science objectives of the mission, including science instruments, electronics, telecommunications, power, and propulsion. The design of a sciencecraft begins with the definition of mission science objectives and cost constraint. An observational sequence and sensor subsystem are then designed. This sensor subsystem in turn becomes the design driver for the sciencecraft architecture and hardware subsystems needed to deliver the sensor to its target and return the science data to the earth. Throughout the design process, shared functionality, shared redundancy, and reduced cost are strongly emphasized. The Kuiper Express will be launched using a Delta vehicle and will use solar electric propulsion to add velocity and shape its trajectory in the inner Solar System, executing two earth gravity-assist flybys. It will also execute flybys of main belt asteroids, Mars, Uranus, and Neptune/Triton en route to its target in the Kuiper belt, where it will arrive about ten years after launch. It will use no nuclear power. The surface constituents and morphology of the objects visited will be measured and their atmospheres will be characterized. The cost of the detailed design, fabrication, and launch of the Kuiper

  18. Validating SWE reconstruction using Airborne Snow Observatory measurements in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Bair, N.; Rittger, K.; Davis, R. E.; Dozier, J.

    2015-12-01

    The Airborne Snow Observatory (ASO) program offers high resolution estimates of snow water equivalent (SWE) in several small basins across California during the melt season. Primarily, water managers use this information to model snowmelt runoff into reservoirs. Another, and potentially more impactful, use of ASO SWE measurements is in validating and improving satellite-based SWE estimates which can be used in austere regions with no ground-based snow or water measurements, such as Afghanistan's Hindu Kush. Using the entire ASO dataset to date (2013-2015) which is mostly from the Upper Tuolumne basin, but also includes measurements from 2015 in the Kings, Rush Creek, Merced, and Mammoth Lakes basins, we compare ASO measurements to those from a SWE reconstruction method. Briefly, SWE reconstruction involves downscaling energy balance forcings to compute potential melt energy, then using satellite-derived estimates of fractional snow covered area (fSCA) to estimate snow melt from potential melt. The snowpack can then be built in reverse, given a remotely-sensed date of snow disappearance (fSCA=0). Our model has improvements over previous iterations in that it: uses the full energy balance (compared to a modified degree-day) approach, models bulk and surface snow temperatures, accounts for ephemeral snow, and uses a remotely-sensed snow albedo adjusted for impurities. To check that ASO provides accurate snow measurements, we compare fSCA derived from ASO snow depth at 3 m resolution with fSCA from a spectral unmixing algorithm for LandSAT at 30 m, and from binary SCA estimates from Geoeye at 0.5 m from supervised classification. To conclude, we document how our reconstruction model has evolved over the years and provide specific examples where improvements have been made using ASO and other verification sources.

  19. Revisiting Runoff Model Calibration: Airborne Snow Observatory Results Allow Improved Modeling Results

    NASA Astrophysics Data System (ADS)

    McGurk, B. J.; Painter, T. H.

    2014-12-01

    Deterministic snow accumulation and ablation simulation models are widely used by runoff managers throughout the world to predict runoff quantities and timing. Model fitting is typically based on matching modeled runoff volumes and timing with observed flow time series at a few points in the basin. In recent decades, sparse networks of point measurements of the mountain snowpacks have been available to compare with modeled snowpack, but the comparability of results from a snow sensor or course to model polygons of 5 to 50 sq. km is suspect. However, snowpack extent, depth, and derived snow water equivalent have been produced by the NASA/JPL Airborne Snow Observatory (ASO) mission for spring of 20013 and 2014 in the Tuolumne River basin above Hetch Hetchy Reservoir. These high-resolution snowpack data have exposed the weakness in a model calibration based on runoff alone. The U.S. Geological Survey's Precipitation Runoff Modeling System (PRMS) calibration that was based on 30-years of inflow to Hetch Hetchy produces reasonable inflow results, but modeled spatial snowpack location and water quantity diverged significantly from the weekly measurements made by ASO during the two ablation seasons. The reason is that the PRMS model has many flow paths, storages, and water transfer equations, and a calibrated outflow time series can be right for many wrong reasons. The addition of a detailed knowledge of snow extent and water content constrains the model so that it is a better representation of the actual watershed hydrology. The mechanics of recalibrating PRMS to the ASO measurements will be described, and comparisons in observed versus modeled flow for both a small subbasin and the entire Hetch Hetchy basin will be shown. The recalibrated model provided a bitter fit to the snowmelt recession, a key factor for water managers as they balance declining inflows with demand for power generation and ecosystem releases during the final months of snow melt runoff.

  20. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  1. G. P. Kuiper's Early Studies of Planets

    NASA Astrophysics Data System (ADS)

    Cruikshank, D. P.

    2005-08-01

    Gerard P. Kuiper was born on December 7, 1905; this is his centennial year. While he had an early interest in Solar System bodies, writing an extensive review about Mars for the popular Dutch astronomy journal, Hemel en Dampkring in 1931, Kuiper's first important observations began in 1944, when he discovered the atmosphere of Titan. In a letter dated February 29, 1944, to Lick Observatory director Joseph H. Moore, Kuiper noted that, ``The only reason I happened to observe the planets and the 10 brightest satellites was that they were nicely lined up in a region of the sky where I had run out of program stars (stars of large proper motion and parallax)." These spectroscopic observations were obtained with the new McDonald 82-inch telescope during a break from Kuiper's war-time work at Harvard's Radio Research Laboratory. In a letter of congratulations, his friend S. Chandrasekhar wrote, ``It is only on the impact of such discoveries that one realizes afresh the permanent value of science which no war -- not even of Hitler's -- can truly undermine. And it must be of satisfaction to you that if you took a vacation from war-work, it was only to make a fundamental discovery!" Using detectors declassified at the end of World War II, Kuiper began a study of the infrared spectra of planets and stars (with the first publication in 1947) that continued to the time of his death (December 24, 1973). Early in this work, on March 2, 1948, he wrote a lengthy letter to Henry Norris Russell in which he succinctly and enthusiastically summarized his observations and discoveries. Details in this letter give a fascinating perspective on some of the earliest physical studies of Solar System bodies, such as the detection of water ice on Saturn's rings and in the polar cap of Mars, spectral and photometric measurements of Mars' surface and atmospheric haze, and the discovery of Miranda.

  2. Distant Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Allen, R. Lynne; Bernstein, Gary; Malhotra, Renu

    2001-02-01

    Kuiper Belt Object surveys indicate a lack of objects with semi- major axis a⪆50 AU in low eccentricity, low inclination orbits. This presents a problem for the simplest theories of Kuiper Belt evolution, which predict a dense, primordial outer Kuiper Belt. A possible solution is that the outer Belt is very dynamically cold, appearing as a razor-thin plane on the sky. If this disk was inclined only 0.5° from the ecliptic, present surveys could fail to detect it since the deep surveys (limiting magnitude R~26) lack sufficient sky coverage and the shallow surveys (limiting mag R~24.4) lack sufficient depth to see small (radius ⪉130 km) objects beyond 50 AU. If this cold, dense disk were to cross a Mosaic field with a limiting magnitude R=25.8, we would expect to see at least 15 distant KBOs. By observing strategically placed large fields we could detect any cold, dense distant disk inclined at up to 0.7° from the invariable plane. This would place a strong constraint on the location of a cold, dense outer Kuiper Belt.

  3. Airborne LiDAR and hyperspectral mapping of snow depth and albedo in the Upper Colorado River Basin, Colorado, USA by the NASA JPL Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Deems, J. S.; Painter, T. H.

    2014-12-01

    Operational hydrologic simulation and forecasting in snowmelt-dominated watersheds currently relies on indices of snow accumulation and melt from measurements at a small number of point locations or geographically-limited manual surveys. These data sources cannot adequately characterize the spatial distribution of snow depth/water equivalent, which is the primary determinant of snowpack volume and runoff rates. The NASA JPL Airborne Snow Observatory's airborne laser scanning system maps snow depth at high spatial and temporal resolutions, and is paired with a hyperspectral imager to provide an unprecedented snowpack monitoring capability and enabling a new operational paradigm. We present the initial results from this new application of multi-temporal LiDAR and hyperspectral mapping. During the snowmelt seasons of 2013 and 2014, the ASO mapped snow depth and albedo in the Uncompahgre River Basin in Colorado's Upper Colorado River Basin on a nominally monthly basis. These products enable an assessment and comparison of spatial snow accumulation and melt processes in two years with very different snowmelt hydrographs.

  4. Stratospheric Observatory for Infrared Astronomy (SOFIA) system concept

    NASA Technical Reports Server (NTRS)

    Wiltsee, Christopher B.; Brooks, Walter F.

    1989-01-01

    The system concept for the Stratospheric Observatory for Infrared Astronomy (SOFIA), as developed by NASA Ames Research Center is described. The SOFIA facility is a 3-meter class optical/infrared/submillimeter telescope mounted in an open cavity in the forebody of a Boeing 747 aircraft, to be operational in 1992. It represents the next generation of Ames' existing airborne IR facilities, and is about ten times more sensitive than the Kuiper Airborne Observatory (KAO) with 3 times better angular resolution, and able to detect all the far-infrared point sources discovered by IRAS (Infrared Astronomical Satellite) survey in 1983. Major requirements and design attributes of the SOFIA telescope are presented, along with a brief description of the Ground Support/Operations System.

  5. Calibration and Data Efforts of the National Ecological Observatory Network (NEON) Airborne Observation Platform during its Engineering Development Phase

    NASA Astrophysics Data System (ADS)

    Adler, J.; Goulden, T.; Kampe, T. U.; Leisso, N.; Musinsky, J.

    2014-12-01

    The National Ecological Observatory Network (NEON) has collected airborne photographic, lidar, and imaging spectrometer data in 5 of 20 unique ecological climate regions (domains) within the United States. As part of its mission to detect and forecast ecological change at continental scales over multiple decades, NEON Airborne Observation Platform (AOP) will aerially survey the entire network of 60 core and re-locatable terrestrial sites annually, each of which are a minimum of 10km-by-10km in extent. The current effort encompasses three years of AOP engineering test flights; in 2017 NEON will transition to full operational status in all 20 domains. To date the total airborne data collected spans 34 Terabytes, and three of the five sampled domain's L1 data are publically available upon request. The large volume of current data, and the expected data collection over the remaining 15 domains, is challenging NEON's data distribution plans, backup capability, and data discovery processes. To provide the public with the highest quality data, calibration and validation efforts of the camera, lidar, and spectrometer L0 data are implemented to produce L1 datasets. Where available, the collected airborne measurements are validated against ground reference points and surfaces and adjusted for instrumentation and atmospheric effects. The imaging spectrometer data is spectrally and radiometrically corrected using NIST-traceable procedures. This presentation highlights three years of flight operation experiences including:1) Lessons learned on payload re-configuration, data extraction, data distribution, permitting requirements, flight planning, and operational procedures2) Lidar validation through control data comparisons collected at the Boulder Municipal Airport (KBDU), the site of NEON's new hangar facility3) Spectrometer calibration efforts, to include both the laboratory and ground observations

  6. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1985-01-01

    The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  7. Optical instrumentation support for the airborne ionospheric observatory. Report for 1 July 1987-30 June 1988

    SciTech Connect

    Eather, R.H.; Lance, C.A.

    1988-07-01

    The objectives were to participate in ionospheric research programs using the new optical equipment that was planned to be installed on the Airborne Ionospheric Observatory (AIO), a research aircraft operated by the Ionospheric Effects Branch at AFGL. This participation was to include: (a) testing, improvement, and continuing development of the software operating systems that control the instrument operation, (b) Complete testing, calibration, and documentation of all optical properties of the optical systems, (c) Improvements and continuing development of data recording systems for all instruments, and techniques for quick-look data presentation, (d) Assistance in analysis of optical data obtained on airglow and auroral experiments, and (e) Provide personnel assistance on research flights and field trips as required by AFGL.

  8. SOFIA: Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the great astronomical observatories both space and land based that are now operational. It shows the history of the development of SOFIA, from its conception in 1986 through the contract awards in 1996 and through the planned first flight in 2007. The major components of the observatory are shown and there is a comparison of the SOFIA with the Kuiper Airborne Observatory (KAO), which is the direct predecessor to SOFIA. The development of the aft ramp of the KAO was developed as a result of the wind tunnel tests performed for SOFIA development. Further slides show the airborne observatory layout and the telescope's optical layout. Included are also vies of the 2.5 Meter effective aperture, and the major telescope's components. The presentations reviews the technical challenges encountered during the development of SOFIA. There are also slides that review the wind tunnel tests, and CFD modeling performed during the development of SOFIA. Closing views show many views of the airplane, and views of SOFIA.

  9. Analysis of Snow Albedo, Grain Size and Radiative Forcing based on the Airborne Snow Observatory (ASO) Imaging Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Painter, T. H.

    2013-12-01

    Climate is expected to be most vulnerable in mountainous and arctic regions where the atmosphere and the hydrosphere are directly linked to the cryosphere. A combination of modeling and large-scale observational efforts is required to investigate related scientific questions. NASA's Airborne Snow Observatory (ASO) at the Jet Propulsion Laboratory addresses some of these needs by establishing new quantitative observational capabilities in regional mapping of mountain snow properties. In addition, ASO's key products showed that we are able to achieve societal benefits by improving water resources management. We will show the first analysis of snow optical products (albedo, grain size, and radiative forcing) from the spring 2013 ASO campaign in the Sierra Nevada, CA, USA. In addition, we will present the retrieval methods used to derive these products based on airborne imaging spectroscopy, LiDAR, as well as radiative transfer models. The preliminary findings provide new important insights into the temporal and spatial aspects of Western US mountain snow and its melt.

  10. Kuiper Belt Objects (Invited)

    NASA Astrophysics Data System (ADS)

    Tegler, S. C.; Romanishin, W.

    1999-09-01

    The Kuiper belt represents an exciting, new frontier in solar system research. About 200 Kuiper belt objects (KBOs) with diameters larger than 100 km are known to exist between 30 and 50 AU from the Sun. Surveys indicate that there may be as many as 100,000 KBOs larger than 100 km and perhaps billions of KBOs larger than 1 km between 30 and 50 AU. Although the total mass in these bodies is perhaps a few tenths of an Earth mass, accretion calculations indicate that the primordial Kuiper belt must have contained 10 to 30 Earth masses of material between 30 and 50 AU in order to explain the growth of large KBOs and the Pluto and Charon system in the 100 million years before the onset of the disruptive influence of Neptune. Once Neptune reached a fraction of its current mass, dynamical studies indicate that a combination of erosional collisions and mean motion and secular resonances sculpted the belt into its present day mass and structure. The influence of the resonances can be seen in the belt today as about one-third of the known KBOs are in a stable 2:3 mean motion resonance with Neptune, i.e. eccentric and inclined orbits, that approach or cross the orbit of Neptune, and semi-major axes, a, about 39.4 AU. Many KBOs with a > 42 AU are sufficiently far from Neptune that they are on stable, low inclination, low eccentricity, non-resonant orbits. A combination of resonances and disruptive collisions continue to deplete the Kuiper belt today as they inject KBOs or collision fragments inward into the solar system as Centaur objects and Jupiter family comets. Physical studies of KBOs are in their infancy. Perhaps one of the most surprising results is the observation that KBO colors and hence their surface compositions divide neatly into a grey and an extraordinarily red population. The red population suggests some surfaces are rich in complex carbon-bearing molecules. The colors exhibit no trend with resonant or non-resonant orbits or object size and suggest that

  11. SOFIA: The future of airborne astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Davidson, Jacqueline A.

    1995-01-01

    For the past 20 years, the 91 cm telescope in NASA's Kuiper Airborne Observatory (KAO) has enabled scientists to observe infrared sources which are obscured by the earth's atmosphere at ground-based sites, and to observe transient astronomical events from anywhere in the world. To augment this capability, the United States and German Space Agencies (NASA and DARA) are collaborating in plans to replace the KAO with a 2.5 meter telescope installed in a Boeing 747 aircraft: SOFIA - The Stratospheric Observatory for Infrared Astronomy. SOFIA's large aperture, wide wavelength coverage, mobility, accessibility, and sophisticated instruments will permit a broad range of scientific studies, some of which are described here. Its unique features complement the capabilities of other future space missions. In addition, SOFIA has important potential as a stimulus for development of new technology and as a national resource for education of K-12 teachers. If started in 1996, SOFIA will be flying in the year 2000.

  12. Planet Imager Discovers Young Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    A debris disk just discovered around a nearby star is the closest thing yet seen to a young version of the Kuiper belt. This disk could be a key to better understanding the interactions between debris disks and planets, as well as how our solar system evolved early on in its lifetime. Hunting for an analog The best way to understand how the Kuiper belt — home to Pluto and thousands of other remnants of early icy planet formation in our solar system — developed would be to witness a similar debris disk in an earlier stage of its life. But before now, none of the disks we've discovered have been similar to our own: the rings are typically too large, the central star too massive, or the stars exist in regions very unlike what we think our Sun's birthplace was like. A collaboration led by Thayne Currie (National Astronomical Observatory of Japan) has changed this using the Gemini Planet Imager (GPI), part of a new generation of extreme adaptive-optics systems. The team discovered a debris disk of roughly the same size as the Kuiper belt orbiting the star HD 115600, located in the nearest OB association. The star is only slightly more massive than our Sun, and it lives in a star-forming region similar to the early Sun's environment. HD 115600 is different in one key way, however: it is only 15 million years old. This means that observing it gives us the perfect opportunity to observe how our solar system might have behaved when it was much younger. A promising future GPI's spatially-resolved spectroscopy, combined with measurements of the reflectivity of the disk, have led the team to suspect that the disk might be composed partly of water ice, just as the Kuiper belt is. The disk also shows evidence of having been sculpted by the motions of giant planets orbiting the central star, in much the same way as the outer planets of our solar system may have shaped the Kuiper belt. The observations of HD 115600 are some of the very first to emerge from GPI and the new

  13. A Rapid Turn-around, Scalable Big Data Processing Capability for the JPL Airborne Snow Observatory (ASO) Mission

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.

    2014-12-01

    The JPL Airborne Snow Observatory (ASO) is an integrated LIDAR and Spectrometer measuring snow depth and rate of snow melt in the Sierra Nevadas, specifically, the Tuolumne River Basin, Sierra Nevada, California above the O'Shaughnessy Dam of the Hetch Hetchy reservoir, and the Uncompahgre Basin, Colorado, amongst other sites. The ASO data was delivered to water resource managers from the California Department of Water Resources in under 24 hours from the time that the Twin Otter aircraft landed in Mammoth Lakes, CA to the time disks were plugged in to the ASO Mobile Compute System (MCS) deployed at the Sierra Nevada Aquatic Research Laboratory (SNARL) near the airport. ASO performed weekly flights and each flight took between 500GB to 1 Terabyte of raw data, which was then processed from level 0 data products all the way to full level 4 maps of Snow Water Equivalent, albedo mosaics, and snow depth from LIDAR. These data were produced by Interactive Data analysis Language (IDL) algorithms which were then unobtrusively and automatically integrated into an Apache OODT and Apache Tika based Big Data processing system. Data movement was both electronic and physical including novel uses of LaCie 1 and 2 TeraByte (TB) data bricks and deployment in rugged terrain. The MCS was controlled remotely from the Jet Propulsion Laboratory, California Institute of Technology (JPL) in Pasadena, California on behalf of the National Aeronautics and Space Administration (NASA). Communication was aided through the use of novel Internet Relay Chat (IRC) command and control mechanisms and through the use of the Notifico open source communication tools. This talk will describe the high powered, and light-weight Big Data processing system that we developed for ASO and its implications more broadly for airborne missions at NASA and throughout the government. The lessons learned from ASO show the potential to have a large impact in the development of Big Data processing systems in the years

  14. Constraining Annual Water Balance Estimates with Basin-Scale Observations from the Airborne Snow Observatory during the Current Californian Drought

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Painter, T. H.; Marks, D. G.; Hedrick, A. R.; Deems, J. S.; Patterson, V.; McGurk, B. J.

    2015-12-01

    One of the great unknowns in mountain hydrology is how much water is stored within a seasonal snowpack at the basin scale. Quantifying mountain water resources is critical for assisting with water resource management, but has proven elusive due to high spatial and temporal variability of mountain snow cover, complex terrain, accessibility constraints and limited in-situ networks. The Airborne Snow Observatory (ASO, aso.jpl.nasa.gov) uses coupled airborne LiDAR and spectrometer instruments for high resolution snow depth retrievals which are used to derive unprecedented basin-wide estimates of snow water mass (snow water equivalent, SWE). ASO has been operational over key basins in the Sierra Nevada Mountains in California since 2013. Each operational year has been very dry, with precipitation in 2013 at 75% of average, 2014 at 50% of average and 2015 - the lowest snow year on record for the region. With vastly improved estimates of the snowpack water content from ASO, we can now for the first time conduct observation-based mass balance accounting of surface water in snow-dominated basins, and reconcile these estimates with observed reservoir inflows. In this study we use ASO SWE data to constrain mass balance accounting of basin annual water storages to quantify the water contained within the snowpack above the Hetch Hetchy water supply reservoir (Tuolumne River basin, California). The analysis compares and contrasts annual snow water volumes from observed reservoir inflows, snow water volume estimates from ASO, a physically based model that simulates the snowpack from meteorological inputs and a semi-distributed hydrological model. The study provides invaluable insight to the overall volume of water contained within a seasonal snowpack during a severe drought and how these quantities are simulated in our modelling systems. We envisage that this research will be of great interest to snowpack modellers, hydrologists, dam operators and water managers worldwide.

  15. Integrating snow albedo from the Airborne Snow Observatory into the distributed energy balance snowmelt model iSnobal

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.; Marks, D. G.; Hedrick, A. R.

    2015-12-01

    Since 2013 the Airborne Snow Observatory (ASO) has been measuring spatial and temporal distribution of both snow water equivalent and snow albedo, the two most critical properties for understanding snowmelt runoff and timing, across key basins in the Western US. It is generally understood that net solar radiation (as controlled by variations in snow albedo and irradiance) provides the energy available for melt in almost all snow-covered environments. Until now, sparse measurements have restricted the ability to utilize measured net solar radiation in energy balance models, and current process simulations and model prediction of albedo evolution rely on oversimplifications of the processes. Data from ASO offers the unprecedented opportunity to utilize weekly measurements of spatially extensive spectral snow albedo to constrain and update snow albedo in a distributed snowmelt model for the first time. Here, we first investigate the sensitivity of the snow energy balance model SNOBAL to prescribed changes in snow albedo at two instrumented alpine catchments: at the point scale across 10 years at Senator Beck Basin Study Area in the San Juan Mountains, southwestern Colorado, and at the distributed scale across 25 years at Reynolds Creek Experimental Watershed, Idaho. We then compare distributed energy balance and snowmelt results across the ASO measurement record in the Tuolumne Basin in the Sierra Nevada Mountains, California, for model runs with and without integrated snow albedo from ASO.

  16. Stratospheric Observatory for Infrared Astronomy (SOFIA) science rationale

    NASA Technical Reports Server (NTRS)

    Davidson, Jacqueline A.; Erickson, Edwin F.

    1989-01-01

    SOFIA, a proposed 3-meter class telescope in a Boeing 747 aircraft, would have the ability to make astronomical observations over a wavelength range from 0.3 microns to 1.6mm. Relative to the KAO (Kuiper Airborne Observatory) the larger telescope on SOFIA would provide a factor of 10 improvement in sensitivity for compact sources and a factor of 3 improvement in (diffraction-limited) angular resolution at wavelengths beyond 30 microns. In addition, SOFIA will retain the major features of the KAO which have made the airborne astronomy program so successful. Among these are continuous in-flight access to focal plane instruments while flying at or above 41,000 ft altitude; pointing stability of 0.2 arcseconds; and mobility and scheduling flexibility to accommodate targets of opportunity such as comets, eclipses, occultations, and novae.

  17. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.

    1989-01-01

    SOFIA will be a three meter class telescope operating in a Boeing 747, offering astronomers routine access to infrared wavelengths unavailable from the ground, and with the means to observe transient astronomical events from anywhere in the world. The concept is based on 15 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA will replace in the mid 1990's. SOFIA's wavelength range covers nearly four decades of the electromagnetic spectrum: from the visible, throughout the infrared and submillimeter, to the microwave region. Relative to the KAO, SOFIA will be roughly ten times more sensitive for compact sources, enabling observations of fainter objects and measurements at higher spectral resolution. Also, it will have three times the angular resolving power for wavelengths greater than 30 microns, permitting more detailed imaging at far infrared wavelengths.

  18. NASA's Airborne Astronomy Program - Lessons For SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2007-07-01

    Airborne astronomy was pioneered and has evolved at NASA Ames Research Center near San Francisco, California, since 1965. Nowhere else in the world has a similar program been implemented. Its many unique features deserve description, especially for the benefit of planning the operation of SOFIA, the Stratospheric Observatory for Infrared Astronomy, and in particular since NASA Headquarters’ recent decision to base SOFIA operations at Dryden Flight Research Center at Edwards, California instead of at Ames. The history of Ames’ airborne astronomy program is briefly summarized. Discussed in more detail are the operations and organization of the 21-year Kuiper Airborne Observatory (KAO) program, which provide important lessons for SOFIA. The KAO program is our best prototype for planning effective SOFIA operations. Principal features of the KAO program which should be retained on SOFIA are: unique science, innovative new science instruments and technologies, training of young scientists, an effective education and public outreach program, flexibility, continuous improvement, and efficient operations with a lean, well integrated team. KAO program features which should be improved upon with SOFIA are: (1) a management structure that is dedicated primarily to safely maximizing scientific productivity for the resources available, headed by a scientist who is the observatory director, and (2) stimuli to assure prompt distribution and accessibility of data to the scientific community. These and other recommendations were recorded by the SOFIA Science Working Group in 1995, when the KAO was decommissioned to start work on SOFIA. Further operational and organizational factors contributing to the success of the KAO program are described. Their incorporation into SOFIA operations will help assure the success of this new airborne observatory. SOFIA is supported by NASA in the U.S. and DLR (the German Aerospace Center) in Germany.

  19. The Airborne Snow Observatory: fusion of imaging spectrometer and scanning lidar for studies of mountain snow cover (Invited)

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Andreadis, K.; Berisford, D. F.; Goodale, C. E.; Hart, A. F.; Heneghan, C.; Deems, J. S.; Gehrke, F.; Marks, D. G.; Mattmann, C. A.; McGurk, B. J.; Ramirez, P.; Seidel, F. C.; Skiles, M.; Trangsrud, A.; Winstral, A. H.; Kirchner, P.; Zimdars, P. A.; Yaghoobi, R.; Boustani, M.; Khudikyan, S.; Richardson, M.; Atwater, R.; Horn, J.; Goods, D.; Verma, R.; Boardman, J. W.

    2013-12-01

    Snow cover and its melt dominate regional climate and water resources in many of the world's mountainous regions. However, we face significant water resource challenges due to the intersection of increasing demand from population growth and changes in runoff total and timing due to climate change. Moreover, increasing temperatures in desert systems will increase dust loading to mountain snow cover, thus reducing the snow cover albedo and accelerating snowmelt runoff. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still poorly quantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. Recognizing this need, JPL developed the Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. Critical in the design of the ASO system is the availability of snow water equivalent and albedo products within 24 hours of acquisition for timely constraint of snowmelt runoff forecast models. In spring 2013, ASO was deployed for its first year of a multi-year Demonstration Mission of weekly acquisitions in the Tuolumne River Basin (Sierra Nevada) and monthly acquisitions in the Uncompahgre River Basin (Colorado). The ASO data were used to constrain spatially distributed models of varying complexities and integrated into the operations of the O'Shaughnessy Dam on the Hetch Hetchy reservoir on the Tuolumne River. Here we present the first results from the ASO Demonstration Mission 1 along with modeling results with and without the constraint by the ASO's high spatial resolution and spatially

  20. Converting Snow Depth to SWE: The Fusion of Simulated Data with Remote Sensing Retrievals and the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Marks, D. G.; Painter, T. H.; Hedrick, A. R.; Deems, J. S.

    2015-12-01

    Snow cover monitoring has greatly benefited from remote sensing technology but, despite their critical importance, spatially distributed measurements of snow water equivalent (SWE) in mountain terrain remain elusive. Current methods of monitoring SWE rely on point measurements and are insufficient for distributed snow science and effective management of water resources. Many studies have shown that the spatial variability in SWE is largely controlled by the spatial variability in snow depth. JPL's Airborne Snow Observatory mission (ASO) combines LiDAR and spectrometer instruments to retrieve accurate and very high-resolution snow depth measurements at the watershed scale, along with other products such as snow albedo. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage SWE from the measured snow depths. Snow density is a spatially and temporally variable property that cannot yet be reliably extracted from remote sensing techniques, and is difficult to extrapolate to basin scales. However, some physically based snow models have shown skill in simulating bulk snow densities and therefore provide a pathway for snow depth to SWE conversion. Leveraging model ability where remote sensing options are non-existent, ASO employs a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. After an adjustment scheme guided by in-situ data, these density estimates are used to derive the elusive spatial distribution of SWE from the observed snow depth distributions from ASO. In this study, we describe how the process of fusing model data with remote sensing retrievals is undertaken in the context of ASO along with estimates of uncertainty in the final SWE volume products. This work will likely be of interest to those working in snow hydrology, water resource management and the broader remote sensing community.

  1. Stratospheric Observatory For Infrared Astronomy (SOFIA). Phase A: System concept description

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Infrared astronomers have made significant discoveries using the NASA/Ames Research Center C-141 Kuiper airborne Observatory (KAO) with its 0.91-meter telescope. The need for a 3-meter class airborne observatory has been established to improve astronomy data gathering capability. The new system envisioned by NASA and the international community of astronomers will be known as the Stratospheric Observatory for Infrared Astronomy (SOFIA). The platform of choice for SOFIA is a modified Boeing 747SP. SOFIA is viewed as a logical progression from the KAO. Potentially, a 3-meter telescope operating at the altitude achievable by the 747SP aircraft can be 11 times more sensitive than the KAO, can have 3.3 times better angular resolution, and will allow observations of compact sources in a volume of space up to 36 times that of the KAO. The KAO has enabled detection of about 15 percent of the far infrared IRAS survey point-sources; SOFIA should be able to detect them all. This document presents the results of in-house ARC and contracted concept definition studies for SOFIA. Using the ARC-based Kuiper Airborne Observatory as a basis for both SOFIA design and operations concepts, the SOFIA system concept has been developed with a view toward demonstrating mission and technical feasibility, and preparing preliminary cost estimates. The reference concept developed is not intended to represent final design, and should be treated accordingly. The most important products of this study, other than demonstration of system feasibility, are the understanding of system trade-offs and the development of confidence in the technology base that exists to move forward with a program leading to implementation of the Stratospheric Observatory for Infrared Astronomy (SOFIA).

  2. Airborne spectrophotometry of P/Halley from 16 to 30 microns

    NASA Technical Reports Server (NTRS)

    Herter, T.; Gull, G. E.; Campins, H.

    1986-01-01

    Comet Halley was observed in the 16 to 30 micron region using the Cornell University 7-channel spectrometer (resolution = 0.02) on board the Kuiper Airborne Observatory on 1985 Dec. 14.2. A 30-arcsec aperture (FWHM) was used. Measurements centered on the nuclear condensation micron indicate that if present, the 20 micron silicate feature is very weak, and that a relatively narrow strong feature centered at 28.4 microns possibly exists. However, this feature may be an artifact of incomplete correction for telluric water vapor absorption.

  3. The NASA Airborne Snow Observatory: Demonstration Mission-3 and the Path Forward to a Broader ASO Program

    NASA Astrophysics Data System (ADS)

    Painter, T. H.

    2015-12-01

    The NASA Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. This talk presents results from the third Demonstration Mission that occurred during the intense California drought of spring 2015, a snow year far worse than the previously worst snow year on record of 2014, and an overview of the various analyses that are finally available due to the uniqueness of the ASO data. In 2015, ASO provided complete basin coverage for the Tuolumne, Merced, Lakes, Rush Creek, and Middle+South Forks of Kings River Basins in the California Sierra Nevada and the Upper Rio Grande, Conejos, and Uncompahgre Basins in the Colorado Rocky Mountains. ASO performed its first wintertime acquisitions in the Tuolumne Basin in response to water managers' needs to quantify SWE volume in what was already realized as dire conditions. Analyses show that with ASO data, river flows and reservoir inflows from the ASO acquisition date to 1 July can be estimated with uncertainties of less than 2%. These results provide enormous value in management operational flexibility for the diversity of needs, and provide strong scientific constraints on the physical processes controlling snowmelt runoff. Snowmelt runoff models are markedly better constrained due to the now accurate knowledge of the distribution of snow water equivalent. With the ASO high-resolution spectrometer and lidar data for a snow-free acquisition, we can determine surface classifications, vegetation heights, and river networks. These data allow runoff models to be accurately and rapidly developed with unprecedented accuracy. These data are now being used to constrain models of varying complexity. Finally, we discuss the path forward on expanding ASO to cover the entire Sierra Nevada and the

  4. Water Ice on Kuiper Belt Object 1996 TO66

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Cruikshank, D. P.; Pendleton, Y.

    1999-01-01

    The 1.40-2.40 micron spectrum of Kuiper Belt object (KBO) 1996 TO66 was measured at the Keck Observatory in September 1998. It's spectrum shows the strong absorptions near 1.5 and 2.0 micron characteristic of water ice--the first such detection on a Kuiper Belt object. The depth of the absorption bands and the continuum reflectance of 1996 TO66 also suggest the presence of a black to slightly blue-colored, spectrally featureless particulate material as a minority component mixed with the water ice. In addition, there is evidence that the intensity of the water bands in the spectrum of 1996 TO66 vary with rotational phase suggesting that it has a "patchy" surface.

  5. High fidelity remote sensing of snow properties from MODIS and the Airborne Snow Observatory: Snowflakes to Terabytes

    NASA Astrophysics Data System (ADS)

    Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.

    2012-12-01

    The response of the cryosphere to climate forcings largely determines Earth's climate sensitivity. However, our understanding of the strength of the simulated snow albedo feedback varies by a factor of three in the GCMs used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, mainly caused by uncertainties in snow extent and the albedo of snow-covered areas from imprecise remote sensing retrievals. Additionally, the Western US and other regions of the globe depend predominantly on snowmelt for their water supply to agriculture, industry and cities, hydroelectric power, and recreation, against rising demand from increasing population. In the mountains of the Upper Colorado River Basin, dust radiative forcing in snow shortens snow cover duration by 3-7 weeks. Extended to the entire upper basin, the 5-fold increase in dust load since the late-1800s results in a 3-week earlier peak runoff and a 5% annual loss of total runoff. The remotely sensed dynamics of snow cover duration and melt however have not been factored into hydrological modeling, operational forecasting, and policymaking. To address these deficiencies in our understanding of snow properties, we have developed and validated a suite of MODIS snow products that provide accurate fractional snow covered area and radiative forcing of dust and carbonaceous aerosols in snow. The MODIS Snow Covered Area and Grain size (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithms, developed and transferred from imaging spectroscopy techniques, leverage the complete MODIS surface reflectance spectrum. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. We have created the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties, and provide complete

  6. Tree species identification in an African Savanna with airborne imaging spectroscopy and LiDAR from the Carnegie Airborne Observatory (CAO) using stacked support vector machines

    NASA Astrophysics Data System (ADS)

    Baldeck, C. A.; Colgan, M.; Féret, J.; Asner, G. P.

    2012-12-01

    Airborne remote sensing data provide promising opportunities for species identification of individual tree and shrub crowns across large areas which cannot be mapped from the ground. Previous investigations of the potential for species identification of crowns from airborne data have focused on pixel-level information (0.5-1m2), and thus have been unable to take advantage of the structural information that exist at the crown level. Hyperspectral data consisting of 58 bands from 517 to 1054nm and LiDAR (light detection and ranging) data providing vegetation height information were acquired over several landscapes within Kruger National Park, South Africa, by the CAO in 2008 at 1.1m spatial resolution. Over 1,000 individual trees and shrubs were mapped and identified in the field to construct species spectral and structural libraries. We used stacked support vector machines (SVM) that incorporate pixel-level spectral information and crown-level structural information to predict species identity for individual tree crowns. The addition of a crown-level classification step that incorporates crown structural information significantly improved model accuracy by ~6% and our prediction accuracy of the final model was ~75% for 16 species classes. This model was then used to predict the species identity of individual crowns across multiple airborne-mapped landscapes, made possible by an automated crown segmentation algorithm. The resultant species maps will make it possible to examine the environmental controls over individual species distributions and tree community composition, and provide important landscape-scale species distribution information relevant to park management and conservation.

  7. The Kuiper Belt Recovery Program

    NASA Astrophysics Data System (ADS)

    Parker, Joel; Allen, Lynne; Gladman, Brett; Hergenrother, Carl; Kavelaars, J. J.

    2002-08-01

    The number of known Kuiper belt objects continues to increase each year, and the rate will soon accelerate significantly due to new and continuing wide-field projects dedicated to the discovery of these outer solar system bodies. A focused program dedicated to the recovery of these objects is necessary if the considerable effort and observing time spent on the discoveries are to have any long-term scientific significance. Our project explicitly addresses that need by providing reliable recovery observations (integrated with a CFHT survey we are conducting) at sufficient frequency to keep pace with the discoveries that need follow-up, as well as to provide photometric data for use in analysis of Kuiper belt physical properties such as size distribution, dynamics, formation, and structure. This NOAO proposal requests two KPNO observing runs at the end of semester 2002B to continue our successful recovery project. Our measurements will assure that the calculated orbits are determined well enough for future photometric and spectroscopic observations for physical studies. We have an efficient and proven pipeline to: find objects, provide sub- arcsecond absolute astrometry and calibrated photometry, determine orbits, and report results to the Minor Planet Center to refine the orbital elements.

  8. The Kuiper Belt Recovery Program

    NASA Astrophysics Data System (ADS)

    Parker, Joel; Allen, Lynne; Gladman, Brett; Grav, Tommy; Hergenrother, Carl; Holman, Matthew; Kavelaars, J. J.

    2002-02-01

    The number of known Kuiper belt related objects is increasing at an accelerated rate due to many wide-field projects dedicated to the discovery of these outer solar system bodies. A focused and dedicated recovery program is necessary and urgent if the considerable effort and observing time spent on the discoveries are to have any long-term scientific significance. This project (integrated with a CFHT survey we are conducting) will address that need by providing reliable recovery observations at sufficient frequency to keep pace with the discoveries that need follow-up, as well as to provide photometric data for use in analysis of Kuiper belt physical properties such as size distribution, dynamics, formation, and structure. Our measurements will assure that the calculated orbits are determined well enough for future photometric and spectroscopic observations for physical studies. We have an efficient and proven pipeline to: find objects, provide sub-arcsecond absolute astrometry and calibrated photometry, determine orbits, and report results to the Minor Planet Center to refine the orbital elements.

  9. Airborne and groundbased spectrophotometry of comet P/Halley from 5-13 micrometers

    NASA Technical Reports Server (NTRS)

    Bregman, J. D.; Witteborn, F. C.; Allamandola, L. J.; Campins, H.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Tielens, A. G. G. M.

    1987-01-01

    Spectrophotometry of comet Halley from 5-13 microns was obtained from the Kuiper Airborne Observatory and from the Lick Observatory Nickel Telescope, revealing a strong broad emission band at 10 microns and a weak feature at 6.8 microns. The 10-micron band is identified with silicate materials, and the primary component of the silicate emission is suggested to be due to olivine. The 6.8 micron feature may be due either to carbonates or the C-H deformation mode in organic molecules. The data indicate that small particles are abundant in the coma and that the dust contains at least two physically separate components. Significant spatial and temporal variations are also noted in the spectrum.

  10. Airborne astronomy with a 150 micrometer - 500 micrometer heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Betz, A. L.

    1991-01-01

    This report summarizes work done under NASA Grant NAG2-254 awarded to the University of California. The project goal was to build a far-infrared heterodyne spectrometer for NASA's Kuiper Airborne Observatory (KAO), and to use this instrument to observe atomic and molecular spectral lines from the interstellar medium. This goal was successfully achieved; the spectrometer is now in routine use aboard the KAO. Detections of particular note have been the 370 micrometers line of neutral atomic carbon, the 158 micrometers transition of ionized carbon, many of the high-J rotational lines of 12CO and 13CO between J=9-8 and J=22-21, the 119 micron ground-state rotational line of OH, and the 219 micron ground-state rotational line of H2D(+). All of these lines were observed at spectral resolutions exceeding 1 part in 10(exp 6), thereby allowing accurate line shapes and Doppler velocities to be measured.

  11. Airborne spectrophotometry of Comet Halley from 5 to 9 microns

    NASA Technical Reports Server (NTRS)

    Campins, H.; Bregman, J. D.; Witteborn, F. C.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Allamandola, Louis J.; Tielens, Alexander G. G. M.

    1986-01-01

    Spectrophotometry from 5 to 9 microns (resolution = 0.02) of comet Halley was obtained from the Kuiper Airborne Observatory on 1985 Dec. 12.1 and 1986 April 8.6 and 10.5 UT. Two spectral features are apparent in all the observations, one from 5.24 to 5.6 microns, and the silicate emission feature which has an onset between 7 and 8 microns. There is no evidence for the 7.5 microns feature observed by the Vega 1 spacecraft; the large difference between the areal coverage viewed from the spacecraft and the airplane may explain the discrepancy. Color temperatures significantly higher than a blackbody indicate that small particles are abundant in the coma. Significant spatial and temporal variations in the spectrum show trends similar to those observed from the ground.

  12. Gerard Kuiper and the Infrared Detector

    NASA Astrophysics Data System (ADS)

    Sears, Derek

    2013-10-01

    The life and contributions of Gerard Kuiper have been documented by Dale Cruikshank in his National Academy of Sciences biography. I will argue that particularly important in this eventful life was Kuiper's war time experiences. Kuiper's wartime role evolved as the war unfolded, but towards the end he was charged by the US military with reporting German progress with war-related technologies and the activities of scientists under Nazi control. He interviewed a great many scientists, including his own PhD mentor (Ejnar Hertzsprung), and when Kuiper was the only person available, he interviewed concentration-camp victims. He carried briefing sheets that identified the technologies being sought by the allies and the major fraction of these involved infrared equipment. He sent back to the USA boxes of documents, and large amounts of equipment, and he stressed to the military his interest in these for his own research. It seems very likely that in this way an effective PbS infrared detector, so critical to Kuiper's career and the future of planetary science, came to the USA and to Robert Cashman's laboratory at Northwestern University. As the war was winding down, Cashman and Kuiper worked together to develop a practical infrared spectrometer for astronomical use. Within months, Kuiper discovered the C02 atmospheres on Mars and Venus.

  13. Collisions in the Kuiper belt

    NASA Astrophysics Data System (ADS)

    Brown, Michael

    2007-07-01

    For most of the 15 year history of observations of Kuiper belt objects, it has been speculated that impacts must have played a major role in shaping the physical and chemical characteristics of these objects, yet little direct evidence of the effects of such impacts has been seen. The past 18 months, however, have seen an explosion of major new discoveries giving some of the first insights into the influence of this critical process. From a diversity of observations we have been led to the hypotheses that: {1} satellite-forming impacts must have been common in the Kuiper belt; {2} such impacts led to significant chemical modification; and {3} the outcomes of these impacts are sufficiently predictable that we can now find and study these impact-derived systems by the chemical and physical attributes of both the satellites and the primaries. If our picture is correct, we now have in hand for the first time a set of incredibly powerful tools to study the frequency and outcome of collisions in the outer solar system. Here we propose three linked projects that would answer questions critical to the multiple prongs of our hypothesis. In these projects we will study the chemical effects of collisions through spectrophotometric observations of collisionally formed satellites and through the search for additional satellites around primaries with potential impact signatures, and we will study the physical effects of impacts through the examination of tidal evolution in proposed impact systems. The intensive HST program that we propose here will allow us to fully test our new hypotheses and will provide the ability to obtain the first extensive insights into outer solar system impact processes.

  14. The state of knowledge concerning the Kuiper belt

    NASA Technical Reports Server (NTRS)

    Levison, Harold F.

    1992-01-01

    The arguments for and against the idea that most short-period comets originate in the Kuiper belt are discussed. Observational constraints on the distribution of mass in the Kuiper belt are reviewed as well as a model of the physical conditions that now exist. Finally, predictions from this model about the detectability of the Kuiper belt are compared to optical surveys.

  15. 5- to 13-micron airborne observations of Comet Wilson 1986l

    SciTech Connect

    Lynch, D.K.; Russell, R.W.; Campins, H.; Witteborn, F.C.; Bregman, J.D. Planetary Science Institute, Tucson, AZ Florida Univ., Gainesville NASA, Ames Research Center, Moffett Field, CA )

    1989-12-01

    Comet Wilson was observed from the Kuiper Airborne Observatory approximately 23.6 and 25.7 Apr. 1987, UT (approx. 3 to 5 days after perihelion) using the NASA-Ames Faint Object Grating Spectrometer. Spectrophotometric data were observed with a 21 inch aperture between 5 and 13 micrometer and with a spectral resolution of 50 to 100. Spectra of the inner coma and nucleus reveal a fairly smooth continuum with little evidence of silicate emission. The 5 to 8 micrometer color temperature of the comet was 300 + or - 15 K, approx. 15 percent higher than the equilibrium blackbody temperature. All three spectra of the nucleus show a new emission feature at approx. 12.25 micrometer approx. two channels (.22 micrometer) wide. Visual and photographic observations made during the time of these observations showed a broad faint, possible two component tail. No outburst activity was observed. 21 refs.

  16. Evidence for CO in Jupiter's atmosphere from airborne spectroscopic observations at 5 microns

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Treffers, R. R.

    1978-01-01

    High-altitude (12.4 km) spectra of Jupiter recorded at the Kuiper Airborne Observatory are analyzed for the presence of CO absorption lines. A line-by-line comparison of Jupiter's spectrum with that of carbon monoxide is presented, as well as a correlation analysis that includes the influence of other gases present in Jupiter's atmosphere (CH4, NH3, H2O, PH3, and GeH4). The resulting evidence points strongly to the presence of carbon monoxide in Jupiter's atmosphere, thus strengthening Beer's evidence for it. Possible explanations for the existence and observability of Jovian CO, including convection from hotter, deeper layers or decomposition of organic molecules, are explored. A recent suggestion that the Jovian CO is restricted to stratospheric levels is not supported by the observations.

  17. Airborne spectrophotometry of P/Halley from 20 to 65 microns

    NASA Technical Reports Server (NTRS)

    Glaccum, W.; Moseley, S. H.; Campins, H.; Loewenstein, R. F.

    1986-01-01

    Simultaneous 20 to 65 microns spectrometry and 100 microns photometry of P/Halley obtained on board the Kuiper Airborne Observatory (KAO) in 1985 Dec. and 1986 April are discussed. Spectra with resolution 30 to 50 were obtained with the NASA/Goddard 24 channel grating spectrometer. Measurements were made on the nucleus as well as 5 points along and perpendicular to the Sun-tail direction. The observations reveal the absence of any strong spectral features. The color temperature of the dust varies over time scales as short as 2 days, but is higher than that expected for a rapidly rotating blackbody at the same distance from the Sun. The color temperature does not vary within 1 arcmin of the nucleus, but the coma is brighter on the sunward side than on the antisunward side.

  18. SOFIA'S Challenge: Scheduling Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2005-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne astronomical observatory, and will commence operations in 2005. The facility consists of a 747-SP modified to accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science flights per year over its 20 year lifetime. Depending on the nature of the instrument used during flight, 5-15 observations per flight are expected. The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20deg to 60deg of elevation. The telescope has minimal lateral flexibility; thus, the aircraft must turn constantly to maintain the telescope's focus on an object during observations. A significant problem in future SOFIA operations is that of scheduling flights in support of observations. Investigators are expected to propose small numbers of observations, and many observations must be grouped together to make up single flights. Flight planning for the previous generation airborne observatory, the Kuiper Airborne Observatory (KAO), was done by hand; planners had to choose takeoff time, observations to perform, and decide on setup-actions (called "dead-legs") to position the aircraft prior to observing. This task frequently required between 6-8 hours to plan one flight The scope of the flight planning problem for supporting GI observations with the anticipated flight rate for SOFIA makes the manual approach for flight planning daunting. In response, we have designed an Automated Flight Planner (AFP) that accepts as input a set of requested observations, designated flight days, weather predictions and fuel limitations, and searches automatically for high-quality flight plans that satisfy all relevant aircraft and astronomer specified constraints. The AFP can generate one candidate flight plan in 5-10 minutes, of computation time, a feat beyond the capabilities of human flight planners. The rate at which the AFP can

  19. CHAOTIC DIFFUSION OF RESONANT KUIPER BELT OBJECTS

    SciTech Connect

    Tiscareno, Matthew S.; Malhotra, Renu

    2009-09-15

    We carried out extensive numerical orbit integrations to probe the long-term chaotic dynamics of the two strongest mean-motion resonances of Neptune in the Kuiper Belt, the 3:2 (Plutinos) and 2:1 (Twotinos). Our primary results include a computation of the relative volumes of phase space characterized by large- and small-resonance libration amplitudes, and maps of resonance stability measured by mean chaotic diffusion rate. We find that Neptune's 2:1 resonance has weaker overall long-term stability than the 3:2-only {approx}15% of Twotinos are projected to survive for 4 Gyr, compared to {approx}27% of Plutinos, based on an extrapolation from our 1-Gyr integrations. We find that Pluto has only a modest effect, causing a {approx}4% decrease in the Plutino population that survives to 4 Gyr. Given current observational estimates, and assuming an initial distribution of particles proportional to the local phase-space volume in the resonance, we conclude that the primordial populations of Plutinos and Twotinos formerly made up more than half the population of the classical and resonant Kuiper Belt. We also conclude that Twotinos were originally nearly as numerous as Plutinos; this is consistent with predictions from early models of smooth giant planet migration and resonance sweeping of the Kuiper Belt and provides a useful constraint for more detailed models.

  20. IDENTIFYING COLLISIONAL FAMILIES IN THE KUIPER BELT

    SciTech Connect

    Marcus, Robert A.; Ragozzine, Darin; Murray-Clay, Ruth A.; Holman, Matthew J.

    2011-05-20

    The identification and characterization of numerous collisional families-clusters of bodies with a common collisional origin-in the asteroid belt has added greatly to the understanding of asteroid belt formation and evolution. More recent study has also led to an appreciation of physical processes that had previously been neglected (e.g., the Yarkovsky effect). Collisions have certainly played an important role in the evolution of the Kuiper Belt as well, though only one collisional family has been identified in that region to date, around the dwarf planet Haumea. In this paper, we combine insights into collisional families from numerical simulations with the current observational constraints on the dynamical structure of the Kuiper Belt to investigate the ideal sizes and locations for identifying collisional families. We find that larger progenitors (r {approx} 500 km) result in more easily identifiable families, given the difficulty in identifying fragments of smaller progenitors in magnitude-limited surveys, despite their larger spread and less frequent occurrence. However, even these families do not stand out well from the background. Identifying families as statistical overdensities is much easier than characterizing families by distinguishing individual members from interlopers. Such identification seems promising, provided the background population is well known. In either case, families will also be much easier to study where the background population is small, i.e., at high inclinations. Overall, our results indicate that entirely different techniques for identifying families will be needed for the Kuiper Belt, and we provide some suggestions.

  1. Two Color Populations of Kuiper Belt and Centaur Objects

    NASA Astrophysics Data System (ADS)

    Tegler, Stephen C.; Romanishin, William; Consolmagno, Guy

    2016-10-01

    We present new optical colors for 64 Kuiper belt objects (KBOs) and Centaur objects measured with the 1.8-meter Vatican Advanced Technology Telescope (VATT) and the 4.3-meter Discovery Channel Telescope (DCT). By combining these new colors with our previously published colors, we increase the sample size of our survey to 154 objects. Our survey is unique in that the uncertainties in our color measurements are less than half the uncertainties in the color measurements reported by other researchers in the literature. Small uncertainties are essential for discerning between a unimodal and a bimodal distribution of colors for these objects as well as detecting correlations between colors and orbital elements. From our survey, it appears red Centaurs have a broader color distribution than grey Centaurs. We find red Centaurs have a smaller orbital inclination angle distribution than grey Centaurs at the 99.3% confidence level. Furthermore, we find that our entire sample of KBOs and Centaurs exhibits bimodal colors at the 99.4% confidence level. KBOs and Centaurs with HV > 7.0 have bimodal colors at the 99.96% confidence level and KBOs with HV < 6.0 have bimodal colors at the 96.3% confidence level.We are grateful to the NASA Solar System Observations Program for support, NAU for joining the Discovery Channel Telescope Partnership, and the Vatican Observatory for the consistent allocation of telescope time over the last 12 years of this project.

  2. Euclid Asteroseismology and Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Huber, Daniel; Stello, Dennis

    2016-02-01

    Euclid, which is primarily a dark-energy/cosmology mission, may have a microlensing component, consisting of perhaps four dedicated one-month campaigns aimed at the Galactic bulge. We show that such a program would yield excellent auxilliary science, including asteroseismology detections for about 100,000 giant stars, and detection of about 1000 Kuiper Belt Objects (KBOs), down to 2--2.5 mag below the observed break in the KBO luminosity function at I˜ 26. For the 400 KBOs below the break, Euclid will measure accurate orbits, with fractional period errors ≲ 2.5%.

  3. WATER ICE IN THE KUIPER BELT

    SciTech Connect

    Brown, M. E.; Fraser, W. C.; Schaller, E. L.

    2012-06-15

    We examine a large collection of low-resolution near-infrared spectra of Kuiper Belt objects (KBOs) and centaurs in an attempt to understand the presence of water ice in the Kuiper Belt. We find that water ice on the surface of these objects occurs in three separate manners: (1) Haumea family members uniquely show surfaces of nearly pure water ice, presumably a consequence of the fragmentation of the icy mantle of a larger differentiated proto-Haumea; (2) large objects with absolute magnitudes of H < 3 (and a limited number to H = 4.5) have surface coverings of water ice-perhaps mixed with ammonia-that appears to be related to possibly ancient cryovolcanism on these large objects; and (3) smaller KBOs and centaurs which are neither Haumea family members nor cold-classical KBOs appear to divide into two families (which we refer to as 'neutral' and 'red'), each of which is a mixture of a common nearly neutral component and either a slightly red or very red component that also includes water ice. A model suggesting that the difference between neutral and red objects due to formation in an early compact solar system either inside or outside, respectively, of the {approx}20 AU methanol evaporation line is supported by the observation that methanol is only detected on the reddest objects, which are those which would be expected to have the most of the methanol containing mixture.

  4. Turning a remotely controllable observatory into a fully autonomous system

    NASA Astrophysics Data System (ADS)

    Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael

    2014-08-01

    We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.

  5. Comparison of airborne CO/sub 2/ flask samples and measurements from the Mauna Loa Observatory during the HAMEC project (June 1980)

    SciTech Connect

    Herbert, G.A.; Harris, T.B.; Chin, J.F.S.

    1983-08-20

    During June 1980, the Hawaii Mesoscale Energy and Climate Project (HAMEC) field program was conducted in the vicinity of the island of Hawaii. The objective of the program was to use the NOAA P3 aircraft to measure meteorological variables upwind and downwind of the island to provide data to evaluate mesoscale models of airflow and cloud physics. One specific objective was to obtain flask samples upwind of the island to confirm that the CO/sub 2/ values observed at the Mauna Loa Observatory (MLO) are representative of the free air at comparable altitudes. On 2 days, carbon dioxide flask samples were exposed aboard the aircraft at the altitude of the observatory and immediately above the trade inversion. Flask pairs in reasonable agreement were obtained on both occasions. During the same period the sampling conditions at MLO were free of obvious local contamination. The average difference between the aircraft measurements at the altitude of the observatory and the continuous CO/sub 2/ record from the observatory over the same period of time was 0.8 mole fraction in ppM. Differences in the individual measurements are discussed with respect to prevailing meteorological conditions. 11 references, 2 figures, 2 tables.

  6. Effect of jet engine exhaust on SOFIA straylight performance. [Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    St. Clair Dinger, Ann

    1993-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is being designed at NASA's Ames Research Center as a replacement for the Kuiper Airborne Observatory (KAO). A 2.5-m Nasmyth telescope will be mounted in a Boeing 747 SP and flown at 41,000 ft, above most of the H2O in the earth's atmosphere. In the original SOFIA design, the telescope is located in front of the wings, as it is in the KAO. An alternative design with the telescope placed behind the wings is being studied as part of an effort to reduce cost and weight. In this location, the emission from the engines and the hot H2O molecules in the exhaust become significant straylight sources. The engines and exhaust radiate into the telescope cavity, and illuminate the primary and tertiary mirrors at low telescope elevation angles. The APART/PADE program was used to analyze the straylight at the SOFIA focal plane as a function of wavelength and telescope elevation angle. The emission from the engines and exhaust gas is compared to that from the earth and the telescope itself. Based on the results of this analysis, the SOFIA telescope has been moved behind the wings.

  7. SOFIA's Airborne Astronomy Ambassadors: An External Evaluation of Cycle 1

    ERIC Educational Resources Information Center

    Phillips, Michelle

    2015-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a partnership between NASA and the German Aerospace Center (DLR). The observatory itself is a Boeing 747 SP that has been modified to serve as the world's largest airborne research observatory. The SOFIA Airborne Astronomy Ambassadors (AAA) program is a component of SOFIA's…

  8. Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns - Time history of the dust continuum and line emission

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.

    1993-01-01

    Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.

  9. An investigation of the optimization of parameters affecting the implementation of fourier transform spectroscopy at 20-500 micron from the C-141 airborne infrared observatory

    NASA Technical Reports Server (NTRS)

    Thompson, R. I.; Erickson, E. F.

    1976-01-01

    A program for 20-500 micron spectroscopy from the NASA flying C141 infrared observatory is being carried out with a Michelson interferometer. The parameters affecting the performance of the instrument are studied and an optimal configuration for high performance on the C-141 aircraft is recommended. As each parameter is discussed the relative merits of the two modes of mirror motion (rapid scan or step and integrate) are presented.

  10. Kuiper Belt Objects Along the Pluto-Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David (Principal Investigator)

    1997-01-01

    The science objective of this work is to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto Express. Our hope is that we will find a Kuiper Belt object or objects close enough that a spacecraft flyby will be possible. If we find a suitable object, the science yield of Pluto Express will be substantially enhanced. The density of objects in the Kuiper Belt is such that we are reasonably likely to find an object close enough to the flight path that on-board gas thrusters can effect a close encounter.

  11. The small numbers of large Kuiper Belt objects

    SciTech Connect

    Schwamb, Megan E.; Brown, Michael E.; Fraser, Wesley C.

    2014-01-01

    We explore the brightness distribution of the largest and brightest (m(R) < 22) Kuiper Belt Objects (KBOs). We construct a luminosity function of the dynamically excited or hot Kuiper Belt (orbits with inclinations >5°) from the very brightest to m(R) = 23. We find for m(R) ≲ 23, a single slope appears to describe the luminosity function. We estimate that ∼12 KBOs brighter than m(R) ∼ 19.5 are present in the Kuiper Belt today. With nine bodies already discovered this suggests that the inventory of bright KBOs is nearly complete.

  12. Distribution of Dust from Kuiper Belt Objects

    NASA Technical Reports Server (NTRS)

    Gorkavyi, Nick N.; Ozernoy, Leonid; Taidakova, Tanya; Mather, John C.; Fisher, Richard (Technical Monitor)

    2000-01-01

    Using an efficient computational approach, we have reconstructed the structure of the dust cloud in the Solar system between 0.5 and 100 AU produced by the Kuiper belt objects. Our simulations offer a 3-D physical model of the 'kuiperoidal' dust cloud based on the distribution of 280 dust particle trajectories produced by 100 known Kuiper belt objects; the resulting 3-D grid consists of 1.9 x 10' cells containing 1.2 x 10" particle positions. The following processes that influence the dust particle dynamics are taken into account: 1) gravitational scattering on the eight planets (neglecting Pluto); 2) planetary resonances; 3) radiation pressure; and 4) the Poynting-Robertson (P-R) and solar wind drags. We find the dust distribution highly non-uniform: there is a minimum in the kuiperoidal dust between Mars and Jupiter, after which both the column and number densities of kuiperoidal dust sharply increase with heliocentric distance between 5 and 10 AU, and then form a plateau between 10 and 50 AU. Between 25 and 45 AU, there is an appreciable concentration of kuiperoidal dust in the form of a broad belt of mostly resonant particles associated with Neptune. In fact, each giant planet possesses its own circumsolar dust belt consisting of both resonant and gravitationally scattered particles. As with the cometary belts simulated in our related papers, we reveal a rich and sophisticated resonant structure of the dust belts containing families of resonant peaks and gaps. An important result is that both the column and number dust density are more or less flat between 10 and 50 AU, which might explain the surprising data obtained by Pioneers 10 & 11 and Voyager that the dust number density remains approximately distance-independent in this region. The simulated kuiperoidal dust, in addition to asteroidal and cometary dust, might represent a third possible source of the zodiacal light in the Solar system.

  13. INCLINATION MIXING IN THE CLASSICAL KUIPER BELT

    SciTech Connect

    Volk, Kathryn; Malhotra, Renu

    2011-07-20

    We investigate the long-term evolution of the inclinations of the known classical and resonant Kuiper Belt objects (KBOs). This is partially motivated by the observed bimodal inclination distribution and by the putative physical differences between the low- and high-inclination populations. We find that some classical KBOs undergo large changes in inclination over gigayear timescales, which means that a current member of the low-inclination population may have been in the high-inclination population in the past, and vice versa. The dynamical mechanisms responsible for the time variability of inclinations are predominantly distant encounters with Neptune and chaotic diffusion near the boundaries of mean motion resonances. We reassess the correlations between inclination and physical properties including inclination time variability. We find that the size-inclination and color-inclination correlations are less statistically significant than previously reported (mostly due to the increased size of the data set since previous works with some contribution from inclination variability). The time variability of inclinations does not change the previous finding that binary classical KBOs have lower inclinations than non-binary objects. Our study of resonant objects in the classical Kuiper Belt region includes objects in the 3:2, 7:4, 2:1, and eight higher-order mean motion resonances. We find that these objects (some of which were previously classified as non-resonant) undergo larger changes in inclination compared to the non-resonant population, indicating that their current inclinations are not generally representative of their original inclinations. They are also less stable on gigayear timescales.

  14. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    SciTech Connect

    Person, M. J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Sallum, S.; Dunham, E. W.; Collins, P.; Bida, T.; Bright, L.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Tholen, D. J.; Taylor, B.; Wolf, J.; Pfueller, E.; Meyer, A.; and others

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should

  15. Airborne 20-65 micron spectrophotometry of Comet Halley

    NASA Technical Reports Server (NTRS)

    Glaccum, William; Moseley, S. H.; Campins, Humberto C.; Loewenstein, R. F.

    1988-01-01

    Observations of Comet Halley with a grating spectrometer on board the Kuiper Airborne Observatory on four nights in Dec. 1985 to Apr. 1986 are reported. Low resolution 20 to 65 micrometer spectra of the nucleus with a 40 arcsec FWHM beam was obtained on 17 Dec. 1985, and on 15 and 17 Apr. 1986. On 20 Dec. 1985, only a 20 to 35 micrometer spectrum was obtained. Most of the data have been discussed in a paper where the continuum was dealt with. In that paper, models were fit to the continuum that showed that more micron sized particles of grain similar to amorphous carbon were needed to fit the spectrum than were allowed by the Vega SP-2 mass distribution, or that a fraction of the grains had to be made out of a material whose absorption efficiency fell steeper than lambda sup -1 for lambda greater than 20 micrometers. Spectra was also presented taken at several points on the coma on 15 Apr. which showed that the overall shape to the spectrum is the same in the coma. Tabulated values of the data and calibration curves are available. The spectral features are discussed.

  16. The Whipple Mission: Exploring the Kuiper Belt and the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Alcock, Charles; Brown, Michael; Gauron, Tom; Heneghan, Cate; Holman, Matthew; Kenter, Almus; Kraft, Ralph; Livingstone, John; Murray-Clay, Ruth; Nulsen, Paul; Payne, Matthew; Schlichting, Hilke; Trangsrud, Amy; Vrtilek, Jan; Werner, Michael

    2015-11-01

    Whipple will characterize the small body populations of the Kuiper Belt and the Oort Cloud with a blind occultation survey, detecting objects when they briefly (~1 second) interrupt the light from background stars, allowing the detection of much more distant and/or smaller objects than can be seen in reflected sunlight. Whipple will reach much deeper into the unexplored frontier of the outer solar system than any other mission, current or proposed. Whipple will look back to the dawn of the solar system by discovering its most remote bodies where primordial processes left their imprint.Specifically, Whipple will monitor large numbers of stars at high cadences (~12,000 stars at 20 Hz to examine Kuiper Belt events; as many as ~36,000 stars at 5 Hz to explore deep into the Oort Cloud, where events are less frequent). Analysis of the detected events will allow us to determine the size spectrum of bodies in the Kuiper Belt with radii as small as ~1 km. This will allow the testing of models of the growth and later collisional erosion of planetesimals in the early solar system. Whipple will explore the Oort Cloud, potentially detecting objects as far out as ~10,000 AU. This will be the first direct exploration of the Oort Cloud since the original hypothesis of 1950.Whipple is a Discovery class mission that was proposed to NASA in response to the 2014 Announcement of Opportunity. The mission is being developed jointly by the Smithsonian Astrophysical Observatory, Jet Propulsion Laboratories, and Ball Aerospace & Technologies, with telescope optics from L-3 Integrated Optical Systems and imaging sensors from Teledyne Imaging Sensors.

  17. The Whipple Mission: Exploring the Kuiper Belt and the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Alcock, Charles; Kenter, Almus T.; Kraft, Ralph P.; Nulsen, Paul; Payne, Matthew John; Vrtilek, Jan M.; Murray, Stephen S.; Murray-Clay, Ruth; Schlichting, Hilke; Brown, Michael E.; Livingston, John H.; Trangsrud, Amy R.; Werner, Michael W.

    2015-01-01

    Whipple will characterize the small body populations of the Kuiper Belt and the Oort Cloud with a blind occultation survey, detecting objects when they briefly (~1 second) interrupt the light from background stars, allowing the detection of much more distant and/or smaller objects than can be seen in reflected sunlight. Whipple will reach much deeper into the unexplored frontier of the outer solar system than any other mission, current or proposed. Whipple will look back to the dawn of the solar system by discovering its most remote bodies where primordial processes left their imprint.Specifically, Whipple will monitor large numbers of stars at high cadences (~12,000 stars at 20 Hz to examine Kuiper Belt events; as many as ~36,000 stars at 5 Hz to explore deep into the Oort Cloud, where events are less frequent). Analysis of the detected events will allow us to determine the size spectrum of bodies in the Kuiper Belt with radii as small as ~1 km. This will allow the testing of models of the growth and later collisional erosion of planetesimals in the earlysolar system. Whipple will explore the Oort Cloud, detecting objects as far out as ~10,000 AU. This will be the first direct exploration of the Oort Cloud since the original hypothesis of 1950.Whipple is a Discovery class mission that will be proposed to NASA in response to the upcoming Announcement of Opportunity. The mission is being developed jointly by the Smithsonian Astrophysical Observatory, Jet Propulsion Laboratory, and Ball Aerospace & Technologies, with telescope optics from L-3 Integrated Optical Systems.

  18. Seeing Double -- The Discovery of Binaries in the Edgeworth-Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Stephens, Denise

    2007-10-01

    The demotion of Pluto as a planet really started in 1978 with the discovery of its moon Charon. Once it was known to be in a binary system, it was just a matter of time before the determination of Pluto's mass, along with the discovery of other transneptunian objects (TNOs), would lead to its declassification. This example highlights the fact that binary discoveries are critical for determining the mass of TNOs in the Kuiper belt. If we can determine the orbit of a binary system, we can find the mass. An independent measurement of the size of the components then leads to a determination of the bulk density. From the bulk density we can deduce the characteristic composition and structure of these objects. The successful measurement of these fundamental quantities has and will continue to advance our theories on the formation, structure, and evolution of bodies in the outer solar system. This talk focuses on the discovery of binary systems in the Kuiper belt and the current state of our knowledge. To date there are over 50 confirmed binary systems, a number that is an extreme lower limit to the true binary population. In this talk, I'll highlight past and current searches led by Keith Noll (STScI) to find binary systems using the Hubble Space Telescope (HST). My role in this research will be discussed and will lead to a discussion on some of the techniques we are using to identify binary systems at extremely small angular resolutions. Members of our group led by Will Grundy (Lowell Observatory) are calculating orbits for a few of the binary systems, and highlights of his results will be presented. The talk will then conclude with some statistics relating the binary frequency of TNOs to their dynamical classes, and explore what this could imply about the structure and formation of the Kuiper belt.

  19. Kuiper Belt Objects Along the Pluto Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1999-01-01

    The objective of this proposal was to mount a ground-based search for Kuiper Belt objects near the trajectory of the NASA Pluto Express spacecraft. The high density of Kuiper Belt objects established from work on Mauna Kea makes it probable that one or more bodies can be visited by Pluto Express after its encounter with Pluto. The work was funded during its first year through NASA HQ. The second year was funded through Goddard. The third year was never funded.

  20. Discovery of the candidate Kuiper belt object 1992 QB1

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Luu, Jane

    1993-01-01

    The discovery of a new faint object in the outer solar system, 1992 QB1, moving beyond the orbit of Neptune is reported. It is suggested that the 1992 QB1 may represent the first detection of a member of the Kuiper belt (Edgworth, 1949; Kuiper, 1951), the hypothesized population of objects beyond Neptune and a possible source of the short-period comets, as suggested by Whipple (1964), Fernandez (1980), and Duncan et al. (1988).

  1. COLORS OF INNER DISK CLASSICAL KUIPER BELT OBJECTS

    SciTech Connect

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J. E-mail: Stephen.Tegler@nau.ed

    2010-07-15

    We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten inner belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.

  2. SOFIA Project: SOFIA-Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Tseng, Ting

    2007-01-01

    A viewgraph presentation on the SOFIA project is shown. The topics include: 1) Aircraft Information; 2) Major Components of SOFIA; 3) Aircraft External View; 4) Airborne Observatory Layout; 5) Telescope Assembly; 6) Uncoated Primary Mirror; 7) Airborne Astronomy; 8) Requirements & Specifications; 9) Technical Challenges; 10) Observatory Operation; and 11) SOFIA Flight Test.

  3. The Warped Plane of the Classical Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Chiang, Eugene; Choi, Hyomin

    2008-07-01

    By numerically integrating the orbits of the giant planets and of test particles over a period of four billion years, we follow the evolution of the location of the midplane of the Kuiper belt. The Classical Kuiper belt conforms to a warped sheet that precesses with a 1.9 Myr period. The present-day location of the Kuiper belt plane can be computed using linear secular perturbation theory: the local normal to the plane is given by the theory's forced inclination vector, which is specific to every semimajor axis. The Kuiper belt plane does not coincide with the invariable plane, but deviates from it by up to a few degrees in stable zones. For example, at a semimajor axis of 38 AU, the local Kuiper belt plane has an inclination of 1.9 degrees and a longitude of ascending node of 149.9 degrees when referred to the mean ecliptic and equinox of J2000. At a semimajor axis of 43 AU, the local plane has an inclination of 1.9 degrees and a nodal longitude of 78.3 degrees. Only at infinite semimajor axis does the Kuiper belt plane merge with the invariable plane, whose inclination is 1.6 degrees and nodal longitude is 107.7 degrees. A Classical Kuiper belt object keeps its inclination relative to the Kuiper belt plane nearly constant, even while the plane departs from the trajectory predicted by linear theory. The constancy of relative inclination reflects the undamped amplitude of free oscillation; that is, the homogeneous solution to the forced harmonic oscillator equation retains constant amplitude, even while the inhomogeneous solution cannot be written down accurately because the planetary forcing terms are chaotic. Current observations of Classical Kuiper belt objects are consistent with the plane being warped by the giant planets alone, but the sample size will need to increase by a few times before confirmation exceeds 3σ in confidence. In principle, differences between the theoretically expected plane and the observed plane could be used to infer as yet unseen

  4. Integration of fuzzy logic and image analysis for the detection of gullies in the Calhoun critical zone observatory using airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Bastola, S.; Noto, L. V.; Dialynas, Y. G.; Bras, R. L.

    2015-12-01

    The entire Piedmont of the Southeastern United States, where the Calhoun Critical Zone Observatory (CCZO) is located, experienced one of the most severe erosive events in the United States during last two centuries. Forested areas were cleared to cultivate cotton, tobacco and other crops during the nineteenth and early twentieth century and these land use change, together with intense rainfalls, initiated deep gullying. An accurate mapping of these landforms is important since, despite some gully stabilization and reforestation efforts, gullies are still major contributors of sediment to streams. Mapping gullies in the CCZO area is hindered by the presence of dense canopy which precludes the identification through aerial photogrammetry and other traditional remote sensing methods. Moreover, the wide spatial extent of the gullies makes detailed field surveys, for the identification and characterization of entire gullies, a very large and expensive proposition. This work aims to develop and assess an automated set of algorithms to detect and map gullies using morphological characteristics retrieved by very high resolution imagery (VHRI). A one-meter resolution LiDAR DEM is used to derive different morphometric indices whose combination, carried out using spatial analysis methods and fuzzy logic rules, are a tool to identify gullies. This spatial model has been calibrated using the reference perimeters of two gullies that we measured during a recent field survey. The entire procedure attempts to provide estimates of gully erosion patterns, which characterize the entire Calhoun CZO area and to develop and evaluate a method to measure characteristic features of gullies (i.e. depth and volume).

  5. Neptune's Eccentricity and the Nature of the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Ward, William R.; Hahn, Joseph M.

    1998-01-01

    The small eccentricity of Neptune may be a direct consequence of apsidal wave interaction with the trans-Neptune population of debris called the Kuiper belt. The Kuiper belt is subject to resonant perturbations from Neptune, so that the transport of angular momentum by density waves can result in orbital evolution of Neptune as well as changes in the structure of the Kuiper belt. In particular, for a belt eroded out to the vicinity of Neptune's 2:1 resonance at about 48 astronomical units, Neptune's eccentricity can damp to its current value over the age of the solar system if the belt contains slightly more than an earth mass of material out to about 75 astronomical units.

  6. Kuiper Belt Objects Along the Pluto Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David C.

    1998-01-01

    The science objective of this work was to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto-Kuiper Express. Currently, launch is scheduled for 2004 with a flight time of about 1 decade. Early identification of post-Pluto targets is important for mission design and orbit refinement. An object or objects close enough to the flight path can be visited and studied at high resolution, using only residual gas in the thrusters to affect a close encounter.

  7. Carnegie Observatories

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Carnegie Observatories were founded in 1902 by George Ellery Hale. Their first facility was the MOUNT WILSON OBSERVATORY, located in the San Gabriel Mountains above Pasadena, California. Originally a solar observatory, it moved into stellar, galactic and extragalactic research with the construction of the 60 in (1.5 m), and 100 in (2.5 m) telescopes, each of which was the largest in the world...

  8. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Savage, M. L.; Becklin, E. E.

    2015-09-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA), project has been operating airborne astronomy flights from Palmdale, California since 2011. The observatory consists of a modified 747sp aircraft with a 2.5meter telescope in the tail section. In addition to observing flights out of Palmdale, Ca. this airborne observatory has been able to take advantage of its mobility to observe in the southern hemisphere (New Zealand), to perform multi-wavelength observations of the Super Novae (SN 2014b) in 2014, and to intersect the track of a Pluto Occultation in the southern hemisphere just a few weeks prior to the New Horizons mission fly by of the planet in summer 2015. Science results, observatory operations, current instrument status and participation in future instrument developments, over the lifetime of the observatory will be discussed.

  9. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  10. The binary Kuiper-belt object 1998 WW31.

    PubMed

    Veillet, Christian; Parker, Joel Wm; Griffin, Ian; Marsden, Brian; Doressoundiram, Alain; Buie, Marc; Tholen, David J; Connelley, Michael; Holman, Matthew J

    2002-04-18

    The recent discovery of a binary asteroid during a spacecraft fly-by generated keen interest, because the orbital parameters of binaries can provide measures of the masses, and mutual eclipses could allow us to determine individual sizes and bulk densities. Several binary near-Earth, main-belt and Trojan asteroids have subsequently been discovered. The Kuiper belt-the region of space extending from Neptune (at 30 astronomical units) to well over 100 AU and believed to be the source of new short-period comets-has become a fascinating new window onto the formation of our Solar System since the first member object, not counting Pluto, was discovered in 1992 (ref. 13). Here we report that the Kuiper-belt object 1998 WW31 is binary with a highly eccentric orbit (eccentricity e approximately 0.8) and a long period (about 570 days), very different from the Pluto/Charon system, which was hitherto the only previously known binary in the Kuiper belt. Assuming a density in the range of 1 to 2 g cm-3, the albedo of the binary components is between 0.05 and 0.08, close to the value of 0.04 generally assumed for Kuiper-belt objects. PMID:11961547

  11. 2002 Kuiper prize lecture: Dust Astronomy

    NASA Astrophysics Data System (ADS)

    Grün, Eberhard; Srama, Ralf; Krüger, Harald; Kempf, Sascha; Dikarev, Valeri; Helfert, Stefan; Moragas-Klostermeyer, Georg

    2005-03-01

    Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called "Dust Astronomy" which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.

  12. Signatures of planets: Observations and modeling of structure in the zodiacal cloud and Kuiper disk

    NASA Astrophysics Data System (ADS)

    Holmes, Elizabeth Katherine

    2002-12-01

    There is a possible connection between structure in evolved circumstellar disks and the presence of planets, our own zodiacal cloud being a proven example. Asymmetries in such a disk could be diagnostic of planets which would be otherwise undetectable. Using COBE DIRBE observations, we link structure in the zodiacal cloud, namely the warp and offset of the cloud, to the presence of planets using secular perturbation theory. In addition, we obtain supplementary ISO observations and determine a scale factor for the data which we apply to calibrate the data to the observed COBE brightness. A Kuiper dust disk will have a resonant structure, with two concentrations in brightness along the ecliptic longitude arising because 10 15% of the Kuiper belt objects are in the 3:2 mean motion resonance with Neptune. We run numerical integrations of particles originating from source bodies trapped in the 3:2 resonance and we determine what percentage of particles remain in the resonance for a variety of particle and source body sizes. The dynamical evolution of the particles is followed from source to sink with Poynting- Robertson light drag, solar wind drag, radiation pressure, the Lorentz force, neutral interstellar gas drag, and the effects of planetary gravitational perturbations included. We then conduct an observational search in the 60 μm COBE data for the Kuiper disk, which is predicted to be, at most, a few percent of the brightness of the zodiacal cloud. By removing emission due to the background zodiacal cloud and the dust bands, we expect to see the trailing/leading signature of Earth's resonant ring. However, when subtracted from the data, we find that none of the empirical background zodiacal cloud models give the residuals predicted by theory. We conclude that a dynamical two-component (both inner and outer) zodiacal cloud model must be created to complete the search. Lastly, we extend our work outside the solar system and obtain upper limits on the flux around ten

  13. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  14. Tartu Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Tartu Observatory (TO) is a research institution in Estonia accommodating the northernmost 1.5 m telescope in the world. It is located in Estonia, about 20 km south-west of Tartu in the village of Tõravere (58°16'08''.4 N, 26°27'32''.4 E). TO performs research in astrophysics and atmospheric physics and popularizes those branches of science. TO was founded in 1808 as an observatory of Tartu Unive...

  15. Taosi Observatory

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Taosi observatory is the remains of a structure discovered at the later Neolithic Taosi site located in Xiangfen County, Shanxi Province, in north-central China. The structure is a walled enclosure on a raised platform. Only rammed-earth foundations of the structure remained. Archaeoastronomical studies suggest that this structure functioned as an astronomical observatory. Historical circumstantial evidence suggests that it was probably related to the legendary kingdom of Yao from the twenty-first century BC.

  16. The Kuiper belt and the solar system's comet disk.

    PubMed

    Gladman, Brett

    2005-01-01

    Our planetary system is embedded in a small-body disk of asteroids and comets, vestigial remnants of the original planetesimal population that formed the planets. Once formed, those planets dispersed most of the remaining small bodies. Outside of Neptune, this process has left our Kuiper belt and built the Oort cloud, as well as emplacing comets into several other identifiable structures. The orbits in these structures indicate that our outer solar system's comet disk was shaped by a variety of different physical processes, which teach us about how the giant planets formed. Recent work has shown that the scattered disk is the most likely source of short-period comets. Moreover, a growing body of evidence indicates that the sculpting of the Kuiper belt region may have involved large-scale planetary migration, the presence of other rogue planetary objects in the disk, and/or the close passage of other stars in the Sun's birth cluster.

  17. The Kuiper belt and the solar system's comet disk.

    PubMed

    Gladman, Brett

    2005-01-01

    Our planetary system is embedded in a small-body disk of asteroids and comets, vestigial remnants of the original planetesimal population that formed the planets. Once formed, those planets dispersed most of the remaining small bodies. Outside of Neptune, this process has left our Kuiper belt and built the Oort cloud, as well as emplacing comets into several other identifiable structures. The orbits in these structures indicate that our outer solar system's comet disk was shaped by a variety of different physical processes, which teach us about how the giant planets formed. Recent work has shown that the scattered disk is the most likely source of short-period comets. Moreover, a growing body of evidence indicates that the sculpting of the Kuiper belt region may have involved large-scale planetary migration, the presence of other rogue planetary objects in the disk, and/or the close passage of other stars in the Sun's birth cluster. PMID:15637267

  18. A Search for 23rd Magnitude Kuiper Belt Comets

    NASA Technical Reports Server (NTRS)

    Luu, Jane

    1997-01-01

    The goal of the project was to identify a statistically significant sample of large (200 km-sized) Kuiper Belt Objects (KBOs), by covering 10 sq. degrees of the sky to a red limiting magnitude m(sub R) = 23. This work differs from, but builds on, previous surveys of the outer solar system in that it will cover a large area to a limiting magnitude that is deep enough to guarantee positive results. The proposed work should provide us with a significant number of 200 km-size KBOs (approx. 20 are expected) for subsequent studies. Such a sample is crucial if we are to investigate the statistical properties of the Belt and its members. It was modified the original research strategy to accommodate unanticipated problems such as the urgent need for follow-up observations,the original goal was still reached: we have substantially increased the number of Kuiper Belt Objects brighter than 23rd mag.

  19. Corralling a Distant Planet with Extreme Resonant Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu; Volk, Kathryn; Wang, Xianyu

    2016-06-01

    The four longest period Kuiper Belt objects have orbital periods close to integer ratios with each other. A hypothetical planet with an orbital period of ˜17,117 years and a semimajor axis ˜665 au would have N/1 and N/2 period ratios with these four objects. The orbital geometries and dynamics of resonant orbits constrain the orbital plane, the orbital eccentricity, and the mass of such a planet as well as its current location in its orbital path.

  20. Surface Color Frequencies and Ratios Within the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan Elizabeth; Fraser, Wesley Cristopher; Bannister, Michele T.; Pike, Rosemary E.; Marsset, Michael; Kavelaars, J. J.; Benecchi, Susan D.; Delsanti, Audrey C.; Lehner, Matthew; Wang, Shiang-Yu; Thirouin, Audrey; Guilbert-Lepoutre, Aurelie; Peixinho, Nuno; Vernazza, Pierre; Nesvorny, David

    2016-10-01

    We have an understanding of the surface properties for the largest Kuiper belt objects (KBOs) which retain their primordial inventory of volatile ices. The vast majority of the known dwarf-planet sized bodies are bright enough to be studied through optical and infrared spectroscopy. For the typically smaller > 22 mag KBO, we must rely instead on what colors reveal by proxy; yet this picture remains incomplete. Most KBO physical property studies examine the hodgepodge set of objects discovered by various surveys with different and varying detection biases that make it difficult if not impossible to accurately estimate the sizes of the different surface color groups residing in the modern-day Kupier belt. The Colours of the Outer Solar System Origins Survey (Col-OSSOS) probes the surface properties within the Kuiper belt primarily through near simultaneous g,r and J colors with the Gemini North Telescope. The survey targets KBOs brighter than 23.6 r‧ mag found by the Outer Solar System Origins Survey (OSSOS). With Col-OSSOS, we have a sample of KBO colors measured for a set of objects detected in a brightness limited survey, with a well-measured detection efficiency. This affords the first opportunity to explore the true frequency of surface colors within the Kuiper belt, subdivided by dynamical classification.Using the ~30 KBOs studied from the first complete OSSOS block, we present the observed and debiased ratio of neutral to red KBOs. We also measure the populations of the three color KBO subgroups (the red and neutral dynamically excited population and the red cold classical belt). Additionally, Kuiper belt formation models predict that the dynamically excited KBOs (hot classical belt, resonant orbits, and scattered disk) were implanted during Neptune's migration. With the true frequency of neutral to red bodies from Col-OSSOS, we examine the implications for the radial color distribution in the primordial planetesimal disk from which the excited KBOs

  1. OORT-Cloud and Kuiper-Belt Comets

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1998-01-01

    This paper follows the broadly accepted theory that Oort-Cloud Comets originated in the Solar Nebula in the general region where the major planets, Jupiter and Saturn, were formed while the Kuiper-Belt Comets originated farther out where the temperatures were lower. The Oort-Cloud Comets are identified orbitally by long periods and random inclinations and, including the Halley-type comets, comets with a Tisserand Criterion less than 2.0. Kuiper-Belt comets are identified by short periods, usually much less than 200 years, and small inclinations to the ecliptic. Here two criteria for comet activity are found to separate the two classes of comets. These quantities NG1 and NG2, were intended to measure theoretical nongravitaional effects on comet orbits. They are only, mildly successful in correlations with observed cases of measured non-gravitational forces. But, in fact, their variations with perihelion distance separate the two classes of comets. The results are consistent with the theory that the activity or intrinsic brightness of Oort-Cloud Comets fall off faster with increasing perihelion distance that does the intrinsic brightness of short-period Kuiper-Belt Comets.

  2. A HYPOTHESIS FOR THE COLOR DIVERSITY OF THE KUIPER BELT

    SciTech Connect

    Brown, M. E.; Fraser, W. C.; Schaller, E. L.

    2011-10-01

    We propose a chemical and dynamical process to explain the surface colors of the Kuiper belt. In our hypothesis, the initial bulk compositions of the bodies themselves can be quite diverse-as is seen in comets-but the early surface compositions are set by volatile evaporation after the objects are formed. Strong gradients in surface composition, coupled with UV and particle irradiation, lead to the surface colors that are seen today. The objects formed in the inner part of the primordial belt retain only H{sub 2}O and CO{sub 2} as the major ice species on their surfaces. Irradiation of these species plausibly results in the dark neutrally colored centaurs and Kuiper belt objects (KBOs). Object formed further in the disk retain CH{sub 3}OH, which has been shown to lead to brighter redder surfaces after irradiation, as seen in the brighter redder centaurs and KBOs. Objects formed at the current location of the cold classical Kuiper belt uniquely retain NH{sub 3}, which has been shown to affect irradiation chemistry and could plausibly lead to the unique colors of these objects. We propose observational and experimental tests of this hypothesis.

  3. A binary system in the Kuiper Belt: 1998_WW31

    NASA Astrophysics Data System (ADS)

    Veillet, Christian

    2002-07-01

    1998_WW31 is the first Kuiper Belt Object, outside the pair Pluto/Charon, to be discovered as a binary object. Though only preliminary results are available from two orbits of HST DDT observation when this proposal is submitted, the pair exhibits a very high eccentricity {larger than 0.5} and a period of 570 days. The purpose of this proposal is to complete the monitoring of the pair on a full orbit, up to February 2003. Monitoring will then have to cease {Sun too close}. The binarity of an asteroid allows the determination of the total mass of the system and provides important information on the past Kuiper Belt environment {formation/collisions/capture processes}. If size can be obtained from albedo determination, the mass will give the density, a key parameter for any study of the origin and evolution of the Kuiper Belt. Hubble's unparalleled resolution provides the unique way to acquire observations of the pair good enough to access the physical characteristics of this system with a high degree of confidence, as the high eccentricity of the orbit keeps the two components less than 1 arc-second apart for most of the orbit. The observations would be made public immediately to allow the continuation of the education program offering to follow the pair on a regular basis to illustrate the prediction/verification iterative process of science and the direct use of simple laws for the determination of key parameters.

  4. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  5. WNCC Observatory

    NASA Astrophysics Data System (ADS)

    Snyder, L. F.

    2003-05-01

    Western Nevada Community College (WNCC), located in Carson City, Nevada, is a small two year college with only 6,000 students. Associate degrees and Cer- tificates of Achievement are awarded. The college was built and started classes in 1971 and about 12 years ago the chair of the physics department along with a few in administration had dreams of building a small observatory for education. Around that time a local foundation, Nevada Gaming Foundation for Education Excellence, was looking for a beneficiary in the education field to receive a grant. They decided an observatory at the college met their criteria. Grants to the foundation instigated by Senators, businesses, and Casinos and donations from the local public now total $1.3 million. This paper will explain the different facets of building the observatory, the planning, construction, telescopes and equipment decisions and how we think it will operate for the public, education and research. The organization of local volunteers to operate and maintain the observatory and the planned re- search will be explained.

  6. Grand Observatory

    NASA Technical Reports Server (NTRS)

    Young, Eric W.

    2002-01-01

    Various concepts have been recently presented for a 100 m class astronomical observatory. The science virtues of such an observatory are many: resolving planets orbiting around other stars, resolving the surface features of other stars, extending our temporal reach back toward the beginning (at and before stellar and galactic development), improving on the Next Generation Space Telescope, and other (perhaps as yet) undiscovered purposes. This observatory would be a general facility instrument with wide spectral range from at least the near ultraviolet to the mid infrared. The concept espoused here is based on a practical, modular design located in a place where temperatures remain (and instruments could operate) within several degrees of absolute zero with no shielding or cooling. This location is the bottom of a crater located near the north or south pole of the moon, most probably the South Polar Depression. In such a location the telescope would never see the sun or the earth, hence the profound cold and absence of stray light. The ideal nature of this location is elaborated herein. It is envisioned that this observatory would be assembled and maintained remotely through the use of expert robotic systems. A base station would be located above the crater rim with (at least occasional) direct line-of-sight access to the earth. Certainly it would be advantageous, but not absolutely essential, to have humans travel to the site to deal with unexpected contingencies. Further, observers and their teams could eventually travel there for extended observational campaigns. Educational activities, in general, could be furthered thru extended human presence. Even recreational visitors and long term habitation might follow.

  7. Searching for Chips of Kuiper Belt Objects in Meteorites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Ohsumi, K.; Briani, G.; Gounelle, M.; Mikouchi, T.; Satake, W.; Kurihara, T.; Weisberg, M. K.; Le, L.

    2009-01-01

    The Nice model [1&2] describes a scenario whereby the Jovian planets experienced a violent reshuffling event approx.3:9 Ga the giant planets moved, existing small body reservoirs were depleted or eliminated, and new reservoirs were created in particular locations. The Nice model quantitatively explains the orbits of the Jovian planets and Neptune [1], the orbits of bodies in several different small body reservoirs in the outer solar system (e.g., Trojans of Jupiter [2], the Kuiper belt and scattered disk [3], the irregular satellites of the giant planets [4], and the late heavy bombardment on the terrestrial planets approx.3:9 Ga [5]. This model is unique in plausibly explaining all of these phenomena. One issue with the Nice model is that it predicts that transported Kuiper Belt Objects (KBOs) (things looking like D class asteroids) should predominate in the outer asteroid belt, but we know only about 10% of the objects in the outer main asteroid belt appear to be D-class objects [6]. However based upon collisional modeling, Bottke et al. [6] argue that more than 90% of the objects captured in the outer main belt could have been eliminated by impacts if they had been weakly-indurated objects. These disrupted objects should have left behind pieces in the ancient regoliths of other, presumably stronger asteroids. Thus, a derived prediction of the Nice model is that ancient regolith samples (regolith-bearing meteorites) should contain fragments of collisionally-destroyed Kuiper belt objects. In fact KBO pieces might be expected to be present in most ancient regolith- bearing meteorites [7&8].

  8. First ultraviolet reflectance measurements of several Kuiper Belt objects, Kuiper Belt object satellites, and new ultraviolet measurements of A Centaur

    SciTech Connect

    Stern, S. A.; Schindhelm, E.; Cunningham, N. J.

    2014-05-01

    We observed the 2600-3200 Å (hereafter, mid-UV) reflectance of two Kuiper Belt Objects (KBOs), two KBO satellites, and a Centaur, using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS). Other than measurements of the Pluto system, these constitute the first UV measurements obtained of KBOs, and KBO satellites, and new HST UV measurements of the Centaur 2060 Chiron. We find significant differences among these objects, constrain the sizes and densities of Haumea's satellites, and report the detection of a possible spectral absorption band in Haumea's spectrum near 3050 Å. Comparisons of these objects to previously published UV reflectance measurements of Pluto and Charon are also made here.

  9. Resonant and Secular Families of the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Chiang, E. I.; Lovering, J. R.; Millis, R. L.; Buie, M. W.; Wasserman, L. H.; Meech, K. J.

    2003-06-01

    We review ongoing efforts to identify occupants of mean-motion resonances (MMRs) and collisional families in the Edgeworth-Kuiper belt. Direct integrations of trajectories of Kuiper belt objects (KBOs) reveal the 1:1 (Trojan), 5:4, 4:3, 3:2 (Plutino), 5:3, 7:4, 9:5, 2:1 (Twotino), and 5:2 MMRs to be inhabited. Apart from the Trojan, resonant KBOs typically have large orbital eccentricities and inclinations. The observed pattern of resonance occupation is consistent with resonant capture and adiabatic excitation by a migratory Neptune; however, the dynamically cold initial conditions prior to resonance sweeping that are typically assumed by migration simulations are probably inadequate. Given the dynamically hot residents of the 5:2 MMR and the substantial inclinations observed in all exterior MMRs, a fraction of the primordial belt was likely dynamically pre-heated prior to resonance sweeping. A pre-heated population may have arisen as Neptune gravitationally scattered objects into trans-Neptunian space. The spatial distribution of Twotinos offers a unique diagnostic of Neptune's migration history. The Neptunian Trojan population may rival the Jovian Trojan population, and the former's existence is argued to rule out violent orbital histories for Neptune. Finally, lowest-order secular theory is applied to several hundred non-resonant KBOs with well-measured orbits to update proposals of collisional families. No convincing family is detected.

  10. A collisional family of icy objects in the Kuiper belt.

    PubMed

    Brown, Michael E; Barkume, Kristina M; Ragozzine, Darin; Schaller, Emily L

    2007-03-15

    The small bodies in the Solar System are thought to have been highly affected by collisions and erosion. In the asteroid belt, direct evidence of the effects of large collisions can be seen in the existence of separate families of asteroids--a family consists of many asteroids with similar orbits and, frequently, similar surface properties, with each family being the remnant of a single catastrophic impact. In the region beyond Neptune, in contrast, no collisionally created families have hitherto been found. The third largest known Kuiper belt object, 2003 EL61, however, is thought to have experienced a giant impact that created its multiple satellite system, stripped away much of an overlying ice mantle, and left it with a rapid rotation. Here we report the discovery of a family of Kuiper belt objects with surface properties and orbits that are nearly identical to those of 2003 EL61. This family appears to be fragments of the ejected ice mantle of 2003 EL61. PMID:17361177

  11. Ice Observatory

    NASA Astrophysics Data System (ADS)

    blugerman, n.

    2015-10-01

    My project is to make ice observatories to perceive astral movements as well as light phenomena in the shape of cosmic rays and heat, for example.I find the idea of creating an observation point in space, that in time will change shape and eventually disappear, in consonance with the way we humans have been approaching the exploration of the universe since we started doing it. The transformation in the elements we use to understand big and small transformations, within the universe elements.

  12. Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Becklin, Eric E.

    2001-01-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. Present and future instrumentation will allow unique astrobiology experiments to be carried out. Several experiments related to organic molecules in space will be discussed.

  13. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  14. New features in the structure of the classical Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Gladman, Brett; Bannister, Michele T.; Alexandersen, Mike; Chen, Ying-Tung; Gwyn, Stephen; Kavelaars, J. J.; Petit, Jean-Marc; Volk, Kathryn; OSSOS collaboration

    2016-10-01

    We report fascinating new dynamical structures emerging from a higher precision view of the classical Kuiper belt (the plentiful non-resonant orbits with semimajor axes in roughly the a=35-60 au range). The classical Kuiper Belt divides into multiple sub-populations: an 'inner' classical belt (a small group of non-resonant objects with a<39.4 au where the 3:2 resonance is located), an abundant 'main' classical belt (between the 3:2 and the 2:1 at a=47.4 au), and a difficult to study outer classical belt beyond the 2:1. We examine the dynamical structure, as precisely revealed in the detections from OSSOS (the Outer Solar System Origin's Survey); the data set is of superb quality in terms of orbital element and numbers of detections (Kavelaars et al, this meeting).The previous CFEPS survey showed that the main classical belt requires a complex dynamical substructure that goes beyond a simple 'hot versus cold' division based primarily on orbital inclination; the 'cold' inclination component requires two sub-components in the semimajor axis and perihelion distance q space (Petit et al 2011). CFEPS modelled this as a 'stirred' component present at all a=40-47 AU semimajor axes, with a dense superposed 'kernel' near a=44 AU at low eccentricity; the first OSSOS data release remained consistent with this (Bannister et al 2016). As with the main asteroid belt, as statistics and orbital quality improve we see additional significant substructure emerging in the classical belt's orbital distribution.OSSOS continues to add evidence that the cold stirred component extends smoothly beyond the 2:1 (Bannister et al 2016). Unexpectedly, the data also reveal the clear existence of a paucity of orbits just beyond the outer edge of the kernel; there are significantly fewer TNOs in the narrow semimajor axis band from a=44.5-45.0 AU. This may be related to the kernel population's creation, or it may be an independent feature created by planet migration as resonances moved in the

  15. The color-magnitude distribution of small Kuiper Belt objects

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.

    2015-11-01

    Occupying a vast region beyond the ice giants is an extensive swarm of minor bodies known as the Kuiper Belt. Enigmatic in their formation, composition, and evolution, these Kuiper Belt objects (KBOs) lie at the intersection of many of the most important topics in planetary science. Improved instruments and large-scale surveys have revealed a complex dynamical picture of the Kuiper Belt. Meanwhile, photometric studies have indicated that small KBOs display a wide range of colors, which may reflect a chemically diverse initial accretion environment and provide important clues to constraining the surface compositions of these objects. Notably, some recent work has shown evidence for bimodality in the colors of non-cold classical KBOs, which would have major implications for the formation and subsequent evolution of the entire KBO population. However, these previous color measurements are few and mostly come from targeted observations of known objects. As a consequence, the effect of observational biases cannot be readily removed, preventing one from obtaining an accurate picture of the true color distribution of the KBOs as a whole.We carried out a survey of KBOs using the Hyper Suprime-Cam instrument on the 8.2-meter Subaru telescope. Our observing fields targeted regions away from the ecliptic plane so as to avoid contamination from cold classical KBOs. Each field was imaged in both the g’ and i’ filters, which allowed us to calculate the g’-i’ color of each detected object. We detected more than 500 KBOs over two nights of observation, with absolute magnitudes from H=6 to H=11. Our survey increases the number of KBOs fainter than H=8 with known colors by more than an order of magnitude. We find that the distribution of colors demonstrates a robust bimodality across the entire observed range of KBO sizes, from which we can categorize individual objects into two color sub-populations -- the red and very-red KBOs. We present the very first analysis of the

  16. Pluto/Kuiper Missions with Advanced Electric Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Oleson, S. R.; Patterson, M. J.; Schrieber, J.; Gefert, L. P.

    2001-01-01

    In response to a request by NASA Code SD Deep Space Exploration Technology Program, NASA Glenn Research center performed a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power system was shown to allow the same or smaller launch vehicle class (EELV) as the chemical 2004 baseline and allow launch in any year and arrival in the 2014 to 2020 timeframe. With the nearly constant power available from the radioisotope power source such small ion propelled spacecraft could explore many of the outer planetary targets. Such studies are already underway. Additional information is contained in the original extended abstract.

  17. Microlensing by Kuiper, Oort, and Free-Floating Planets

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    2016-08-01

    Microlensing is generally thought to probe planetary systems only out to a few Einstein radii. Microlensing events generated by bound planets beyond about 10 Einstein radii generally do not yield any trace of their hosts, and so would be classified as free floating planets (FFPs). I show that it is already possible, using adaptive optics (AO), to constrain the presence of potential hosts to FFP candidates at separations comparable to the Oort Cloud. With next-generation telescopes, planets at Kuiper-Belt separations can be probed. Next generation telescopes will also permit routine vetting for all FFP candidates, simply by obtaining second epochs 4-8 years after the event.At present, the search for such hosts is restricted to within the ``confusion limit'' of θ_\\confus ˜ 0.25'' but future WFIRST (Wide Field Infrared Survey Telescope) observations will allow one to probe beyond this confusion limit as well.

  18. Explaining the Kuiper Belt with a Jumping Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    A feature of the Kuiper Belt known as the kernel has yet to be adequately explained by solar system formation models. In a recent study, a theorist at the Southwest Research Institute proposes a new explanation for how Neptune arrived at its current orbit and how this planets migration in the early years of the solar system might have created the kernel.Orbital JumpThe kernel is a concentration of orbits within the Kuiper Belt that all have semimajor axes of roughly a 44 AU, low eccentricities, and low inclinations. How this collection of objects formed and why they exist where they do is difficult to explain with current models, however. Kernel objects arent in resonance with any of the larger bodies, so why are they concentrated at that specific distance? In this study, David Nesvorn proposes that the kernel resulted from Neptunes outward migration through the solar system.In the currently favored model of our solar systems formation, the outermost gas giant planets formed closer to the Sun and then migrated out to their current locations. Nesvorn ran a series of simulations of this migration to test the theory that a discontinuity in Neptunes movement outward i.e., a sudden jump in the planets orbital distance could explain the presence of the Kuiper Belts kernel.Results from a previous study, in which the authors evolved the four gas giant planets plus a fifth giant planet (blue) initially on an orbit between Saturn and Uranus. At 18.3 Myr, a close encounter with the fifth planet causes Neptunes orbit (pink) to jump outwards by ~0.4 AU, and the fifth planet is then ejected from the solar system by Jupiter. [Nesvorn 2015]Resonant PopulationNesvorn was successful in finding a model that reproduced the kernel, as well as other observed features of the solar system today. In his model, Neptune began its journey closer to the Sun, at a distance of roughly 24 AU, and it migrated fairly rapidly outward to about 28 AU. As it traveled, it swept up bodies in the outer

  19. Formation of High Mass Hydrocarbons on Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Jones, Brant M.; Bennett, C.; Gu, X.; Kaiser, R.

    2012-10-01

    We present recent results from the newly established W.M. Keck Research Laboratory in Astrochemistry regarding the formation of high molecular weight ( C15) hydrocarbons starting from pure, simple hydrocarbons ices upon interaction of these ices with ionizing radiation: methane (CH4), ethane (C2H6), propane (C3H8) and n-butane (C4H10). Specifically, we have utilized a novel application of reflection time-of-flight mass spectrometry coupled with soft vacuum ultraviolet photoionization to observe the nature of high mass hydro- carbons as a function of their respective sublimation temperature. The Kuiper Belt is estimated to consist of over 70,000 icy bodies, which extend beyond the orbit of Neptune at 30 AU. These bodies are thought to have maintained low temperatures (30-50 K) since the formation of the solar system and are regarded as frozen relics that may preserve a record of the primitive volatiles from which the solar system formed. In particular, methane has been detected on the surfaces of Sedna, Quaoar, Triton (thought to be a captured KBO) and Pluto along with ethane being tentatively assigned to on Quaoar, Pluto, and Orcus. The surfaces of these bodies have undergone 4.5 Gyr of chemical processing due to ionizing radiation from the solar wind and Galactic Cosmic Radiation. Our research has been focused on trying to understand how these ices have evolved over the age of our solar system by simulating the chemical processing via ionizing radiation in an ultrahigh vacuum chamber coupled with a variety of optical analytical spectroscopies (FT-IR, Raman, UV-Vis) and gas phase mass spectroscopy. Our results indicate that larger, more complex hydrocarbons up to C15 are formed easily under conditions relevant to the environment of Kuiper Belt Objects which may help elucidate part of the puzzle regarding the ‘colors’ of these objects along with the formation of carbonaceous material throughout the interstellar medium.

  20. An exploration of the Kozai resonance in the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Wan, X.-S.; Huang, T.-Y.

    2007-05-01

    The Kozai resonance of Kuiper Belt objects is explored using a model of a circular-restricted three-body problem. We use an analytical approach to find the topological structure of the plane of the eccentricity and the argument of perihelion. We find that objects inside the 2:3 and 1:2 resonances can be inside the Kozai resonance, with their arguments of perihelion ω librating around 90° or 270°. This is consistent with the fact that Pluto is inside both the 2:3 resonance and the Kozai resonance. Furthermore, objects outside the mean-motion resonances are also found to be inside the Kozai resonance. We discover that there are stable equilibrium points of ω at 90° and 270°, but not at 0° and 180° as was shown in the work of Thomas & Morbidelli. To verify our results, numerical experiments are carried out with various longitudes of the node and mean anomalies. In these experiments, some test particles are found to be in the Kozai resonance around 90° for one billion years, and the libration amplitudes of their arguments of perihelion are small. This is in agreement with our analytical results. No particles are found to stay inside the Kozai resonance around ω = 0° or 180°, although some particles exist temporarily in the Kozai resonance around ω = 0° or 180°. We conclude that the Kozai resonance around ω = 90° or 270° exists both inside and outside the mean-motion resonance for Kuiper Belt objects.

  1. Shepherding the Kuiper Belt Via Ragged Planet-Migration

    NASA Astrophysics Data System (ADS)

    Hahn, J.; Malhotra, R.

    2000-10-01

    N-body simulations have shown that the orbits of the giant planets would migrate away from each other as they cleared the natal planetesimal disk. The evidence for orbital migration is in the Kuiper Belt; had Neptune's orbit expanded outwards by 8 AU, its sweeping 3:2 resonance would have captured numerous Kuiper Belt Objects (KBOs) and pumped eccentricities up to up to the observed value of e 0.3. Early simulations of this phenomenon effected planet-migration by applying a smooth torque to the planets' orbits (Malhotra 1995). Resonance capture is extremely efficient at depositing nearly all KBOs into eccentric, low-inclination, resonant orbits. However these models are not in full agreement with observations showing that about a third of all known KBOs reside in the Classical Disk which lies between Neptune's 2:1 and 3:2. However it should be recognized that planet-migration is driven by the stochastic scatterings of planetesimals at the planets. To mimic this, we add some random `jitter' to the planet-migration torque. This causes Neptune's orbit to dance to-and-fro as it expands. When sufficient jitter is applied, the resonance capture efficiency is reduced to 50 which allows some KBOs to slip through the advancing 2:1. These bodies enter the Classical disk with eccentricities of e 0.1, which is comparable to the observed e. Jitter also increases the KBO inclinations. We also suspect that the observed underabundance of KBOs at the 2:1 resonance (and beyond) is due to a radial gradient in the KBO size-distribution, namely, that smaller KBOs formed at greater distances from the Sun.

  2. Kuiper belt structure around nearby super-Earth host stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.; Matrà, Luca; Marmier, Maxime; Greaves, Jane S.; Wyatt, Mark C.; Bryden, Geoffrey; Holland, Wayne; Lovis, Christophe; Matthews, Brenda C.; Pepe, Francesco; Sibthorpe, Bruce; Udry, Stéphane

    2015-05-01

    We present new observations of the Kuiper belt analogues around HD 38858 and HD 20794, hosts of super-Earth mass planets within 1 au. As two of the four nearby G-type stars (with HD 69830 and 61 Vir) that form the basis of a possible correlation between low-mass planets and debris disc brightness, these systems are of particular interest. The disc around HD 38858 is well resolved with Herschel and we constrain the disc geometry and radial structure. We also present a probable James Clerk Maxwell Telescope sub-mm continuum detection of the disc and a CO J = 2-1 upper limit. The disc around HD 20794 is much fainter and appears marginally resolved with Herschel, and is constrained to be less extended than the discs around 61 Vir and HD 38858. We also set limits on the radial location of hot dust recently detected around HD 20794 with near-IR interferometry. We present High Accuracy Radial velocity Planet Searcher upper limits on unseen planets in these four systems, ruling out additional super-Earths within a few au, and Saturn-mass planets within 10 au. We consider the disc structure in the three systems with Kuiper belt analogues (HD 69830 has only a warm dust detection), concluding that 61 Vir and HD 38858 have greater radial disc extent than HD 20794. We speculate that the greater width is related to the greater minimum planet masses (10-20 M⊕ versus 3-5 M⊕), arising from an eccentric planetesimal population analogous to the Solar system's scattered disc. We discuss alternative scenarios and possible means to distinguish among them.

  3. Haystack Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Radio astronomy programs comprise three very-long-baseline interferometer projects, ten spectral line investigations, one continuum mapping in the 0.8 cm region, and one monitoring of variable sources. A low-noise mixer was used in mapping observations of 3C273 at 31 GHz and in detecting of a new methyl alcohol line at 36,169 MHz in Sgr B2. The new Mark 2 VLBI recording terminal was used in galactic H2O source observations using Haystack and the Crimean Observatory, USSR. One feature in W29 appears to have a diameter of 0.3 millisec of arc and a brightness temperature of 1.4 x 10 to the 15th power K. Geodetic baseline measurements via VLBI between Green Bank and Haystack are mutually consistent within a few meters. Radar investigations of Mercury, Venus, Mars, and the Moon have continued. The favorable opposition of Mars and improvements in the radar permit measurements on a number of topographic features with unprecedented accuracy, including scarps and crater walls. The floor of Mare Serenitatis slopes upward towards the northeast and is also the location of a strong gravitational anomaly.

  4. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  5. Structure and Evolution of Kuiper Belt Objects and Dwarf Planets

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.; Prialnik, D.; Stern, S. A.; Coradini, A.

    Kuiper belt objects (KBOs) accreted from a mélange of volatile ices, carbonaceous matter, and rock of mixed interstellar and solar nebular provenance. The transneptunian region, where this accretion took place, was likely more radially compact than today. This and the influence of gas drag during the solar nebula epoch argue for more rapid KBO accretion than usually considered. Early evolution of KBOs was largely the result of heating due to radioactive decay, the most important potential source being 26Al, whereas long-term evolution of large bodies is controlled by the decay of U, Th, and 40K. Several studies are reviewed dealing with the evolution of KBO models, calculated by means of one-dimensional numerical codes that solve the heat and mass balance equations. It is shown that, depending on parameters (principally rock content and porous conductivity), KBO interiors may have reached relatively high temperatures. The models suggest that KBOs likely lost ices of very volatile species during early evolution, whereas ices of less-volatile species should be retained in cold, less-altered subsurface layers. Initially amorphous ice may have crystallized in KBO interiors, releasing volatiles trapped in the amorphous ice, and some objects may have lost part of these volatiles as well. Generally, the outer layers are far less affected by internal evolution than the inner part, which in the absence of other effects (such as collisions) predicts a stratified composition and altered porosity distribution. Kuiper belt objects are thus unlikely to be "the most pristine objects in the solar system," but they do contain key information as to how the early solar system accreted and dynamically evolved. For large (dwarf planet) KBOs, long-term radiogenic heating alone may lead to differentiated structures -- rock cores, ice mantles, volatile-ice-rich "crusts," and even oceans. Persistence of oceans and (potential) volcanism to the present day depends strongly on body size and

  6. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  7. Formation of High Mass Hydrocarbons on Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Jones, B. M.; Bennett, C.; Gu, X.; Kaiser, R. I.

    2012-12-01

    Recent results from the newly established W.M. Keck Research Laboratory in Astrochemistry are presented regarding the formation of high molecular weight (~ C15) hydrocarbons starting from pure, simple saturated hydrocarbons ices: methane (CH4), ethane (C2H6), propane (C3H8) and n-butane (C4H10) upon the interaction of these ices with ionizing radiation. Specifically, we have utilized a novel application of reflection time-of-flight mass spectrometry coupled with soft vacuum ultraviolet photoionization to observe the sublimation of the high mass hydrocarbons as a function of temperature. The Kuiper Belt is estimated to consist of over 70,000 icy bodies, which extend beyond the orbit of Neptune at 30 AU. These bodies are believed to have maintained low temperatures (30-50 K) since the formation of the solar system and are often regarded as frozen relics that may preserve a record of the primitive volatiles from which the solar system formed. In particular, methane has been detected on the surfaces of Sedna, Quaoar, Triton (thought to be a captured KBO) and Pluto along with ethane being tentatively assigned to on Quaoar, Pluto, and Orcus. Throughout the past 4.5 billion years, these surfaces have undergone significant chemical processing due to the barrage of ionizing radiation from solar wind and background Galactic Cosmic Rays. The main focus of our research has been elucidating how the outer planetary icy bodies have evolved over the age of the solar system by simulating the chemical changes induced from ionizing radiation in an ultrahigh vacuum chamber. These changes are monitored with a variety of optical analytical spectroscopies (FT-IR, Raman, UV-Vis) and gas phase mass spectroscopy coupled with soft vacuum ultraviolet photoionization of the subliming products at 10.5 eV. Our results indicate that larger, more complex hydrocarbons up to C15 are formed easily under conditions relevant to the environment of Kuiper Belt Objects which may help elucidate part of the

  8. Spitzer Thermal Radiometry of Kuiper Belt Objects and Centaurs

    NASA Astrophysics Data System (ADS)

    Stansberry, John; Mueller, Michael; Cruikshank, Dale; Grundy, Will; Noll, Keith; Spencer, John; Trilling, David

    2006-05-01

    About 10 Kuiper Belt Objects (KBOs) have been detected at both 24 and 70um with Spitzer at high enough signal-to-noise ratio (SNR) to allow determinations of their of their albedos and diameters. While these physical parameters can be estimated from a detection at a single thermal wavelength, they are then subject to large uncertainties stemming from the assumed model for the temperature distribution on the surface. A two-color thermal detection eliminates most of the model uncertainty, and the accuracy of the derived parameters is then limited primarily by measurement and calibration errors. An added benefit of a two-color detection is that it yields some information about the temperature distribution, and therefore about the thermal parameter (or thermal inertia, if the rotation period is known) of the surface materials. We propose to use MIPS to detect 8 KBOs and 8 Centaurs at both 24 and 70um, at SNR > 5 in both bands. We base our predictions of their thermal emission, our sensitivity estimates, and our observing strategy on our past observations of KBOs with Spitzer. Our sample size is chosen to double the sample of both KBOs and Centaurs with two-color data, significantly improving our knowledge of their physical parameters, and providing enough objects to allow us to begin to look for trends in albedo vs. size and color.

  9. Collisional Grooming Models of the Kuiper Belt Dust Cloud

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.; Stark, Christopher C.

    2010-01-01

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of approximately 10 (exp -4) primarily show an azimuthally- symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10 (exp -6) and 10 (exp-7)), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ("transport dominated") to being dominated by the birth ring ("collision dominated") when the optical depth reaches a critical value of r approximately v/c, where v is the local Keplerian speed.

  10. 1999 KUIPER PRIZE LECTURE. Cometary Origin of the Biosphere

    NASA Astrophysics Data System (ADS)

    Delsemme, Armand H.

    2000-08-01

    Most of the biosphere was brought on the primitive Earth by an intense bombardment of comets. This included the atmosphere, the seawater and those volatile carbon compounds needed for the emergence of life. Comets were thrown into the inner Solar System by the strong perturbation induced by the growth of the giant planets' cores. The bulk of the Earth's bombardment came from those comets that accreted in Jupiter's zone, where the original deuterium enrichment had been diminished by steam coming from the hot, inner parts of the Solar System. This steam had condensed into icy chunks before their accretion into larger cometary nuclei. In contrast, comets that accreted in the zones of the outer giant planets kept their interstellar isotopic enrichments. Those comets contributed to the Earth's bombardment for a small amount only; they were mostly ejected into the Oort cloud and are the major source of the long-period comets observed today. The short-period comets, which come from the Kuiper Belt, should also have the same interstellar enrichment. The deuterium enrichment of seawater, accurately predicted by the previous scenario, has become one of the best telltales for the cometary origin of our biosphere. This cometary origin may have far-reaching cosmological consequences, in particular for the origin of life in other planetary systems.

  11. Dynamical implantation of objects in the Kuiper Belt

    SciTech Connect

    Brasil, P. I. O.

    2014-09-01

    Several models have been suggested in the past to describe the dynamical formation of hot Kuiper Belt objects (hereafter Hot Classicals or HCs for short). Here, we discuss a dynamical mechanism that allows orbits to evolve from the primordial planetesimal disk at ≲ 35 AU to reach the orbital region now occupied by HCs. We performed three different sets of numerical simulations to illustrate this mechanism. Two of these simulations were based on modern theories for the early evolution of the solar system (the Nice and jumping-Jupiter models). The third simulation was performed with the purpose of increasing the resolution at 41-46 AU. The common aspect of these simulations is that Neptune scatters planetesimals from ≲ 35 AU to >40 AU and then undergoes a long phase of slow residual migration. Our results show that to reach an HC orbit, a scattered planetesimal needs to be captured in a mean motion resonance (MMR) with Neptune where the perihelion distance rises due to the Kozai resonance (which occurs in MMRs even for moderate inclinations). Finally, while Neptune is still migrating, the planetesimal is released from the MMR on a stable HC orbit. We show that the orbital distribution of HCs expected from this process provides a reasonable match to observations. The capture efficiency and the mass deposited into the HC region appears to be sensitive to the maximum eccentricity reached by Neptune during the planetary instability phase. Additional work will be needed to resolve this dependency in detail.

  12. A Ninth Planet Would Produce a Distinctly Different Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Lawler, Samantha; Shankman, Cory; Kaib, Nathan A.; Bannister, Michele T.; Gladman, Brett; Kavelaars, J. J.

    2016-10-01

    The orbital element distribution of trans-Neptunian objects (TNOs) with large pericenters has been suggested to be influenced by the presence of an undetected, large planet at 200 or more AU from the Sun. We perform 4 Gyr N-body simulations with the currently known Solar System planetary architecture, plus a 10 Earth mass planet with similar orbital parameters to those suggested by Batygin and Brown (2016) or Trujillo and Sheppard (2014), and a hundred thousand test particles in an initial planetesimal disk. We find that including a distant superearth-mass ninth planet produces a substantially different orbital distribution for the scattering and detached TNOs, raising the pericenters and inclinations of moderate semimajor axis (50 < a < 500 AU) objects. We test whether this signature is detectable via a simulator with the observational characteristics of four precisely characterized TNO surveys. We find that the qualitatively very distinct Solar System models that include a ninth planet are essentially observationally indistinguishable from an outer Solar System produced solely by the four giant planets. We also find that the mass of the Kuiper Belt's current scattering and detached populations is required be 3-10 times larger in the presence of an additional planet. Wide-field, deep surveys targeting inclined high-pericenter objects will be required to distinguish between these different scenarios.

  13. COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD

    SciTech Connect

    Kuchner, Marc J.; Stark, Christopher C. E-mail: starkc@umd.ed

    2010-10-15

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of {approx}10{sup -4} primarily show an azimuthally symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10{sup -6} and 10{sup -7}), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ('transport dominated') to being dominated by the birth ring ('collision dominated') when the optical depth reaches a critical value of {tau} {approx} v/c, where v is the local Keplerian speed.

  14. Chiron and the Centaurs: Escapees from the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Stern, Alan; Campins, Humberto

    1996-01-01

    The outer Solar System has long appeared to be a largely empty place, inhabited only by the four giant planets, Pluto and a transient population of comets. In 1977 however, a faint and enigmatic object - 2060 Chiron - was discovered moving on a moderately inclined, strongly chaotic 51-year orbit which takes it from just inside Saturn's orbit out almost as far as that of Uranus. It was not initially clear from where Chiron originated. these objects become temporarily trapped on Centaur-like orbits Following Chiron's discovery, almost 15 years elapsed before other similar objects were discovered; five more have now been identified. Based on the detection statistics implied by these discoveries, it has become clear that these objects belong to a significant population of several hundred (or possibly several thousand) large icy bodies moving on relatively short-lived orbits between the giant planets. This new class of objects, known collectively as the Centaurs, are intermediate in diameter between typical comets (1-20 km) and small icy planets such as Pluto (approx. 2,300 km) and Triton (approx. 2,700 km). Although the Centaurs are interesting in their own right, they have taken on added significance following the recognition that they most probably originated in the ancient reservoir of comets and larger objects located beyond the orbit of Neptune known as the Kuiper belt.

  15. Dynamics of the Most Distant Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Volk, Kathryn; Malhotra, Renu; Wang, Xianyu

    2016-05-01

    We investigate the evolution of the most distant known Kuiper belt objects (KBOs) under the secular and resonant effects of the known planets in the Solar System as well as under the influence of a massive, unseen distant planet. The orbits of these distant KBOs evolve on a wide range of timescales (from millions to billions of years); most important are the changes in the objects’ perihelion distances which can dramatically change the relative domination of secular or resonant effects on their orbital evolution. Motivated by the period ratios of the distant KBOs, which are near simple integer ratios, we examine the properties of mean motion resonances with a hypothetical, unseen planet; we discuss how the uncertainties in the observed objects’ orbits compare to the widths of these hypothesized resonances. We also examine the timescales for secular orbital evolution and the timescales for scattering through close encounters in the models with and without the hypothetical planet to assess the case for such a planet.

  16. Formation of Kuiper Belt Binaries by Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Nesvorny, David; Youdin, A. N.; Richardson, D. C.

    2010-10-01

    A large fraction of 100-km-class low-inclination objects in the classical Kuiper Belt (KB) are binaries with comparable mass and wide separation of components. A favored model for their formation was capture during the coagulation growth of bodies in the early KB. Instead, recent studies suggested that large, 100-km and larger objects can rapidly form in the protoplanetary disks when swarms of locally concentrated solids collapse under their own gravity. Here we examine the possibility that KB binaries formed during gravitational collapse when the excess of angular momentum prevented the agglomeration of available mass into a solitary object. We find that this new mechanism provides a robust path toward the formation of KB binaries with observed properties, and can explain wide systems such as 2001 QW322 and multiples such as (47171) 1999 TC36. Notably, the gravitational collapse is capable of producing 100% binary fraction for a wide range of the swarm's initial angular momentum values. The binary components have similar masses ( 80% have the secondary-over-primary radius ratio >0.7) and their separation ranges from 1,000 to 100,000 km. The binary orbits have eccentricities from e=0 to 1, with the majority having e<0.6. The model inclinations are consistent with the observed general preference for prograde binary orbits. Our binary formation mechanism also implies that the primary and secondary components in each binary pair should have identical bulk composition, which is consistent with the current photometric data.

  17. WFIRST Ultra-Precise Astrometry I: Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    2014-12-01

    I show that the WFIRST microlensing survey will enable detection and precision orbit determination of Kuiper Belt Objects (KBOs) down to H_{vega}=28.2 over an effective area of &sim 17 deg^2. Typical fractional period errors will be ˜ 1.5%× 10^{0.4(H-28.2)} with similar errors in other parameters for roughly 5000 KBOs. Binary companions to detected KBOs can be detected to even fainter limits, H_{vega}=29, corresponding to R˜ 30.5 and effective diameters D˜ 7 km. For KBOs H˜ 23, binary companions can be found with separations down to 10 mas. This will provide an unprecedented probe of orbital resonance and KBO mass measurements. More than a thousand stellar occultations by KBOs can be combined to determine the mean size as a function of KBO magnitude down to H˜ 25. Current ground-based microlensing surveys can make a significant start on finding and characterizing KBOs using existing and soon-to-be-acquired data.

  18. VOLATILE LOSS AND CLASSIFICATION OF KUIPER BELT OBJECTS

    SciTech Connect

    Johnson, R. E.; Schmidt, C.; Oza, A.; Young, L. A.; Volkov, A. N.

    2015-08-10

    Observations indicate that some of the largest Kuiper Belt Objects (KBOs) have retained volatiles in the gas phase (e.g., Pluto), while others have surface volatiles that might support a seasonal atmosphere (e.g., Eris). Since the presence of an atmosphere can affect their reflectance spectra and thermal balance, Schaller and Brown examined the role of volatile escape driven by solar heating of the surface. Guided by recent simulations, we estimate the loss of primordial N{sub 2} for several large KBOs, accounting for escape driven by UV/EUV heating of the upper atmosphere as well as by solar heating of the surface. For the latter we present new simulations and for the former we scale recent detailed simulations of escape from Pluto using the energy limited escape model validated recently by molecular kinetic simulations. Unlike what has been assumed to date, we show that unless the N{sub 2} atmosphere is thin (<∼10{sup 18} N{sub 2} cm{sup −2}) and/or the radius small (<∼200–300 km), escape is primarily driven by the UV/EUV radiation absorbed in the upper atmosphere. This affects the discussion of the relationship between atmospheric loss and the observed surface properties for a number of the KBOs examined. Our long-term goal is to connect detailed atmospheric loss simulations with a model for volatile transport for individual KBOs.

  19. A SEARCH FOR OCCULTATIONS OF BRIGHT STARS BY SMALL KUIPER BELT OBJECTS USING MEGACAM ON THE MMT

    SciTech Connect

    Bianco, F. B.; Lehner, M. J.; Protopapas, P.; McLeod, B. A.; Alcock, C. R.; Holman, M. J.

    2009-08-15

    We conducted a search for occultations of bright stars by Kuiper Belt Objects (KBOs) to estimate the density of subkilometer KBOs in the sky. We report here the first results of this occultation survey of the outer solar system conducted in 2007 June and 2008 June/July at the MMT Observatory using Megacam, the large MMT optical imager. We used Megacam in a novel shutterless continuous-readout mode to achieve high-precision photometry at 200 Hz, which with point-spread function convolution results in an effective sampling of {approx}30 Hz. We present an analysis of 220 star hours of data at a signal-to-noise ratio of 25 or greater, taken from images of fields within 3 deg. of the ecliptic plane. The survey efficiency is greater than 10% for occultations by KBOs of diameter d {>=} 0.7 km, and we report no detections in our data set. We set a new 95% confidence level upper limit for the surface density {sigma} {sub N}(d) of KBOs larger than 1 km: {sigma} {sub N}(d {>=} 1 km) {<=} 2.0 x 10{sup 8} deg{sup -2}, and for KBOs larger than 0.7 km {sigma} {sub N}(d {>=} 0.7 km) {<=} 4.8 x 10{sup 8} deg{sup -2}.

  20. USING KUIPER BELT BINARIES TO CONSTRAIN NEPTUNE'S MIGRATION HISTORY

    SciTech Connect

    Murray-Clay, Ruth A.; Schlichting, Hilke E.

    2011-04-01

    Approximately 10%-20% of all Kuiper Belt objects (KBOs) occupy mean-motion resonances with Neptune. This dynamical configuration likely resulted from resonance capture as Neptune migrated outward during the late stages of planet formation. The details of Neptune's planetesimal-driven migration, including its radial extent and the concurrent eccentricity evolution of the planet, are the subject of considerable debate. Two qualitatively different proposals for resonance capture have been proposed-migration-induced capture driven by smooth outward evolution of Neptune's orbit and chaotic capture driven by damping of the planet's eccentricity near its current semi-major axis. We demonstrate that the distribution of comparable-mass, wide-separation binaries occupying resonant orbits can differentiate between these two scenarios. If migration-induced capture occurred, this fraction records information about the formation locations of different populations of KBOs. Chaotic capture, in contrast, randomizes the orbits of bodies as they are placed in resonance. In particular, if KBO binaries are formed by dynamical capture in a protoplanetary disk with a surface mass density typical of observed extrasolar disks, then migration-induced capture produces the following signatures. The 2:1 resonance should contain a dynamically cold component, with inclinations less than 5{sup 0}-10{sup 0}, having a binary fraction comparable to that among cold classical KBOs. If the 3:2 resonance also hosts a cold component, its binary fraction should be 20%-30% lower than in the cold classical belt. Among cold 2:1 (and if present 3:2) KBOs, objects with eccentricities e < 0.2 should have a binary fraction {approx}20% larger than those with e>0.2. Other binary formation scenarios and disk surface density profiles can generate analogous signatures but produce quantitatively different results. Searches for cold components in the binary fractions of resonant KBOs are currently practical. The

  1. Interpreting the densities of the Kuiper belt's dwarf planets

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Schwamb, Megan E.

    2016-08-01

    Kuiper belt objects (KBOs) with absolute magnitude less than 3 (radius ≳500 km), the dwarf planets, have a range of different ice/rock ratios, and are more rock-rich than their smaller counterparts. Many of these objects have moons, which suggests that collisions may have played a role in modifying their compositions. We show that the dwarf planets fall into two categories when analysed by their mean densities and satellite-to-primary size ratio. Systems with large moons, such as Pluto/Charon and Orcus/Vanth, can form in low-velocity grazing collisions in which both bodies retain their compositions. We propose that these systems retain a primordial composition, with a density of about 1.8 g cm-3. Triton, thought to be a captured KBO, could have lost enough ice during its early orbital evolution to explain its rock-enrichment relative to the primordial material. Systems with small moons, Eris, Haumea, and Quaoar, formed from a different type of collision in which icy material, perhaps a few tens of percent of the total colliding mass, is lost. The fragments would not remain in physical or dynamical proximity to the parent body. The ice loss process has not yet been demonstrated numerically, which could be due to the paucity of KBO origin simulations, or missing physical processes in the impact models. If our hypothesis is correct, we predict that large KBOs with small moons should be denser than the primordial material, and that the mean density of Orcus should be close to the primordial value.

  2. Formation of Kuiper Belt Binaries by Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Youdin, Andrew N.; Richardson, Derek C.

    2010-09-01

    A large fraction of ~100 km class low-inclination objects in the classical Kuiper Belt (KB) are binaries with comparable masses and a wide separation of components. A favored model for their formation is that they were captured during the coagulation growth of bodies in the early KB. However, recent studies have suggested that large, gsim100 km objects can rapidly form in the protoplanetary disks when swarms of locally concentrated solids collapse under their own gravity. Here, we examine the possibility that KB binaries formed during gravitational collapse when the excess of angular momentum prevented the agglomeration of available mass into a solitary object. We find that this new mechanism provides a robust path toward the formation of KB binaries with observed properties, and can explain wide systems such as 2001 QW322 and multiples such as (47171) 1999 TC36. Notably, the gravitational collapse is capable of producing ~100% binary fraction for a wide range of the swarm's initial angular momentum values. The binary components have similar masses (~80% have a secondary-over-primary radius ratio >0.7) and their separation ranges from ~1000 to ~100,000 km. The binary orbits have eccentricities from e = 0 to ~1, with the majority having e < 0.6. The binary orbit inclinations with respect to the initial angular momentum of the swarm range from i = 0 to ~90°, with most cases having i < 50°. The total binary mass represents a characteristic fraction of the collapsing swarm's total initial mass, M tot, suggesting M tot equivalent to that of a radius ~100-250 km compact object. Our binary formation mechanism also implies that the primary and secondary components in each binary pair should have identical bulk composition, which is consistent with the current photometric data. We discuss the applicability of our results to the Pluto-Charon, Orcus-Vanth, (617) Patroclus-Menoetius, and (90) Antiope binary systems.

  3. An Icy Kuiper Belt Around the Young Solar-type Star HD 181327

    NASA Technical Reports Server (NTRS)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Matthews, G. S.; Kamp, I.; Pinte, C.; Dent, W. R. F.; Barrado, D.; Duchene, G.; Gonzalez, J.-F.; Grady C. A.; Meeus,G.; Pantin, E.; Williams, J. P.; Woitke, P.

    2012-01-01

    Context. HD 181327 is a young main sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx.. 12 Myr). It harbors an optically thin belt of circumstellar material at radius approx.. 90 AU, presumed to result from collisions in a population of unseen planetesimals. Aims. We aim to study the dust properties in the belt in details, and to constrain the gas-to-dust ratio. Methods. We obtained far-infrared photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 mm observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST/NICMOS scattered light images that allow the degeneracy between the disk geometry and the dust properties to be broken. We then use the radiative transfer code GRaTeR to compute a large grid of models, and we identify the grain models that best reproduce the spectral energy distribution (SED) through a Bayesian analysis. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes.We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an important layer of ice, for a total dust mass of approx.. 0.05 Solar Mass (in grains up to 1 mm). We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx. 17 Solar Mass. Conclusions. Despite the weak

  4. An Icy Kuiper-Belt Around the Young Solar-Type Star HD 181327

    NASA Technical Reports Server (NTRS)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J.; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Mathews, G. S.; Kamp, I.; Pinte, C.; Dent, W. R. F.; Barrado, D.; Duchene, G.; Gonzalez, J.-F.; Grady, C. A.; Meeus, G.; Pantin, E.; Williams, J. P.; Woitke, P.

    2011-01-01

    HD 181327 is a young Main Sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx 12 Myr). It harbors an optically thin belt of circumstellar material at approx90 AU, presumed to result from collisions in a populat.ion of unseen planetesimals. Aims. We aim to study the dust properties in the belt in great details, and to constrain the gas-to-dust ratio. Methods. We obtained far-IR photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 nun observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST /NICMOS scattered light images that break the degeneracy between the disk geometry and the dust properties. We then use the radiative transfer code GRaTer to compute a large grid of dust models, and we apply a Bayesian inference method to identify the grain models that best reproduce the SED. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes. We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an import.ant layer of ice for a total dust mass of approx 0.05 stellar Mass. We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx 17 Stellar Mass Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the

  5. A Low Density for Binary Kuiper Belt Object (26308) 1998 SM165

    NASA Astrophysics Data System (ADS)

    Spencer, John R.; Stansberry, J. A.; Grundy, W. M.; Noll, K. S.

    2006-09-01

    The densities of Kuiper Belt objects provide valuable clues to their composition, internal structure, and origin. To extend our limited knowledge of KBO densities, we have been attempting to obtain radiometric diameters for binary KBOs, which have masses determined from the satellite orbits, using the MIPS mid-IR imager on the Spitzer Space Telescope. Due to higher than expected KBO albedos, and MIPS's lower than expected 70 µm sensitivity, our 2006 campaign concentrated on long exposures on a single target, (26308) 1998 SM165, one of the brightest and warmest known KBO binaries. 7.5 hour integration times at both 24 and 70 µm yielded monochromatic fluxes of 0.11 ± 0.01 mJy at 23.7 microns and 6.1 ± 1.1 mJy at 71.4 microns. From these we derive a relatively model-independent diameter of 287 ± 36 km for the primary and 96 ± 12 km for the satellite, assuming similar albedos. The derived V geometric albedo (using HV = 6.13, Romanishin and Tegler 2006 Icarus 179 523) is 0.07 ± 0.02. The system mass from HST (Margot et al. 2004, DPS 36, 08.03) then yields a system density of 0.51 +0.29 -0.14 g cm-3, comparable to that for KBO (47171) 1999 TC36 (Stansberry et al. 2006, Ap. J. 643, 556). This density is also comparable to that of the similarly-sized planetary satellites Amalthea (D=200 km, ρ=0.86) and Hyperion (D=250 km, ρ=0.6), but much lower than the density of Phoebe (D=200 km, ρ=1.63), and suggests both high porosity and a dominantly water ice composition for this KBO, despite its low albedo and red color. Supporting visible-wavelength lightcurve observations obtained at Lowell Observatory also yielded a revised rotation rate of 8.40 ± 0.05 hours for 1998 SM165.

  6. The Boulder magnetic observatory

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.; Pedrie, Kolby L.; Blum, Cletus C.

    2015-08-14

    The Boulder magnetic observatory has, since 1963, been operated by the Geomagnetism Program of the U.S. Geological Survey in accordance with Bureau and national priorities. Data from the observatory are used for a wide variety of scientific purposes, both pure and applied. The observatory also supports developmental projects within the Geomagnetism Program and collaborative projects with allied geophysical agencies.

  7. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  8. The NASA Airborne Astronomy Program: A perspective on its contributions to science, technology, and education

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.

    1995-01-01

    The scientific, educational, and instrumental contributions from NASA's airborne observatories are deduced from the program's publication record (789 citations, excluding abstracts, involving 580 authors at 128 institutions in the United States and abroad between 1967-1990).

  9. NEP for a Kuiper Belt Object Rendezvous Mission

    SciTech Connect

    HOUTS,MICHAEL G.; LENARD,ROGER X.; LIPINSKI,RONALD J.; PATTON,BRUCE; POSTON,DAVID I.; WRIGHT,STEVEN A.

    1999-11-03

    Kuiper Belt Objects (KBOs) are a recently-discovered set of solar system bodies which lie at about the orbit of Pluto (40 AU) out to about 100 astronomical units (AU). There are estimated to be about 100,000 KBOS with a diameter greater than 100 km. KBOS are postulated to be composed of the pristine material which formed our solar system and may even have organic materials in them. A detailed study of KBO size, orbit distribution, structure, and surface composition could shed light on the origins of the solar system and perhaps even on the origin of life in our solar system. A rendezvous mission including a lander would be needed to perform chemical analysis of the surface and sub-surface composition of KBOS. These requirements set the size of the science probe at around a ton. Mission analyses show that a fission-powered system with an electric thruster could rendezvous at 40 AU in about 13.0 years with a total {Delta}V of 46 krnk. It would deliver a 1000-kg science payload while providing ample onboard power for relaying data back to earth. The launch mass of the entire system (power, thrusters, propellant, navigation, communication, structure, science payload, etc.) would be 7984 kg if it were placed into an earth-escape trajectory (C=O). Alternatively, the system could be placed into a 700-km earth orbit with more propellant,yielding a total mass in LEO of 8618 kg, and then spiral out of earth orbit to arrive at the KBO in 14.3 years. To achieve this performance, a fission power system with 100 kW of electrical power and a total mass (reactor, shield, conversion, and radiator) of about 2350 kg. Three possible configurations are proposed: (1) a UZrH-fueled, NaK-cooled reactor with a steam Rankine conversion system, (2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heatpipe-cooled reactor with a recuperated Brayton conversion system. (Boiling and condensation in the Rankine system is a technical risk at present

  10. The absolute magnitude distribution of Kuiper Belt objects

    SciTech Connect

    Fraser, Wesley C.; Brown, Michael E.; Morbidelli, Alessandro; Parker, Alex; Batygin, Konstantin

    2014-02-20

    Here we measure the absolute magnitude distributions (H-distribution) of the dynamically excited and quiescent (hot and cold) Kuiper Belt objects (KBOs), and test if they share the same H-distribution as the Jupiter Trojans. From a compilation of all useable ecliptic surveys, we find that the KBO H-distributions are well described by broken power laws. The cold population has a bright-end slope, α{sub 1}=1.5{sub −0.2}{sup +0.4}, and break magnitude, H{sub B}=6.9{sub −0.2}{sup +0.1} (r'-band). The hot population has a shallower bright-end slope of, α{sub 1}=0.87{sub −0.2}{sup +0.07}, and break magnitude H{sub B}=7.7{sub −0.5}{sup +1.0}. Both populations share similar faint-end slopes of α{sub 2} ∼ 0.2. We estimate the masses of the hot and cold populations are ∼0.01 and ∼3 × 10{sup –4} M {sub ⊕}. The broken power-law fit to the Trojan H-distribution has α{sub 1} = 1.0 ± 0.2, α{sub 2} = 0.36 ± 0.01, and H {sub B} = 8.3. The Kolmogorov-Smirnov test reveals that the probability that the Trojans and cold KBOs share the same parent H-distribution is less than 1 in 1000. When the bimodal albedo distribution of the hot objects is accounted for, there is no evidence that the H-distributions of the Trojans and hot KBOs differ. Our findings are in agreement with the predictions of the Nice model in terms of both mass and H-distribution of the hot and Trojan populations. Wide-field survey data suggest that the brightest few hot objects, with H{sub r{sup ′}}≲3, do not fall on the steep power-law slope of fainter hot objects. Under the standard hierarchical model of planetesimal formation, it is difficult to account for the similar break diameters of the hot and cold populations given the low mass of the cold belt.

  11. FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE

    SciTech Connect

    Nesvorny, David; Youdin, Andrew N.; Richardson, Derek C.

    2010-09-15

    A large fraction of {approx}100 km class low-inclination objects in the classical Kuiper Belt (KB) are binaries with comparable masses and a wide separation of components. A favored model for their formation is that they were captured during the coagulation growth of bodies in the early KB. However, recent studies have suggested that large, {approx}>100 km objects can rapidly form in the protoplanetary disks when swarms of locally concentrated solids collapse under their own gravity. Here, we examine the possibility that KB binaries formed during gravitational collapse when the excess of angular momentum prevented the agglomeration of available mass into a solitary object. We find that this new mechanism provides a robust path toward the formation of KB binaries with observed properties, and can explain wide systems such as 2001 QW{sub 322} and multiples such as (47171) 1999 TC{sub 36}. Notably, the gravitational collapse is capable of producing {approx}100% binary fraction for a wide range of the swarm's initial angular momentum values. The binary components have similar masses ({approx}80% have a secondary-over-primary radius ratio >0.7) and their separation ranges from {approx}1000 to {approx}100,000 km. The binary orbits have eccentricities from e = 0 to {approx}1, with the majority having e < 0.6. The binary orbit inclinations with respect to the initial angular momentum of the swarm range from i = 0 to {approx}90{sup 0}, with most cases having i < 50{sup 0}. The total binary mass represents a characteristic fraction of the collapsing swarm's total initial mass, M{sub tot}, suggesting M{sub tot} equivalent to that of a radius {approx}100-250 km compact object. Our binary formation mechanism also implies that the primary and secondary components in each binary pair should have identical bulk composition, which is consistent with the current photometric data. We discuss the applicability of our results to the Pluto-Charon, Orcus-Vanth, (617) Patroclus

  12. Volatile Loss and Classification of Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Johnson, Robert E.; Oza, Apurva; Young, Leslie A.; Volkov, Alexey N.; Schmidt, Carl A.

    2014-11-01

    Some of the largest Kuiper Belt Objects (KBOs) appear to have retained volatiles which affect their spectra, thermal energy balance, and atmospheres. Schaller & Brown (2007) (SB) estimated atmospheric escape rates from KBOs using Jeans escape from the surface, which they suggested gives a lower limit to the net atmospheric loss, and Levi & Podolak (2009) (LP) used a hydrodynamic model driven by the surface temperature. Based on recent molecular kinetic simulations, the SB escape rates are not necessarily lower limits and can be hugely in error, while the LP rates are valid only for KBOs with very small Jeans parameters (Volkov et al., 2011a,b). In addition, unless the atmosphere is thin or the body very small, escape can be driven primarily by the UV/EUV radiation absorbed in the upper atmosphere. Here we estimate the N2 loss from several KBOs, guided by recent molecular kinetic simulations that include thermal energy balance at the surface and heating of the upper atmosphere by UV/EUV irradiance. For the latter effect, we extrapolate simulations of escape from Pluto (Erwin et al., 2013; Zhu et al. 2014) using an energy limited escape model, which we have recently validated via molecular kinetic simulations (Johnson et al., 2013). In this way, we improve on current estimates of atmospheric retention and use the results to interpret the spectral differences observed. The longer-term goal is to connect detailed atmospheric loss mechanisms with a model for volatile transport (e.g., Young, 2014) in order to better describe recent KBO observations.ReferencesJohnson, R.E., A.N. Volkov and J.T. Erwin, Astrophys J. Lett. 768:L4, 2013.Levi, A. and M. Podolak, Icarus 202,681-693, 2009.Schaller, E.L. and M. E. Brown Astrophys. J., 659: L61-L64, 2007Volkov, A.N., R.E. Johnson, O.J. Tucker, J.T. Erwin, Astrophys. J. Lett. 729: L24, 2011a.Volkov, A.N, O.J. Tucker, J.T. Erwin, R.E. Johnson, Phys. of Fluids 23, 066601, 2011b.Young, L.A. , Icarus 221, 80-88, 2014Zhu, X., Strobel, D

  13. The TAOS Robotic Observatory

    NASA Astrophysics Data System (ADS)

    Lehner, Matthew; Wen, C.-Y.; Wang, J.-H.; Marshall, S. L.; Schwamb, M. E.; Zhang, Z.-W.; Bianco, F. B.; Gimmarco, J.; Porrata, R.; Alcock, C.; Axelrod, T.; Byun, Y.-I.; Chen, W. P.; Cook, K. H.; Dave, R.; Kim, D.-W.; King, S.-K.; Lee, T.; Lin, H.-C.; Wang, S.-Y.; Yen, W.-L.; Rice, J. A.; de Pater, I.; Szentgyorgyi, A.; Geary, J.; Norton, T.; Reyes-Ruiz, M.

    2011-03-01

    The Taiwanese-American Occultation survey (TAOS) operate four small telescopes in central Taiwan to search for occultations by small (~1 km diameter) Kuiper Belt Objects. The system is fully robotic, requiring human intervention only in the event of hardware failures. However, the status of the system during observations is monitored remotely via smart-phone. A successor survey, the Transneptunian Automated Occultation Survey (TAOS II) is currently being constructed. This next generation survey will be more than one hundred times as sensitive as the earlier survey. In this paper, we summarize the science goals of the surveys, describe the two surveys, and discuss the lessons learned in automating the TAOS observations.

  14. Dynamics of the Kuiper belt and the Origin of the Planets

    NASA Astrophysics Data System (ADS)

    Levison, H. F.

    2003-05-01

    A little over 10 years ago, our perception of the Solar System changed drastically with the discovery of the first Kuiper belt object. As the number of known objects increased (it is now well over 500), a picture has emerged which shows a Kuiper belt with two major components: a cold population --made of objects on orbits with inclination i< 4deg -- and a hot population --whose inclinations can be as large as 30deg, and possibly larger. These populations have also been found to have different physical properties. In addition, there is a small population (roughly 10%) of objects trapped in mean motion resonances with Neptune. All of these populations are confined to have semi-major axes within 50AU from the Sun, where the whole Kuiper belt seems to have an abrupt end, even if observational biases are accounted for. In addition, the trans-Neptunian region is the home of the 'scattered disk', which consists of objects with very large semi-major axes, but with perihelia typically less than 40AU. The complex structure in the trans-neptunian region is the result of the early dynamical evolution of the planets and thus it may be possible to put strong constraints on the formation of the planets by studying it. Indeed, just within the last few months a picture has emerged about the late stages of solar system formation that explains much of the Kuiper belt's structure. I will review this picture in this talk.

  15. DIRECT IMAGING AND SPECTROSCOPY OF A YOUNG EXTRASOLAR KUIPER BELT IN THE NEAREST OB ASSOCIATION

    SciTech Connect

    Currie, Thayne; Lisse, Carey M.; Kuchner, Marc; Madhusudhan, Nikku; Kenyon, Scott J.; Thalmann, Christian; Carson, Joseph; Debes, John

    2015-07-01

    We describe the discovery of a bright, young Kuiper belt–like debris disk around HD 115600, a ∼1.4–1.5 M{sub ⊙}, ∼15 Myr old member of the Sco–Cen OB Association. Our H-band coronagraphy/integral field spectroscopy from the Gemini Planet Imager shows the ring has a (luminosity-scaled) semimajor axis of (∼22 AU) ∼ 48 AU, similar to the current Kuiper belt. The disk appears to have neutral-scattering dust, is eccentric (e ∼ 0.1–0.2), and could be sculpted by analogs to the outer solar system planets. Spectroscopy of the disk ansae reveal a slightly blue to gray disk color, consistent with major Kuiper belt chemical constituents, where water ice is a very plausible dominant constituent. Besides being the first object discovered with the next generation of extreme adaptive optics systems (i.e., SCExAO, GPI, SPHERE), HD 115600's debris ring and planetary system provide a key reference point for the early evolution of the solar system, the structure, and composition of the Kuiper belt and the interaction between debris disks and planets.

  16. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Rideout, C.; Vanlew, K.

    1998-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction is nearly completed and first light is planned for fall 1998. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. That telescope has been in use for the past four years by up to 50 schools per month. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have applied for an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  17. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Sackett, C.

    1999-05-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building and dome has been completed, and first light is planned for spring 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have received an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  18. The Norwegian Naval Observatories

    NASA Astrophysics Data System (ADS)

    Pettersen, Bjørn Ragnvald

    2007-07-01

    Archival material has revealed milestones and new details in the history of the Norwegian Naval Observatories. We have identified several of the instrument types used at different epochs. Observational results have been extracted from handwritten sources and an extensive literature search. These allow determination of an approximate location of the first naval observatory building (1842) at Fredriksvern. No physical remains exist today. A second observatory was established in 1854 at the new main naval base at Horten. Its location is evident on military maps and photographs. We describe its development until the Naval Observatory buildings, including archives and instruments, were completely demolished during an allied air bomb raid on 23 February 1945. The first director, C.T.H. Geelmuyden, maintained scientific standards at the the Observatory between 1842 and 1870, and collaborated with university astronomers to investigate, develop, and employ time-transfer by telegraphy. Their purpose was accurate longitude determination between observatories in Norway and abroad. The Naval Observatory issued telegraphic time signals twice weekly to a national network of sites, and as such served as the first national time-service in Norway. Later the Naval Observatory focused on the particular needs of the Navy and developed into an internal navigational service.

  19. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  20. Zelenchukskaya Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  1. Svetloe Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  2. Einstein Observatory (HEAO-2)

    NASA Astrophysics Data System (ADS)

    Bond, P.; Murdin, P.

    2002-04-01

    The second in the series of HIGH ENERGY ASTROPHYSICAL OBSERVATORIES was launched by an Atlas-Centaur rocket on 13 November 1978. Soon after its insertion into a 470 km circular orbit inclined at 23.5° to the equator, HEAO-2 was named the Einstein Observatory, in celebration of the centenary of Albert Einstein's birth....

  3. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  4. Solar System Sleuth

    NASA Astrophysics Data System (ADS)

    Ryden, Barbara

    2005-11-01

    One of the great astronomers of the last century, Gerhard Peter Kuiper, was born 100 years ago this year. He is considered the father of modern planetary science and an expert on binary and white dwarf stars. Kuiper was recruited by Otto Struve to the Yerkes Observatory and used the 82-inch Telescope at McDonald Observatory for groundbreaking studies of Mars and the giant moons in the outer solar system. Later, he became the founding director of the Lunar and Planetary Laboratory at the University of Arizona. Kuiper predicted that a vast number of asteroid-like objects lie beyond the orbit of Pluto; this was later substantiated and called the Kuiper Belt. Late in life, Kuiper pioneered the use of infrared telescopes and instruments aboard aircraft and the NASA's original flying observatory was named the Kuiper Airborne Observatory in his honor.

  5. Strasbourg's "Academy" observatory

    NASA Astrophysics Data System (ADS)

    Heck, André

    2011-08-01

    The observing post located on the roof of Strasbourg's 19th-century "Academy" is generally considered as the second astronomical observatory of the city: a transitional facility between the (unproductive) turret lantern at the top of the Hospital Gate and the German (Wilhelminian) Observatory. The current paper reviews recent findings from archives (blueprints, inventories, correspondence, decrees and other documents) shedding some light on this observatory of which virtually nothing was known to this day. While being, thanks to Chrétien Kramp (1760-1826), an effective attempt to establish an actual observatory equipped with genuine instrumentation, the succession of political regimes in France and the continual bidding for moving the university to other locations, together with the faltering of later scholars, torpedoed any significant scientific usage of the place. A meridian instrument with a Cauchoix objective doublet was however recovered by the German observatory and is still existing.

  6. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; VanLew, K.; Melsheimer, T.; Sackett, C.

    1999-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. Construction of the dome and the remote control system has been completed, and the telescope is now on-line and operational over the Internet. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have begun teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  7. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  8. Studies of extra-solar Oort clouds and the Kuiper disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1996-01-01

    We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. According to 'standard' theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Belt (KB) and similar assemblages that may reside around other stars, including beta Pic.

  9. Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James

    2011-01-01

    A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.

  10. New Horizons Science Photos from NASA's Pluto-Kuiper Belt Mission

    DOE Data Explorer

    DOE provided the power supply for NASA's New Horizons Mission, a mission to the Pluto and Charon, a double-planet system, and the Kuiper Belt. There are science photos posted on the New Horizons website, along with mission photos, spacecraft images, launch photos, posters and renderings that are both scientific and artistic. The images can be searched by keywords, by date, or by subject topic. They can also be browsed as an entire list. Each image has a detailed description.

  11. A SOUTHERN SKY AND GALACTIC PLANE SURVEY FOR BRIGHT KUIPER BELT OBJECTS

    SciTech Connect

    Sheppard, Scott S.; Udalski, Andrzej; Kubiak, Marcin; Pietrzynski, Grzegorz; Poleski, Radoslaw; Soszynski, Igor; Szymanski, Michal K.; Ulaczyk, Krzysztof; Trujillo, Chadwick

    2011-10-15

    About 2500 deg{sup 2} of sky south of declination -25{sup 0} and/or near the Galactic Plane were surveyed for bright outer solar system objects. This survey is one of the first large-scale southern sky and Galactic Plane surveys to detect dwarf planets and other bright Kuiper Belt Objects in the trans-Neptunian region. The survey was able to obtain a limiting R-band magnitude of 21.6. In all, 18 outer solar system objects were detected, including Pluto which was detected near the Galactic center using optimal image subtraction techniques to remove the high stellar density background. Fourteen of the detections were previously unknown trans-Neptunian objects, demonstrating that the southern sky had not been well searched to date for bright outer solar system objects. Assuming moderate albedos, several of the new discoveries from this survey could be in hydrostatic equilibrium and thus could be considered dwarf planets. Combining this survey with previous surveys from the northern hemisphere suggests that the Kuiper Belt is nearly complete to around 21st magnitude in the R band. All the main dynamical classes in the Kuiper Belt are occupied by at least one dwarf-planet-sized object. The 3:2 Neptune resonance, which is the innermost well-populated Neptune resonance, has several large objects while the main outer Neptune resonances such as the 5:3, 7:4, 2:1, and 5:2 do not appear to have any large objects. This indicates that the outer resonances are either significantly depleted in objects relative to the 3:2 resonance or have a significantly different assortment of objects than the 3:2 resonance. For the largest objects (H < 4.5 mag), the scattered disk population appears to have a few times more objects than the main Kuiper Belt (MKB) population, while the Sedna population could be several times more than that of the MKB.

  12. Signatures of Planets: Observations and Modeling of Structure in the Zodiacal Cloud and Kuiper Disk

    NASA Astrophysics Data System (ADS)

    Holmes, E. K.; Dermott, S. F.

    2001-12-01

    There is a possible connection between structure in evolved circumstellar disks and the presence of planets. Asymmetries in such a disk (such as the zodiacal cloud in the inner solar system or the Kuiper disk in the outer solar system) could be diagnostic of planets that would be otherwise undetectable. At least three different types of asymmetries can serve to indicate bodies orbiting a star in a disk: (1) a warp in the plane of symmetry of the disk, (2) an offset in the center of symmetry of the disk with respect to the central star, and (3) density anomalies in the plane of the disk such as dust bands or resonant rings. Structure in the zodiacal cloud, namely the warp and offset of the cloud, are linked to the presence of planets using secular perturbation theory. A Kuiper disk would most likely have a resonant structure, with two concentrations in brightness along the ecliptic longitude. This structure arises because 10-15% of the Kuiper belt objects, the Plutinos, are in the 3:2 mean motion resonance with Neptune (Jewitt 1999, Malhotra 1995). A size-frequency distribution of particles in the Plutino disk based on the percentage of particles that are trapped in the 3:2 resonance is determined by running numerical integrations of particles in Pluto-like orbits. The dynamical evolution of the particles is followed from source to sink with Poynting-Robertson light drag, solar wind drag, radiation pressure, the Lorentz force, neutral interstellar gas drag, and the effects of planetary gravitational perturbations included. In addition, a search is conducted in COBE DIRBE data for far-infrared emission from the Kuiper disk, which is predicted to be, at most, a few percent of the brightness of the zodiacal cloud from COBE upper limits (Dermott et al. 1999, Backman et al. 1995, Teplitz et al. 1999).

  13. Searching for Extreme Kuiper Belt Objects and Inner Oort Cloud Objects

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott S.; Trujillo, Chad; Tholen, Dave

    2015-11-01

    Since late 2012 we have been performing the largest and deepest survey for distant solar system objects. In the nearly one thousand square degrees we have covered so far we have discovered the object with the most distant perihelion known (2012 VP113), several extreme Kuiper Belt objects with moderate perihelia and large eccentricities, one of the top ten intrinsically brightest Trans-Neptunian objects, an ultra-wide Kuiper Belt binary, one of the most distant known active comets and two active asteroids in the main belt of asteroids. The Kuiper Belt population has an outer edge at about 50 AU. Sedna and our recent discovery, 2012 VP113, are the only known objects with perihelia significantly beyond this edge at about 80 AU. These inner Oort cloud objects obtained their orbits when the solar system was vastly different from now. Thus the dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. We will discuss the most recent results of our survey.

  14. Studies of extra-solar OORT clouds and the Kuiper disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1993-01-01

    This is the second report for NAGW-3023, Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for infering the presence of planetary systems. Our three-year effort consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including Beta Pic. These efforts are referred to as Task 1 and 2, respectively.

  15. A Possible Divot in the Size Distribution of the Kuiper Belt's Scattering Objects

    NASA Astrophysics Data System (ADS)

    Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M.

    2013-02-01

    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional "knees" in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now "frozen in" to portions of the Kuiper Belt sharing a "hot" orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10°.

  16. Studies of extra-solar Oort Clouds and the Kuiper Disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1994-01-01

    The March 1994 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk is presented. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. Our three-year effort consists of two major efforts: observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and modeling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic.

  17. The Phase Space Structure Near Neptune Resonances in the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1996-01-01

    The Solar system beyond Neptune is believed to house a population of small primordial bodies left over from the planet formation process. The region up to heliocentric distance -50 AU (a.k.a. the Kuiper Belt) may be the source of the observed short-period comets. In this region, the phase space structure near orbital resonances with Neptune is of special interest for the long-term stability of orbits. There is reason to believe that a significant fraction (perhaps most) of the Kuiper Belt objects reside preferentially in these resonance locations. This paper describes the dynamics of small objects near the major orbital resonances with Neptune. Estimates of the widths of stable resonance zones as well as the properties of resonant orbits are obtained from the circular, planar restricted three-body model. Although this model does not contain the full complexity of the long-term orbital dynamics of Kuiper Belt objects subject to the full N-body perturbations of all the planets, it does provide a baseline for the phase space structure and properties of resonant orbits in the trans-Neptunian Solar system.

  18. A POSSIBLE DIVOT IN THE SIZE DISTRIBUTION OF THE KUIPER BELT'S SCATTERING OBJECTS

    SciTech Connect

    Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M.

    2013-02-10

    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional ''knees'' in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now ''frozen in'' to portions of the Kuiper Belt sharing a ''hot'' orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10 Degree-Sign .

  19. Studies of extra-solar Oort Clouds and the Kuiper Disk

    NASA Technical Reports Server (NTRS)

    Stern, Alan

    1995-01-01

    This is the September 1995 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic. These efforts are referred to as Task 1 and 2.

  20. Prototype optical SETI observatory

    NASA Astrophysics Data System (ADS)

    Kingsley, Stuart A.

    1996-06-01

    The Optical Search for Extraterrestrial Intelligence (OSETI) is based on the premise that there are ETIs within our galaxy which are targeting star systems like our own with free-space beams. Upon these beams will ride attention- getting beacon signals and wideband data channels. Perhaps the wideband channels form part of a Galactic Information Superhighway, a Galactic Internet to which we are presently oblivious. The Columbus Optical SETI Observatory described in this paper is intended to be a prototype observatory which might lead to a new renaissance in both optical SETI and optical astronomy. It is hoped that the observatory design will be emulated by both the professional and amateur communities. The modern-day OSETI observatory is one that is more affordable than ever. With the aid of reasonably priced automatic telescopes, low-cost PCs, software and signal processing boards, Optical SETI can become accessible to all nations, professional scientific groups, amateur astronomy societies and even individuals.

  1. Global Health Observatory (GHO)

    MedlinePlus

    ... repository Reports Country statistics Map gallery Standards Global Health Observatory (GHO) data Monitoring health for the SDGs ... relevant web pages on the theme. Monitoring the health goal: indicators of overall progress Mortality and global ...

  2. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  3. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  4. 2007 TY430: A COLD CLASSICAL KUIPER BELT TYPE BINARY IN THE PLUTINO POPULATION

    SciTech Connect

    Sheppard, Scott S.; Ragozzine, Darin; Trujillo, Chadwick

    2012-03-15

    Kuiper Belt object 2007 TY430 is the first wide, equal-sized, binary known in the 3:2 mean motion resonance with Neptune. The two components have a maximum separation of about 1 arcsec and are on average less than 0.1 mag different in apparent magnitude with identical ultra-red colors (g - i = 1.49 {+-} 0.01 mag). Using nearly monthly observations of 2007 TY430 from 2007 to 2011, the orbit of the mutual components was found to have a period of 961.2 {+-} 4.6 days with a semi-major axis of 21000 {+-} 160 km and eccentricity of 0.1529 {+-} 0.0028. The inclination with respect to the ecliptic is 15.68 {+-} 0.22 deg and extensive observations have allowed the mirror orbit to be eliminated as a possibility. The total mass for the binary system was found to be 7.90 {+-} 0.21 Multiplication-Sign 10{sup 17} kg. Equal-sized, wide binaries and ultra-red colors are common in the low-inclination 'cold' classical part of the Kuiper Belt and likely formed through some sort of three-body interactions within a much denser Kuiper Belt. To date 2007 TY430 is the only ultra-red, equal-sized binary known outside of the classical Kuiper Belt population. Numerical simulations suggest 2007 TY430 is moderately unstable in the outer part of the 3:2 resonance and thus 2007 TY430 is likely an escaped 'cold' classical object that later got trapped in the 3:2 resonance. Similar to the known equal-sized, wide binaries in the cold classical population, the binary 2007 TY430 requires a high albedo and very low density structure to obtain the total mass found for the pair. For a realistic minimum density of 0.5 g cm{sup -3} the albedo of 2007 TY430 would be greater than 0.17. For reasonable densities, the radii of either component should be less than 60 km, and thus the relatively low eccentricity of the binary is interesting since no tides should be operating on the bodies at their large distances from each other. The low prograde inclination of the binary also makes it unlikely that the Kozai

  5. The AAS ``Semi-centennial" Meeting: Northwestern University and Yerkes Observatory, September 1947

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1999-05-01

    The AAS celebrated its "semi-centennial" fifty-two years ago! It was actually the fiftieth anniversary of the "First Conference" of astronomers and astrophysicists held at the dedication of Yerkes Observatory in 1897, which led to the actual formation of the Society two years later. Otto Struve, president of the AAS, was publicizing the fiftieth anniversary of his Yerkes Observatory in 1947, and he simply announced it was also the semi-centennial of the Society. Joel Stebbins, the grand old man of the AAS who had joined it as a graduate student in 1900, and held nearly every office in the Society from councilor to president, supported Struve's early celebration of the anniversary, probably largely because he was to retire himself in 1948. The meeting was held at Northwestern University and at Yerkes. There were then 625 AAS members. About 140 of them attended the meeting, and presented some 50 papers, all oral, with no parallel sessions. Struve organized a symposium on stellar atmospheres, with 5 invited speakers, and the great majority of the contributed papers were also on stars, a few on nebulae and interstellar matter, one on galaxies, and none on cosmology. Not to be outdone, Gerard P. Kuiper, who had recently succeeded Struve as director of Yerkes Observatory, organized a second symposium on the atmospheres of the planets, held at Yerkes immediately after the AAS meeting. After two days of sessions at Evanston, the members had driven to Williams Bay for the closing session Saturday, at which Struve and Stebbins gave their versions of the history of the observatory and of the Society. The two symposia formed the bases for two important books, Astrophysics: A Topical Symposium, and The Atmospheres of the Earth and the Planets, edited by J. Allen Hynek and Kuiper respectively.

  6. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  7. News and Views: Diamond is new head of SKA; Did you read our `A&G' mobile issue? BBC writer wins astro journalism prize; Kavli prize recognizes work on Kuiper Belt objects

    NASA Astrophysics Data System (ADS)

    2012-10-01

    Philip Diamond will become director general of the Square Kilometre Array this month, moving from Australia to the new SKA headquarters at Jodrell Bank Radio Observatory. Technology writer Katia Moskvitch has won the first European Astronomy Journalism Prize for her series of articles on the Very Large Telescope at Paranal, Chile. Moskvitch will be the guest of the ESO at the inauguration of the Atacama Large Millimeter/submillimeter Array (ALMA) in the Atacama desert in March 2013. The 2012 Kavli Prize in Astrophysics is shared between David C Jewitt (University of California, USA), Jane X Luu (Massachusetts Institute of Technology, Lincoln Laboratory, USA), and Michael E Brown (California Institute of Technology, USA) “for discovering and characterizing the Kuiper Belt and its largest members, work that led to a major advance in the understanding of the history of our planetary system”.

  8. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  9. Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Khosroshahi, H. G.; Danesh, A.; Molaeinezhad, A.

    2016-09-01

    The Iranian National Observatory is under construction at an altitude of 3600m at Gargash summit 300km southern Tehran. The site selection was concluded in 2007 and the site monitoring activities have begun since then, which indicates a high quality of the site with a median seeing of 0.7 arcsec through the year. One of the major observing facilities of the observatory is a 3.4m Alt-Az Ritchey-Chretien optical telescope which is currently under design. This f/11 telescope will be equipped with high resolution medium-wide field imaging cameras as well as medium and high resolution spectrographs. In this review, I will give an overview of astronomy research and education in Iran. Then I will go through the past and present activities of the Iranian National Observatory project including the site quality, telescope specifications and instrument capabilities.

  10. The Collaborative Heliophysics Observatory

    NASA Astrophysics Data System (ADS)

    Hurlburt, N.; Freeland, S.; Cheung, M.; Bose, P.

    2007-12-01

    The Collaborative Heliophysics Observatory (CHO) would provide a robust framework and enabling tools to fully utilize the VOs for scientific discovery and collaboration. Scientists across the realm of heliophysics would be able to create, use and share applications -- either as services using familiar tools or through intuitive workflows -- that orchestrate access to data across all virtual observatories. These applications can be shared freely knowing that proper recognition of data and processing components are acknowledged; that erroneous use of data is flagged; and that results from the analysis runs will in themselves be shared Ð all in a transparent and automatic fashion. In addition, the CHO would incorporate cross-VO models and tools to weave the various virtual observatories into a unified system. These provide starting points for interactions across the solar/heliospheric and heliospheric/magnetospheric boundaries.

  11. Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Lowenstern, Jacob

    2008-01-01

    Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

  12. Arecibo Observatory for All

    NASA Astrophysics Data System (ADS)

    Isidro, Gloria M.; Pantoja, C. A.; Bartus, P.; La Rosa, C.

    2006-12-01

    We describe new materials available at Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, some basic terms used in radio astronomy and frequently asked questions. We have also designed a tactile model of the telescope. We are interested that blind visitors can participate of the excitement of the visit to the worlds largest radio telescope. We would like to thank the "Fundacion Comunitaria de Puerto Rico" for the scholarship that allowed GMI to work on this project. We would like to express our gratitude to the Arecibo Observatory/NAIC for their support.

  13. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  14. Cascades Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Driedger, Carolyn; Pallister, John

    2008-01-01

    Washington's Mount St. Helens volcano reawakens explosively on October 1, 2004, after 18 years of quiescence. Scientists at the U.S. Geological Survey's Cascades Volcano Observatory (CVO) study and observe Mount St. Helens and other volcanoes of the Cascade Range in Washington, Oregon, and northern California that hold potential for future eruptions. CVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Mount St. Helens and CVO at http://vulcan.wr.usgs.gov/.

  15. Long Valley Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Hill, David

    2008-01-01

    The ~300-year-old lava on Paoha Island in Mono Lake was produced by the most recent eruption in the Long Valley Caldera area in east-central California. The Long Valley Caldera was formed by a massive volcanic eruption 760,000 years ago. The region is monitored by the Long Valley Observatory (LVO), one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about the Long Valley Caldera region and LVO at http://volcanoes.usgs.gov/lvo.

  16. Dynamics of the Trans-Neptune Region: Apsidal Waves in the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Ward, William R.; Hahn, Joseph M.

    1998-01-01

    The role of apsidal density waves propagating in a primordial trans-Neptune disk (i.e., Kuiper belt) is investigated. It is shown that Neptune launches apsidal waves at its secular resonance near 40 AU that propagate radially outward, deeper into the particle disk. The wavelength of apsidal waves is considerably longer than waves that might be launched at Lindblad resonances, because the pattern speed, g(sub s), resulting from the apsis precession of Neptune is much slower than its mean motion, Omega(sub s). If the early Kuiper belt had a sufficient surface density, sigma, the disk's wave response to Neptune's secular perturbation would have spread the disturbing torque radially over a collective scale lambda(sub *) approx. = r(2(mu)(sub d)Omega/ absolute value of r dg/dr)(sup 1/2), where mu(sub d)equivalent pi(sigma)r(exp 2)/(1 solar mass) and Omega(r) and g(r) are respectively the mean motion and precession frequency of the disk particles. This results in considerably smaller eccentricities at resonance than had the disk particles been treated as noninteracting test particles. Consequently, particles are less apt to be excited into planet-crossing orbits, implying that the erosion timescales reported by earlier test-particle simulations of the Kuiper belt may be underestimated. It is also shown that the torque the disk exerts upon the planet (due to its gravitational attraction for the disk's spiral wave pattern) damps the planet's eccentricity and further inhibits the planet's ability to erode the disk. Key words: celestial mechanics, stellar dynamics - comets: general minor planets, asteroids

  17. The evolution of comets in the Oort cloud and Kuiper belt.

    PubMed

    Alan Stern, S

    2003-08-01

    Comets are remnants from the time when the outer planets formed, approximately 4-4.5 billion years ago. They have been in storage since then in the Oort cloud and Kuiper belt-distant regions that are so cold and sparsely populated that it was long thought that comets approaching the Sun were pristine samples from the time of Solar System formation. It is now recognized, however, that a variety of subtle but important evolutionary mechanisms operate on comets during their long storage, so they can no longer be regarded as wholly pristine.

  18. The evolution of comets in the Oort cloud and Kuiper belt.

    PubMed

    Alan Stern, S

    2003-08-01

    Comets are remnants from the time when the outer planets formed, approximately 4-4.5 billion years ago. They have been in storage since then in the Oort cloud and Kuiper belt-distant regions that are so cold and sparsely populated that it was long thought that comets approaching the Sun were pristine samples from the time of Solar System formation. It is now recognized, however, that a variety of subtle but important evolutionary mechanisms operate on comets during their long storage, so they can no longer be regarded as wholly pristine. PMID:12904784

  19. Strasbourg's "First" astronomical observatory

    NASA Astrophysics Data System (ADS)

    Heck, André

    2011-08-01

    The turret lantern located at the top of the Strasbourg Hospital Gate is generally considered as the first astronomical observatory of the city, but such a qualification must be treated with caution. The thesis of this paper is that the idea of a tower-observatory was brought back by a local scholar, Julius Reichelt (1637-1717), after he made a trip to Northern Europe around 1666 and saw the "Rundetårn" (Round Tower) recently completed in Copenhagen. There, however, a terrace allowed (and still allows) the full viewing of the sky, and especially of the zenith area where the atmospheric transparency is best. However, there is no such terrace in Strasbourg around the Hospital Gate lantern. Reichelt had also visited Johannes Hevelius who was then developing advanced observational astronomy in Gdansk, but nothing of the kind followed in Strasbourg. Rather, the Hospital Gate observatory was built essentially for the prestige of the city and for the notoriety of the university, and the users of this observing post did not make any significant contributions to the progress of astronomical knowledge. We conclude that the Hospital Gate observatory was only used for rudimentary viewing of bright celestial objects or phenomena relatively low on the horizon.

  20. The IT Observatory.

    ERIC Educational Resources Information Center

    Kent, Kai Iok Tong; Sousa, Antonio C. M.

    1999-01-01

    Describes the IT Observatory, a service of the Macau Productivity and Technology center (CPTTM) that provides information on demand using information technology. The CPTTM is a nonprofit organization funded by the Macau government and private businesses to enhance the productivity of Macau businesses by introducing new technologies and new…

  1. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  2. Torun Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Torun Center for Astronomy is located at Piwnice, 15 km north of Torun, Poland. A part of the Faculty of Physics and Astronomy of the Nicolaus Copernicus University, it was created by the union of Torun Radio Astronomy Observatory (TRAO) and the Institute of Astronomy on 1 January 1997....

  3. Arecibo Observatory for All

    ERIC Educational Resources Information Center

    Bartus, P.; Isidro, G. M.; La Rosa, C.; Pantoja, C. A.

    2007-01-01

    We describe new materials available at the Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, explains some basic terms used in radio astronomy, and lists frequently asked questions. We have also designed a tactile model of the telescope. Our interest is in enabling…

  4. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2009-06-01

    SOFIA is a 2.5-meter infrared airborne telescope in a Boeing 747-SP that will begin will begin science flights in mid-2009. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA will be used to conduct spectroscopic and imaging observations throughout the infrared and sub-mm region with an average transmission of greater than 80 percent. The SOFIA first-generation instrument complement includes broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The characteristics and status of the observatory and its instrumentation will be briefly reviewed. SOFIA`s operations schedule and opportunities for observers and instrument developers will be described.

  5. The Las Cumbres Observatory (LCOGT) Network for NEO and Solar System Science

    NASA Astrophysics Data System (ADS)

    Lister, Tim; Greenstreet, Sarah; Gomez, Edward; Christensen, Eric; Larson, Stephen

    2015-11-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) has deployed a homogeneous telescope network of nine 1-meter telescopes to four locations in the northern and southern hemispheres, with a planned network size of twelve 1-meter telescopes at 6 locations. This 1-meter network is in addition to the two 2-meter Faulkes Telescopes that have been operating since 2005. This network is very versatile and is designed to respond rapidly to target of opportunity events and also to perform long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make LCOGT ideal for follow-up and characterization of Solar System objects e.g. Near-Earth Objects (NEOs), comets, asteroids and Kuiper Belt Objects and also for the discovery of new objects.LCOGT has completed the first phase of the deployment with the installation and commissioning of the nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network has been fully operational since 2014 May, and observations are being executed remotely and robotically. Future expansion to sites in the Canary Islands and Tibet are planned for 2016-2017.I will describe the Solar System science research that is being carried out using the LCOGT Network with highlights from the LCOGT NEO Follow-up Network, long-term monitoring of the Rosetta spacecraft target comet 67P and comet C/2013 A1 (Siding Spring) and work on Kuiper Belt Object occultation targets, including Pluto.

  6. The Las Cumbres Observatory (LCOGT) Network for NEO and Solar System Science

    NASA Astrophysics Data System (ADS)

    Lister, Tim; Greenstreet, Sarah; Gomez, Edward; Christensen, Eric J.; Larson, Stephen M.

    2016-01-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) has deployed a homogeneous telescope network of nine 1-meter telescopes to four locations in the northern and southern hemispheres, with a planned network size of twelve 1-meter telescopes at 6 locations. This 1-meter network is in addition to the two 2-meter Faulkes Telescopes that have been operating since 2005. This network is very versatile and is designed to respond rapidly to target of opportunity events and also to perform long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make LCOGT ideal for follow-up and characterization of Solar System objects e.g. Near-Earth Objects (NEOs), comets, asteroids and Kuiper Belt Objects and also for the discovery of new objects.LCOGT has completed the first phase of the deployment with the installation and commissioning of the nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network has been fully operational since 2014 May, and observations are being executed remotely and robotically. Future expansion to sites in the Canary Islands and Tibet are planned for 2016-2017.I will describe the Solar System science research that is being carried out using the LCOGT Network with highlights from the LCOGT NEO Follow-up Network, long-term monitoring of the Rosetta spacecraft target comet 67P and comet C/2013 A1 (Siding Spring) and work on Kuiper Belt Object occultation targets, including Pluto.

  7. Constraints on impact rates in the Pluto-Charon system and the population of the Kuiper comet belt

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Dobrovolskis, Anthony R.; Stern, S. Alan

    1989-01-01

    Impact rates in the Pluto-Charon system are dominated by comets from the proposed Kuiper Belt, 30 to 50 AU from the sun. Such collisions excite the eccentricity of Charon's orbit, which then decays due to tidal dissipation. Charon's eccentricity approaches a quasi-steady state, which can be used to constrain the total number and mass of comets in the Kuiper Belt. Unfortunately, the current upper limit on Charon's orbital eccentricity must be reduced by more than a factor of ten before useful constraints can be set.

  8. Constraints on impact rates in the pluto-charon system and the population of the Kuiper comet belt

    SciTech Connect

    Weissman, P.R. ); Dobrovolskis, A.R. ); Stern, S.A. )

    1989-11-01

    Impact rates in the Pluto-Charon system are dominated by comets from the proposed Kuiper Belt, 30 to 50 AU from the Sun. Such collisions excite the eccentricity of Charon's orbit, which then decays due to tidal dissipation. Charon's eccentricity approaches a quasi-steady state, which can be used to constrain the total number and mass of comets in the Kuiper Belt. Unfortunately, the current upper limit on Charon's orbital eccentricity must be reduced by more than a factor of ten before useful constraints can be set.

  9. 1998 SM165: A large Kuiper belt object with an irregular shape

    PubMed Central

    Romanishin, W.; Tegler, S. C.; Rettig, T. W.; Consolmagno, G.; Botthof, B.

    2001-01-01

    The recent discovery of an ancient reservoir of icy bodies at and beyond the orbit of Neptune—the Kuiper belt—has opened a new frontier in astronomy. Measurements of the physical and chemical nature of Kuiper belt objects (KBOs) can constrain our ideas of the processes of planet formation and evolution. Our 1.8-m Vatican Advanced Technology Telescope and charge-coupled device camera observations of the KBO 1998 SM165 indicate its brightness periodically varies by 0.56 magnitudes over a 4-h interval. If we assume a uniform albedo of 0.04, which is typical of values found in the literature for a handful of KBOs, and an “equator-on” aspect, we find 1998 SM165 has axes of length 600 × 360 km. If our assumptions are correct, such dimensions put 1998 SM165 among the largest elongated objects known in our solar system. Perhaps long ago, two nearly spherical KBOs of comparable size coalesced to form a compound object, or perhaps 1998 SM165 is the residual core of a catastrophic fragmentation of a larger precursor. PMID:11572937

  10. Searching for a Kuiper-belt flyby target for the New Horizons spacecraft

    NASA Astrophysics Data System (ADS)

    Kavelaars, J.; Spencer, J.; Susan, B.; Borncamp, D.; Buie, M.; Fuentes, C.; Parker, A.; Tholen, D.; Osip, D.

    2014-07-01

    The New Horizons spacecraft will fly past Pluto in July 2015 and then continue deeper into the Kuiper Belt, providing an opportunity to encounter one or more small (less than 50 km) KBOs. This first flyby of a typical small KBO would revolutionize our understanding of these bodies, providing information that can be extrapolated to hundreds of thousands of similar objects in the Kuiper Belt. Statistically, we expect several KBOs with ground based V magnitude less than 26.0 to be accessible with the delta-V available onboard New Horizons. At this point (spring 2014), however, no known KBOs are reachable by the spacecraft. For the past 4 years we have been conducting a dedicated search for suitable targets, using the Subaru, Magellan and CFH Telescopes. The search is complicated by the fact that targetable objects are currently in the Milky Way, so search depth is limited by confusion with background stars unless seeing is exceptional. We are now requesting 150 orbits with HST to continue our search to fainter limiting magnitudes. We have discovered dozens of KBOs near the spacecraft trajectory, none of which are accessible to the spacecraft. Several of the targets could be reached with less than twice the available delta-V, and much of the accessible volume has not yet been searched to sufficient depth. Several objects already discovered will be observable at long range from New Horizons, providing opportunities for (for example) searches for binarity with much higher spatial resolution than is possible from Earth.

  11. Searching for Kuiper Belt Object Flyby Targets for the New Horizons Spacecraft.

    NASA Astrophysics Data System (ADS)

    Kavelaars, J. J.; Spencer, J. R.; Benecchi, S. D.; Binzel, R. P.; Borncamp, D.; Buie, M. W.; DeMeo, F. E.; Fabbro, S.; Fuentes, C. I.; Gay, P. L.; Gwyn, S. D. J.; Holman, M. J.; McLeod, B. A.; Osip, D. J.; Parker, A. H.; Sheppard, S. S.; Stern, S. A.; Tholen, D. J.; Trilling, D. E.; Ragozzine, D. A.; Wasserman, L. H.; Hunters, Ice

    2012-10-01

    The New Horizons spacecraft will fly past Pluto in July 2015 and then continue deeper into the Kuiper Belt, providing an opportunity to encounter one or more small ( 50 km) KBOs. This first flyby of a typical KBO would revolutionize our understanding of these bodies, providing information that can be extrapolated to hundreds of thousands of similar objects in the Kuiper Belt. Statistically, we expect several KBOs with ground based V magnitude less than 26.0 to be accessible with the delta-V available onboard New Horizons. At this point, however, no known KBOs are reachable by the spacecraft. We have therefore begun a dedicated search for suitable targets, using the Subaru, Magellan, and CFHT telescopes. The search is complicated by the fact that targetable objects are currently in the Milky Way, so search depth is limited by confusion with background stars unless seeing is exceptional. As of mid-2012, we have discovered 24 KBOs near the spacecraft trajectory, none of which are accessible to the spacecraft. Several of the targets could be reached with less than twice the available delta-V, and much of the accessible volume has not yet been searched to sufficient depth. Several objects already discovered will be observable at long range from New Horizons, providing opportunities for (for example) searches for binarity with much higher spatial resolution than is possible from Earth. The search has already yielded the second known trailing Neptune Trojan (Parker et al., this conference).

  12. NEPTUNE ON TIPTOES: DYNAMICAL HISTORIES THAT PRESERVE THE COLD CLASSICAL KUIPER BELT

    SciTech Connect

    Wolff, Schuyler; Dawson, Rebekah I.; Murray-Clay, Ruth A. E-mail: rdawson@cfa.harvard.edu

    2012-02-20

    The current dynamical structure of the Kuiper Belt was shaped by the orbital evolution of the giant planets, especially Neptune, during the era following planet formation when the giant planets may have undergone planet-planet scattering and/or planetesimal-driven migration. Numerical simulations of this process, while reproducing many properties of the Belt, fail to generate the high inclinations and eccentricities observed for some objects while maintaining the observed dynamically 'cold' population. We present the first of a three-part parameter study of how different dynamical histories of Neptune sculpt the planetesimal disk. Here we identify which dynamical histories allow an in situ planetesimal disk to remain dynamically cold, becoming today's cold Kuiper Belt population. We find that if Neptune undergoes a period of elevated eccentricity and/or inclination, it secularly excites the eccentricities and inclinations of the planetesimal disk. We demonstrate that there are several well-defined regimes for this secular excitation, depending on the relative timescales of Neptune's migration, the damping of Neptune's orbital inclination and/or eccentricity, and the secular evolution of the planetesimals. We model this secular excitation analytically in each regime, allowing for a thorough exploration of parameter space. Neptune's eccentricity and inclination can remain high for a limited amount of time without disrupting the cold classical belt. In the regime of slow damping and slow migration, if Neptune is located (for example) at 20 AU, then its eccentricity must stay below 0.18 and its inclination below 6 Degree-Sign .

  13. Impact Craters on Pluto and Charon Indicate a Deficit of Small Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Singer, Kelsi N.; McKinnon, William B.; Greenstreet, Sarah; Gladman, Brett; Parker, Alex Harrison; Robbins, Stuart J.; Schenk, Paul M.; Stern, S. Alan; Bray, Veronica; Spencer, John R.; Weaver, Harold A.; Beyer, Ross A.; Young, Leslie; Moore, Jeffrey M.; Olkin, Catherine B.; Ennico, Kimberly; Binzel, Richard; Grundy, William M.; New Horizons Geology Geophysics and Imaging Science Theme Team, The New Horizons MVIC and LORRI Teams

    2016-10-01

    The impact craters observed during the New Horizons flyby of the Pluto system currently provide the most extensive empirical constraints on the size-frequency distribution of smaller impactors in the Kuiper belt. These craters also help us understand the surface ages and geologic evolution of the Pluto system bodies. Pluto's terrains display a diversity of crater retention ages and terrain types, indicating ongoing geologic activity and a variety of resurfacing styles including both exogenic and endogenic processes. Charon's informally named Vulcan Planum did experience early resurfacing, but crater densities suggest this is also a relatively ancient surface. We will present and compare the craters mapped across all of the relevant New Horizons LOng Range Reconnaissance Imager (LORRI) and Multispectral Visible Imaging Camera (MVIC) datasets of Pluto and Charon. We observe a paucity of small craters on all terrains (there is a break to a shallower slope for craters below 10 km in diameter), despite adequate resolution to observe them. This lack of small craters cannot be explained by geological resurfacing alone. In particular, the main area of Charon's Vulcan Planum displays no obviously embayed or breached crater rims, and may be the best representation of a production population since the emplacement of the plain. The craters on Pluto and Charon are more consistent with Kuiper belt and solar system evolution models producing fewer small objects.This work was supported by NASA's New Horizons project.

  14. Size and albedo of Kuiper belt object 55636 from a stellar occultation.

    PubMed

    Elliot, J L; Person, M J; Zuluaga, C A; Bosh, A S; Adams, E R; Brothers, T C; Gulbis, A A S; Levine, S E; Lockhart, M; Zangari, A M; Babcock, B A; Dupré, K; Pasachoff, J M; Souza, S P; Rosing, W; Secrest, N; Bright, L; Dunham, E W; Sheppard, S S; Kakkala, M; Tilleman, T; Berger, B; Briggs, J W; Jacobson, G; Valleli, P; Volz, B; Rapoport, S; Hart, R; Brucker, M; Michel, R; Mattingly, A; Zambrano-Marin, L; Meyer, A W; Wolf, J; Ryan, E V; Ryan, W H; Morzinski, K; Grigsby, B; Brimacombe, J; Ragozzine, D; Montano, H G; Gilmore, A

    2010-06-17

    The Kuiper belt is a collection of small bodies (Kuiper belt objects, KBOs) that lie beyond the orbit of Neptune and which are believed to have formed contemporaneously with the planets. Their small size and great distance make them difficult to study. KBO 55636 (2002 TX(300)) is a member of the water-ice-rich Haumea KBO collisional family. The Haumea family are among the most highly reflective objects in the Solar System. Dynamical calculations indicate that the collision that created KBO 55636 occurred at least 1 Gyr ago. Here we report observations of a multi-chord stellar occultation by KBO 55636, which occurred on 9 October 2009 ut. We find that it has a mean radius of 143 +/- 5 km (assuming a circular solution). Allowing for possible elliptical shapes, we find a geometric albedo of in the V photometric band, which establishes that KBO 55636 is smaller than previously thought and that, like its parent body, it is highly reflective. The dynamical age implies either that KBO 55636 has an active resurfacing mechanism, or that fresh water-ice in the outer Solar System can persist for gigayear timescales. PMID:20559381

  15. ALICE: The Ultraviolet Imaging Spectrograph Aboard the New Horizons Pluto-Kuiper Belt Mission

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan; Slater, David C.; Scherrer, John; Stone, John; Dirks, Greg; Versteeg, Maarten; Davis, Michael; Gladstone, G. Randall; Parker, Joel W.; Young, Leslie A.; Siegmund, Oswald H. W.

    2008-10-01

    The ALICE instrument is a lightweight (4.4 kg), low-power (4.4 watt) imaging spectrograph aboard the New Horizons mission to the Pluto system and the Kuiper Belt. Its primary job is to determine the relative abundances of various species in Pluto’s atmosphere. ALICE will also be used to search for an atmosphere around Pluto’s moon, Charon, as well as the Kuiper Belt Objects (KBOs) that New Horizons is expected to fly by after Pluto-Charon, and it will make UV surface reflectivity measurements of all of these bodies, as well as of Pluto’s smaller moons Nix and Hydra. The instrument incorporates an off-axis telescope feeding a Rowland-circle spectrograph with a 520-1870 Å spectral passband, a spectral point spread function of 3-6 Å FWHM, and an instantaneous spatial field-of-view that is 6 degrees long. Two different input apertures that feed the telescope allow for both airglow and solar occultation observations during the mission. The focal plane detector is an imaging microchannel plate (MCP) double delay-line detector with dual solar-blind opaque photocathodes (KBr and CsI) and a focal surface that matches the instrument’s 15-cm diameter Rowland-circle. In this paper, we describe the instrument in greater detail, including descriptions of its ground calibration and initial in flight performance. New Horizons launched on 19 January 2006.

  16. 1998 SM165: a large Kuiper belt object with an irregular shape.

    PubMed

    Romanishin, W; Tegler, S C; Rettig, T W; Consolmagno, G; Botthof, B

    2001-10-01

    The recent discovery of an ancient reservoir of icy bodies at and beyond the orbit of Neptune-the Kuiper belt-has opened a new frontier in astronomy. Measurements of the physical and chemical nature of Kuiper belt objects (KBOs) can constrain our ideas of the processes of planet formation and evolution. Our 1.8-m Vatican Advanced Technology Telescope and charge-coupled device camera observations of the KBO 1998 SM(165) indicate its brightness periodically varies by 0.56 magnitudes over a 4-h interval. If we assume a uniform albedo of 0.04, which is typical of values found in the literature for a handful of KBOs, and an "equator-on" aspect, we find 1998 SM(165) has axes of length 600 x 360 km. If our assumptions are correct, such dimensions put 1998 SM(165) among the largest elongated objects known in our solar system. Perhaps long ago, two nearly spherical KBOs of comparable size coalesced to form a compound object, or perhaps 1998 SM(165) is the residual core of a catastrophic fragmentation of a larger precursor. PMID:11572937

  17. High Energy Astronomy Observatory program

    NASA Technical Reports Server (NTRS)

    Wojtalik, F. S.

    1979-01-01

    The series of three orbiting high energy astronomy observatories that comprise the HEAO program are described. Several unique designs as well as the attitude control and determination system, used for observatory scan rotation of the first and third missions and for precision pointing on the second mission, are analyzed. Attention is given to observatory requirements, design characteristics, and the RGA performance summary.

  18. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  19. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  20. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  1. Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Mount Wilson Observatory, located in the San Gabriel Mountains near Pasadena, California, was founded in 1904 by George Ellery Hale with financial support from Andrew Carnegie. In the 1920s and 1930s, working at the 2.5 m Hooker telescope, Edwin Hubble made two of the most important discoveries in the history of astronomy: first, that `nebulae' are actually island universes—galaxies—each with bil...

  2. Jodrell Bank Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Jodrell Bank Observatory is part of the University of Manchester and was founded by Bernard Lovell in December 1945. Its prime instrument, the 76 m, MK1 radio-telescope, was completed in 1957. It was given a major upgrade in 1971 and is now known as the Lovell Telescope. In its early years it pioneered the technique of long baseline interferometry which led to the discovery of quasars. A majo...

  3. Arecibo Observatory for All

    NASA Astrophysics Data System (ADS)

    Bartus, P.; Isidro, G. M.; La Rosa, C.; Pantoja, C. A.

    We describe new materials available at the Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, explains some basic terms used in radio astronomy, and lists frequently asked questions. We have also designed a tactile model of the telescope. Our interest is in enabling blind visitors to participate in the excitement of visiting the world's largest radio telescope.

  4. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2012-06-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5- meter infrared airborne telescope in a Boeing 747-SP. SOFIA can conduct photometric, spectroscopic, and imaging observations at wavelengths from 0.3 microns to 1.6 millimeters. At SOFIA's maximum service ceiling of 45,000 feet, the average transmission at these wavelengths is greater than 80 percent. SOFIA flys out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations (SMO) Center is located at NASA Ames Research Center, Moffett Field, CA. SOFIA's first-generation instrument complement includes broadband imagers and spectrographs that can resolve spectral features due to dust and large molecules, and high resolution spectrometers facilitating kinematic studies of molecular and atomic gas lines at km/s resolution. More than 30 science flights of 10 hours length (take-off to landing) were conducted in the past year. About 100 eight to ten hour flights per year are planned by 2014, and the observatory will operate until the mid-2030's.

  5. The Russian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Dluzhnevskaya, O. B.; Malkov, O. Yu.; Kilpio, A. A.; Kilpio, E. Yu.; Kovaleva, D. A.; Sat, L. A.

    The Russian Virtual Observatory (RVO) will be an integral component of the International Virtual Observatory (IVO). The RVO has the main goal of integrating resources of astronomical data accumulated in Russian observatories and institutions (databases, archives, digitized glass libraries, bibliographic data, a remote access system to information and technical resources of telescopes etc.), and providing transparent access for scientific and educational purposes to the distributed information and data services that comprise its content. Another goal of the RVO is to provide Russian astronomers with on-line access to the rich volumes of data and metadata that have been, and will continue to be, produced by astronomical survey projects. Centre for Astronomical Data (CAD), among other Russian institutions, has had the greatest experience in collecting and distributing astronomical data for more than 20 years. Some hundreds of catalogs and journal tables are currently available from the CAD repository. More recently, mirrors of main astronomical data resources (VizieR, ADS, etc) are now maintained in CAD. Besides, CAD accumulates and makes available for the astronomical community information on principal Russian astronomical resources.

  6. Megalithic observatory Kokino

    NASA Astrophysics Data System (ADS)

    Cenev, Gj.

    2006-05-01

    In 2001, on the footpath of a mountain peak, near the village of Kokino, archeologist Jovica Stankovski discovered an archeological site from The Bronze Age. The site occupies a large area and is scaled in two levels. Several stone seats (thrones) are dominant in this site and they are pointing towards the east horizon. The high concentration of the movable archeological material found on the upper platform probably indicates its use in a function containing still unknown cult activities. Due to precise measurements and a detailed archaeoastronomical analysis of the site performed in the past three years by Gjore Cenev, physicist from the Planetarium in Skopje, it was shown that the site has characteristics of a sacred site, but also of a Megalithic Observatory. The markers found in this observatory point on the summer and winter solstices and spring and autumn equinoxes. It can be seen that on both sides of the solstice markers, that there are markers for establishing Moon's positions. The markers are crafted in such a way that for example on days when special rites were performed (harvest rites for example) the Sun filled a narrow space of the marker and special ray lighted the man sitting on only one of the thrones, which of course had a special meaning. According to the positions of the markers that are used for Sun marking, especially on the solstice days, it was calculated that this observatory dates from 1800 B.C.

  7. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Wolf, J.

    2004-05-01

    The Stratospheric Observatory for Infrared Astronomy, SOFIA, will carry a 3-meter-class telescope onboard a Boeing 747SP aircraft to altitudes of 41,000 to 45,000 ft, above most of the atmosphere's IR-absorbing water vapor. The telescope was developed and built in Germany and has been delivered to the U.S. in September 2002. The integration into the B747SP has been com- pleted and functional tests are under way in Waco, Texas. In early 2005 flight-testing of the observatory will initially be dedi-cated to the re-certification of the modified aircraft, then performance tests of the telescope and the electronics and data systems will commence. Later in 2005 after transferring to its home base, NASA's Ames Research Center in Moffett Field, California, SOFIA will start astrophysical observations. A suite of specialized infrared cameras and spectrometers covering wave-lengths between 1 and 600 ?m is being developed by U.S. and German science institutions. In addition to the infrared instruments, a high-speed visible range CCD camera will use the airborne observatory to chase the shadows of celestial bodies during occultations. Once SOFIA will be in routine operations with a planned observing schedule of up to 960 hours at altitude per year, it might also be available as a platform to serendipitous observations not using the main telescope, such as recordings of meteor streams or the search for extra-solar planets transiting their central stars. These are areas of research in which amateur astronomers with relatively small telescopes and state-of-the-art imaging equipment can contribute.

  8. Mars Airborne Prospecting Spectrometer

    NASA Astrophysics Data System (ADS)

    Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

    2012-06-01

    One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

  9. INITIAL PLANETESIMAL SIZES AND THE SIZE DISTRIBUTION OF SMALL KUIPER BELT OBJECTS

    SciTech Connect

    Schlichting, Hilke E.; Fuentes, Cesar I.; Trilling, David E.

    2013-08-01

    The Kuiper Belt is a remnant from the early solar system and its size distribution contains many important constraints that can be used to test models of planet formation and collisional evolution. We show, by comparing observations with theoretical models, that the observed Kuiper Belt size distribution is well matched by coagulation models, which start with an initial planetesimal population with radii of about 1 km, and subsequent collisional evolution. We find that the observed size distribution above R {approx} 30 km is primordial, i.e., it has not been modified by collisional evolution over the age of the solar system, and that the size distribution below R {approx} 30 km has been modified by collisions and that its slope is well matched by collisional evolution models that use published strength laws. We investigate in detail the resulting size distribution of bodies ranging from 0.01 km to 30 km and find that its slope changes several times as a function of radius before approaching the expected value for an equilibrium collisional cascade of material strength dominated bodies for R {approx}< 0.1 km. Compared to a single power-law size distribution that would span the whole range from 0.01 km to 30 km, we find in general a strong deficit of bodies around R {approx} 10 km and a strong excess of bodies around 2 km in radius. This deficit and excess of bodies are caused by the planetesimal size distribution left over from the runaway growth phase, which left most of the initial mass in small planetesimals while only a small fraction of the total mass is converted into large protoplanets. This excess mass in small planetesimals leaves a permanent signature in the size distribution of small bodies that is not erased after 4.5 Gyr of collisional evolution. Observations of the small Kuiper Belt Object (KBO) size distribution can therefore test if large KBOs grew as a result of runaway growth and constrained the initial planetesimal sizes. We find that results from

  10. THE COLOR DIFFERENCES OF KUIPER BELT OBJECTS IN RESONANCE WITH NEPTUNE

    SciTech Connect

    Sheppard, Scott S.

    2012-12-01

    The optical colors of 58 objects in mean motion resonance with Neptune were obtained. The various Neptune resonant populations were found to have significantly different surface color distributions. The 5:3 and 7:4 resonances have semimajor axes near the middle of the main Kuiper Belt and both are dominated by ultra-red material (spectral gradient: S {approx}> 25). The 5:3 and 7:4 resonances have statistically the same color distribution as the low-inclination 'cold' classical belt. The inner 4:3 and distant 5:2 resonances have objects with mostly moderately red colors (S {approx} 15), similar to the scattered and detached disk populations. The 2:1 resonance, which is near the outer edge of the main Kuiper Belt, has a large range of colors with similar numbers of moderately red and ultra-red objects at all inclinations. The 2:1 resonance was also found to have a very rare neutral colored object showing that the 2:1 resonance is really a mix of all object types. The inner 3:2 resonance, like the outer 2:1, has a large range of objects from neutral to ultra-red. The Neptune Trojans (1:1 resonance) are only slightly red (S {approx} 9), similar to the Jupiter Trojans. The inner 5:4 resonance only has four objects with measured colors but shows equal numbers of ultra-red and moderately red objects. The 9:5, 12:5, 7:3, 3:1, and 11:3 resonances do not have reliable color distribution statistics since few objects have been observed in these resonances, though it appears noteworthy that all three of the measured 3:1 objects have only moderately red colors, similar to the 4:3 and 5:2 resonances. The different color distributions of objects in mean motion resonance with Neptune are likely a result from the disruption of the primordial Kuiper Belt from the scattering and migration of the giant planets. The few low-inclination objects known in the outer 2:1 and 5:2 resonances are mostly only moderately red. This suggests if the 2:1 and 5:2 have a cold low-inclination component

  11. THE SIZE, DENSITY, AND FORMATION OF THE ORCUS-VANTH SYSTEM IN THE KUIPER BELT

    SciTech Connect

    Brown, M. E.; Ragozzine, D.; Fraser, W. C.; Stansberry, J.

    2010-06-15

    The Kuiper Belt object (KBO) Orcus and its satellite Vanth form an unusual system in the Kuiper Belt. While most large KBOs have small satellites in circular orbits and smaller KBOs and their satellites tend to be much closer in size, Orcus sits in between these two regimes. Orcus is among the largest objects known in the Kuiper Belt, but the relative size of Vanth is much larger than that of the tiny satellites of the other large objects. Here, we characterize the physical and orbital characteristics of the Orcus-Vanth system in an attempt to distinguish discuss possible formation scenarios. From Hubble Space Telescope observations, we find that Orcus and Vanth have different visible colors and that Vanth does not share the water ice absorption feature seen in the infrared spectrum of Orcus. We also find that Vanth has a nearly face-on circular orbit with a period of 9.5393 {+-} 0.0001 days and semimajor axis of 8980 {+-} 20 km, implying a system mass of (6.32 {+-} 0.01) x 10{sup 20} kg or 3.8% the mass of dwarf planet Eris. From Spitzer Space Telescope observations, we find that the thermal emission is consistent with a single body with diameter 940 {+-} 70 km and a geometric albedo of 0.28 {+-} 0.04. Assuming equal densities and albedos, this measurement implies sizes of Orcus and Vanth of 900 and 280 km, respectively, and a mass ratio of 33. Assuming a factor of 2 lower albedo for the non-icy Vanth, however, implies sizes of 860 km and 380 km and a mass ratio of 12. The measured density depends on the assumed albedo ratio of the two objects but is approximately 1.5 {+-} 0.3 g cm{sup -3}, midway between typical densities measured for larger and smaller objects. The orbit and mass ratio is consistent with formation from a giant impact and subsequent outward tidal evolution, and even consistent with the system having now achieved a double synchronous state. Because of the large angle between the plane of the heliocentric orbit of Orcus and the plane of the orbit

  12. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  13. Distributed Observatory Management

    NASA Astrophysics Data System (ADS)

    Godin, M. A.; Bellingham, J. G.

    2006-12-01

    A collection of tools for collaboratively managing a coastal ocean observatory have been developed and used in a multi-institutional, interdisciplinary field experiment. The Autonomous Ocean Sampling Network program created these tools to support the Adaptive Sampling and Prediction (ASAP) field experiment that occurred in Monterey Bay in the summer of 2006. ASAP involved the day-to-day participation of a large group of researchers located across North America. The goal of these investigators was to adapt an array of observational assets to optimize data collection and analysis. Achieving the goal required continual interaction, but the long duration of the observatory made sustained co-location of researchers difficult. The ASAP team needed a remote collaboration tool, the capability to add non-standard, interdisciplinary data sets to the overall data collection, and the ability to retrieve standardized data sets from the collection. Over the course of several months and "virtual experiments," the Ocean Observatory Portal (COOP) collaboration tool was created, along with tools for centralizing, cataloging, and converting data sets into common formats, and tools for generating automated plots of the common format data. Accumulating the data in a central location and converting the data to common formats allowed any team member to manipulate any data set quickly, without having to rely heavily on the expertise of data generators to read the data. The common data collection allowed for the development of a wide range of comparison plots and allowed team members to assimilate new data sources into derived outputs such as ocean models quickly. In addition to the standardized outputs, team members were able to produce their own specialized products and link to these through the collaborative portal, which made the experimental process more interdisciplinary and interactive. COOP was used to manage the ASAP vehicle program from its start in July 2006. New summaries were

  14. Portable coastal observatories

    USGS Publications Warehouse

    Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven

    2000-01-01

    Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.

  15. Data Management Challenges for Airborne NASA Earth Venture Sub-Orbital Investigations

    NASA Astrophysics Data System (ADS)

    Boyer, A.; Lindsley, C.; Wright, D.; Cook, R. B.; Santhana Vannan, S. K.

    2015-12-01

    The Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) is developing technology infrastructure to archive airborne remote sensing observations from two of NASA's Earth Venture Sub-orbital Missions. The two missions are CARVE (Carbon in Arctic Reservoirs Vulnerability Experiment) and AirMOSS (Airborne Microwave Observatory of Subcanopy and Subsurface). These missions collected over 140 TB of data from extensive ground-based and airborne instruments. The metadata and documentation requirements necessary for proper archive and dissemination of such transect-based, and often 3-dimensional, airborne data are quite different from traditional field campaign data and satellite remote sensing data streams. Staff at the ORNL DAAC have developed a metadata and data infrastructure for airborne data that enables spatial or keyword-based search and discovery, integration of related satellite- or ground-based data sets, and subsetting and visualization tools for both CARVE and AirMOSS. Here we discuss challenges, progress, and lessons learned.

  16. Next Generation Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Fox, P.; McGuinness, D. L.

    2008-12-01

    Virtual Observatories (VO) are now being established in a variety of geoscience disciplines beyond their origins in Astronomy and Solar Physics. Implementations range from hydrology and environmental sciences to solid earth sciences. Among the goals of VOs are to provide search/ query, access and use of distributed, heterogeneous data resources. With many of these goals being met and usage increasing, new demands and requirements are arising. In particular there are two of immediate and pressing interest. The first is use of VOs by non-specialists, especially for information products that go beyond the usual data, or data products that are sought for scientific research. The second area is citation and attribution of artifacts that are being generated by VOs. In some sense VOs are re-publishing (re-packaging, or generating new synthetic) data and information products. At present only a few VOs address this need and it is clear that a comprehensive solution that includes publishers is required. Our work in VOs and related semantic data framework and integration areas has lead to a view of the next generation of virtual observatories which the two above-mentioned needs as well as others that are emerging. Both of the needs highlight a semantic gap, i.e. that the meaning and use for a user or users beyond the original design intention is very often difficult or impossible to bridge. For example, VOs created for experts with complex, arcane or jargon vocabularies are not accessible to the non-specialist and further, information products the non-specialist may use are not created or considered for creation. In the second case, use of a (possibly virtual) data or information product (e.g. an image or map) as an intellectual artifact that can be accessed as part of the scientific publication and review procedure also introduces terminology gaps, as well as services that VOs may need to provide. Our supposition is that formalized methods in semantics and semantic web

  17. Strasbourg Observatory Archives Revisited

    NASA Astrophysics Data System (ADS)

    Heck, A.

    2002-12-01

    Official talks in France and Germany after World War I were generally of hatred and revenge. Strasbourg Observatory had just changed nationality (from Prussian to French) for the first time (this would happen again at the outbreak of WWII and after the conflict). Documents show that astronomers did not share the general attitude. For example the inventory book started in German was continued in French after 1918. It is moving to see those different handwritings in two different languages on the same pages -- making of that book a unique document in various respects, but also reminding us that the native language of the region was in fact Alsacian.

  18. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  19. NASA's Heliophysics System Observatory

    NASA Astrophysics Data System (ADS)

    Clarke, Steven

    2016-04-01

    NASA formulates and implements a national research program for understanding the Sun and its interactions with the Earth and the solar system and how these phenomena impact life and society. This research provides theory, data, and modeling development services to national and international space weather efforts utilizing a coordinated and complementary fleet of spacecraft, called the Heliophysics System Observatory (HSO), to understand the Sun and its interactions with Earth and the solar system, including space weather. This presentation will focus on NASA's role in space weather research and the contributions the agency continues to provide to the science of space weather, leveraging inter-agency and international collaborations for the benefit of society.

  20. New Horizons: Long-Range Kuiper Belt Targets Observed by the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Benecchi, S. D.; Noll, K. S.; Weaver, H. A.; Spencer, J. R.; Stern, S. A.; Buie, M. W.; Parker, A. H.

    2014-01-01

    We report on Hubble Space Telescope (HST) observations of three Kuiper Belt Objects (KBOs), discovered in our dedicated ground-based search campaign, that are candidates for long-range observations from the New Horizons spacecraft: 2011 epochY31, 2011 HZ102, and 2013 LU35. Astrometry with HST enables both current and future critical accuracy improvements for orbit precision, required for possible New Horizons observations, beyond what can be obtained from the ground. Photometric colors of all three objects are red, typical of the Cold Classical dynamical population within which they reside; they are also the faintest KBOs to have had their colors measured. None are observed to be binary with HST above separations of approx. 0.02 arcsec (approx. 700 km at 44 AU) and delta m less than or equal to 0.5.

  1. Insolation and Resulting Surface Temperatures of the Kuiper-Rudaki Study Region on Mercury.

    NASA Astrophysics Data System (ADS)

    Bauch, Karin E.; Hiesinger, Harald; D'Amore, Mario; Helbert, Jörn; Weinauer, Julia

    2016-04-01

    The imaging spectrometer MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) is part of the payload of ESA's BepiColombo mission, which is scheduled for launch in 2017 [1]. The instrument consists of an IR-spectrometer and radiometer, which observe the surface in the wavelength range of 7-14 and 7-40μm, respectively. The four scientific objectives are to a) study Mercury's surface composition, b) identify rock-forming minerals, c) globally map the surface mineralogy and d) study surface temperature and thermal inertia [1, 2]. In preparation of the MERTIS experiment, we performed detailed thermal models of the lunar surface, which we extrapolated to Mercury. In order to calculate insolation and surface temperatures, we use a numerical model, which has been described by [7]. Surface temperatures are dependent on the surface and subsurface bulk thermophysical properties, such as bulk density, heat capacity, thermal conductivity, emissivity, topography, and albedo. Lunar and Mercurian surface temperatures show the same general characteristics. Both have very steep temperature gradients at sunrise and sunset, due to the lack of an atmosphere. However, there are major differences due to the orbital characteristics. On Mercury the 3:2 resonant rotation rate and the eccentric orbit causes local noon at longitudes 0° and 180° to coincide with perihelion, which leads to "hot poles". At longitudes 90° and 270° , local noon coincides with aphelion, which results in "cold poles" [8]. At these longitudes brief secondary sunrises and sunsets are visible, when Mercury's orbital angular velocity exceeds the spin rate during perihelion [8]. Here we present diurnal temperature curves of the Kuiper-Rudaki study region, based on thermophysical estimates and MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging [9]) albedo data with a resolution of 1000m/px. Our study region spans more than 90° along the equator, thus allowing us to study both, hot and

  2. The moon of the large Kuiper-belt object 2007 OR 10

    NASA Astrophysics Data System (ADS)

    Marton, Gabor; Kiss, Csaba; Mueller, Thomas G.

    2016-10-01

    We have identified a candidate satellite of the large Kuiper-belt object 2007 OR10. The moon has clearly been observed in one set of images and we obtained a tentative detection in a previous epoch. The moon orbits the central body at a distance of at least 15 000 km. Apart from this satellite no sign of binarity was observed, i.e. 2007 OR10 is likely a single large body. The low brightness of the moon also indicates that it cannot contribute notably to the total thermal emission of the system, i.e. 2007 OR10 has a size of ~1535 km obtained previously from Herschel and K2 data.

  3. SKARPS: The Search for Kuiper Belts around Radial-Velocity Planet Stars

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Marshall, Jonathan; Stapelfeldt, Karl; Su, Kate; Wyatt, Mark

    2011-01-01

    The Search for Kuiper belts Around Radial-velocity Planet Stars - SKARPS -is a Herschel survey of solar-type stars known to have orbiting planets. When complete, the 100-star SKARPS sample will be large enough for a meaningful statistical comparison against stars not known to have planets. (This control sample has already been observed by Herschel's DUst around NEarby Stars - DUNES - key program). Initial results include previously known disks that are resolved for the first time and newly discovered disks that are fainter and colder than those typically detected by Spitzer. So far, with only half of the sample in hand, there is no measured correlation between inner RV planets and cold outer debris. While this is consistent with the results from Spitzer, it is in contrast with the relationship suggested by the prominent debris disks in imaged-planet systems.

  4. Observations of Mutual Eclipses by the Binary Kuiper Belt Object Manwe-Thorondor

    NASA Astrophysics Data System (ADS)

    Rabinowitz, David L.; Benecchi, Susan D.; Grundy, William M.; Thirouin, Audrey; Verbiscer, Anne J.

    2016-10-01

    The binary Kuiper Belt Object (385446) Manwe-Thorondor (aka 2003 QW111) is currently undergoing mutual events whereby the two ~100-km bodies alternately eclipse and occult each other as seen from Earth [1]. Such events are extremely rare among KBOs (Pluto-Charon and Sila-Nunam being notable exceptions). For Manwe-Thorondor, the events occur over ~0.5-d periods 4 to 5 times per year until the end of 2019. Here we report the results of observations to be made with the Soar 4m telescope at Cerro Pachon, Chile on 2016 Aug 25 and 26 UT, covering one of the deepest predicted eclipses. We use these observations to constrain the rotational variability of the two bodies, determine their physical properties (size, shape, albedo, density), and set limits on the presence of any prominent surface features.[1] Grundy, W. et al. 2012, Icarus, 220, 74

  5. The Kuiper Belt, Exozodiacal Dust, Debris Disks: It's All About Collisions

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2010-01-01

    Debris disks around other stars, like the disks around Fomalhaut, Vega, and Epsilon Eridani, are often described as more massive versions of the Kuiper Belt. But for a long time, it's been hard to test this notion, because grain-grain collisions dominate the grain lifetimes and we lacked the tools to model the effect of collisions on the appearance of the disks. I'll describe a new breakthrough that has allowed us to make 3-D models of collisions in debris disks and exozodiacal clouds for the first time, and I'll show the latest supercomputer simulations of these systems, illustrating the effects of planets and collisions in sculpting these disks. These models will be the key to interpreting debris disk images from HST, Herschel, SOFIA, JWST, and ALMA, as well as understanding the exozodiacal dust backgrounds for direct imaging of exo-Earths.

  6. Will new horizons see dust clumps in the Edgeworth-Kuiper Belt?

    SciTech Connect

    Vitense, Christian; Krivov, Alexander V.; Löhne, Torsten

    2014-06-01

    Debris disks are thought to be sculptured by neighboring planets. The same is true for the Edgeworth-Kuiper debris disk, yet no direct observational evidence for signatures of giant planets in the Kuiper Belt dust distribution has been found so far. Here we model the dust distribution in the outer solar system to reproduce the dust impact rates onto the dust detector on board the New Horizons spacecraft measured so far and to predict the rates during the Neptune orbit traverse. To this end, we take a realistic distribution of trans-Neptunian objects to launch a sufficient number of dust grains of different sizes and follow their orbits by including radiation pressure, Poynting-Robertson and stellar wind drag, as well as the perturbations of four giant planets. In a subsequent statistical analysis, we calculate number densities and lifetimes of the dust grains in order to simulate a collisional cascade. In contrast to the previous work, our model not only considers collisional elimination of particles but also includes production of finer debris. We find that particles captured in the 3:2 resonance with Neptune build clumps that are not removed by collisions, because the depleting effect of collisions is counteracted by production of smaller fragments. Our model successfully reproduces the dust impact rates measured by New Horizons out to ≈23 AU and predicts an increase of the impact rate of about a factor of two or three around the Neptune orbit crossing. This result is robust with respect to the variation of the vaguely known number of dust-producing scattered disk objects, collisional outcomes, and the dust properties.

  7. NEPTUNE'S WILD DAYS: CONSTRAINTS FROM THE ECCENTRICITY DISTRIBUTION OF THE CLASSICAL KUIPER BELT

    SciTech Connect

    Dawson, Rebekah I.; Murray-Clay, Ruth

    2012-05-01

    Neptune's dynamical history shaped the current orbits of Kuiper Belt objects (KBOs), leaving clues to the planet's orbital evolution. In the 'classical' region, a population of dynamically 'hot' high-inclination KBOs overlies a flat 'cold' population with distinct physical properties. Simulations of qualitatively different histories for Neptune, including smooth migration on a circular orbit or scattering by other planets to a high eccentricity, have not simultaneously produced both populations. We explore a general Kuiper Belt assembly model that forms hot classical KBOs interior to Neptune and delivers them to the classical region, where the cold population forms in situ. First, we present evidence that the cold population is confined to eccentricities well below the limit dictated by long-term survival. Therefore, Neptune must deliver hot KBOs into the long-term survival region without excessively exciting the eccentricities of the cold population. Imposing this constraint, we explore the parameter space of Neptune's eccentricity and eccentricity damping, migration, and apsidal precession. We rule out much of parameter space, except where Neptune is scattered to a moderately eccentric orbit (e > 0.15) and subsequently migrates a distance {Delta}a{sub N} = 1-6 AU. Neptune's moderate eccentricity must either damp quickly or be accompanied by fast apsidal precession. We find that Neptune's high eccentricity alone does not generate a chaotic sea in the classical region. Chaos can result from Neptune's interactions with Uranus, exciting the cold KBOs and placing additional constraints. Finally, we discuss how to interpret our constraints in the context of the full, complex dynamical history of the solar system.

  8. Structure and Evolution of Kuiper Belt Objects: The Case for Compositional Classes

    NASA Astrophysics Data System (ADS)

    McKinnon, William B.; Prialnik, D.; Stern, S. A.

    2007-10-01

    Kuiper belt objects (KBOs) accreted from a mélange of ices, carbonaceous matter, and rock of mixed interstellar and solar nebular provenance. The transneptunian region, where this accretion took place, was likely more radially compact than today. This and the influence of gas drag during the solar nebula epoch argue for more rapid KBO accretion than usually considered. Early evolution of KBOs was largely the result of radiogenic heating, with both short-term and long-term contributions being potentially important. Depending on rock content and porous conductivity, KBO interiors may have reached relatively high temperatures. Models suggest that KBOs likely lost very volatile ices during early evolution, whereas less volatile ices should be retained in cold, less altered subsurface layers; initially amorphous ice may have crystallized in the interior as well, releasing trapped volatiles. Generally, KBOs should be stratified in terms of composition and porosity, albeit subject to impact disruption and collisional stripping. KBOs are thus unlikely to be "the most pristine objects in the Solar System.” Large (dwarf planet) KBOs may be fully differentiated. KBO surface color and compositional classes are usually discussed in terms of "nature vs. nurture,” i.e., a generic primordial composition vs. surface processing, but the true nature of KBOs also depends on how they have evolved. The broad range of albedos now found in the Kuiper belt, deep water-ice absorptions on some objects, evidence for differentiation of Pluto and 2003 EL61, and a range of densities incompatible with a single, primordial composition and variable porosity strongly imply significant, intrinsic compositional differences among KBOs. The interplay of formation zone (accretion rate), body size, and dynamical (collisional) history may yield KBO compositional classes (and their spectral correlates) that recall the different classes of asteroids in the inner Solar System, but whose members are

  9. Byurakan Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    This booklet is devoted to NAS RA V. Ambartsumian Byurakan Astrophysical Observatory and is aimed at people interested in astronomy and BAO, pupils and students, BAO visitors and others. The booklet is made as a visiting card and presents concise and full information about BAO. A brief history of BAO, the biography of the great scientist Viktor Ambartsumian, brief biographies of 13 other deserved scientists formerly working at BAO (B.E. Markarian, G.A. Gurzadyan, L.V. Mirzoyan, M.A. Arakelian, et al.), information on BAO telescopes (2.6m, 1m Schmidt, etc.) and other scientific instruments, scientific library and photographic plate archive, Byurakan surveys (including the famous Markarian Survey included in the UNESCO Memory of the World International Register), all scientific meetings held in Byurakan, international scientific collaboration, data on full research staff of the Observatory, as well as former BAO researchers, who have moved to foreign institutions are given in the booklet. At the end, the list of the most important books published by Armenian astronomers and about them is given.

  10. GPM Core Observatory Launch Animation

    NASA Video Gallery

    This animation depicts the launch of the Global Precipitation Measurement (GPM) Core Observatory satellite from Tanegashima Space Center, Japan. The launch is currently scheduled for Feb. 27, 2014....

  11. Robert G. Aitken and His ADS: Double Star Oberver, Cataloguer, Statistician, and Observatory Director

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    2000-05-01

    Robert G. Aitken was a dynamical astronomer of the old school, a long-time visual double star observer. He was born in 1864 in Jackson, California, a small town in the Gold Country midway between Yosemite and Sacramento. His education at Williams College under Truman Safford; his early teaching career at Livermore College and the University of the Pacific; his simultaneous graduate reading course in mathematics; and his becoming a professional astronomer under the tutelage of Edward S. Holden and Edward E. Barnard at Lick Observatory will be described. Aitken made a systematic survey of the entire sky north of -30 degrees for double stars, joined by William J. Hussey for a time. It produced important new information on binary and multiple stars and their orbits. His book The Binary Stars and his New General Catalogue of Double Stars (ADS) were his monuments. Aitken was associate director of Lick Observatory from 1923 until 1930, while W. W. Campbell was simultaneously director and president of the University of California. Then Aitken was director himself from 1930 until he retired in 1935 and moved to Berkeley, where he continued writing until his death in 1951. Aitken was editor of the PASP for 51 years. He hoped that Gerard P. Kuiper would succeed him as the double star observer at Lick Observatory, but that was not to be. Aitken at various times held every office in the ASP, and was vice president, then president, of the AAS.

  12. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Bellerive, A.; Klein, J. R.; McDonald, A. B.; Noble, A. J.; Poon, A. W. P.

    2016-07-01

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from 8B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  13. LCOGT network observatory operations

    NASA Astrophysics Data System (ADS)

    Pickles, Andrew; Hjelstrom, Annie; Boroson, Todd; Burleson, Ben; Conway, Patrick; De Vera, Jon; Elphick, Mark; Haworth, Brian; Rosing, Wayne; Saunders, Eric; Thomas, Doug; White, Gary; Willis, Mark; Walker, Zach

    2014-08-01

    We describe the operational capabilities of the Las Cumbres Observatory Global Telescope Network. We summarize our hardware and software for maintaining and monitoring network health. We focus on methodologies to utilize the automated system to monitor availability of sites, instruments and telescopes, to monitor performance, permit automatic recovery, and provide automatic error reporting. The same jTCS control system is used on telescopes of apertures 0.4m, 0.8m, 1m and 2m, and for multiple instruments on each. We describe our network operational model, including workloads, and illustrate our current tools, and operational performance indicators, including telemetry and metrics reporting from on-site reductions. The system was conceived and designed to establish effective, reliable autonomous operations, with automatic monitoring and recovery - minimizing human intervention while maintaining quality. We illustrate how far we have been able to achieve that.

  14. The virtual observatory registry

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Greene, G.; Le Sidaner, P.; Plante, R. L.

    2014-11-01

    In the Virtual Observatory (VO), the Registry provides the mechanism with which users and applications discover and select resources-typically, data and services-that are relevant for a particular scientific problem. Even though the VO adopted technologies in particular from the bibliographic community where available, building the Registry system involved a major standardisation effort, involving about a dozen interdependent standard texts. This paper discusses the server-side aspects of the standards and their application, as regards the functional components (registries), the resource records in both format and content, the exchange of resource records between registries (harvesting), as well as the creation and management of the identifiers used in the system based on the notion of authorities. Registry record authors, registry operators or even advanced users thus receive a big picture serving as a guideline through the body of relevant standard texts. To complete this picture, we also mention common usage patterns and open issues as appropriate.

  15. Hanohano: Hawaiian antineutrino observatory

    NASA Astrophysics Data System (ADS)

    Maricic, Jelena; Hanohano Collaboration

    2010-01-01

    Design studies are underway for the deep ocean antineutrino observatory Hanohano. The 10 kton monolitic underwater detector will be able to make precision measurement of neutrino mixing parameters (including θ13 and neutrino mass hierarchy) if stationed around 60 km offshore, from the nuclear reactor. Hanohano will be a mobile detector and placing it in a mid-Pacific location will provide the first ever flux measurement of geoneutrinos (antineutrinos emitted in the radioactive decay series of uranium and thorium), coming from the Earth's mantle and perform a sensitivity search for a hypothetical natural fission reactor in the Earth's core. Additional deployment at a different mid-ocean location will lead to tests of lateral heterogeneity of uranium and thorium in the Earth's mantle. These measurements would provide an important insight into deep-Earth geophysics, mantle composition and understanding of the Earth's heat flow and sources of energy inside the Earth.

  16. Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    Human impact on the environment has produced measurable changes in the geological record since the late 1700s. Anthropogenic emissions of CO2 today may cause the global climate to depart for its natural behavior for many millenia. CO2 is the primary anthropogenic driver of climate change. The Orbiting Carbon Observatory goals are to help collect measurements of atmospheric CO2, answering questions such as why the atmospheric CO2 buildup varies annually, the roles of the oceans and land ecosystems in absorbing CO2, the roles of North American and Eurasian sinks and how these carbon sinks respond to climate change. The present carbon cycle, CO2 variability, and climate uncertainties due atmospheric CO2 uncertainties are highlighted in this presentation.

  17. Airborne data acquisition techniques

    SciTech Connect

    Arro, A.A.

    1980-01-01

    The introduction of standards on acceptable procedures for assessing building heat loss has created a dilemma for the contractor performing airborne thermographic surveys. These standards impose specifications on instrumentation, data acquisition, recording, interpretation, and presentation. Under the standard, the contractor has both the obligation of compliance and the requirement of offering his services at a reasonable price. This paper discusses the various aspects of data acquisition for airborne thermographic surveys and various techniques to reduce the costs of this operation. These techniques include the calculation of flight parameters for economical data acquisition, the selection and use of maps for mission planning, and the use of meteorological forecasts for flight scheduling and the actual execution of the mission. The proper consideration of these factors will result in a cost effective data acquisition and will place the contractor in a very competitive position in offering airborne thermographic survey services.

  18. Global geodetic observatories

    NASA Astrophysics Data System (ADS)

    Boucher, Claude; Pearlman, Mike; Sarti, Pierguido

    2015-01-01

    Global geodetic observatories (GGO) play an increasingly important role both for scientific and societal applications, in particular for the maintenance and evolution of the reference frame and those applications that rely on the reference frame for their viability. The International Association of Geodesy (IAG), through the Global Geodetic Observing System (GGOS), is fully involved in coordinating the development of these systems and ensuring their quality, perenniality and accessibility. This paper reviews the current role, basic concepts, and some of the critical issues associated with the GGOs, and advocates for their expansion to enhance co-location with other observing techniques (gravity, meteorology, etc). The historical perspective starts with the MERIT campaign, followed by the creation of international services (IERS, IGS, ILRS, IVS, IDS, etc). It provides a basic definition of observing systems and observatories and the build up of the international networks and the role of co-locations in geodesy and geosciences and multi-technique processing and data products. This paper gives special attention to the critical topic of local surveys and tie vectors among co-located systems in sites; the agreement of space geodetic solutions and the tie vectors now place one of the most significant limitations on the quality of integrated data products, most notably the ITRF. This topic focuses on survey techniques, extrapolation to instrument reference points, computation techniques, systematic biases, and alignment of the individual technique reference frames into ITRF. The paper also discusses the design, layout and implementation of network infrastructure, including the role of GGOS and the benefit that would be achieved with better standardization and international governance.

  19. Sudbury Neutrino Observatory

    SciTech Connect

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical {sup 37}Cl and {sup 71}Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  20. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  1. Airborne rain mapping radar

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Parks, G. S.; Li, F. K.; Im, K. E.; Howard, R. J.

    1988-01-01

    An airborne scanning radar system for remote rain mapping is described. The airborne rain mapping radar is composed of two radar frequency channels at 13.8 and 24.1 GHz. The radar is proposed to scan its antenna beam over + or - 20 deg from the antenna boresight; have a swath width of 7 km; a horizontal spatial resolution at nadir of about 500 m; and a range resolution of 120 m. The radar is designed to be applicable for retrieving rainfall rates from 0.1-60 mm/hr at the earth's surface, and for measuring linear polarization signatures and raindrop's fall velocity.

  2. Rolloff Roof Observatory Construction (Abstract)

    NASA Astrophysics Data System (ADS)

    Ulowetz, J. H.

    2015-12-01

    (Abstract only) Lessons learned about building an observatory by someone with limited construction experience, and the advantages of having one for imaging and variable star studies. Sample results shown of composite light curves for cataclysmic variables UX UMa and V1101 Aql with data from my observatory combined with data from others around the world.

  3. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  4. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  5. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  6. Consequences of planetary migration: Kuiper belt dynamics and atmospheric escape from hot Jupiters

    NASA Astrophysics Data System (ADS)

    Murray-Clay, Ruth Ann

    The current resonance structure of the Kuiper belt suggests that during the late stages of planet formation, Neptune migrated outward as it scattered residual planetesimal debris. Extrasolar planetary systems also show evidence for planetary migration. Approximately 1/5 of the extrasolar planets discovered to date are "hot Jupiters," which likely exchanged angular momentum with gas disks, migrating large distances inward to reach their current semi-major axes of ~0.05 AU. In this thesis, I discuss three consequences of planetary migration. (1) During its migration, Neptune captured Kuiper belt objects (KBOs) into mean motion resonances. The current spatial distribution of KBOs in a particular resonance, the 2:1, acts as a celestial speedometer--fast planetary migration generates a larger population of 2:1 resonant KBOs trailing rather than leading Neptune on the sky. We provide an explanation of this phenomenon for the first time. Central to our understanding is how planetary migration shifts the equilibrium points of the superposed direct and indirect potentials felt by a KBO. The currently observed distribution of 2:1 KBOs excludes total migration times < 20 Myr with >99.65% confidence and is statistically consistent with the even population generated by slow migration. However, these observations are beset by systematic uncertainties. Observations with new telescopes such as PanSTARRS or LSST will tell us how quickly Neptune could have migrated. (2) Neptune's migration, powered by scattering planetesimal debris, was stochastic ("noisy"). Extreme stochasticity defeats resonance capture. We construct a theory analogous to Brownian motion for how a planet's orbital semi-major axis fluctuates in response to random planetesimal scatterings. The degree of stochasticity in Neptune's migration depends both on the sizes of the planetesimals driving migration and on their orbital elements and cannot currently be computed using N-body simulations. We find that capture of

  7. Structure of the Edgeworth-Kuiper Belt (EKB) Dust Disk and Implications for Extrasolar Planet(s) epsilon Eridani

    NASA Technical Reports Server (NTRS)

    Liou, J. -C.; Zook, H. A.; Greaves, J. S.; Holland, W. S.; Boehnhardt, H.; Hahn, J. M.

    2000-01-01

    Numerical simulations of the orbital evolution of dust particles from Edgeworth-Kuiper Belt (EKB) objects show that the three giant planets, Neptune, Jupiter, and Saturn impose distinct and dramatic signatures on the overall distribution of EKB dust particles. The features are very similar to those observed in the dust disk around the nearby star Eridani. Numerical simulations of dust particles in the epsilon Eridani system show that planetary perturbations may be responsible for the observed features

  8. THE DENSITY OF MID-SIZED KUIPER BELT OBJECT 2002 UX25 AND THE FORMATION OF THE DWARF PLANETS

    SciTech Connect

    Brown, M. E.

    2013-12-01

    The formation of the largest objects in the Kuiper belt, with measured densities of ∼1.5 g cm{sup –3} and higher, from the coagulation of small bodies, with measured densities below 1 g cm{sup –3}, is difficult to explain without invoking significant porosity in the smallest objects. If such porosity does occur, measured densities should begin to increase at the size at which significant porosity is no longer supported. Among the asteroids, this transition occurs for diameters larger than ∼350 km. In the Kuiper belt, no density measurements have been made between ∼350 km and ∼850 km, the diameter range where porosities might first begin to drop. Objects in this range could provide key tests of the rock fraction of small Kuiper belt objects (KBOs). Here we report the orbital characterization, mass, and density determination of the 2002 UX25 system in the Kuiper belt. For this object, with a diameter of ∼650 km, we find a density of 0.82 ± 0.11 g cm{sup –3}, making it the largest solid known object in the solar system with a measured density below that of pure water ice. We argue that the porosity of this object is unlikely to be above ∼20%, suggesting a low rock fraction. If the currently measured densities of KBOs are a fair representation of the sample as a whole, creating ∼1000 km and larger KBOs with rock mass fractions of 70% and higher from coagulation of small objects with rock fractions as low as those inferred from 2002 UX25 is difficult.

  9. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  10. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  11. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  12. RETENTION OF A PRIMORDIAL COLD CLASSICAL KUIPER BELT IN AN INSTABILITY-DRIVEN MODEL OF SOLAR SYSTEM FORMATION

    SciTech Connect

    Batygin, Konstantin; Brown, Michael E.; Fraser, Wesley C.

    2011-09-01

    The cold classical population of the Kuiper Belt exhibits a wide variety of unique physical characteristics, which collectively suggest that its dynamical coherence has been maintained throughout the solar system's lifetime. Simultaneously, the retention of the cold population's relatively unexcited orbital state has remained a mystery, especially in the context of a solar system formation model, that is driven by a transient period of instability, where Neptune is temporarily eccentric. Here, we show that the cold belt can survive the instability, and its dynamical structure can be reproduced. We develop a simple analytical model for secular excitation of cold Kuiper Belt objects and show that comparatively fast apsidal precession and nodal recession of Neptune, during the eccentric phase, are essential for preservation of an unexcited state in the cold classical region. Subsequently, we confirm our results with self-consistent N-body simulations. We further show that contamination of the hot classical and scattered populations by objects of similar nature to that of cold classicals has been instrumental in shaping the vast physical diversity inherent to the Kuiper Belt.

  13. A CHANGE IN THE LIGHT CURVE OF KUIPER BELT CONTACT BINARY (139775) 2001 QG{sub 298}

    SciTech Connect

    Lacerda, Pedro

    2011-09-15

    New observations show that the light curve of Kuiper Belt contact binary (139775) 2001 QG{sub 298} has changed substantially since the first observations in 2003. The 2010 light curve has a peak-to-peak photometric range of {Delta}m{sub 2010} = 0.7 {+-} 0.1 mag, significantly lower than in 2003, {Delta}m{sub 2003} = 1.14 {+-} 0.04 mag. This change is most simply interpreted if 2001 QG{sub 298} has an obliquity near 90{sup 0}. The observed decrease in {Delta}m is caused by a change in viewing geometry, from equator-on in 2003 to nearly 16{sup 0} (the orbital angular distance covered by the object between the observations) off the equator in 2010. The 2003 and 2010 light curves have the same rotation period and appear in phase when shifted by an integer number of full rotations, also consistent with high obliquity. Based on the new 2010 light curve data, we find that 2001 QG{sub 298} has an obliquity of {epsilon} = 90{sup 0} {+-} 30{sup 0}. Current estimates of the intrinsic fraction of contact binaries in the Kuiper Belt are debiased assuming that these objects have randomly oriented spins. If, as 2001 QG2{sub 98}, Kuiper Belt Object contact binaries tend to have large obliquities, a larger correction is required. As a result, the abundance of contact binaries may be larger than previously believed.

  14. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Ewan, G. T.

    1992-04-01

    The Sudbury Neutrino Observatory (SNO) detector is a 1000 ton heavy water (D2O) Cherenkov detector designed to study neutrinos from the sun and other astrophysical sources. The use of heavy water allows both electron neutrinos and all other types of neutrinos to be observed by three complementary reactions. The detector will be sensitive to the electron neutrino flux and energy spectrum shape and to the total neutrino flux irrespective of neutrino type. These measurements will provide information on both vacuum neutrino oscillations and matter-enhanced oscillations, the MSW effect. In the event of a supernova it will be very sensitive to muon and tau neutrinos as well as the electron neutrinos emitted in the initial burst, enabling sensitive mass measurements as well as providing details of the physics of stellar collapse. On behalf of the Sudbury Neutrino Observatory (SNO) Collaboration : H.C . Evans, G.T . Ewan, H.W. Lee, J .R . Leslie, J .D. MacArthur, H .-B . Mak, A.B . McDonald, W. McLatchie, B.C . Robertson, B. Sur, P. Skensved (Queen's University) ; C.K . Hargrove, H. Mes, W.F. Davidson, D. Sinclair, 1 . Blevis, M. Shatkay (Centre for Research in Particle Physics) ; E.D. Earle, G.M. Milton, E. Bonvin, (Chalk River Laboratories); J .J . Simpson, P. Jagam, J . Law, J .-X . Wang (University of Guelph); E.D . Hallman, R.U. Haq (Laurentian University); A.L. Carter, D. Kessler, B.R . Hollebone (Carleton University); R. Schubank . C.E . Waltha m (University of British Columbia); R.T. Kouzes, M.M. Lowry, R.M. Key (Princeton University); E.W. Beier, W. Frati, M. Newcomer, R. Van Berg (University of Penn-sylvania), T.J . Bowles, P.J . Doe, S.R . Elliott, M.M. Fowler, R.G.H. Robertson, D.J . Vieira, J .B . Wilhelmy, J .F. Wilker-son, J .M. Wouters (Los Alamos National Laboratory) ; E. Norman, K. Lesko, A. Smith, R. Fulton, R. Stokstad (Lawrence Berkeley Laboratory), N.W. Tanner, N. JCIILY, P. Trent, J . Barton, D.L . Wark (University of Oxford).

  15. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  16. Klimovskaya: A new geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Soloviev, A. A.; Sidorov, R. V.; Krasnoperov, R. I.; Grudnev, A. A.; Khokhlov, A. V.

    2016-05-01

    In 2011 Geophysical Center RAS (GC RAS) began to deploy the Klimovskaya geomagnetic observatory in the south of Arkhangelsk region on the territory of the Institute of Physiology of Natural Adaptations, Ural Branch, Russian Academy of Sciences (IPNA UB RAS). The construction works followed the complex of preparatory measures taken in order to confirm that the observatory can be constructed on this territory and to select the optimal configuration of observatory structures. The observatory equipping stages are described in detail, the technological and design solutions are described, and the first results of the registered data quality control are presented. It has been concluded that Klimovskaya observatory can be included in INTERMAGNET network. The observatory can be used to monitor and estimate geomagnetic activity, because it is located at high latitudes and provides data in a timely manner to the scientific community via the web-site of the Russian-Ukrainian Geomagnetic Data Center. The role of ground observatories such as Klimovskaya remains critical for long-term observations of secular variation and for complex monitoring of the geomagnetic field in combination with low-orbiting satellite data.

  17. The Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2008-01-01

    The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine EIUV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can 'observe the database' to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.

  18. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  19. Snowstorm at the geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Čop, R.

    2015-08-01

    The Sinji Vrh Geomagnetic Observatory (hereinafter the Observatory) is situated on Gora above Ajdovščina, a highland karst plateau, in the southwestern part of Slovenia. The Observatory operates in exceptional geological and meteorological conditions due to its location. The very first measurements at the time of initial tests showed that weather fronts induce changes in the local magnetic field. The first measurements intended to determine the value of this influence were carried out at the end of summer 2011. In 2013 the first such measurements were carried out in January. This article presents the results of these measurements, showing how the snowstorm induced changes in Earth's magnetic field.

  20. Boyden Observatory, then and now

    NASA Astrophysics Data System (ADS)

    Van Heerden, H. J.

    2008-08-01

    In this article the history of Boyden Observatory, 'the first truly international observatory', from its establishment in 1889 to the present will be discussed. There will be looked at locations, personnel, research done and discoveries made. The discussion will also include sections on the instruments used during that time, with specific emphasis on the 60-inch Boyden Rockefeller Telescope. Details about the instrument's specifications, upgrades, new equipment and role as research instrument will be examined. A final section will then be devoted to where Boyden Observatory finds itself today and where it wants to position itself in the future, specifically in terms of research and education.

  1. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  2. Three steps toward understanding the dynamical structure of the Kuiper belt (and what it means for Neptune's migration)

    NASA Astrophysics Data System (ADS)

    Nesvorny, David

    2015-11-01

    Much of the dynamical structure of the Kuiper belt can be explained if Neptune migrated over several AU, and/or if Neptune was scattered to an eccentric orbit during planetary instability.Step 1: An outstanding problem with the previous migration/instability models is that the distribution of orbital inclinations they predict is narrower than the one inferred from observations. Here we perform numerical simulations of the Kuiper belt formation starting from an initial state with Neptune at 20Kuiper belt in the simulations. We find that the inclination constraint implies that Neptune's migration was slow (tau > 10 Myr) and long range (a_N < 25 AU).Step 2: A particularly puzzling and up-to-now unexplained feature of the Kuiper belt is the so-called `kernel', a concentration of orbits with semimajor axes a=44 AU, eccentricities e=0.05, and inclinations i<5 deg. Here we show that the Kuiper belt kernel can be explained if Neptune's migration was interrupted by a discontinuous change of Neptune's semimajor axis when Neptune reached 28 AU (jumping-Neptune model).Step 3: The existing migration/instability models invariably predict an excessively large resonant population, while observations show that the non-resonant orbits are in fact more common (e.g., Plutinos in the 3:2 resonance represent only ~1/3 of the main belt population). Here we show that the observed population statistic implies that Neptune's migration was grainy, as expected from scattering encounters of Neptune with massive planetesimals. Our preferred fit to observations suggests that the outer planetesimal disk below 30 AU contained ~2000 bodies with mass comparable to that of Pluto.Together, these results imply that Neptune's migration was slow, long-range and grainy

  3. THE CANADA-FRANCE ECLIPTIC PLANE SURVEY-L3 DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT

    SciTech Connect

    Kavelaars, J. J.; Jones, R. L.; Murray, I.; Gladman, B. J.; Petit, J.-M.; Van Laerhoven, C.; Parker, Joel Wm.; Bieryla, A.; Nicholson, P.; Margot, J. L.; Rousselot, P.; Mousis, O.; Scholl, H.; Marsden, B.; Benavidez, P.; Campo Bagatin, A.; Doressoundiram, A.; Veillet, C.

    2009-06-15

    We report the orbital distribution of the trans-Neptunian comets discovered during the first discovery year of the Canada-France Ecliptic Plane Survey (CFEPS). CFEPS is a Kuiper Belt object survey based on observations acquired by the Very Wide component of the Canada-France-Hawaii Telescope Legacy Survey (LS-VW). The first year's detections consist of 73 Kuiper Belt objects, 55 of which have now been tracked for three years or more, providing precise orbits. Although this sample size is small compared to the world-wide inventory, because we have an absolutely calibrated and extremely well-characterized survey (with known pointing history) we are able to de-bias our observed population and make unbiased statements about the intrinsic orbital distribution of the Kuiper Belt. By applying the (publically available) CFEPS Survey Simulator to models of the true orbital distribution and comparing the resulting simulated detections to the actual detections made by the survey, we are able to rule out several hypothesized Kuiper Belt object orbit distributions. We find that the main classical belt's so-called 'cold' component is confined in semimajor axis (a) and eccentricity (e) compared to the more extended 'hot' component; the cold component is confined to lower e and does not stretch all the way out to the 2:1 resonance but rather depletes quickly beyond a = 45 AU. For the cold main classical belt population we find a robust population estimate of N(H{sub g} < 10) = 50 {+-} 5 x 10{sup 3} and find that the hot component of the main classical belt represents {approx}60% of the total population. The inner classical belt (sunward of the 3:2 mean-motion resonance) has a population of roughly 2000 trans-Neptunian objects with absolute magnitudes H{sub g} < 10, and may not share the inclination distribution of the main classical belt. We also find that the plutino population lacks a cold low-inclination component, and so, the population is somewhat larger than recent estimates

  4. A Chemical and Dynamical Link Between Red Centaur Objects and the Cold Classical Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Tegler, Stephen C.; Romanishin, William; Consolmagno, Guy

    2015-11-01

    We present new B-V, V-R, and B-R colors for 32 Centaurs objects using the 4.3-meter Discovery Channel Telescope (DCT) near Happy Jack, AZ and the 1.8-meter Vatican Advanced Technology Telescope on Mt. Graham, AZ. Combining these new colors with our previously reported colors, we now have optical broad-band colors for 58 Centaur objects.Application of the non-parametric Dip Test to our previous sample of only 26 objects showed Centaurs split into gray and red groups at the 99.5% confidence level, and application of the Wilcoxon Rank Sum Test to the same sample showed that red Centaurs have a higher median albedo than gray Centaurs at the 99% confidence level (Tegler et al., 2008, Solar System Beyond Neptune, U Arizona Press, pp. 105-114).Here we report application of the Wilcoxon Rank Sum Test to our sample of 58 Centaurs. We confirm red Centaurs have a higher median albedo than gray Centaurs at the 99.7% level. In addition, we find that red Centaurs have a lower median inclination angle than gray Centaurs at the 99.5% confidence level. Because of their red colors and lower inclination angles, we suggest red Centaurs originate in the cold classical Kuiper belt. We thank the NASA Solar System Observations Program for its support.

  5. DYNAMICAL HEATING INDUCED BY DWARF PLANETS ON COLD KUIPER BELT–LIKE DEBRIS DISKS

    SciTech Connect

    Muñoz-Gutiérrez, M. A.; Pichardo, B.; Peimbert, A.; Reyes-Ruiz, M.

    2015-10-01

    With the use of long-term numerical simulations, we study the evolution and orbital behavior of cometary nuclei in cold Kuiper belt–like debris disks under the gravitational influence of dwarf planets (DPs); we carry out these simulations with and without the presence of a Neptune-like giant planet. This exploratory study shows that in the absence of a giant planet, 10 DPs are enough to induce strong radial and vertical heating on the orbits of belt particles. On the other hand, the presence of a giant planet close to the debris disk, acts as a stability agent reducing the radial and vertical heating. With enough DPs, even in the presence of a Neptune-like giant planet some radial heating remains; this heating grows steadily, re-filling resonances otherwise empty of cometary nuclei. Specifically for the solar system, this secular process seems to be able to provide material that, through resonant chaotic diffusion, increase the rate of new comets spiraling into the inner planetary system, but only if more than the ∼10 known DP sized objects exist in the trans-Neptunian region.

  6. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  7. A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper belt.

    PubMed

    Stern, S A; Weaver, H A; Steffl, A J; Mutchler, M J; Merline, W J; Buie, M W; Young, E F; Young, L A; Spencer, J R

    2006-02-23

    The two newly discovered satellites of Pluto (P1 and P2) have masses that are small compared to both Pluto and Charon-that is, between 5 x 10(-4) and 1 x 10(-5) of Pluto's mass, and between 5 x 10(-3) and 1 x 10(-4) of Charon's mass. This discovery, combined with the constraints on the absence of more distant satellites of Pluto, reveal that Pluto and its moons comprise an unusual, highly compact, quadruple system. These facts naturally raise the question of how this puzzling satellite system came to be. Here we show that P1 and P2's proximity to Pluto and Charon, the fact that P1 and P2 are on near-circular orbits in the same plane as Pluto's large satellite Charon, along with their apparent locations in or near high-order mean-motion resonances, all probably result from their being constructed from collisional ejecta that originated from the Pluto-Charon formation event. We also argue that dust-ice rings of variable optical depths form sporadically in the Pluto system, and that rich satellite systems may be found--perhaps frequently--around other large Kuiper belt objects. PMID:16495992

  8. A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper belt

    NASA Astrophysics Data System (ADS)

    Stern, S. A.; Weaver, H. A.; Steffl, A. J.; Mutchler, M. J.; Merline, W. J.; Buie, M. W.; Young, E. F.; Young, L. A.; Spencer, J. R.

    2006-02-01

    The two newly discovered satellites of Pluto (P1 and P2) have masses that are small compared to both Pluto and Charon-that is, between 5 × 10-4 and 1 × 10-5 of Pluto's mass, and between 5 × 10-3 and 1 × 10-4 of Charon's mass. This discovery, combined with the constraints on the absence of more distant satellites of Pluto, reveal that Pluto and its moons comprise an unusual, highly compact, quadruple system. These facts naturally raise the question of how this puzzling satellite system came to be. Here we show that P1 and P2's proximity to Pluto and Charon, the fact that P1 and P2 are on near-circular orbits in the same plane as Pluto's large satellite Charon, along with their apparent locations in or near high-order mean-motion resonances, all probably result from their being constructed from collisional ejecta that originated from the Pluto-Charon formation event. We also argue that dust-ice rings of variable optical depths form sporadically in the Pluto system, and that rich satellite systems may be found-perhaps frequently-around other large Kuiper belt objects.

  9. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.

  10. Migration of Matter from the Edgeworth-Kuiper and Main Asteroid Belts to the Earth

    NASA Technical Reports Server (NTRS)

    Ipatov. S. I.; Oegerle, William (Technical Monitor)

    2002-01-01

    The main asteroid belt (MAB), the Edgeworth-Kuiper belt (EKB), and comets belong to the main sources of dust in the Solar System. Most of Jupiter-family comets came from the EKB. Comets can be distracted due to close encounters with planets and the Sun, collisions with small bodies, a nd internal forces. We support the Eneev's idea that the largest objects in the ELB and MAB could be formed directly by the compression of rarefied dust condensations of the protoplanetary cloud but not by the accretion of small (for example, 1-km) planetesimals. The total mass of planetesimals that entered the EKB from the feeding zone of the giant planets during their accumulation could exceed tens of Earth's masses. These planetesimals increased eccentricities of 'local' trans-Neptunian objects (TNOs) and swept most of these TNOs. A small portion of such planetesimals could left beyond Neptune's orbit in highly eccentric orbits. The results of previous investigations of migration and collisional evolution of minor bodies were summarized. Mainly our recent results are presented.

  11. Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper belt objects

    NASA Astrophysics Data System (ADS)

    Neveu, M.; Desch, S. J.; Shock, E. L.; Glein, C. R.

    2015-01-01

    Explosive extrusion of cold material from the interior of icy bodies, or cryovolcanism, has been observed on Enceladus and, perhaps, Europa, Triton, and Ceres. It may explain the observed evidence for a young surface on Charon (Pluto's surface is masked by frosts). Here, we evaluate prerequisites for cryovolcanism on dwarf planet-class Kuiper belt objects (KBOs). We first review the likely spatial and temporal extent of subsurface liquid, proposed mechanisms to overcome the negative buoyancy of liquid water in ice, and the volatile inventory of KBOs. We then present a new geochemical equilibrium model for volatile exsolution and its ability to drive upward crack propagation. This novel approach bridges geophysics and geochemistry, and extends geochemical modeling to the seldom-explored realm of liquid water at subzero temperatures. We show that carbon monoxide (CO) is a key volatile for gas-driven fluid ascent; whereas CO2 and sulfur gases only play a minor role. N2, CH4, and H2 exsolution may also drive explosive cryovolcanism if hydrothermal activity produces these species in large amounts (a few percent with respect to water). Another important control on crack propagation is the internal structure: a hydrated core makes explosive cryovolcanism easier, but an undifferentiated crust does not. We briefly discuss other controls on ascent such as fluid freezing on crack walls, and outline theoretical advances necessary to better understand cryovolcanic processes. Finally, we make testable predictions for the 2015 New Horizons flyby of the Pluto-Charon system.

  12. Dispersal of Disks Around Young Stars: Constraints on Kuiper Belt Formation

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    We review the evidence pertaining to the lifetimes of planet-forming disks and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source; 2) close stellar encounters; 3) stellar winds; and 4) photoevaporation by ultraviolet radiation. We focus on 3) and 4) and describe the quasi-steady state appearance and the overall evolution of disks under the influence of winds and radiation from the central star and of radiation from external OB stars. Viscous accretion likely dominates disk dispersal in the inner disk (r approx. <= 10 AU), while photoevaporation is the principal process of disk dispersal outside of r approx. >= 10 AU for low mass stars. Disk dispersal timescales are compared and discussed in relation to theoretical estimates for planet formation timescales. Photoevaporation may explain the large differences in the hydrogen content of the giant planets in the solar system. The commonly held belief that our early sun's stellar wind dispersed the solar nebula is called into question. Finally, we study the constraints that the evaporation of the outer disk has on the formation of Kuiper belts in extrasolar planetary systems.

  13. Environmental Impact Specification for Direct Space Weathering of Kuiper Belt and Oort Cloud Objects

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2010-01-01

    The Direct Space Weathering Project of NASA's Outer Planets Research Program addresses specification of the plasma and energetic particle environments for irradiation and surface chemical processing of icy bodies in the outer solar system and the local interstellar medium. Knowledge of the radiation environments is being expanded by ongoing penetration of the twin Voyager spacecraft into the heliosheath boundary region of the outer heliosphere and expected emergence within the next decade into the very local interstellar medium. The Voyager measurements are being supplemented by remote sensing from Earth orbit of energetic neutral atom emission from this boundary region by NASA's Interstellar Boundary Explorer (IBEX). Although the Voyagers long ago passed the region of the Classical Kuiper Belt, the New Horizons spacecraft will encounter Pluto in 2015 and thereafter explore one or more KBOs, meanwhile providing updated measurements of the heliospheric radiation environment in this region. Modeling of ion transport within the heliosphere allows specification of time-integrated irradiation effects while the combination of Voyager and IBEX data supports projection of the in-situ measurements into interstellar space beyond the heliosheath. Transformation of model ion flux distributions into surface sputtering and volume ionization profiles provides a multi-layer perspective for space weathering impact on the affected icy bodies and may account for some aspects of color and compositional diversity. Other important related factors may include surface erosion and gardening by meteoritic impacts and surface renewal by cryovolcanism. Chemical products of space weathering may contribute to energy resources for the latter.

  14. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    PubMed Central

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  15. TAOS: Taiwan-American Occultation Survey of Comet-Sized Objects in the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    Several dozen minor planets with radii greater than 100 km have been detected beyond Neptune using large telescopes. The TAOS project is to measure directly the number of these KBOs (Kuiper Belt Objects) down to the typical size of cometary nuclei (a few km) and out as far as approximately 100 AU from the Sun. Because of their large distance, small sizes and presumed low albedos, these target objects are extremely faint. Three 50 cm wide field robotic telescopes with 2048 x 2048 CCD cameras will be deployed along a 7 km east-west baseline in or near Jade Mountain National Park in Taiwan. They will monitor approximately 3000 stars for occultations by KBOs in a coincidence mode, so that the sequence and timing of the three separate blinkings can be used to distinguish real events from false alarms. Follow-up imaging observations using large telescopes will yield albedos and orbits for some of the larger objects detected by TAOS. A fourth telescope on a north-south spur to refine the size information on occulting GABON is also being contemplated.

  16. A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper belt.

    PubMed

    Stern, S A; Weaver, H A; Steffl, A J; Mutchler, M J; Merline, W J; Buie, M W; Young, E F; Young, L A; Spencer, J R

    2006-02-23

    The two newly discovered satellites of Pluto (P1 and P2) have masses that are small compared to both Pluto and Charon-that is, between 5 x 10(-4) and 1 x 10(-5) of Pluto's mass, and between 5 x 10(-3) and 1 x 10(-4) of Charon's mass. This discovery, combined with the constraints on the absence of more distant satellites of Pluto, reveal that Pluto and its moons comprise an unusual, highly compact, quadruple system. These facts naturally raise the question of how this puzzling satellite system came to be. Here we show that P1 and P2's proximity to Pluto and Charon, the fact that P1 and P2 are on near-circular orbits in the same plane as Pluto's large satellite Charon, along with their apparent locations in or near high-order mean-motion resonances, all probably result from their being constructed from collisional ejecta that originated from the Pluto-Charon formation event. We also argue that dust-ice rings of variable optical depths form sporadically in the Pluto system, and that rich satellite systems may be found--perhaps frequently--around other large Kuiper belt objects.

  17. Orbital clustering of distant Kuiper belt objects by hypothetical Planet 9. Secular or resonant?

    NASA Astrophysics Data System (ADS)

    Beust, H.

    2016-05-01

    Context. Statistical analysis of the orbits of distant Kuiper belt objects (KBOs) has led to the suggestion that an additional planet should reside in the solar system. According to recent models, the secular action of this body should cause orbital alignment of the KBOs. Aims: It was recently claimed that the KBOs affected by these dynamics are presumably trapped in mean-motion resonances with the suspected planet. I reinvestigate here the secular model underlying this idea. Methods: The original analysis was carried out by expanding and truncating the secular Hamiltonian. I show that this is inappropriate, as the series expansion is not convergent. I present a study based on numerical computation of the Hamiltonian with no expansion. Results: I show in phase-space diagrams the existence of apsidally anti-aligned, high eccentricity libration islands that were not present in the original modelling, but match numerical simulations. These island were claimed to correspond to bodies trapped in mean-motion resonances with the hypothetical planet and match the characteristics of the distant KBOs observed. Conclusions: My main result is that regular secular dynamics can account for the anti-aligned particles itself as well as mean-motion resonances. I also perform a semi-analytical study of resonant motion and show that some resonance are actually capable of producing the same libration islands. I then discuss the relative importance of both mechanisms.

  18. ON A POSSIBLE SIZE/COLOR RELATIONSHIP IN THE KUIPER BELT

    SciTech Connect

    Pike, R. E.; Kavelaars, J. J.

    2013-10-01

    Color measurements and albedo distributions introduce non-intuitive observational biases in size-color relationships among Kuiper Belt Objects (KBOs) that cannot be disentangled without a well characterized sample population with systematic photometry. Peixinho et al. report that the form of the KBO color distribution varies with absolute magnitude, H. However, Tegler et al. find that KBO color distributions are a property of object classification. We construct synthetic models of observed KBO colors based on two B-R color distribution scenarios: color distribution dependent on H magnitude (H-Model) and color distribution based on object classification (Class-Model). These synthetic B-R color distributions were modified to account for observational flux biases. We compare our synthetic B-R distributions to the observed ''Hot'' and ''Cold'' detected objects from the Canada-France Ecliptic Plane Survey and the Meudon Multicolor Survey. For both surveys, the Hot population color distribution rejects the H-Model, but is well described by the Class-Model. The Cold objects reject the H-Model, but the Class-Model (while not statistically rejected) also does not provide a compelling match for data. Although we formally reject models where the structure of the color distribution is a strong function of H magnitude, we also do not find that a simple dependence of color distribution on orbit classification is sufficient to describe the color distribution of classical KBOs.

  19. Nature or nurture of coplanar Tatooines: the aligned circumbinary Kuiper belt analogue around HD 131511

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.

    2015-02-01

    A key discovery of the Kepler mission is of the circumbinary planets known as `Tatooines', which appear to be well aligned with their host stars' orbits. Whether this alignment is due to initially coplanar circumbinary planet-forming discs (i.e. nature), or subsequent alignment of initially misaligned discs by warping the inner disc or torquing the binary (i.e. nurture), is not known. Tests of which scenario dominates may be possible by observing circumbinary Kuiper belt analogues (`debris discs'), which trace the plane of the primordial disc. Here, the 140 au diameter circumbinary debris disc around HD 131511 is shown to be aligned to within 10° of the plane of the near edge-on 0.2 au binary orbit. The stellar equator is also consistent with being in this plane. If the primordial disc was massive enough to pull the binary into alignment, this outcome should be common and distinguishing nature versus nurture will be difficult. However, if only the inner disc becomes aligned with the binary, the HD 131511 system was never significantly misaligned. Given an initial misalignment, the ˜ Gyr main-sequence lifetime of the star allows secular perturbations to align the debris disc out to 100 au at the cost of an increased scaleheight. The observed debris disc scaleheight limits any misalignment to less than 25°. With only a handful known, many more such systems need to be characterized to help test whether the alignment of circumbinary planets is nature or nurture.

  20. The Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Helou, George; Kessler, Martin F.

    1995-01-01

    ISO, scheduled to launch in 1995, will carry into orbit the most sophisticated infrared observatory of the decade. Overviews of the mission, instrument payload and scientific program are given, along with a comparison of the strengths of ISO and SOFIA.

  1. Haystack Observatory Technology Development Center

    NASA Technical Reports Server (NTRS)

    Beaudoin, Chris; Corey, Brian; Niell, Arthur; Cappallo, Roger; Whitney, Alan

    2013-01-01

    Technology development at MIT Haystack Observatory were focused on four areas in 2012: VGOS developments at GGAO; Digital backend developments and workshop; RFI compatibility at VLBI stations; Mark 6 VLBI data system development.

  2. Islamic Astronomical Instruments and Observatories

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  3. An astronomical observatory for Peru

    NASA Astrophysics Data System (ADS)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  4. Status of the SOFIA Observatory

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2015-01-01

    The SOFIA observatory has been in routine science operations since returning in January from a 6 month-long heavy maintenance period for the aircraft and the telescope assembly. These operations include a successful 6 week deployment to the Southern hemisphere. This presentation will provide an update to the current operational status of the SOFIA observatory, concentrating on the improvements and upgrades that have been implemented since the heavy maintenance period.

  5. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; Jakob, Holger; Killebrew, Jana; Lampater, Ulrich; Mandushev, Georgi; Marcum, Pamela; Meyer, Allan; Pfueller, Enrico; Reinacher, Andreas; Roeser, Hans-Peter; Savage, Maureen; Teufel, Stefan; Wiedemann, Manuel

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  6. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  7. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  8. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  9. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  10. Mammalian airborne allergens.

    PubMed

    Aalberse, Rob C

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of house dust extract is briefly discussed in the historical context of two other proposed sources of house dust allergenic activity: mites and Maillard-type lysine-sugar conjugates. Mammalian proteins involved in allergic reactions to airborne dust are largely found in only 2 protein families: lipocalins and secretoglobins (Fel d 1-like proteins), with a relatively minor contribution of serum albumins, cystatins and latherins. Both the lipocalin and the secretoglobin family are very complex. In some instances this results in a blurred separation between important and less important allergenic family members. The past 50 years have provided us with much detailed information on the genomic organization and protein structure of many of these allergens. However, the complex family relations, combined with the wide range of post-translational enzymatic and non-enzymatic modifications, make a proper qualitative and quantitative description of the important mammalian indoor airborne allergens still a significant proteomic challenge. PMID:24925404

  11. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  12. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  13. EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY

    SciTech Connect

    Young, E. T.; Becklin, E. E.; De Buizer, J. M.; Andersson, B.-G.; Casey, S. C.; Helton, L. A.; Marcum, P. M.; Roellig, T. L.; Temi, P.; Herter, T. L.; Guesten, R.; Dunham, E. W.; Backman, D.; Burgdorf, M.; Caroff, L. J.; Erickson, E. F.; Davidson, J. A.; Gehrz, R. D.; Harper, D. A.; Harvey, P. M.; and others

    2012-04-20

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 {mu}m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fuer Luft und-Raumfahrt, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance.

  14. The Carl Sagan solar and stellar observatories as remote observatories

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  15. MEASURING THE ABUNDANCE OF SUB-KILOMETER-SIZED KUIPER BELT OBJECTS USING STELLAR OCCULTATIONS

    SciTech Connect

    Schlichting, Hilke E.; Ofek, Eran O.; Gal-Yam, Avishay; Sari, Re'em; Nelan, Edmund P.; Livio, Mario; Wenz, Michael; Muirhead, Philip; Javanfar, Nikta

    2012-12-20

    We present here the analysis of about 19,500 new star hours of low ecliptic latitude observations (|b| {<=} 20 Degree-Sign ) obtained by the Hubble Space Telescope's Fine Guidance Sensors over a time span of more than nine years, which is in addition to the {approx}12, 000 star hours previously analyzed by Schlichting et al. Our search for stellar occultations by small Kuiper Belt Objects (KBOs) yielded one new candidate event corresponding to a body with a 530 {+-} 70 m radius at a distance of about 40 AU. Using bootstrap simulations, we estimate a probability of Almost-Equal-To 5% that this event is due to random statistical fluctuations within the new data set. Combining this new event with the single KBO occultation reported by Schlichting et al. we arrive at the following results: (1) the ecliptic latitudes of 6. Degree-Sign 6 and 14. Degree-Sign 4 of the two events are consistent with the observed inclination distribution of larger, 100-km-sized KBOs. (2) Assuming that small, sub-kilometer-sized KBOs have the same ecliptic latitude distribution as their larger counterparts, we find an ecliptic surface density of KBOs with radii larger than 250 m of N(r > 250 m) = 1.1{sup +1.5}{sub -0.7} Multiplication-Sign 10{sup 7} deg{sup -2}; if sub-kilometer-sized KBOs have instead a uniform ecliptic latitude distribution for -20 Degree-Sign < b < 20 Degree-Sign then N(r > 250 m) = 4.4{sup +5.8}{sub -2.8} Multiplication-Sign 10{sup 6} deg{sup -2}. This is the best measurement of the surface density of sub-kilometer-sized KBOs to date. (3) Assuming the KBO size distribution can be well described by a single power law given by N(> r){proportional_to}r{sup 1-q}, where N(> r) is the number of KBOs with radii greater than r, and q is the power-law index, we find q = 3.8 {+-} 0.2 and q = 3.6 {+-} 0.2 for a KBO ecliptic latitude distribution that follows the observed distribution for larger, 100-km-sized KBOs and a uniform KBO ecliptic latitude distribution for -20 Degree

  16. Applying Squeaky-Wheel Optimization Schedule Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Kuerklue, Elif

    2004-01-01

    We apply the Squeaky Wheel Optimization (SWO) algorithm to the problem of scheduling astronomy observations for the Stratospheric Observatory for Infrared Astronomy, an airborne observatory. The problem contains complex constraints relating the feasibility of an astronomical observation to the position and time at which the observation begins, telescope elevation limits, special use airspace, and available fuel. Solving the problem requires making discrete choices (e.g. selection and sequencing of observations) and continuous ones (e.g. takeoff time and setting up observations by repositioning the aircraft). The problem also includes optimization criteria such as maximizing observing time while simultaneously minimizing total flight time. Previous approaches to the problem fail to scale when accounting for all constraints. We describe how to customize SWO to solve this problem, and show that it finds better flight plans, often with less computation time, than previous approaches.

  17. Radiation Products in Processed Ices Relevant to Edgeworth-Kuiper-Belt Objects

    NASA Astrophysics Data System (ADS)

    Moore, M. H.; Hudson, R. L.; Ferrante, R. F.

    2003-06-01

    Near the inner edge of the Edgeworth-Kuiper Belt (EKB) are Pluto and Charon, which are known to have N2- and H2O-dominated surface ices, respectively. Such non-polar and polar ices, and perhaps mixtures of them, also may be present on other trans-Neptunian objects. Pluto, Charon, and all EKB objects reside in a weak, but constant UV-photon and energetic ion radiation environment that drives chemical reactions in their surface ices. Effects of photon and ion processing include changes in ice composition, volatility, spectra, and albedo, and these have been studied in a number of laboratories. This paper focuses on ice processing by ion irradiation and is aimed at understanding the volatiles, ions, and residues that may exist on outer solar system objects. We summarize radiation chemical products of N2-rich and H2O-rich ices containing CO or CH4, including possible volatiles such as alcohols, acids, and bases. Less-volatile products that could accumulate on EKB objects are observed to form in the laboratory from acid-base reactions, reactions promoted by warming, or reactions due to radiation processing of a relatively pure ice (e.g., CO --> C3O2). New IR spectra are reported for the 1-5 mu;m region, along with band strengths for the stronger features of carbon suboxide, carbonic acid, the ammonium and cyanate ions, polyoxymethylene, and ethylene glycol. These six materials are possible contributors to EKB surfaces, and will be of interest to observers and future missions.

  18. Comet-like mineralogy of olivine crystals in an extrasolar proto-Kuiper belt.

    PubMed

    de Vries, B L; Acke, B; Blommaert, J A D L; Waelkens, C; Waters, L B F M; Vandenbussche, B; Min, M; Olofsson, G; Dominik, C; Decin, L; Barlow, M J; Brandeker, A; Di Francesco, J; Glauser, A M; Greaves, J; Harvey, P M; Holland, W S; Ivison, R J; Liseau, R; Pantin, E E; Pilbratt, G L; Royer, P; Sibthorpe, B

    2012-10-01

    Some planetary systems harbour debris disks containing planetesimals such as asteroids and comets. Collisions between such bodies produce small dust particles, the spectral features of which reveal their composition and, hence, that of their parent bodies. A measurement of the composition of olivine crystals (Mg(2-2x)Fe(2x)SiO(4)) has been done for the protoplanetary disk HD 100546 (refs 3, 4) and for olivine crystals in the warm inner parts of planetary systems. The latter compares well with the iron-rich olivine in asteroids (x ≈ 0.29). In the cold outskirts of the β Pictoris system, an analogue to the young Solar System, olivine crystals were detected but their composition remained undetermined, leaving unknown how the composition of the bulk of Solar System cometary olivine grains compares with that of extrasolar comets. Here we report the detection of the 69-micrometre-wavelength band of olivine crystals in the spectrum of β Pictoris. Because the disk is optically thin, we can associate the crystals with an extrasolar proto-Kuiper belt a distance of 15-45 astronomical units from the star (one astronomical unit is the Sun-Earth distance), determine their magnesium-rich composition (x = 0.01 ± 0.001) and show that they make up 3.6 ± 1.0 per cent of the total dust mass. These values are strikingly similar to those for the dust emitted by the most primitive comets in the Solar System, even though β Pictoris is more massive and more luminous and has a different planetary system architecture. PMID:23038467

  19. Resonant Dynamics of Kuiper Belt Objects and Induced Biases in Surveys

    NASA Astrophysics Data System (ADS)

    Gladman, Brett

    2008-05-01

    A significant fraction of known trans-neptunian objects (TNOs) are known to inhabit mean-motion resonances with Neptune. (Pluto, in the 3:2 resonance, is the best known example). Recent work has shown that many other resonances are also populated (most especially the 6:5, 4:3, 7:4, 2:1, and 5:2). The resonance dynamics cause TNOs librating in the resonance to be distributed non-uniformly on the sky in the sense that the heliocentric distance becomes strongly correlated with the separation in longitude relative to Neptune. This has a strong dependence on the detectibility of resonant TNOs in observational surveys. An important piece of the dynamics is the study of how the libration amplitude of the resonant argument enters into the observability question, since the distribution of these resonant amplitudes can be a diagnostic of how the resonance may have been populated due to planetary migration allowing the capture of non-resonant objects into the resonances early in Solar System history. The libration amplitude distribution couples with the size and eccentricity distributions to determine the sensitivity of detection when a TNO search is conducted in a certain sky direction. I will show how these considerations can be used with calibrated TNO surveys to constrain the orbital element and size distributions of resonant objects in the Kuiper Belt. This goal is considerably complicated by the fact that many high-inclination resonant TNOs also co-inhabit the Kozai resonance. Such objects have a further strong effect introduced into their detectibility. This work is supported by NSERC, CFI, NASA-Planetary Astronomy, and the Canada Research Chairs program.

  20. OBSERVED BINARY FRACTION SETS LIMITS ON THE EXTENT OF COLLISIONAL GRINDING IN THE KUIPER BELT

    SciTech Connect

    Nesvorny, David; Vokrouhlicky, David; Bottke, William F.; Levison, Harold F.; Noll, Keith

    2011-05-15

    The size distribution in the cold classical Kuiper Belt (KB) can be approximated by two idealized power laws: one with steep slope for radii R > R* and one with shallow slope for R < R*, where R* {approx} 25-50 km. Previous works suggested that the size frequency distribution (SFD) rollover at R* can be the result of extensive collisional grinding in the KB that led to the catastrophic disruption of most bodies with R < R*. Here, we use a new code to test the effect of collisions in the KB. We find that the observed rollover could indeed be explained by collisional grinding provided that the initial mass in large bodies was much larger than the one in the present KB and was dynamically depleted. In addition to the size distribution changes, our code also tracks the effects of collisions on binary systems. We find that it is generally easier to dissolve wide binary systems, such as the ones existing in the cold KB today, than to catastrophically disrupt objects with R {approx} R*. Thus, the binary survival sets important limits on the extent of collisional grinding in the KB. We find that the extensive collisional grinding required to produce the SFD rollover at R* would imply a strong gradient of the binary fraction with R and separation, because it is generally easier to dissolve binaries with small components and/or those with wide orbits. The expected binary fraction for R {approx}< R* is {approx}<0.1. The present observational data do not show such a gradient. Instead, they suggest a large binary fraction of {approx}0.4 for R = 30-40 km. This may indicate that the rollover was not produced by disruptive collisions, but is instead a fossil remnant of the KB object formation process.

  1. Optical Spectra of the Large Kuiper Belt Objects 2003 EL61 and 2005 FY9

    NASA Astrophysics Data System (ADS)

    Tegler, Stephen C.; Grundy, W.; Consolmagno, G.; Romanishin, W.; Mogren, K.

    2006-09-01

    We present optical spectra (0.40 - 0.95 micron; fwhm 0.0020 micron) of the large Kuiper belt objects 2003 EL61 and 2005 FY9. The spectra were obtained with the Red Channel Spectrograph and the 6.5 meter MMT telescope on Mt Hopkins, AZ. Five 600-sec spectra of 2003 EL61 span 40 % of its rotational period. We find no evidence of ice absorption bands in any of the spectra nor any evidence of differences between the spectra. By combining the five spectra, we achieve a continuum signal to noise ratio of 200 near 0.577 and 0.627 micron. Such a signal to noise ratio enables us to rule out the presence of O2-ice on 2003 EL61 at an abundance seen on the surface of Ganymede (Spencer et al. 1995). In addition, the lack of the 0.890 micron CH4-ice band in our spectrum allows us to set an upper limit on the thickness of a global glaze of CH 4-ice at 0.3 mm. Our spectrum of 2005 FY9 exhibits deep CH 4-ice absorption at 0.620, 0.730, 0.786, 0.799, 0.844, 0.869, 0.890, and 0.902 micron in agreement with spectra of Licandro et al. 2006. The wavelengths of these absorption bands are consistent with pure CH4-ice. In addition, our spectrum exhibits weak CH 4-ice bands at 0.54, 0.58, and 0.60 micron. This is the first detection of these weak ice bands in laboratory or astrophysical spectra. We thank the NASA Planetary Astronomy Program for financial support of this research and the Steward Telescope Allocation Committee for allocation of telescope time.

  2. Evidence for Recent Resurfacing of the Binary Kuiper Belt Object 1997 CS29

    NASA Astrophysics Data System (ADS)

    Rabinowitz, David L.; Schaefer, B.; Schaefer, M.; Tourtellotte, S.

    2009-09-01

    At solar phase angles less than 0.1 deg, some icy bodies exhibit an extraordinary opposition surge, suddenly brightening by 50% at near zero phase. Verbiscer et al [1] observed this phenomena for the icy Galilean satellites Mimas, Enceladus, Tethys, Dione, and Rhea and suggest the surge results from the light-scattering properties of freshly resurfaced icy regoliths. Buratti et al [2] and Earle et al [3] observed a similarly sharp opposition surge on Neptune's icy satellite Triton, which is known to have active cryovolcanoes. Here we examine the solar phase curves of 9 Trans-Neptunian Objects that we have measured at phase angles smaller than 0.1 deg (Rabinowitz et al [4], Schaefer et al [5]), including previously unpublished observations 1997 CS29 and 2005 UJ438. This sample includes hot and cold classical Kuiper-Belt objects, Plutinos, Centaurs, and three binary TNOs. Of all these targets, only 1997 CS29 has a sharp surge at near zero phase, and a nearly flat phase curve at large angles. Since this target is also a binary with an unusually large and close companion [6], we suggest that both 1997 CS29 and its companion have been resurfaced by each other's impact ejecta via the mechanism proposed by Stern [7], with fresh surface material producing the opposition spike. [1] Verbiscer, A., et al. 2007, Science, 315, 815; [2] Buratti, B. et al. 2007, Workshop on Ices, Oceans, and Fire: Satellites of the Outer Solar System, Boulder Colorado; [3] Earle, D., et al. 2008, BAAS, 40, 480; [4] Rabinowitz, D. et al. 2007, AJ, 133, 26; [5] Schaefer, B., et al. 2009, AJ, 137, 129; [6] Stephens, D. & Knoll, K. 2006, AJ, 131,1142;[7] Stern, S. A. 2009, Icarus, 199, 571.

  3. GEOSCOPE Observatory Recent Developments

    NASA Astrophysics Data System (ADS)

    Leroy, N.; Pardo, C.; Bonaime, S.; Stutzmann, E.; Maggi, A.

    2010-12-01

    The GEOSCOPE observatory consists of a global seismic network and a data center. The 31 GEOSCOPE stations are installed in 19 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers, as required by the Federation of Seismic Digital Network (FDSN). In most stations, a pressure gauge and a thermometer are also installed. Currently, 23 stations send data in real or near real time to GEOSCOPE Data Center and tsunami warning centers. In 2009, two stations (SSB and PPTF) have been equipped with warpless base plates. Analysis of one year of data shows that the new installation decreases long period noise (20s to 1000s) by 10 db on horizontal components. SSB is now rated in the top ten long period stations for horizontal components according to the LDEO criteria. In 2010, Stations COYC, PEL and RER have been upgraded with Q330HR, Metrozet electronics and warpless base plates. They have been calibrated with the calibration table CT-EW1 and the software jSeisCal and Calex-EW. Aluminum jars are now installed instead of glass bells. A vacuum of 100 mbars is applied in the jars which improves thermal insulation of the seismometers and reduces moisture and long-term corrosion in the sensor. A new station RODM has just been installed in Rodrigues Island in Mauritius with standard Geoscope STS2 setup: STS2 seismometer on a granite base plate and covered by cooking pot and thermal insulation, it is connected to Q330HR digitizer, active lightning protection, Seiscomp PC and real-time internet connection. Continuous data of all stations are collected in real time or with a delay by the GEOSCOPE Data Center in Paris where they are validated, archived and made available to the international scientific community. Data are freely available to users by different interfaces according data types (see : http://geoscope.ipgp.fr) - Continuous data in real time coming

  4. Development of solar tower observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Because the horizontal solar telescope, the Snow Telescope in Yerkes Observatory, was affected by air-currents from the warmed-up soil, George Ellery Hale had the idea of a tower telescope. In 1904, the 60-foot tower in Mt. Wilson was ready, in 1908 the 150-foot tower was built with the help of the Carnegie foundation. After World War I, Germany made heavy efforts to regain its former strong position in the field of science. Already in December 1919 - after the spectacular result of the English eclipse expedition in October 1919 - Erwin Finlay-Freundlich started a successful fund raising (“Einstein-Stiftungrdquo;) among German industrialists. The company Zeiss in Jena was responsible for the instrumentation of the 20-m solar tower, built in 1920-22. The optical design of the Einstein Tower in respect to light intensity surpassed even the Mt. Wilson solar observatory. Also abroad solar tower observatories were built in the 1920s: Utrecht,The Netherlands (1922), Canberra, Australia (1924), Arcetri, Italy (1926), Pasadena, California (1926) and Tokyo, Japan (1928). In the thirties, solar physics became important because of the solar maximum in 1938 and the new observational possibilities created by Bernard Lyot. At the end of the 1930s, Karl-Otto Kiepenheuer proposed to establish a solar tower observatory on Wendelstein in order to improve the predictions of radio interference by observing sunspots. By stressing the importance of the solar research for war efforts, Otto Heckmann of Göttingen observatory finally succeeded in winning the “Reichsluftfahrtministerium” to finance several solar observatories, like Wendelstein, Hainberg/Göttingen, Kanzelhöhe/Villach, and Schauinsland/Freiburg. Solar astronomy profited by the foundation of the new observatories - four of them existed still after the war. Abroad only the solar observatories of Oxford (1935) and the 50 foot tower of the McMath-Hulbert Observatory, University of Michigan (1936) should be mentioned. Only

  5. Observatory Bibliographies as Research Tools

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Winkelman, S. L.

    2013-01-01

    Traditionally, observatory bibliographies were maintained to provide insight in how successful a observatory is as measured by its prominence in the (refereed) literature. When we set up the bibliographic database for the Chandra X-ray Observatory (http://cxc.harvard.edu/cgi-gen/cda/bibliography) as part of the Chandra Data Archive ((http://cxc.harvard.edu/cda/), very early in the mission, our objective was to make it primarily a useful tool for our user community. To achieve this we are: (1) casting a very wide net in collecting Chandra-related publications; (2) including for each literature reference in the database a wealth of metadata that is useful for the users; and (3) providing specific links between the articles and the datasets in the archive that they use. As a result our users are able to browse the literature and the data archive simultaneously. As an added bonus, the rich metadata content and data links have also allowed us to assemble more meaningful statistics about the scientific efficacy of the observatory. In all this we collaborate closely with the Astrophysics Data System (ADS). Among the plans for future enhancement are the inclusion of press releases and the Chandra image gallery, linking with ADS semantic searching tools, full-text metadata mining, and linking with other observatories' bibliographies. This work is supported by NASA contract NAS8-03060 (CXC) and depends critically on the services provided by the ADS.

  6. THE ROTATION PERIOD AND LIGHT-CURVE AMPLITUDE OF KUIPER BELT DWARF PLANET 136472 MAKEMAKE (2005 FY9)

    SciTech Connect

    Heinze, A. N.; DeLahunta, Daniel E-mail: ddelahun@mail.rochester.edu

    2009-08-15

    Kuiper Belt dwarf planet 136472 Makemake, formerly known as 2005 FY9, is currently the third-largest known object in the Kuiper Belt, after the dwarf planets Pluto and Eris. It is currently second only to Pluto in apparent brightness, due to Eris' much larger heliocentric distance. Makemake shows very little photometric variability, which has prevented confident determination of its rotation period until now. Using extremely precise time-series photometry, we find that the rotation period of Makemake is 7.7710 {+-} 0.0030 hr, where the uncertainty is a 90% confidence interval. An alias period is detected at 11.41 hr, but is determined with approximately 95% confidence not to be the true period. Makemake's 7.77 hr rotation period is in the typical range for Kuiper Belt objects, consistent with Makemake's apparent lack of a substantial satellite to alter its rotation through tides. The amplitude of Makemake's photometric light curve is 0.0286 {+-} 0.0016 mag in V. This amplitude is about 10 times less than Pluto's, which is surprising given the two objects' similar sizes and spectral characteristics. Makemake's photometric variability is instead similar to that of Eris, which is so small that no confident rotation period has yet been determined. It has been suggested that dwarf planets such as Makemake and Eris, both farther from the Sun and colder than Pluto, exhibit lower photometric variability because they are covered with a uniform layer of frost. Such a frost is probably the correct explanation for Eris. However, it may be inconsistent with the spectrum of Makemake, which resembles reddish Pluto more than neutrally colored Eris. Makemake may instead be a more Pluto-like object that we observe at present with a nearly pole-on viewing geometry-a possibility that can be tested with continuing observations over the coming decades.

  7. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  8. Australian network of magnetic observatories

    NASA Astrophysics Data System (ADS)

    Barton, C. E.

    Six magnetic observatories are presently operated by the Australian Bureau of Mineral Resources, Geology and Geophysics (BMR), with assistance from various other organizations. Variometer recordings are made of three or more elements of the field at minute intervals, and absolute measurements are made weekly. There are four observatories on the continent (Canberra, Gnangara, Charters Towers, and Learmonth), one on Macquarie Island, and one at Mawson Station in eastern Antarctica (Figure 1). In addition, semiweekly absolute observations of the field (D, H, and F) are made at the other two permanent Australian Antarctic bases (Casey and Davis). A three-axis fluxgate magnetometer (EDA Electronics, Toronto , Canada) is operated independently by the Upper Atmosphere Physics group at Davis. Monthly mean values, K indices, and information about magnetic disturbances are published monthly in the BMR Geophysical Observatory Report.

  9. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  10. Environmental Observatories and Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Duncan, J. M.

    2006-12-01

    During the past several years, the environmental sciences community has been attempting to design large- scale obsevatories that will transform the science. A watershed-based observatory has emerged as an effective landscape unit for a broad range of environmental sciences and engineering. For an effective observatory, modeling is a central requirement because models are precise statements of the hypothesized conceptual organization of watersheds and of the processes believed to be controlling hydrology of the watershed. Furthermore, models can serve to determine the value of existing data and the incremental value of any additional data to be collected. Given limited resources, such valuation is mandatory for an objective design of an observatory. Modeling is one part of a "digital watershed" that must be constructed for any observatory, a concept that has been developed by the CUAHSI Hydrologic Information Systems project. A digital watershed has three functions. First, it permits assembly of time series (such as stream discharge or precipitation measurements), static spatial coverages (such as topography), and dynamic fields (such as precipitation radar and other remotely sensed data). Second, based upon this common data description, a digital observatory permits multiple conceptualizations of the observatory to be created and to be stored. These conceptualizations could range from lumped box-and-arrow watershed models, to semi-distributed topographically based models, to three-dimensional finite element models. Finally, each conceptualization can lead to multiple models--that is, a set of equations that quantitatively describe hydrologic (or biogeochemical or geomorphologic) processes through libraries of tools that can be linked as workflow sequences. The advances in cyberinfrastructure that allow the storage of multiple conceptualizations and multiple model formulations of these conceptualizations promise to accelerate advances in environmental science both

  11. High Energy Astronomy Observatory (HEAO)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is an artist's concept describing the High Energy Astronomy Observatory (HEAO). The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. This concept was painted by Jack Hood of the Marshall Space Flight Center (MSFC). Hardware support for the imaging instruments was provided by American Science and Engineering. The HEAO spacecraft were built by TRW, Inc. under project management of the MSFC.

  12. The Compton Observatory Science Workshop

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R. (Editor); Gehrels, Neil (Editor); Dennis, Brian (Editor)

    1992-01-01

    The Compton Observatory Science Workshop was held in Annapolis, Maryland on September 23-25, 1991. The primary purpose of the workshop was to provide a forum for the exchange of ideas and information among scientists with interests in various areas of high energy astrophysics, with emphasis on the scientific capabilities of the Compton Observatory. Early scientific results, as well as reports on in-flight instrument performance and calibrations are presented. Guest investigator data products, analysis techniques, and associated software were discussed. Scientific topics covered included active galaxies, cosmic gamma ray bursts, solar physics, pulsars, novae, supernovae, galactic binary sources, and diffuse galactic and extragalactic emission.

  13. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  14. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  15. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  16. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  17. Corralling a distant unseen planet with extreme resonant Kuiper belt objects

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu; Volk, Kathryn; Wang, Xianyu

    2016-10-01

    Several recent studies have appealed to the clustering of the angular orbital elements of very distant, extreme Kuiper belt objects (eKBOs) to argue for the existence of a large planet in the distant solar system. We identify other properties of eKBOs that may support the existence of such an unseen planet. We observe that several eKBOs have orbital periods close to integer ratios with each other. These would be dynamically significant only if the eKBOs are in mean motion resonances (MMRs) with an unseen massive planet. If such MMRs are true, then their resonant dynamics can provide constraints on the planet's parameters and its current location in its orbital path. We calculate that a hypothetical planet with orbital period ~17,117 years (semimajor axis ~665 AU), could have small integer period ratios (of the form N/1 or N/2) with the four longest period eKBOs. Our calculations suggest two possibilities for the planet's orbit plane: a plane moderately close to the ecliptic (i~18°) or an inclined plane (i~48°). The former offers dynamical stability of the high-eccentricity eKBOs by means of libration of the relative longitudes, and the latter offers enhanced dynamical stability by means of additional libration of the argument of perihelion, ω. Standard theory of MMRs breaks down for the extremely high orbital eccentricities (~0.7–0.9) of the eKBOs. We developed asymptotic analytical approximations, supported by numerical analysis of the circular restricted three body problem, to estimate that a planet of mass >~10 M♀ has MMR widths large enough that the current orbital uncertainties of the eKBOs allow libration in the hypothesized MMRs, as well as libration of ω in the inclined planet case. Our calculations indicate that the planet's orbital eccentricity is unlikely to exceed ~0.3 for stable resonant librations of the eKBOs. Libration of critical resonant angles of the hypothesized MMRs of the eKBOs define exclusion zones of the current location of the

  18. Simulated MERTIS observation of the Rudaki-Kuiper craters area on Mercury

    NASA Astrophysics Data System (ADS)

    D'Amore, M.; Helbert, J.; Maturilli, A.; Ferrari, S.; Bauch, K.; D'Incecco, P.; Hiesinger, H.; Head, J. W.; Holsclaw, G. M.; Lorin, D. D.; Denevi, B. W.; Stockstill-Cahill, K. R.

    2013-12-01

    The MErcury Radiometer and Thermal infrared Imaging Spectrometer (MERTIS) is part of the payload of the BepiColombo mission. The mission is scheduled for launch in 2015 with arrival at Mercury in 2021. To achieve MERTIS's scientific goals the instrument maps the surface of Mercury with a spatial resolution of 500m for the spectrometer channel and 2km for the radiometer channel. MERTIS spans wavelength ranges of 7-14 and 7-40 μm with its two channels. Among it scientific goals, MERTIS will infer rock-forming minerals, map surface composition, and study surface temperature variations on Mercury with an uncooled microbolometer detector. To exploit the full potential of the unique MERTIS dataset, an extensive calibration campaign has been performed. This includes radiometric, spectral, and geometric calibration. In addition we have performed measurement of analog materials at temperatures of up to 500°C - similar to the peak temperatures expected at Mercury - with the MERTIS qualification model in the Planetary Emissivity Laboratory. These measurements allow for the evaluation of the MERTIS performance in direct comparison with the laboratory spectrometer. They also enable the creation of synthetic MERTIS datasets. For this purpose we use data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft as baseline. MESSENGER can provide geological information as well as spectral information in the UV, visible and near-infrared wavelengths range. For a first test we have selected the Kuiper-Rudaki region. The region has been extensively covered by measurements from the MESSENGER spacecraft. Recent analysis of observations by the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) instrument on the MESSENGER spacecraft with an unsupervised hierarchical clustering method shows at global scales two major units: a Polar region (PR) spectrally flat and redder than the equatorial region (ER). The study area is primarily

  19. Let's Dense - Modifying densities and compositions through collisions of Kuiper belt objects

    NASA Astrophysics Data System (ADS)

    Sarid, Gal; Stewart, Sarah T.; Grundy, Will

    2016-10-01

    Ice-rock bodies in the outer solar system preserve crucial information on past dynamical and physical conditions, through compositions and structure. Known dwarf planets have a large range of ice/rock ratios and maintain diverse satellite counterparts. Specific modification processes have not yet been demonstrated numerically and identification of intermediate evolution stages is lacking in simulations and observations.Barr & Schwamb (2016) hypothesized on how to interpret densities in the Kuiper belt according to different collision conditions, pointing to a two-mode process. We show how to reconstruct their distribution of primary density and satellite-to-total mass ratio, as a function of varying collision regimes, in similar and marginally-similar-sized collisions (dependent on target/impactor mass ratio). We varied the initial mass ratios, impact velocities and angles and differentiation state of large and mid-sized (300-1200 km in radius) colliding objects, in SPH-based shock physics simulations (using GADGET2 with EOS implementation). Fully, partial and non-differentiated initial configurations of each object are derived from a consistent calculation of thermal evolution histories and a pre-selected range in initial compositions and material properties.We will discuss the scaling of these simulations, as it informs our predictions for the survival and current presence of water and other volatile ice species. Intermediate-size KBOs (radii ~300-500 km) should be most amenable for buried ices to be resurfaced by impacts. A preliminary scaling relation between collision conditions and global shock processed state of the ice (H2O) and rock (silicate, serpentine) components will be discussed as well. We also predict the satellite-to-total mass ratio and primary density of objects that have not yet been observed to maintain a stable satellite system. These would be observations of massive satellites around ice-rich bodies. The predicted collision regime, between

  20. The National Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Michener, W. K.

    2006-05-01

    The National Ecological Observatory Network (NEON) is a research platform designed to advance understanding of how ecosystems and organisms respond to variations in climate and changes in land use. NEON is the first long-term ecological observatory conceived as a continental-scale network; equipped with standardized sensors, cyberinfrastructure, and data-collection protocols across the network; and designed to simultaneously address a common set of research questions and support investigator-driven ecological research in all regions of the United States. The Observatory focuses on variations in climate and land use because they are primary drivers of the Nation's environmental challenges, as identified by the National Research Council--i.e., biodiversity, biogeochemical cycles, climate change, hydroecology, infectious disease, invasive species, and land use. At the broadest scale, NEON links the complexity of climate variation to the behavior of ecological systems, a core aspect of ecological complexity. At the same time, because of the complexity of the interactions among humans and ecosystems, the network design includes NEON sites in wild, managed and urban systems within climate domains. Observatory data will also be part of a national education program designed to advance ecological science literacy through new programs and activities that develop and promote scientific ways of thinking.

  1. Planetary research at Lowell Observatory

    NASA Technical Reports Server (NTRS)

    Baum, William A.

    1988-01-01

    Scientific goals include a better determination of the basic physical characteristics of cometary nuclei, a more complete understanding of the complex processes in the comae, a survey of abundances and gas/dust ratios in a large number of comets, and measurement of primordial (12)C/(13)C and (14)N/(15)N ratios. The program also includes the observation of Pluto-Charon mutual eclipses to derive dimensions. Reduction and analysis of extensive narrowband photometry of Comet Halley from Cerro Tololo Inter-American Observatory, Perth Observatory, Lowell Observatory, and Mauna Kea Observatory were completed. It was shown that the 7.4-day periodicity in the activity of Comet Halley was present from late February through at least early June 1986, but there is no conclusive evidence of periodic variability in the preperihelion data. Greatly improved NH scalelengths and lifetimes were derived from the Halley data which lead to the conclusion that the abundance of NH in comets is much higher than previously believed. Simultaneous optical and thermal infrared observations were obtained of Comet P/Temple 2 using the MKO 2.2 m telescope and the NASA IRTF. Preliminary analysis of these observations shows that the comet's nucleus is highly elongated, very dark, and quite red.

  2. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  3. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  4. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  5. Layered Model for Radiation-Induced Chemical Evolution of Icy Surface Composition on Kuiper Belt and Oort Cloud Bodies

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Hill, Matthew E.; Richardson, John D.; Sturner, Steven J.

    2010-01-01

    The diversity of albedos and surface colors on observed Kuiper Belt and Inner Oort Cloud objects remains to be explained in terms of competition between primordial intrinsic versus exogenic drivers of surface and near-surface evolution. Earlier models have attempted without success to attribute this diversity to the relations between surface radiolysis from cosmic ray irradiation and gardening by meteoritic impacts. A more flexible approach considers the different depth-dependent radiation profiles produced by low-energy plasma, suprathermal, and maximally penetrating charged particles of the heliospheric and local interstellar radiation environments. Generally red objects of the dynamically cold (low inclination, circular orbit) Classical Kuiper Belt might be accounted for from erosive effects of plasma ions and reddening effects of high energy cosmic ray ions, while suprathermal keV-MeV ions could alternatively produce more color neutral surfaces. The deepest layer of more pristine ice can be brought to the surface from meter to kilometer depths by larger impact events and potentially by cryovolcanic activity. The bright surfaces of some larger objects, e.g. Eris, suggest ongoing resurfacing activity. Interactions of surface irradiation, resultant chemical oxidation, and near-surface cryogenic fluid reservoirs have been proposed to account for Enceladus cryovolcanism and may have further applications to other icy irradiated bodies. The diversity of causative processes must be understood to account for observationally apparent diversities of the object surfaces.

  6. Layered Model for Radiation-Induced Chemical Evolution of Icy Surface Composition on Kuiper Belt and Oort Cloud Bodies

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Hill, M. E.; Richardson, J. D.; Sturner, S. J.

    2010-10-01

    The diversity of albedos and surface colors on observed Kuiper Belt and Inner Oort Cloud objects remains to be explained in terms of competition between primordial intrinsic versus exogenic drivers of surface and near-surface evolution. Earlier models have attempted without success to attribute this diversity to the relations between surface radiolysis from cosmic ray irradiation and gardening by meteoritic impacts. A more flexible approach considers the different depth-dependent radiation profiles produced by low-energy plasma, suprathermal, and maximally penetrating charged particles of the heliospheric and local interstellar radiation environments. Generally red objects of the dynamically cold (low inclination, circular orbit) Classical Kuiper Belt might be accounted for from erosive effects of plasma ions and reddening effects of high energy cosmic ray ions, while suprathermal keV-MeV ions could alternatively produce more color neutral surfaces. The deepest layer of more pristine ice can be brought to the surface from meter to kilometer depths by larger impact events and potentially by cryovolcanic activity. The bright surfaces of some larger objects, e.g. Eris, suggest ongoing resurfacing activity. Interactions of surface irradiation, resultant chemical oxidation, and near-surface cryogenic fluid reservoirs have been proposed to account for Enceladus cryovolcanism (Cooper et al., Plan. Sp. Sci., 2009) and may have further applications to other icy irradiated bodies. The diversity of causative processes must be understood to account for observationally apparent diversities of the object surfaces.

  7. MICROWAVE EMISSION FROM THE EDGEWORTH-KUIPER BELT AND THE ASTEROID BELT CONSTRAINED FROM THE WILKINSON MICROWAVE ANISOTROPY PROBE

    SciTech Connect

    Ichikawa, Kazuhide; Fukugita, Masataka

    2011-08-01

    Objects in the Edgeworth-Kuiper Belt and the main asteroid belt should emit microwaves that may give rise to extra anisotropy signals in the multipole of the cosmic microwave background (CMB) experiment. Constraints are derived from the absence of positive detection of such anisotropies for l {approx}< 50, meaning the total mass of Edgeworth-Kuiper Belt objects is smaller than 0.2 M{sub +}. This limit is consistent with the mass extrapolated from the observable population with the size of a {approx}> 15 km, assuming that the small-object population follows the power law in size dN/da {approx} a{sup -q} with the canonical index expected for collisional equilibrium, q {approx_equal} 3.5, with which 23% of the mass is ascribed to objects smaller than are observationally accessible down to grains. A similar argument applied to the main asteroid belt indicates that the grain population should not increase more quickly than q {approx_equal} 3.6 toward smaller radii, if the grain population follows the power law that continues to observed asteroids with larger radii. Both cases are at or only slightly above the limit that can be physically significant, implying the importance of further tightening the CMB anisotropy limit, which may be attained with observation at higher radio frequencies.

  8. Norwegian Ocean Observatory Network (NOON)

    NASA Astrophysics Data System (ADS)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  9. Modeling for Airborne Contamination

    SciTech Connect

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  10. Education partnerships at 41,000 feet: The stratospheric Observatory for Infrared Astronomy (SOFIA) education and outreach program

    NASA Astrophysics Data System (ADS)

    Devore, Edna

    The SOFIA Education and Public Outreach Program (E/PO) is under development as this unique astronomical observatory is being designed and constructed. SOFIA is an infrared astronomical observatory comprised of a 2.5-meter telescope mounted in a Boeing 747SP aircraft. By flying above the water vapor in Earth's atmosphere, SOFIA will observe the infrared universe, studying the birth place of stars, the formation of planets, and the ecology of galaxies. SOFIA is also the world's largest portable telescope, and will be used to observe events such as occultations that require the observatory be at a particular location on Earth. As an airborne observatory, SOFIA is accessible during research flights; SOFIA will carry on board a compliment of pilots, scientists and their graduate students, observatory staff, and visiting educators, members of the press, and other guests. Unique in the world of major observatories, SOFIA is being designed and constructed to accommodate guests during the research process. Educators (teachers, college faculty, planetarium and museum staff, and others) will have the opportunity to partner with scientists as a part of the E/PO program for SOFIA. Participants will be selected to offer broad participation. Training will be provided, and participants will be supported beyond the immediate research flight experience as a network of Airborne Astronomy Ambassadors (AAA) in their schools, science centers, and communities. Other EPO activities include partnerships between scientists and educators at universities and research laboratories, internships and fellowships (1-2 years in duration) at the observatory. Research missions begin in late 2004 with AAA participation expected in 2005. SOFIA will be operated for NASA by Universities Space Research Association (USRA) with the USRA-led team: University of California, L3 Communications, United Airlines, Astronomical Society of the Pacific and the SETI Institute. SOFIA is a joint US-German project funded

  11. SOFIA - Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  12. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Becker, Eric; Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  13. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  14. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  15. The Magnetic Observatory Buildings at the Royal Observatory, Cape

    NASA Astrophysics Data System (ADS)

    Glass, I. S.

    2015-10-01

    During the 1830s there arose a strong international movement, promoted by Carl Friedrich Gauss and Alexander von Humboldt, to characterise the earth's magnetic field. By 1839 the Royal Society in London, driven by Edward Sabine, had organised a "Magnetic Crusade" - the establishment of a series of magnetic and meteorological observatories around the British Empire, including New Zealand, Australia, St Helena and the Cape. This article outlines the history of the latter installation, its buildings and what became of them.

  16. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  17. Astronomical observatory for shuttle. Phase A study

    NASA Technical Reports Server (NTRS)

    Guthals, D. L.

    1973-01-01

    The design, development, and configuration of the astronomical observatory for shuttle are discussed. The characteristics of the one meter telescope in the spaceborne observatory are described. A variety of basic spectroscopic and image recording instruments and detectors which will permit a large variety of astronomical observations are reported. The stDC 37485elines which defined the components of the observatory are outlined.

  18. Polarimetry from the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Vaillancourt, J.; Andersson, B.; Young, E.; Ruzek, M. J.

    2012-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5-meter infrared airborne telescope in a Boeing 747SP that operates in the stratosphere at altitudes as high as 45,000 feet (14 km). A joint project of NASA and the German Aerospace Center (DLR), SOFIA can conduct photometric, spectroscopic, and imaging observations at wavelengths from 0.3 micron to 1.6 millimeters with an average atmospheric transmission greater than 80 percent across that range. The first-generation instruments span the range from 0.3 to 240 microns. SOFIA's ability to regularly update its instrument complement over its 20-year lifetime will allow for polarimeters with imaging and spectroscopic capabilities; a second-generation imaging polarimeter is currently planned for far-infrared wavelengths. We discuss a sample of possible investigations of interest to the field of planetary science which can be carried out with an airborne polarimeter in SOFIA's near- and mid-infrared wavelength range including studies of comets, asteroids, and proto-stellar disks. A third-generation instrument call, where new polarimetric capabilities may be proposed, is currently planned for Fiscal Year 2014.

  19. International Ultraviolet Explorer Observatory operations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This volume contains the final report for the International Ultraviolet Explorer IUE Observatory Operations contract. The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to translate competitively selected observing programs into IUE observations, to reduce these observations into meaningful scientific data, and then to present these data to the Guest Observer in a form amenable to the pursuit of scientific research. The IUE Observatory is the key to this objective since it is the central control and support facility for all science operations functions within the IUE Project. In carrying out the operation of this facility, a number of complex functions were provided beginning with telescope scheduling and operation, proceeding to data processing, and ending with data distribution and scientific data analysis. In support of these critical-path functions, a number of other significant activities were also provided, including scientific instrument calibration, systems analysis, and software support. Routine activities have been summarized briefly whenever possible.

  20. International ultraviolet explorer observatory operations

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This volume contains the Final Report for the International Ultraviolet Explorer (IUE) Observatory Operations contract, NAS5-28787. The report summarizes the activities of the IUE Observatory over the 13-month period from November 1985 through November 1986 and is arranged in sections according to the functions specified in the Statement of Work (SOW) of the contract. In order to preserve numerical correspondence between the technical SOW elements specified by the contract and the sections of this report, project management activities (SOW element 0.0.) are reported here in Section 7, following the reports of technical SOW elements 1.0 through 6.0. Routine activities have been summarized briefly whenever possible; statistical compilations, reports, and more lengthy supplementary material are contained in the Appendices.

  1. Boscovich and the Brera Observatory .

    NASA Astrophysics Data System (ADS)

    Antonello, E.

    In the mid 18th century both theoretical and practical astronomy were cultivated in Milan by Barnabites and Jesuits. In 1763 Boscovich was appointed to the chair of mathematics of the University of Pavia in the Duchy of Milan, and the following year he designed an observatory for the Jesuit Collegium of Brera in Milan. The Specola was built in 1765 and it became quickly one of the main european observatories. We discuss the relation between Boscovich and Brera in the framework of a short biography. An account is given of the initial research activity in the Specola, of the departure of Boscovich from Milan in 1773 and his coming back just before his death.

  2. New Geophysical Observatory in Uruguay

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.

    2013-05-01

    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  3. The NASA airborne astronomy program - A perspective on its contributions to science, technology, and education

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.

    1992-01-01

    The publication records from NASA's airborne observatories are examined to evaluate the contribution of the airborne astronomy program to technological development and scientific/educational progress. The breadth and continuity of program is detailed with reference to its publication history, discipline representation, literature citations, and to the ability of such a program to address nonrecurring and unexpected astronomical phenomena. Community involvement in the airborne-observation program is described in terms of the number of participants, institutional affiliation, and geographic distribution. The program utilizes instruments including heterodyne and grating spectrometers, high-speed photometers, and Fabry-Perot spectrometers with wide total spectral ranges, resolutions, and numbers of channels. The potential of the program for both astronomical training and further scientific, theoretical, and applied development is underscored.

  4. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  5. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  6. Ny-Alesund Geodetic Observatory

    NASA Technical Reports Server (NTRS)

    Sieber, Moritz

    2013-01-01

    In 2012 the 20-m telescope at Ny-Alesund, Svalbard, operated by the Norwegian Mapping Authority (NMA), took part in 163 out of 168 scheduled sessions of the IVS program. Since spring, all data was transferred by network, and the receiver monitoring computer was replaced by a bus-coupler. In autumn, the NMA received building permission for a new observatory from the Governor of Svalbard. The bidding process and first construction work for the infrastructure will start in 2013.

  7. De-biased populations of Kuiper belt objects from the deep ecliptic survey

    SciTech Connect

    Adams, E. R.; Benecchi, S. D.; Gulbis, A. A. S.; Elliot, J. L.; Buie, M. W.; Trilling, D. E.; Wasserman, L. H.

    2014-09-01

    The Deep Ecliptic Survey (DES) was a survey project that discovered hundreds of Kuiper Belt objects from 1998 to 2005. Extensive follow-up observations of these bodies has yielded 304 objects with well-determined orbits and dynamical classifications into one of several categories: Classical, Scattered, Centaur, or 16 mean-motion resonances with Neptune. The DES search fields are well documented, enabling us to calculate the probability on each frame of detecting an object with its particular orbital parameters and absolute magnitude at a randomized point in its orbit. The detection probabilities range from a maximum of 0.32 for the 3:2 resonant object 2002 GF {sub 32} to a minimum of 1.5 × 10{sup –7} for the faint Scattered object 2001 FU {sub 185}. By grouping individual objects together by dynamical classes, we can estimate the distributions of four parameters that define each class: semimajor axis, eccentricity, inclination, and object size. The orbital element distributions (a, e, and i) were fit to the largest three classes (Classical, 3:2, and Scattered) using a maximum likelihood fit. Using the absolute magnitude (H magnitude) as a proxy for the object size, we fit a power law to the number of objects versus H magnitude for eight classes with at least five detected members (246 objects). The Classical objects are best fit with a power-law slope of α = 1.02 ± 0.01 (observed from 5 ≤ H ≤ 7.2). Six other dynamical classes (Scattered plus five resonances) have consistent magnitude distribution slopes with the Classicals, provided that the absolute number of objects is scaled. Scattered objects are somewhat more numerous than Classical objects, while there are only a quarter as many 3:2 objects as Classicals. The exception to the power law relation is the Centaurs, which are non-resonant objects with perihelia closer than Neptune and therefore brighter and detectable at smaller sizes. Centaurs were observed from 7.5 < H < 11, and that population is best

  8. Reality and origin of the Kernel of the classical Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Petit, J.-M.; Gladman, B.; Kavelaars, J. J.

    2012-04-01

    The Canada-France Ecliptic Plane Survey (CFEPS) obtained characterized observations of 321 sq.deg. of sky to depths in the range g=23.5--24.4 AB mag, providing a database of 169 trans-neptunian objects (TNOs) with high-precision dynamical classification and known discovery efficiency. Our data demand that the main classical Kuiper belt (a=40--47 AU) is represented by a `hot' population with a wide inclination distribution superposed on top of a `cold' population with narrow inclination component. With the qualifier that there will be mixing from the low-i tail from the hot component, we must split the `cold' population of the main classical belt into two sub-components to account the transition in the e/i distribution beyond a = 44.4 AU clearly visible in the data. The `stirred' population have orbits with a narrow-inclination distribution with semi-major axes starting at a=42.5 AU and extending to roughly 47 AU, with a range of eccentricities that increases with increasing a. There are more low-i and moderate-e TNOs per unit semimajor axis at a=44--44.5 AU than at smaller and larger semi-major axis, indicating that a third component is required. We thus insert a dense low-inclination concentration, which we call the `kernel', near a=44 AU to account for this intrinsic population. We favor the idea that this cold component is primordial. The primordial distance range of the cold population is difficult to constrain. The inner boundary at a=42.4 AU may have been eroded via scattering by massive bodies and resonance migration; any sequence of events cannot allow either the inner belt, or the mean-motion and secular resonances that probably migrated through it, to have preserved a cold component today. The coincidence of the stirred population's outer edge with the 2:1 resonance suggests to us that the kernel marks the original outer edge and that the larger-a cold objects have either (i) been dragged out of the a<44.4 AU region via trapping and then drop-off in the 2

  9. ALOHA Cabled Observatory: Early Results

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lukas, R.; Duennebier, F. K.

    2011-12-01

    The ALOHA Cabled Observatory (ACO) was installed 6 June 2011, extending power, network communications and timing to a seafloor node and instruments at 4726 m water depth 100 km north of Oahu. The system was installed using ROV Jason operated from the R/V Kilo Moana. Station ALOHA is the field site of the Hawaii Ocean Time-series (HOT) program that has investigated temporal dynamics in biology, physics, and chemistry since 1988. HOT conducts near monthly ship-based sampling and makes continuous observations from moored instruments to document and study climate and ecosystem variability over semi-diurnal to decadal time scales. The cabled observatory system will provide the infrastructure for continuous, interactive ocean sampling enabling new measurements as well as a new mode of ocean observing that integrates ship and cabled observations. The ACO is a prototypical example of a deep observatory system that uses a retired first-generation fiber-optic telecommunications cable. Sensors provide live video, sound from local and distant sources, and measure currents, pressure, temperature, and salinity. Preliminary results will be presented and discussed.

  10. Vibration budget for observatory equipment

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Thompson, Hugh

    2015-07-01

    Vibration from equipment mounted on the telescope and in summit support buildings has been a source of performance degradation at existing astronomical observatories, particularly for adaptive optics performance. Rather than relying only on best practices to minimize vibration, we present here a vibration budget that specifies allowable force levels from each source of vibration in the observatory (e.g., pumps, chillers, cryocoolers, etc.). This design tool helps ensure that the total optical performance degradation due to vibration is less than the corresponding error budget allocation and is also useful in design trade-offs, specifying isolation requirements for equipment, and tightening or widening individual equipment vibration specifications as necessary. The vibration budget relies on model-based analysis of the optical consequences that result from forces applied at different locations and frequencies, including both image jitter and primary mirror segment motion. We develop this tool here for the Thirty Meter Telescope but hope that this approach will be broadly useful to other observatories, not only in the design phase, but for verification and operations as well.

  11. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  12. Impact of Universal Plasma and Energetic Particle Processes on Icy Bodies of the Kuiper Belt and the Oort Cloud

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Richardson, J. D.; Hill, M. E.; Sturner, S. J.

    2008-01-01

    Modeling of space plasma and energetic particle interactions with icy bodies of the outer solar system is simplified when there is commonality of the underlying source, acceleration, and transport processes in spatially distinct regions from the supersonic heliosphere through the heliosheath into the local interstellar medium (LISM). Current trends in the Voyager heliosheath measurements suggest strong commonality to processes in the LISM. The Fisk-Gloeckler "universal" spectrum at suprathermal energies apparently plays a strong role in coupling the plasma and high energy particle regimes in the spatial and energetic transitions from the outer heliosphere to the LISM. Dominant processes in consecutive energy regimes project to varying effects versus irradiation depth on exposed upper surfaces of airless small icy bodies and to upper atmospheres of larger bodies such as Titan and Pluto. Relative absence of the universal suprathermal spectrum in the mid-heliospheric region of the classical Kuiper Belt may profoundly affect surface color diversity of icy bodies in this region.

  13. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  14. EQUILIBRIUM CONFIGURATIONS OF SYNCHRONOUS BINARIES: NUMERICAL SOLUTIONS AND APPLICATION TO KUIPER BELT BINARY 2001 QG{sub 298}

    SciTech Connect

    Gnat, Orly; Sari, Re'em

    2010-08-20

    We present numerical computations of the equilibrium configurations of tidally locked homogeneous binaries rotating in circular orbits. Unlike the classical Roche approximations, we self-consistently account for the tidal and rotational deformations of both components, and relax the assumptions of ellipsoidal configurations and Keplerian rotation. We find numerical solutions for mass ratios q between 10{sup -3} and 1, starting at a small angular velocity for which tidal and rotational deformations are small, and following a sequence of increasing angular velocities. Each series terminates at an appropriate 'Roche limit', above which no equilibrium solution can be found. Even though the Roche limit is crossed before the 'Roche lobe' is filled, any further increase in the angular velocity will result in mass-loss. For close, comparable-mass binaries, we find that local deviations from ellipsoidal forms may be as large as 10%-20%, and departures from Keplerian rotation are significant. We compute the light curves that arise from our equilibrium configurations, assuming their distance is >>1 AU (e.g., in the Kuiper Belt). We consider both backscatter (proportional to the projected area) and diffuse (Lambert) reflections. Backscatter reflection always yields two minima of equal depths. Diffuse reflection, which is sensitive to the surface curvature, generally gives rise to unequal minima. We find detectable intensity differences of up to 10% between our light curves and those arising from the Roche approximations. Finally, we apply our models to Kuiper Belt binary 2001 QG{sub 298}, and find a nearly edge-on binary with a mass ratio q = 0.93{sup +0.07}{sub -0.03}, angular velocity {omega}{sup 2}/G{rho} = 0.333 {+-} 0.001 (statistical errors only), and pure diffuse reflection. For the observed period of 2001 QG{sub 298}, these parameters imply a bulk density {rho} = 0.72 {+-} 0.04 g cm{sup -3}.

  15. On the use of Video Camera Systems in the Detection of Kuiper Belt Objects by Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Subasinghe, Dilini

    2012-10-01

    Due to the distance between us and the Kuiper Belt, direct detection of Kuiper Belt Objects (KBOs) is not currently possible for objects less than 10 km in diameter. Indirect methods such as stellar occultations must be employed to remotely probe these bodies. The size, shape, as well as atmospheric properties and ring system information of a body (if any), can be collected through observations of stellar occultations. This method has been previously used with some success - Roques et al. (2006) detected 3 Trans-Neptunian objects; Schlichting et al. (2009) detected a single object in archival data. However, previous assessments of KBO occultation detection rates have been calculated only for telescopes - we extend this method to video camera systems. Building on Roques & Moncuquet (2000), we present a derivation that can be applied to any video camera system, taking into account camera specifications and diffraction effects. This allows for a determination of the number of observable KBO occultations per night. Example calculations are presented for some of the automated meteor camera systems currently in use at the University of Western Ontario. The results of this project will allow us to refine and improve our own camera system, as well as allow others to enhance their systems for KBO detection. Roques, F., Doressoundiram, A., Dhillon, V., Marsh, T., Bickerton, S., Kavelaars, J. J., Moncuquet, M., Auvergne, M., Belskaya, I., Chevreton, M., Colas, F., Fernandez, A., Fitzsimmons, A., Lecacheux, J., Mousis, O., Pau, S., Peixinho, N., & Tozzi, G. P. (2006). The Astronomical Journal, 132(2), 819-822. Roques, F., & Moncuquet, M. (2000). Icarus, 147(2), 530-544. Schlichting, H. E., Ofek, E. O., Wenz, M., Sari, R., Gal-Yam, A., Livio, M., Nelan, E., & Zucker, S. (2009). Nature, 462(7275), 895-897.

  16. Numerical Simulations Of Catastrophic Disruption Of Porous Bodies: Application To Dark-type Asteroids And Kuiper-belt Family Formation

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Jutzi, M.; Richardson, D. C.; Benz, W.

    2010-10-01

    Asteroids of dark (e.g. C, D) taxonomic classes as well as Kuiper Belt objects and comets are believed to have high porosity, not only in the form of large voids but also in the form of micro-pores. The presence of such microscale porosity introduces additional physics in the impact process. We have enhanced our 3D SPH hydrocode, used to simulate catastrophic breakups, with a model of porosity [1] and validated it at small scale by comparison with impact experiments on pumice targets [2]. Our model is now ready to be applied to a large range of problems. In particular, accounting for the gravitational phase of an impact, we can study the formation of dark-type asteroid families, such as Veritas, and Kuiper-Belt families, such as Haumea. Recently we characterized for the first time the catastrophic impact energy threshold, usually called Q*D, as a function of the target's diameter, porosity, material strength and impact speed [3]. Regarding the mentioned families, our preliminary results show that accounting for porosity leads to different outcomes that may better represent their properties and constrain their definition. In particular, for Veritas, we find that its membership may need some revision [4]. The parameter space is still large, many interesting families need to be investigated and our model will be applied to a large range of cases. PM, MJ and DCR acknowledge financial support from the French Programme National de Planétologie, NASA PG&G "Small Bodies and Planetary Collisions" and NASA under Grant No. NNX08AM39G issued through the Office of Space Science, respectively. [1] Jutzi et al. 2008. Icarus 198, 242-255; [2] Jutzi et al. 2009. Icarus 201, 802-813; [3] Jutzi et al. 2010. Fragment properties at the catastrophic disruption threshold: The effect of the parent body's internal structure, Icarus 207, 54-65; [4] Michel et al. 2010. Icarus, submitted.

  17. Observation and Analysis of a Single-Chord Stellar Occultation by Kuiper Belt Object (50000) Quaoar

    NASA Astrophysics Data System (ADS)

    Davis, Allen B.; Pasachoff, J. M.; Babcock, B. A.; Person, M. J.; Zuluaga, C. A.; Bosh, A. S.; Levine, S.; Naranjo, O. A.; Navas, G. R.; Gulbis, A.; Winters, J. G.; Bianco, F.

    2014-01-01

    The Williams-MIT collaboration (www.stellaroccultations.info) predicted and observed a stellar occultation of 2UCAC 26260847 (mag 14.35) by KBO 50000 Quaoar (mag 18.9) on 8/9 July 2013. Observations were attempted from a total of five sites in Chile, Venezuela, and Massachusetts. Only one site, Llano del Hato National Astronomical Observatory in Venezuela, had a positive detection of the occultation, giving us a single chord on Quaoar. All other sites were cloudy. The light curve from the 8/9 July 2013 event has been analyzed with the assumption that Quaoar is ellipsoidal or spherical, placing bounds on some of Quaoar’s properties: diameter (> 1138 ± 25 km), density (< 1.82 ± 0.28 g cm-3), and albedo (< 0.14 ± 0.10). An independent prediction of the occultation’s shadow path by Fraser, Gwyn, et al. (2013) suggests that the chord is near-equatorial, which means that our bounds on Quaoar’s properties are closer to estimates. We will compare our result with that of the 11 February 2011 single-chord occultation detected by Sallum et al. (2011) and Person et al. (2011). A subsequent attempt to observe a second Quaoar occultation, that of 12/13 July 2013 in South Africa, failed because of cloudy weather. This work was supported in part by NASA Planetary Astronomy grants NNX08AO50G and NNH11ZDA001N to Williams College, NNX10AB27G to MIT, and USRA grant #8500-98-003 to Lowell Observatory. We thank Steven P. Souza at Williams, and other collaborators in planning and carrying out the various observations: including Libardo Zerpa, Joresly Villarreal, Richard Rojas, and Jorge Moreno at Llano del Hato, and Patricio Rojo and Matias Jones at Cerro Calan/U. Chile.

  18. Observatory Sponsoring Astronomical Image Contest

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  19. The Liverpool Bay Coastal Observatory

    NASA Astrophysics Data System (ADS)

    Howarth, John; Palmer, Matthew

    2011-11-01

    A pilot Coastal Observatory has been established in Liverpool Bay which integrates (near) real-time measurements with coupled models and whose results are displayed on the web. The aim is to understand the functioning of coastal seas, their response to natural forcing and the consequences of human activity. The eastern Irish Sea is an apt test site, since it encompasses a comprehensive range of processes found in tidally dominated coastal seas, including near-shore physical and biogeochemical processes influenced by estuarine inflows, where both vertical and horizontal gradients are important. Applications include hypernutrification, since the region receives significantly elevated levels of nutrient inputs, shoreline management (coastal flooding and beach erosion/accretion), and understanding present conditions to predict the impact of climate change (for instance if the number and severity of storms, or of high or low river flows, change). The integrated measurement suite which started in August 2002 covers a range of space and time scales. It includes in situ time series, four to six weekly regional water column surveys, an instrumented ferry, a shore-based HF radar system measuring surface currents and waves, coastal tide gauges and visible and infra-red satellite data. The time series enable definition of the seasonal cycle, its inter-annual variability and provide a baseline from which the relative importance of events can be quantified. A suite of nested 3D hydrodynamic, wave and ecosystem models is run daily, focusing on the observatory area by covering the ocean/shelf of northwest Europe (at 12-km resolution) and the Irish Sea (at 1.8 km), and Liverpool Bay at the highest resolution of 200 m. The measurements test the models against events as they happen in a truly 3D context. All measurements and model outputs are displayed freely on the Coastal Observatory website (http://cobs.pol.ac.uk) for an audience of researchers, education, coastal managers and the

  20. The Arecibo Observatory Space Academy

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ford, Linda A.; Zambrano-Marin, Luisa; Petty, Bryan M.; Sternke, Elizabeth; Ortiz, Andrew M.; Rivera-Valentin, Edgard G.

    2015-11-01

    The Arecibo Observatory Space Academy (AOSA) is a ten (10) week pre-college research program for students in grades 9-12. Our mission is to prepare students for academic and professional careers by allowing them to receive an independent and collaborative research experience on topics related to space and aide in their individual academic and social development. Our objectives are to (1) Supplement the student’s STEM education via inquiry-based learning and indirect teaching methods, (2) Immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) To foster in every student an interest in science by exploiting their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. AOSA provides students with the opportunity to share lectures with Arecibo Observatory staff, who have expertise in various STEM fields. Each Fall and Spring semester, selected high school students, or Cadets, from all over Puerto Rico participate in this Saturday academy where they receive experience designing, proposing, and carrying out research projects related to space exploration, focusing on four fields: Physics/Astronomy, Biology, Engineering, and Sociology. Cadets get the opportunity to explore their topic of choice while practicing many of the foundations of scientific research with the goal of designing a space settlement, which they present at the NSS-NASA Ames Space Settlement Design Contest. At the end of each semester students present their research to their peers, program mentors, and Arecibo Observatory staff. Funding for this program is provided by NASA SSERVI-LPI: Center for Lunar Science and Exploration with partial support from the Angel Ramos Visitor Center through UMET and management by USRA.

  1. The CEOS Recovery Observatory Pilot

    NASA Astrophysics Data System (ADS)

    Hosford, S.; Proy, C.; Giros, A.; Eddy, A.; Petiteville, I.; Ishida, C.; Gaetani, F.; Frye, S.; Zoffoli, S.; Danzeglocke, J.

    2015-04-01

    Over the course of the last decade, large populations living in vulnerable areas have led to record damages and substantial loss of life in mega-disasters ranging from the deadly Indian Ocean tsunami of 2004 and Haiti earthquake of 2010; the catastrophic flood damages of Hurricane Katrina in 2005 and the Tohoku tsunami of 2011, and the astonishing extent of the environmental impact of the Deepwater Horizon explosion in 2009. These major catastrophes have widespread and long-lasting impacts with subsequent recovery and reconstruction costing billions of euros and lasting years. While satellite imagery is used on an ad hoc basis after many disasters to support damage assessment, there is currently no standard practice or system to coordinate acquisition of data and facilitate access for early recovery planning and recovery tracking and monitoring. CEOS led the creation of a Recovery Observatory Oversight Team, which brings together major recovery stakeholders such as the UNDP and the World Bank/Global Facility for Disaster Reduction and Recovery, value-adding providers and leading space agencies. The principal aims of the Observatory are to: 1. Demonstrate the utility of a wide range of earth observation data to facilitate the recovery and reconstruction phase following a major catastrophic event; 2. Provide a concrete case to focus efforts in identifying and resolving technical and organizational obstacles to facilitating the visibility and access to a relevant set of EO data; and 3. Develop dialogue and establish institutional relationships with the Recovery phase user community to best target data and information requirements; The paper presented here will describe the work conducted in preparing for the triggering of a Recovery Observatory including support to rapid assessments and Post Disaster Needs Assessments by the EO community.

  2. Quantifying Urban Groundwater in Environmental Field Observatories

    NASA Astrophysics Data System (ADS)

    Welty, C.; Miller, A. J.; Belt, K.; Smith, J. A.; Band, L. E.; Groffman, P.; Scanlon, T.; Warner, J.; Ryan, R. J.; Yeskis, D.; McGuire, M. P.

    2006-12-01

    Despite the growing footprint of urban landscapes and their impacts on hydrologic and biogeochemical cycles, comprehensive field studies of urban water budgets are few. The cumulative effects of urban infrastructure (buildings, roads, culverts, storm drains, detention ponds, leaking water supply and wastewater pipe networks) on temporal and spatial patterns of groundwater stores, fluxes, and flowpaths are poorly understood. The goal of this project is to develop expertise and analytical tools for urban groundwater systems that will inform future environmental observatory planning and that can be shared with research teams working in urban environments elsewhere. The work plan for this project draws on a robust set of information resources in Maryland provided by ongoing monitoring efforts of the Baltimore Ecosystem Study (BES), USGS, and the U.S. Forest Service working together with university scientists and engineers from multiple institutions. A key concern is to bridge the gap between small-scale intensive field studies and larger-scale and longer-term hydrologic patterns using synoptic field surveys, remote sensing, numerical modeling, data mining and visualization tools. Using the urban water budget as a unifying theme, we are working toward estimating the various elements of the budget in order to quantify the influence of urban infrastructure on groundwater. Efforts include: (1) comparison of base flow behavior from stream gauges in a nested set of watersheds at four different spatial scales from 0.8 to 171 km2, with diverse patterns of impervious cover and urban infrastructure; (2) synoptic survey of well water levels to characterize the regional water table; (3) use of airborne thermal infrared imagery to identify locations of groundwater seepage into streams across a range of urban development patterns; (4) use of seepage transects and tracer tests to quantify the spatial pattern of groundwater fluxes to the drainage network in selected subwatersheds; (5

  3. The Orbiting Carbon Observatory (OCO)

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    CO2 is the principal human generated driver of climate change. Accurate forecasting of future climate requires an improved understanding of the global carbon cycle and its interaction with the climate system. The Orbiting Carbon Observatory (OCO) will make global, space-based observations of atmospheric CO2 with the precision, resolution, and coverage needed to understand sources and sinks. OCO data will provide critical information for decision makers including the scientific basis for policy formulation, guide for carbon management strategies and treaty monitoring.

  4. the Large Aperture GRB Observatory

    SciTech Connect

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  5. Status report of Virtual Observatory at the National Central University of China Taipei

    NASA Astrophysics Data System (ADS)

    Chang, C. K.; Ko, C. M.; Kinoshita, D.

    2007-08-01

    The idea of virtual observatory (VO) has started to get some attention in Taiwan. However, in order to join the VO community with minimum resources, we identify ourselves as a VO user instead of a developer. We implement the JVO skynode package to create a 2MASS star count map. According to level 6 Hierarchical Triangular Mesh (HTM), the sky was divided into 32768 leaves with approximately 1 square degree resolution. We can study Galactic structure and initial mass function with this map. Our next goal is to publish a rather unique light curve data. National Central University is part of Taiwan-America Occultation Survey (TAOS) team. TAOS project will conduct a census of the number of Kuiper belt objects down to a few km size by monitoring chance stellar occultations by these cometary nuclei. Owing to a special observation strategy, called Zipped mode observation, TAOS can have sub-second photometry. We would like to publish this rather unique light curve database to the VO world.

  6. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  7. Protection of the Guillermo Haro Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Carraminana, A. P.

    The Guillermo Haro Astrophysical Observatory, with a 2m telescope, is one of only two professional observatories in Mexico. The observatory, run by the InstitutoNacional de Astrofisica, Optica y Electronica (INAOE), is located in the north of Mexico, in Cananea, Sonora. Since 1995 the observatory has faced the potential threat of pollution by an open cast mine to be opened at 3kms from the observatory. In the absence of national or regional laws enforcing protection to astronomical sites in Mexico, considerable effort has been needed to guarantee the conditions of the site. We present the studies carried out to ensure the protection of the Guillermo Haro Observatory from pollution due to dust, light and vibrations.

  8. Data Management Challenges for Airborne NASA Earth Venture Sub-Orbital (EVS-1) Investigations

    NASA Astrophysics Data System (ADS)

    Boyer, A.; Cook, R. B.; Santhana Vannan, S. K.

    2014-12-01

    The ORNL DAAC is developing a technology infrastructure to archive airborne remote sensing observations from two Earth System Science Pathfinder Missions. The two missions are CARVE: Carbon in Arctic Reservoirs Vulnerability Experiment and AirMOSS: Airborne Microwave Observatory of Subcanopy and Subsurface. The two missions are collecting over 140 TB of data from extensive ground-based and airborne instruments. The metadata and documentation requirements necessary for proper archive and dissemination of such transect-based, and often 3-dimensional, airborne data are quite different from the traditional field campaign and satellite remote sensing data streams. Staff at the ORNL DAAC are currently working with the CARVE and AirMOSS teams as well as investigating cyberinfrastructures from other DAACs to develop a metadata and data infrastructure for airborne data that will enable spatial, flight-line, or keyword-based search and discovery, integration as needed of related satellite- and ground-based data sets, and subsetting and visualization tools for both CARVE and AirMOSS. We discuss challenges, progress, and lessons learned.

  9. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-06-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  10. A National Solar Digital Observatory

    NASA Astrophysics Data System (ADS)

    Hill, F.

    2000-05-01

    The continuing development of the Internet as a research tool, combined with an improving funding climate, has sparked new interest in the development of Internet-linked astronomical data bases and analysis tools. Here I outline a concept for a National Solar Digital Observatory (NSDO), a set of data archives and analysis tools distributed in physical location at sites which already host such systems. A central web site would be implemented from which a user could search all of the component archives, select and download data, and perform analyses. Example components include NSO's Digital Library containing its synoptic and GONG data, and the forthcoming SOLIS archive. Several other archives, in various stages of development, also exist. Potential analysis tools include content-based searches, visualized programming tools, and graphics routines. The existence of an NSDO would greatly facilitate solar physics research, as a user would no longer need to have detailed knowledge of all solar archive sites. It would also improve public outreach efforts. The National Solar Observatory is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation.

  11. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  12. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  13. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  14. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  15. SOFIA Observatory Obtains 'First Light' Images

    NASA Video Gallery

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, successfully obtained its "First Light"" images during an overnight flight May 26. Scientists are now processing the data gathered...

  16. The Uncertain Future of Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Altschuler, D. R.

    2009-05-01

    After forty years of existence, Arecibo Observatory has an uncertain future. On November 3th, 2006 the ``Senior Review'' (SR), an advisory panel, recommended to the astronomy division of NSF that the anual budget destinated to astronomy in the Observatory, should be reduced from US10.5 million annual to US8 million during the first 3 years. The SR also indicated that the Observatory have to be closed in 2011, if an external financial source is not found. The SR panel was called to find near US30 million in savings (approximately 25% of total budget of the five national observatories, including Arecibo) to redirect them to operate new future projects.

  17. A new Magnetic Observatory in Pantanal - Brazil

    NASA Astrophysics Data System (ADS)

    Siqueira, F.; Pinheiro, K.; Linthe, H.

    2013-05-01

    The aim of a Magnetic Observatory is to register the variations of the Earth's magnetic field in a long temporal scale. Using this data it is possible to study field variations of both external and internal origins. The external variations concern interactions between the magnetosphere and the solar wind, in general are measured in a short time scale. The internal field generated by convection of a high electrical conductivity fluid in the external core by a mechanism known as the geodynamo. Usually the internal field time variations are longer than in the external field and are called secular variations. Measurements carried out over the last century suggest that field intensity is decreasing rapidly. The decreasing of the field's intensity is not the same around the globe, especially at the SAMA (South Atlantic Magnetic Anomaly) regions, where this reduction is occurring faster. The global distribution of magnetic observatories is uneven, with few observatories in South America. In Brazil, there are three magnetic observatories, but only Vassouras Observatory (VSS- RJ) is part of the INTERMAGNET network. The National Observatory has plans to install seven new observatories in Brazil. Pantanal was the chosen location for installing the first observatory because of its privileged location, close to the SAMA region, and its data can contribute to more information about its origin. We followed the procedures suggested by the IAGA to build this observatory. The first step is to perform a magnetic survey in order to avoid strong magnetic gradients in the location where the absolute and variometers houses will be installed. The next step, the construction of the observatory, includes the selection of special non-magnetic material for the variometer and absolute houses. All materials used were previously tested using a proton magnetometer GSM-19. After construction of the whole infrastructure, the equipment was installed. This Project is a cooperation between Brazilian

  18. Calculation of Precipitable Water for Stratospheric Observatory for Infrared Astronomy Aircraft (SOFIA): Airplane in the Night Sky

    NASA Technical Reports Server (NTRS)

    Wen, Pey Chun; Busby, Christopher M.

    2011-01-01

    Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the new generation airborne observatory station based at NASA s Dryden Aircraft Operations Facility, Palmdale, CA, to study the universe. Since the observatory detects infrared energy, water vapor is a concern in the atmosphere due to its known capacity to absorb infrared energy emitted by astronomical objects. Although SOFIA is hoping to fly above 99% of water vapor in the atmosphere it is still possible to affect astronomical observation. Water vapor is one of the toughest parameter to measure in the atmosphere, several atmosphere modeling are used to calculate water vapor loading. The water vapor loading, or Precipitable water, is being calculated by Matlab along the planned flight path. Over time, these results will help SOFIA to plan flights to regions of lower water vapor loading and hopefully improve the imagery collection of these astronomical features.

  19. Airborne Transmission of Bordetella pertussis

    PubMed Central

    Warfel, Jason M.; Beren, Joel; Merkel, Tod J.

    2012-01-01

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets. PMID:22807521

  20. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  1. THE TAOS PROJECT: UPPER BOUNDS ON THE POPULATION OF SMALL KUIPER BELT OBJECTS AND TESTS OF MODELS OF FORMATION AND EVOLUTION OF THE OUTER SOLAR SYSTEM

    SciTech Connect

    Bianco, F. B.; Zhang, Z.-W.; King, S.-K.; Wang, J.-H.; Lee, T.; Lin, H.-C.; Lehner, M. J.; Mondal, S.; Giammarco, J.; Holman, M. J.; Alcock, C.; Coehlo, N. K.; Axelrod, T.; Byun, Y.-I.; Kim, D.-W.; Chen, W. P.; Cook, K. H.; Dave, R.; De Pater, I.; Lissauer, J. J.

    2010-04-15

    We have analyzed the first 3.75 years of data from the Taiwanese American Occultation Survey (TAOS). TAOS monitors bright stars to search for occultations by Kuiper Belt objects (KBOs). This data set comprises 5 x 10{sup 5} star hours of multi-telescope photometric data taken at 4 or 5 Hz. No events consistent with KBO occultations were found in this data set. We compute the number of events expected for the Kuiper Belt formation and evolution models of Pan and Sari, Kenyon and Bromley, Benavidez and Campo Bagatin, and Fraser. A comparison with the upper limits we derive from our data constrains the parameter space of these models. This is the first detailed comparison of models of the KBO size distribution with data from an occultation survey. Our results suggest that the KBO population is composed of objects with low internal strength and that planetary migration played a role in the shaping of the size distribution.

  2. Virtual Energetic Particle Observatory (VEPO)

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Lal, N.; McGuire, R. E.; Szabo, A.; Narock, T. W.; Armstrong, T. P.; Manweiler, J. W.; Patterson, J. D.; Hill, M. E.; Vandergriff, J. D.; McKibben, R. B.; Lopate, C.; Tranquille, C.

    2008-12-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  3. Virtual Energetic Particle Observatory (VEPO)

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Lal, Nand; McGuire, Robert E.; Szabo, Adam; Narock, Thomas W.; Armstrong, Thomas P.; Manweiler, Jerry W.; Patterson, J. Douglas; Hill, Matthew E.; Vandergriff, Jon D.; McKibben, Robert B.; Lopate, Clifford; Tranquille, Cecil

    2008-01-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events. acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  4. A Technical Overview and Description of SOFIA (Stratospheric Observatory for Infrared Astronomy)

    NASA Technical Reports Server (NTRS)

    Kunz, Nans

    2003-01-01

    This paper provides a technical overview of SOFIA, a unique airborne observatory, from an engineering perspective. It will do this by describing several of the systems of this observatory that are common with mountain top ground based observatories but mostly emphasize those more unique features and systems that are required to facilitate world class astronomy from a highly modified Boeing 747-SP flying at Mach 0.84 in the Stratosphere. This paper provides a technical overview of SOFIA by reviewing each of the performance specifications (the level one requirements for development) and describing some of the technical advancements for the telescope as well as the platform required to achieve these performance specifications. The technical advancements involved include mirror technologies, control system features, the telescope suspension system, and the aircraft open port cavity with associated cavity door that opens in flight and tracks the telescope elevation angle. For background this paper will provide a brief programmatic overview of the SOFIA project including the joint project arrangement between the US and Germany (NASA and DLR). Additionally, this paper will describe the up to date status of the development of SOFIA as the Observatory nears the date of the first test flight in the summer of 2004.

  5. The Virtual Wave Observatory (VWO)

    NASA Astrophysics Data System (ADS)

    Fung, S. F.; VWO Team

    2008-12-01

    Heliophysics wave data are currently not easily searchable by computers, making identifying pertinent wave data features for analyses and cross comparisons difficult and laborious. Since wave data analysis requires specialized knowledge about waves, which spans the spectrum of microphysics to macrophysics, researchers having varied expertise cannot easily use wave data. To resolve these difficulties and to allow wave data to contribute more fully to Heliophysics research, we are developing a Virtual Wave Observatory (VWO) whose goal is to enable all Heliophysics wave data to become searchable, understandable and usable by the Heliosphysics community. The VWO objective is to enable search of multiple and distributed wave data (from both active and passive measurements). This presentation provides and overview of the VWO, a new VxO component within the emerging distributed Heliophysics data and model environment.

  6. Autonomous Infrastructure for Observatory Operations

    NASA Astrophysics Data System (ADS)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  7. HELIO: The Heliophysics Integrated Observatory

    NASA Technical Reports Server (NTRS)

    Bentley, R. D.; Csillaghy, A.; Aboudarham, J.; Jacquey, C.; Hapgood, M. A.; Bocchialini, K.; Messerotti, M.; Brooke, J.; Gallagher, P.; Fox, P.; Hurlburt, N.; Roberts, D. A.; Sanchez Duarte, L.

    2011-01-01

    Heliophysics is a new research field that explores the Sun-Solar System Connection; it requires the joint exploitation of solar, heliospheric, magnetospheric and ionospheric observations. HELIO, the Heliophysics Integrated Observatory, will facilitate this study by creating an integrated e-Infrastructure that has no equivalent anywhere else. It will be a key component of a worldwide effort to integrate heliophysics data and will coordinate closely with international organizations to exploit synergies with complementary domains. HELIO was proposed under a Research Infrastructure call in the Capacities Programme of the European Commission's 7th Framework Programme (FP7). The project was selected for negotiation in January 2009; following a successful conclusion to these, the project started on 1 June 2009 and will last for 36 months.

  8. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  9. Manastash Ridge Observatory Autoguider Upgrade

    NASA Astrophysics Data System (ADS)

    Lozo, Jason; Huehnerhoff, Joseph; Armstrong, John; Davila, Adrian; Johnson, Courtney; McMaster, Alex; Olinger, Kyle

    2016-06-01

    The Astronomy Undergraduate Engineering Group (AUEG) at the University of Washington has designed and manufactured a novel autoguider system for the 0.8-meter telescope at the Manastash Ridge Observatory in Ellensburg, Washington. The system uses a pickoff mirror placed in the unused optical path, directing the outer field to the guide camera via a system of axi-symmetrically rotating relay mirrors (periscope). This allows the guider to sample nearly 7 times the area that would be possible with the same fixed detector. This system adds closed loop optical feedback to the tracking capabilities of the telescope. When tuned the telescope will be capable of acheiving 0.5 arcsecond tracking or better. Dynamic focusing of the primary optical path will also be an included feature of this system. This unique guider will be a much needed upgrade to the telescope allowing for increased scientific capability.

  10. HELIO: A Heliospheric Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Aboudarham, J.; Bentley, R. D.; Csillaghy, A.

    2012-09-01

    HELIO, the Heliophysics Integrated Observatory, is a Research Infrastructure funded under EC's FP7 Capacities Specific Programme. It began in June 2009 for three years. It will provide the heliophysics research community with an integrated e-infrastructure that has no equivalent anywhere else. The project objectives are as follows: - to create a collaborative environment where scientists can discover, understand and model the connection between solar phenomena, interplanetary disturbances and their effects on the planets (esp. the Earth) - to establish a consensus on standards for describing all heliophysical data and champion them within international standards bodies, e.g. the IVOA - to develop new ways to interact with a virtual observatory that are more closely aligned with the way researchers wish to use the data. HELIO is based on a Service-Oriented architecture. For this purpose, HELIO developed a Front End, which facilitates the search for data, using series of search metadata services covering different domains (many Events and Features available; use of context information to refine selection); Services to identify and retrieve observations based on search results (knows which data are stored where and how to access them); Enabling services such as tools to find and track events/phenomena in 4D environment (i.e. including the propagation of phenomena). Services can be used individually or combined through workflow capability. Heliophysics Event Catalogue and Heliophysics Features Catalogue provide a specific access to information concerning phenomena that occur in the Solar system. A semantic-driven approach is used to integrate data from different domains, based on ontology derived from existing data models. Thirteen partners from Europe and US are involved in this project. And although it is not completed, a prototype is already available, which can be accessed through HELIO web site (http://www.helio-vo.eu/).

  11. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    1993-01-01

    The Arthur Holly Compton Gamma Ray Observatory (Compton) was launched by the Space Shuttle Atlantis on 5 April 1991. The spacecraft and instruments are in good health and returning exciting results. The mission provides nearly six orders of magnitude in spectral coverage, from 30 keV to 30 GeV, with sensitivity over the entire range an order of magnitude better than that of previous observations. The 16,000 kilogram observatory contains four instruments on a stabilized platform. The mission began normal operations on 16 May 1991 and is now over half-way through a full-sky survey. The mission duration is expected to be from six to ten years. A Science Support Center has been established at Goddard Space Flight Center for the purpose of supporting a vigorous Guest Investigator Program. New scientific results to date include: (1) the establishment of the isotropy, combined with spatial inhomogeneity, of the distribution of gamma-ray bursts in the sky; (2) the discovery of intense high energy (100 MeV) gamma-ray emission from 3C 279 and other quasars and BL Lac objects, making these the most distant and luminous gamma-ray sources ever detected; (3) one of the first images of a gamma-ray burst; (4) the observation of intense nuclear and position-annihilation gamma-ray lines and neutrons from several large solar flares; and (5) the detection of a third gamma-ray pulsar, plus several other transient and pulsing hard X-ray sources.

  12. TUM Critical Zone Observatory, Germany

    NASA Astrophysics Data System (ADS)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  13. Golden legacy from ESA's observatory

    NASA Astrophysics Data System (ADS)

    2003-07-01

    ISO was the first space observatory able to see the sky in infrared light. Using its eyes, we have discovered many new phenomena that have radically changed our view of the Universe. Everybody knows that when something is heated it glows. However, things also glow with a light our eyes cannot detect at room temperature: infrared light. Infrared telescopes do not work well on the Earth’s surface because such light is absorbed by the atmosphere. ISO looked at the cold parts of the universe, usually the 'cold and dusty' parts. It peered into clouds of dust and gas where stars were being born, observing for the first time the earliest stages of star formation. It discovered, for example, that stars begin to form at temperatures as low as -250°C or less. Scientists were able to follow the evolution of dust from where it is produced (that is, old stars - the massive 'dust factories') to the regions where it forms new planetary systems. ISO found that most young stars are surrounded by discs of dust that could harbour planets. The observatory also analysed the chemical composition of cosmic dust, thereby opening up a new field of research, ‘astromineralogy’. With ISO we have been able to discover the presence of water in many different regions in space. Another new discipline, 'astrochemistry', was boosted when ISO discovered that the water molecule is common in the Universe, even in distant galaxies, and complex organic molecules like benzene readily form in the surroundings of some stars. "ISO results are impacting most fields of astronomical research, almost literally from comets to cosmology," explains Alberto Salama, ISO Project Scientist. "Some results answer questions. Others open new fields. Some are already being followed up by existing telescopes; others have to await future facilities." When ISO's operational life ended, in 1998, its observations became freely available to the world scientific community via ISO’s data archive. In May 2003 the

  14. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  15. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  16. Airborne chemicals and forest health

    SciTech Connect

    Woodman, J.N.; Cowling, E.B.

    1987-02-01

    Over the past few years the possible contribution of acid rain to the problem of forest decline has been a cause of increasing public concern. Research has begun to determine whether airborne chemicals are causing or contributing to visible damage and mortality in eastern spruce-fir and sugar maple forests and to changes in tree growth, usually without visible symptoms, in other parts of North America. This paper describes some of the complex biological relationships that determine health and productivity of forests and that make it difficult to distinguish effects of airborne chemicals from effects of natural stress. It describes four major research approaches for assessment of the effects of airborne chemicals on forests, and it summarizes current understanding of the known and possible effects of airborne chemicals on forest trees in North America and Europe. It also briefly describes the major air quality and forest health research programs in North America, and it assesses how ell these programs are likely to meet information needs during the coming decade. 69 references, 2 figures, 1 table.

  17. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  18. BELDATA -- The Database of Belgrade Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Milovanovic, N.; Popovic, L. C.; Dimitrijevic, M. S.

    The Belgrade Astronomical Database (BELDATA) is an Internet-based database designed to contain Stark broadening parameters, spectra of active galactic nuclei, catalogs of observations done at the Belgrade Observatory and abstracts of papers published in the publications of the observatory.

  19. Cosmic Ray Observatories for Space Weather Studies.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    2016-07-01

    The Mexican Space Weather Service (SCiESMEX) was created in October 2014. Some observatories measure data for the service at different frequencies and particles. Two cosmic ray observatories detect the particle variations attributed to solar emissions, and are an important source of information for the SCiESMEX. The Mexico City Cosmic Ray Observatory consists of a neutron monitor (6-NM-64) and a muon telescope, that detect the hadronic and hard component of the secondary cosmic rays in the atmosphere. It has been in continous operation since 1990. The Sierra Negra Cosmic Ray Observatory consists of a solar neutron telescope and the scintillator cosmic ray telescope. These telescopes can detect the neutrons, generated in solar flares and the hadronic and hard components of the secondary cosmic rays. It has been in continous operation since 2004. We present the two observatories and the capability to detect variations in the cosmic rays, generated by the emissions of the solar activity.

  20. The Pierre Auger Cosmic Ray Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration

    2015-10-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  1. The Pulkovo Observatory on the Centuries' Borderline

    NASA Astrophysics Data System (ADS)

    Abalakin, Viktor K.

    The present paper deals with the development of astrophysical research at the Pulkovo Observatory (now: the Central (Pulkovo) Astronomical Observatory of the Russian Academy of Sciences) at adjacent time periods separated by the threshold between the 19th and the 20th centuries. The Pulkovo Observatory had been inaugurated in 1839. Its traditional field of research work was astrometry. The confirmation of light absorption phenomenon in interstellar space by Friedrich Georg Wilhelm Struve marked the turn of the Observatory's research programs toward astrophysics. New tendencies in the development of contemporaneous astronomy in Russia were pointed out by Otto Struve in his paper “About the Place of Astrophysics in Astronomy” presented in 1866 to the Saint-Petersburg Academy of Sciences. Wide-scale astrophysical studies were performed at Pulkovo Observatory around 1900 during the directorships of Theodore Bredikhin, Oscar Backlund and Aristarchos Belopolsky.

  2. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  3. LAN MAP: An Innovative Airborne Light at Night Mapping Project

    NASA Astrophysics Data System (ADS)

    Craine, Eric R.; Craine, B. L.; Craine, E. M.; Craine, P. R.

    2013-01-01

    Widespread installation of inefficient and misdirected artificial light at night (LAN) has led to increasing concerns about light pollution and its impact, not only on astronomical facilities but larger communities as well. Light pollution impacts scientific research, environmental ecosystems, human health, and quality of life. In recent years, the public policy response to light pollution has included formulation of government codes to regulate lighting design and installation. Various environmental groups now include light pollution among their rallying themes to protest both specific and general developments. The latter efforts are often conducted in the absence of any quantitative data and are frequently charged by emotion rather than reason. To bring some scientific objectivity, and quantitative data, to these discussions, we have developed a suite of tools for simultaneous photometric measurements and temporal monitoring of both local communities and the sky overhead. We have also developed novel protocols for the use of these tools, including a triad of airborne, ground mobile, and ground static photometric surveys. We present a summary of these tools and protocols, with special emphasis on the airborne systems, and discuss baseline and follow-up measurements of LAN environments in the vicinity of numerous observatories in Arizona, the home of the initial LAN MAP surveys.

  4. Evidence for a distant unseen solar system planet: Assessing the observational biases in the extreme Kuiper belt population

    NASA Astrophysics Data System (ADS)

    Volk, Kathryn; Malhotra, Renu

    2016-10-01

    Several recent studies have appealed to peculiarities in the observed distribution of very distant, extreme Kuiper belt objects (eKBOs) to argue for the existence of an Earth-mass or larger planet in the distant solar system. Trujillo and Sheppard (2014) noted that the arguments of perihelion of the observed eKBOs cluster near 0, and Batygin & Brown (2016) noted that the eKBOs also have clustered orbit poles and eccentricity vectors (which result in clustered longitudes of perihelion and longitudes of ascending node). Both papers argue that observational biases are unlikely to explain the observed clustering. Because the observed population of eKBOs is far from complete, a thorough assessment of the observational biases in the population is warranted. Very accurate assessment of observational biases is only possible for objects discovered by well-characterized surveys, but the number of eKBOs found by such surveys is small. We instead use the set of observed KBOs in the Minor Planet Center catalog along with published survey pointings and limiting magnitudes to approximately reconstruct the biases in the observed eKBO population. We will report on the role of observational biases in either strengthening or weakening the case for a distant unseen planet in our solar system. This research was supported by NASA (grant NNX14AG93G).

  5. In search of a signature of binary Kuiper Belt Objects in the Pluto-Charon crater population

    NASA Astrophysics Data System (ADS)

    Zangari, Amanda Marie; Parker, Alex; Singer, Kelsi N.; Stern, S. Alan; Young, Leslie; Olkin, Catherine B.; Ennico, Kimberly; Weaver, Harold A.; New Horizons Geology, Geophysics and Imaging Science Theme Team

    2016-10-01

    In July 2015, New Horizons flew by Pluto and Charon, allowing mapping of the encounter hemisphere at high enough resolution to produce crater counts from the surfaces of the pair. We investigate the distribution of craters in search of a signature of binary impactors. The Kuiper Belt -- especially the cold classical region -- has a large fraction of binary objects, many of which are close-in, equal-mass binaries. We will present results on how the distribution of craters seen on Pluto and Charon compares to a random distribution of single body impactors on the surfaces of each. Examining the surfaces of Pluto and Charon proves challenging due to resurfacing, and the presence of tectonic and other geographic features. For example, the informally-named Cthulhu region is among the oldest on Pluto, yet it abuts a craterless region millions of years young. On Charon, chastmata divide the surface into regions informally named Vulcan Planum and Oz terra. In our statistics, we pay careful attention to the boundaries of where craters may appear, and the dependence of our results on crater size. This work was supported by NASA's New Horizons project.

  6. Modeling Kuiper belt objects Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies

    NASA Astrophysics Data System (ADS)

    Malamud, Uri; Prialnik, Dina

    2015-01-01

    We use a one-dimensional adaptive-grid thermal evolution code to model Kuiper belt objects Charon, Orcus and Salacia and compare their measured bulk densities with those resulting from evolutionary calculations at the end of 4.6 Gyr. Our model assumes an initial homogeneous composition of mixed ice and rock, and follows the multiphase flow of water through the porous rocky medium, consequent differentiation and aqueous chemical alterations in the rock. Heating sources include long-lived radionuclides, serpentinization reactions, release of gravitational potential energy due to compaction, and crystallization of amorphous ice. The density profile is calculated by assuming hydrostatic equilibrium to be maintained through changes in composition, pressure and temperature. To this purpose, we construct an equation of state suitable for porous icy bodies with radii of a few hundred km, based on the best available empirical studies of ice and rock compaction, and on comparisons with rock porosities in Earth analog and Solar System silicates. We show that the observed bulk densities can be reproduced by assuming the same set of initial and physical parameters, including the same rock/ice mass ratio for all three bodies. We conclude that the mass of the object uniquely determines the evolution of porosity, and thus explains the observed differences in bulk density. The final structure of all three objects is differentiated, with an inner rocky core, and outer ice-enriched mantle. The degree of differentiation, too, is determined by the object's mass.

  7. Electron Irradiation of Kuiper Belt Surface Ices: Ternary N2-CH4-CO Mixtures as a Case Study

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Kaiser, R. I.

    2012-10-01

    The space weathering of icy Kuiper Belt Objects was investigated in this case study by exposing methane (CH4) and carbon monoxide (CO) doped nitrogen (N2) ices at 10 K to ionizing radiation in the form of energetic electrons. Online and in situ Fourier transform infrared spectroscopy was utilized to monitor the radiation-induced chemical processing of these ices. Along with isocyanic acid (HNCO), the products could be mainly derived from those formed in irradiated binary ices of the N2-CH4 and CO-CH4 systems: nitrogen-bearing products were found in the form of hydrogen cyanide (HCN), hydrogen isocyanide (HNC), diazomethane (CH2N2), and its radical fragment (HCN2); oxygen-bearing products were of acetaldehyde (CH3CHO), formyl radical (HCO), and formaldehyde (H2CO). As in the pure ices, the methyl radical (CH3) and ethane (C2H6) were also detected, as were carbon dioxide (CO2) and the azide radical (N3). Based on the temporal evolution of the newly formed products, kinetic reaction schemes were then developed to fit the temporal profiles of the newly formed species, resulting in numerical sets of rate constants. The current study highlights important constraints on the preferential formation of isocyanic acid (HNCO) over hydrogen cyanide (HCN) and hydrogen isocyanide (HNC), thus guiding the astrobiological and chemical evolution of those distant bodies.

  8. OSSOS. II. A Sharp Transition in the Absolute Magnitude Distribution of the Kuiper Belt’s Scattering Population

    NASA Astrophysics Data System (ADS)

    Shankman, C.; Kavelaars, JJ.; Gladman, B. J.; Alexandersen, M.; Kaib, N.; Petit, J.-M.; Bannister, M. T.; Chen, Y.-T.; Gwyn, S.; Jakubik, M.; Volk, K.

    2016-02-01

    We measure the absolute magnitude, H, distribution, dN(H) ∝ 10αH, of the scattering Trans-Neptunian Objects (TNOs) as a proxy for their size-frequency distribution. We show that the H-distribution of the scattering TNOs is not consistent with a single-slope distribution, but must transition around Hg ˜ 9 to either a knee with a shallow slope or to a divot, which is a differential drop followed by second exponential distribution. Our analysis is based on a sample of 22 scattering TNOs drawn from three different TNO surveys—the Canada-France Ecliptic Plane Survey, Alexandersen et al., and the Outer Solar System Origins Survey, all of which provide well-characterized detection thresholds—combined with a cosmogonic model for the formation of the scattering TNO population. Our measured absolute magnitude distribution result is independent of the choice of cosmogonic model. Based on our analysis, we estimate that the number of scattering TNOs is (2.4-8.3) × 105 for Hr < 12. A divot H-distribution is seen in a variety of formation scenarios and may explain several puzzles in Kuiper Belt science. We find that a divot H-distribution simultaneously explains the observed scattering TNO, Neptune Trojan, Plutino, and Centaur H-distributions while simultaneously predicting a large enough scattering TNO population to act as the sole supply of the Jupiter-Family Comets.

  9. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  10. The EV-1 airborne microwave observatory of subcanopy and subsurface (AirMOSS) investigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AirMOSS is one of the five Earth Venture-1 investigations selected in May 2010, with the goal of improving the estimates of the North American net ecosystem exchange (NEE) through high-resolution observations of root zone soil moisture (RZSM). The 5-year AirMOSS investigation is deigned to overlap w...

  11. Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) Earth Venture Suborbital Mission Overview

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Entekhabi, D.; Moorcroft, P. R.; Lou, Y.; Chapin, E.; Saatchi, S. S.; Reichle, R. H.; Crow, W. T.; Cuenca, R. H.; Tabatabaeenejad, A.; Shepson, P. B.; Hensley, S.; Hagimoto, Y.; Chen, R.; Milak, S.; Ali, A. A.; Hollinger, D. Y.

    2015-12-01

    AirMOSS was selected by NASA in 2010 as one of the first 5 Earth-Venture-Suborbital missions, with the goal of reducing the uncertainty of net ecosystem exchange (NEE) in north America through provision of high-resolution surface-to-depth profiles of soil moisture to land hydrology and ecosystem models. AirMOSS is accomplishing this goal by producing retrieved maps of so-called root zone soil moisture (RZSM) at approximately 100-m resolution for 9 biomes (10 sites) in north America, ranging from the boreal forests in Canada to the tropical rainforests in Costa Rica. RZSM has been hypothesized to account for 60% or more of the uncertainty in estimates of NEE. AirMOSS, currently in its final mission year, has acquired about 3 years of observations of RZSM at its study sites, with a total of 21 flight campaigns per year. Each flight campaign has included 2-3 flight dates. The RZSM maps have been retrieved from polarimetric synthetic aperture radar (SAR) instrument built by the Jet Propulsion Laboratory and flyign aboard a Gulfstream-3 airplane, operated by NASA Johnson Space Center. The estimation algorithms for deriving the RZSM maps have been matured throughout the mission, and have been shown to produce estimates of RZSM that are accurate to within 0.02-0.12 m3/m3 compared to in-situ validation data. The mission has also produced higher level RZSM products at hourly intervals, using land hydrology models, whose parameters are optimized using the AirMOSS snapshots. The ultimate product of the mission are the NEE estimates, generated not only for the mission study sites, but also upscaled to the entire scale of north America. These results are all under production, with the final mission products expected in May 2016. This presentation will give an overview of the mission, its products, and the main scientific findings. Several other papers in this session provide more details on each of the various aspects of the mission.

  12. A Bibliometric Analysis of Observatory Publications 2008-2012

    NASA Astrophysics Data System (ADS)

    Crabtree, D. R.

    2015-04-01

    Refereed publications are the primary output of modern observatories. I examine the productivity and impact of a significant number of observatories, as well as some other interesting aspects of observatory papers.

  13. Graduate Astronomy Education in the Early Days of Lick Observatory.

    ERIC Educational Resources Information Center

    Osterbrock, Donald E.

    1980-01-01

    Discusses Lick Observatory's (University of California) early graduate students and graduate program in astronomy. The history of the Lick Observatory and famous astronomy professors and astronomers associated with the Lick Observatory are also discussed. (DS)

  14. The GEOSCOPE broadband seismic observatory

    NASA Astrophysics Data System (ADS)

    Douet, Vincent; Vallée, Martin; Zigone, Dimitri; Bonaimé, Sébastien; Stutzmann, Eléonore; Maggi, Alessia; Pardo, Constanza; Bernard, Armelle; Leroy, Nicolas; Pesqueira, Frédéric; Lévêque, Jean-Jacques; Thoré, Jean-Yves; Bes de Berc, Maxime; Sayadi, Jihane

    2016-04-01

    The GEOSCOPE observatory has provided continuous broadband data to the scientific community for the past 34 years. The 31 operational GEOSCOPE stations are installed in 17 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1, T240 or STS2) and 24 or 26 bit digitizers (Q330HR). Seismometers are installed with warpless base plates, which decrease long period noise on horizontal components by up to 15dB. All stations send data in real time to the IPGP data center, which transmits them automatically to other data centers (FDSN/IRIS-DMC and RESIF) and tsunami warning centers. In 2016, three stations are expected to be installed or re-installed: in Western China (WUS station), in Saint Pierre and Miquelon Island (off the East coast of Canada) and in Walis and Futuna (SouthWest Pacific Ocean). The waveform data are technically validated by IPGP (25 stations) or EOST (6 stations) in order to check their continuity and integrity. Scientific data validation is also performed by analyzing seismic noise level of the continuous data and by comparing real and synthetic earthquake waveforms (body waves). After these validations, data are archived by the IPGP data center in Paris. They are made available to the international scientific community through different interfaces (see details on http://geoscope.ipgp.fr). Data are duplicated at the FDSN/IRIS-DMC data center and a similar duplication at the French national data center RESIF will be operational in 2016. The GEOSCOPE broadband seismic observatory also provides near-real time information on global moderate-to-large seismicity (above magnitude 5.5-6) through the automated application of the SCARDEC method (Vallée et al., 2011). By using global data from the FDSN - in particular from GEOSCOPE and IRIS/USGS stations -, earthquake source parameters (depth, moment magnitude, focal mechanism, source time function) are determined about 45

  15. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, P.; Partnership, Emso

    2009-04-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. EMSO will reply also to the need expressed in the frame of GMES (Global Monitoring for Environment and Security) to develop a marine segment integrated in the in situ and satellite global monitoring system. The EMSO development relays upon the synergy between the scientific community and the industry to improve the European competitiveness with respect to countries like USA/Canada, NEPTUNE, VENUS and MARS projects, Taiwan, MACHO project, and Japan, DONET project. In Europe the development of an underwater network is based on previous EU-funded projects since early '90, and presently supported by EU initiatives. The EMSO infrastructure will constitute the extension to the sea of the land-based networks. Examples of data recorded by seafloor observatories will be presented. EMSO is presently at the stage of Preparatory Phase (PP), funded in the EC FP7 Capacities Programme. The project has started in April 2008 and will last 4 years with the participation of 12 Institutions representing 12 countries. EMSO potential will be significantly increased also with the interaction with other Research Infrastructures addressed to Earth Science. 2. IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph Waldmann); IMI-Irish Marine Institute (Ireland, ref. Michael Gillooly); UTM-CSIC-Unidad de

  16. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, Paolo

    2010-05-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap (Report 2006, http://cordis.europa.eu/esfri/roadmap.htm), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. The development of an underwater network is based on previous EU-funded projects since early '90 and is being supported by several EU initiatives, as the on-going ESONET-NoE, coordinated by IFREMER (2007-2011, http://www.esonet-emso.org/esonet-noe/), and aims at gathering together the Research Community of the Ocean Observatories. In 2006 the FP7 Capacities Programme launched a call for Preparatory Phase (PP) projects, that will provide the support to create the legal and organisational entities in charge of managing the infrastructures, and coordinating the financial effort among the countries. Under this call the EMSO-PP project was approved in 2007 with the coordination of INGV and the participation of other 11 Institutions of 11 countries. The project has started in April 2008 and will last 4 years. The EMSO is a key-infrastructure both for Ocean Sciences and for Solid Earth Sciences. In this respect it will enhance and complement profitably the capabilities of other European research infrastructures such as EPOS, ERICON-Aurora Borealis, and SIOS. The perspective of the synergy among EMSO and other ESFRI Research Infrastructures will be outlined. EMSO Partners: IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph

  17. Virtual Observatories: Requirements for Utility

    NASA Astrophysics Data System (ADS)

    Paxton, L. J.

    2008-12-01

    The principal act that separates science from engineering is that of discovery. Virtual Observatories are a development with great potential for advancing our ability to do science by enabling us to do research effectively and to do research across disciplines. Access to data is one of the factors that enables discovery. A well-designed VO should enable discovery as well as providing for a uniform means by which data are accessed: thus, enabling discovery is the key challenge of a VO in fact it is and should be the principle that distinguishes a VO from a traditional archive. As the number of satellites in the Heliophysics Great observatory starts to decline due to the slower launch cadence and the reduction in funding for extended missions, it becomes more imperative that the community have the means to fully utilize and access the available resources. With the proliferation of low-cost computing and community-based models, cross-disciplinary studies become the new frontier. Many, if not the great majority of research papers are, at this time, confined to a particular discipline. Some of this "stove piping" may be due to the difficulty in accessing products from outside one's own discipline. One would hope and expect that VOs would address this. Two of the principal challenges associated with the vitality of the VOs, aside from the provision of the funds required to maintain the VOs, is 1) the limitation on the availability of data from non-NASA sources and 2) the need for some level of continued support for expertise on the data accessed through the VOs. The first issue is one of culture - some organizations support the view that the data belong to the PI whereas in Heliophysics "data rights" are curtailed. The second issue is to be addressed by the concept of the Resident Archive. This talk will provide an overview of the issues and challenges associated with VOs, Resident Archives, data rights, space missions, and instruments and their associated ground data

  18. The Malaysian Robotic Solar Observatory (P29)

    NASA Astrophysics Data System (ADS)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  19. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2004-05-01

    The Little Thompson Observatory is the first community-built E/PO observatory that is accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. The observatory will celebrate its fifth anniversary in summer 2004, and we are planning to expand the building to accommodate our growing number of visitors! We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. We have recently submitted ROSS E/PO proposals toward future teacher programs. A committee of teachers and administrators from the Thompson School District selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Our program is also accredited by Colorado State University.

  20. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2007-12-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. This past year, we have used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud three years ago. Our teacher programs have involved scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! We also held a Colorado Project ASTRO-GEO workshop, and the observatory continues to make high-school astronomy courses available to students from the surrounding school districts. Statewide, this year we helped support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone, and Gunnison. The LTO is grateful to have received the recently-retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (all with volunteer labor). During 2008 we plan to build a custom pier and refurbish the telescope.

  1. ECHO - the Exoplanet Characterisation Observatory

    NASA Astrophysics Data System (ADS)

    Tessenyi, Marcell

    2010-10-01

    A famous example of Super Earth is GJ 1214b, found by Charbonneau et al. in 2009 as part of the Mearth project: it is believed to be a small (2 Earth masses) ice world. But most of the currently known Exoplanets are of the Hot Jupiter type, large gas giants orbiting bright stars. Attention is now turning to these Super Earths, orbiting low mass late-type stars - many yet to be detected - as they offer the opportunity of obtaining spectral signatures from their atmospheres when found in a transiting or even non-transiting scenarios, via data obtained by ground based and space observatories, compared to simulated climate scenarios. As more of these planets await detection, we estimate from microlensing and radial velocity surveys - which report that Super Earths form 24 to 100% of planets at orbits between 1 and 5 A.U. of their parent stars - and catalogs of stars (RECONS, PMSU, 2MASS), that within 30pc from our sun, over 50 Super Earths transit, orbiting within the Habitable Zone of their host star.

  2. Lyman Alpha Spicule Observatory (LASO)

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    The Lyman Alpha Spicule Observatory (LASO) sounding rocket will observe smallscale eruptive events called "Rapid Blue-shifted Events" (RBEs) [Rouppe van der Voort et al., 2009], the on-disk equivalent of Type-II spicules, and extend observations that explore their role in the solar coronal heating problem [De Pontieu et al., 2011]. LASO utilizes a new and novel optical design to simultaneously observe two spatial dimensions at 4.2" spatial resolution (2.1" pixels) over a 2'x2' field of view with high spectral resolution of 66mAngstroms (33mAngstroms pixels) across a broad 20Angstrom spectral window. This spectral window contains three strong chromospheric and transition region emissions and is centered on the strong Hydrogen Lyman-a emission at 1216Angstroms. This instrument makes it possible to obtain new data crucial to the physical understanding of these phenomena and their role in the overall energy and momentum balance from the upper chromosphere to lower corona. LASO was submitted March 2011 in response to the ROSES SHP-LCAS call.

  3. Moon exploration: lunar radio observatory

    NASA Astrophysics Data System (ADS)

    Skalsky, Alexandre; Zelenyi, Lev; Rothkaehl, Hanna; Gurvits, Leonid; Sadovski, Andrei; Mogilevsky, Mikhail; Gotlib, Vladimir

    The Moon is an attractive base for fundamental scientific studies. The conducting ionosphere of Earth prevents propagation of radio emission coming from the outer space to the Earth’s surface at frequencies below a few MHz. In contrast, the Moon surrounded by a very thin atmosphere and ionosphere is a perfect site for an ultra-long-wavelength (ULW) facility for studies of cosmic radio emission at frequencies below the Earth’s ionosphere cut-off. This range of frequencies is the last unexplored window in the spectrum of the universe’s electromagnetic emission, The radio facility deployed on the Moon’s surface will be a multidisciplinary tool for addressing a wide range of scientific disciplines from cosmology to astrophysics to planetology, solar-terrestrial physics and geophysics. The Moon-based ULW observatory will be an experimental and observational facility for transformational science. One of the most intriguing objectives for the ULW science is a search for terrestrial-like planets in the exosolar systems, i.e. extra-solar planets possessing an intrinsic magnetic field and magnetospheres interacting with a stellar wind. Such the interaction generates radio emission similar to the Auroral Kilometric Radiation (AKR) of the terrestrial magnetosphere. The intrinsic magnetic field shielding the planetary surface from the cosmic radiation is one of the strong indicators of possible habitability of an exoplanet. ACKNOWLEDGMENTS: This work was supported by the PP RAS 22 grant.

  4. Lyman Alpha Spicule Observatory (LASO)

    NASA Astrophysics Data System (ADS)

    Chamberlin, Phillip C.; Allred, J.; Airapetian, V.; Gong, Q.; Fontenla, J.; McIntosh, S.; de Pontieu, B.

    2011-05-01

    The Lyman Alpha Spicule Observatory (LASO) sounding rocket will observe small-scale eruptive events called "Rapid Blue-shifted Events” (RBEs), the on-disk equivalent of Type-II spicules, and extend observations that explore their role in the solar coronal heating problem. LASO utilizes a new and novel optical design to simultaneously observe two spatial dimensions at 4.2" spatial resolution (2.1” pixels) over a 2'x2' field of view with high spectral resolution of 66mÅ (33mÅ pixels) across a broad 20Å spectral window. This spectral window contains three strong chromospheric and transition region emissions and is centered on the strong Hydrogen Lyman-α emission at 1216Å. This instrument makes it possible to obtain new data crucial to the physical understanding of these phenomena and their role in the overall energy and momentum balance from the upper chromosphere to lower corona. LASO was submitted March 2011 in response to the ROSES SHP-LCAS call.

  5. Lyman Alpha Spicule Observatory (LASO)

    NASA Astrophysics Data System (ADS)

    Chamberlin, P. C.; Allred, J. C.; Airapetian, V.; Gong, Q.; Mcintosh, S. W.; De Pontieu, B.; Fontenla, J. M.

    2011-12-01

    The Lyman Alpha Spicule Observatory (LASO) sounding rocket will observe small-scale eruptive events called "Rapid Blue-shifted Events" (RBEs) [Rouppe van der Voort et al., 2009], the on-disk equivalent of Type-II spicules, and extend observations that explore their role in the solar coronal heating problem [De Pontieu et al., 2011]. LASO utilizes a new and novel optical design to simultaneously observe two spatial dimensions at 4.2" spatial resolution (2.1" pixels) over a 2'x2' field of view with high spectral resolution of 66mÅ (33mÅ pixels) across a broad 20Å spectral window. This spectral window contains three strong chromospheric and transition region emissions and is centered on the strong Hydrogen Lyman-α emission at 1216Å. This instrument makes it possible to obtain new data crucial to the physical understanding of these phenomena and their role in the overall energy and momentum balance from the upper chromosphere to lower corona. LASO was submitted March 2011 in response to the ROSES SHP-LCAS call.

  6. Pulsar Observatory for Students (POS)

    NASA Astrophysics Data System (ADS)

    Joshi, Bhal Chandra; Manoharan, P. K.; Gopakumar, A.; Mitra, D.; Bagchi, Joydeep; Saikia, D. J.

    2012-07-01

    A new program, to initiate motivated undergraduate students to the methodology of pulsar astronomy in particular and radio astronomy in general, is being launched at the Ooty Radio Telescope (ORT). The ORT is a 530 m X 30 m cylindrical radio telescope operating at 325 MHz, having an equatorial mount. Its equatorial mount allows modestly trained students to make pulsar observations without any substantial help from the observatory. Due to its large collecting area, it is a sensitive instrument for pulsar astronomy, capable of detecting a large number of pulsars with short observation time. The program consists of biannual workshops that will introduce scores of students to basics of radio-astronomy and pulsars. It will also train them in the use of the ORT as well as expose them to the future prospects and excitements in the field. The second leg of the program involves live ORT observations by these trained students during various academic breaks. There is a possibility for a follow up program of highly motivated students, selected from this program, to pursue projects of their interest from the data obtained in these sensitive observations. The long term aim of the program is to enlarge the pulsar astronomy community in the country. The presentation will highlight the main features of this program and describe the experience drawn from such programs.

  7. Operations with the FUSE observatory

    NASA Astrophysics Data System (ADS)

    Blair, William P.; Kruk, Jeffrey W.; Moos, Henry W.; Oegerle, William R.

    2003-02-01

    The Far Ultraviolet Spectroscopic Explorer satellite (FUSE) is a NASA Origins mission launched on 1999 June 24 and operated from the Johns Hopkins University Homewood campus in Baltimore, MD. FUSE consists of four aligned telescopes feeding twin far-ultraviolet spectrographs that achieve a spectral resolution of R=20,000 over the 905-1187 Å spectral region. This makes FUSE complementary to the Hubble Space Telescope and of broad general interest to the astronomical community. FUSE is operated as a general-purpose observatory with proposals evaluated and selected by NASA. The FUSE mission concept evolved dramatically over time. The version of FUSE that was built and flown was born out of the "faster, better, cheaper" era, which drove not only the mission development but also plans for operations. Fixed price contracts, a commercial spacecraft, and operations in the University environment were all parts of the low cost strategy. The satellite performs most functions autonomously, with ground contacts limited typically to seven 12-minute contacts per day through a dedicated ground station. All support functions are managed by a staff of 40 scientists and engineers located at Johns Hopkins. In this configuration, we have been able to achieve close to 30% average on-target science efficiency. In short, FUSE is a successful example of the "faster, better, cheaper" philosophy.

  8. Using Virtual Observatories for Heliophysics Research

    NASA Astrophysics Data System (ADS)

    Weigel, Robert S.; Baker, Daniel N.; Roberts, D. Aaron; King, Todd

    2009-11-01

    Scientific satellites, balloons, ground-based instruments, and other observational platforms are producing rich streams of data about the Earth and space. Ensuring widespread access to such data has led to the development of a new type of observatory: the virtual observatory. Existing only in cyberspace, virtual observatories are Web-based interfaces that point users to online data repositories. More important, they allow users not only to access and view multiple sources of information at the same time but also to cross-compare data to build new insights.

  9. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  10. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  11. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  12. NASA Student Airborne Research Program

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  13. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Astrophysics Data System (ADS)

    Meadows, B.; Davis, K.; Barrick, J. D. W.; Browell, E. V.; Chen, G.; Dobler, J. T.; Fried, A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Miles, N. L.; Nehrir, A. R.; Obland, M. D.; O'Dell, C.; Sweeney, C.; Yang, M. M.

    2015-12-01

    NASA announced the research opportunity Earth Venture Suborbital - 2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport - America (ACT - America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT - America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2 and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  14. Airborne Imaging Spectroscopy of Forest Canopy Chemistry in the Andes-Amazon Corridor

    NASA Astrophysics Data System (ADS)

    Martin, R.; Anderson, C.; Knapp, D. E.; Asner, G. P.

    2013-12-01

    The Andes-Amazon corridor is one of the most biologically diverse regions on Earth. Elevation gradients provide opportunities to explore the underlying sources and environmental controls on functional diversity of the forest canopy, however plot-based studies have proven highly variable. We used airborne imaging spectroscopy from the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS) to quantify changes canopy functional traits in a series of eleven 25-ha landscapes distributed along a 3300 m elevation gradient from lowland Amazonia to treeline in the Peruvian Andes. Each landscape encompassed a 1 ha field plot in which all trees reaching the canopy were climbed and leaves were sampled for 20 chemical traits. We used partial least squares regression to relate plot-level chemical values with airborne spectroscopy from the 1 ha area. Sixteen chemical traits produced predictable relationships with the spectra and were used to generate maps of the 25 ha landscape. Ten chemical traits were significantly related to elevation at the 25 ha scale. These ten traits displayed 35% greater accuracy (R2) and precision (rmse) when evaluated at the 25 ha scale compared to values derived from tree climbing alone. The results indicate that high-fidelity imaging spectroscopy can be used as surrogate for laborious tree climbing and chemical assays to understand chemical diversity in Amazonian forests. Understanding how these chemicals vary among forest communities throughout the Andes-Amazon corridor will facilitate mapping of functional diversity and the response of canopies to climate change.

  15. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  16. The SIM Lite Astrometric Observatory

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.

    2009-05-01

    SIM Lite is an observatory mission dedicated to precision astrometry. With a single measurement accuracy of 1 microarcsecond (µas) and a noise floor below 0.035 µas it will have the capability to do an extensive search for Earth-mass planets in the `habitable zone’ around several dozen of the nearest stars. SIM Lite maintains its wide-angle accuracy of 4 µas for all targets down to V = 19, limited only by observing time. This opens up a wide array of astrophysical problems. As a flexibly pointed instrument, it is a natural complement to sky surveys such as JMAPS and Gaia, and will tackle questions that don't require the acquisition of statistics on a large number of targets. It will provide accurate masses for the first time for a variety of exotic star types, including X-ray binaries; it will study the structure and evolution of our Galaxy through tidal streams from dwarf spheroidals and the trajectories of halo stars and galaxies. Its faint-target capability will enable the use of astrometric and photometric variability as a probe of the disk accretion and jet formation processes in blazars. SIM Lite will have an extensive GO (General Observer) program, open to all categories of astrometric science. The project successfully completed a series of technology milestones in 2005, and is currently under study by by NASA as a flight mission. The research described in this talk was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  17. The Solar Dynamics Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean; Thompson, B. J.; Chamberlin, P. C.

    2012-01-01

    The Solar Dynamics Observatory (SDO) was launched on 11 February 2010 at 15:23 UT from Kennedy Space Center aboard an Atlas V 401 (AV-021) launch vehicle. A series of apogee-motor firings lifted SDO from an initial geosynchronous transfer orbit into a circular geosynchronous orbit inclined by 28° about the longitude of the SDO-dedicated ground station in New Mexico. SDO began returning science data on 1 May 2010. SDO is the first space-weather mission in NASA’s Living With a Star (LWS) Program. SDO’s main goal is to understand, driving toward a predictive capability, those solar variations that influence life on Earth and humanity’s technological systems. The SDO science investigations will determine how the Sun’s magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. Insights gained from SDO investigations will also lead to an increased understanding of the role that solar variability plays in changes in Earth’s atmospheric chemistry and climate. The SDO mission includes three scientific investigations (the Atmospheric Imaging Assembly (AIA), Extreme Ultraviolet Variability Experiment (EVE), and Helioseismic and Magnetic Imager (HMI)), a spacecraft bus, and a dedicated ground station to handle the telemetry. The Goddard Space Flight Center built and will operate the spacecraft during its planned five-year mission life; this includes: commanding the spacecraft, receiving the science data, and forwarding that data to the science teams. The science investigations teams at Stanford University, Lockheed Martin Solar Astrophysics Laboratory (LMSAL), and University of Colorado Laboratory for Atmospheric and Space Physics (LASP) will process, analyze, distribute, and archive the science data. We will describe the building of SDO and the science that it will provide to NASA.

  18. The Arecibo Observatory Space Academy

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ford, Linda A.; Fernanda Zambrano Marin, Luisa; Aponte Hernandez, Betzaida; Soto, Sujeily; Rivera-Valentin, Edgard G.

    2016-10-01

    The Arecibo Observatory Space Academy (AOSA) is an intense fifteen-week pre-college research program for qualified high school students residing in Puerto Rico, which includes ten days for hands-on, on site research activities. Our mission is to prepare students for their professional careers by allowing them to receive an independent and collaborative research experience on topics related to the multidisciplinary field of space science. Our objectives are to (1) supplement the student's STEM education via inquiry-based learning and indirect teaching methods, (2) immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) foster in every student an interest in the STEM fields by harnessing their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. Students interested in participating in the program go through an application, interview and trial period before being offered admission. They are welcomed as candidates the first weeks, and later become cadets while experiencing designing, proposing, and conducting research projects focusing in fields like Physics, Astronomy, Geology, Chemistry, and Engineering. Each individual is evaluated with program compatibility based on peer interaction, preparation, participation, and contribution to class, group dynamics, attitude, challenges, and inquiry. This helps to ensure that specialized attention can be given to students who demonstrate a dedication and desire to learn. Deciding how to proceed in the face of setbacks and unexpected problems is central to the learning experience. At the end of the semester, students present their research to the program mentors, peers, and scientific staff. This year, AOSA students also focused on science communication and were trained by NASA's FameLab. Students additionally presented their research at this year's International Space Development Conference (ISDC), which was held in

  19. The Extreme Universe Space Observatory

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Six, N. Frank (Technical Monitor)

    2002-01-01

    This talk will describe the Extreme Universe Space Observatory (EUSO) mission. EUSO is an ESA mission to explore the most powerful energy sources in the universe. The mission objectives of EUSO are to investigate EECRs, those with energies above 3x10(exp 19) eV, and very high-energy cosmic neutrinos. These objectives are directly related to extreme conditions in the physical world and possibly involve the early history of the big bang and the framework of GUTs. EUSO tackles the basic problem posed by the existence of these extreme-energy events. The solution could have a unique impact on fundamental physics, cosmology, and/or astrophysics. At these energies, magnetic deflection is thought to be so small that the EECR component would serve as the particle channel for astronomy. EUSO will make the first measurements of EAS from space by observing atmospheric fluorescence in the Earth's night sky. With measurements of the airshower track, EUSO will determine the energy and arrival direction of these extreme-energy events. EUSO will make high statistics observations of CRs beyond the predicted GZK cutoff energy and widen the channel for high-energy neutrino astronomy. The energy spectra, arrival directions, and shower profiles will be analyzed to distinguish the nature of these events and search for their sources. With EUSO data, we will have the possibility to discover a local EECR source, test Z-burst scenarios and other theories, and look for evidence of the breakdown of the relativity principle at extreme Lorentz factors.

  20. Series of disasters strikes Peruvian Observatory

    NASA Astrophysics Data System (ADS)

    Scanlon, Jim

    A midday blaze severely damaged the Geophysical Observatory at Huancayo, Peru, high in the Andes above Lima on August 28, 1996. The fire, which started accidentally, was one of a series of misfortunes suffered by the Peruvian Geophysical Institute (IGP) in recent years.The observatory, which was built in 1919 by the Carnegie Institution of Washington, is a 4-hour drive by bus from the Pacific coast between cosmopolitan Lima and the Amazonian lowlands. From the late 1980s until 1992, the observatory was isolated from the international community due to political developments in Peru, namely the Maoist Communist insurrection known as Sendero Luminoso. The turmoil resulted in the loss of nearly all cooperative contracts with American universities for research at Huancayo. IGP did maintain a few contracts, such as one with Cornell for the Radio Observatory at Jicamarca in the northern part of the country.

  1. Ten years of the Spanish Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Solano, E.

    2015-05-01

    The main objective of the Virtual Observatory (VO) is to guarantee an easy and efficient access and analysis of the information hosted in astronomical archives. The Spanish Virtual Observatory (SVO) is a project that was born in 2004 with the goal of promoting and coordinating the VO-related activities at national level. SVO is also the national contact point for the international VO initiatives, in particular the International Virtual Observatory Alliance (IVOA) and the Euro-VO project. The project, led by Centro de Astrobiología (INTA-CSIC), is structured around four major topics: a) VO compliance of astronomical archives, b) VO-science, c) VO- and data mining-tools, and d) Education and outreach. In this paper I will describe the most important results obtained by the Spanish Virtual Observatory in its first ten years of life as well as the future lines of work.

  2. SOFIA Observatory Conducts Night Checkout Flight

    NASA Video Gallery

    This spectacular video captures NASA's Stratospheric Observatory for Infrared Astronomy as it flew a nighttime checkout flight over northern and central California the first week of March 2013. The...

  3. HAWC: The high altitude water Cherenkov observatory

    NASA Astrophysics Data System (ADS)

    Goodman, Jordan A.

    2013-02-01

    The High Altitude Water Cherenkov Observatory (HAWC) is currently being deployed at 4100m above sea level on the Vulcan Sierra Negra near Puebla, Mexico. The HAWC observatory will consist of 250-300 Water Cherenkov Detectors totaling approximately 22,000 m2 of instrumented area. The water Cherenkov technique allows HAWC to have a nearly 100% duty cycle and large field of view, making the HAWC observatory an ideal instrument for the study of transient phenomena. With its large effective area, excellent angular and energy resolutions, and efficient gamma-hadron separation, HAWC will survey the TeV gamma-ray sky, measure spectra of galactic sources from 1 TeV to beyond 100 TeV, and map galactic diffuse gamma ray emission. The science goals, instrument performance and status of the HAWC observatory will be presented.

  4. The Astrophysical Multimessenger Observatory Network (AMON)

    NASA Technical Reports Server (NTRS)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; Barthelmy, S. D.; Coutu, S.; DeYoung, T.; Falcone, A. D.; Gao, Shan; Hashemi, B.; Homeier, A.; Marka, S.; Owen, B. J.; Taboada, I.

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  5. The Arecibo Observatory as an MST radar

    NASA Technical Reports Server (NTRS)

    Woodman, R. F.

    1983-01-01

    The radars and other systems at the Arecibo Observatory were designed and built, originally, for incoherent-scatter and radio-astronomy research. More recently, important additions have been made for planetary radar and artificial RF heating of the ionosphere. Although designed and built for a different application, these systems have shown to be very powerful tools for tropospheric, stratospheric and mesospheric research. The Observatory at present has two main radars: one at 430 and the other at 2380 MHz. In addition, 50-MHz MST radar work has been done using portable transmitters brought to the Observatory for this purpose. This capability will become permanent with the recent acquisition of a transmitter at this frequency. Furthermore, control and data processing systems have been developed to use the powerful HF transmitter and antennas of the HF-heating facility as an HF bistatic radar. A brief description of the four radars available at the Observatory is presented.

  6. Astronomical research at the Hopkins PHOENIX Observatory

    NASA Astrophysics Data System (ADS)

    Hopkins, J. L.

    1985-09-01

    After trying astrophotography and radio astronomy it was decided that the best way to do meaningful astronomical research at a small private observatory was by doing photoelectric photometry. Having the observatory located in the back yard of a private residence affors the luxury of observing any time the sky conditions permit. Also modest equipment is all that is needed to do accurate UBV photometry of stars 8th magnitude and brighter. Since beginning in 1980 the Hopkins Phoenix Observatory has published papers on several RS CVn star systems, 31 Cygni, 22 Vul, 18 Tau Per, and has followed the 1982-1984 eclipse of Epsilon Aurigae from its start to the present with over 1000 UBV measurements. In addition the Hopkins Phoenix Observatory has developed several pieces of photometry equipment including the HPO PEPH-101 photometer head and photon counting electronics.

  7. Margaret Huggins and Tulse Hill Observatory

    NASA Astrophysics Data System (ADS)

    Becker, Barbara J.

    2016-04-01

    Photography, instrument design, methodology, interpretation - all skills brought to William Huggins' observatory by his persistent and careful wife Margaret. Together they developed spectroscopy into a powerful research tool. Barbara Becker tells the story.

  8. Renewable Energy for the Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Weilenmann, U.

    2012-06-01

    The operation of observatories at remote sites presents significant demands for electrical energy. The use of renewable energy may become the solution to cope with the ever-rising prices for electrical energy produced from fossil fuels. There is not only a purely commercial aspect, but also the carbon footprint of observatory activities has to be considered. As a first step on the way to a "greener" Paranal Observatory, we propose the installation of a solar cooling system for the cooling of the telescope enclosures, using the abundant insolation that is freely available in the north of Chile. Further into the future, feasible options for photovoltaic and wind energy could supply the needs of the Paranal Observatory in a sustainable manner.

  9. The Eastern Region Public Health Observatory.

    PubMed

    Wright, Kerri

    2014-06-01

    The Eastern Region Public Health Observatory (ERPHO) became part of Public Health England on April 1 2013. Its website provides population health data, analysis and interpretation to support healthcare professionals in commissioning, prioritising and improving health outcomes.

  10. In Brief: Deep-sea observatory

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  11. Astronomical research at the Hopkins Phoenix Observatory

    NASA Technical Reports Server (NTRS)

    Hopkins, J. L.

    1985-01-01

    After trying astrophotography and radio astronomy it was decided that the best way to do meaningful astronomical research at a small private observatory was by doing photoelectric photometry. Having the observatory located in the back yard of a private residence affors the luxury of observing any time the sky conditions permit. Also modest equipment is all that is needed to do accurate UBV photometry of stars 8th magnitude and brighter. Since beginning in 1980 the Hopkins Phoenix Observatory has published papers on several RS CVn star systems, 31 Cygni, 22 Vul, 18 Tau Per, and has followed the 1982-1984 eclipse of Epsilon Aurigae from its start to the present with over 1000 UBV measurements. In addition the Hopkins Phoenix Observatory has developed several pieces of photometry equipment including the HPO PEPH-101 photometer head and photon counting electronics.

  12. Asteroid Lightcurves from the Preston Gott Observatory

    NASA Astrophysics Data System (ADS)

    Clark, Maurice

    2012-04-01

    Results of analysis of CCD photometry observations obtained at the Preston Gott Observatory of asteroids 970 Primula, 3015 Candy, 3751 Kiang, 6746 Zagar, 7750 McEwen, 10046 Creighton, and 19251 Totziens are presented.

  13. Observing at Kitt Peak National Observatory.

    ERIC Educational Resources Information Center

    Cohen, Martin

    1981-01-01

    Presents an abridged version of a chapter from the author's book "In Quest of Telescopes." Includes personal experiences at Kitt Peak National Observatory, and comments on telescopes, photographs, and making observations. (SK)

  14. Cerro Tololo Inter-American Observatory (CTIO)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    CTIO is operated by the ASSOCIATION OF UNIVERSITIES FOR RESEARCH IN ASTRONOMY Inc. (AURA), under a cooperative agreement with the National Science Foundation as part of the National Optical Astronomy Observatories....

  15. Recent results from the Pierre Auger Observatory

    SciTech Connect

    Gascón, Alberto; Collaboration: Pierre Auger Collaboration

    2014-07-23

    The Pierre Auger Observatory has been designed to investigate the origin and nature of Ultra High Energy Cosmic Rays (UHECR) using a hybrid detection technique. In this contribution we present some of the most recent results of the observatory, namely the upper-end of the spectrum of cosmic rays, state-of-the-art analyses on mass composition, the measurements of the proton-air cross-section, and the number of muons at ground.

  16. Callable Virtual Observatory Functionality: Sample Use Cases

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph B.

    2007-01-01

    A virtual observatory with an Application Programming Interface (API) can become a powerful tool in analysis and modeling. In particular, an API that integrates time selection on such criteria as "most recent" and closest to a given absolute time simplifies the user-end programming considerably. We examine three types of use cases (nowcasting, data assimilation input, and user-defined sampling rates) for such functionality in the Virtual Solar Observatory (VSO).

  17. Early German Plans for a Southern Observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  18. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Vanlew, K.; Melsheimer, T.; Melsheimer, L.; Rideout, C.; Patterson, T.

    1997-12-01

    A second observatory of the Telescopes in Education (TIE) project is in the planning stages, with hopes to be in use by fall 1998. The Little Thompson Observatory will be located adjacent to Berthoud High School in northern Colorado. TIE has offered the observatory a Tinsley 18" Cassegrain telescope on a 10-year loan. Local schools and youth organizations will have prioritized access to the telescope until midnight; after that, the telescope will be open to world-wide use by schools via the Internet. The first TIE observatory is a 24" telescope on Mt. Wilson, already booked through July 1998. That telescope has been in use every clear night for the past four years by up to 50 schools per month. Students remotely control the telescope over the Internet, and then receive the images on their local computers. The estimated cost of the Little Thompson Observatory is roughly \\170,000. However, donations of labor and materials have reduced the final price tag closer to \\40,000. Habitat for Humanity is organized to construct the dome, classrooms, and other facilities. Tom and Linda Melsheimer, who developed the remote telescope control system for the University of Denver's Mount Evans Observatory, are donating a similar control system. The formally-trained, all-volunteer staff will be comprised of local residents, teachers and amateur astronomers. Utilities and Internet access will be provided by the Thompson School District.

  19. Early German plans for southern observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  20. Tonantzintla's Observatory Astronomy Teaching Laboratory project

    NASA Astrophysics Data System (ADS)

    Garfias, F.; Bernal, A.; Martínez, L. A.; Sánchez, L.; Hernández, H.; Langarica, R.; Iriarte, A.; Peña, J. H.; Tinoco, S.; Ángeles, F.

    2008-07-01

    In the last two years the National Observatory at Tonantzintla Puebla, México (OAN Tonantzintla), has been undergoing several facilities upgrades in order to bring to the observatory suitable conditions to operate as a modern Observational Astronomy Teaching Laboratory. In this paper, we present the management, requirement definition and project advances. We made a quantitative diagnosis about of the functionality of the Tonantzintla Observatory (mainly based in the 1m f/15 telescope) to take aim to educational objectives. Through this project we are taking the steps to correct, to actualize and to optimize the observatory astronomical instrumentation according to modern techniques of observation. We present the design and the first actions in order to get a better and efficient use of the main astronomical instrumentation, as well as, the telescope itself, for the undergraduate, postgraduate levels Observacional Astronomy students and outreach publics programs for elementary school. The project includes the development of software and hardware components based in as a common framework for the project management. The Observatory is located at 150 km away from the headquarters at the Instituto de Astronomía, Universidad Nacional Autónoma de México (IAUNAM), and one of the goals is use this infrastructure for a Remote Observatory System.