Prüss, Harald; Grosse, Gisela; Brunk, Irene; Veh, Rüdiger W; Ahnert-Hilger, Gudrun
2010-03-01
The development of the hippocampal network requires neuronal activity, which is shaped by the differential expression and sorting of a variety of potassium channels. Parallel to their maturation, hippocampal neurons undergo a distinct development of their ion channel profile. The age-dependent dimension of ion channel occurrence is of utmost importance as it is interdependently linked to network formation. However, data regarding the exact temporal expression of potassium channels during postnatal hippocampal development are scarce. We therefore studied the expression of several voltage-gated potassium channel proteins during hippocampal development in vivo and in primary cultures, focusing on channels that were sorted to the axonal compartment. The Kv1.1, Kv1.2, Kv1.4, and Kv3.4 proteins showed a considerable temporal variation of axonal localization among neuronal subpopulations. It is possible, therefore, that hippocampal neurons possess cell type-specific mechanisms for channel compartmentalization. Thus, age-dependent axonal sorting of the potassium channel proteins offers a new approach to functionally distinguish classes of hippocampal neurons and may extend our understanding of hippocampal circuitry and memory processing.
NASA Astrophysics Data System (ADS)
Zhang, Ruiqi; Cai, Li; Chen, Junwu; Wang, Luo; Tan, Xuefeng
2018-04-01
This paper presents a new method to improve 110kV porcelain insulator flashover voltage by adding a metal ring on the insulator cap, which can not only effectively reduce the field strength of the steel cap, but also reduce the tangential field intensity of the umbrella group and inhibit the development of the discharge process, thus the flashover voltage can be increased. The surface strength calculation model of 110kV porcelain insulator is established by the finite element method (FEM), and the parameters of the metal ring are designed by neural network genetic algorithm (BP-GA). Then the experiments were carried out to verify the results, and the results show that the metal ring plate under the optimum parameters can greatly improve the flashover voltage.
Huang, Chia-Yi; Chu, Dachen; Hwang, Wei-Chao; Tsaur, Meei-Ling
2012-11-01
Precise axon pathfinding is crucial for establishment of the initial neuronal network during development. Pioneer axons navigate without the help of preexisting axons and pave the way for follower axons that project later. Voltage-gated ion channels make up the intrinsic electrical activity of pioneer axons and regulate axon pathfinding. To elucidate which channel molecules are present in pioneer axons, immunohistochemical analysis was performed to examine 14 voltage-gated ion channels (Kv1.1-Kv1.3, Kv3.1-Kv3.4, Kv4.3, Cav1.2, Cav1.3, Cav2.2, Nav1.2, Nav1.6, and Nav1.9) in nine axonal tracts in the developing rat forebrain, including the optic nerve, corpus callosum, corticofugal fibers, thalamocortical axons, lateral olfactory tract, hippocamposeptal projection, anterior commissure, hippocampal commissure, and medial longitudinal fasciculus. We found A-type K⁺ channel Kv3.4 in both pioneer axons and early follower axons and L-type Ca²⁺ channel Cav1.2 in pioneer axons and early and late follower axons. Spatially, Kv3.4 and Cav1.2 were colocalized with markers of pioneer neurons and pioneer axons, such as deleted in colorectal cancer (DCC), in most fiber tracts examined. Temporally, Kv3.4 and Cav1.2 were expressed abundantly in most fiber tracts during axon pathfinding but were downregulated beginning in synaptogenesis. By contrast, delayed rectifier Kv channels (e.g., Kv1.1) and Nav channels (e.g., Nav1.2) were absent from these fiber tracts (except for the corpus callosum) during pathfinding of pioneer axons. These data suggest that Kv3.4 and Cav1.2, two high-voltage-activated ion channels, may act together to control Ca²⁺ -dependent electrical activity of pioneer axons and play important roles during axon pathfinding. Copyright © 2012 Wiley Periodicals, Inc.
Internal services simulation control in 220/110kV power transformer station Mintia
NASA Astrophysics Data System (ADS)
Ciulica, D.; Rob, R.
2018-01-01
The main objectives in developing the electric transport and distribution networks infrastructure are satisfying the electric energy demand, ensuring the continuity of supply to customers, minimizing electricity losses in the transmission and distribution networks of public interest. This paper presents simulations in functioning of the internal services system 400/230 V ac in the 220/110 kV power transformer station Mintia. Using simulations in Visual Basic, the following premises are taken into consideration. All the ac consumers of the 220/110 kV power transformer station Mintia will be supplied by three 400/230 V transformers for internal services which can mutual reserve. In case of damaging at one transformer, the others are able to assume the entire consumption using automatic release of reserves. The simulation program studies three variants in which the continuity of supply to customers are ensured. As well, by simulations, all the functioning situations are analyzed in detail.
Equivalent model and power flow model for electric railway traction network
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-05-01
An equivalent model of the Cable Traction Network (CTN) considering the distributed capacitance effect of the cable system is proposed. The model can be divided into 110kV side and 27.5kV side two kinds. The 110kV side equivalent model can be used to calculate the power supply capacity of the CTN. The 27.5kV side equivalent model can be used to solve the voltage of the catenary. Based on the equivalent simplified model of CTN, the power flow model of CTN which involves the reactive power compensation coefficient and the interaction of voltage and current, is derived.
NASA Astrophysics Data System (ADS)
Shurupov, A. V.; Shurupov, M. A.; Kozlov, A. A.; Kotov, A. V.
2016-11-01
This paper considers the possibility of creating on new physical principles a highspeed current-limiting device (CLD) for the networks with voltage of 110 kV, namely, on the basis of the explosive switching elements. The device is designed to limit the steady short-circuit current to acceptable values for the time does not exceed 3 ms at electric power facilities. The paper presents an analysis of the electrical circuit of CLD. The main features of the scheme are: a new high-speed switching element with high regenerating voltage; fusible switching element that enables to limit the overvoltage after sudden breakage of network of the explosive switch; non-inductive resistor with a high heat capacity and a special reactor with operating time less than 1 s. We analyzed the work of the CLD with help of special software PSPICE, which is based on the equivalent circuit of single-phase short circuit to ground in 110 kV network. Analysis of the equivalent circuit operation CLD shows its efficiency and determines the CLD as a perspective direction of the current-limiting devices of new generation.
Pulse power applications of silicon diodes in EML capacitive pulsers
NASA Astrophysics Data System (ADS)
Dethlefsen, Rolf; McNab, Ian; Dobbie, Clyde; Bernhardt, Tom; Puterbaugh, Robert; Levine, Frank; Coradeschi, Tom; Rinaldi, Vito
1993-01-01
Crowbar diodes are used for increasing the energy transfer from capacitive pulse forming networks. They also prevent voltage reversal on the energy storage capacitors. 52 mm diameter diodes with a 5 kV reverse blocking voltage, rated 40 kA were successfully used for the 32 MJ SSG rail gun. An uprated diode with increased current capability and a 15 kV reverse blocking voltage has been developed. Transient thermal analysis has predicted the current ratings for different pulse length. Analysis verification is obtained from destructive testing.
Independent and cooperative motions of the Kv1.2 channel: voltage sensing and gating.
Yeheskel, Adva; Haliloglu, Turkan; Ben-Tal, Nir
2010-05-19
Voltage-gated potassium (Kv) channels, such as Kv1.2, are involved in the generation and propagation of action potentials. The Kv channel is a homotetramer, and each monomer is composed of a voltage-sensing domain (VSD) and a pore domain (PD). We analyzed the fluctuations of a model structure of Kv1.2 using elastic network models. The analysis suggested a network of coupled fluctuations of eight rigid structural units and seven hinges that may control the transition between the active and inactive states of the channel. For the most part, the network is composed of amino acids that are known to affect channel activity. The results suggested allosteric interactions and cooperativity between the subunits in the coupling between the motion of the VSD and the selectivity filter of the PD, in accordance with recent empirical data. There are no direct contacts between the VSDs of the four subunits, and the contacts between these and the PDs are loose, suggesting that the VSDs are capable of functioning independently. Indeed, they manifest many inherent fluctuations that are decoupled from the rest of the structure. In general, the analysis suggests that the two domains contribute to the channel function both individually and cooperatively. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Migliore, Michele; Migliore, Rosanna; Taglialatela, Maurizio
2015-03-04
Mutations in Kv7.2 (KCNQ2) and Kv7.3 (KCNQ3) genes, encoding for voltage-gated K(+) channel subunits underlying the neuronal M-current, have been associated with a wide spectrum of early-onset epileptic disorders ranging from benign familial neonatal seizures to severe epileptic encephalopathies. The aim of the present work has been to investigate the molecular mechanisms of channel dysfunction caused by voltage-sensing domain mutations in Kv7.2 (R144Q, R201C, and R201H) or Kv7.3 (R230C) recently found in patients with epileptic encephalopathies and/or intellectual disability. Electrophysiological studies in mammalian cells transfected with human Kv7.2 and/or Kv7.3 cDNAs revealed that each of these four mutations stabilized the activated state of the channel, thereby producing gain-of-function effects, which are opposite to the loss-of-function effects produced by previously found mutations. Multistate structural modeling revealed that the R201 residue in Kv7.2, corresponding to R230 in Kv7.3, stabilized the resting and nearby voltage-sensing domain states by forming an intricate network of electrostatic interactions with neighboring negatively charged residues, a result also confirmed by disulfide trapping experiments. Using a realistic model of a feedforward inhibitory microcircuit in the hippocampal CA1 region, an increased excitability of pyramidal neurons was found upon incorporation of the experimentally defined parameters for mutant M-current, suggesting that changes in network interactions rather than in intrinsic cell properties may be responsible for the neuronal hyperexcitability by these gain-of-function mutations. Together, the present results suggest that gain-of-function mutations in Kv7.2/3 currents may cause human epilepsy with a severe clinical course, thus revealing a previously unexplored level of complexity in disease pathogenetic mechanisms. Copyright © 2015 the authors 0270-6474/15/353782-12$15.00/0.
Solid-State Fault Current Limiter Development : Design and Testing Update of a 15kV SSCL Power Stack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Ram Adapa; Mr. Dante Piccone
2012-04-30
ABSTRACT The Solid-State Fault Current Limiter (SSCL) is a promising technology that can be applied to utility power delivery systems to address the problem of increasing fault currents associated with load growth. As demand continues to grow, more power is added to utility system either by increasing generator capacity or by adding distributed generators, resulting in higher available fault currents, often beyond the capabilities of the present infrastructure. The SSCL is power-electronics based equipment designed to work with the present utility system to address this problem. The SSCL monitors the line current and dynamically inserts additional impedance into the linemore » in the event of a fault being detected. The SSCL is based on a modular design and can be configured for 5kV through 69kV systems at nominal current ratings of 1000A to 4000A. Results and Findings This report provides the final test results on the development of 15kV class SSCL single phase power stack. The scope of work included the design of the modular standard building block sub-assemblies, the design and manufacture of the power stack and the testing of the power stack for the key functional tests of continuous current capability and fault current limiting action. Challenges and Objectives Solid-State Current Limiter technology impacts a wide spectrum of utility engineering and operating personnel. It addresses the problems associated with load growth both at Transmission and Distribution class networks. The design concept is pioneering in terms of developing the most efficient and compact power electronics equipment for utility use. The initial test results of the standard building blocks are promising. The independent laboratory tests of the power stack are promising. However the complete 3 phase system needs rigorous testing for performance and reliability. Applications, Values, and Use The SSCL is an intelligent power-electronics device which is modular in design and can provide current limiting or current interrupting capabilities. It can be applied to variety of applications from distribution class to transmission class power delivery grids and networks. It can also be applied to single major commercial and industrial loads and distributed generator supplies. The active switching of devices can be further utilized for protection of substation transformers. The stress on the system can be reduced substantially improving the life of the power system. It minimizes the voltage sag by speedy elimination of heavy fault currents and promises to be an important element of the utility power system. DOE Perspective This development effort is now focused on a 15kV system. This project will help mitigate the challenges of increasing available fault current. DOE has made a major contribution in providing a cost effective SSCL designed to integrate seamlessly into the Transmission and Distribution networks of today and the future. Approach SSCL development program for a 69kV SSCL was initiated which included the use of the Super GTO advanced semiconductor device which won the 2007 R&D100 Award. In the beginning, steps were identified to accomplish the economically viable design of a 69kV class Solid State Current Limiter that is extremely reliable, cost effective, and compact enough to be applied in urban transmission. The prime thrust in design and development was to encompass the 1000A and the 3000A ratings and provide a modular design to cover the wide range of applications. The focus of the project was then shifted to a 15kV class SSCL. The specifications for the 15kV power stack are reviewed. The design changes integrated into the 15kV power stack are discussed. In this Technical Update the complete project is summarized followed by a detailed test report. The power stack independent high voltage laboratory test requirements and results are presented. Keywords Solid State Current Limiter, SSCL, Fault Current Limiter, Fault Current Controller, Power electronics controller, Intelligent power-electronics Device, IED« less
The new Venezuelan national control center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beluche, C.M.
1984-07-01
This paper describes the actual status of the Venezuelan Electric Power System, the different operational areas involved, and finally the Interconnected System. Due to the development in the Power System, and in order to perform a more reliable and economic operation, it was established the need to implement a new supervisory system, for the Interconnected System Control Center. Also is described the system for the new control center for Oficina de Operacion de Sistemas Interconectados (OPSIS). OPSIS will monitor the Bulk Transmission Network (BTN), and will exchange information and control with the Regional Dispatch Centers through the computer network. Themore » Regional Dispatch Center (RDC) shall have the responsibility to accomplish the control order. The Bulk Transmissions System consists of that portion of the system from 800 KV to 230 KV. A total of six RDCs will be included in the system.« less
Testing of the box transformer 10/04.4 kV in the network of the electricity supply company
NASA Astrophysics Data System (ADS)
Cichowski, R.; Nickling, G.
1983-08-01
Applications of a 10/0.4 kV box transformer are studied. Single phase and triple phase prototypes were tested in a distribution network. Test results show that heat loss, hence ground desiccation danger is eliminated by using lean concrete as bedding material (ratio of weight sand: cement: water = 19:1:2). Redistribution of no-load losses and winding losses reduces the total loss from 460 to 324 W, and improves the connection technique.
Speca, David J.; Ogata, Genki; Mandikian, Danielle; Bishop, Hannah I.; Wiler, Steve W.; Eum, Kenneth; Wenzel, H. Jürgen; Doisy, Emily T.; Matt, Lucas; Campi, Katharine L.; Golub, Mari S.; Nerbonne, Jeanne M.; Hell, Johannes W.; Trainor, Brian C.; Sack, Jon T.; Schwartzkroin, Philip A.; Trimmer, James S.
2014-01-01
The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1−/−) mice lacking this channel. Kv2.1−/− mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1−/− mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1−/− mice appears unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1−/− animals. Field recordings from hippocampal slices of Kv2.1−/− mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1−/− mice, long-term potentiation at the Schaffer collateral – CA1 synapse is decreased. Kv2.1−/− mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1−/− mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1−/− mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function. PMID:24494598
[Voltage-gated potassium channels and human neurological diseases].
Jin, Hong-Wei; Wang, Xiao-Liang
2002-01-01
Voltage-gated potassium channels (Kv) is the largest, most complex in potassium channel superfamily. It can be divided into Kv alpha subunit and auxiliary two groups. The roles of some Kv channels types, e.g. rapidly inactivating (A-Type channel) and muscarine sensitive channels (M-type channel) are beginning to be understood. They are prominent in nervous system, acting in delicate and accurate ways to control or modify many physiological and pathological functions including membrane excitability, neurotransmitter release, cell proliferation or degeneration, signal transduction in neuronal network. Many human neurological disease pathogenesis are found to be related to mutant of Kv-channels subunit or subtype, such as, learning and memory impairing, ataxia, epilepsy, deafness, etc.
Optimizing the switching time for 400 kV SF6 circuit breakers
NASA Astrophysics Data System (ADS)
Ciulica, D.
2018-01-01
This paper presents real-time voltage and current analysis for optimizing the wave switching point of the circuit breaker SF6. Circuit Breaker plays an important role in power systems. It provides protection for equipment in embedded stations in transport networks. SF6 Circuit Breaker is very important equipment in Power Systems, which is used for up to 400 kV due to its excellent performance. The controlled switching is used to eliminate transient modes and electrodynamic and dielectric charges in the network at manual switching of capacitor, shunt reactors and power transformers. These effects reduce the reliability and lifetime of the equipment installed on the network, or may lead to erroneous protection.
Lombardo, Joseph; Sun, Jianli; Harrington, Melissa A
2018-01-01
Activity-dependent changes in the properties of the motor system underlie the necessary adjustments in its responsiveness on the basis of the environmental and developmental demands of the organism. Although plastic changes in the properties of the spinal cord have historically been neglected because of the archaic belief that the spinal cord is constituted by a hardwired network that simply relays information to muscles, plenty of evidence has been accumulated showing that synapses impinging on spinal motoneurons undergo short- and long-term plasticity. In the brain, brief changes in the activity level of the network have been shown to be paralleled by changes in the intrinsic excitability of the neurons and are suggested to either reinforce or stabilize the changes at the synaptic level. However, rapid activity-dependent changes in the intrinsic properties of spinal motoneurons have never been reported. In this study, we show that in neonatal mice the intrinsic excitability of spinal motoneurons is depressed after relatively brief but sustained changes in the spinal cord network activity. Using electrophysiological techniques together with specific pharmacological blockers of KCNQ/Kv7 channels, we demonstrate their involvement in the reduction of the intrinsic excitability of spinal motoneurons. This action results from an increased M-current, the product of the activation of KCNQ/Kv7 channels, which leads to a hyperpolarization of the resting membrane potential and a decrease in the input resistance of spinal motoneurons. Computer simulations showed that specific up-regulations in KCNQ/Kv7 channels functions lead to a modulation of the intrinsic excitability of spinal motoneurons as observed experimentally. These results indicate that KCNQ/Kv7 channels play a fundamental role in the activity-dependent modulation of the excitability of spinal motoneurons.
IEEE 342 Node Low Voltage Networked Test System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Kevin P.; Phanivong, Phillippe K.; Lacroix, Jean-Sebastian
The IEEE Distribution Test Feeders provide a benchmark for new algorithms to the distribution analyses community. The low voltage network test feeder represents a moderate size urban system that is unbalanced and highly networked. This is the first distribution test feeder developed by the IEEE that contains unbalanced networked components. The 342 node Low Voltage Networked Test System includes many elements that may be found in a networked system: multiple 13.2kV primary feeders, network protectors, a 120/208V grid network, and multiple 277/480V spot networks. This paper presents a brief review of the history of low voltage networks and how theymore » evolved into the modern systems. This paper will then present a description of the 342 Node IEEE Low Voltage Network Test System and power flow results.« less
NASA Astrophysics Data System (ADS)
Kumbur, E. C.; Sharp, K. V.; Mench, M. M.
Developing a robust, intelligent design tool for multivariate optimization of multi-phase transport in fuel cell diffusion media (DM) is of utmost importance to develop advanced DM materials. This study explores the development of a DM design algorithm based on artificial neural network (ANN) that can be used as a powerful tool for predicting the capillary transport characteristics of fuel cell DM. Direct measurements of drainage capillary pressure-saturation curves of the differently engineered DMs (5, 10 and 20 wt.% PTFE) were performed at room temperature under three compressions (0, 0.6 and 1.4 MPa) [E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1295-B1304; E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1305-B1314; E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1315-B1324]. The generated benchmark data were utilized to systematically train a three-layered ANN framework that processes the feed-forward error back propagation methodology. The designed ANN successfully predicts the measured capillary pressures within an average uncertainty of ±5.1% of the measured data, confirming that the present ANN model can be used as a design tool within the range of tested parameters. The ANN simulations reveal that tailoring the DM with high PTFE loading and applying high compression pressure lead to a higher capillary pressure, therefore promoting the liquid water transport within the pores of the DM. Any increase in hydrophobicity of the DM is found to amplify the compression effect, thus yielding a higher capillary pressure for the same saturation level and compression.
Hajdu, Peter; Martin, Geoffrey V.; Chimote, Ameet A.; Szilagyi, Orsolya; Takimoto, Koichi; Conforti, Laura
2015-01-01
Kv1.3 channels play a pivotal role in the activation and migration of T-lymphocytes. These functions are accompanied by the channels' polarization, which is essential for associated downstream events. However, the mechanisms that govern the membrane movement of Kv1.3 channels remain unclear. F-actin polymerization occurs concomitantly to channel polarization, implicating the actin cytoskeleton in this process. Here we show that cortactin, a factor initiating the actin network, controls the membrane mobilization of Kv1.3 channels. FRAP with EGFP-tagged Kv1.3 channels demonstrates that knocking down cortactin decreases the actin-based immobilization of the channels. Using various deletion and mutation constructs, we show that the SH3 motif of Kv1.3 mediates the channel immobilization. Proximity ligation assays indicate that deletion or mutation of the SH3 motif also disrupts interaction of the channel with cortactin. In T-lymphocytes, the interaction between HS1 (the cortactin homologue) and Kv1.3 occurs at the immune synapse and requires the channel's C-terminal domain. These results show that actin dynamics regulates the membrane motility of Kv1.3 channels. They also provide evidence that the SH3 motif of the channel and cortactin plays key roles in this process. PMID:25739456
Gofman, Yana; Shats, Simona; Attali, Bernard; Haliloglu, Turkan; Ben-Tal, Nir
2012-08-08
The voltage-gated potassium channel Kv7.1 and its auxiliary subunit KCNE1 are expressed in the heart and give rise to the major repolarization current. The interaction of Kv7.1 with the single transmembrane helix of KCNE1 considerably slows channel activation and deactivation, raises single-channel conductance, and prevents slow voltage-dependent inactivation. We built a Kv7.1-KCNE1 model-structure. The model-structure agrees with previous disulfide mapping studies and enables us to derive molecular interpretations of electrophysiological recordings that we obtained for two KCNE1 mutations. An elastic network analysis of Kv7.1 fluctuations in the presence and absence of KCNE1 suggests a mechanistic perspective on the known effects of KCNE1 on Kv7.1 function: slow deactivation is attributed to the low mobility of the voltage-sensor domains upon KCNE1 binding, abolishment of voltage-dependent inactivation could result from decreased fluctuations in the external vestibule, and amalgamation of the fluctuations in the pore region is associated with enhanced ion conductivity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hall, Alicia M.; Throesch, Benjamin T.; Buckingham, Susan C.; Markwardt, Sean J.; Peng, Yin; Wang, Qin
2015-01-01
Neuronal hyperexcitability occurs early in the pathogenesis of Alzheimer's disease (AD) and contributes to network dysfunction in AD patients. In other disorders with neuronal hyperexcitability, dysfunction in the dendrites often contributes, but dendritic excitability has not been directly examined in AD models. We used dendritic patch-clamp recordings to measure dendritic excitability in the CA1 region of the hippocampus. We found that dendrites, more so than somata, of hippocampal neurons were hyperexcitable in mice overexpressing Aβ. This dendritic hyperexcitability was associated with depletion of Kv4.2, a dendritic potassium channel important for regulating dendritic excitability and synaptic plasticity. The antiepileptic drug, levetiracetam, blocked Kv4.2 depletion. Tau was required, as crossing with tau knock-out mice also prevented both Kv4.2 depletion and dendritic hyperexcitability. Dendritic hyperexcitability induced by Kv4.2 deficiency exacerbated behavioral deficits and increased epileptiform activity in hAPP mice. We conclude that increased dendritic excitability, associated with changes in dendritic ion channels including Kv4.2, may contribute to neuronal dysfunction in early stages AD. PMID:25878292
NASA Astrophysics Data System (ADS)
Tanjung, Abrar; Monice
2017-12-01
Electricity in Bagan Siapi city fire is channeled through a feeder distribution system of 20 kV. The main supply of Bagan Siapi-api city comes from PLTD unit Bagan Siapi fire which is  ± 1.5 kms from the load center and Duri Substation is  ± 102 kms from Bagan Siapi-api city through Hubung Ujung Tanjung. The long distances between the Duri Mainstation and Bagan Siapiapi city resulted in a 14.85 kV end-voltage and a 988.7 kW loss. Voltage losses resulted in ineffective service to the consumer and large network power losses being uneconomical for power delivery operations. The result of end voltage calculation is 10.42 kV and the power loss is 988.7 kW. After the New Substation operates, reconfiguration-1 produces the lowest end-voltage calculation of 16.21 kV and a power loss of 136.59 kW, while reconfiguration-2 produces a low end stress calculation of 17.37 kV and a power loss of 56.93 kW.
Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality.
Kim, Jeong-Gyun; Bae, Sung-Jin; Lee, Hye Shin; Park, Ji-Hyeon; Kim, Kyu-Won
2017-01-01
Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer's vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development.
Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality
Kim, Jeong-gyun; Bae, Sung-Jin; Lee, Hye Shin; Park, Ji-Hyeon
2017-01-01
Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer’s vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development. PMID:28771527
Deep learning based state recognition of substation switches
NASA Astrophysics Data System (ADS)
Wang, Jin
2018-06-01
Different from the traditional method which recognize the state of substation switches based on the running rules of electrical power system, this work proposes a novel convolutional neuron network-based state recognition approach of substation switches. Inspired by the theory of transfer learning, we first establish a convolutional neuron network model trained on the large-scale image set ILSVRC2012, then the restricted Boltzmann machine is employed to replace the full connected layer of the convolutional neuron network and trained on our small image dataset of 110kV substation switches to get a stronger model. Experiments conducted on our image dataset of 110kV substation switches show that, the proposed approach can be applicable to the substation to reduce the running cost and implement the real unattended operation.
NASA Astrophysics Data System (ADS)
Kusumaningtyas, A. B.; Hidayat, M. N.; Ronilaya, F.
2018-04-01
Based on the data from State Electric Company on 15 January 2013, the undistributed power in the 150 kV sub system Grati-Paiton Region IV, that consist of 26 bus 150 kV and 2 bus generation 500 kV system, was recorded 3.286,00 MW. At the same time, the frequency of the system was down to 49 Hz. This lead to a deficit generation and unstable voltage condition in the system. Fast Voltage Stability Index (FVSI) method is used in this research to analyze the voltage stability of the buses. For buses with unstable voltage condition, reactive power will be injected through capacitor installation. The site where the capacitor will be installed is determined using the Fast Voltage Stability Index (FVSI) method while the size of the capacitor is determined using the Particle Swarm Optimization (PSO) method. The PSO method has been applied in some researches, such as to determine optimal placement and sizing in radial distribution network as well as in transmission network.. In this research, the PSO method is used to find the Qloss of an interconnection transmission system, which in turn, the value of the Qloss is used to determine the capacitance of the capacitor needed by the system.
Vacher, Helene; Trimmer, James S.
2012-01-01
Summary Voltage-gated ion channels are diverse and fundamental determinants of neuronal intrinsic excitability. Voltage-gated K+ (Kv) and Na+ (Nav) channels play complex yet fundamentally important roles in determining intrinsic excitability. The Kv and Nav channels located at the axon initial segment (AIS) play a unique and especially important role in generating neuronal output in the form of anterograde axonal and backpropagating action potentials, Aberrant intrinsic excitability in individual neurons within networks contributes to synchronous neuronal activity leading to seizures. Mutations in ion channel genes gives rise to a variety of seizure-related “Channelopathies”, and many of the ion channel subunits associated with epilepsy mutations are localized at the AIS, making this a hotspot for epileptogenesis. Here we review the cellular mechanisms that underlie the trafficking of Kv and Nav channels found at the AIS, and how Kv and Nav channel mutations associated with epilepsy can alter these processes. PMID:23216576
A compact 100 kV high voltage glycol capacitor.
Wang, Langning; Liu, Jinliang; Feng, Jiahuai
2015-01-01
A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahder, G.; Bopp, L.A.; Eager, G.S.
This report covers the continuation of the work to develop technology to manufacture chemically crosslinked polyethylene insulated power cables in the ac voltage range of 138 kV to 345 kV having insulation thicknesses approximately equal to that of oil impregnated paper insulated cables. It also incorporates the development of field molded splices and terminations for new high voltage stress 138 kV cables. After reviewing the main equipment elements, incorporated in the pilot extrusion line, the special features of this system are noted and a step-by-step description of the cable extrusion process is given. Optimization of the process and introduction ofmore » modifications in the equipment culminated with the production of 138 kV cables. Results of laboratory tests to demonstrate the high quality of the cables are given. The development of molded splices and molded stress control cones was initiated with the work on model cables and followed by the making of splices and terminations on 138 kV cables. The molded components are made with the same purified insulating compound as used in the manufacture of the cables. Both the molded splices and the molded stress control cones have been fully tested in the laboratory. Following the completion of the development of the 138 kV cable a high stress 230 kV crosslinked polyethylene cable was developed and optimized. A full evaluation program similar to the one utilized on the 138 kV cable was carried out. Subsequently, work to develop a 345 kV high voltage stress cable, having insulation thickness of 1.02'' was undertaken. 345 kV cables were successfully manufactured and tested. However, additional work is required to further optimize the quality of this cable.« less
Chevaleyre, Vivien; Murray, Karl D.; Piskorowski, Rebecca A.
2017-01-01
Abstract The CA1 region of the hippocampus plays a critical role in spatial and contextual memory, and has well-established circuitry, function and plasticity. In contrast, the properties of the flanking CA2 pyramidal neurons (PNs), important for social memory, and lacking CA1-like plasticity, remain relatively understudied. In particular, little is known regarding the expression of voltage-gated K+ (Kv) channels and the contribution of these channels to the distinct properties of intrinsic excitability, action potential (AP) waveform, firing patterns and neurotransmission between CA1 and CA2 PNs. In the present study, we used multiplex fluorescence immunolabeling of mouse brain sections, and whole-cell recordings in acute mouse brain slices, to define the role of heterogeneous expression of Kv2 family Kv channels in CA1 versus CA2 pyramidal cell excitability. Our results show that the somatodendritic delayed rectifier Kv channel subunits Kv2.1, Kv2.2, and their auxiliary subunit AMIGO-1 have region-specific differences in expression in PNs, with the highest expression levels in CA1, a sharp decrease at the CA1-CA2 boundary, and significantly reduced levels in CA2 neurons. PNs in CA1 exhibit a robust contribution of Guangxitoxin-1E-sensitive Kv2-based delayed rectifier current to AP shape and after-hyperpolarization potential (AHP) relative to that seen in CA2 PNs. Our results indicate that robust Kv2 channel expression confers a distinct pattern of intrinsic excitability to CA1 PNs, potentially contributing to their different roles in hippocampal network function. PMID:28856240
Dendritic A-type potassium channel subunit expression in CA1 hippocampal interneurons.
Menegola, M; Misonou, H; Vacher, H; Trimmer, J S
2008-06-26
Voltage-gated potassium (Kv) channels are important and diverse determinants of neuronal excitability and exhibit specific expression patterns throughout the brain. Among Kv channels, Kv4 channels are major determinants of somatodendritic A-type current and are essential in controlling the amplitude of backpropagating action potentials (BAPs) into neuronal dendrites. BAPs have been well studied in a variety of neurons, and have been recently described in hippocampal and cortical interneurons, a heterogeneous population of GABAergic inhibitory cells that regulate activity of principal cells and neuronal networks. We used well-characterized mouse monoclonal antibodies against the Kv4.3 and potassium channel interacting protein (KChIP) 1 subunits of A-type Kv channels, and antibodies against different interneuron markers in single- and double-label immunohistochemistry experiments to analyze the expression patterns of Kv4.3 and KChIP1 in hippocampal Ammon's horn (CA1) neurons. Immunohistochemistry was performed on 40 mum rat brain sections using nickel-enhanced diaminobenzidine staining or multiple-label immunofluorescence. Our results show that Kv4.3 and KChIP1 component subunits of A-type channels are co-localized in the soma and dendrites of a large number of GABAergic hippocampal interneurons. These subunits co-localize extensively but not completely with markers defining the four major interneuron subpopulations tested (parvalbumin, calbindin, calretinin, and somatostatin). These results suggest that CA1 hippocampal interneurons can be divided in two groups according to the expression of Kv4.3/KChIP1 channel subunits. Antibodies against Kv4.3 and KChIP1 represent an important new tool for identifying a subpopulation of hippocampal interneurons with a unique dendritic A-type channel complement and ability to control BAPs.
Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua
2016-02-01
Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection.
Shem-Ad, Tzilhav; Irit, Orr; Yifrach, Ofer
2013-01-01
The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.
Comparative sequence analysis suggests a conserved gating mechanism for TRP channels
Palovcak, Eugene; Delemotte, Lucie; Klein, Michael L.
2015-01-01
The transient receptor potential (TRP) channel superfamily plays a central role in transducing diverse sensory stimuli in eukaryotes. Although dissimilar in sequence and domain organization, all known TRP channels act as polymodal cellular sensors and form tetrameric assemblies similar to those of their distant relatives, the voltage-gated potassium (Kv) channels. Here, we investigated the related questions of whether the allosteric mechanism underlying polymodal gating is common to all TRP channels, and how this mechanism differs from that underpinning Kv channel voltage sensitivity. To provide insight into these questions, we performed comparative sequence analysis on large, comprehensive ensembles of TRP and Kv channel sequences, contextualizing the patterns of conservation and correlation observed in the TRP channel sequences in light of the well-studied Kv channels. We report sequence features that are specific to TRP channels and, based on insight from recent TRPV1 structures, we suggest a model of TRP channel gating that differs substantially from the one mediating voltage sensitivity in Kv channels. The common mechanism underlying polymodal gating involves the displacement of a defect in the H-bond network of S6 that changes the orientation of the pore-lining residues at the hydrophobic gate. PMID:26078053
The Kv7 Channel and Cardiovascular Risk Factors.
Fosmo, Andreas L; Skraastad, Øyvind B
2017-01-01
Potassium channels play a pivotal role in the regulation of excitability in cells such as neurons, cardiac myocytes, and vascular smooth muscle cells. The KCNQ (Kv7) family of voltage-activated K + channels hyperpolarizes the cell and stabilizes the membrane potential. Here, we outline how Kv7 channel activity may contribute to the development of the cardiovascular risk factors such as hypertension, diabetes, and obesity. Questions and hypotheses regarding previous and future research have been raised. Alterations in the Kv7 channel may contribute to the development of cardiovascular disease (CVD). Pharmacological modification of Kv7 channels may represent a possible treatment for CVD in the future.
The Kv7 Channel and Cardiovascular Risk Factors
Fosmo, Andreas L.; Skraastad, Øyvind B.
2017-01-01
Potassium channels play a pivotal role in the regulation of excitability in cells such as neurons, cardiac myocytes, and vascular smooth muscle cells. The KCNQ (Kv7) family of voltage-activated K+ channels hyperpolarizes the cell and stabilizes the membrane potential. Here, we outline how Kv7 channel activity may contribute to the development of the cardiovascular risk factors such as hypertension, diabetes, and obesity. Questions and hypotheses regarding previous and future research have been raised. Alterations in the Kv7 channel may contribute to the development of cardiovascular disease (CVD). Pharmacological modification of Kv7 channels may represent a possible treatment for CVD in the future. PMID:29259974
Cftr controls lumen expansion and function of Kupffer’s vesicle in zebrafish
Navis, Adam; Marjoram, Lindsay; Bagnat, Michel
2013-01-01
Regulated fluid secretion is crucial for the function of most organs. In vertebrates, the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) is a master regulator of fluid secretion. Although the biophysical properties of CFTR have been well characterized in vitro, little is known about its in vivo role during development. Here, we investigated the function of Cftr during zebrafish development by generating several cftr mutant alleles using TAL effector nucleases. We found that loss of cftr function leads to organ laterality defects. In zebrafish, left-right (LR) asymmetry requires cilia-driven fluid flow within the lumen of Kupffer’s vesicle (KV). Using live imaging we found that KV morphogenesis is disrupted in cftr mutants. Loss of Cftr-mediated fluid secretion impairs KV lumen expansion leading to defects in organ laterality. Using bacterial artificial chromosome recombineering, we generated transgenic fish expressing functional Cftr fusion proteins with fluorescent tags under the control of the cftr promoter. The transgenes completely rescued the cftr mutant phenotype. Live imaging of these transgenic lines showed that Cftr is localized to the apical membrane of the epithelial cells in KV during lumen formation. Pharmacological stimulation of Cftr-dependent fluid secretion led to an expansion of the KV lumen. Conversely, inhibition of ion gradient formation impaired KV lumen inflation. Interestingly, cilia formation and motility in KV were not affected, suggesting that fluid secretion and flow are independently controlled in KV. These findings uncover a new role for cftr in KV morphogenesis and function during zebrafish development. PMID:23487313
Manonmani, N; Subbiah, V; Sivakumar, L
2015-01-01
The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.
Guan, Dongxu; Horton, Leslie R.; Armstrong, William E.
2011-01-01
Potassium channels regulate numerous aspects of neuronal excitability, and several voltage-gated K+ channel subunits have been identified in pyramidal neurons of rat neocortex. Previous studies have either considered the development of outward current as a whole or divided currents into transient, A-type and persistent, delayed rectifier components but did not differentiate between current components defined by α-subunit type. To facilitate comparisons of studies reporting K+ currents from animals of different ages and to understand the functional roles of specific current components, we characterized the postnatal development of identified Kv channel-mediated currents in pyramidal neurons from layers II/III from rat somatosensory cortex. Both the persistent/slowly inactivating and transient components of the total K+ current increased in density with postnatal age. We used specific pharmacological agents to test the relative contributions of putative Kv1- and Kv2-mediated currents (100 nM α-dendrotoxin and 600 nM stromatoxin, respectively). A combination of voltage protocol, pharmacology, and curve fitting was used to isolate the rapidly inactivating A-type current. We found that the density of all identified current components increased with postnatal age, approaching a plateau at 3–5 wk. We found no significant changes in the relative proportions or kinetics of any component between postnatal weeks 1 and 5, except that the activation time constant for A-type current was longer at 1 wk. The putative Kv2-mediated component was the largest at all ages. Immunocytochemistry indicated that protein expression for Kv4.2, Kv4.3, Kv1.4, and Kv2.1 increased between 1 wk and 4–5 wk of age. PMID:21451062
Guan, Dongxu; Horton, Leslie R; Armstrong, William E; Foehring, Robert C
2011-06-01
Potassium channels regulate numerous aspects of neuronal excitability, and several voltage-gated K(+) channel subunits have been identified in pyramidal neurons of rat neocortex. Previous studies have either considered the development of outward current as a whole or divided currents into transient, A-type and persistent, delayed rectifier components but did not differentiate between current components defined by α-subunit type. To facilitate comparisons of studies reporting K(+) currents from animals of different ages and to understand the functional roles of specific current components, we characterized the postnatal development of identified Kv channel-mediated currents in pyramidal neurons from layers II/III from rat somatosensory cortex. Both the persistent/slowly inactivating and transient components of the total K(+) current increased in density with postnatal age. We used specific pharmacological agents to test the relative contributions of putative Kv1- and Kv2-mediated currents (100 nM α-dendrotoxin and 600 nM stromatoxin, respectively). A combination of voltage protocol, pharmacology, and curve fitting was used to isolate the rapidly inactivating A-type current. We found that the density of all identified current components increased with postnatal age, approaching a plateau at 3-5 wk. We found no significant changes in the relative proportions or kinetics of any component between postnatal weeks 1 and 5, except that the activation time constant for A-type current was longer at 1 wk. The putative Kv2-mediated component was the largest at all ages. Immunocytochemistry indicated that protein expression for Kv4.2, Kv4.3, Kv1.4, and Kv2.1 increased between 1 wk and 4-5 wk of age.
Characteristics and molecular basis of celecoxib modulation on Kv7 potassium channels
Du, XN; Zhang, X; Qi, JL; An, HL; Li, JW; Wan, YM; Fu, Y; Gao, HX; Gao, ZB; Zhan, Y; Zhang, HL
2011-01-01
BACKGROUND AND PURPOSE Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor used for the treatment of pain and inflammation. Emerging and accumulating evidence suggests that celecoxib can affect cellular targets other than COX, such as ion channels. In this study, we characterized the effects of celecoxib on Kv7 K+ channels and compared its effects with the well-established Kv7 channel opener retigabine. EXPERIMENTAL APPROACH A perforated whole-cell patch technique was used to record Kv7currents expressed in HEK 293 cells and M-type currents from rat superior cervical ganglion neurons. KEY RESULTS Celecoxib enhanced Kv7.2–7.4, Kv7.2/7.3 and Kv7.3/7.5 currents but inhibited Kv7.1 and Kv7.1/KCNE1 currents and these effects were concentration dependent. The IC50 value for inhibition of Kv7.1 channels was approximately 4 µM and the EC50 values for activation of Kv7.2–7.4, Kv7.2/Kv7.3 and Kv7.3/Kv7.5 channels were approximately 2–5 µM. The effects of celecoxib were manifested by increasing current amplitudes, shifting the voltage-dependent activation curve in a more negative direction and slowing the deactivation of Kv7 currents. 2,5-Dimethyl-celecoxib, a celecoxib analogue devoid of COX inhibition activity, has similar but greater effects on Kv7currents. Kv7.2(A235T) and Kv7.2(W236L) mutant channels, which have greatly attenuated responses to retigabine, showed a reversed response to celecoxib, from activation to inhibition. CONCLUSIONS AND IMPLICATIONS These results suggest that Kv7 channels are targets of celecoxib action and provide new mechanistic evidence for understanding the effects of celecoxib. They also provide a new approach to developing Kv7 modulators and for studying the structure–function relationship of Kv7 channels. PMID:21564087
NASA Astrophysics Data System (ADS)
Ishihara, Kaoru; Akita, Shige; Suzuki, Hiroshi; Ogata, Junichi; Nemoto, Minoru
1987-08-01
Cryo-resistive cable system was tested to demonstrate dielectric characteristics. Dielectric characteristics of 66kV cryo-resistive cable at the start of immersion cooling in the liquid nitrogen were 2.25 specific dielectric constant and 0.18 percent dielectric loss which was less than 0.4 percent , the aimed value. Electrostatic capacity and dielectric loss tangent of dielectric characteristics under the applied voltage did not depend on the voltage and the dielectric loss was less than 0.4 percent through the temperature range from -170 to -190C. These values fulfilled the specifications on 275kV class cryo-resistive cable design. The tested cable passed the cable test on 66kV oil-filled cable (ac 90kV, 10 min), but broken down at ac 110kV on the way to endurance testing voltage 130kV. The breakdown occurred due to the mechanical damage of cable insulator by bending and thermal contraction of the cable. It is necessary from these facts to develop flexible cable terminal and joint which can absorb the contraction to realize 275kV cryo-resistive cable. (19 figs, 7 tabs, 15 refs).
Pharmacological Targeting Of Neuronal Kv7.2/3 Channels: A Focus On Chemotypes And Receptor Sites.
Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; Manocchio, Laura; Medoro, Alessandro; Mosca, Ilaria; Taglialatela, Maurizio
2017-10-12
The Kv7 (KCNQ) subfamily of voltage-gated potassium channels consists of 5 members (Kv7.1-5) each showing a characteristic tissue distribution and physiological roles. Given their functional heterogeneity, Kv7 channels represent important pharmacological targets for development of new drugs for neuronal, cardiac and metabolic diseases. In the present manuscript, we focus on describing the pharmacological relevance and the potential therapeutic applications of drugs acting on neuronally-expressed Kv7.2/3 channels, placing particular emphasis on the different modulator chemotypes, and highlighting their pharmacodynamic and, whenever possible, pharmacokinetic peculiarities. The present work is based on an in-depth search of the currently available scientific literature, and on our own experience and knowledge in the field of neuronal Kv7 channel pharmacology. Space limitations impeded to describe the full pharmacological potential of Kv7 channels; thus, we have chosen to focus on neuronal channels composed of Kv7.2 and Kv7.3 subunits, and to mainly concentrate on their involvement in epilepsy. An astonishing heterogeneity in the molecular scaffolds exploitable to develop Kv7.2/3 modulators is evident, with important structural/functional peculiarities of distinct compound classes. In the present work we have attempted to show the current status and growing potential of the Kv7 pharmacology field. We anticipate a bright future for the field, and we express our hopes that the efforts herein reviewed will result in an improved treatment of hyperexcitability (or any other) diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Zhang, Xuan; An, Hailong; Li, Junwei; Zhang, Yuanyuan; Liu, Yang; Jia, Zhanfeng; Zhang, Wei
2016-01-01
Background and Purpose Kv7 (Kv7.1–7.5) channels play an important role in the regulation of neuronal excitability and the cardiac action potential. Growing evidence suggests Kv7.4/Kv7.5 channels play a crucial role in regulating vascular smooth muscle contractility. Most of the reported Kv7 openers have shown poor selectivity across these five subtypes. In this study, fasudil – a drug used for cerebral vasospasm – has been found to be a selective opener of Kv7.4/Kv7.5 channels. Experimental Approach A perforated whole‐cell patch technique was used to record the currents and membrane potential. Homology modelling and a docking technique were used to investigate the interaction between fasudil and the Kv7.4 channel. An isometric tension recording technique was used to assess the vascular tension. Key Results Fasudil selectively and potently enhanced Kv7.4 and Kv7.4/Kv7.5 currents expressed in HEK293 cells, and shifted the voltage‐dependent activation curve in a more negative direction. Fasudil did not affect either Kv7.2 and Kv7.2/Kv7.3 currents expressed in HEK293 cells, the native neuronal M‐type K+ currents, or the resting membrane potential in small rat dorsal root ganglia neurons. The Val248 in S5 and Ile308 in S6 segment of Kv7.4 were critical for this activating effect of fasudil. Fasudil relaxed precontracted rat small arteries in a concentration‐dependent fashion; this effect was antagonized by the Kv7 channel blocker XE991. Conclusions and Implications These results suggest that fasudil is a selective Kv7.4/Kv7.5 channel opener and provide a new dimension for developing selective Kv7 modulators and a new prospective for the use, action and mechanism of fasudil. PMID:27677924
Blom, Sigrid Marie; Rottländer, Mario; Kehler, Jan; Bundgaard, Christoffer; Schmitt, Nicole; Jensen, Henrik Sindal
2014-01-01
The voltage-gated potassium channels of the KV7 family (KV7.1-5) play important roles in controlling neuronal excitability and are therefore attractive targets for treatment of CNS disorders linked to hyperexcitability. One of the main challenges in developing KV7 channel active drugs has been to identify compounds capable of discriminating between the neuronally expressed subtypes (KV7.2-5), aiding the identification of the subunit composition of KV7 currents in various tissues, and possessing better therapeutic potential for particular indications. By taking advantage of the structure-activity relationship of acrylamide KV7 channel openers and the effects of these compounds on mutant KV7 channels, we have designed and synthesized a novel KV7 channel modulator with a unique profile. The compound, named SMB-1, is an inhibitor of KV7.2 and an activator of KV7.4. SMB-1 inhibits KV7.2 by reducing the current amplitude and increasing the time constant for the slow component of the activation kinetics. The activation of KV7.4 is seen as an increase in the current amplitude and a slowing of the deactivation kinetics. Experiments studying mutant channels with a compromised binding site for the KV7.2-5 opener retigabine indicate that SMB-1 binds within the same pocket as retigabine for both inhibition of KV7.2 and activation of KV7.4. SMB-1 may serve as a valuable tool for KV7 channel research and may be used as a template for further design of better subtype selective KV7 channel modulators. A compound with this profile could hold novel therapeutic potential such as the treatment of both positive and cognitive symptoms in schizophrenia.
Dynamic Control of Facts Devices to Enable Large Scale Penetration of Renewable Energy Resources
NASA Astrophysics Data System (ADS)
Chavan, Govind Sahadeo
This thesis focuses on some of the problems caused by large scale penetration of Renewable Energy Resources within EHV transmission networks, and investigates some approaches in resolving these problems. In chapter 4, a reduced-order model of the 500 kV WECC transmission system is developed by estimating its key parameters from phasor measurement unit (PMU) data. The model was then implemented in RTDS and was investigated for its accuracy with respect to the PMU data. Finally it was tested for observing the effects of various contingencies like transmission line loss, generation loss and large scale penetration of wind farms on EHV transmission systems. Chapter 5 introduces Static Series Synchronous Compensators (SSSC) which are seriesconnected converters that can control real power flow along a transmission line. A new application of SSSCs in mitigating Ferranti effect on unloaded transmission lines was demonstrated on PSCAD. A new control scheme for SSSCs based on the Cascaded H-bridge (CHB) converter configuration was proposed and was demonstrated using PSCAD and RTDS. A new centralized controller was developed for the distributed SSSCs based on some of the concepts used in the CHB-based SSSC. The controller's efficacy was demonstrated using RTDS. Finally chapter 6 introduces the problem of power oscillations induced by renewable sources in a transmission network. A power oscillation damping (POD) controller is designed using distributed SSSCs in NYPA's 345 kV three-bus AC system and its efficacy is demonstrated in PSCAD. A similar POD controller is then designed for the CHB-based SSSC in the IEEE 14 bus system in PSCAD. Both controllers were noted to have significantly damped power oscillations in the transmission networks.
NASA Astrophysics Data System (ADS)
Salcedo Ulerio, Reynaldo Odalis
The analysis of overvoltages in electrical distribution networks is of considerable significance since they may damage the power system infrastructure and the associated electrical equipment. Overvoltages in distribution networks arise due to switching transients, resonance, lightning strikes and ground faults, among other causes. The operation of network protectors (NWP), low voltage circuit breakers with directional power relay, in a secondary network prevents the continuous flow of reverse power. There are three modes of operation for the network protectors: sensitive, time delayed, and insensitive. In case of a fault, although all of the network protectors sense the fault at the same time, their operation is not simultaneous. Many of them open very quickly with opening times similar to those of the feeder breaker. However, some operate a few cycles later, others take several seconds to open and a few might even fail to operate. Therefore, depending on the settings of the network protectors, faults can last for significantly long time due to backfeeding of current from the low voltage (LV) network into the medium voltage (MV) network. In this work, low voltages are defined as 208V/460V and medium voltage are defined as 25kV/35kV. This thesis presents overvoltages which arise because of the occurrence of a single-line-to-ground (SLG) fault on the MV side (connected in delta) of the system. The thesis reveals that overvoltage stresses are imposed on insulation, micro-processor controlled equipment, and switching devices by overvoltages during current backfeeding. Also, it establishes a relationship between overvoltage magnitude, its duration, and the network loading conditions. Overvoltages above 3 p.u. may be developed as a result of a simultaneous occurrence of three phenomena: neutral displacement, Ferranti effect, and magnetic current chopping. Furthermore, this thesis exposes the possibility of occurrence of the ferro-resonance phenomena in a distribution network having secondary grid, making the study of extreme importance especially in the case of a misoperating network protector. The test systems for both studies were designed following the conventional distribution network with secondary grid, similar to those in the New York City Area. Simulations were performed using the electro-magnetic transient program revised version (EMTP-RV) considering detailed representation of system components as well as the non-linear magnetization and losses of transformers.
Chadha, Preet S; Jepps, Thomas A; Carr, Georgina; Stott, Jennifer B; Zhu, Hei-Lei; Cole, William C; Greenwood, Iain A
2014-04-01
Middle cerebral artery (MCA) diameter is regulated by inherent myogenic activity and the effect of potent vasodilators such as calcitonin gene-related peptide (CGRP). Previous studies showed that MCAs express KCNQ1, 4, and 5 potassium channel genes, and the expression products (Kv7 channels) participate in the myogenic control of MCA diameter. The present study investigated the contribution of Kv7.4 and Kv7.5 isoforms to myogenic and CGRP regulation of MCA diameter and determined whether they were affected in hypertensive animals. Isometric tension recordings performed on MCA from normotensive rats produced CGRP vasodilations that were inhibited by the pan-Kv7 channel blocker linopirdine (P<0.01) and after transfection of arteries with siRNA against KCNQ4 (P<0.01) but not KCNQ5. However, isobaric myography revealed that myogenic constriction in response to increases in intravascular pressure (20-80 mm Hg) was affected by both KCNQ4 and KCNQ5 siRNA. Proximity ligation assay signals were equally abundant for Kv7.4/Kv7.4 or Kv7.4/Kv7.5 antibody combinations but minimal for Kv7.5/Kv7.5 antibodies or Kv7.4/7.1 combinations. In contrast to systemic arteries, Kv7 function and Kv7.4 abundance in MCA were not altered in hypertensive rats. This study reveals, for the first time to our knowledge, that in cerebral arteries, Kv7.4 and Kv7.5 proteins exist predominantly as a functional heterotetramer, which regulates intrinsic myogenicity and vasodilation attributed to CGRP. Surprisingly, unlike systemic arteries, Kv7 activity in MCAs is not affected by the development of hypertension, and CGRP-mediated vasodilation is well maintained. As such, cerebrovascular Kv7 channels could be amenable for therapeutic targeting in conditions such as cerebral vasospasm.
Novel semi-automated kidney volume measurements in autosomal dominant polycystic kidney disease.
Muto, Satoru; Kawano, Haruna; Isotani, Shuji; Ide, Hisamitsu; Horie, Shigeo
2018-06-01
We assessed the effectiveness and convenience of a novel semi-automatic kidney volume (KV) measuring high-speed 3D-image analysis system SYNAPSE VINCENT ® (Fuji Medical Systems, Tokyo, Japan) for autosomal dominant polycystic kidney disease (ADPKD) patients. We developed a novel semi-automated KV measurement software for patients with ADPKD to be included in the imaging analysis software SYNAPSE VINCENT ® . The software extracts renal regions using image recognition software and measures KV (VINCENT KV). The algorithm was designed to work with the manual designation of a long axis of a kidney including cysts. After using the software to assess the predictive accuracy of the VINCENT method, we performed an external validation study and compared accurate KV and ellipsoid KV based on geometric modeling by linear regression analysis and Bland-Altman analysis. Median eGFR was 46.9 ml/min/1.73 m 2 . Median accurate KV, Vincent KV and ellipsoid KV were 627.7, 619.4 ml (IQR 431.5-947.0) and 694.0 ml (IQR 488.1-1107.4), respectively. Compared with ellipsoid KV (r = 0.9504), Vincent KV correlated strongly with accurate KV (r = 0.9968), without systematic underestimation or overestimation (ellipsoid KV; 14.2 ± 22.0%, Vincent KV; - 0.6 ± 6.0%). There were no significant slice thickness-specific differences (p = 0.2980). The VINCENT method is an accurate and convenient semi-automatic method to measure KV in patients with ADPKD compared with the conventional ellipsoid method.
20 kA PFN capacitor bank with solid-state switching. [pulse forming network for plasma studies
NASA Technical Reports Server (NTRS)
Posta, S. J.; Michels, C. J.
1973-01-01
A compact high-current pulse-forming network capacitor bank using paralleled silicon controlled rectifiers as switches is described. The maximum charging voltage of the bank is 1kV and maximum load current is 20 kA. The necessary switch equalization criteria and performance with dummy load and an arc plasma generator are described.
Geomagnetically induced currents in the Irish power network during geomagnetic storms
NASA Astrophysics Data System (ADS)
Blake, Seán. P.; Gallagher, Peter T.; McCauley, Joe; Jones, Alan G.; Hogg, Colin; Campanyà, Joan; Beggan, Ciarán. D.; Thomson, Alan W. P.; Kelly, Gemma S.; Bell, David
2016-12-01
Geomagnetically induced currents (GICs) are a well-known terrestrial space weather hazard. They occur in power transmission networks and are known to have adverse effects in both high-latitude and midlatitude countries. Here we study GICs in the Irish power transmission network (geomagnetic latitude 54.7-58.5°N) during five geomagnetic storms (6-7 March 2016, 20-21 December 2015, 17-18 March 2015, 29-31 October 2003, and 13-14 March 1989). We simulate electric fields using a plane wave method together with two ground resistivity models, one of which is derived from magnetotelluric measurements (magnetotelluric (MT) model). We then calculate GICs in the 220, 275, and 400 kV transmission network. During the largest of the storm periods studied, the peak electric field was calculated to be as large as 3.8 V km-1, with associated GICs of up to 23 A using our MT model. Using our homogenous resistivity model, those peak values were 1.46 V km-1 and 25.8 A. We find that three 400 and 275 kV substations are the most likely locations for the Irish transformers to experience large GICs.
Essner, Jeffrey J; Amack, Jeffrey D; Nyholm, Molly K; Harris, Erin B; Yost, H Joseph
2005-03-01
Monocilia have been proposed to establish the left-right (LR) body axis in vertebrate embryos by creating a directional fluid flow that triggers asymmetric gene expression. In zebrafish, dorsal forerunner cells (DFCs) express a conserved ciliary dynein gene (left-right dynein-related1, lrdr1) and form a ciliated epithelium inside a fluid-filled organ called Kupffer's vesicle (KV). Here, videomicroscopy demonstrates that cilia inside KV are motile and create a directional fluid flow just prior to the onset of asymmetric gene expression in lateral cells. Laser ablation of DFCs and surgical disruption of KV provide direct evidence that ciliated KV cells are required during early somitogenesis for subsequent LR patterning in the brain, heart and gut. Antisense morpholinos against lrdr1 disrupt KV fluid flow and perturb LR development. Furthermore, lrdr1 morpholinos targeted to DFC/KV cells demonstrate that Lrdr1 functions in these ciliated cells to control LR patterning. This provides the first direct evidence, in any vertebrate, that impairing cilia function in derivatives of the dorsal organizer, and not in other cells that express ciliogenic genes, alters LR development. Finally, genetic analysis reveals novel roles for the T-box transcription factor no tail and the Nodal signaling pathway as upstream regulators of lrdr1 expression and KV morphogenesis. We propose that KV is a transient embryonic 'organ of asymmetry' that directs LR development by establishing a directional fluid flow. These results suggest that cilia are an essential component of a conserved mechanism that controls the transition from bilateral symmetry to LR asymmetry in vertebrates.
Ihara, Yukiko; Tomonoh, Yuko; Deshimaru, Masanobu; Zhang, Bo; Uchida, Taku; Ishii, Atsushi; Hirose, Shinichi
2016-01-01
The hetero-tetrameric voltage-gated potassium channel Kv7.2/Kv7.3, which is encoded by KCNQ2 and KCNQ3, plays an important role in limiting network excitability in the neonatal brain. Kv7.2/Kv7.3 dysfunction resulting from KCNQ2 mutations predominantly causes self-limited or benign epilepsy in neonates, but also causes early onset epileptic encephalopathy. Retigabine (RTG), a Kv7.2/ Kv7.3-channel opener, seems to be a rational antiepileptic drug for epilepsies caused by KCNQ2 mutations. We therefore evaluated the effects of RTG on seizures in two strains of knock-in mice harboring different Kcnq2 mutations, in comparison to the effects of phenobarbital (PB), which is the first-line antiepileptic drug for seizures in neonates. The subjects were heterozygous knock-in mice (Kcnq2Y284C/+ and Kcnq2A306T/+) bearing the Y284C or A306T Kcnq2 mutation, respectively, and their wild-type (WT) littermates, at 63-100 days of age. Seizures induced by intraperitoneal injection of kainic acid (KA, 12mg/kg) were recorded using a video-electroencephalography (EEG) monitoring system. Effects of RTG on KA-induced seizures of both strains of knock-in mice were assessed using seizure scores from a modified Racine's scale and compared with those of PB. The number and total duration of spike bursts on EEG and behaviors monitored by video recording were also used to evaluate the effects of RTG and PB. Both Kcnq2Y284C/+ and Kcnq2A306T/+ mice showed significantly more KA-induced seizures than WT mice. RTG significantly attenuated KA-induced seizure activities in both Kcnq2Y284C/+ and Kcnq2A306T/+ mice, and more markedly than PB. This is the first reported evidence of RTG ameliorating KA-induced seizures in knock-in mice bearing mutations of Kcnq2, with more marked effects than those observed with PB. RTG or other Kv7.2-channel openers may be considered as first-line antiepileptic treatments for epilepsies resulting from KCNQ2 mutations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusev, S. I.; Karpov, V. N.; Kiselev, A. N.
2009-09-15
The results of systems tests of the 500 kV busbar magnetization-controllable shunting reactor (CSR), set up in the Tavricheskaya substation, including measurements of the quality of the electric power, the harmonic composition of the network currents of the reactor for different values of the reactive power consumed, the determination of the regulating characteristics of the reactor, the speed of response of the shunting reactor in the current and voltage stabilization modes, and also the operation of the reactor under dynamic conditions for different perturbations, are presented. The results obtained are analyzed.
NASA Technical Reports Server (NTRS)
Lock, K.; Patalong, H.; Platzoeder, K.
1979-01-01
Using neutron irradiated silicon with considerably lower spread in resistivity as compared to conventionally doped silicon it was possible to produce power thyristors with breakdown voltages between 3.5 kV and 5.5 kV. The thyristor pellets have a diameter of 50 mm. Maximum average on-state currents of 600 to 800 A can be reached with these elements. The dynamic properties of the thryistors could be improved to allow standard applications up to maximum repetitive voltages of 4.5 kV.
Kv10.1 potassium channel: from the brain to the tumors.
Cázares-Ordoñez, V; Pardo, L A
2017-10-01
The KCNH1 gene encodes the Kv10.1 (Eag1) ion channel, a member of the EAG (ether-à-go-go) family of voltage-gated potassium channels. Recent studies have demonstrated that KCHN1 mutations are implicated in Temple-Baraitser and Zimmermann-Laband syndromes and other forms of developmental deficits that all present with mental retardation and epilepsy, suggesting that Kv10.1 might be important for cognitive development in humans. Although the Kv10.1 channel is mainly expressed in the mammalian brain, its ectopic expression occurs in 70% of human cancers. Cancer cells and tumors expressing Kv10.1 acquire selective advantages that favor cancer progression through molecular mechanisms that involve several cellular pathways, indicating that protein-protein interactions may be important for Kv10.1 influence in cell proliferation and tumorigenesis. Several studies on transcriptional and post-transcriptional regulation of Kv10.1 expression have shown interesting mechanistic insights about Kv10.1 role in oncogenesis, increasing the importance of identifying the cellular factors that regulate Kv10.1 expression in tumors.
Telezhkin, Vsevolod; Straccia, Marco; Yarova, Polina; Pardo, Monica; Yung, Sun; Vinh, Ngoc-Nga; Hancock, Jane M; Barriga, Gerardo Garcia-Diaz; Brown, David A; Rosser, Anne E; Brown, Jonathan T; Canals, Josep M; Randall, Andrew D; Allen, Nicholas D; Kemp, Paul J
2018-05-24
Kv7 channels determine the resting membrane potential of neurons and regulate their excitability. Even though dysfunction of Kv7 channels has been linked to several debilitating childhood neuronal disorders, the ontogeny of the constituent genes, which encode Kv7 channels (KNCQ), and expression of their subunits have been largely unexplored. Here, we show that developmentally regulated expression of specific KCNQ mRNA and Kv7 channel subunits in mouse and human striatum is crucial to the functional maturation of mouse striatal neurons and human-induced pluripotent stem cell-derived neurons. This demonstrates their pivotal role in normal development and maturation, the knowledge of which can now be harnessed to synchronise and accelerate neuronal differentiation of stem cell-derived neurons, enhancing their utility for disease modelling and drug discovery.
Mateos-Aparicio, Pedro; Murphy, Ricardo; Storm, Johan F
2014-01-01
The dentate granule cells (DGCs) form the most numerous neuron population of the hippocampal memory system, and its gateway for cortical input. Yet, we have only limited knowledge of the intrinsic membrane properties that shape their responses. Since SK and Kv7/M potassium channels are key mechanisms of neuronal spiking and excitability control, afterhyperpolarizations (AHPs) and synaptic integration, we studied their functions in DGCs. The specific SK channel blockers apamin or scyllatoxin increased spike frequency (excitability), reduced early spike frequency adaptation, fully blocked the medium-duration AHP (mAHP) after a single spike or spike train, and increased postsynaptic EPSP summation after spiking, but had no effect on input resistance (Rinput) or spike threshold. In contrast, blockade of Kv7/M channels by XE991 increased Rinput, lowered the spike threshold, and increased excitability, postsynaptic EPSP summation, and EPSP–spike coupling, but only slightly reduced mAHP after spike trains (and not after single spikes). The SK and Kv7/M channel openers 1-EBIO and retigabine, respectively, had effects opposite to the blockers. Computational modelling reproduced many of these effects. We conclude that SK and Kv7/M channels have complementary roles in DGCs. These mechanisms may be important for the dentate network function, as CA3 neurons can be activated or inhibition recruited depending on DGC firing rate. PMID:24366266
NASA Astrophysics Data System (ADS)
Mulyadi, Y.; Sucita, T.; Rahmawan, M. D.
2018-01-01
This study was a case study in PT. PLN (Ltd.) APJ Bandung area with the subject taken was the installation of distributed generation (DG) on 20-kV distribution channels. The purpose of this study is to find out the effect of DG to the changes in voltage profile and three-phase short circuit fault in the 20-kV distribution system with load conditions considered to be balanced. The reason for this research is to know how far DG can improve the voltage profile of the channel and to what degree DG can increase the three-phase short circuit fault on each bus. The method used in this study was comparing the simulation results of power flow and short-circuit fault using ETAP Power System software with manual calculations. The result obtained from the power current simulation before the installation of DG voltage was the drop at the end of the channel at 2.515%. Meanwhile, the three-phase short-circuit current fault before the DG installation at the beginning of the channel was 13.43 kA. After the installation of DG with injection of 50%, DG power obtained voltage drop at the end of the channel was 1.715% and the current fault at the beginning network was 14.05 kA. In addition, with injection of 90%, DG power obtained voltage drop at the end of the channel was 1.06% and the current fault at the beginning network was 14.13%.
Valdor, Markus; Wagner, Anke; Röhrs, Viola; Berg, Johanna; Fechner, Henry; Schröder, Wolfgang; Tzschentke, Thomas M; Bahrenberg, Gregor; Christoph, Thomas; Kurreck, Jens
2018-01-01
Activation of the neuronal potassium channel Kv7.2 encoded by the KCNQ2 gene has recently been shown to be an attractive mechanism to inhibit nociceptive transmission. However, potent, selective, and clinically proven activators of Kv7.2/Kv7.3 currents with analgesic properties are still lacking. An important prerequisite for the development of new drugs is a model to test the selectivity of novel agonists by abrogating Kv7.2/Kv7.3 function. Since constitutive knockout mice are not viable, we developed a model based on RNA interference-mediated silencing of KCNQ2. By delivery of a KCNQ2-specific short hairpin RNA with adeno-associated virus vectors, we completely abolished the activity of the specific Kv7.2/Kv7.3-opener ICA-27243 in rat sensory neurons. Results obtained in the silencing experiments were consistent between freshly prepared and cryopreserved dorsal root ganglion neurons, as well as in dorsal root ganglion neurons dissociated and cultured after in vivo administration of the silencing vector by intrathecal injections into rats. Interestingly, the tested associated virus serotypes substantially differed with respect to their transduction capability in cultured neuronal cell lines and primary dorsal root ganglion neurons and the in vivo transfer of transgenes by intrathecal injection of associated virus vectors. However, our study provides the proof-of-concept that RNA interference-mediated silencing of KCNQ2 is a suitable approach to create an ex vivo model for testing the specificity of novel Kv7.2/Kv7.3 agonists.
Superconducting fault current limiter for railway transport
NASA Astrophysics Data System (ADS)
Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.
2015-12-01
A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.
Mapping the Interaction Anatomy of BmP02 on Kv1.3 Channel
NASA Astrophysics Data System (ADS)
Wu, B.; Wu, B. F.; Feng, Y. J.; Tao, J.; Ji, Y. H.
2016-07-01
The potassium channel Kv 1.3 plays a vital part in the activation of T lymphocytes and is an attractive pharmacological target for autoimmune diseases. BmP02, a 28-residue peptide isolated from Chinese scorpion (Buthus martensi Karsch) venom, is a potent and selective Kv1.3 channel blocker. However, the mechanism through which BmP02 recognizes and inhibits the Kv1.3 channel is still unclear. In the present study, a complex molecular model of Kv1.3-BmP02 was developed by docking analysis and molecular dynamics simulations. From these simulations, it appears the large β-turn (residues 10-16) of BmP02 might be the binding interface with Kv 1.3. These results were confirmed by scanning alanine mutagenesis of BmP02, which identified His9, Lys11 and Lys13, which lie within BmP02’s β-turn, as key residues for interacting with Kv1.3. Based on these results and molecular modeling, two negatively charged residues of Kv1.3, D421 and D422, located in turret region, were predicted to act as the binding site for BmP02. Mutation of these residues reduced sensitivity of Kv 1.3 to BmP02 inhibition, suggesting that electrostatic interactions play a crucial role in Kv1.3-BmP02 interaction. This study revealed the molecular basis of Kv 1.3 recognition by BmP02 venom, and provides a novel interaction model for Kv channel-specific blocker complex, which may help guide future drug-design for Kv1.3-related channelopathies.
High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator
NASA Astrophysics Data System (ADS)
Park, Sae-Hoon; Kim, Yu-Seok
2015-10-01
The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.
Monaghan, Michael M.; Menegola, Milena; Vacher, Helene; Rhodes, Kenneth J.; Trimmer, James S.
2010-01-01
Summary Altered ion channel expression and/or function may contribute to the development of certain human epilepsies. In rats, systemic administration of pilocarpine induces a model of human temporal lobe epilepsy, wherein a brief period of status epilepticus (SE) triggers development of spontaneous recurrent seizures that appear after a latency of two-three weeks. Here we investigate changes in expression of A-type voltage-gated potassium (Kv) channels, which control neuronal excitability and regulate action potential propagation and neurotransmitter release, in the pilocarpine model of epilepsy. Using immunohistochemistry, we examined the expression of component subunits of somatodendritic (Kv4.2, Kv4.3, KChIPl and KChIP2) and axonal (Kv1.4) A-type Kv channels in hippocampi of pilocarpine-treated rats that entered SE. We found that Kv4.2, Kv4.3 and KChIP2 staining in the molecular layer of the dentate gyrus changes from being uniformly distributed across the molecular layer to concentrated in just the outer two-thirds. We also observed a loss of KChIP1 immunoreactive interneurons, and a reduction of Kv4.2 and KChIP2 staining in stratum radiatum of CA1. These changes begin to appear 1 week after pilocarpine treatment and persist or are enhanced at 4 and 12 weeks. As such, these changes in Kv channel distribution parallel the acquisition of recurrent spontaneous seizures as observed in this model. We also found temporal changes in Kv1.4 immunoreactivity matching those in Timm's stain, being expanded in stratum lucidum of CA3 and in the inner third of the dentate molecular layer. Among pilocarpine-treated rats, changes were only observed in those that entered SE. These changes in A-type Kv channel expression may contribute to hyperexcitability of dendrites in the associated hippocampal circuits as observed in previous studies of the effects of pilocarpine-induced SE. PMID:18727953
Monaghan, M M; Menegola, M; Vacher, H; Rhodes, K J; Trimmer, J S
2008-10-15
Altered ion channel expression and/or function may contribute to the development of certain human epilepsies. In rats, systemic administration of pilocarpine induces a model of human temporal lobe epilepsy, wherein a brief period of status epilepticus (SE) triggers development of spontaneous recurrent seizures that appear after a latency of 2-3 weeks. Here we investigate changes in expression of A-type voltage-gated potassium (Kv) channels, which control neuronal excitability and regulate action potential propagation and neurotransmitter release, in the pilocarpine model of epilepsy. Using immunohistochemistry, we examined the expression of component subunits of somatodendritic (Kv4.2, Kv4.3, KChIPl and KChIP2) and axonal (Kv1.4) A-type Kv channels in hippocampi of pilocarpine-treated rats that entered SE. We found that Kv4.2, Kv4.3 and KChIP2 staining in the molecular layer of the dentate gyrus changes from being uniformly distributed across the molecular layer to concentrated in just the outer two-thirds. We also observed a loss of KChIP1 immunoreactive interneurons, and a reduction of Kv4.2 and KChIP2 staining in stratum radiatum of CA1. These changes begin to appear 1 week after pilocarpine treatment and persist or are enhanced at 4 and 12 weeks. As such, these changes in Kv channel distribution parallel the acquisition of recurrent spontaneous seizures as observed in this model. We also found temporal changes in Kv1.4 immunoreactivity matching those in Timm's stain, being expanded in stratum lucidum of CA3 and in the inner third of the dentate molecular layer. Among pilocarpine-treated rats, changes were only observed in those that entered SE. These changes in A-type Kv channel expression may contribute to hyperexcitability of dendrites in the associated hippocampal circuits as observed in previous studies of the effects of pilocarpine-induced SE.
Inactivated- or killed-virus HIV/AIDS vaccines.
Sheppard, Haynes W
2005-06-01
Inactivated or "killed" virus (KV) is a "classical" approach that has produced safe and effective human and veterinary vaccines but has received relatively little attention in the effort to develop an HIV/AIDS vaccine. Initially, KV and rgp120 subunit vaccines were the two most obvious approaches but, unfortunately, rgp120 has not been efficacious and the KV approach has been limited by a variety of scientific, technical, and sociological factors. For example, when responses to cellular antigens, present on SIV grown in human cells, proved to be largely responsible for efficacy, the KV approach was widely discounted. Similarly, when lab-adapted HIV-1 appeared to lose envelope glycoprotein during preparation (not the case for primary isolates), this was viewed as a fundamental barrier to the KV concept. Also, a preference for "safer", genetically-engineered vaccines, and emphasis on cellular immunity, have left KV low on the priority list for funding agencies and investigators. The recent suggestion that "native" trimeric gp120 displays conserved conformational neutralization epitopes, along with the failure of rgp120, and difficulties in raising strong cellular responses with DNA or vectored vaccines, has restored some interest in the KV concept. In the past 15 years, several groups have initiated pre-clinical development of KV candidates for SIV or HIV and promising, albeit limited, information has been produced. In this chapter we discuss the rationale (including pros and cons) for producing and testing killed-HIV vaccines, the prospects for success, the nature and scope of research needed to test the KV concept, what has been learned to date, and what remains undone.
Progress Monitoring in Grade 5 Science for Low Achievers
ERIC Educational Resources Information Center
Vannest, Kimberly J.; Parker, Richard; Dyer, Nicole
2011-01-01
This article presents procedures and results from a 2-year project developing science key vocabulary (KV) short tests suitable for progress monitoring Grade 5 science in Texas public schools using computer-generated, -administered, and -scored assessments. KV items included KV definitions and important usages in a multiple-choice cloze format. A…
O'Callaghan, Dermott W; Hasdemir, Burcu; Leighton, Mark; Burgoyne, Robert D
2003-12-01
KChIPs (K+ channel interacting proteins) regulate the function of A-type Kv4 potassium channels by modifying channel properties and by increasing their cell surface expression. We have explored factors affecting the localisation of Kv4.2 and the targeting of KChIP1 and other NCS proteins by using GFP-variant fusion proteins expressed in HeLa cells. ECFP-Kv4.2 expressed alone was not retained in the ER but reached the Golgi complex. In cells co-expressing ECFP-Kv4.2 and KChIP1-EYFP, the two proteins were co-localised and were mainly present on the plasma membrane. When KChIP1-EYFP was expressed alone it was instead targeted to punctate structures. This was distinct from the localisation of the NCS proteins NCS-1 and hippocalcin, which were targeted to the trans-Golgi network (TGN) and plasma membrane. The membrane localisation of each NCS protein required myristoylation and minimal myristoylation motifs of hippocalcin or KChIP1 were sufficient to target fusion proteins to either TGN/plasma membrane or to punctate structures. The existence of targeting information within the N-terminal motifs was confirmed by mutagenesis of residues corresponding to three conserved basic amino acids in hippocalcin and NCS-1 at positions 3, 7 and 9. Residues at these positions determined intracellular targeting to the different organelles. Myristoylation and correct targeting of KChIP1 was required for the efficient traffic of ECFP-Kv4.2 to the plasma membrane. Expression of KChIP1(1-11)-EYFP resulted in the formation of enlarged structures that were positive for ERGIC-53 and beta-COP. ECFP-Kv4.2 was also accumulated in these structures suggesting that KChIP1(1-11)-EYFP inhibited traffic out of the ERGIC. We suggest that KChIP1 is targeted by its myristoylation motif to post-ER transport vesicles where it could interact with and regulate the traffic of Kv4 channels to the plasma membrane under the influence of localised Ca2+ signals.
Behavioural and functional characterization of Kv10.1 (Eag1) knockout mice
Ufartes, Roser; Schneider, Tomasz; Mortensen, Lena Sünke; de Juan Romero, Camino; Hentrich, Klaus; Knoetgen, Hendrik; Beilinson, Vadim; Moebius, Wiebke; Tarabykin, Victor; Alves, Frauke; Pardo, Luis A.; Rawlins, J. Nicholas P.; Stuehmer, Walter
2013-01-01
Kv10.1 (Eag1), member of the Kv10 family of voltage-gated potassium channels, is preferentially expressed in adult brain. The aim of the present study was to unravel the functional role of Kv10.1 in the brain by generating knockout mice, where the voltage sensor and pore region of Kv10.1 were removed to render non-functional proteins through deletion of exon 7 of the KCNH1 gene using the ‘3 Lox P strategy’. Kv10.1-deficient mice show no obvious alterations during embryogenesis and develop normally to adulthood; cortex, hippocampus and cerebellum appear anatomically normal. Other tests, including general health screen, sensorimotor functioning and gating, anxiety, social behaviour, learning and memory did not show any functional aberrations in Kv10.1 null mice. Kv10.1 null mice display mild hyperactivity and longer-lasting haloperidol-induced catalepsy, but there was no difference between genotypes in amphetamine sensitization and withdrawal, reactivity to apomorphine and haloperidol in the prepulse inhibition tests or to antidepressants in the haloperidol-induced catalepsy. Furthermore, electrical properties of Kv10.1 in cerebellar Purkinje cells did not show any difference between genotypes. Bearing in mind that Kv10.1 is overexpressed in over 70% of all human tumours and that its inhibition leads to a reduced tumour cell proliferation, the fact that deletion of Kv10.1 does not show a marked phenotype is a prerequisite for utilizing Kv10.1 blocking and/or reduction techniques, such as siRNA, to treat cancer. PMID:23424202
Sánchez-Ponce, Diana; DeFelipe, Javier; Garrido, Juan José; Muñoz, Alberto
2012-01-01
Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation. PMID:23119056
Suppression of Inflammatory Demyelinaton and Axon Degeneration through Inhibiting Kv3 Channels
Jukkola, Peter; Gu, Yuanzheng; Lovett-Racke, Amy E.; Gu, Chen
2017-01-01
The development of neuroprotective and repair strategies for treating progressive multiple sclerosis (MS) requires new insights into axonal injury. 4-aminopyridine (4-AP), a blocker of voltage-gated K+ (Kv) channels, is used in symptomatic treatment of progressive MS, but the underlying mechanism remains unclear. Here we report that deleting Kv3.1—the channel with the highest 4-AP sensitivity—reduces clinical signs in experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. In Kv3.1 knockout (KO) mice, EAE lesions in sensory and motor tracts of spinal cord were markedly reduced, and radial astroglia were activated with increased expression of brain derived neurotrophic factor (BDNF). Kv3.3/Kv3.1 and activated BDNF receptors were upregulated in demyelinating axons in EAE and MS lesions. In spinal cord myelin coculture, BDNF treatment promoted myelination, and neuronal firing via altering channel expression. Therefore, suppressing Kv3.1 alters neural circuit activity, which may enhance BNDF signaling and hence protect axons from inflammatory insults. PMID:29123469
Selective Modulation of K+ Channel Kv7.4 Significantly Affects the Excitability of DRN 5-HT Neurons.
Zhao, Chen; Su, Min; Wang, Yingzi; Li, Xinmeng; Zhang, Yongxue; Du, Xiaona; Zhang, Hailin
2017-01-01
The serotonin (5-HT) system originating in the dorsal raphe nucleus (DRN) is implicated in various mood- and emotion-related disorders, such as anxiety, fear and stress. Abnormal activity of DRN 5-HT neurons is the key factor in the development of these disorders. Here, we describe a crucial role for the Kv7.4 potassium channel in modulating DRN 5-HT neuronal excitability. We demonstrate that Kv7.4 is selectively expressed in 5-HT neurons of the DRN. Using selective Kv7.4 opener fasudil and Kv7.4 knock-out mice, we demonstrate that Kv7.4 is a potent modulator of DRN 5-HT neuronal excitability. Furthermore, we demonstrate that the cellular redox signaling mechanism is involved in this 5-HT activation of Kv7.4. The current study suggests a new strategy for treating psychiatric disorders related to altered activity of DRN 5-HT neurons using K + channel modulators.
Selective Modulation of K+ Channel Kv7.4 Significantly Affects the Excitability of DRN 5-HT Neurons
Zhao, Chen; Su, Min; Wang, Yingzi; Li, Xinmeng; Zhang, Yongxue; Du, Xiaona; Zhang, Hailin
2017-01-01
The serotonin (5-HT) system originating in the dorsal raphe nucleus (DRN) is implicated in various mood- and emotion-related disorders, such as anxiety, fear and stress. Abnormal activity of DRN 5-HT neurons is the key factor in the development of these disorders. Here, we describe a crucial role for the Kv7.4 potassium channel in modulating DRN 5-HT neuronal excitability. We demonstrate that Kv7.4 is selectively expressed in 5-HT neurons of the DRN. Using selective Kv7.4 opener fasudil and Kv7.4 knock-out mice, we demonstrate that Kv7.4 is a potent modulator of DRN 5-HT neuronal excitability. Furthermore, we demonstrate that the cellular redox signaling mechanism is involved in this 5-HT activation of Kv7.4. The current study suggests a new strategy for treating psychiatric disorders related to altered activity of DRN 5-HT neurons using K+ channel modulators. PMID:29311835
Heterogeneity in Kv7 channel function in the cerebral and coronary circulation.
Lee, Sewon; Yang, Yan; Tanner, Miles A; Li, Min; Hill, Michael A
2015-02-01
Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study aimed to examine the hypotheses that (i) Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity and (ii) regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and LAD arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50 μM) was significantly greater in the basilar artery compared to the LAD artery. Similarly, the Kv7 channel inhibitor, linopirdine (10 μM) caused a stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than in the coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. © 2014 John Wiley & Sons Ltd.
Heterogeneity in Kv7 channel function in the Cerebral and Coronary Circulation
Tanner, Miles A.; Li, Min; Hill, Michael A.
2014-01-01
Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study examined the hypotheses that 1. Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity, and 2. regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and left anterior descending (LAD) arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50μM) was significantly greater in basilar compared to LAD. Similarly, the Kv7 channel inhibitor, linopirdine (10μM) caused stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. PMID:25476662
Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability
Steinert, Joern R.; Robinson, Susan W.; Tong, Huaxia; Haustein, Martin D.; Kopp-Scheinpflug, Cornelia; Forsythe, Ian D.
2011-01-01
Summary Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours. PMID:21791288
A compact bipolar pulse-forming network-Marx generator based on pulse transformers.
Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao
2013-11-01
A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.
Mondejar-Parreño, Gema; Callejo, María; Barreira, Bianca; Morales-Cano, Daniel; Esquivel-Ruiz, Sergio; Moreno, Laura; Cogolludo, Angel; Perez-Vizcaino, Francisco
2018-05-02
■The expression of miR-1 is increased in lungs from the Hyp/Su5416 PAH rat model. ■PASMC from this animal model are more depolarised and show decreased expression and activity of Kv1.5. ■miR-1 directly targets Kv1.5 channels, reduces Kv1.5 activity and induces membrane depolarization. ■Antagomir-1 prevents Kv1.5 channel downregulation and the depolarization induced by hypoxia/Su5416 exposition. Impairment of voltage-dependent potassium channel (Kv) plays a central role in the development of cardiovascular diseases, including pulmonary arterial hypertension (PAH). MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the 3'-UTR region of specific mRNAs. The aim of this study was to analyze the effects of miR-1 on Kv channel function in pulmonary arteries (PA). Kv channel activity was studied in PA from healthy animals transfected with miR-1 or scrambled-miR. Kv currents were studied using the whole-cell configuration of patch-clamp technique. The characterization of the Kv1.5 currents was performed with the selective inhibitor DPO-1. miR-1 expression was increased and Kv1.5 channels were decreased in lungs from a rat model of PAH induced by hypoxia and Su5416. miR-1 transfection increased cell capacitance, reduced Kv1.5 currents and induced membrane depolarization in isolated pulmonary artery smooth muscle cells (PASMCs). Luciferase reporter assay indicated that KCNA5, which encodes Kv1.5 channels, is a direct target gene of miR-1. Incubation of PA with Su5416 and hypoxia (3% O 2 ) increased miR-1 and induced a decline in Kv1.5 currents, which was prevented by antagomiR-1. In conclusion, these data indicate that miR-1 induces PASMC hypertrophy and reduces the activity and expression of Kv channels, suggesting a pathophysiological role in PAH. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Pathogenic plasticity of Kv7.2/3 channel activity is essential for the induction of tinnitus.
Li, Shuang; Choi, Veronica; Tzounopoulos, Thanos
2013-06-11
Tinnitus, the perception of phantom sound, is often a debilitating condition that affects many millions of people. Little is known, however, about the molecules that participate in the induction of tinnitus. In brain slices containing the dorsal cochlear nucleus, we reveal a tinnitus-specific increase in the spontaneous firing rate of principal neurons (hyperactivity). This hyperactivity is observed only in noise-exposed mice that develop tinnitus and only in the dorsal cochlear nucleus regions that are sensitive to high frequency sounds. We show that a reduction in Kv7.2/3 channel activity is essential for tinnitus induction and for the tinnitus-specific hyperactivity. This reduction is due to a shift in the voltage dependence of Kv7 channel activation to more positive voltages. Our in vivo studies demonstrate that a pharmacological manipulation that shifts the voltage dependence of Kv7 to more negative voltages prevents the development of tinnitus. Together, our studies provide an important link between the biophysical properties of the Kv7 channel and the generation of tinnitus. Moreover, our findings point to previously unknown biological targets for designing therapeutic drugs that may prevent the development of tinnitus in humans.
NASA Astrophysics Data System (ADS)
Feofanov, Alexey V.; Kudryashova, Kseniya S.; Nekrasova, Oksana V.; Vassilevski, Alexander A.; Kuzmenkov, Alexey I.; Korolkova, Yuliya V.; Grishin, Eugene V.; Kirpichnikov, Mikhail P.
Artificial KcsA-Kv1.x (x = 1, 3) receptors were recently designed by transferring the ligand-binding site from human Kv1.x voltage-gated
NASA Astrophysics Data System (ADS)
Rashid, M. Harunur; Huq, Redwan; Tanner, Mark R.; Chhabra, Sandeep; Khoo, Keith K.; Estrada, Rosendo; Dhawan, Vikas; Chauhan, Satendra; Pennington, Michael W.; Beeton, Christine; Kuyucak, Serdar; Norton, Raymond S.
2014-03-01
HsTX1 toxin, from the scorpion Heterometrus spinnifer, is a 34-residue, C-terminally amidated peptide cross-linked by four disulfide bridges. Here we describe new HsTX1 analogues with an Ala, Phe, Val or Abu substitution at position 14. Complexes of HsTX1 with the voltage-gated potassium channels Kv1.3 and Kv1.1 were created using docking and molecular dynamics simulations, then umbrella sampling simulations were performed to construct the potential of mean force (PMF) of the ligand and calculate the corresponding binding free energy for the most stable configuration. The PMF method predicted that the R14A mutation in HsTX1 would yield a > 2 kcal/mol gain for the Kv1.3/Kv1.1 selectivity free energy relative to the wild-type peptide. Functional assays confirmed the predicted selectivity gain for HsTX1[R14A] and HsTX1[R14Abu], with an affinity for Kv1.3 in the low picomolar range and a selectivity of more than 2,000-fold for Kv1.3 over Kv1.1. This remarkable potency and selectivity for Kv1.3, which is significantly up-regulated in activated effector memory cells in humans, suggest that these analogues represent valuable leads in the development of therapeutics for autoimmune diseases.
Efficiency estimation method of three-wired AC to DC line transfer
NASA Astrophysics Data System (ADS)
Solovev, S. V.; Bardanov, A. I.
2018-05-01
The development of power semiconductor converters technology expands the scope of their application to medium voltage distribution networks (6-35 kV). Particularly rectifiers and inverters of appropriate power capacity complement the topology of such voltage level networks with the DC links and lines. The article presents a coefficient that allows taking into account the increase of transmission line capacity depending on the parameters of it. The application of the coefficient is presented by the example of transfer three-wired AC line to DC in various methods. Dependences of the change in the capacity from the load power factor of the line and the reactive component of the resistance of the transmission line are obtained. Conclusions are drawn about the most efficient ways of converting a three-wired AC line to direct current.
Gokey, Jason J; Dasgupta, Agnik; Amack, Jeffrey D
2015-11-01
Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. Copyright © 2015 Elsevier Inc. All rights reserved.
Gokey, Jason J.; Dasgupta, Agnik; Amack, Jeffrey D.
2015-01-01
Asymmetric fluid flows generated by motile cilia in a transient ‘organ of asymmetry’ are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H+-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer’s vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures—neuromasts and olfactory placodes—suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. PMID:26254189
SU-D-207-03: Development of 4D-CBCT Imaging System with Dual Source KV X-Ray Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, M; Ishihara, Y; Matsuo, Y
Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infraredmore » marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8–105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was −0.65 (with a slope of −0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy.« less
Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel
Ishida, Itzel G.; Rangel-Yescas, Gisela E.; Carrasco-Zanini, Julia
2015-01-01
Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13–14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker’s, accounting for the smaller Kv1.2 gating charge. PMID:25779871
Cisneros, Elsa; Roza, Carolina; Jackson, Nieka; López-García, José Antonio
2015-01-01
Kv7.2 channel expression has been reported to decrease in dorsal root ganglia (DRG) following the induction of a peripheral neuropathy while other experiments show that Kv7.2 accumulates in peripheral neuromas. The mechanisms underlying these novel expression patterns are poorly understood. Here we use immunofluorescence methods to analyze Kv7.2 protein expression changes in sensory neurons following peripheral axotomy and the potential role of axonal transport. Results indicate that DRG neurons express Kv7.2 in ~16% of neurons and that this number decreases by about 65% after axotomy. Damaged neurons were identified in DRG by application of the tracer Fluoro-ruby at the site of injury during surgery. Reduction of Kv7.2 expression was particularly strong in damaged neurons although some loss was also found in putative uninjured neurons. In parallel to the decrease in the soma of axotomized sensory neurons, Kv7.2 accumulated at neuromatose fiber endings. Blockade of axonal transport with either vinblastine (VLB) or colchicine (COL) abolished Kv7.2 redistribution in neuropathic animals. Channel distribution rearrangements did not occur following induction of inflammation in the hind paw. Behavioral tests indicate that protein rearrangements within sensory afferents are essential to the development of allodynia under neuropathic conditions. These results suggest that axotomy enhances axonal transport in injured sensory neurons, leading to a decrease of somatic expression of Kv7.2 protein and a concomitant accumulation in damaged fiber endings. Localized changes in channel expression patterns under pathological conditions may create novel opportunities for Kv7.2 channel openers to act as analgesics.
Cisneros, Elsa; Roza, Carolina; Jackson, Nieka; López-García, José Antonio
2015-01-01
Kv7.2 channel expression has been reported to decrease in dorsal root ganglia (DRG) following the induction of a peripheral neuropathy while other experiments show that Kv7.2 accumulates in peripheral neuromas. The mechanisms underlying these novel expression patterns are poorly understood. Here we use immunofluorescence methods to analyze Kv7.2 protein expression changes in sensory neurons following peripheral axotomy and the potential role of axonal transport. Results indicate that DRG neurons express Kv7.2 in ~16% of neurons and that this number decreases by about 65% after axotomy. Damaged neurons were identified in DRG by application of the tracer Fluoro-ruby at the site of injury during surgery. Reduction of Kv7.2 expression was particularly strong in damaged neurons although some loss was also found in putative uninjured neurons. In parallel to the decrease in the soma of axotomized sensory neurons, Kv7.2 accumulated at neuromatose fiber endings. Blockade of axonal transport with either vinblastine (VLB) or colchicine (COL) abolished Kv7.2 redistribution in neuropathic animals. Channel distribution rearrangements did not occur following induction of inflammation in the hind paw. Behavioral tests indicate that protein rearrangements within sensory afferents are essential to the development of allodynia under neuropathic conditions. These results suggest that axotomy enhances axonal transport in injured sensory neurons, leading to a decrease of somatic expression of Kv7.2 protein and a concomitant accumulation in damaged fiber endings. Localized changes in channel expression patterns under pathological conditions may create novel opportunities for Kv7.2 channel openers to act as analgesics. PMID:26696829
Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.
Haick, Jennifer M; Byron, Kenneth L
2016-09-01
Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body. Published by Elsevier Inc.
High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun
Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.
2016-02-01
Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency “capture” section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems relatedmore » to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. In conclusion, electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator.« less
High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.
Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency “capture” section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems relatedmore » to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. In conclusion, electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator.« less
250 kV 6 mA compact Cockcroft-Walton high-voltage power supply.
Ma, Zhan-Wen; Su, Xiao-Dong; Lu, Xiao-Long; Wei, Zhen; Wang, Jun-Run; Huang, Zhi-Wu; Miao, Tian-You; Su, Tong-Ling; Yao, Ze-En
2016-08-01
A compact power supply system for a compact neutron generator has been developed. A 4-stage symmetrical Cockcroft-Walton circuit is adopted to produce 250 kV direct current high-voltage. A 2-stage 280 kV isolation transformer system is used to drive the ion source power supply. For a compact structure, safety, and reliability during the operation, the Cockcroft-Walton circuit and the isolation transformer system are enclosed in an epoxy vessel containing the transformer oil whose size is about ∅350 mm × 766 mm. Test results indicate that the maximum output voltage of the power supply is 282 kV, and the stability of the output voltage is better than 0.63% when the high voltage power supply is operated at 250 kV, 6.9 mA with the input voltage varying ±10%.
250 kV 6 mA compact Cockcroft-Walton high-voltage power supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhan-Wen; Su, Xiao-Dong; Wei, Zhen
A compact power supply system for a compact neutron generator has been developed. A 4-stage symmetrical Cockcroft-Walton circuit is adopted to produce 250 kV direct current high-voltage. A 2-stage 280 kV isolation transformer system is used to drive the ion source power supply. For a compact structure, safety, and reliability during the operation, the Cockcroft-Walton circuit and the isolation transformer system are enclosed in an epoxy vessel containing the transformer oil whose size is about ∅350 mm × 766 mm. Test results indicate that the maximum output voltage of the power supply is 282 kV, and the stability of themore » output voltage is better than 0.63% when the high voltage power supply is operated at 250 kV, 6.9 mA with the input voltage varying ±10%.« less
Tipparaju, Srinivas M.; Barski, Oleg A.; Srivastava, Sanjay; Bhatnagar, Aruni
2008-01-01
The β-subunits of voltage-gated potassium (Kv) channels are members of aldo-keto reductase (AKR) superfamily. These proteins regulate inactivation and membrane localization of Kv1 and Kv4 channels. The Kvβ proteins bind to pyridine nucleotides with high affinity; however, their catalytic properties remain unclear. Here we report that recombinant rat Kvβ2 catalyzes the reduction of a wide range of aldehydes and ketones. The rate of catalysis was slower (0.06 to 0.2 min−1) than that of other AKRs, but displayed the expected hyperbolic dependence on substrate concentration, with no evidence of allosteric cooperativity. Catalysis was prevented by site-directed substitution of Tyr-90 with phenylalanine, indicating that the acid-base catalytic residue, identified in other AKRs, has a conserved function in Kvβ2. The protein catalyzed the reduction of a broad range of carbonyls including aromatic carbonyls, electrophilic aldehydes and prostaglandins, phospholipid and sugar aldehydes. Little or no activity was detected with carbonyl steroids. Initial velocity profiles were consistent with an ordered bi-bi rapid-equilibrium mechanism in which NADPH binding precedes carbonyl binding. Significant primary kinetic isotope effects (2.0 – 3.1) were observed under single and multiple turnover conditions, indicating that the bond-breaking chemical step is rate-limiting. Structure-activity relationships with a series of para-substituted benzaldehydes indicated that the electronic interactions predominate during substrate binding and that no significant charge develops during the transition state. These data strengthen the view that Kvβ proteins are catalytically-active AKRs that impart redox-sensitivity to Kv channels. PMID:18672894
Role of Kv7 channels in responses of the pulmonary circulation to hypoxia.
Sedivy, Vojtech; Joshi, Shreena; Ghaly, Youssef; Mizera, Roman; Zaloudikova, Marie; Brennan, Sean; Novotna, Jana; Herget, Jan; Gurney, Alison M
2015-01-01
Hypoxic pulmonary vasoconstriction (HPV) is a beneficial mechanism that diverts blood from hypoxic alveoli to better ventilated areas of the lung, but breathing hypoxic air causes the pulmonary circulation to become hypertensive. Responses to airway hypoxia are associated with depolarization of smooth muscle cells in the pulmonary arteries and reduced activity of K(+) channels. As Kv7 channels have been proposed to play a key role in regulating the smooth muscle membrane potential, we investigated their involvement in the development of HPV and hypoxia-induced pulmonary hypertension. Vascular effects of the selective Kv7 blocker, linopirdine, and Kv7 activator, flupirtine, were investigated in isolated, saline-perfused lungs from rats maintained for 3-5 days in an isobaric hypoxic chamber (FiO2 = 0.1) or room air. Linopirdine increased vascular resistance in lungs from normoxic, but not hypoxic rats. This effect was associated with reduced mRNA expression of the Kv7.4 channel α-subunit in hypoxic arteries, whereas Kv7.1 and Kv7.5 were unaffected. Flupirtine had no effect in normoxic lungs but reduced vascular resistance in hypoxic lungs. Moreover, oral dosing with flupirtine (30 mg/kg/day) prevented short-term in vivo hypoxia from increasing pulmonary vascular resistance and sensitizing the arteries to acute hypoxia. These findings suggest a protective role for Kv7.4 channels in the pulmonary circulation, limiting its reactivity to pressor agents and preventing hypoxia-induced pulmonary hypertension. They also provide further support for the therapeutic potential of Kv7 activators in pulmonary vascular disease. Copyright © 2015 the American Physiological Society.
Functional assembly of Kv7.1/Kv7.5 channels with emerging properties on vascular muscle physiology.
Oliveras, Anna; Roura-Ferrer, Meritxell; Solé, Laura; de la Cruz, Alicia; Prieto, Angela; Etxebarria, Ainhoa; Manils, Joan; Morales-Cano, Daniel; Condom, Enric; Soler, Concepció; Cogolludo, Angel; Valenzuela, Carmen; Villarroel, Alvaro; Comes, Núria; Felipe, Antonio
2014-07-01
Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension. © 2014 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Hara, Hidetake; Muraishi, Hiroshi; Matsuzawa, Hiroki; Inoue, Toshiyuki; Nakajima, Yasuo; Satoh, Hitoshi; Abe, Shinji
2015-07-01
We have recently developed a phantom that simulates acute ischemic stroke. We attempted to visualize an acute-stage cerebral infarction by using dual-energy Computed tomography (DECT) to obtain virtual monochromatic images of this phantom. Virtual monochromatic images were created by using DECT voltages from 40 to 100 keV in steps of 10 keV and from 60 to 80 keV in steps of 1 keV, under three conditions of the tube voltage with thin (Sn) filters. Calculation of the CNR values allowed us to evaluate the visualization of acute-stage cerebral infarction. The CNR value of a virtual monochromatic image was the highest at 68 keV under 80 kV / Sn 140 kV, at 72 keV under 100 kV / Sn 140 kV, and at 67 keV under 140 kV / 80 kV. The CNR values of virtual monochromatic images at voltages between 65 and 75 keV were significantly higher than those obtained for all other created images. Therefore, the optimal conditions for visualizing acute ischemic stroke were achievable.
NASA Astrophysics Data System (ADS)
Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.
2017-12-01
The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.
Down-regulation of delayed rectifier K+ channels in the hippocampus of seizure sensitive gerbils.
Lee, Sang-Moo; Kim, Ji-Eun; Sohn, Jong-Hee; Choi, Hui-Chul; Lee, Ju-Sang; Kim, Sung-Hun; Kim, Min-Ju; Choi, Ihn-Geun; Kang, Tae-Cheon
2009-12-16
In order to confirm the species-specific distribution of voltage-gated K(+) (Kv) channels and the definitive relationship between their immunoreactivities and seizure activity, we investigated Kv2.x, Kv3.x and Kv4.x channel immunoreactivities in the hippocampi of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. There was no difference in Kv2.1, Kv3.4, Kv4.2 and Kv4.3 immunoreactivity in the hippocampus between SR and SS gerbils. In comparison to SR gerbils, Kv3.1b immunoreactivity in neurons was significantly lower in SS gerbils instead Kv3.1b-immunoreactive astrocytes were clearly observed in SS gerbils (p<0.05). Kv3.2 immunoreactivity was also significantly lower in neurons of SS gerbils than in those of SR gerbils (p<0.05). Considering the findings of our previous study, these findings suggest that delayed rectifier K(+) channels (Kv1.1, Kv1.2, Kv1.5, Kv1.6, Kv2.1 and Kv3.1-2), not A-type K(+) channels (Kv1.4, Kv3.4 and Kv4.x), may be down-regulated in the SS gerbil hippocampus, as compared to SR gerbils.
Ng, S K; Hesser, J; Zhang, H; Gowrisanker, S; Yakushevich, S; Shulhevich, Y; Abkai, C; Wack, L; Zygmanski, P
2012-06-01
To characterize dosimetric properties of low-cost thin film organic-based photovoltaic (OPV) cells to kV and MV x-ray beams for their usage as large area dosimeter for QA and patient safety monitoring device. A series of thin film OPV cells of various areas and thicknesses were irradiated with MV beams to evaluate the stability and reproducibility of their response, linearity and sensitivity to absorbed dose. The OPV response to x-rays of various linac energies were also characterized. Furthermore the practical (clinical) sensitivity of the cells was determined using IMRT sweeping gap test generated with various gap sizes. To evaluate their potential usage in the development of low cost kV imaging device, the OPV cells were irradiated with kV beam (60-120 kVp) from a fluoroscopy unit. Photocell response to the absorbed dose was characterized as a function of the organic thin film thickness and size, beam energy and exposure for kV beams as well. In addition, photocell response was determined with and without thin plastic scintillator. Response of the OPV cells to the absorbed dose from kV and MV beams are stable and reproducible. The photocell response was linearly proportional to the size and about slightly decreasing with the thickness of the organic thin film, which agrees with the general performance of the photocells in visible light. The photocell response increases as a linear function of absorbed dose and x-ray energy. The sweeping gap tests performed showed that OPV cells have sufficient practical sensitivity to measured MV x-ray delivery with gap size as small as 1 mm. With proper calibration, the OPV cells could be used for online radiation dose measurement for quality assurance and patient safety purposes. Their response to kV beam show promising potential in development of low cost kV radiation detection devices. © 2012 American Association of Physicists in Medicine.
Development of 72kV High Pressure Air-insulated GIS with Vacuum Circuit Breaker
NASA Astrophysics Data System (ADS)
Rokunohe, Toshiaki; Yagihashi, Yoshitaka; Endo, Fumihiro; Aoyagi, Kenji; Saitoh, Hitoshi; Oomori, Takashi
SF6 gas has excellent dielectric strength and interruption performance. For these reasons, it has been widely used for gas insulated switchgear (GIS). However, use of SF6 gas has become regulated under agreements set at the 1997 COP3. So investigation and development for GIS with a lower amount of SF6 gas are being carried out worldwide. Presently, SF6 gas-free GIS has been commercialized for the 24kV class. Air or N2 gas is used as insulation gas for this GIS. On the other hand, SF6 gas-free GIS has not been commercialized for 72kV class GIS. Dielectric strengths of air and N2 gas are approximately 1/3 that of SF6 gas. So to enhance insulation performance of air and N2, we have investigated a hybrid gas insulation system which has the combined features of providing an insulation coating and suitable insulation gas. We have developed the world's first 72kV SF6 gas-free GIS. This paper deals with key technologies for SF6 gas-free GIS such as the hybrid insulation structure, bellows for the high pressure vacuum circuit breaker, a newly designed disconnector and spacer and prevention of particle levitation. Test results of 72kV high pressure air-insulated GIS with the vacuum circuit breaker are described.
Ship electric propulsion simulator based on networking technology
NASA Astrophysics Data System (ADS)
Zheng, Huayao; Huang, Xuewu; Chen, Jutao; Lu, Binquan
2006-11-01
According the new ship building tense, a novel electric propulsion simulator (EPS) had been developed in Marine Simulation Center of SMU. The architecture, software function and FCS network technology of EPS and integrated power system (IPS) were described. In allusion to the POD propeller in ship, a special physical model was built. The POD power was supplied from the simulative 6.6 kV Medium Voltage Main Switchboard, its control could be realized in local or remote mode. Through LAN, the simulated feature information of EPS will pass to the physical POD model, which would reflect the real thruster working status in different sea conditions. The software includes vessel-propeller math module, thruster control system, distribution and emergency integrated management, double closed loop control system, vessel static water resistance and dynamic software; instructor main control software. The monitor and control system is realized by real time data collection system and CAN bus technology. During the construction, most devices such as monitor panels and intelligent meters, are developed in lab which were based on embedded microcomputer system with CAN interface to link the network. They had also successfully used in practice and would be suitable for the future demands of digitalization ship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswal, R.; Jain, P.; Muljadi, Eduard
2016-01-01
The goal of this project was to study the impact of integrating one and two 850-kW wind turbine generators into the eastern power system network of Sumba Island, Indonesia. A model was created for the 20-kV distribution network as it existed in the first quarter of 2015 with a peak load of 5.682 MW. Detailed data were collected for each element of the network. Load flow, short-circuit, and transient analyses were performed using DIgSILENT PowerFactory 15.2.1.
Tamoxifen Inhibition of Kv7.2/Kv7.3 Channels
Ferrer, Tania; Aréchiga-Figueroa, Ivan Arael; Shapiro, Mark S.; Tristani-Firouzi, Martin; Sanchez-Chapula, José A.
2013-01-01
KCNQ genes encode five Kv7 K+ channel subunits (Kv7.1–Kv7.5). Four of these (Kv7.2–Kv7.5) are expressed in the nervous system. Kv7.2 and Kv7.3 are the principal molecular components of the slow voltage-gated M-channel, which regulates neuronal excitability. In this study, we demonstrate that tamoxifen, an estrogen receptor antagonist used in the treatment of breast cancer, inhibits Kv7.2/Kv7.3 currents heterologously expressed in human embryonic kidney HEK-293 cells. Current inhibition by tamoxifen was voltage independent but concentration-dependent. The IC50 for current inhibition was 1.68 ± 0.44 µM. The voltage-dependent activation of the channel was not modified. Tamoxifen inhibited Kv7.2 homomeric channels with a higher potency (IC50 = 0.74 ± 0.16 µM). The mutation Kv7.2 R463E increases phosphatidylinositol- 4,5-bisphosphate (PIP2) - channel interaction and diminished dramatically the inhibitory effect of tamoxifen compared with that for wild type Kv7.2. Conversely, the mutation Kv7.2 R463Q, which decreases PIP2 -channel interaction, increased tamoxifen potency. Similar results were obtained on the heteromeric Kv7.2 R463Q/Kv7.3 and Kv7.2 R463E/Kv7.3 channels, compared to Kv7.2/Kv7.3 WT. Overexpression of type 2A PI(4)P5-kinase (PIP5K 2A) significantly reduced tamoxifen inhibition of Kv7.2/Kv7.3 and Kv7.2 R463Q channels. Our results suggest that tamoxifen inhibited Kv7.2/Kv7.3 channels by interfering with PIP2-channel interaction because of its documented interaction with PIP2 and the similar effect of tamoxifen on various PIP2 sensitive channels. PMID:24086693
Tamoxifen inhibition of kv7.2/kv7.3 channels.
Ferrer, Tania; Aréchiga-Figueroa, Ivan Arael; Shapiro, Mark S; Tristani-Firouzi, Martin; Sanchez-Chapula, José A
2013-01-01
KCNQ genes encode five Kv7 K(+) channel subunits (Kv7.1-Kv7.5). Four of these (Kv7.2-Kv7.5) are expressed in the nervous system. Kv7.2 and Kv7.3 are the principal molecular components of the slow voltage-gated M-channel, which regulates neuronal excitability. In this study, we demonstrate that tamoxifen, an estrogen receptor antagonist used in the treatment of breast cancer, inhibits Kv7.2/Kv7.3 currents heterologously expressed in human embryonic kidney HEK-293 cells. Current inhibition by tamoxifen was voltage independent but concentration-dependent. The IC50 for current inhibition was 1.68 ± 0.44 µM. The voltage-dependent activation of the channel was not modified. Tamoxifen inhibited Kv7.2 homomeric channels with a higher potency (IC50 = 0.74 ± 0.16 µM). The mutation Kv7.2 R463E increases phosphatidylinositol- 4,5-bisphosphate (PIP2) - channel interaction and diminished dramatically the inhibitory effect of tamoxifen compared with that for wild type Kv7.2. Conversely, the mutation Kv7.2 R463Q, which decreases PIP2 -channel interaction, increased tamoxifen potency. Similar results were obtained on the heteromeric Kv7.2 R463Q/Kv7.3 and Kv7.2 R463E/Kv7.3 channels, compared to Kv7.2/Kv7.3 WT. Overexpression of type 2A PI(4)P5-kinase (PIP5K 2A) significantly reduced tamoxifen inhibition of Kv7.2/Kv7.3 and Kv7.2 R463Q channels. Our results suggest that tamoxifen inhibited Kv7.2/Kv7.3 channels by interfering with PIP2-channel interaction because of its documented interaction with PIP2 and the similar effect of tamoxifen on various PIP2 sensitive channels.
NASA Astrophysics Data System (ADS)
Brand, U.
1985-04-01
Gas-insulated failsafe high voltage instrument transformers with system voltages in the range of 123 to 420 kV for outdoor service were developed. The basic physics and high power tests performed on gas-filled instrument transformer housings are discussed. Construction and design of gas-insulated voltage transformers are explained. The insulation of the 123 kV model consists of low pressurized SF6 gas and plastic foils. The 245 kV unit has the same principal design; however, a higher SF6 pressure is used and the apparatus is fitted with a hollow composite insulator made of a fiber reinforced plastics tube and silicone casing. For the 420 kV model the same insulator type is used and a design for the voltage grading along the insulator is developed. The transformers show good performance in service; they are a safe and environment-protecting alternative to oil insulated equipment.
Development of a 66kV Class Rectifier Type Fault Current Limiter System
NASA Astrophysics Data System (ADS)
Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa; Tokuda, Noriaki; Murai, Masaki; Nagasaki, Norihisa; Yuguchi, Kyousuke
A fault current limiter (FCL) is extensively expected to suppress fault current, particularly required for trunk power systems heavily connected high-voltage transmission lines, such as 500 kV class power system which constitutes the nucleus of the electric power system. By installing such FCL in the power system, the system interconnection is possible without the need to raise the capacity of the circuit breakers, and it is expected that FCLs may be used in more efficient power system design. For these reasons, FCLs based on various principles of operation have been developed in the world. In this paper, we have proposed a new type of FCL system, consisting of solid-state diodes, DC coil and bypass AC coil, and described the specification of distribution power system and 66 kV class FCL model. Also we have proposed a 66 kV class prototype single-phase model and the current limiting performance of this model was evaluated using a short circuit generator.
Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells.
Yuan, X J; Wang, J; Juhaszova, M; Golovina, V A; Rubin, L J
1998-04-01
K(+)-channel activity-mediated alteration of the membrane potential and cytoplasmic free Ca2+ concentration ([Ca2+]cyt) is a pivotal mechanism in controlling pulmonary vasomotor tone. By using combined approaches of patch clamp, imaging fluorescent microscopy, and molecular biology, we examined the electrophysiological properties of K+ channels and the role of different K+ currents in regulating [Ca2+]cyt and explored the molecular identification of voltage-gated K+ (KV)- and Ca(2+)-activated K+ (KCa)-channel genes expressed in pulmonary arterial smooth muscle cells (PASMC). Two kinetically distinct KV currents [IK(V)], a rapidly inactivating (A-type) and a noninactivating delayed rectifier, as well as a slowly activated KCa current [IK(Ca)] were identified. IK(V) was reversibly inhibited by 4-aminopyridine (5 mM), whereas IK(Ca) was significantly inhibited by charybdotoxin (10-20 nM). K+ channels are composed of pore-forming alpha-subunits and auxiliary beta-subunits. Five KV-channel alpha-subunit genes from the Shaker subfamily (KV1.1, KV1.2, KV1.4, KV1.5, and KV1.6), a KV-channel alpha-subunit gene from the Shab subfamily (KV2.1), a KV-channel modulatory alpha-subunit (KV9.3), and a KCa-channel alpha-subunit gene (rSlo), as well as three KV-channel beta-subunit genes (KV beta 1.1, KV beta 2, and KV beta 3) are expressed in PASMC. The data suggest that 1) native K+ channels in PASMC are encoded by multiple genes; 2) the delayed rectifier IK(V) may be generated by the KV1.1, KV1.2, KV1.5, KV1.6, KV2.1, and/or KV2.1/KV9.3 channels; 3) the A-type IK(V) may be generated by the KV1.4 channel and/or the delayed rectifier KV channels (KV1 subfamily) associated with beta-subunits; and 4) the IK(Ca) may be generated by the rSlo gene product. The function of the KV channels plays an important role in the regulation of membrane potential and [Ca2+]cyt in PASMC.
Delgado-Ramírez, Mayra; Sánchez-Armass, Sergio; Meza, Ulises; Rodríguez-Menchaca, Aldo A
2018-05-01
Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels. Copyright © 2018 Elsevier B.V. All rights reserved.
Decreased expression of Kv7 channels in Hirchsprung's disease.
O'Donnell, Anne-Marie; Coyle, David; Puri, Prem
2017-07-01
Voltage-dependent K + channels (Kv channels) participate in electrical rhythmicity and smooth muscle responses and are regulated by excitatory and inhibitory neurotransmitters. Kv channels also participate in the interstitial cell of Cajal (ICC) and smooth muscle cell (SMC) responses to neural inputs. The Kv family consists of 12 subfamilies, Kv1-Kv12, with five members of the Kv7 family identified to date: Kv7.1-Kv7.5. A recent study identified the potassium channel Kv7.5 as having a role in the excitability of ICC-IM in the mouse colon. We therefore designed this study to test the hypothesis that Kv7 channels are present in the normal human colon and are reduced in Hirschprung's disease (HSCR). HSCR tissue specimens were collected at the time of pull-through surgery (n=10), while normal control tissue specimens were obtained at the time of colostomy closure in patients with imperforate anus (n=10). Kv7.3-Kv7.5 immunohistochemistry was performed and visualized using confocal microscopy to assess their distribution. Western blot analysis was undertaken to determine Kv7.3-Kv7.5 protein quantification. Kv7.3 and Kv7.4-immunoreactivity was co-localized with neuron and ICC markers, while Kv7.5 was found to be expressed on both ICCs and SMCs. Western blot analysis revealed similar levels of Kv7.3 and Kv7.5 expression in the normal colon and HSCR colon, while Kv7.4 proteins were found to be markedly decreased in ganglionic specimens and decreased further in aganglionic specimens. A deficiency of Kv7.4 channels in the ganglionic and aganglionic bowel may place a role in colonic dysmotility in HSCR. Copyright © 2017 Elsevier Inc. All rights reserved.
Afeli, Serge A Y; Malysz, John; Petkov, Georgi V
2013-01-01
Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction.
Secondary electron emission from a dielectric film subjected to an electric field. M.S. Thesis
NASA Technical Reports Server (NTRS)
Quoc-Nguyen, N.
1977-01-01
An electric field in the range of 0.3,3.3 kV/mm is created normal to a thin film FEP teflon sample which accumulates potential of up to 8.8, 13.7 or 18.3 kV when exposed to an electron beam having energy of 10.0, 15.0 or 20.0 kV, respectively. It is found that the secondary electron emission from the charged sample varies with field. The threshold voltage, at which the secondary electron emission coefficient sigma is unity, drops down from a low field value of 13.73 kV to a high field value of 13.11 kV for a 15.0 kV beam. A computational technique was developed that generates equipotential lines or contours and field vectors above a plane where potential is known. The utilization of conformal transformations allows the extension of the technique to configurations which map into a plane.
NASA Astrophysics Data System (ADS)
Walukow, Stephy B.; Manjang, Salama; Zainuddin, Zahir; Samman, Faizal Arya
2018-03-01
This research is to analyze design of ceramic and polymer 150 kV insulators for the tropical area. The use of an insulator certainly requires an electric field. The leakage current and breakdown voltage this happens the contaminant on the surface of the insulator. This type of contaminant can be rain, dust, salt air, extreme weather (much in tropical climates), industrial pollutants and cracks on the surface resulting in collisions. The method used in this research is magnetic field and electric field isolator using Quicfield software. To get the test results variation ranges 20 kV, 70 kV and 150 kV. Side effects of magnetic and electric fields around the insulator. The simulation results show the accumulated contaminants on the surface. Planning should be done in insulator insulator on unstable insulator. Thus, the approach using this commercially available software can be applied to. Therefore, the development of further simulations on the different types of composite insulators used on.
Exploring Kupffer's Vescicle Through Self Propelled Particle Simulations
NASA Astrophysics Data System (ADS)
Lundy, Kassidy; Dasgupta, Agnik; Amack, Jeff; Manning, M. Lisa
Early development is an important stage in the formation of functional, relatively healthy organisms. In zebrafish embryos, a transient organ in the tailbud called Kupffer's Vescicle (KV) is responsible for the initial left-right (L-R) asymmetry that results in asymmetric organ and tissue placement in the adult zebrafish. Originating as a collection of symmetrically organized monociliated cells, the KV experiences a shift in cell shapes over time that leaves more cells on the anterior or top side of the KV. This arrangement helps to generate a stronger counter-clockwise fluid flow across the anterior side of the organ, which is required for L-R asymmetry. In seeking to understand the source of the shape changes occurring within the KV, we simulate a Self Propelled Particle (SPP) model that includes parameters for cell polarization and speed. We model the KV as a large particle moving in a straight line with constant velocity to mimic the physical forces of the notochord acting on this organ, and we model the surrounding tailbud cells as smaller, slower active particles with an orientation that changes over time due to rotational noise. Our goal is to calculate the forces exerted on the KV by the surrounding tissue, to see if they are sufficient to explain the shape changes we observe in the KV that lead to L-R asymmetry.
Brueggemann, Lyubov I.; Haick, Jennifer M.; Cribbs, Leanne L.
2014-01-01
Recent research suggests that smooth muscle cells express Kv7.4 and Kv7.5 voltage-activated potassium channels, which contribute to maintenance of their resting membrane voltage. New pharmacologic activators of Kv7 channels, ML213 (N-mesitybicyclo[2.2.1]heptane-2-carboxamide) and ICA-069673 N-(6-chloropyridin-3-yl)-3,4-difluorobenzamide), have been reported to discriminate among channels formed from different Kv7 subtypes. We compared the effects of ML213 and ICA-069673 on homomeric human Kv7.4, Kv7.5, and heteromeric Kv7.4/7.5 channels exogenously expressed in A7r5 vascular smooth muscle cells. We found that, despite its previous description as a selective activator of Kv7.2 and Kv7.4, ML213 significantly increased the maximum conductance of homomeric Kv7.4 and Kv7.5, as well as heteromeric Kv7.4/7.5 channels, and induced a negative shift of their activation curves. Current deactivation rates decreased in the presence of the ML213 (10 μM) for all three channel combinations. Mutants of Kv7.4 (W242L) and Kv7.5 (W235L), previously found to be insensitive to another Kv7 channel activator, retigabine, were also insensitive to ML213 (10 μM). In contrast to ML213, ICA-069673 robustly activated Kv7.4 channels but was significantly less effective on homomeric Kv7.5 channels. Heteromeric Kv7.4/7.5 channels displayed intermediate responses to ICA-069673. In each case, ICA-069673 induced a negative shift of the activation curves without significantly increasing maximal conductance. Current deactivation rates decreased in the presence of ICA-069673 in a subunit-specific manner. Kv7.4 W242L responded to ICA-069673-like wild-type Kv7.4, but a Kv7.4 F143A mutant was much less sensitive to ICA-069673. Based on these results, ML213 and ICA-069673 likely bind to different sites and are differentially selective among Kv7.4, Kv7.5, and Kv7.4/7.5 channel subtypes. PMID:24944189
Mani, Bharath K; Robakowski, Christina; Brueggemann, Lyubov I; Cribbs, Leanne L; Tripathi, Abhishek; Majetschak, Matthias; Byron, Kenneth L
2016-03-01
Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K(+) currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 > Kv7.4/Kv7.5 > Kv7.4. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Mani, Bharath K.; Robakowski, Christina; Brueggemann, Lyubov I.; Cribbs, Leanne L.; Tripathi, Abhishek; Majetschak, Matthias
2016-01-01
Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K+ currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 >> Kv7.4/Kv7.5 > Kv7.4. PMID:26700561
Brueggemann, Lioubov I.; Mackie, Alexander R.; Cribbs, Leanne L.; Freda, Jessica; Tripathi, Abhishek; Majetschak, Matthias; Byron, Kenneth L.
2014-01-01
The Kv7 family (Kv7.1–7.5) of voltage-activated potassium channels contributes to the maintenance of resting membrane potential in excitable cells. Previously, we provided pharmacological and electrophysiological evidence that Kv7.4 and Kv7.5 form predominantly heteromeric channels and that Kv7 activity is regulated by protein kinase C (PKC) in response to vasoconstrictors in vascular smooth muscle cells. Direct evidence for Kv7.4/7.5 heteromer formation, however, is lacking. Furthermore, it remains to be determined whether both subunits are regulated by PKC. Utilizing proximity ligation assays to visualize single molecule interactions, we now show that Kv7.4/Kv.7.5 heteromers are endogenously expressed in vascular smooth muscle cells. Introduction of dominant-negative Kv7.4 and Kv7.5 subunits in mesenteric artery myocytes reduced endogenous Kv7 currents by 84 and 76%, respectively. Expression of an inducible protein kinase Cα (PKCα) translocation system revealed that PKCα activation is sufficient to suppress endogenous Kv7 currents in A7r5 rat aortic and mesenteric artery smooth muscle cells. Arginine vasopressin (100 and 500 pm) and the PKC activator phorbol 12-myristate 13-acetate (1 nm) each inhibited human (h) Kv7.5 and hKv7.4/7.5, but not hKv7.4 channels expressed in A7r5 cells. A decrease in hKv7.5 and hKv7.4/7.5 current densities was associated with an increase in PKC-dependent phosphorylation of the channel proteins. These findings provide further evidence for a differential regulation of Kv7.4 and Kv7.5 channel subunits by PKC-dependent phosphorylation and new mechanistic insights into the role of heteromeric subunit assembly for regulation of vascular Kv7 channels. PMID:24297175
Granados-Fuentes, Daniel; Norris, Aaron J; Carrasquillo, Yarimar; Nerbonne, Jeanne M; Herzog, Erik D
2012-07-18
Neurons in the suprachiasmatic nucleus (SCN) display coordinated circadian changes in electrical activity that are critical for daily rhythms in physiology, metabolism, and behavior. SCN neurons depolarize spontaneously and fire repetitively during the day and hyperpolarize, drastically reducing firing rates, at night. To explore the hypothesis that rapidly activating and inactivating A-type (I(A)) voltage-gated K(+) (Kv) channels, which are also active at subthreshold membrane potentials, are critical regulators of the excitability of SCN neurons, we examined locomotor activity and SCN firing in mice lacking Kv1.4 (Kv1.4(-/-)), Kv4.2 (Kv4.2(-/-)), or Kv4.3 (Kv4.3(-/-)), the pore-forming (α) subunits of I(A) channels. Mice lacking either Kv1.4 or Kv4.2 α subunits have markedly shorter (0.5 h) periods of locomotor activity than wild-type (WT) mice. In vitro extracellular multi-electrode recordings revealed that Kv1.4(-/-) and Kv4.2(-/-) SCN neurons display circadian rhythms in repetitive firing, but with shorter periods (0.5 h) than WT cells. In contrast, the periods of wheel-running activity in Kv4.3(-/-) mice and firing in Kv4.3(-/-) SCN neurons were indistinguishable from WT animals and neurons. Quantitative real-time PCR revealed that the transcripts encoding all three Kv channel α subunits, Kv1.4, Kv4.2, and Kv4.3, are expressed constitutively throughout the day and night in the SCN. Together, these results demonstrate that Kv1.4- and Kv4.2-encoded I(A) channels regulate the intrinsic excitability of SCN neurons during the day and night and determine the period and amplitude of circadian rhythms in SCN neuron firing and locomotor behavior.
NASA Astrophysics Data System (ADS)
Wrobel, Eva; Rothenberg, Ina; Krisp, Christoph; Hundt, Franziska; Fraenzel, Benjamin; Eckey, Karina; Linders, Joannes T. M.; Gallacher, David J.; Towart, Rob; Pott, Lutz; Pusch, Michael; Yang, Tao; Roden, Dan M.; Kurata, Harley T.; Schulze-Bahr, Eric; Strutz-Seebohm, Nathalie; Wolters, Dirk; Seebohm, Guiscard
2016-10-01
Most small-molecule inhibitors of voltage-gated ion channels display poor subtype specificity because they bind to highly conserved residues located in the channel's central cavity. Using a combined approach of scanning mutagenesis, electrophysiology, chemical ligand modification, chemical cross-linking, MS/MS-analyses and molecular modelling, we provide evidence for the binding site for adamantane derivatives and their putative access pathway in Kv7.1/KCNE1 channels. The adamantane compounds, exemplified by JNJ303, are highly potent gating modifiers that bind to fenestrations that become available when KCNE1 accessory subunits are bound to Kv7.1 channels. This mode of regulation by auxiliary subunits may facilitate the future development of potent and highly subtype-specific Kv channel inhibitors.
Morishita, Shigeyuki; Ishikawa, Ryo; Kohno, Yuji; Sawada, Hidetaka; Shibata, Naoya; Ikuhara, Yuichi
2018-02-01
The achievement of a fine electron probe for high-resolution imaging in scanning transmission electron microscopy requires technological developments, especially in electron optics. For this purpose, we developed a microscope with a fifth-order aberration corrector that operates at 300 kV. The contrast flat region in an experimental Ronchigram, which indicates the aberration-free angle, was expanded to 70 mrad. By using a probe with convergence angle of 40 mrad in the scanning transmission electron microscope at 300 kV, we attained the spatial resolution of 40.5 pm, which is the projected interatomic distance between Ga-Ga atomic columns of GaN observed along [212] direction.
Afeli, Serge A. Y.; Malysz, John; Petkov, Georgi V.
2013-01-01
Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction. PMID:24073284
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobral, S.T.; Barbosa, J.O.; Numes, J.V.C.
1988-10-01
This paper shows some special ground potential rise characteristics of substations fed by power cables. These characteristics were detected during the study of the interconnected ground system of 14 step-down urban substations fed by the 138 kV underground cable network serving the South Zone of Rio de Janeiro city in Brazil. As this type of system is very common in large cities, the subject can be of general interest for the industry. It was verified that when a fault occurs at a ''cable substation'' (a substation fed exclusively by power cables), almost no ground potential effects were detected at themore » faulted substation or at the other ''cable substations'' of the 138 kV network. However, high values of ground potential occurred at the ''transition substations'' (substations in which the power cables are connected to overhead 138 kV transmission lines, with steel groundwires). That ground potential was enough to produce shocks and equipment damage in certain ''transition substations''. It was verified that this problem has no relation with potential transfer. The paper shows also that the utilization of overhead lines with ACSR groundwires on the initial spans closer to the ''transition substation'' would be enough to avoid the problem. Even if the ACSR conductor is used only at the initial section of one of the lines, a reduction of the problem would be obtained. The paper shows also that the utilization of ACSR ground-wires near the ''transition substations'' contributes to reduce the amount of the copper necessary to control step, touch and mess potentials in these substations. Additional mitigation procedures are also examined in the paper.« less
Harnessing Electrostatic Forces to Grow Bio-inspired Hierarchical Vascular Networks
NASA Astrophysics Data System (ADS)
Behler, Kristopher; Melrose, Zachary; Schott, Andrew; Wetzel, Eric
2012-02-01
Vascular networks provide a system for fluid distribution. Artificial vascular materials with enhanced properties are currently being developed that could ultimately be integrated into systems reliant upon fluid transport while retaining their structural properties. An uninterrupted and controllable supply of liquid is optimal for many applications such as continual self-healing materials, in-situ delivery of index matched fluids, thermal management and drug delivery systems could benefit from a bio-inspired vascular approach that combines complex network geometries with minimal processing parameters. Two such approaches to induce vascular networks are electrohydrodynamic viscous fingering (EHVF) and electrical treeing (ET). EHVF is a phenomenon that occurs when a low viscosity liquid is forced through a high viscosity fluid or matrix, resulting in branches due to capillary and viscous forces in the high viscosity material. By applying voltages of 0 -- 60 kV, finger diameter is reduced. ET is the result of partial discharges in a dielectric material. In the vicinity of a small diameter electrode, the local electric field is greater than the global dielectric strength, causing a localized, step-wise, breakdown to occur forming a highly branched interconnected structure. ET is a viable method to produce networks on a smaller, micron, scale than the products of the EHVF method.
Huang, Hsin-Yi; Cheng, Jen-Kun; Shih, Yang-Hsin; Chen, Pei-Hsuan; Wang, Chin-Lin; Tsaur, Meei-Ling
2005-09-01
Voltage-gated K(+) channel alpha subunits Kv 4.2 and Kv 4.3 are the major contributors of somatodendritic A-type K(+) currents in many CNS neurons. A recent hypothesis suggests that Kv 4 subunits may be involved in pain modulation in dorsal horn neurons. However, whether Kv 4 subunits are expressed in dorsal horn neurons remains unknown. Using immunohistochemistry, we found that Kv 4.2 and Kv 4.3 immunoreactivity was concentrated in the superficial dorsal horn, mainly in lamina II. Both Kv 4.2 and Kv 4.3 appeared on many rostrocaudally orientated dendrites, whereas Kv 4.3 could be also detected from certain neuronal somata. Kv 4.3(+) neurons were a subset of excitatory inerneurons with calretinin(+)/calbindin(-)/PKCgamma(-) markers, and a fraction of them expressed micro-opioid receptors. Kv 4.3(+) neurons also expressed ERK 2 and mGluR 5, which are molecules related to the induction of central sensitization, a mechanism mediating nociceptive plasticity. Together with the expression of Kv 4.3 in VR 1(+) DRG neurons, our data suggest that Kv C4 subunits could be involved in pain modulation.
Archer, Stephen L; Wu, Xi-Chen; Thébaud, Bernard; Nsair, Ali; Bonnet, Sebastien; Tyrrell, Ben; McMurtry, M Sean; Hashimoto, Kyoko; Harry, Gwyneth; Michelakis, Evangelos D
2004-08-06
Hypoxic pulmonary vasoconstriction (HPV) is initiated by inhibition of O2-sensitive, voltage-gated (Kv) channels in pulmonary arterial smooth muscle cells (PASMCs). Kv inhibition depolarizes membrane potential (E(M)), thereby activating Ca2+ influx via voltage-gated Ca2+ channels. HPV is weak in extrapulmonary, conduit pulmonary arteries (PA) and strong in precapillary resistance arteries. We hypothesized that regional heterogeneity in HPV reflects a longitudinal gradient in the function/expression of PASMC O2-sensitive Kv channels. In adult male Sprague Dawley rats, constrictions to hypoxia, the Kv blocker 4-aminopyridine (4-AP), and correolide, a Kv1.x channel inhibitor, were endothelium-independent and greater in resistance versus conduit PAs. Moreover, HPV was dependent on Kv-inhibition, being completely inhibited by pretreatment with 4-AP. Kv1.2, 1.5, Kv2.1, Kv3.1b, Kv4.3, and Kv9.3. mRNA increased as arterial caliber decreased; however, only Kv1.5 protein expression was greater in resistance PAs. Resistance PASMCs had greater K+ current (I(K)) and a more hyperpolarized E(M) and were uniquely O2- and correolide-sensitive. The O2-sensitive current (active at -65 mV) was resistant to iberiotoxin, with minimal tityustoxin sensitivity. In resistance PASMCs, 4-AP and hypoxia inhibited I(K) 57% and 49%, respectively, versus 34% for correolide. Intracellular administration of anti-Kv1.5 antibodies inhibited correolide's effects. The hypoxia-sensitive, correolide-insensitive I(K) (15%) was conducted by Kv2.1. Anti-Kv1.5 and anti-Kv2.1 caused additive depolarization in resistance PASMCs (Kv1.5>Kv2.1) and inhibited hypoxic depolarization. Heterologously expressed human PASMC Kv1.5 generated an O2- and correolide-sensitive I(K) like that in resistance PASMCs. In conclusion, Kv1.5 and Kv2.1 account for virtually all the O2-sensitive current. HPV occurs in a Kv-enriched resistance zone because resistance PASMCs preferentially express O2-sensitive Kv-channels.
Menegola, Milena; Trimmer, James S
2006-11-22
Kv4 family voltage-gated potassium channel alpha subunits and Kv channel-interacting protein (KChIP) and dipeptidyl aminopeptidase-like protein subunits comprise somatodendritic A-type channels in mammalian neurons. Recently, a mouse was generated with a targeted deletion of Kv4.2, a Kv4 alpha subunit expressed in many but not all mammalian brain neurons. Kv4.2-/- mice are grossly indistinguishable from wild-type (WT) littermates. Here we used immunohistochemistry to analyze expression of component Kv4 and KChIP subunits of A-type channels in WT and Kv4.2-/- brains. We found that the expression level, and cellular and subcellular distribution of the other prominent brain Kv4 family member Kv4.3, was indistinguishable between WT and Kv4.2-/- samples. However, we found unanticipated regional and cell-specific decreases in expression of KChIPs. The degree of altered expression of individual KChIP isoforms in different regions and neurons precisely follows the level of Kv4.2 normally found at those sites and presumably their extent of association of these KChIPs with Kv4.2. The dramatic effects of Kv4.2 deletion on KChIP expression suggest that, in addition to previously characterized effects of KChIPs on the functional properties, trafficking, and turnover rate of Kv4 channels, Kv4:KChIP association may confer reciprocal Kv4.2-dependent effects on KChIPs. The impact of Kv4.2 deletion on KChIP expression also supports the major role of KChIPs as auxiliary subunits of Kv4 channels.
The Role of Serotonin in Ventricular Repolarization in Pregnant Mice
Park, Hyelim; Mun, Dasom; Lee, Seung-Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui-Nam; Lee, Moon-Hyoung
2018-01-01
Purpose The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. Materials and Methods We measured current amplitudes and the expression levels of voltage-gated K+ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a−/−-NP). Results During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a−/−-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Conclusion Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. PMID:29436197
The Role of Serotonin in Ventricular Repolarization in Pregnant Mice.
Cui, Shanyu; Park, Hyewon; Park, Hyelim; Mun, Dasom; Lee, Seung Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui Nam; Lee, Moon Hyoung; Joung, Boyoung
2018-03-01
The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(-/-)-NP). During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(-/-)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. © Copyright: Yonsei University College of Medicine 2018
Orts, Diego J. B.; Peigneur, Steve; Madio, Bruno; Cassoli, Juliana S.; Montandon, Gabriela G.; Pimenta, Adriano M. C.; Bicudo, José E. P. W.; Freitas, José C.; Zaharenko, André J.; Tytgat, Jan
2013-01-01
Sea anemone (Cnidaria, Anthozoa) venom is an important source of bioactive compounds used as tools to study the pharmacology and structure-function of voltage-gated K+ channels (KV). These neurotoxins can be divided into four different types, according to their structure and mode of action. In this work, for the first time, two toxins were purified from the venom of Bunodosoma caissarum population from Saint Peter and Saint Paul Archipelago, Brazil. Sequence alignment and phylogenetic analysis reveals that BcsTx1 and BcsTx2 are the newest members of the sea anemone type 1 potassium channel toxins. Their functional characterization was performed by means of a wide electrophysiological screening on 12 different subtypes of KV channels (KV1.1–KV1.6; KV2.1; KV3.1; KV4.2; KV4.3; hERG and Shaker IR). BcsTx1 shows a high affinity for rKv1.2 over rKv1.6, hKv1.3, Shaker IR and rKv1.1, while Bcstx2 potently blocked rKv1.6 over hKv1.3, rKv1.1, Shaker IR and rKv1.2. Furthermore, we also report for the first time a venom composition and biological activity comparison between two geographically distant populations of sea anemones. PMID:23466933
Meneses, David; Vega, Ana V.; Torres-Cruz, Francisco Miguel; Barral, Jaime
2016-01-01
In the last years it has been increasingly clear that KV-channel activity modulates neurotransmitter release. The subcellular localization and composition of potassium channels are crucial to understanding its influence on neurotransmitter release. To investigate the role of KV in corticostriatal synapses modulation, we combined extracellular recording of population-spike and pharmacological blockage with specific and nonspecific blockers to identify several families of KV channels. We induced paired-pulse facilitation (PPF) and studied the changes in paired-pulse ratio (PPR) before and after the addition of specific KV blockers to determine whether particular KV subtypes were located pre- or postsynaptically. Initially, the presence of KV channels was tested by exposing brain slices to tetraethylammonium or 4-aminopyridine; in both cases we observed a decrease in PPR that was dose dependent. Further experiments with tityustoxin, margatoxin, hongotoxin, agitoxin, dendrotoxin, and BDS-I toxins all rendered a reduction in PPR. In contrast heteropodatoxin and phrixotoxin had no effect. Our results reveal that corticostriatal presynaptic KV channels have a complex stoichiometry, including heterologous combinations KV1.1, KV1.2, KV1.3, and KV1.6 isoforms, as well as KV3.4, but not KV4 channels. The variety of KV channels offers a wide spectrum of possibilities to regulate neurotransmitter release, providing fine-tuning mechanisms to modulate synaptic strength. PMID:27379187
Treating autoimmune disorders with venom-derived peptides.
Shen, Bingzheng; Cao, Zhijian; Li, Wenxin; Sabatier, Jean-Marc; Wu, Yingliang
2017-09-01
The effective treatment of autoimmune diseases remains a challenge. Voltage-gated potassium Kv1.3 channels, which are expressed in lymphocytes, are a new therapeutic target for treating autoimmune disease. Consequently, Kv1.3 channel-inhibiting venom-derived peptides are a prospective resource for new drug discovery and clinical application. Area covered: Preclinical and clinical studies have produced a wealth of information on Kv1.3 channel-inhibiting venom-derived peptides, especially from venomous scorpions and sea anemones. This review highlights the advances in screening and design of these peptides with diverse structures and potencies. It focuses on representative strategies for improving peptide selectivity and discusses the preclinical research on those venom-derived peptides as well as their clinical developmental status. Expert opinion: Encouraging results indicate that peptides isolated from the venom of venomous animals are a large resource for discovering immunomodulators that act on Kv1.3 channels. Since the structural diversity of venom-derived peptides determines the variety of their pharmacological activities, the design and optimization of venom-peptides for improved Kv1.3 channel-specificity has been advanced through some representative strategies, such as peptide chemical modification, amino acid residue truncation and binding interface modulation. These advances should further accelerate research, development and the future clinical application of venom-derived peptides selectively targeting Kv1.3 channels.
SU-E-J-22: A Feasibility Study On KV-Based Whole Breast Radiation Patient Setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Q; Zhang, M; Yue, N
Purpose: In room kilovoltage x-ray (kV) imaging provides higher contrast than Megavoltage (MV) imaging with faster acquisition time compared with on-board cone-beam computed tomography (CBCT), thus improving patient setup accuracy and efficiency. In this study we evaluated the clinical feasibility of utilizing kV imaging for whole breast radiation patient setup. Methods: For six breast cancer patients with whole breast treatment plans using two opposed tangential fields, MV-based patient setup was conducted by aligning patient markers with in room lasers and MV portal images. Beam-eye viewed kV images were acquired using Varian OBI system after the set up process. In housemore » software was developed to transfer MLC blocks information overlaying onto kV images to demonstrate the field shape for verification. KV-based patient digital shift was derived by performing rigid registration between kV image and the digitally reconstructed radiography (DRR) to align the bony structure. This digital shift between kV-based and MV-based setup was defined as setup deviation. Results: Six sets of kV images were acquired for breast patients. The mean setup deviation was 2.3mm, 2.2mm and 1.8mm for anterior-posterior, superior-inferior and left-right direction respectively. The average setup deviation magnitude was 4.3±1.7mm for six patients. Patient with large breast had a larger setup deviation (4.4–6.2mm). There was no strong correlation between MV-based shift and setup deviation. Conclusion: A preliminary clinical workflow for kV-based whole breast radiation setup was established and tested. We observed setup deviation of the magnitude below than 5mm. With the benefit of providing higher contrast and MLC block overlaid on the images for treatment field verification, it is feasible to use kV imaging for breast patient setup.« less
E3 ligase CHIP and Hsc70 regulate Kv1.5 protein expression and function in mammalian cells.
Li, Peili; Kurata, Yasutaka; Maharani, Nani; Mahati, Endang; Higaki, Katsumi; Hasegawa, Akira; Shirayoshi, Yasuaki; Yoshida, Akio; Kondo, Tatehito; Kurozawa, Youichi; Yamamoto, Kazuhiro; Ninomiya, Haruaki; Hisatome, Ichiro
2015-09-01
Kv1.5 confers ultra-rapid delayed-rectifier potassium channel current (IKur) which contributes to repolarization of the atrial action potential. Kv1.5 proteins, degraded via the ubiquitin-proteasome pathway, decreased in some atrial fibrillation patients. Carboxyl-terminus heat shock cognate 70-interacting protein (CHIP), an E3 ubiquitin ligase, is known to ubiquitinate short-lived proteins. Here, we investigated the roles of CHIP in Kv1.5 degradation to provide insights into the mechanisms of Kv1.5 decreases and treatments targeting Kv1.5 for atrial fibrillation. Coexpression of CHIP with Kv1.5 in HEK293 cells increased Kv1.5 protein ubiquitination and decreased the protein level. Immunofluorescence revealed decreases of Kv1.5 proteins in the endoplasmic reticulum and on the cell membrane. A siRNA against CHIP suppressed Kv1.5 protein ubiquitination and increased its protein level. CHIP mutants, lacking either the N-terminal tetratricopeptide region domain or the C-terminal U-box domain, failed to exert these effects on Kv1.5 proteins. Immunoprecipitation showed that CHIP formed complexes with Kv1.5 proteins and heat shock cognate protein 70 (Hsc70). Effects of Hsc70 on Kv1.5 were similar to CHIP by altering interaction of CHIP with Kv1.5 protein. Coexpression of CHIP and Hsc70 with Kv1.5 additionally enhanced Kv1.5 ubiquitination. Kv1.5 currents were decreased by overexpression of CHIP or Hsc70 but were increased by knockdown of CHIP or Hsc70 in HEK 293 cells stably expressing Kv1.5. These effects of CHIP and Hsc70 were also observed on endogenous Kv1.5 in HL-1 mouse cardiomyocytes, decreasing IKur and prolonging action potential duration. These results indicate that CHIP decreases the Kv1.5 protein level and functional channel by facilitating its degradation in concert with chaperone Hsc70. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nerbonne, Jeanne M; Gerber, Benjamin R; Norris, Aaron; Burkhalter, Andreas
2008-03-15
Considerable experimental evidence has accumulated demonstrating a role for voltage-gated K(+) (Kv) channel pore-forming (alpha) subunits of the Kv4 subfamily in the generation of fast transient outward K(+), I(A), channels. Immunohistochemical data suggest that I(A) channels in hippocampal and cortical pyramidal neurons reflect the expression of homomeric Kv4.2 channels. The experiments here were designed to define directly the role of Kv4.2 in the generation of I(A) in cortical pyramidal neurons and to determine the functional consequences of the targeted deletion of Kv4.2 on the resting and active membrane properties of these cells. Whole-cell voltage-clamp recordings, obtained from visual cortical pyramidal neurons isolated from mice in which the KCND2 (Kv4.2) locus was disrupted (Kv4.2-/- mice), revealed that I(A) is indeed eliminated. In addition, the densities of other Kv current components, specifically I(K) and I(ss), are increased significantly (P < 0.001) in most ( approximately 80%) Kv4.2-/- cells. The deletion of KCND2 (Kv4.2) and the elimination of I(A) is also accompanied by the loss of the Kv4 channel accessory protein KChIP3, suggesting that in the absence of Kv4.2, the KChIP3 protein is targeted for degradation. The expression levels of several Kv alpha subunits (Kv4.3, Kv1.4, Kv2.1, Kv2.2), however, are not measurably altered in Kv4.2-/- cortices. Although I(A) is eliminated in Kv4.2-/- pyramidal neurons, the mean +/- s.e.m. current threshold for action potential generation and the waveforms of action potentials are indistinguishable from those recorded from wild-type cells. Repetitive firing is also maintained in Kv4.2-/- cortical pyramidal neurons, suggesting that the increased densities of I(K) and I(ss) compensate for the in vivo loss of I(A).
NASA Astrophysics Data System (ADS)
Liu, Xiaoxin; Feng, Peilei; Jan, Lisheng; Dai, Xiaozhong; Cai, Pengcheng
2018-01-01
In recent years, Nujiang Prefecture vigorously develop hydropower, the grid structure in the northwest of Yunnan Province is not perfect, which leads to the research and construction of the power grid lags behind the development of the hydropower. In 2015, the company in view of the nu river hydropower dilemma decided to change outside the nu river to send out a passage with series compensation device in order to improve the transmission capacity, the company to the main problems related to the system plan, but not too much in the region distribution network and detailed study. Nujiang power grid has unique structure and properties of the nujiang power grid after respectively, a whole rack respectively into two parts, namely power delivery channels, load power supply, the whole grid occurred fundamental changes, the original strategy of power network is not applicable, especially noteworthy is the main failure after network of independent operation problem, how to avoid the local series, emergency problem is more urgent, very tolerance test area power grid, this paper aims at the analysis of existing data, simulation, provide a reference for respectively after the operation for the stable operation of the power grid.
Kv1.5 in the immune system: the good, the bad, or the ugly?
Felipe, Antonio; Soler, Concepció; Comes, Núria
2010-01-01
For the last 20 years, knowledge of the physiological role of voltage-dependent potassium channels (Kv) in the immune system has grown exponentially. Leukocytes express a limited repertoire of Kv channels, which contribute to the membrane potential. These proteins are involved in the immune response and are therefore considered good pharmacological targets. Although there is a clear consensus about the physiological relevance of Kv1.3, the expression and the role of Kv1.5 are controversial. However, recent reports indicate that certain heteromeric Kv1.3/Kv1.5 associations may provide insight on Kv1.5. Here, we summarize what is known about this issue and highlight the role of Kv1.5 partnership interactions that could be responsible for this debate. The Kv1.3/Kv1.5 heterotetrameric composition of the channel and their possible differential associations with accessory regulatory proteins warrant further investigation.
The Natural Plant Product Rottlerin Activates Kv7.1/KCNE1 Channels.
Matschke, Veronika; Piccini, Ilaria; Schubert, Janina; Wrobel, Eva; Lang, Florian; Matschke, Johann; Amedonu, Elsie; Meuth, Sven G; Strünker, Timo; Strutz-Seebohm, Nathalie; Greber, Boris; Scherkenbeck, Jürgen; Seebohm, Guiscard
2016-01-01
Acquired as well as inherited channelopathies are disorders that are caused by altered ion channel function. A family of channels whose malfunction is associated with different channelopathies is the Kv7 K+ channel family; and restoration of normal Kv7 channel function by small molecule modulators is a promising approach for treatment of these often fatal diseases. Here, we show the modulation of Kv7 channels by the natural compound Rottlerin heterologously expressed in Xenopus laevis oocytes and on iPSC cardiomyocytes overexpressing Kv7.1 channels. We show that currents carried by Kv7.1 (EC50 = 1.48 μM), Kv7.1/KCNE1 (EC50 = 4.9 μM), and Kv7.4 (EC50 = 0.148 μM) are strongly enhanced by the compound, whereas Kv7.2, Kv7.2/Kv7.3, and Kv7.5 are not sensitive to Rottlerin. Studies on Kv7.1/KCNE1 mutants and in silico modelling indicate that Rottlerin binds to the R-L3-activator site. Rottlerin mediated activation of Kv7.1/KCNE1 channels might be a promising approach in long QT syndrome. As a proof of concept, we show that Rottlerin shortens cardiac repolarisation in iPSC-derived cardiomyocytes expressing Kv7.1. Rottlerin or an optimized derivative holds a potential as QT interval correcting drug. © 2016 The Author(s) Published by S. Karger AG, Basel.
Zhang, F; Mi, Y; Qi, JL; Li, JW; Si, M; Guan, BC; Du, XN; An, HL; Zhang, HL
2013-01-01
Background and Purpose Modulation of Kv7/M channel function represents a relatively new strategy to treat neuronal excitability disorders such as epilepsy and neuropathic pain. We designed and synthesized a novel series of pyrazolo[1,5-a] pyrimidin-7(4H)-one compounds, which activate Kv7 channels. Here, we characterized the effects of the lead compound, QO-58, on Kv7 channels and investigated its mechanism of action. Experimental Approach A perforated whole-cell patch technique was used to record Kv7 currents expressed in mammalian cell lines and M-type currents from rat dorsal root ganglion neurons. The effects of QO-58 in a rat model of neuropathic pain, chronic constriction injury (CCI) of the sciatic nerve, were also examined. Key Results QO-58 increased the current amplitudes, shifted the voltage-dependent activation curve in a more negative direction and slowed the deactivation of Kv7.2/Kv7.3 currents. QO-58 activated Kv7.1, Kv7.2, Kv7.4 and Kv7.3/Kv7.5 channels with a more selective effect on Kv7.2 and Kv7.4, but little effect on Kv7.3. The mechanism of QO-58's activation of Kv7 channels was clearly distinct from that used by retigabine. A chain of amino acids, Val224Val225Tyr226, in Kv7.2 was important for QO-58 activation of this channel. QO-58 enhanced native neuronal M currents, resulting in depression of evoked action potentials. QO-58 also elevated the pain threshold of neuropathic pain in the sciatic nerve CCI model. Conclusions and Implications The results indicate that QO-58 is a potent modulator of Kv7 channels with a mechanism of action different from those of known Kv7 openers. Hence, QO-58 shows potential as a treatment for diseases associated with neuronal hyperexcitability. PMID:23013484
Development of Electromagnetically Actuated Vacuum Circuit Breaker for 72kV Rated Switchgear
NASA Astrophysics Data System (ADS)
Kim, Tae-Hyun; Tsukima, Mitsuru; Maruyama, Akihiko; Takahara, Osamu; Haruna, Kazushi; Yano, Tomotaka; Matsunaga, Toshihiro; Imamura, Kazuaki; Arioka, Masahiro; Takeuchi, Toshie
A new electromagnetically actuated vacuum circuit breaker (VCB) has been developed for a 72kV rated switchgear. Each phase of this VCB has a plurality of compact electromagnetic actuators linked mechanically providing the required driving energy. The mechanical linkage working as a lever magnifies an actuator stroke to the required stroke of a 72kV rated vacuum interrupter. An electromagnetic analysis coupled with motion, which considers the mechanical linkage of the plural actuators, has been developed for designing the driving behavior of this VCB. Using this analytical method and a quality engineering method known as the Taguchi method, we have clarified effective parameters to reduce the time difference of the driving behavior for tolerance specifications. Moreover, analyzing the oscillatory behavior closing the contacts, a structure of this VCB has been designed to reduce the bounce duration. The developed new VCB has been confirmed that a time difference is short enough and bounce duration is reduced. This VCB is highly reliable against variations in manufacturing and environment.
Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roura-Ferrer, Meritxell; Sole, Laura; Martinez-Marmol, Ramon
Voltage-dependent K{sup +} channels (Kv) are involved in myocyte proliferation and differentiation by triggering changes in membrane potential and regulating cell volume. Since Kv7 channels may participate in these events, the purpose of this study was to investigate whether skeletal muscle Kv7.1 and Kv7.5 were involved during proliferation and myogenesis. Here we report that, while myotube formation did not regulate Kv7 channels, Kv7.5 was up-regulated during cell cycle progression. Although, Kv7.1 mRNA also increased during the G{sub 1}-phase, pharmacological evidence mainly involves Kv7.5 in myoblast growth. Our results indicate that the cell cycle-dependent expression of Kv7.5 is involved in skeletalmore » muscle cell proliferation.« less
Localization of A-type K+ channel subunit Kv4.2 in rat brain.
Tsaur, M L; Wu, Y L; Huang, F L; Shih, Y H
2001-09-30
Kv4.2, a voltage-gated K+ (Kv) channel subunit, has been suggested to be the key component of the subthreshold A-type K+ currents (I(SA)s) recorded from the specific subcellular compartments of certain CNS neurons. To correlate Kv4.2 localization with the I(SA)s detected, immunohistochemistry will be useful. Although the Kv4.2 immunostaining pattern in the hippocampus and cerebellum has been reported, the Kv4.2 antibody used was not specific. Furthermore, Kv4.2 localization in other brain regions remains unclear. In this report, we first demonstrated the specificity of a new Kv4.2 antibody, and then used it to examine Kv4.2 localization throughout adult rat brain by immunohistochemistry. At the cellular level, Kv4.2 was found in neurons but not glias. At the subcellular level, Kv4.2 was localized in the somatodendritic compartment of most neurons examined. Nevertheless, our preliminary data indicated that Kv4.2 might be also present in the axon/terminal compartment. At the functional level, our data indicates that Kv4.2 localization and I(SA) correlate quite well in some CNS neurons, supporting that Kv4.2 is the key component of some I(SA)s recorded in vivo.
Kyle, B; Bradley, E; Ohya, S; Sergeant, G P; McHale, N G; Thornbury, K D; Hollywood, M A
2011-11-01
We have characterized the native voltage-dependent K(+) (K(v)) current in rabbit urethral smooth muscle cells (RUSMC) and compared its pharmacological and biophysical properties with K(v)2.1 and K(v)2.2 channels cloned from the rabbit urethra and stably expressed in human embryonic kidney (HEK)-293 cells (HEK(Kv2.1) and HEK(Kv2.2)). RUSMC were perfused with Hanks' solution at 37°C and studied using the patch-clamp technique with K(+)-rich pipette solutions. Cells were bathed in 100 nM Penitrem A (Pen A) to block large-conductance Ca(2+)-activated K(+) (BK) currents and depolarized to +40 mV for 500 ms to evoke K(v) currents. These were unaffected by margatoxin, κ-dendrotoxin, or α-dendrotoxin (100 nM, n = 3-5) but were blocked by stromatoxin-1 (ScTx, IC(50) ∼130 nM), consistent with the idea that the currents were carried through K(v)2 channels. RNA was detected for K(v)2.1, K(v)2.2, and the silent subunit K(v)9.3 in urethral smooth muscle. Immunocytochemistry showed membrane staining for both K(v)2 subtypes and K(v)9.3 in isolated RUSMC. HEK(Kv2.1) and HEK(Kv2.2) currents were blocked in a concentration-dependent manner by ScTx, with estimated IC(50) values of ∼150 nM (K(v)2.1, n = 5) and 70 nM (K(v)2.2, n = 6). The mean half-maximal voltage (V(1/2)) of inactivation of the USMC K(v) current was -56 ± 3 mV (n = 9). This was similar to the HEK(Kv2.1) current (-55 ± 3 mV, n = 13) but significantly different from the HEK(Kv2.2) currents (-30 ± 3 mV, n = 11). Action potentials (AP) evoked from RUSMC studied under current-clamp mode were unaffected by ScTx. However, when ScTx was applied in the presence of Pen A, the AP duration was significantly prolonged. Similarly, ScTx increased the amplitude of spontaneous contractions threefold, but only after Pen A application. These data suggest that K(v)2.1 channels contribute significantly to the K(v) current in RUSMC.
Lower KV7.5 Potassium Channel Subunit Expression in an Animal Model of Paroxysmal Dystonia.
Sander, Svenja E; Diwan, Mustansir; Raymond, Roger; Nobrega, José N; Richter, Angelika
2016-01-01
Dystonia is a hyperkinetic disabling movement disorder. In the dt(sz) hamster, a model of paroxysmal dystonia, pronounced antidystonic effects of the KV7.2-5 potassium channel opener retigabine and aggravation of dystonia by a selective KV7.2-5 blocker indicated a pathophysiological role of an abnormal expression of KV7 channels. We therefore investigated the expression of KV7 subunits in brains of dystonic hamsters. While KV7.2 and KV7.3 subunits were unaltered, lower KV7.5 mRNA levels became evident in motor areas and in limbic structures of dystonic hamsters. The KV7.2/3 subunit-preferring channel opener N-(6-chloropyridin-3-yl)-3,4- difluorobenzamide (ICA 27243; 10-30 mg/kg i.p.) failed to reduce the severity of dystonia in mutant hamsters, suggesting that the previously observed antidystonic action of retigabine is mediated by the activation of KV7.5 channels. The experiments indicate a functional relevance for KV7.5 channels in paroxysmal dystonia. We suggest that compounds highly selective for subtypes of KV7 channels, i.e. for KV7.5, may provide new therapeutic approaches.
Cox, Robert H; Fromme, Samantha
2016-12-01
We have shown that three components contribute to functional voltage gated K + (K v ) currents in rat small mesenteric artery myocytes: (1) Kv1.2 plus Kv1.5 with Kvβ1.2 subunits, (2) Kv2.1 probably associated with Kv9.3 subunits, and (3) Kv7.4 subunits. To confirm and address subunit stoichiometry of the first two, we have compared the biophysical properties of K v currents in small mesenteric artery myocytes with those of K v subunits heterologously expressed in HEK293 cells using whole cell voltage clamp methods. Selective inhibitors of Kv1 (correolide, COR) and Kv2 (stromatoxin, ScTx) channels were used to separate these K v current components. Conductance-voltage and steady state inactivation data along with time constants of activation, inactivation, and deactivation of native K v components were generally well represented by those of Kv1.2-1.5-β1.2 and Kv2.1-9.3 channels. The slope of the steady state inactivation-voltage curve (availability slope) proved to be the most sensitive measure of accessory subunit presence. The availability slope curves exhibited a single peak for both native K v components. Availability slope curves for Kv1.2-1.5-β1.2 and Kv2.1-9.3 channels expressed in human embryonic kidney cells also exhibited a single peak that shifted to more depolarized voltages with increasing accessory to α subunit transfection ratio. Availability slope curves for SxTc-insensitive currents were similar to those of Kv1.2-1.5 expressed with Kvβ1.2 at a 1:5 molar ratio while curves for COR-insensitive currents closely resembled those of Kv2.1 expressed with Kv9.3 at a 1:1 molar ratio. These results support the suggested K v subunit combinations in small mesenteric artery, and further suggest that Kv1 α and Kvβ1.2 but not Kv2.1 and Kv9.3 subunits are present in a saturated (4:4) stoichiometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Ganesh, H; Weir, V
Purpose: CARE kV is a tool that automatically recommends optimal kV setting for individual patient for specific CT examination. The use of CARE kV depends on topogram and the user-selected contrast behavior. CARE kV is expected to reduce radiation dose while improving image quality. However, this may work only for certain groups of patients and/or certain CT examinations. This study is to investigate the effects of CARE kV on radiation dose of non-contrast examination of CT abdomen/pelvis. Methods: Radiation dose (CTDIvol and DLP) from patients who underwent abdomen/pelvis non-contrast examination with and without CARE kV were retrospectively reviewed. All patientsmore » were scanned in the same scanner (Siemens Somatom AS64). To mitigate any possible influences due to technologists’ unfamiliarity with the CARE kV, the data with CARE kV were retrieved 1.5 years after the start of CARE kV usage. T-test was used for significant difference in radiation dose. Results: Volume CTDIs and DLPs from 18 patients before and 24 patients after the use of CARE kV were obtained in a duration of one month. There is a slight increase in both average CTDIvol and average DLP with CARE kV compared to those without CARE kV (25.52 mGy vs. 22.65 mGy for CTDIvol; 1265.81 mGy-cm vs. 1199.19 mGy-cm). Statistically there was no significant difference. Without CARE kV, 140 kV was used in 9 of 18 patients, while with CARE KV, 140 kV was used in 15 of 24 patients. 80kV was not used in either group. Conclusion: The use of CARE kV may save time for protocol optimization and minimize variability among technologists. Radiation dose reduction was not observed in non-contrast examinations of CT abdomen/pelvis. This was partially because our CT protocols were tailored according to patient size before CARE kV and partially because of large size patients.« less
Kim, Sung Eun; Ahn, Hye Sook; Choi, Bok Hee; Jang, Hyun-Jong; Kim, Myung-Jun; Rhie, Duck-Joo; Yoon, Shin-Hee; Jo, Yang-Hyeok; Kim, Myung-Suk; Sung, Ki-Wug; Hahn, Sang June
2007-05-01
The effects of sibutramine on voltage-gated K+ channel (Kv)4.3, Kv1.3, and Kv3.1, stably expressed in Chinese hamster ovary cells, were investigated using the whole-cell patch-clamp technique. Sibutramine did not significantly decrease the peak Kv4.3 currents, but it accelerated the rate of decay of current inactivation in a concentration-dependent manner. This phenomenon was effectively characterized by integrating the total current over the duration of a depolarizing pulse to +40 mV. The IC50 value for the sibutramine block of Kv4.3 was 17.3 microM. Under control conditions, the inactivation of Kv4.3 currents could be fit to a biexponential function, and the time constants for the fast and slow components were significantly decreased after the application of sibutramine. The association (k+1) and dissociation (k-1) rate constants for the sibutramine block of Kv 4.3 were 1.51 microM-1s-1 and 27.35 s-1, respectively. The theoretical KD value, derived from k-1/k+1, yielded a value of 18.11 microM. The block of Kv4.3 by sibutramine displayed a weak voltage dependence, increasing at more positive potentials, and it was use-dependent at 2 Hz. Sibutramine did not affect the time course for the deactivating tail currents. Neither steady-state activation and inactivation nor the recovery from inactivation was affected by sibutramine. Sibutramine caused the concentration-dependent block of the Kv1.3 and Kv3.1 currents with an IC50 value of 3.7 and 32.7 microM, respectively. In addition, sibutramine reduced the tail current amplitude and slowed the deactivation of the tail currents of Kv1.3 and Kv3.1, resulting in a crossover phenomenon. These results indicate that sibutramine acts on Kv4.3, Kv1.3, and Kv3.1 as an open channel blocker.
Ebbinghaus, Jan; Legros, Christian; Nolting, Andreas; Guette, Catherine; Celerier, Marie-Louise; Pongs, Olaf; Bähring, Robert
2004-06-15
In order to find new peptide inhibitors for voltage-dependent potassium (Kv) channels, we examined the effects of venom from Theraphosa leblondi on Kv channel-mediated currents with the whole-cell patch-clamp technique. Both A-type currents in cultured hippocampal neurons and A-type currents recorded from HEK 293 cells transiently expressing recombinant Kv4.2 channels were selectively inhibited by T. leblondi venom. No venom activity was observed on recombinant Kv1.3, Kv1.4, Kv2.1 or Kv3.4 channels. We purified and sequenced three novel homologous peptides from this venom, which are related to previously identified Kv4 channel-specific peptide inhibitors and were named T. leblondi toxin (TLTx) 1, 2 and 3. The mode of action of TLTx1 on recombinant Kv4.2 channels was studied in more detail. TLTx1 inhibited Kv4.2-mediated currents with an IC50 of approximately 200 nM, and macroscopic current inactivation was slowed in the presence of TLTx1. Notably, TLTx1 also caused a shallower voltage dependence of Kv4.2 peak conductance and a shift of the activation midpoint to more positive potentials (DeltaV1/2 = +35 mV). TLTx1 caused a noticable slowing of Kv4.2 activation kinetics, and Kv4.2 deactivation kinetics were accelerated by TLTx1 as infered from Rb+ tail current measurements. Chimeric Kv2.1(4.2L3-4) channels, in which the linker region between S3 and S4 of the TLTx1-insensitive Kv2.1 channel was replaced by the corresponding Kv4.2 domain, were sensitive to TLTx1. Apparently, TLTx1 can act as a gating modifier of Kv4.2 channels. Copyright 2004 Elsevier Ltd.
The 80 kV electrostatic wire septum for AmPS
NASA Astrophysics Data System (ADS)
Vanderlinden, A.; Bijleveld, J. H. M.; Rookhuizen, H. Boer; Bruinsma, P. J. T.; Heine, E.; Lassing, P.; Prins, E.
The characteristics of the wire septum for the Amsterdam Pulse Stretcher (AmPS) are summarized. In the extraction process of the AmPS the extracted beam is intercepted from the circulating beam by the 1 m long electrostatic wire septum. For a bending angle of 4.4 mrad, the maximum anode voltage is 80 kV. The system developed consists of a wire spacing of 0.65 mm between tungsten wires of 50 micrometers diameter. Stainless steel spring wires, bent in a half cylindrical carrier, stretch the septum wires two by two. Prototype tests were successful up to an anode voltage of 120 kV.
NASA Astrophysics Data System (ADS)
Dietz, H.
1981-10-01
In replacement of conventional oil-paper bushings, a type of SF6 insulated bushing with polypropylene plastic film dielectricum was developed for outdoor operation of metalclad switchgear. Such bushings have the advantage of the conformity of the insulation with that of the matching switchgear and of the nonflammability of the SF6 gas. The choice of the plastic film, the winding technique, the thermal and dielectrical test program, and the high voltage long-term test program are described. Series production of a 420 kV bushing is under way and research specimens for 525 kV were successfully tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplov, Vladimir V; Saethre, Robert B
The Spallation Neutron Source (SNS) Linac Low Energy Beam Transport (LEBT) chopper system provides fast chopping of the H- ion beam in the LEBT structure. Four identical pulsed power supplies (pulsers) create a series of 2.5 kV pulses to the four deflection electrodes floating on the focusing voltage of -50 kV. Each pulser is connected to the electrode through the network which consists of high voltage (HV) cables, a blocking capacitor, HV feed-through connectors, current-limiting resistors and transient voltage suppressors. Effective beam chopping requires minimal rise/fall time of the rectangular HV pulses on the load. In the present configuration thesemore » values are approximately 100 ns. Methods of reducing rise/fall time on the LEBT electrodes are discussed. Results of simulation and comparative measurements of the original and upgraded system on the test stand are presented. Furthermore, the effect of these changes on reliability degradation caused by arcing in the LEBT structure is discussed.« less
A 735 kV shunt reactors automatic switching system for Hydro-Quebec network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, S.; Trudel, G.; Scott, G.
1996-11-01
In recent years, Hydro-Quebec has undertaken a major program to upgrade the reliability of its transmission system. Much efforts have been directed toward increasing the system`s capacity to withstand extreme contingencies, usually caused by multiple incidents or the successive tripping of transmission lines. In order to counter such events, Hydro-Quebec has adopted a defensive scheme. Based entirely on automatic action, this scheme will mainly rely on: a 735 kV shunt reactor switching system (called MAIS); a generation rejection and/or remote load-shedding system (called RPTC); an underfrequency load-shedding system. The MAIS system, which is the subject of this paper, will bemore » implemented in 22 substations and is required to control voltage on the system after a severe event. Each MAIS system, acting locally, is entirely independent and will close or trip shunt reactors in response to local conditions.« less
NASA Astrophysics Data System (ADS)
Pavlov, L'uboš; Skurčák, L'uboš; Chovanec, Juraj; Altus, Juraj
2017-11-01
This article is devoted to the analysis of the possible influence of impedance asymmetry on the efficiency of electricity transmission and distribution in the electricity system in Slovakia, at a voltage level of 110 kV - 400 kV, using synchronic phasor monitoring results. For simplicity of calculations, in practice, the impedance imbalance from mutual interfacial inductive capacitances bonds is neglected. In this way, the 3-phase network is interpreted as symmetrical in the calculations. In this case, it is possible to determine only some components of losses (ohmic losses, corona loss, leakages, etc). The influence of impedance asymmetry can be quantified by calculation using the results of the monitoring of the synchronous phasors of selected electricity system elements (OHL, transformer, choke) or by 3-phase modelling of real system elements. frequency to test the transformer for induced over voltage test, and its characteristics is analysed.
Design and development of a 40 kV pierce electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D., E-mail: dhruva.bhattacharjee@gmail.com
A 40 kV electron gun is designed and developed using the Pierce configuration for the focusing electrode. Simulations were carried out using CST Particle Studio. The Gun is a thermionic type electron gun with indirect heating of the LaB6 cathode. The gun is capable of delivering a beam current of more than 500 mA at 40 kV with a beam size of less than 5 mm. The cathode assembly consists of cups and heat shields made out of Tantalum and Rhenium sheets. The cathode assembly and the electron gun was fabricated, assembled and tested on test bench for cathode conditioning,more » HV conditioning and beam characterization. This paper presents the gun design, particle simulations study, testing of the gun on test bench. (author)« less
Kv7 (KCNQ) channel openers induce hypothermia in the mouse.
Kristensen, Line V; Sandager-Nielsen, Karin; Hansen, Henrik H
2011-01-20
Kv7 channels, encoded by corresponding kcnq genes, are expressed both centrally and peripherally where they serve to dampen neuronal activity. While Kv7 channel openers have shown efficacy in neurological and neuropsychiatric disease models, the impact of Kv7 channel activation on physiological endpoint markers have not been addressed in detail. In this study we assessed the effect of a range of Kv7 channel openers with different affinity for neuronal Kv7.2-5 channel subunits on body temperature regulation in mice. Female NMRI mice were acutely exposed to vehicle (10% Tween-80, i.p.), retigabine (3-30 mg/kg, i.p., pan-Kv7 channel opener), (S)BMS-204352 (60-240 mg/kg, i.p., Kv7.4/5 channel-preferring opener), ICA-27243 (1-10mg/kg, i.p., Kv7.2/3 channel-preferring opener), or S-(1) (10-60 mg/kg, i.p., Kv7.2/3 channel-preferring opener), and rectal body temperature was measured 15-120 min post-injection. Retigabine (>10mg/kg), ICA-27243 (≥ 10 mg/kg), and S-(1) (≥ 30 mg/kg) dose-dependently lowered rectal body temperature with maximal doses of each Kv7 channel opener inducing a marked drop (>4°C) in rectal temperature. The Kv7 channel openers showed differential temporal pharmacodynamics, which likely reflects their different pharmacokinetic profiles. Pretreatment with the pan-Kv7 channel blocker XE-991 (1.0mg/kg, i.p.) completely reversed the hypothermic effect of the pan-Kv7 opener, retigabine (15 mg/kg), whereas ICA-27243-induced hypothermia (10mg/kg) could only be partially prevented by XE-991. Because ICA-27743 and S-(1) are Kv7.2/3 channel subunit-preferring compounds, this suggests that the Kv7.2/3 channel isoform is the predominant substrate for Kv7 channel opener-evoked hypothermia. These data indicate the physiological relevance of Kv7 channel function on body temperature regulation which may potentially reside from central inhibitory Kv7 channel activity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Catalytic reduction of carbonyl groups in oxidized PAPC by Kvβ2 (AKR6)
Xie, Zhengzhi; Barski, Oleg A.; Cai, Jian; Bhatnagar, Aruni; Tipparaju, Srinivas M.
2011-01-01
The β-subunits of the voltage-gated potassium channel (Kvβ) belong to the aldo-keto reductase superfamily. The Kvβ-subunits dock with the pore-forming Kv α-subunits and impart or accelerate the rate of inactivation in Kv channels. Inactivation of Kv currents by Kvβ is differentially regulated by oxidized and reduced pyridine nucleotides. In mammals, AKR6 family is comprised of 3 different genes Kvβ1-3. We have shown previously that Kvβ2 catalyzes the reduction of a broad range of carbonyls including aromatic carbonyls, electrophilic aldehydes and prostaglandins. However, the endogenous substrates for Kvβ have not been identified. To determine whether products of lipid oxidation are substrates of Kvβs, we tested the enzymatic activity of Kvβ2 with oxidized phospholipids generated during the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC). Electrospray ionization mass spectrometric analysis showed that Kvβ2 catalyzed the NADPH-dependent reduction of several products of oxPAPC, including 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine (POVPC), 1-palmitoyl-2-(epoxycyclopentenone)-sn-glycero-3-phosphorylcholine (PECPC), 1-palmitoyl-2-(5,6)- epoxyisoprostane E2-sn-glycero-3-phosphocholine (PEIPC). These results were validated using high resolution mass spectrometric analysis. Time course analysis revealed that the reduced products reached significant levels for ions at m/z 594/596 (POVPC/PHVPC), 810/812 (PECPC/2H-PECPC) and 828/830 (PEIPC/2H-PEIPC) in the oxPAPC + Kvβ2 mixture (p < 0.01). These results suggest that Kvβ could serve as a sensor of lipid oxidation via its catalytic activity and thereby alter Kv currents under conditions of oxidative stress. PMID:21296056
Development and laboratory testing of a 138-kV PPP-insulated joint for commercial application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walldorf, S.P.; Chu, H.; Elbadaly, H.
1990-04-01
This paper describes the design, development and laboratory testing of a high voltage PPP (paper polypropylene/paper laminate) insulated joint for commercial application on 138-kV PPP-insulated cable. The design approach taken is conservative and addresses the typical variations in field conditions and in skill and workmanship of the splicing. Joint construction details, including choice of connector, taping structure, and joint mechanical reinforcement, are discussed. The test criteria are described and results are presented.
Menegola, Milena; Clark, Eliana; Trimmer, James S
2012-06-01
To gain insights into the phenotype of voltage-gated potassium (Kv)1.1 and Kv4.2 knockout mice, we used immunohistochemistry to analyze the expression of component principal or α subunits and auxiliary subunits of neuronal Kv channels in knockout mouse brains. Genetic ablation of the Kv1.1 α subunit did not result in compensatory changes in the expression levels or subcellular distribution of related ion channel subunits in hippocampal medial perforant path and mossy fiber nerve terminals, where high levels of Kv1.1 are normally expressed. Genetic ablation of the Kv4.2 α subunit did not result in altered neuronal cytoarchitecture of the hippocampus. Although Kv4.2 knockout mice did not exhibit compensatory changes in the expression levels or subcellular distribution of the related Kv4.3 α subunit, we found dramatic decreases in the cellular and subcellular expression of specific Kv channel interacting proteins (KChIPs) that reflected their degree of association and colocalization with Kv4.2 in wild-type mouse and rat brains. These studies highlight the insights that can be gained by performing detailed immunohistochemical analyses of Kv channel knockout mouse brains. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
Molecular basis for the toxin insensitivity of scorpion voltage-gated potassium channel MmKv1.
Zhang, Chuangeng; Xie, Zili; Li, Xinxin; Chen, Jing; Feng, Jing; Lang, Yange; Yang, Weishan; Li, Wenxin; Chen, Zongyun; Yao, Jing; Cao, Zhijian; Wu, Yingliang
2016-05-01
Scorpions are insensitive to their own venoms, which contain various neurotoxins specific for mammalian or insect ion channels, whose molecular mechanism remains unsolved. Using MmKv1, a potassium channel identified from the genome of the scorpion Mesobuthus martensii, channel kinetic experiments showed that MmKv1 was a classical voltage-gated potassium channel with a voltage-dependent fast activation and slow inactivation. Compared with the human Kv1.3 channel (hKv1.3), the MmKv1 channel exhibited a remarkable insensitivity to both scorpion venom and toxin. The chimaeric channels of MmKv1 and hKv1.3 revealed that both turret and filter regions of the MmKv1 channel were critical for the toxin insensitivity of MmKv1. Furthermore, mutagenesis of the chimaeric channel indicated that two basic residues (Arg(399) and Lys(403)) in the MmKv1 turret region and Arg(425) in the MmKv1 filter region significantly affected its toxin insensitivity. Moreover, when these three basic residues of MmKv1 were simultaneously substituted with the corresponding residues from hKv1.3, the MmKv1-R399T/K403S/R425H mutant channels exhibited similar sensitivity to both scorpion venom and toxin to hKv1.3, which revealed the determining role of these three basic residues in the toxin insensitivity of the MmKv1 channel. More strikingly, a similar triad sequence structure is present in all Shaker-like channels from venomous invertebrates, which suggested a possible convergent functional evolution of these channels to enable them to resist their own venoms. Together, these findings first illustrate the mechanism by which scorpions are insensitive to their own venoms at the ion channel receptor level and enrich our knowledge of the insensitivity of scorpions and other venomous animals to their own venoms. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
VizieR Online Data Catalog: VLBI Ecliptic Plane Survey: VEPS-1 (Shu+, 2017)
NASA Astrophysics Data System (ADS)
Shu, F.; Petrov, L.; Jiang, W.; Xia, B.; Jiang, T.; Cui, Y.; Takefuji, K.; McCallum, J.; Lovell, J.; Yi, S.-O.; Hao, L.; Yang, W.; Zhang, H.; Chen, Z.; Li, J.
2017-08-01
We began observations in the search mode in 2015 February. The participating stations included the three core stations of the Chinese VLBI Network (CVN): seshan25, kunming, and urumqi. Depending on the participating stations, the longest baseline length in each session can be varied from 3200km to 9800km. Our observations were performed at a 2048Mbps data rate, with 16 Intermediate Frequency (IF) channels and 2-bit sampling. The first eight IFs of 32MHz bandwidth were distributed in the range of [8.188, 8.444]GHz, and the remaining eight IFs of 32MHz bandwidth were in the range of [8.700, 8.956]GHz. Table 1: Summary of the VLBI Ecliptic Plane Survey (VEPS) observations in search mode: --------------------------------------------------- Date Dur. Code Stations Number of (Y/M/D) (h) Targets --------------------------------------------------- 2015 Feb 13 24 VEPS01 ShKmUr 293 2015 Feb 14 24 VEPS02 ShKmUr 338 2015 Apr 23 24 VEPS03 UrKv 300 2015 Apr 24 24 VEPS04 ShKmUrKv 400 2015 Aug 10 25 VEPS05 ShKmKvHo 252 2015 Aug 19 25 VEPS06 ShKmKvHo 277 2016 Mar 02 24 VEPS07 ShKmUrKb 333 2016 Mar 11 24 VEPS08 ShKmUrKb 477 2016 May 13 24 VEPS09 ShUrHo 291 2016 May 14 22 VEPS10 ShUrKv 322 2016 Jul 06 24 VEPS11 ShUrKb 307 2016 Sep 02 23 VEPS12 ShUr 424 2016 Sep 03 23 VEPS13 ShKmUr 344 --------------------------------------------------- Sh=Seshan25; Km=Kunming; Ur=Urumqi; Kv=Sejong; Kb=Kashim34; Ho=Hobart26. --------------------------------------------------- We ran two absolute astrometry dual-band VLBA programs that targeted ecliptic plane compact radio sources: the dedicated survey of weak ecliptic plane calibrators with the VLBA BS250 program in 2016 March-May, and the VLBA Calibrator Survey 9 (VCS-9) in 2015 August-2016 September. The International VLBI Service for Geodesy and Astrometry (IVS) runs a number of VLBI observing programs. We made an attempt to improve the coordinates of some VEPS sources detected in the search mode and provide additional measurements of telescope position with the same experiments in two such 24hr sessions, AOV010 in July and AUA012 in 2016 August. (2 data files).
A 120kV IGBT modulator for driving a pierce electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earley, L. M.; Brown, R. W.; Carlson, R. L.
2004-01-01
An IGBT modulator has been developed to drive a 120 kV, 23 A Pierce electron gun. The modulator is capable of producing pulses up to 10 {mu}s in width at repetition rates up to 10Hz with no active reset. The pulse rise time on the electron gun will be approximately 2 {mu}s and the remaining 8 {mu}s of flattop is tuned to have a ripple of less than 1 percent rms. The modulator technology was developed from a previous 50 kV prototype. The modulator consists of six boards, each with one EUPEC IGBT that drives a single common step-up transformermore » wound on METGLAS 2605SC cores. The six transformer cores share a common bi-filar output secondary winding. The modulator uses a fiber optic trigger system and has a high voltage cable output with an epoxy receptacle on the oil end and a ceramic receptacle on the vacuum end. The 120 kV electron gun was manufactured by MDS Co. and will be used to generate sheet electron beams from the standard pencil beam produced by the Pierce electron gun.« less
Effects of haloperidol on Kv4.3 potassium channels.
Lee, Hong Joon; Sung, Ki-Wug; Hahn, Sang June
2014-10-05
Haloperidol is commonly used in clinical practice to treat acute and chronic psychosis, but it also has been associated with adverse cardiovascular events. We investigated the effects of haloperidol on Kv4.3 currents stably expressed in CHO cells using a whole-cell patch-clamp technique. Haloperidol did not significantly inhibit the peak amplitude of Kv4.3, but accelerated the decay rate of inactivation of Kv4.3 in a concentration-dependent manner. Thus, the effects of haloperidol on Kv4.3 were estimated from the integral of the Kv4.3 currents during the depolarization pulse. The Kv4.3 was decreased by haloperidol in a concentration-dependent manner with an IC50 value of 3.6 μM. Haloperidol accelerated the decay rate of Kv4.3 inactivation and activation kinetics in a concentration-dependent manner, thereby decreasing the time-to-peak. Haloperidol shifted the voltage dependence of the steady-state activation and inactivation of Kv4.3 in a hyperpolarizing direction. Haloperidol also caused an acceleration of the closed-state inactivation of Kv4.3. Haloperidol produced a use-dependent block of Kv4.3, which was accompanied by a slowing of recovery from the inactivation of Kv4.3. These results suggest that haloperidol blocks Kv4.3 by both interacting with the open state of Kv4.3 channels during depolarization and accelerating the closed-state inactivation at subthreshold membrane potentials. Copyright © 2014 Elsevier B.V. All rights reserved.
Abidi, Affef; Devaux, Jérôme J; Molinari, Florence; Alcaraz, Gisèle; Michon, François-Xavier; Sutera-Sardo, Julie; Becq, Hélène; Lacoste, Caroline; Altuzarra, Cécilia; Afenjar, Alexandra; Mignot, Cyril; Doummar, Diane; Isidor, Bertrand; Guyen, Sylvie N; Colin, Estelle; De La Vaissière, Sabine; Haye, Damien; Trauffler, Adeline; Badens, Catherine; Prieur, Fabienne; Lesca, Gaetan; Villard, Laurent; Milh, Mathieu; Aniksztejn, Laurent
2015-08-01
Mutations in the KCNQ2 gene encoding the voltage-dependent potassium M channel Kv7.2 subunit cause either benign epilepsy or early onset epileptic encephalopathy (EOEE). It has been proposed that the disease severity rests on the inhibitory impact of mutations on M current density. Here, we have analyzed the phenotype of 7 patients carrying the p.A294V mutation located on the S6 segment of the Kv7.2 pore domain (Kv7.2(A294V)). We investigated the functional and subcellular consequences of this mutation and compared it to another mutation (Kv7.2(A294G)) associated with a benign epilepsy and affecting the same residue. We report that all the patients carrying the p.A294V mutation presented the clinical and EEG characteristics of EOEE. In CHO cells, the total expression of Kv7.2(A294V) alone, assessed by western blotting, was only 20% compared to wild-type. No measurable current was recorded in CHO cells expressing Kv7.2(A294V) channel alone. Although the total Kv7.2(A294V) expression was rescued to wild-type levels in cells co-expressing the Kv7.3 subunit, the global current density was still reduced by 83% compared to wild-type heteromeric channel. In a configuration mimicking the patients' heterozygous genotype i.e., Kv7.2(A294V)/Kv7.2/Kv7.3, the global current density was reduced by 30%. In contrast to Kv7.2(A294V), the current density of homomeric Kv7.2(A294G) was not significantly changed compared to wild-type Kv7.2. However, the current density of Kv7.2(A294G)/Kv7.2/Kv7.3 and Kv7.2(A294G)/Kv7.3 channels were reduced by 30% and 50% respectively, compared to wild-type Kv7.2/Kv7.3. In neurons, the p.A294V mutation induced a mislocalization of heteromeric mutant channels to the somato-dendritic compartment, while the p.A294G mutation did not affect the localization of the heteromeric channels to the axon initial segment. We conclude that this position is a hotspot of mutation that can give rise to a severe or a benign epilepsy. The p.A294V mutation does not exert a dominant-negative effect on wild-type subunits but alters the preferential axonal targeting of heteromeric Kv7 channels. Our data suggest that the disease severity is not necessarily a consequence of a strong inhibition of M current and that additional mechanisms such as abnormal subcellular distribution of Kv7 channels could be determinant. Copyright © 2015 Elsevier Inc. All rights reserved.
Cortisone Dissociates the Shaker Family K Channels from their Beta Subunit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Y.; Weng, J; Kabaleeswaran, V
2008-01-01
The Shaker family voltage-dependent potassium channels (Kv1) are expressed in a wide variety of cells and are essential for cellular excitability. In humans, loss-of-function mutations of Kv1 channels lead to hyperexcitability and are directly linked to episodic ataxia and atrial fibrillation. All Kv1 channels assemble with {Beta} subunits (Kv{Beta}s), and certain Kv{Beta}s, for example Kv{Beta}1, have an N-terminal segment that closes the channel by the N-type inactivation mechanism. In principle, dissociation of Kv{Beta}1, although never reported, should eliminate inactivation and thus potentiate Kv1 current. We found that cortisone increases rat Kv1 channel activity by binding to Kv{Beta}1. A crystal structuremore » of the K{Beta}v-cortisone complex was solved to 1.82-{angstrom}resolution and revealed novel cortisone binding sites. Further studies demonstrated that cortisone promotes dissociation of Kv{Beta}. The new mode of channel modulation may be explored by native or synthetic ligands to fine-tune cellular excitability.« less
Lee, Bo Hyung; Ryu, Pan Dong; Lee, So Yeong
2014-01-10
The KCNQ gene family, whose members encode Kv7 channels, belongs to the voltage-gated potassium (Kv) channel group. The roles of this gene family have been widely investigated in nerve and muscle cells. In the present study, we investigated several characteristics of Kv7.5, which is strongly expressed in the canine osteosarcoma cell line, CCL-183. Serum starvation upregulated Kv7.5 expression, and the Kv7 channel opener, flupirtine, attenuated cell proliferation by arresting cells in the G0/G1 phase. We also showed that Kv7.5 knockdown helps CCL-183 cells to proliferate. In an effort to find an endogenous regulator of Kv7.5, we used mithramycin A to reduce the level of the transcription factor Sp1, and it strongly inhibited the induction of Kv7.5 in CCL-183 cells. These results suggest that the activation of Kv7.5 by flupirtine may exert an anti-proliferative effect in canine osteosarcoma. Therefore, Kv7.5 is a possible molecular target for canine osteosarcoma therapy.
Development of High Power Vacuum Tubes for Accelerators and Plasma Heating
NASA Astrophysics Data System (ADS)
Srivastava, Vishnu
2012-11-01
High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.
Matsui, Takaaki; Thitamadee, Siripong; Murata, Tomoko; Kakinuma, Hisaya; Nabetani, Takuji; Hirabayashi, Yoshio; Hirate, Yoshikazu; Okamoto, Hitoshi; Bessho, Yasumasa
2011-01-01
The assembly of progenitor cells is a crucial step for organ formation during vertebrate development. Kupffer's vesicle (KV), a key organ required for the left–right asymmetric body plan in zebrafish, is generated from a cluster of ∼20 dorsal forerunner cells (DFCs). Although several genes are known to be involved in KV formation, how DFC clustering is regulated and how cluster formation then contributes to KV formation remain unclear. Here we show that positive feedback regulation of FGF signaling by Canopy1 (Cnpy1) controls DFC clustering. Cnpy1 positively regulates FGF signals within DFCs, which in turn promote Cadherin1-mediated cell adhesion between adjacent DFCs to sustain cell cluster formation. When this FGF positive feedback loop is disrupted, the DFC cluster fails to form, eventually leading to KV malformation and defects in the establishment of laterality. Our results therefore uncover both a previously unidentified role of FGF signaling during vertebrate organogenesis and a regulatory mechanism underlying cell cluster formation, which is an indispensable step for formation of a functional KV and establishment of the left–right asymmetric body plan. PMID:21628557
Tur, Jared; Chapalamadugu, Kalyan C; Katnik, Christopher; Cuevas, Javier; Bhatnagar, Aruni; Tipparaju, Srinivas M
2017-03-01
The present study investigates the physiological role of Kvβ1 subunit for sensing pyridine nucleotide (NADH/NAD+) changes in the heart. We used Kvβ1.1 knockout (KO) or wild-type (WT) mice and established that Kvβ1.1 preferentially binds with Kv4.2 and senses the pyridine nucleotide changes in the heart. The cellular action potential duration (APD) obtained from WT cardiomyocytes showed longer APDs with lactate perfusion, which increases intracellular NADH levels, while the APDs remained unaltered in the Kvβ1.1 KO. Ex vivo monophasic action potentials showed a similar response, in which the APDs were prolonged in WT mouse hearts with lactate perfusion; however, the Kvβ1.1 KO mouse hearts did not show APD changes upon lactate perfusion. COS-7 cells coexpressing Kv4.2 and Kvβ1.1 were used for whole cell patch-clamp recordings to evaluate changes caused by NADH (lactate). These data reveal that Kvβ1.1 is required in the mediated inactivation of Kv4.2 currents, when NADH (lactate) levels are increased. In vivo, isoproterenol infusion led to increased NADH in the heart along with QTc prolongation in wild-type mice; regardless of the approach, our data show that Kvβ1.1 recognizes NADH changes and modulates Kv4.2 currents affecting AP and QTc durations. Overall, this study uses multiple levels of investigation, including the heterologous overexpression system, cardiomyocyte, ex vivo, and ECG, and clearly depicts that Kvβ1.1 is an obligatory sensor of NADH/NAD changes in vivo, with a physiological role in the heart. NEW & NOTEWORTHY Cardiac electrical activity is mediated by ion channels, and Kv4.2 plays a significant role, along with its binding partner, the Kvβ1.1 subunit. In the present study, we identify Kvβ1.1 as a sensor of pyridine nucleotide changes and as a modulator of Kv4.2 gating, action potential duration, and ECG in the mouse heart. Copyright © 2017 the American Physiological Society.
Ambrosino, Paolo; Freri, Elena; Castellotti, Barbara; Soldovieri, Maria Virginia; Mosca, Ilaria; Manocchio, Laura; Gellera, Cinzia; Canafoglia, Laura; Franceschetti, Silvana; Salis, Barbara; Iraci, Nunzio; Miceli, Francesco; Ragona, Francesca; Granata, Tiziana; DiFrancesco, Jacopo C; Taglialatela, Maurizio
2018-01-30
Over one hundred mutations in the Kv7.2 (KCNQ2) gene encoding for phosphatidylinositol 4,5-bisphosphate (PIP 2 )-sensitive voltage-gated K + channel subunits have been identified in early-onset epilepsies with wide phenotypic variability. By contrast, only few mutations in the closely related Kv7.3 (KCNQ3) gene have been reported, mostly associated with typical benign familial neonatal seizures (BFNS). We herein describe a patient affected by early onset epileptic encephalopathy (EOEE) carrying two Kv7.3 missense mutations (p.Val359Leu/V359L and p.Asp542Asn/D542N) in compound heterozygosis, each inherited from an asymptomatic parent. Patch-clamp recordings from transiently transfected CHO cells showed that, when incorporated in physiologically relevant Kv7.2 + Kv7.3 heteromeric channels, expression of Kv7.3 V359L or Kv7.3 D542N subunits failed to affect current density, whereas a significant decrease was instead observed when these mutant subunits were both simultaneously present. Modeling and functional experiments revealed that each variant decreased PIP 2 -dependent current regulation, with additive effects when the two were co-expressed. Moreover, expression of Kv7.2 subunits carrying the D535N variant previously described in three sporadic EOEE cases prompted functional changes more dramatic when compared to those of the corresponding D542N variant in Kv7.3, but similar to those observed when both Kv7.3 V359L and Kv7.3 D542N subunits were expressed together. Finally, the Kv7 activator retigabine restored channel dysfunction induced by each Kv7.2 or Kv7.3 variant(s). These results provide a plausible molecular explanation for the apparent recessive inheritance of the phenotype in the family investigated, and a rational basis for personalized therapy with Kv7 channel activators in EOEE patients carrying loss-of-function mutations in Kv7.2 or Kv7.3.
Provence, Aaron; Malysz, John
2015-01-01
The physiologic roles of voltage-gated KV7 channel subtypes (KV7.1–KV7.5) in detrusor smooth muscle (DSM) are poorly understood. Here, we sought to elucidate the functional roles of KV7.2/KV7.3 channels in guinea pig DSM excitability and contractility using the novel KV7.2/KV7.3 channel activator ICA-069673 [N-(2-chloro-5-pyrimidinyl)-3,4-difluorobenzamide]. We employed a multilevel experimental approach using Western blot analysis, immunocytochemistry, isometric DSM tension recordings, fluorescence Ca2+ imaging, and perforated whole-cell patch-clamp electrophysiology. Western blot experiments revealed the protein expression of KV7.2 and KV7.3 channel subunits in DSM tissue. In isolated DSM cells, immunocytochemistry with confocal microscopy further confirmed protein expression for KV7.2 and KV7.3 channel subunits, where they localize within the vicinity of the cell membrane. ICA-069673 inhibited spontaneous phasic, pharmacologically induced, and nerve-evoked contractions in DSM isolated strips in a concentration-dependent manner. The inhibitory effects of ICA-069673 on DSM spontaneous phasic and tonic contractions were abolished in the presence of the KV7 channel inhibitor XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride]. Under conditions of elevated extracellular K+ (60 mM), the effects of ICA-069673 on DSM tonic contractions were significantly attenuated. ICA-069673 decreased the global intracellular Ca2+ concentration in DSM cells, an effect blocked by the L-type Ca2+ channel inhibitor nifedipine. ICA-069673 hyperpolarized the membrane potential and inhibited spontaneous action potentials of isolated DSM cells, effects that were blocked in the presence of XE991. In conclusion, using the novel KV7.2/KV7.3 channel activator ICA-069673, this study provides strong evidence for a critical role for the KV7.2- and KV7.3-containing channels in DSM function at both cellular and tissue levels. PMID:26087697
Provence, Aaron; Malysz, John; Petkov, Georgi V
2015-09-01
The physiologic roles of voltage-gated KV7 channel subtypes (KV7.1-KV7.5) in detrusor smooth muscle (DSM) are poorly understood. Here, we sought to elucidate the functional roles of KV7.2/KV7.3 channels in guinea pig DSM excitability and contractility using the novel KV7.2/KV7.3 channel activator ICA-069673 [N-(2-chloro-5-pyrimidinyl)-3,4-difluorobenzamide]. We employed a multilevel experimental approach using Western blot analysis, immunocytochemistry, isometric DSM tension recordings, fluorescence Ca(2+) imaging, and perforated whole-cell patch-clamp electrophysiology. Western blot experiments revealed the protein expression of KV7.2 and KV7.3 channel subunits in DSM tissue. In isolated DSM cells, immunocytochemistry with confocal microscopy further confirmed protein expression for KV7.2 and KV7.3 channel subunits, where they localize within the vicinity of the cell membrane. ICA-069673 inhibited spontaneous phasic, pharmacologically induced, and nerve-evoked contractions in DSM isolated strips in a concentration-dependent manner. The inhibitory effects of ICA-069673 on DSM spontaneous phasic and tonic contractions were abolished in the presence of the KV7 channel inhibitor XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride]. Under conditions of elevated extracellular K(+) (60 mM), the effects of ICA-069673 on DSM tonic contractions were significantly attenuated. ICA-069673 decreased the global intracellular Ca(2+) concentration in DSM cells, an effect blocked by the L-type Ca(2+) channel inhibitor nifedipine. ICA-069673 hyperpolarized the membrane potential and inhibited spontaneous action potentials of isolated DSM cells, effects that were blocked in the presence of XE991. In conclusion, using the novel KV7.2/KV7.3 channel activator ICA-069673, this study provides strong evidence for a critical role for the KV7.2- and KV7.3-containing channels in DSM function at both cellular and tissue levels. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Dual energy CT: How to best blend both energies in one fused image?
NASA Astrophysics Data System (ADS)
Eusemann, Christian; Holmes, David R., III; Schmidt, Bernhard; Flohr, Thomas G.; Robb, Richard; McCollough, Cynthia; Hough, David M.; Huprich, James E.; Wittmer, Michael; Siddiki, Hasan; Fletcher, Joel G.
2008-03-01
In x-ray based imaging, attenuation depends on the type of tissue scanned and the average energy level of the x-ray beam, which can be adjusted via the x-ray tube potential. Conventional computed tomography (CT) imaging uses a single kV value, usually 120kV. Dual energy CT uses two different tube potentials (e.g. 80kV & 140kV) to obtain two image datasets with different attenuation characteristics. This difference in attenuation levels allows for classification of the composition of the tissues. In addition, the different energies significantly influence the contrast resolution and noise characteristics of the two image datasets. 80kV images provide greater contrast resolution than 140kV, but are limited because of increased noise. While dual-energy CT may provide useful clinical information, the question arises as to how to best realize and visualize this benefit. In conventional single energy CT, patient image data is presented to the physicians using well understood organ specific window and level settings. Instead of viewing two data series (one for each tube potential), the images are most often fused into a single image dataset using a linear mixing of the data with a 70% 140kV and a 30% 80kV mixing ratio, as available on one commercial systems. This ratio provides a reasonable representation of the anatomy/pathology, however due to the linear nature of the blending, the advantages of each dataset (contrast or sharpness) is partially offset by its drawbacks (blurring or noise). This project evaluated a variety of organ specific linear and non-linear mixing algorithms to optimize the blending of the low and high kV information for display in a way that combines the benefits (contrast and sharpness) of both energies in a single image. A blinded review analysis by subspecialty abdominal radiologists found that, unique, tunable, non-linear mixing algorithms that we developed outperformed linear, fixed mixing for a variety of different organs and pathologies of interest.
β Subunits Functionally Differentiate Human Kv4.3 Potassium Channel Splice Variants
Abbott, Geoffrey W.
2017-01-01
The human ventricular cardiomyocyte transient outward K+ current (Ito) mediates the initial phase of myocyte repolarization and its disruption is implicated in Brugada Syndrome and heart failure (HF). Human cardiac Ito is generated primarily by two Kv4.3 splice variants (Kv4.3L and Kv4.3S, diverging only by a C-terminal, S6-proximal, 19-residue stretch unique to Kv4.3L), which are differentially remodeled in HF, but considered functionally alike at baseline. Kv4.3 is regulated in human heart by β subunits including KChIP2b and KCNEs, but their effects were previously assumed to be Kv4.3 isoform-independent. Here, this assumption was tested experimentally using two-electrode voltage-clamp analysis of human subunits co-expressed in Xenopus laevis oocytes. Unexpectedly, Kv4.3L-KChIP2b channels exhibited up to 8-fold lower current augmentation, 40% slower inactivation, and 5 mV-shifted steady-state inactivation compared to Kv4.3S-KChIP2b. A synthetic peptide mimicking the 19-residue stretch diminished these differences, reinforcing the importance of this segment in mediating Kv4.3 regulation by KChIP2b. KCNE subunits induced further functional divergence, including a 7-fold increase in Kv4.3S-KCNE4-KChIP2b current compared to Kv4.3L-KCNE4-KChIP2b. The discovery of β-subunit-dependent functional divergence in human Kv4.3 splice variants suggests a C-terminal signaling hub is crucial to governing β-subunit effects upon Kv4.3, and demonstrates the potential significance of differential Kv4.3 gene-splicing and β subunit expression in myocyte physiology and pathobiology. PMID:28228734
β Subunits Functionally Differentiate Human Kv4.3 Potassium Channel Splice Variants.
Abbott, Geoffrey W
2017-01-01
The human ventricular cardiomyocyte transient outward K + current ( I to ) mediates the initial phase of myocyte repolarization and its disruption is implicated in Brugada Syndrome and heart failure (HF). Human cardiac I to is generated primarily by two Kv4.3 splice variants (Kv4.3L and Kv4.3S, diverging only by a C-terminal, S6-proximal, 19-residue stretch unique to Kv4.3L), which are differentially remodeled in HF, but considered functionally alike at baseline. Kv4.3 is regulated in human heart by β subunits including KChIP2b and KCNEs, but their effects were previously assumed to be Kv4.3 isoform-independent. Here, this assumption was tested experimentally using two-electrode voltage-clamp analysis of human subunits co-expressed in Xenopus laevis oocytes. Unexpectedly, Kv4.3L-KChIP2b channels exhibited up to 8-fold lower current augmentation, 40% slower inactivation, and 5 mV-shifted steady-state inactivation compared to Kv4.3S-KChIP2b. A synthetic peptide mimicking the 19-residue stretch diminished these differences, reinforcing the importance of this segment in mediating Kv4.3 regulation by KChIP2b. KCNE subunits induced further functional divergence, including a 7-fold increase in Kv4.3S-KCNE4-KChIP2b current compared to Kv4.3L-KCNE4-KChIP2b. The discovery of β-subunit-dependent functional divergence in human Kv4.3 splice variants suggests a C-terminal signaling hub is crucial to governing β-subunit effects upon Kv4.3, and demonstrates the potential significance of differential Kv4.3 gene-splicing and β subunit expression in myocyte physiology and pathobiology.
Regulation of Kv2.1 K+ conductance by cell surface channel density
Fox, Philip D.; Loftus, Rob J.; Tamkun, Michael M.
2013-01-01
The Kv2.1 voltage-gated K+ channel is found both freely diffusing over the plasma membrane and concentrated in micron-sized clusters localized to the soma, proximal dendrites and axon initial segment of hippocampal neurons. In transfected HEK cells, Kv2.1 channels within cluster microdomains are non-conducting. Using TIRF microscopy the number of GFP-tagged Kv2.1 channels on the HEK cell surface was compared to K+ channel conductance measured by whole-cell voltage-clamp of the same cell. This approach indicated that as channel density increases non-clustered channels cease conducting. At the highest density observed, only 4% of all channels were conducting. Mutant Kv2.1 channels that fail to cluster also possessed the non-conducting state with 17% conducting K+ at higher surface densities. The non-conducting state was specific to Kv2.1 as Kv1.4 was always conducting regardless of the cell-surface expression level. Anti-Kv2.1 immuno-fluorescence intensity, standardized to Kv2.1 surface density in transfected HEK cells, was used to determine the expression levels of endogenous Kv2.1 in cultured rat hippocampal neurons. Endogenous Kv2.1 levels were compared to the number of conducting channels determined by whole-cell voltage clamp. Only 13 and 27% of the endogenous Kv2.1 was conducting in neurons cultured for 14 and 20 days, respectively. Together these data indicate that the non-conducting state depends primarily on surface density as opposed to cluster location and that this non-conducting state also exists for native Kv2.1 found in cultured hippocampal neurons. This excess of Kv2.1 protein relative to K+ conductance further supports a non-conducting role for Kv2.1 in excitable tissues. PMID:23325261
Hedegaard, Elise R; Johnsen, Jacob; Povlsen, Jonas A; Jespersen, Nichlas R; Shanmuganathan, Jeffrey A; Laursen, Mia R; Kristiansen, Steen B; Simonsen, Ulf; Bøtker, Hans Erik
2016-04-01
The voltage-gated KV7 (KCNQ) potassium channels are activated by ischemia and involved in hypoxic vasodilatation. We investigated the effect of KV7 channel modulation on cardiac ischemia and reperfusion injury and its interaction with cardioprotection by ischemic preconditioning (IPC). Reverse-transcription polymerase chain reaction revealed expression of KV7.1, KV7.4, and KV7.5 in the left anterior descending rat coronary artery and all KV7 subtypes (KV7.1-KV7.5) in the left and right ventricles of the heart. Isolated hearts were subjected to no-flow global ischemia and reperfusion with and without IPC. Infarct size was quantified by 2,3,5-triphenyltetrazolium chloride staining. Two blockers of KV7 channels, XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone] (10 µM) and linopirdine (10 µM), reduced infarct size and exerted additive infarct reduction to IPC. An opener of KV7 channels, flupirtine (10 µM) abolished infarct size reduction by IPC. Hemodynamics were measured using a catheter inserted in the left ventricle and postischemic left ventricular recovery improved in accordance with reduction of infarct size and deteriorated with increased infarct size. XE991 (10 µM) reduced coronary flow in the reperfusion phase and inhibited vasodilatation in isolated small branches of the left anterior descending coronary artery during both simulated ischemia and reoxygenation. KV7 channels are expressed in rat coronary arteries and myocardium. Inhibition of KV7 channels exerts cardioprotection and opening of KV7 channels abrogates cardioprotection by IPC. Although safety issues should be further addressed, our findings suggest a potential role for KV7 blockers in the treatment of ischemia-reperfusion injury. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Effect of tyrphostin AG879 on Kv4.2 and Kv4.3 potassium channels
Yu, Haibo; Zou, Beiyan; Wang, Xiaoliang; Li, Min
2015-01-01
Background and Purpose A-type potassium channels (IA) are important proteins for modulating neuronal membrane excitability. The expression and activity of Kv4.2 channels are critical for neurological functions and pharmacological inhibitors of Kv4.2 channels may have therapeutic potential for Fragile X syndrome. While screening various compounds, we identified tyrphostin AG879, a tyrosine kinase inhibitor, as a Kv4.2 inhibitor from. In the present study we characterized the effect of AG879 on cloned Kv4.2/Kv channel-interacting protein 2 (KChIP2) channels. Experimental Approach To screen the library of pharmacologically active compounds, the thallium flux assay was performed on HEK-293 cells transiently-transfected with Kv4.2 cDNA using the Maxcyte transfection system. The effects of AG879 were further examined on CHO-K1 cells expressing Kv4.2/KChIP2 channels using a whole-cell patch-clamp technique. Key Results Tyrphostin AG879 selectively and dose-dependently inhibited Kv4.2 and Kv4.3 channels. In Kv4.2/KChIP2 channels, AG879 induced prominent acceleration of the inactivation rate, use-dependent block and slowed the recovery from inactivation. AG879 induced a hyperpolarizing shift in the voltage-dependence of the steady-state inactivation of Kv4.2 channels without apparent effect on the V1/2 of the voltage-dependent activation. The blocking effect of AG879 was enhanced as channel inactivation increased. Furthermore, AG879 significantly inhibited the A-type potassium currents in the cultured hippocampus neurons. Conclusion and Implications AG879 was identified as a selective and potent inhibitor the Kv4.2 channel. AG879 inhibited Kv4.2 channels by preferentially interacting with the open state and further accelerating their inactivation. PMID:25752739
Effect of tyrphostin AG879 on Kv 4.2 and Kv 4.3 potassium channels.
Yu, Haibo; Zou, Beiyan; Wang, Xiaoliang; Li, Min
2015-07-01
A-type potassium channels (IA) are important proteins for modulating neuronal membrane excitability. The expression and activity of Kv 4.2 channels are critical for neurological functions and pharmacological inhibitors of Kv 4.2 channels may have therapeutic potential for Fragile X syndrome. While screening various compounds, we identified tyrphostin AG879, a tyrosine kinase inhibitor, as a Kv 4.2 inhibitor from. In the present study we characterized the effect of AG879 on cloned Kv 4.2/Kv channel-interacting protein 2 (KChIP2) channels. To screen the library of pharmacologically active compounds, the thallium flux assay was performed on HEK-293 cells transiently-transfected with Kv 4.2 cDNA using the Maxcyte transfection system. The effects of AG879 were further examined on CHO-K1 cells expressing Kv 4.2/KChIP2 channels using a whole-cell patch-clamp technique. Tyrphostin AG879 selectively and dose-dependently inhibited Kv 4.2 and Kv 4.3 channels. In Kv 4.2/KChIP2 channels, AG879 induced prominent acceleration of the inactivation rate, use-dependent block and slowed the recovery from inactivation. AG879 induced a hyperpolarizing shift in the voltage-dependence of the steady-state inactivation of Kv 4.2 channels without apparent effect on the V1/2 of the voltage-dependent activation. The blocking effect of AG879 was enhanced as channel inactivation increased. Furthermore, AG879 significantly inhibited the A-type potassium currents in the cultured hippocampus neurons. AG879 was identified as a selective and potent inhibitor the Kv 4.2 channel. AG879 inhibited Kv 4.2 channels by preferentially interacting with the open state and further accelerating their inactivation. © 2015 The British Pharmacological Society.
Lee, S K; Lee, S; Shin, S Y; Ryu, P D; Lee, S Y
2012-03-15
The hypothalamic paraventricular nucleus (PVN), a site for the integration of both the neuroendocrine and autonomic systems, has heterogeneous cell composition. These neurons are classified into type I and type II neurons based on their electrophysiological properties. In the present study, we investigated the molecular identification of voltage-gated K+ (Kv) channels, which determines a distinctive characteristic of type I PVN neurons, by means of single-cell reverse transcription-polymerase chain reaction (RT-PCR) along with slice patch clamp recordings. In order to determine the mRNA expression profiles, firstly, the PVN neurons of male rats were classified into type I and type II neurons, and then, single-cell RT-PCR and single-cell real-time RT-PCR analysis were performed using the identical cell. The single-cell RT-PCR analysis revealed that Kv1.2, Kv1.3, Kv1.4, Kv4.1, Kv4.2, and Kv4.3 were expressed both in type I and in type II neurons, and several Kv channels were co-expressed in a single PVN neuron. However, we found that the expression densities of Kv4.2 and Kv4.3 were significantly higher in type I neurons than in type II neurons. Taken together, several Kv channels encoding A-type K+ currents are present both in type I and in type II neurons, and among those, Kv4.2 and Kv4.3 are the major Kv subunits responsible for determining the distinct electrophysiological properties. Thus these 2 Kv subunits may play important roles in determining PVN cell types and regulating PVN neuronal excitability. This study further provides key molecular mechanisms for differentiating type I and type II PVN neurons. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Cao, Xue-Hong; Byun, Hee-Sun; Chen, Shao-Rui; Cai, You-Qing; Pan, Hui-Lin
2010-09-01
Abnormal hyperexcitability of primary sensory neurons plays an important role in neuropathic pain. Voltage-gated potassium (Kv) channels regulate neuronal excitability by affecting the resting membrane potential and influencing the repolarization and frequency of the action potential. In this study, we determined changes in Kv channels in dorsal root ganglion (DRG) neurons in a rat model of diabetic neuropathic pain. The densities of total Kv, A-type (IA) and sustained delayed (IK) currents were markedly reduced in medium- and large-, but not in small-, diameter DRG neurons in diabetic rats. Quantitative RT-PCR analysis revealed that the mRNA levels of IA subunits, including Kv1.4, Kv3.4, Kv4.2, and Kv4.3, in the DRG were reduced approximately 50% in diabetic rats compared with those in control rats. However, there were no significant differences in the mRNA levels of IK subunits (Kv1.1, Kv1.2, Kv2.1, and Kv2.2) in the DRG between the two groups. Incubation with brain-derived neurotrophic factor (BDNF) caused a large reduction in Kv currents, especially IA currents, in medium and large DRG neurons from control rats. Furthermore, the reductions in Kv currents and mRNA levels of IA subunits in diabetic rats were normalized by pre-treatment with anti-BDNF antibody or K252a, a TrkB tyrosine kinase inhibitor. In addition, the number of medium and large DRG neurons with BDNF immunoreactivity was greater in diabetic than control rats. Collectively, our findings suggest that diabetes primarily reduces Kv channel activity in medium and large DRG neurons. Increased BDNF activity in these neurons likely contributes to the reduction in Kv channel function through TrkB receptor stimulation in painful diabetic neuropathy.
High Voltage, Solid-State Switch for Fusion Science Applications
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Prager, James; Miller, Kenneth E.; Slobodov, Ilia
2017-10-01
Eagle Harbor Technologies, Inc. is developing a series stack of solid-state switches to produce a single high voltage switch that can be operated at over 35 kV. During the Phase I program, EHT developed two high voltage switch modules: one with isolated power gate drive and a second with inductively coupled gate drive. These switches were tested at 15 kV and up to 300 A at switching frequencies up to 500 kHz for 10 ms bursts. Robust switching was demonstrated for both IGBTs and SiC MOSFETs. During the Phase II program, EHT will develop a higher voltage switch (>35 kV) that will be suitable for high pulsed and average power applications. EHT will work with LTX to utilize these switches to design, build, and test a pulsed magnetron driver that will be delivered to LTX before the completion of the program. EHT will present data from the Phase I program as well as preliminary results from the start of the Phase II program. With support of DOE SBIR.
Granados-Fuentes, Daniel; Hermanstyne, Tracey O; Carrasquillo, Yarimar; Nerbonne, Jeanne M; Herzog, Erik D
2015-10-01
Neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals, display daily rhythms in electrical activity with more depolarized resting potentials and higher firing rates during the day than at night. Although these daily variations in the electrical properties of SCN neurons are required for circadian rhythms in physiology and behavior, the mechanisms linking changes in neuronal excitability to the molecular clock are not known. Recently, we reported that mice deficient for either Kcna4 (Kv1.4(-/-)) or Kcnd2 (Kv4.2(-/-); but not Kcnd3, Kv4.3(-/-)), voltage-gated K(+) (Kv) channel pore-forming subunits that encode subthreshold, rapidly activating, and inactivating K(+) currents (IA), have shortened (0.5 h) circadian periods in SCN firing and in locomotor activity compared with wild-type (WT) mice. In the experiments here, we used a mouse (Per2(Luc)) line engineered with a bioluminescent reporter construct, PERIOD2::LUCIFERASE (PER2::LUC), replacing the endogenous Per2 locus, to test the hypothesis that the loss of Kv1.4- or Kv4.2-encoded IA channels also modifies circadian rhythms in the expression of the clock protein PERIOD2 (PER2). We found that SCN explants from Kv1.4(-/-)Per2(Luc) and Kv4.2(-/-) Per2(Luc), but not Kv4.3(-/-)Per2(Luc), mice have significantly shorter (by approximately 0.5 h) circadian periods in PER2 rhythms, compared with explants from Per2(Luc) mice, revealing that the membrane properties of SCN neurons feedback to regulate clock (PER2) expression. The combined loss of both Kv1.4- and Kv4.2-encoded IA channels in Kv1.4(-/-)/Kv4.2(-/-)Per2(Luc) SCN explants did not result in any further alterations in PER2 rhythms. Interestingly, however, mice lacking both Kv1.4 and Kv4.2 show a striking (approximately 1.8 h) advance in their daily activity onset in a light cycle compared with WT mice, suggesting additional roles for Kv1.4- and Kv4.2-encoded IA channels in controlling the light-dependent responses of neurons within and/or outside of the SCN to regulate circadian phase of daily activity. © 2015 The Author(s).
Voltage-Gated K+ Channel, Kv3.3 Is Involved in Hemin-Induced K562 Differentiation
Song, Min Seok; Choi, Seon Young; Ryu, Pan Dong; Lee, So Yeong
2016-01-01
Voltage-gated K+ (Kv) channels are well known to be involved in cell proliferation. However, even though cell proliferation is closely related to cell differentiation, the relationship between Kv channels and cell differentiation remains poorly investigated. This study demonstrates that Kv3.3 is involved in K562 cell erythroid differentiation. Down-regulation of Kv3.3 using siRNA-Kv3.3 increased hemin-induced K562 erythroid differentiation through decreased activation of signal molecules such as p38, cAMP response element-binding protein, and c-fos. Down-regulation of Kv3.3 also enhanced cell adhesion by increasing integrin β3 and this effect was amplified when the cells were cultured with fibronectin. The Kv channels, or at least Kv3.3, appear to be associated with cell differentiation; therefore, understanding the mechanisms of Kv channel regulation of cell differentiation would provide important information regarding vital cellular processes. PMID:26849432
Song, Min Seok; Ryu, Pan Dong; Lee, So Yeong
2017-05-18
The Kv3.4 channel is characterized by fast inactivation and sensitivity to oxidation. However, the physiological role of Kv3.4 as an oxidation-sensitive channel has yet to be investigated. Here, we demonstrate that Kv3.4 plays a pivotal role in oxidative stress-related neural cell damage as an oxidation-sensitive channel and that HIF-1α down-regulates Kv3.4 function, providing neuroprotection. MPP + and CoCl 2 are reactive oxygen species (ROS)-generating reagents that induce oxidative stress. However, only CoCl 2 decreases the expression and function of Kv3.4. HIF-1α, which accumulates in response to CoCl 2 treatment, is a key factor in Kv3.4 regulation. In particular, mitochondrial Kv3.4 was more sensitive to CoCl 2 . Blocking Kv3.4 function using BDS-II, a Kv3.4-specific inhibitor, protected SH-SY5Y cells against MPP + -induced neural cell death. Kv3.4 inhibition blocked MPP + -induced cytochrome c release from the mitochondrial intermembrane space to the cytosol and mitochondrial membrane potential depolarization, which are characteristic features of apoptosis. Our results highlight Kv3.4 as a possible new therapeutic paradigm for oxidative stress-related diseases, including Parkinson's disease.
Chen, Szu-Han; Fu, Ssu-Ju; Huang, Jing-Jia; Tang, Chih-Yung
2016-01-18
Voltage-gated potassium (Kv) channels are essential for setting neuronal membrane excitability. Mutations in human Kv1.1 channels are linked to episodic ataxia type 1 (EA1). The EA1-associated mutation I262T was identified from a patient with atypical phenotypes. Although a previous report has characterized its suppression effect, several key questions regarding the impact of the I262T mutation on Kv1.1 as well as other members of the Kv1 subfamily remain unanswered. Herein we show that the dominant-negative effect of I262T on Kv1.1 current expression is not reversed by co-expression with Kvβ1.1 or Kvβ2 subunits. Biochemical examinations indicate that I262T displays enhanced protein degradation and impedes membrane trafficking of Kv1.1 wild-type subunits. I262T appears to be the first EA1 mutation directly associated with impaired protein stability. Further functional analyses demonstrate that I262T changes the voltage-dependent activation and Kvβ1.1-mediated inactivation, uncouples inactivation from activation gating, and decelerates the kinetics of cumulative inactivation of Kv1.1 channels. I262T also exerts similar dominant effects on the gating of Kv1.2 and Kv1.4 channels. Together our data suggest that I262T confers altered channel gating and reduced functional expression of Kv1 channels, which may account for some of the phenotypes of the EA1 patient.
Regulation of human cardiac potassium channels by full-length KCNE3 and KCNE4.
Abbott, Geoffrey W
2016-12-06
Voltage-gated potassium (Kv) channels comprise pore-forming α subunits and a multiplicity of regulatory proteins, including the cardiac-expressed and cardiac arrhythmia-linked transmembrane KCNE subunits. After recently uncovering novel, N-terminally extended (L) KCNE3 and KCNE4 isoforms and detecting their transcripts in human atrium, reported here are their functional effects on human cardiac Kv channel α subunits expressed in Xenopus laevis oocytes. As previously reported for short isoforms KCNE3S and KCNE4S, KCNE3L inhibited hERG; KCNE4L inhibited Kv1.1; neither form regulated the HCN1 pacemaker channel. Unlike KCNE4S, KCNE4L was a potent inhibitor of Kv4.2 and Kv4.3; co-expression of cytosolic β subunit KChIP2, which regulates Kv4 channels in cardiac myocytes, partially relieved Kv4.3 but not Kv4.2 inhibition. Inhibition of Kv4.2 and Kv4.3 by KCNE3L was weaker, and its inhibition of Kv4.2 abolished by KChIP2. KCNE3L and KCNE4L also exhibited subunit-specific effects on Kv4 channel complex inactivation kinetics, voltage dependence and recovery. Further supporting the potential physiological significance of the robust functional effects of KCNE4L on Kv4 channels, KCNE4L protein was detected in human atrium, where it co-localized with Kv4.3. The findings establish functional effects of novel human cardiac-expressed KCNE isoforms and further contribute to our understanding of the potential mechanisms influencing cardiomyocyte repolarization.
Prechtel, Helena; Hartmann, Sven; Minge, Daniel; Bähring, Robert
2018-01-01
Kv4.2 channels mediate a subthreshold-activating somatodendritic A-type current (ISA) in hippocampal neurons. We examined the role of accessory Kv channel interacting protein (KChIP) binding in somatodendritic surface expression and activity-dependent decrease in the availability of Kv4.2 channels. For this purpose we transfected cultured hippocampal neurons with cDNA coding for Kv4.2 wild-type (wt) or KChIP binding-deficient Kv4.2 mutants. All channels were equipped with an externally accessible hemagglutinin (HA)-tag and an EGFP-tag, which was attached to the C-terminal end. Combined analyses of EGFP self-fluorescence, surface HA immunostaining and patch-clamp recordings demonstrated similar dendritic trafficking and functional surface expression for Kv4.2[wt]HA,EGFP and the KChIP binding-deficient Kv4.2[A14K]HA,EGFP. Coexpression of exogenous KChIP2 augmented the surface expression of Kv4.2[wt]HA,EGFP but not Kv4.2[A14K]HA,EGFP. Notably, activity-dependent decrease in availability was more pronounced in Kv4.2[wt]HA,EGFP + KChIP2 coexpressing than in Kv4.2[A14K]HA,EGFP + KChIP2 coexpressing neurons. Our results do not support the notion that accessory KChIP binding is a prerequisite for dendritic trafficking and functional surface expression of Kv4.2 channels, however, accessory KChIP binding may play a potential role in Kv4.2 modulation during intrinsic plasticity processes.
β Subunits Control the Effects of Human Kv4.3 Potassium Channel Phosphorylation.
Abbott, Geoffrey W
2017-01-01
The transient outward K + current, I to , activates early in the cardiac myocyte action potential, to begin repolarization. Human I to is generated primarily by two Kv4.3 potassium channel α subunit splice variants (Kv4.3L and Kv4.3S) that diverge only by a C-terminal, membrane-proximal, 19-residue stretch unique to Kv4.3L. Protein kinase C (PKC) phosphorylation of threonine 504 within the Kv4.3L-specific 19-residues mediates α-adrenergic inhibition of I to in human heart. Kv4.3 is regulated in human heart by various β subunits, including cytosolic KChIP2b and transmembrane KCNEs, yet their impact on the functional effects of human Kv4.3 phosphorylation has not been reported. Here, this gap in knowledge was addressed using human Kv4.3 splice variants, T504 mutants, and human β subunits. Subunits were co-expressed in Xenopus laevis oocytes and analyzed by two-electrode voltage-clamp, using phorbol 12-myristate 13-acetate (PMA) to stimulate PKC. Unexpectedly, KChIP2b removed the inhibitory effect of PKC on Kv4.3L (but not Kv4.3L threonine phosphorylation by PKC per-se ), while co-expression with KCNE2, but not KCNE4, restored PKC-dependent inhibition of Kv4.3L-KChIP2b to quantitatively resemble previously reported effects of α-adrenergic modulation of human ventricular I to . In addition, PKC accelerated recovery from inactivation of Kv4.3L-KChIP2b channels and, interestingly, of both Kv4.3L and Kv4.3S alone. Thus, β subunits regulate the response of human Kv4.3 to PKC phosphorylation and provide a potential mechanism for modifying the response of I to to α-adrenergic regulation in vivo .
β Subunits Control the Effects of Human Kv4.3 Potassium Channel Phosphorylation
Abbott, Geoffrey W.
2017-01-01
The transient outward K+ current, Ito, activates early in the cardiac myocyte action potential, to begin repolarization. Human Ito is generated primarily by two Kv4.3 potassium channel α subunit splice variants (Kv4.3L and Kv4.3S) that diverge only by a C-terminal, membrane-proximal, 19-residue stretch unique to Kv4.3L. Protein kinase C (PKC) phosphorylation of threonine 504 within the Kv4.3L-specific 19-residues mediates α-adrenergic inhibition of Ito in human heart. Kv4.3 is regulated in human heart by various β subunits, including cytosolic KChIP2b and transmembrane KCNEs, yet their impact on the functional effects of human Kv4.3 phosphorylation has not been reported. Here, this gap in knowledge was addressed using human Kv4.3 splice variants, T504 mutants, and human β subunits. Subunits were co-expressed in Xenopus laevis oocytes and analyzed by two-electrode voltage-clamp, using phorbol 12-myristate 13-acetate (PMA) to stimulate PKC. Unexpectedly, KChIP2b removed the inhibitory effect of PKC on Kv4.3L (but not Kv4.3L threonine phosphorylation by PKC per-se), while co-expression with KCNE2, but not KCNE4, restored PKC-dependent inhibition of Kv4.3L-KChIP2b to quantitatively resemble previously reported effects of α-adrenergic modulation of human ventricular Ito. In addition, PKC accelerated recovery from inactivation of Kv4.3L-KChIP2b channels and, interestingly, of both Kv4.3L and Kv4.3S alone. Thus, β subunits regulate the response of human Kv4.3 to PKC phosphorylation and provide a potential mechanism for modifying the response of Ito to α-adrenergic regulation in vivo. PMID:28919864
Bladder contractility is modulated by Kv7 channels in pig detrusor.
Svalø, Julie; Bille, Michala; Parameswaran Theepakaran, Neeraja; Sheykhzade, Majid; Nordling, Jørgen; Bouchelouche, Pierre
2013-09-05
Kv7 channels are involved in smooth muscle relaxation, and accordingly we believe that they constitute potential targets for the treatment of overactive bladder syndrome. We have therefore used myography to examine the function of Kv7 channels in detrusor, i.e. pig bladder, with a view to determining the effects of the following potassium channel activators: ML213 (Kv7.2/Kv7.4 channels) and retigabine (Kv7.2-7.5 channels). Retigabine produced a concentration-dependent relaxation of carbachol- and electric field-induced contractions. The potency was similar in magnitude to that of ML213-induced relaxation, suggesting that Kv7.2 and/or Kv7.4 channels constitute the subtypes that are relevant to bladder contractility. The effects of retigabine and ML213 were attenuated by pre-incubation with 10µM XE991 (Kv7.1-7.5 channel blocker) (P<0.05), which in turn confirmed Kv7 channel selectivity. Subtype-selective effects were further investigated by incubating the detrusor with 10µM chromanol 293B (Kv7.1 channel blocker). Regardless of the experimental protocol, this did not cause a further increase in the evoked contraction. In contrast, the addition of XE991 potentiated the KCl-induced contractions, but not those induced by carbachol or electric field, indicating the presence of a phosphatidyl-inositol-4,5-biphosphate-dependent mechanism amongst the Kv7 channels in detrusor. qRT-PCR studies of the mRNA transcript level of Kv7.3-7.5 channels displayed a higher level of Kv7.4 transcript in detrusor compared to that present in brain cortex and heart tissues. Thus, we have shown that Kv7.4 channels are expressed and functionally active in pig detrusor, and that the use of selective Kv7.4 channel modulators in the treatment of detrusor overactivity seems promising. © 2013 Elsevier B.V. All rights reserved.
Marionneau, Céline; Townsend, R Reid; Nerbonne, Jeanne M
2011-04-01
Voltage-gated K(+) (Kv) channels are key determinants of membrane excitability in the nervous and cardiovascular systems, functioning to control resting membrane potentials, shape action potential waveforms and influence the responses to neurotransmitters and neurohormones. Consistent with this functional diversity, multiple types of Kv currents, with distinct biophysical properties and cellular/subcellular distributions, have been identified. Rapidly activating and inactivating Kv currents, typically referred to as I(A) (A-type) in neurons, for example, regulate repetitive firing rates, action potential back-propagation (into dendrites) and modulate synaptic responses. Currents with similar properties, referred to as I(to,f) (fast transient outward), expressed in cardiomyocytes, control the early phase of myocardial action potential repolarization. A number of studies have demonstrated critical roles for pore-forming (α) subunits of the Kv4 subfamily in the generation of native neuronal I(A) and cardiac I(to,f) channels. Studies in heterologous cells have also suggested important roles for a number of Kv channel accessory and regulatory proteins in the generation of functional I(A) and I(to,f) channels. Quantitative mass spectrometry-based proteomic analysis is increasingly recognized as a rapid and, importantly, unbiased, approach to identify the components of native macromolecular protein complexes. The recent application of proteomic approaches to identify the components of native neuronal (and cardiac) Kv4 channel complexes has revealed even greater complexity than anticipated. The continued emphasis on development of improved biochemical and analytical proteomic methods seems certain to accelerate progress and to provide important new insights into the molecular determinants of native ion channel protein complexes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Li, Ke; Gomez-Cardona, Daniel; Hsieh, Jiang; Lubner, Meghan G.; Pickhardt, Perry J.; Chen, Guang-Hong
2015-01-01
Purpose: For a given imaging task and patient size, the optimal selection of x-ray tube potential (kV) and tube current-rotation time product (mAs) is pivotal in achieving the maximal radiation dose reduction while maintaining the needed diagnostic performance. Although contrast-to-noise (CNR)-based strategies can be used to optimize kV/mAs for computed tomography (CT) imaging systems employing the linear filtered backprojection (FBP) reconstruction method, a more general framework needs to be developed for systems using the nonlinear statistical model-based iterative reconstruction (MBIR) method. The purpose of this paper is to present such a unified framework for the optimization of kV/mAs selection for both FBP- and MBIR-based CT systems. Methods: The optimal selection of kV and mAs was formulated as a constrained optimization problem to minimize the objective function, Dose(kV,mAs), under the constraint that the achievable detectability index d′(kV,mAs) is not lower than the prescribed value of d℞′ for a given imaging task. Since it is difficult to analytically model the dependence of d′ on kV and mAs for the highly nonlinear MBIR method, this constrained optimization problem is solved with comprehensive measurements of Dose(kV,mAs) and d′(kV,mAs) at a variety of kV–mAs combinations, after which the overlay of the dose contours and d′ contours is used to graphically determine the optimal kV–mAs combination to achieve the lowest dose while maintaining the needed detectability for the given imaging task. As an example, d′ for a 17 mm hypoattenuating liver lesion detection task was experimentally measured with an anthropomorphic abdominal phantom at four tube potentials (80, 100, 120, and 140 kV) and fifteen mA levels (25 and 50–700) with a sampling interval of 50 mA at a fixed rotation time of 0.5 s, which corresponded to a dose (CTDIvol) range of [0.6, 70] mGy. Using the proposed method, the optimal kV and mA that minimized dose for the prescribed detectability level of d℞′=16 were determined. As another example, the optimal kV and mA for an 8 mm hyperattenuating liver lesion detection task were also measured using the developed framework. Both an in vivo animal and human subject study were used as demonstrations of how the developed framework can be applied to the clinical work flow. Results: For the first task, the optimal kV and mAs were measured to be 100 and 500, respectively, for FBP, which corresponded to a dose level of 24 mGy. In comparison, the optimal kV and mAs for MBIR were 80 and 150, respectively, which corresponded to a dose level of 4 mGy. The topographies of the iso-d′ map and the iso-CNR map were the same for FBP; thus, the use of d′- and CNR-based optimization methods generated the same results for FBP. However, the topographies of the iso-d′ and iso-CNR map were significantly different in MBIR; the CNR-based method overestimated the performance of MBIR, predicting an overly aggressive dose reduction factor. For the second task, the developed framework generated the following optimization results: for FBP, kV = 140, mA = 350, dose = 37.5 mGy; for MBIR, kV = 120, mA = 250, dose = 18.8 mGy. Again, the CNR-based method overestimated the performance of MBIR. Results of the preliminary in vivo studies were consistent with those of the phantom experiments. Conclusions: A unified and task-driven kV/mAs optimization framework has been developed in this work. The framework is applicable to both linear and nonlinear CT systems such as those using the MBIR method. As expected, the developed framework can be reduced to the conventional CNR-based kV/mAs optimization frameworks if the system is linear. For MBIR-based nonlinear CT systems, however, the developed task-based kV/mAs optimization framework is needed to achieve the maximal dose reduction while maintaining the desired diagnostic performance. PMID:26328971
Voltage profile program for the Kennedy Space Center electric power distribution system
NASA Technical Reports Server (NTRS)
1976-01-01
The Kennedy Space Center voltage profile program computes voltages at all busses greater than 1 Kv in the network under various conditions of load. The computation is based upon power flow principles and utilizes a Newton-Raphson iterative load flow algorithm. Power flow conditions throughout the network are also provided. The computer program is designed for both steady state and transient operation. In the steady state mode, automatic tap changing of primary distribution transformers is incorporated. Under transient conditions, such as motor starts etc., it is assumed that tap changing is not accomplished so that transformer secondary voltage is allowed to sag.
Inhibition of Kv7/M Channel Currents by the Local Anesthetic Chloroprocaine.
Zhang, Fan; Cheng, Yanxin; Li, Hong; Jia, Qingzhong; Zhang, Hailin; Zhao, Senming
2015-01-01
Chloroprocaine is a local ester anesthetic, producing excellent sensory block in clinical use. The Kv7/M potassium channel plays an important role in the control of neuronal excitability. In this study, we investigated the effects of the local anesthetic chloroprocaine on Kv7/M channels as well as the effect of retigabine on chloroprocaine-induced seizures. A perforated whole-cell patch technique was used to record Kv7 currents from HEK293 cells and M-type currents from rat dorsal root ganglion (DRG) neurons. Chloroprocaine produced a number of effects on Kv7.2/Kv7.3 currents, including a lowering of current amplitudes, a rightward shift in the voltage-dependent activation curves, and a slowing of channel activation. Chloroprocaine had a more selective inhibitory effect on the homomeric Kv7.3 and heteromeric Kv7.2/Kv7.3 channels than on the homomeric Kv7.2 channel. Chloroprocaine also inhibited native M channel currents and induced a depolarization of the DRG neuron membrane potential. Taken together, the findings indicate that chloroprocaine concentration dependently inhibited Kv7/M channel currents. © 2015 S. Karger AG, Basel.
A Calmodulin C-Lobe Ca2+-Dependent Switch Governs Kv7 Channel Function.
Chang, Aram; Abderemane-Ali, Fayal; Hura, Greg L; Rossen, Nathan D; Gate, Rachel E; Minor, Daniel L
2018-02-21
Kv7 (KCNQ) voltage-gated potassium channels control excitability in the brain, heart, and ear. Calmodulin (CaM) is crucial for Kv7 function, but how this calcium sensor affects activity has remained unclear. Here, we present X-ray crystallographic analysis of CaM:Kv7.4 and CaM:Kv7.5 AB domain complexes that reveal an Apo/CaM clamp conformation and calcium binding preferences. These structures, combined with small-angle X-ray scattering, biochemical, and functional studies, establish a regulatory mechanism for Kv7 CaM modulation based on a common architecture in which a CaM C-lobe calcium-dependent switch releases a shared Apo/CaM clamp conformation. This C-lobe switch inhibits voltage-dependent activation of Kv7.4 and Kv7.5 but facilitates Kv7.1, demonstrating that mechanism is shared by Kv7 isoforms despite the different directions of CaM modulation. Our findings provide a unified framework for understanding how CaM controls different Kv7 isoforms and highlight the role of membrane proximal domains for controlling voltage-gated channel function. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.
Syeda, Ruhma; Santos, Jose S; Montal, Mauricio
2016-02-05
KCNQ (voltage-gated K(+) channel family 7 (Kv7)) channels control cellular excitability and underlie the K(+) current sensitive to muscarinic receptor signaling (the M current) in sympathetic neurons. Here we show that the novel anti-epileptic drug retigabine (RTG) modulates channel function of pore-only modules (PMs) of the human Kv7.2 and Kv7.3 homomeric channels and of Kv7.2/3 heteromeric channels by prolonging the residence time in the open state. In addition, the Kv7 channel PMs are shown to recapitulate the single-channel permeation and pharmacological specificity characteristics of the corresponding full-length proteins in their native cellular context. A mutation (W265L) in the reconstituted Kv7.3 PM renders the channel insensitive to RTG and favors the conductive conformation of the PM, in agreement to what is observed when the Kv7.3 mutant is heterologously expressed. On the basis of the new findings and homology models of the closed and open conformations of the Kv7.3 PM, we propose a structural mechanism for the gating of the Kv7.3 PM and for the site of action of RTG as a Kv7.2/Kv7.3 K(+) current activator. The results validate the modular design of human Kv channels and highlight the PM as a high-fidelity target for drug screening of Kv channels. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Syeda, Ruhma; Santos, Jose S.; Montal, Mauricio
2016-01-01
KCNQ (voltage-gated K+ channel family 7 (Kv7)) channels control cellular excitability and underlie the K+ current sensitive to muscarinic receptor signaling (the M current) in sympathetic neurons. Here we show that the novel anti-epileptic drug retigabine (RTG) modulates channel function of pore-only modules (PMs) of the human Kv7.2 and Kv7.3 homomeric channels and of Kv7.2/3 heteromeric channels by prolonging the residence time in the open state. In addition, the Kv7 channel PMs are shown to recapitulate the single-channel permeation and pharmacological specificity characteristics of the corresponding full-length proteins in their native cellular context. A mutation (W265L) in the reconstituted Kv7.3 PM renders the channel insensitive to RTG and favors the conductive conformation of the PM, in agreement to what is observed when the Kv7.3 mutant is heterologously expressed. On the basis of the new findings and homology models of the closed and open conformations of the Kv7.3 PM, we propose a structural mechanism for the gating of the Kv7.3 PM and for the site of action of RTG as a Kv7.2/Kv7.3 K+ current activator. The results validate the modular design of human Kv channels and highlight the PM as a high-fidelity target for drug screening of Kv channels. PMID:26627826
Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.
Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V
2012-06-01
The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.
Chen, Xingjuan; Li, Wennan; Hiett, S. Christopher; Obukhov, Alexander G.
2016-01-01
Voltage-gated Kv7 channels are inhibited by agonists of Gq-protein-coupled receptors, such as histamine. Recent works have provided evidence that inhibition of vascular Kv7 channels may trigger vessel contractions. In this study, we investigated how Kv7 activity modulates the histamine-induced contractions in “healthy” and metabolic syndrome (MetS) pig right coronary arteries (CAs). We performed isometric tension and immunohistochemical studies with domestic, lean Ossabaw, and MetS Ossabaw pig CAs. We found that neither the Kv7.2/Kv7.4/Kv7.5 activator ML213 nor the general Kv7 inhibitor XE991 altered the tension of CA rings under preload, indicating that vascular Kv7 channels are likely inactive in the preloaded rings. Conversely, ML213 potently dilated histamine-pre-contracted CAs, suggesting that Kv7 channels are activated during histamine applications and yet partially inhibited by histamine. Immunohistochemistry analysis revealed strong Kv7.4 immunostaining in the medial and intimal layers of the CA wall, whereas Kv7.5 immunostaining intensity was strong in the intimal but weak in the medial layers. The medial Kv7 immunostaining was significantly weaker in MetS Ossabaw CAs as compared to lean Ossabaw or domestic CAs. Consistently, histamine-pre-contracted MetS Ossabaw CAs exhibited attenuated ML213-dependent dilations. In domestic pig CAs, where medial Kv7 immunostaining intensity was stronger, histamine-induced contractions spontaneously decayed to ~31% of the peak amplitude within 4 minutes. Oppositely, in Ossabaw CAs, where Kv7 immunostaining intensity was weaker, the histamine-induced contractions were more sustained. XE991 pretreatment significantly slowed the decay rate of histamine-induced contractions in domestic CAs, supporting the hypothesis that increased Kv7 activity correlates with a faster rate of histamine-induced contraction decay. Alternatively, XE991 significantly decreased the amplitude of bradykinin-dependent dilations in pre-contracted CAs. We propose that in CAs, a decreased expression or a loss of function of Kv7 channels may lead to sustained histamine-induced contractions and reduced endothelium-dependent relaxation, both risk factors for coronary spasm. PMID:26844882
Firth, Amy L.; Remillard, Carmelle V.; Platoshyn, Oleksandr; Fantozzi, Ivana; Ko, Eun A.; Yuan, Jason X.-J.
2011-01-01
The activity of voltage-gated ion channels is critical for the maintenance of cellular membrane potential and generation of action potentials. In turn, membrane potential regulates cellular ion homeostasis, triggering the opening and closing of ion channels in the plasma membrane and, thus, enabling ion transport across the membrane. Such transmembrane ion fluxes are important for excitation–contraction coupling in pulmonary artery smooth muscle cells (PASMC). Families of voltage-dependent cation channels known to be present in PASMC include voltage-gated K+ (Kv) channels, voltage-dependent Ca2+-activated K+ (Kca) channels, L- and T- type voltage-dependent Ca2+ channels, voltage-gated Na+ channels and voltage-gated proton channels. When cells are dialyzed with Ca2+-free K+- solutions, depolarization elicits four components of 4-aminopyridine (4-AP)-sensitive Kvcurrents based on the kinetics of current activation and inactivation. In cell-attached membrane patches, depolarization elicits a wide range of single-channel K+ currents, with conductances ranging between 6 and 290 pS. Macroscopic 4-AP-sensitive Kv currents and iberiotoxin-sensitive Kca currents are also observed. Transcripts of (a) two Na+ channel α-subunit genes (SCN5A and SCN6A), (b) six Ca2+ channel α–subunit genes (α1A, α1B, α1X, α1D, α1Eand α1G) and many regulatory subunits (α2δ1, β1-4, and γ6), (c) 22 Kv channel α–subunit genes (Kv1.1 - Kv1.7, Kv1.10, Kv2.1, Kv3.1, Kv3.3, Kv3.4, Kv4.1, Kv4.2, Kv5.1, Kv 6.1-Kv6.3, Kv9.1, Kv9.3, Kv10.1 and Kv11.1) and three Kv channel β-subunit genes (Kvβ1-3) and (d) four Kca channel α–subunit genes (Sloα1 and SK2-SK4) and four Kca channel β-subunit genes (Kcaβ1-4) have been detected in PASMC. Tetrodotoxin-sensitive and rapidly inactivating Na+ currents have been recorded with properties similar to those in cardiac myocytes. In the presence of 20 mM external Ca2+, membrane depolarization from a holding potential of -100 mV elicits a rapidly inactivating T-type Ca2+ current, while depolarization from a holding potential of -70 mV elicits a slowly inactivating dihydropyridine-sensitive L-type Ca2+ current. This review will focus on describing the electrophysiological properties and molecular identities of these voltage-dependent cation channels in PASMC and their contribution to the regulation of pulmonary vascular function and its potential role in the pathogenesis of pulmonary vascular disease. PMID:21927714
Dielectric Elastomers for Fluidic and Biomedical Applications
NASA Astrophysics Data System (ADS)
McCoul, David James
Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and other smaller particulate debris into the system. After a channel blockage was confirmed, three actuation attempts successfully cleared the blockage. Further tests indicated that the device were biocompatible with HeLa cells at 3 kV. To our knowledge this is the first pairing of dielectric elastomers with microfluidics in a non-electroosmotic context. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices. Dielectric elastomers can also be adapted to manipulate fluidic systems on a larger scale. The second part of the dissertation research reports a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ~3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ~0 kPa is reached at 2.4 kV. The device is reliable for at least 2,000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control. The final part of the dissertation presents a novel dielectric elastomer band with integrated rigid elements for the treatment of chronic acid reflux disorders. This dielectric elastomer ring actuator consists of a two-layer stack of prestretched VHB(TM) 4905 with SWCNT electrodes. Its transverse prestretch was maintained by selective rigidification of the VHB(TM) using a UV-curable, solution-processable polymer network. The actuator exhibited a maximum vertical (circumferential) actuation strain of 25% at 3.4 kV in an 24.5 g weighted isotonic setup. It also exhibited the required passive force of 0.25 N and showed a maximum force drop of 0.11 N at 3.32 kV during isometric tests at 4.5 cm. Modeling was performed to determine the prestretches necessary to achieve maximum strain while simultaneously exerting the force of 0.25 N, which corresponds to a required pinching pressure of 3.35 kPa. Modeling also determined the spacing between and number of rigid elements required. The theoretical model curves were adjusted to account for the passive rigid elements, as well as for the addition of margins; the resulting plots agrees well with experiment. The performance of the DE band is comparable to that of living muscle, and this is the first application of dielectric elastomer actuators in the design of a medical implant for the treatment of gastrointestinal disorders. Related applications that could result from this technology are very low-profile linear peristaltic pumps, artificial intestines, an artificial urethra, and artificial blood vessels.
Svalø, Julie; Sheykhzade, Majid; Nordling, Jørgen; Matras, Christina; Bouchelouche, Pierre
2015-01-01
The aim of the study was to investigate whether Kv7 channels and their ancillary β-subunits, KCNE, are functionally expressed in the human urinary bladder. Kv7 channels were examined at the molecular level and by functional studies using RT-qPCR and myography, respectively. We found mRNA expression of KCNQ1, KCNQ3-KCNQ5 and KCNE1-5 in the human urinary bladder from patients with normal bladder function (n = 7) and in patients with bladder outflow obstruction (n = 3). Interestingly, a 3.4-fold up-regulation of KCNQ1 was observed in the latter. The Kv7 channel subtype selective modulators, ML277 (activator of Kv7.1 channels, 10 μM) and ML213 (activator of Kv7.2, Kv7.4, Kv7.4/7.5 and Kv7.5 channels, 10 μM), reduced the tone of 1 μM carbachol pre-constricted bladder strips. XE991 (blocker of Kv7.1–7.5 channels, 10 μM) had opposing effects as it increased contractions achieved with 20 mM KPSS. Furthermore, we investigated if there is interplay between Kv7 channels and β-adrenoceptors. Using cumulative additions of isoprenaline (β-adrenoceptor agonist) and forskolin (adenylyl cyclase activator) in combination with the Kv7 channel activator and blocker, retigabine and XE991, we did not find interplay between Kv7 channels and β-adrenoceptors in the human urinary bladder. The performed gene expression analysis combined with the organ bath studies imply that compounds that activate Kv7 channels could be useful for treatment of overactive bladder syndrome. PMID:25692982
Devaux, Jérôme; Abidi, Affef; Roubertie, Agathe; Molinari, Florence; Becq, Hélène; Lacoste, Caroline; Villard, Laurent; Milh, Mathieu; Aniksztejn, Laurent
2016-05-01
Mutations in the KCNQ2 gene encoding the voltage-gated potassium channel subunit Kv7.2 cause early onset epileptic encephalopathy (EOEE). Most mutations have been shown to induce a loss of function or to affect the subcellular distribution of Kv7 channels in neurons. Herein, we investigated functional consequences and subcellular distribution of the p.V175L mutation of Kv7.2 (Kv7.2(V175L) ) found in a patient presenting EOEE. We observed that the mutation produced a 25-40 mV hyperpolarizing shift of the conductance-voltage relationship of both the homomeric Kv7.2(V175L) and heteromeric Kv7.2(V175L) /Kv7.3 channels compared to wild-type channels and a 10 mV hyperpolarizing shift of Kv7.2(V175L) /Kv7.2/Kv7.3 channels in a 1:1:2 ratio mimicking the patient situation. Mutant channels also displayed faster activation kinetics and an increased current density that was prevented by 1 μm linopirdine. The p.V175L mutation did not affect the protein expression of Kv7 channels and its localization at the axon initial segment. We conclude that p.V175L is a gain of function mutation. This confirms previous observations showing that mutations having opposite consequences on M channels can produce EOEE. These findings alert us that drugs aiming to increase Kv7 channel activity might have adverse effects in EOEE in the case of gain-of-function variants. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Peripheral KV7 channels regulate visceral sensory function in mouse and human colon
Hockley, James RF; Reed, David E; Smith, Ewan St. John; Bulmer, David C; Blackshaw, L Ashley
2017-01-01
Background Chronic visceral pain is a defining symptom of many gastrointestinal disorders. The KV7 family (KV7.1–KV7.5) of voltage-gated potassium channels mediates the M current that regulates excitability in peripheral sensory nociceptors and central pain pathways. Here, we use a combination of immunohistochemistry, gut-nerve electrophysiological recordings in both mouse and human tissues, and single-cell qualitative real-time polymerase chain reaction of gut-projecting sensory neurons, to investigate the contribution of peripheral KV7 channels to visceral nociception. Results Immunohistochemical staining of mouse colon revealed labelling of KV7 subtypes (KV7.3 and KV7.5) with CGRP around intrinsic enteric neurons of the myenteric plexuses and within extrinsic sensory fibres along mesenteric blood vessels. Treatment with the KV7 opener retigabine almost completely abolished visceral afferent firing evoked by the algogen bradykinin, in agreement with significant co-expression of mRNA transcripts by single-cell qualitative real-time polymerase chain reaction for KCNQ subtypes and the B2 bradykinin receptor in retrogradely labelled extrinsic sensory neurons from the colon. Retigabine also attenuated responses to mechanical stimulation of the bowel following noxious distension (0–80 mmHg) in a concentration-dependent manner, whereas the KV7 blocker XE991 potentiated such responses. In human bowel tissues, KV7.3 and KV7.5 were expressed in neuronal varicosities co-labelled with synaptophysin and CGRP, and retigabine inhibited bradykinin-induced afferent activation in afferent recordings from human colon. Conclusions We show that KV7 channels contribute to the sensitivity of visceral sensory neurons to noxious chemical and mechanical stimuli in both mouse and human gut tissues. As such, peripherally restricted KV7 openers may represent a viable therapeutic modality for the treatment of gastrointestinal pathologies. PMID:28566000
Haick, Jennifer M; Brueggemann, Lioubov I; Cribbs, Leanne L; Denning, Mitchell F; Schwartz, Jeffrey; Byron, Kenneth L
2017-06-01
Kv7 potassium channels have recently been found to be expressed and functionally important for relaxation of airway smooth muscle. Previous research suggests that native Kv7 currents are inhibited following treatment of freshly isolated airway smooth muscle cells with bronchoconstrictor agonists, and in intact airways inhibition of Kv7 channels is sufficient to induce bronchiolar constriction. However, the mechanism by which Kv7 currents are inhibited by bronchoconstrictor agonists has yet to be elucidated. In the present study, native Kv7 currents in cultured human trachealis smooth muscle cells (HTSMCs) were observed to be inhibited upon treatment with histamine; inhibition of Kv7 currents was associated with membrane depolarization and an increase in cytosolic Ca 2+ ([Ca 2+ ] cyt ). The latter response was inhibited by verapamil, a blocker of L-type voltage-sensitive Ca 2+ channels (VSCCs). Protein kinase C (PKC) has been implicated as a mediator of bronchoconstrictor actions, although the targets of PKC are not clearly established. We found that histamine treatment significantly and dose-dependently suppressed currents through overexpressed wild-type human Kv7.5 (hKv7.5) channels in cultured HTSMCs, and this effect was inhibited by the PKC inhibitor Ro-31-8220 (3 µM). The PKC-dependent suppression of hKv7.5 currents corresponded with a PKC-dependent increase in hKv7.5 channel phosphorylation. Knocking down or inhibiting PKCα, or mutating hKv7.5 serine 441 to alanine, abolished the inhibitory effects of histamine on hKv7.5 currents. These findings provide the first evidence linking PKC activation to suppression of Kv7 currents, membrane depolarization, and Ca 2+ influx via L-type VSCCs as a mechanism for histamine-induced bronchoconstriction. Copyright © 2017 the American Physiological Society.
Svalø, Julie; Sheykhzade, Majid; Nordling, Jørgen; Matras, Christina; Bouchelouche, Pierre
2015-01-01
The aim of the study was to investigate whether Kv7 channels and their ancillary β-subunits, KCNE, are functionally expressed in the human urinary bladder. Kv7 channels were examined at the molecular level and by functional studies using RT-qPCR and myography, respectively. We found mRNA expression of KCNQ1, KCNQ3-KCNQ5 and KCNE1-5 in the human urinary bladder from patients with normal bladder function (n = 7) and in patients with bladder outflow obstruction (n = 3). Interestingly, a 3.4-fold up-regulation of KCNQ1 was observed in the latter. The Kv7 channel subtype selective modulators, ML277 (activator of Kv7.1 channels, 10 μM) and ML213 (activator of Kv7.2, Kv7.4, Kv7.4/7.5 and Kv7.5 channels, 10 μM), reduced the tone of 1 μM carbachol pre-constricted bladder strips. XE991 (blocker of Kv7.1-7.5 channels, 10 μM) had opposing effects as it increased contractions achieved with 20 mM KPSS. Furthermore, we investigated if there is interplay between Kv7 channels and β-adrenoceptors. Using cumulative additions of isoprenaline (β-adrenoceptor agonist) and forskolin (adenylyl cyclase activator) in combination with the Kv7 channel activator and blocker, retigabine and XE991, we did not find interplay between Kv7 channels and β-adrenoceptors in the human urinary bladder. The performed gene expression analysis combined with the organ bath studies imply that compounds that activate Kv7 channels could be useful for treatment of overactive bladder syndrome.
Rhodes, Kenneth J; Carroll, Karen I; Sung, M Amy; Doliveira, Lisa C; Monaghan, Michael M; Burke, Sharon L; Strassle, Brian W; Buchwalder, Lynn; Menegola, Milena; Cao, Jie; An, W Frank; Trimmer, James S
2004-09-08
Voltage-gated potassium (Kv) channels from the Kv4, or Shal-related, gene family underlie a major component of the A-type potassium current in mammalian central neurons. We recently identified a family of calcium-binding proteins, termed KChIPs (Kv channel interacting proteins), that bind to the cytoplasmic N termini of Kv4 family alpha subunits and modulate their surface density, inactivation kinetics, and rate of recovery from inactivation (An et al., 2000). Here, we used single and double-label immunohistochemistry, together with circumscribed lesions and coimmunoprecipitation analyses, to examine the regional and subcellular distribution of KChIPs1-4 and Kv4 family alpha subunits in adult rat brain. Immunohistochemical staining using KChIP-specific monoclonal antibodies revealed that the KChIP polypeptides are concentrated in neuronal somata and dendrites where their cellular and subcellular distribution overlaps, in an isoform-specific manner, with that of Kv4.2 and Kv4.3. For example, immunoreactivity for KChIP1 and Kv4.3 is concentrated in the somata and dendrites of hippocampal, striatal, and neocortical interneurons. Immunoreactivity for KChIP2, KChIP4, and Kv4.2 is concentrated in the apical and basal dendrites of hippocampal and neocortical pyramidal cells. Double-label immunofluorescence labeling revealed that throughout the forebrain, KChIP2 and KChIP4 are frequently colocalized with Kv4.2, whereas in cortical, hippocampal, and striatal interneurons, KChIP1 is frequently colocalized with Kv4.3. Coimmunoprecipitation analyses confirmed that all KChIPs coassociate with Kv4 alpha subunits in brain membranes, indicating that KChIPs 1-4 are integral components of native A-type Kv channel complexes and are likely to play a major role as modulators of somatodendritic excitability.
Bähring, R; Dannenberg, J; Peters, H C; Leicher, T; Pongs, O; Isbrandt, D
2001-06-29
Association of Kv channel-interacting proteins (KChIPs) with Kv4 channels leads to modulation of these A-type potassium channels (An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000) Nature 403, 553-556). We cloned a KChIP2 splice variant (KChIP2.2) from human ventricle. In comparison with KChIP2.1, coexpression of KChIP2.2 with human Kv4 channels in mammalian cells slowed the onset of Kv4 current inactivation (2-3-fold), accelerated the recovery from inactivation (5-7-fold), and shifted Kv4 steady-state inactivation curves by 8-29 mV to more positive potentials. The features of Kv4.2/KChIP2.2 currents closely resemble those of cardiac rapidly inactivating transient outward currents. KChIP2.2 stimulated the Kv4 current density in Chinese hamster ovary cells by approximately 55-fold. This correlated with a redistribution of immunoreactivity from perinuclear areas to the plasma membrane. Increased Kv4 cell-surface expression and current density were also obtained in the absence of KChIP2.2 when the highly conserved proximal Kv4 N terminus was deleted. The same domain is required for association of KChIP2.2 with Kv4 alpha-subunits. We propose that an efficient transport of Kv4 channels to the cell surface depends on KChIP binding to the Kv4 N-terminal domain. Our data suggest that the binding is necessary, but not sufficient, for the functional activity of KChIPs.
Implication of novel thiazolo-thiophene derivative (MCD-KV-10) for management of asthma.
Patil, Dhiraj; Dash, Ranjeet Prasad; Thakur, Sandeep Kumar; Pandya, Amit N; Venkatesh, P; Vasu, Kamala K; Nivsarkar, Manish
2015-04-01
Asthma is multifaceted disease where many targets contribute towards its development and progression. Among these, adenosine receptor subtypes play a major role. MCD-KV-10, a novel thiazolo-thiophene was designed and evaluated pre-clinically for its implication in management of asthma. This compound showed good affinity and selectivity towards A(2A)/A3 adenosine receptor (AR) subtypes. Furthermore, MCD-KV-10 was evaluated for in vitro lipoxygenase inhibition activity; in vivo mast cell stabilization potential and in vivo anti-asthmatic activity was done in ovalbumin-induced airway inflammation model in guinea pigs. The compound showed good (>57%) inhibition of lipoxygenase enzyme and also effectively protected mast cell degranulation (>63%). The compound showed good anti-asthmatic activity as inferred from the in vivo studies. These results indicate that MCD-KV-10 has an inhibitory effect on airway inflammation. Though, we have identified a potential candidate for management of asthma, further mechanistic studies are needed.
A Novel Nanosecond Pulsed Power Unit for the Formation of ·OH in Water
NASA Astrophysics Data System (ADS)
Li, Shengli; Hu, Sheng; Zhang, Han
2012-04-01
A novel nanosecond pulsed power unit was developed for plasma treatment of wastewater, based on the theory of magnetic pulse compression and semiconductor opening switch (SOS). The peak value, rise time and pulse duration of the output voltage were observed to be -51 kV, 60 ns and 120 ns, respectively. The concentrations of ·OH generated by the novel nanosecond pulsed plasma power were determined using the method of high-performance liquid chromatography (HPLC). The results showed that the concentrations of ·OH increased with the increase in peak voltage, and the generation rates of ·OH were 4.1 × 10-10 mol/s, 5.7 × 10-10 mol/s, and 7.7 × 10-10 mol/s at 30 kV, 35 kV, and 40 kV, respectively. The efficiency of OH generation was found to be independent of the input parameters for applied power, with an average value of 3.23×10-12 mol/J obtained.
Failure Detecting Method of Fault Current Limiter System with Rectifier
NASA Astrophysics Data System (ADS)
Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa
A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.
Action potential broadening in a presynaptic channelopathy
NASA Astrophysics Data System (ADS)
Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.
2016-07-01
Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.
Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K.; Shi, Yingtang; Wagner, Paul G.; Pivaroff-Ward, Kendra; Sassic, Jessica K.; Bayliss, Douglas A.
2013-01-01
The Ether-a-go-go (EAG) superfamily of voltage-gated K+ channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K+ currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K+ channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance–voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn2+. Low pH similarly reduces Mg2+ sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca2+. Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K+ currents observed in vivo. PMID:23712551
Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K; Shi, Yingtang; Wagner, Paul G; Pivaroff-Ward, Kendra; Sassic, Jessica K; Bayliss, Douglas A; Jegla, Timothy
2013-06-01
The Ether-a-go-go (EAG) superfamily of voltage-gated K(+) channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K(+) currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K(+) channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance-voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn(2+). Low pH similarly reduces Mg(2+) sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca(2+). Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K(+) currents observed in vivo.
Testai, Lara; Barrese, Vincenzo; Soldovieri, Maria Virginia; Ambrosino, Paolo; Martelli, Alma; Vinciguerra, Iolanda; Miceli, Francesco; Greenwood, Iain Andrew; Curtis, Michael John; Breschi, Maria Cristina; Sisalli, Maria Josè; Scorziello, Antonella; Canduela, Miren Josune; Grandes, Pedro; Calderone, Vincenzo; Taglialatela, Maurizio
2016-05-01
Plasmalemmal Kv7.1 (KCNQ1) channels are critical players in cardiac excitability; however, little is known on the functional role of additional Kv7 family members (Kv7.2-5) in cardiac cells. In this work, the expression, function, cellular and subcellular localization, and potential cardioprotective role against anoxic-ischaemic cardiac injury of Kv7.4 channels have been investigated. Expression of Kv7.1 and Kv7.4 transcripts was found in rat heart tissue by quantitative polymerase chain reaction. Western blots detected Kv7.4 subunits in mitochondria from Kv7.4-transfected cells, H9c2 cardiomyoblasts, freshly isolated adult cardiomyocytes, and whole hearts. Immunofluorescence experiments revealed that Kv7.4 subunits co-localized with mitochondrial markers in cardiac cells, with ∼ 30-40% of cardiac mitochondria being labelled by Kv7.4 antibodies, a result also confirmed by immunogold electron microscopy experiments. In isolated cardiac (but not liver) mitochondria, retigabine (1-30 µM) and flupirtine (30 µM), two selective Kv7 activators, increased Tl(+) influx, depolarized the membrane potential, and inhibited calcium uptake; all these effects were antagonized by the Kv7 blocker XE991. In intact H9c2 cells, reducing Kv7.4 expression by RNA interference blunted retigabine-induced mitochondrial membrane depolarization; in these cells, retigabine decreased mitochondrial Ca(2+) levels and increased radical oxygen species production, both effects prevented by XE991. Finally, retigabine reduced cellular damage in H9c2 cells exposed to anoxia/re-oxygenation and largely prevented the functional and morphological changes triggered by global ischaemia/reperfusion (I/R) in Langendorff-perfused rat hearts. Kv7.4 channels are present and functional in cardiac mitochondria; their activation exerts a significant cardioprotective role, making them potential therapeutic targets against I/R-induced cardiac injury. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Yunoki, Takakazu; Takimoto, Koichi; Kita, Kaori; Funahashi, Yasuhito; Takahashi, Ryosuke; Matsuyoshi, Hiroko; Naito, Seiji; Yoshimura, Naoki
2014-11-15
Little is known about electrophysiological differences of A-type transient K(+) (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. In whole-cell, patch-clamp recordings, phrixotoxin 2 (PaTx2), a voltage-gated K(+) (Kv)4 channel blocker, exhibits voltage-independent inhibition of the KA current in IB4 intensely stained cells but not the one in bladder-innervating cells. The toxin also shows voltage-independent inhibition of heterologously expressed Kv4.1 current, whereas its inhibition of Kv4.2 and Kv4.3 currents is voltage dependent. The swapping of four amino acids at the carboxyl portion of the S3 region between Kv4.1 and Kv4.2 transfers this characteristic. RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder. Copyright © 2014 the American Physiological Society.
Yunoki, Takakazu; Takimoto, Koichi; Kita, Kaori; Funahashi, Yasuhito; Takahashi, Ryosuke; Matsuyoshi, Hiroko; Naito, Seiji
2014-01-01
Little is known about electrophysiological differences of A-type transient K+ (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. In whole-cell, patch-clamp recordings, phrixotoxin 2 (PaTx2), a voltage-gated K+ (Kv)4 channel blocker, exhibits voltage-independent inhibition of the KA current in IB4 intensely stained cells but not the one in bladder-innervating cells. The toxin also shows voltage-independent inhibition of heterologously expressed Kv4.1 current, whereas its inhibition of Kv4.2 and Kv4.3 currents is voltage dependent. The swapping of four amino acids at the carboxyl portion of the S3 region between Kv4.1 and Kv4.2 transfers this characteristic. RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder. PMID:25143545
Identification of a functional interaction between Kv4.3 channels and c-Src tyrosine kinase.
Gomes, Pedro; Saito, Tomoaki; Del Corsso, Cris; Alioua, Abderrahmane; Eghbali, Mansoureh; Toro, Ligia; Stefani, Enrico
2008-10-01
Voltage-gated K(+) (Kv) channels are key determinants of cardiac and neuronal excitability. A substantial body of evidence has accumulated in support of a role for Src family tyrosine kinases in the regulation of Kv channels. In this study, we examined the possibility that c-Src tyrosine kinase participates in the modulation of the transient voltage-dependent K(+) channel Kv4.3. Supporting a mechanistic link between Kv4.3 and c-Src, confocal microscopy analysis of HEK293 cells stably transfected with Kv4.3 showed high degree of co-localization of the two proteins at the plasma membrane. Our results further demonstrate an association between Kv4.3 and c-Src by co-immunoprecipitation and GST pull-down assays, this interaction being mediated by the SH2 and SH3 domains of c-Src. Furthermore, we show that Kv4.3 is tyrosine phosphorylated under basal conditions. The functional relevance of the observed interaction between Kv4.3 and c-Src was established in patch-clamp experiments, where application of the Src inhibitor PP2 caused a decrease in Kv4.3 peak current amplitude, but not the inactive structural analogue PP3. Conversely, intracellular application of recombinant c-Src kinase or the protein tyrosine phosphatase inhibitor bpV(phen) increased Kv4.3 peak current amplitude. In conclusion, our findings provide evidence that c-Src-induced Kv4.3 channel activation involves their association in a macromolecular complex and suggest a role for c-Src-Kv4.3 pathway in regulating cardiac and neuronal excitability.
Telezhkin, Vsevolod; Thomas, Alison M; Harmer, Stephen C; Tinker, Andrew; Brown, David A
2013-07-01
All Kv7 potassium channels require membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) for their normal function and hence can be physiologically regulated by neurotransmitters and hormones that stimulate phosphoinositide hydrolysis. Recent mutational analysis indicates that a cluster of basic residues in the proximal C-terminus (K354/K358/R360/K362) is crucial for PI(4,5)P2 activation of cardiac Kv7.1 channels. Since this cluster is largely conserved in all Kv7 subunits, we tested whether homologous residues are also required for activation of Kv7.2 (a subunit of neuronal M-channels). We found that the mutation Kv7.2 (R325A) (corresponding to R360 in Kv7.1) reduced Kv7.2 current amplitude by ∼60 % (P < 0.02) without change in voltage sensitivity and reduced the sensitivity of Kv7.2 channels to dioctanoyl-phosphatidylinositol-4,5-bisphosphate by ∼eightfold (P < 0.001). Taking into account previous experiments (Zhang et al., Neuron 37:963-75, 2003) implicating Kv7.2 (H328), and since R325 and H328 are conserved in homologous positions in all other Kv7 channels, we suggest that this proximal C-terminal domain adjacent to the last transmembrane domain that contains R325 and H328 (in Kv7.2) might play a major role in the activation of all members of the Kv7 channel family by PI(4,5)P2.
The Role of KV7.3 in Regulating Osteoblast Maturation and Mineralization
Yang, Ji Eun; Song, Min Seok; Shen, Yiming; Ryu, Pan Dong; Lee, So Yeong
2016-01-01
KCNQ (KV7) channels are voltage-gated potassium (KV) channels, and the function of KV7 channels in muscles, neurons, and sensory cells is well established. We confirmed that overall blockade of KV channels with tetraethylammonium augmented the mineralization of bone-marrow-derived human mesenchymal stem cells during osteogenic differentiation, and we determined that KV7.3 was expressed in MG-63 and Saos-2 cells at the mRNA and protein levels. In addition, functional KV7 currents were detected in MG-63 cells. Inhibition of KV7.3 by linopirdine or XE991 increased the matrix mineralization during osteoblast differentiation. This was confirmed by alkaline phosphatase, osteocalcin, and osterix in MG-63 cells, whereas the expression of Runx2 showed no significant change. The extracellular glutamate secreted by osteoblasts was also measured to investigate its effect on MG-63 osteoblast differentiation. Blockade of KV7.3 promoted the release of glutamate via the phosphorylation of extracellular signal-regulated kinase 1/2-mediated upregulation of synapsin, and induced the deposition of type 1 collagen. However, activation of KV7.3 by flupirtine did not produce notable changes in matrix mineralization during osteoblast differentiation. These results suggest that KV7.3 could be a novel regulator in osteoblast differentiation. PMID:26999128
The Role of KV7.3 in Regulating Osteoblast Maturation and Mineralization.
Yang, Ji Eun; Song, Min Seok; Shen, Yiming; Ryu, Pan Dong; Lee, So Yeong
2016-03-18
KCNQ (KV7) channels are voltage-gated potassium (KV) channels, and the function of KV7 channels in muscles, neurons, and sensory cells is well established. We confirmed that overall blockade of KV channels with tetraethylammonium augmented the mineralization of bone-marrow-derived human mesenchymal stem cells during osteogenic differentiation, and we determined that KV7.3 was expressed in MG-63 and Saos-2 cells at the mRNA and protein levels. In addition, functional KV7 currents were detected in MG-63 cells. Inhibition of KV7.3 by linopirdine or XE991 increased the matrix mineralization during osteoblast differentiation. This was confirmed by alkaline phosphatase, osteocalcin, and osterix in MG-63 cells, whereas the expression of Runx2 showed no significant change. The extracellular glutamate secreted by osteoblasts was also measured to investigate its effect on MG-63 osteoblast differentiation. Blockade of KV7.3 promoted the release of glutamate via the phosphorylation of extracellular signal-regulated kinase 1/2-mediated upregulation of synapsin, and induced the deposition of type 1 collagen. However, activation of KV7.3 by flupirtine did not produce notable changes in matrix mineralization during osteoblast differentiation. These results suggest that KV7.3 could be a novel regulator in osteoblast differentiation.
Hansen, Henrik H; Weikop, Pia; Mikkelsen, Maria D; Rode, Frederik; Mikkelsen, Jens D
2017-01-01
Central Kv7 (KCNQ) channels are voltage-dependent potassium channels composed of different combinations of four Kv7 subunits, being differently expressed in the brain. Notably, striatal dopaminergic neurotransmission is strongly suppressed by systemic administration of the pan-Kv7 channel opener retigabine. The effect of retigabine likely involves the inhibition of the activity in mesencephalic dopaminergic neurons projecting to the striatum, but whether Kv7 channels expressed in the striatum may also play a role is not resolved. We therefore assessed the effect of intrastriatal retigabine administration on striatal neuronal excitability in the rat determined by c-Fos immunoreactivity, a marker of neuronal activation. When retigabine was applied locally in the striatum, this resulted in a marked reduction in the number of c-Fos-positive neurons after a strong excitatory striatal stimulus induced by acute systemic haloperidol administration in the rat. The relative mRNA levels of Kv7 subunits in the rat striatum were found to be Kv7.2 = Kv7.3 = Kv7.5 > >Kv7.4. These data suggest that intrastriatal Kv7 channels play a direct role in regulating striatal excitability in vivo. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Jerng, Henry H; Kunjilwar, Kumud; Pfaffinger, Paul J
2005-11-01
Kv4 pore-forming subunits are the principal constituents of the voltage-gated K+ channel underlying somatodendritic subthreshold A-type currents (I(SA)) in neurones. Two structurally distinct types of Kv4 channel modulators, Kv channel-interacting proteins (KChIPs) and dipeptidyl-peptidase-like proteins (DPLs: DPP6 or DPPX, DPP10 or DPPY), enhance surface expression and modify functional properties. Since KChIP and DPL distributions overlap in the brain, we investigated the potential coassembly of Kv4.2, KChIP3 and DPL proteins, and the contribution of DPLs to ternary complex properties. Immunoprecipitation results show that KChIP3 and DPP10 associate simultaneously with Kv4.2 proteins in rat brain as well as heterologously expressing Xenopus oocytes, indicating Kv4.2 + KChIP3 + DPP10 multiprotein complexes. Consistent with ternary complex formation, coexpression of Kv4.2, KChIP3 and DPP10 in oocytes and CHO cells results in current waveforms distinct from the arithmetic sum of Kv4.2 + KChIP3 and Kv4.2 + DPP10 currents. Furthermore, the Kv4.2 + KChIP3 + DPP10 channels recover from inactivation very rapidly (tau(rec) approximately 18-26 ms), closely matching that of native I(SA) and significantly faster than the recovery of Kv4.2 + KChIP3 or Kv4.2 + DPP10 channels. For comparison, identical triple coexpression experiments were performed using DPP6 variants. While most results are similar, the Kv4.2 + KChIP3 + DPP6 channels exhibit inactivation that slows with increasing membrane potential, resulting in inactivation slower than that of Kv4.2 + KChIP3 + DPP10 channels at positive voltages. In conclusion, the native neuronal subthreshold A-type channel is probably a macromolecular complex formed from Kv4 and a combination of both KChIP and DPL proteins, with the precise composition of channel alpha and auxiliary subunits underlying tissue and regional variability in I(SA) properties.
Griguoli, Marilena; Cherubini, Enrico
2017-01-01
Synchronized neuronal activity occurring at different developmental stages in various brain structures represents a hallmark of developmental circuits. This activity, which differs in its specific patterns among animal species may play a crucial role in de novo formation and in shaping neuronal networks. In the rodent hippocampus in vitro , the so-called giant depolarizing potentials (GDPs) constitute a primordial form of neuronal synchrony preceding more organized forms of activity such as oscillations in the theta and gamma frequency range. GDPs are generated at the network level by the interaction of the neurotransmitters glutamate and GABA which, immediately after birth, exert both a depolarizing and excitatory action on their targets. GDPs are triggered by GABAergic interneurons, which in virtue of their extensive axonal branching operate as functional hubs to synchronize large ensembles of cells. Intrinsic bursting activity, driven by a persistent sodium conductance and facilitated by the low expression of Kv7.2 and Kv7.3 channel subunits, responsible for I M , exerts a permissive role in GDP generation. Here, we discuss how GDPs are generated in a probabilistic way when neuronal excitability within a local circuit reaches a certain threshold and how GDP-associated calcium transients act as coincident detectors for enhancing synaptic strength at emerging GABAergic and glutamatergic synapses. We discuss the possible in vivo correlate of this activity. Finally, we debate recent data showing how, in several animal models of neuropsychiatric disorders including autism, a GDPs dysfunction is associated to morphological alterations of neuronal circuits and behavioral deficits reminiscent of those observed in patients.
Merritt, Bernard T.; Dreifuerst, Gary R.
1994-01-01
A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.
NASA Astrophysics Data System (ADS)
Lu, Siqi; Wang, Xiaorong; Wu, Junyong
2018-01-01
The paper presents a method to generate the planning scenarios, which is based on K-means clustering analysis algorithm driven by data, for the location and size planning of distributed photovoltaic (PV) units in the network. Taken the power losses of the network, the installation and maintenance costs of distributed PV, the profit of distributed PV and the voltage offset as objectives and the locations and sizes of distributed PV as decision variables, Pareto optimal front is obtained through the self-adaptive genetic algorithm (GA) and solutions are ranked by a method called technique for order preference by similarity to an ideal solution (TOPSIS). Finally, select the planning schemes at the top of the ranking list based on different planning emphasis after the analysis in detail. The proposed method is applied to a 10-kV distribution network in Gansu Province, China and the results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez-Cardona, D; Li, K; Lubner, M G
Purpose: The introduction of the highly nonlinear MBIR algorithm to clinical CT systems has made CNR an invalid metric for kV optimization. The purpose of this work was to develop a task-based framework to unify kV and mAs optimization for both FBP- and MBIR-based CT systems. Methods: The kV-mAs optimization was formulated as a constrained minimization problem: to select kV and mAs to minimize dose under the constraint of maintaining the detection performance as clinically prescribed. To experimentally solve this optimization problem, exhaustive measurements of detectability index (d’) for a hepatic lesion detection task were performed at 15 different mAmore » levels and 4 kV levels using an anthropomorphic phantom. The measured d’ values were used to generate an iso-detectability map; similarly, dose levels recorded at different kV-mAs combinations were used to generate an iso-dose map. The iso-detectability map was overlaid on top of the iso-dose map so that for a prescribed detectability level d’, the optimal kV-mA can be determined from the crossing between the d’ contour and the dose contour that corresponds to the minimum dose. Results: Taking d’=16 as an example: the kV-mAs combinations on the measured iso-d’ line of MBIR are 80–150 (3.8), 100–140 (6.6), 120–150 (11.3), and 140–160 (17.2), where values in the parentheses are measured dose values. As a Result, the optimal kV was 80 and optimal mA was 150. In comparison, the optimal kV and mA for FBP were 100 and 500, which corresponded to a dose level of 24 mGy. Results of in vivo animal experiments were consistent with the phantom results. Conclusion: A new method to optimize kV and mAs selection has been developed. This method is applicable to both linear and nonlinear CT systems such as those using MBIR. Additional dose savings can be achieved by combining MBIR with this method. This work was partially supported by an NIH grant R01CA169331 and GE Healthcare. K. Li, D. Gomez-Cardona, M. G. Lubner: Nothing to disclose. P. J. Pickhardt: Co-founder, VirtuoCTC, LLC Stockholder, Cellectar Biosciences, Inc. G.-H. Chen: Research funded, GE Healthcare; Research funded, Siemens AX.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun
2009-06-26
Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a rolemore » in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.« less
Stephens, G J; Robertson, B
1995-01-01
1. This study used the whole-cell patch clamp technique to investigate the action of a 28-mer 'inactivation peptide' based on part of the N-terminal sequence of the human Kv3.4 K+ channel (hKv3.4 peptide) on the cloned mouse brain K+ channel mKv1.1 expressed in Chinese hamster ovary (CHO) cells, and compared this with the inactivation produced by Shaker B inactivation peptide (ShB peptide). 2. Inclusion of the hKv3.4 peptide in the patch electrode (320 microM) transformed non-inactivating mKv1.1 into a rapidly inactivating current. The voltage dependence of time constants of decay and steady-state inactivation induced by hKv3.4 peptide were characteristic of an 'A-type' K+ current. 3. The hKv3.4 peptide had no effect on the voltage dependence of activation of mKv1.1, with a mid-point of activation of -8 mV, and a slope factor of 15 mV. Steady-state inactivation curves had a mid-point of inactivation of -36 mV and a slope factor of -7 mV; the time constant of recovery from inactivation at -90 mV was 1.3 s. 4. The chemical modification reagents N-bromoacetamide (NBA, 100 microM) and chloramine-T (CL-T, 500 microM) had no effect on the fast inactivation of mKv1.1 induced by ShB peptide. In contrast, the inactivation caused by hKv3.4 peptide was removed by brief exposure to NBA and CL-T. 5. Chemical modification resulted in a hyperpolarizing shift of -8 mV (CL-T) and -11 mV (NBA) in the voltage dependence of activation of mKv1.1 in the presence of hKv3.4 peptide. 6. Chemical modification was critically dependent on the presence of a cysteine residue at position 6, and not position 24, of hKv3.4 peptide. 7. NBA and CL-T caused only a slight inhibition of unmodified mKv1.1 current with no significant effect on the voltage dependence of mKv1.1 activation, and also had no effect on channel deactivation at -90 mV. 8. Chemical modification experiments were consistent with a selective action on the hKv3.4 peptide itself, specifically at the cysteine residue at position 6. PMID:7602512
Electrical Characteristics of 10-kV 4H-SiC MPS Rectifiers with High Schottky Barrier Height
NASA Astrophysics Data System (ADS)
Jiang, Yifan; Sung, Woongje; Baliga, Jayant; Wang, Sizhen; Lee, Bongmook; Huang, Alex
2018-02-01
This paper reports the study of the fabrication and characterization results of 10-kilo-volt (kV) 4H-SiC merged PiN/Schottky rectifiers. A metal contact process was developed to make the Schottky contact on n-type SiC and ohmic contact on p-type SiC at the same time. The diodes with different Schottky contact width were fabricated and characterized for comparison. With the improvement quality of the Schottky contact and the passivation layer, the devices show low leakage current up to 10 kV. The on-state characteristics from room temperature to elevated temperature (423 K) were demonstrated and compared between structures with different Schottky contact width.
Kv4.2 Knockout Mice Have Hippocampal-Dependent Learning and Memory Deficits
ERIC Educational Resources Information Center
Lugo, Joaquin N.; Brewster, Amy L.; Spencer, Corinne M.; Anderson, Anne E.
2012-01-01
Kv4.2 channels contribute to the transient, outward K[superscript +] current (A-type current) in hippocampal dendrites, and modulation of this current substantially alters dendritic excitability. Using Kv4.2 knockout (KO) mice, we examined the role of Kv4.2 in hippocampal-dependent learning and memory. We found that Kv4.2 KO mice showed a deficit…
Constantinople, Christine M.; Disney, Anita A; Maffie, Jonathan; Rudy, Bernardo; Hawken, Michael J
2010-01-01
Voltage-gated potassium channels that are composed of Kv3 subunits exhibit distinct electrophysiological properties: activation at more depolarized potentials than other voltage-gated K+ channels and fast kinetics. These channels have been shown to contribute to the high-frequency firing of fast-spiking (FS) GABAergic interneurons in the rat and mouse brain. In the rodent neocortex, there are distinct patterns of expression for the Kv3.1b and Kv3.2 channel subunits and of co-expression of these subunits with neurochemical markers, such as the calcium-binding proteins parvalbumin (PV) and calbindin D-28K (CB). The distribution of Kv3 channels and interrelationship with calcium-binding protein expression has not been investigated in primate cortex. We used immunoperoxidase and immunofluorescent labeling and stereological counting techniques to characterize the laminar and cell-type distributions of Kv3-ir neurons in macaque V1. We found that across the cortical layers ~25% of both Kv3.1b- and Kv3.2-ir neurons are non-GABAergic. In contrast all Kv3-ir neurons in rodent cortex are GABAergic (Chow et al., 1999). The putatively excitatory Kv3-ir neurons were mostly located in layers 2, 3 and 4b. Further, the proportion of Kv3-ir neurons that express PV or CB also differs between macaque V1 and rodent cortex. These data indicate that, within the population of cortical neurons, a broader population of neurons, encompassing cells of a wider range of morphological classes may be capable of sustaining high-frequency firing in macaque V1. PMID:19634181
The role of PSD-95 in the rearrangement of Kv1.3 channels to the immunological synapse.
Szilágyi, Orsolya; Boratkó, Anita; Panyi, György; Hajdu, Péter
2013-09-01
Establishment of the immunological synapse (IS) between T lymphocytes and antigen-presenting cells is a key step in the adaptive immune response. Several proteins accumulate in the IS, such as the Kv1.3 potassium channel; however, the mechanism of this translocation is unknown. PSD-95 and SAP97 are adaptor proteins that regulate the polarized cell surface expression and localization of Kv1 channels in neurons. We investigated whether these proteins affect the redistribution of Kv1.3 into the IS in non-excitable human T cells. We show here that PSD-95 and SAP97 are expressed in Jurkat and interact with the C terminus of Kv1.3. Disruption of the interaction between PSD-95 or SAP97 and Kv1.3 in Jurkat was realized by the expression of a C-terminal truncated Kv1.3, which lacks the binding domain for these proteins, or by the knockdown of the expression of PSD-95 or SAP97 using specific shRNA. Expression of the truncated Kv1.3 or knockdown of PSD-95, but not the knockdown of SAP97, inhibited the recruitment of Kv1.3 into the IS; the fraction of cells showing polarized Kv1.3 expression upon engagement in an IS was significantly lower than in control cells expressing the full-length Kv1.3, and the rearrangement of Kv1.3 did not show time dependence. In contrast, Jurkat cells expressing the full-length channel showed marked time dependence in the recruitment into the IS peaking at 1 min after the conjugation of the cells. These results demonstrate that PSD-95 participates in the targeting of Kv1.3 into the IS, implying its important role in human T-cell activation.
Cidad, P; Novensà, L; Garabito, M; Batlle, M; Dantas, A P; Heras, M; López-López, J R; Pérez-García, M T; Roqué, M
2014-12-01
K(+) channels are central to vascular pathophysiology. Previous results demonstrated that phenotypic modulation associates with a change in Kv1.3 to Kv1.5 expression, and that Kv1.3 blockade inhibits proliferation of VSMCs cultures. To explore whether the Kv1.3 to Kv1.5 switch could be a marker of the increased risk of intimal hyperplasia in essential hypertension and whether systemic treatment with Kv1.3 blockers can prevent intimal hyperplasia after endoluminal lesion . Morphometric and immunohistochemical analysis were performed in arterial segments following arterial injury and constant infusion of the Kv1.3 blocker PAP-1 during 28 days. Differential expression of K(+) channel genes was studied in VSMC from hypertensive (BPH) and normotensive (BPN) mice, both in control and after endoluminal lesion. Finally, the migration and proliferation rate of BPN and BPH VSMCs was explored in vitro. Changes in mRNA expression led to an increased Kv1.3/Kv1.5 ratio in BPH VSMC. Consistent with this, arterial injury in BPH mice induced a higher degree of luminal stenosis, (84 ± 4% vs. 70 ± 5% in BPN, p < 0.01), although no differences in migration and proliferation rate were observed in cultured VSMCs. The in vivo proliferative lesions were significantly decreased upon PAP-1 systemic infusion (18 ± 6% vs. 58 ± 20% with vehicle, p < 0.05). Hypertension leads to a higher degree of luminal stenosis in our arterial injury model, that correlates with a decreased expression of Kv1.5 channels. Kv1.3 blockers decreased in vitro VSMCs proliferation, migration, and in vivo intimal hyperplasia formation, pointing to Kv1.3 channels as promising therapeutical targets against restenosis.
Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain.
Holmqvist, Mats H; Cao, Jie; Hernandez-Pineda, Ricardo; Jacobson, Michael D; Carroll, Karen I; Sung, M Amy; Betty, Maria; Ge, Pei; Gilbride, Kevin J; Brown, Melissa E; Jurman, Mark E; Lawson, Deborah; Silos-Santiago, Inmaculada; Xie, Yu; Covarrubias, Manuel; Rhodes, Kenneth J; Distefano, Peter S; An, W Frank
2002-01-22
The Kv4 A-type potassium currents contribute to controlling the frequency of slow repetitive firing and back-propagation of action potentials in neurons and shape the action potential in heart. Kv4 currents exhibit rapid activation and inactivation and are specifically modulated by K-channel interacting proteins (KChIPs). Here we report the discovery and functional characterization of a modular K-channel inactivation suppressor (KIS) domain located in the first 34 aa of an additional KChIP (KChIP4a). Coexpression of KChIP4a with Kv4 alpha-subunits abolishes fast inactivation of the Kv4 currents in various cell types, including cerebellar granule neurons. Kinetic analysis shows that the KIS domain delays Kv4.3 opening, but once the channel is open, it disrupts rapid inactivation and slows Kv4.3 closing. Accordingly, KChIP4a increases the open probability of single Kv4.3 channels. The net effects of KChIP4a and KChIP1-3 on Kv4 gating are quite different. When both KChIP4a and KChIP1 are present, the Kv4.3 current shows mixed inactivation profiles dependent on KChIP4a/KChIP1 ratios. The KIS domain effectively converts the A-type Kv4 current to a slowly inactivating delayed rectifier-type potassium current. This conversion is opposite to that mediated by the Kv1-specific "ball" domain of the Kv beta 1 subunit. Together, these results demonstrate that specific auxiliary subunits with distinct functions actively modulate gating of potassium channels that govern membrane excitability.
Pathak, Dhruba; Guan, Dongxu
2016-01-01
The action potential (AP) is a fundamental feature of excitable cells that serves as the basis for long-distance signaling in the nervous system. There is considerable diversity in the appearance of APs and the underlying repolarization mechanisms in different neuronal types (reviewed in Bean BP. Nat Rev Neurosci 8: 451–465, 2007), including among pyramidal cell subtypes. In the present work, we used specific pharmacological blockers to test for contributions of Kv1, Kv2, or Kv4 channels to repolarization of single APs in two genetically defined subpopulations of pyramidal cells in layer 5 of mouse somatosensory cortex (etv1 and glt) as well as pyramidal cells from layer 2/3. These three subtypes differ in AP properties (Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P. Cereb Cortex 20: 826–836, 2010; Guan D, Armstrong WE, Foehring RC. J Neurophysiol 113: 2014–2032, 2015) as well as laminar position, morphology, and projection targets. We asked what the roles of Kv1, Kv2, and Kv4 channels are in AP repolarization and whether the underlying mechanisms are pyramidal cell subtype dependent. We found that Kv4 channels are critically involved in repolarizing neocortical pyramidal cells. There are also pyramidal cell subtype-specific differences in the role for Kv1 channels. Only Kv4 channels were involved in repolarizing the narrow APs of glt cells. In contrast, in etv1 cells and layer 2/3 cells, the broader APs are partially repolarized by Kv1 channels in addition to Kv4 channels. Consistent with their activation in the subthreshold range, Kv1 channels also regulate AP voltage threshold in all pyramidal cell subtypes. PMID:26864770
Andersen, Martin N; Hefting, Louise L; Steffensen, Annette B; Schmitt, Nicole; Olesen, Søren-Peter; Olsen, Jesper V; Lundby, Alicia; Rasmussen, Hanne B
2015-11-15
The potassium channel Kv7.1 plays critical physiological roles in both heart and epithelial tissues. In heart, Kv7.1 and the accessory subunit KCNE1 forms the slowly activating delayed-rectifier potassium current current, which is enhanced by protein kinase A (PKA)-mediated phosphorylation. The observed current increase requires both phosphorylation of Kv7.1 and the presence of KCNE1. However, PKA also stimulates Kv7.1 currents in epithelial tissues, such as colon, where the channel does not coassemble with KCNE1. Here, we demonstrate that PKA activity significantly impacts the subcellular localization of Kv7.1 in Madin-Darby canine kidney cells. While PKA inhibition reduced the fraction of channels at the cell surface, PKA activation increased it. We show that PKA inhibition led to intracellular accumulation of Kv7.1 in late endosomes/lysosomes. By mass spectroscopy we identified eight phosphorylated residues on Kv7.1, however, none appeared to play a role in the observed response. Instead, we found that PKA acted by regulating endocytic trafficking involving the ubiquitin ligase Nedd4-2. We show that a Nedd4-2-resistant Kv7.1-mutant displayed significantly reduced intracellular accumulation upon PKA inhibition. Similar effects were observed upon siRNA knockdown of Nedd4-2. However, although Nedd4-2 is known to regulate Kv7.1 by ubiquitylation, biochemical analyses demonstrated that PKA did not influence the amount of Nedd4-2 bound to Kv7.1 or the ubiquitylation level of the channel. This suggests that PKA influences Nedd4-2-dependent Kv7.1 transport though a different molecular mechanism. In summary, we identify a novel mechanism whereby PKA can increase Kv7.1 current levels, namely by regulating Nedd4-2-dependent Kv7.1 transport. Copyright © 2015 the American Physiological Society.
Andersen, Martin N.; Hefting, Louise L.; Steffensen, Annette B.; Schmitt, Nicole; Olesen, Søren-Peter; Olsen, Jesper V.; Lundby, Alicia
2015-01-01
The potassium channel Kv7.1 plays critical physiological roles in both heart and epithelial tissues. In heart, Kv7.1 and the accessory subunit KCNE1 forms the slowly activating delayed-rectifier potassium current current, which is enhanced by protein kinase A (PKA)-mediated phosphorylation. The observed current increase requires both phosphorylation of Kv7.1 and the presence of KCNE1. However, PKA also stimulates Kv7.1 currents in epithelial tissues, such as colon, where the channel does not coassemble with KCNE1. Here, we demonstrate that PKA activity significantly impacts the subcellular localization of Kv7.1 in Madin-Darby canine kidney cells. While PKA inhibition reduced the fraction of channels at the cell surface, PKA activation increased it. We show that PKA inhibition led to intracellular accumulation of Kv7.1 in late endosomes/lysosomes. By mass spectroscopy we identified eight phosphorylated residues on Kv7.1, however, none appeared to play a role in the observed response. Instead, we found that PKA acted by regulating endocytic trafficking involving the ubiquitin ligase Nedd4-2. We show that a Nedd4-2-resistant Kv7.1-mutant displayed significantly reduced intracellular accumulation upon PKA inhibition. Similar effects were observed upon siRNA knockdown of Nedd4-2. However, although Nedd4-2 is known to regulate Kv7.1 by ubiquitylation, biochemical analyses demonstrated that PKA did not influence the amount of Nedd4-2 bound to Kv7.1 or the ubiquitylation level of the channel. This suggests that PKA influences Nedd4-2-dependent Kv7.1 transport though a different molecular mechanism. In summary, we identify a novel mechanism whereby PKA can increase Kv7.1 current levels, namely by regulating Nedd4-2-dependent Kv7.1 transport. PMID:26405101
Fineberg, Jeffrey D; Ritter, David M; Covarrubias, Manuel
2012-11-01
A-type voltage-gated K(+) (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na(+) channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously elucidates contrasting inactivation pathways in neuronal A-type Kv channels and demonstrates how distinct pathways might impact neurophysiological activity.
Amarillo, Yimy; De Santiago-Castillo, Jose A; Dougherty, Kevin; Maffie, Jonathon; Kwon, Elaine; Covarrubias, Manuel; Rudy, Bernardo
2008-04-15
Kv4 channels mediate most of the somatodendritic subthreshold operating A-type current (I(SA)) in neurons. This current plays essential roles in the regulation of spike timing, repetitive firing, dendritic integration and plasticity. Neuronal Kv4 channels are thought to be ternary complexes of Kv4 pore-forming subunits and two types of accessory proteins, Kv channel interacting proteins (KChIPs) and the dipeptidyl-peptidase-like proteins (DPPLs) DPPX (DPP6) and DPP10. In heterologous cells, ternary Kv4 channels exhibit inactivation that slows down with increasing depolarization. Here, we compared the voltage dependence of the inactivation rate of channels expressed in heterologous mammalian cells by Kv4.2 proteins with that of channels containing Kv4.2 and KChIP1, Kv4.2 and DPPX-S, or Kv4.2, KChIP1 and DPPX-S, and found that the relation between inactivation rate and membrane potential is distinct for these four conditions. Moreover, recordings from native neurons showed that the inactivation kinetics of the I(SA) in cerebellar granule neurons has voltage dependence that is remarkably similar to that of ternary Kv4 channels containing KChIP1 and DPPX-S proteins in heterologous cells. The fact that this complex and unique behaviour (among A-type K(+) currents) is observed in both the native current and the current expressed in heterologous cells by the ternary complex containing Kv4, DPPX and KChIP proteins supports the hypothesis that somatically recorded native Kv4 channels in neurons include both types of accessory protein. Furthermore, quantitative global kinetic modelling showed that preferential closed-state inactivation and a weakly voltage-dependent opening step can explain the slowing of the inactivation rate with increasing depolarization. Therefore, it is likely that preferential closed-state inactivation is the physiological mechanism that regulates the activity of both ternary Kv4 channel complexes and native I(SA)-mediating channels.
[Modulation of Kv4 channels by KChIPs clamping].
Cui, Yuan-Yuan; Wang, Ke-Wei
2009-01-01
The rapidly inactivating (A-type) potassium channels regulate membrane excitability that defines the fundamental mechanism of neuronal functions such as pain signaling. Cytosolic Kv channel-interacting proteins KChIPs co-assemble with Kv4 (Shal) alpha subunits to form a native complex. The specific binding of auxiliary KChIPs to the Kv4 N-terminus results in modulation of gating properties, surface expression and subunit assembly of Kv4 channels. Based on recent structural efforts, here we attempt to emphasize the interaction between KChIPs and Kv4 channel complex in which a single KChIP1 molecule laterally clamps two neighboring Kv4.3 N-termini in a 4:4 manner. Greater insights into molecular mechanism between KChIPs and Kv4 interaction may provide therapeutic potentials by structure-based design of chemical compounds aimed at disrupting the protein-protein interaction for treatment of membrane excitability-related disorders.
Hall, Allison R; Anderson, Corey L; Smith, Jennifer L; Mirshahi, Tooraj; Elayi, Claude S; January, Craig T; Delisle, Brian P
2018-01-01
KCNH2 encodes the Kv11.1 α-subunit that underlies the rapidly activating delayed-rectifier K + current in the heart. Loss-of-function KCNH2 mutations cause long QT syndrome type 2 (LQT2), and most LQT2-linked missense mutations inhibit the trafficking of Kv11.1 channel protein to the cell surface membrane. Several trafficking-deficient LQT2 mutations (e.g., G601S) generate Kv11.1 proteins that are sequestered in a microtubule-dependent quality control (QC) compartment in the transitional endoplasmic reticulum (ER). We tested the hypothesis that the QC mechanisms that regulate LQT2-linked Kv11.1 protein trafficking are mutation-specific. Confocal imaging analyses of HEK293 cells stably expressing the trafficking-deficient LQT2 mutation F805C showed that, unlike G601S-Kv11.1 protein, F805C-Kv11.1 protein was concentrated in several transitional ER subcompartments. The microtubule depolymerizing drug nocodazole differentially affected G601S- and F805C-Kv11.1 protein immunostaining. Nocodazole caused G601S-Kv11.1 protein to distribute into peripheral reticular structures, and it increased the diffuse immunostaining of F805C-Kv11.1 protein around the transitional ER subcompartments. Proteasome inhibition also affected the immunostaining of G601S- and F805C-Kv11.1 protein differently. Incubating cells in MG132 minimally impacted G601S-Kv11.1 immunostaining, but it dramatically increased the diffuse immunostaining of F805C-Kv11.1 protein in the transitional ER. Similar results were seen after incubating cells in the proteasome inhibitor lactacystin. Differences in the cellular distribution of G601S-Kv11.1 and F805C-Kv11.1 protein persisted in transfected human inducible pluripotent stem cell derived cardiomyocytes. These are the first data to visually demonstrate mutation-specific differences in the trafficking-deficient LQT2 phenotype, and this study has identified a novel way to categorize trafficking-deficient LQT2 mutations based on differences in intracellular retention.
Ambrosino, Paolo; Alaimo, Alessandro; Bartollino, Silvia; Manocchio, Laura; De Maria, Michela; Mosca, Ilaria; Gomis-Perez, Carolina; Alberdi, Araitz; Scambia, Giovanni; Lesca, Gaetan; Villarroel, Alvaro; Taglialatela, Maurizio; Soldovieri, Maria Virginia
2015-09-01
Mutations in the KCNQ2 gene, encoding for voltage-gated Kv7.2K(+) channel subunits, are responsible for early-onset epileptic diseases with widely-diverging phenotypic presentation, ranging from Benign Familial Neonatal Seizures (BFNS) to epileptic encephalopathy. In the present study, Kv7.2 BFNS-causing mutations (W344R, L351F, L351V, Y362C, and R553Q) have been investigated for their ability to interfere with calmodulin (CaM) binding and CaM-induced channel regulation. To this aim, semi-quantitative (Far-Western blotting) and quantitative (Surface Plasmon Resonance and dansylated CaM fluorescence) biochemical assays have been performed to investigate the interaction of CaM with wild-type or mutant Kv7.2 C-terminal fragments encompassing the CaM-binding domain; in parallel, mutation-induced changes in CaM-dependent Kv7.2 or Kv7.2/Kv7.3 current regulation were investigated by patch-clamp recordings in Chinese Hamster Ovary (CHO) cells co-expressing Kv7.2 or Kv7.2/Kv7.3 channels and CaM or CaM1234 (a CaM isoform unable to bind Ca(2+)). The results obtained suggest that each BFNS-causing mutation prompts specific biochemical and/or functional consequences; these range from slight alterations in CaM affinity which did not translate into functional changes (L351V), to a significant reduction in the affinity and functional modulation by CaM (L351F, Y362C or R553Q), to a complete functional loss without significant alteration in CaM affinity (W344R). CaM overexpression increased Kv7.2 and Kv7.2/Kv7.3 current levels, and partially (R553Q) or fully (L351F) restored normal channel function, providing a rationale pathogenetic mechanism for mutation-induced channel dysfunction in BFNS, and highlighting the potentiation of CaM-dependent Kv7.2 modulation as a potential therapeutic approach for Kv7.2-related epilepsies. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dan, C.; Morar, R.
2017-05-01
Working methods for on site testing of insulations: Gas chromatography (using the TFGA-P200 chromatographer); Electrical measurements of partial discharge levels using the digital detection, recording, analysis and partial discharge acquisition system, MPD600. First performed, between 2000-2015, were the chromatographic analyses concerning electrical insulating environments of: 102 current transformers, 110kV. Items in operation, functioning in 110/20kV substations. 38 voltage transformers, 110kV also in operation, functioning in 110/20kV substations. Then, electrical measurements of partial discharge inside instrument transformers, on site (power substations) were made (starting in the year 2009, over a 7-year period, collecting data until the year 2015) according to the provisions of standard EN 61869-1:2007 „Instrument transformers. General requirements”, applying, assimilated to it, type A partial discharge test procedure, using as test voltage the very rated 110kV distribution grid voltage. Given the results of two parallel measurements, containing: to this type of failure specific gas amount (H 2) and the quantitative partial discharge’ level, establishing a clear dependence between the quantity of partial discharges and the type and amount of in oil dissolved gases inside equipments affected by this type of defect: partial discharges, was expected. Of the „population” of instrument transformers subject of the two parallel measurements, the dependency between Q IEC (apparent charge) and (H 2) (hydrogen, gas amount dissolved within their insulating environment) represents a finite assemblage situated between the two limits developed on an empirical basis.
The Kv7.2/Kv7.3 heterotetramer assembles with a random subunit arrangement.
Stewart, Andrew P; Gómez-Posada, Juan Camilo; McGeorge, Jessica; Rouhani, Maral J; Villarroel, Alvaro; Murrell-Lagnado, Ruth D; Edwardson, J Michael
2012-04-06
Voltage-gated K(+) channels composed of Kv7.2 and Kv7.3 are the predominant contributors to the M-current, which plays a key role in controlling neuronal activity. Various lines of evidence have indicated that Kv7.2 and Kv7.3 form a heteromeric channel. However, the subunit stoichiometry and arrangement within this putative heteromer are so far unknown. Here, we have addressed this question using atomic force microscopy imaging of complexes between isolated Kv7.2/Kv7.3 channels and antibodies to epitope tags on the two subunits, Myc on Kv7.2 and HA on Kv7.3. Initially, tsA 201 cells were transiently transfected with equal amounts of cDNA for the two subunits. The heteromer was isolated through binding of either tag to immunoaffinity beads and then decorated with antibodies to the other tag. In both cases, the distribution of angles between pairs of bound antibodies had two peaks, at around 90° and around 180°, and in both cases the 90° peak was about double the size of the 180° peak. These results indicate that the Kv7.2/Kv7.3 heteromer generated by cells expressing approximately equal amounts of the two subunits assembles as a tetramer with a predominantly 2:2 subunit stoichiometry and with a random subunit arrangement. When the DNA ratio for the two subunits was varied, copurification experiments indicated that the subunit stoichiometry was variable and not fixed at 2:2. Hence, there are no constraints on either the subunit stoichiometry or the subunit arrangement.
Zhang, Yuanyuan; Chu, Xi; Liu, Ling; Zhang, Nan; Guo, Hui; Yang, Fan; Liu, Zhenyi; Dong, Yongsheng; Bao, Yifan; Zhang, Xuan; Zhang, Jianping
2016-04-01
This study investigated the effect of tannic acid (TA), a plant-derived hydrolyzable polyphenol, on Kv7.4 and Kv7.5 K(+) channels and rat mesenteric artery. Whole-cell patch clamp experiments were used to record the Kv7.4 and Kv7.3/7.5 K(+) currents expressed in HEK293 cells; and the tension changes of mesenteric arteries isolated from rats were recorded using small vessel myography apparatus. Tannic acid increases the Kv7.4 and Kv7.3/7.5 K(+) currents in a concentration-dependent manner (median effective concentration (EC50 ) = 27.3 ± 3.6 μm and EC50 = 23.1 ± 3.9 μm, respectively). In addition, 30 μm TA shifts the G-V curve of Kv7.4 and Kv7.3/7.5 K(+) currents to the left by 14.18 and 25.24 mV, respectively, and prolongs the deactivation time constants by 184.44 and 154.77 ms, respectively. Moreover, TA relaxes the vascular tension of rat mesenteric arteries in a concentration-dependent manner (half inhibitory concentration (IC50 ) = 148.7 ± 13.4 μm). These results confirms the vasodilatory effects of TA on rat mesenteric artery and the activating effects on the Kv7.4 and Kv7.3/7.5 K(+) channels, which may be a mechanism to explain the vasodilatory effect and this mechanism can be used in the research of antihypertension. © 2016 Royal Pharmaceutical Society.
Double-injection, deep-impurity switch development
NASA Technical Reports Server (NTRS)
Whitson, D. W.
1985-01-01
The overall objective of this program was the development of device design and process techniques for the fabrication of a double-injection, deep-impurity (DI) sup 2 silicon switch that operates in the 2-10 kV range with conduction current values of 5 A at 2 kV and 1 A at 10 kV. Other major specifications include a holding voltage of 10 V with no gate current, 10 microsec switching time, and power dissipation of 50 W at 75 C. It was decided to concentrate on the lateral circular devices in order to optimize the gold diffusion. This resulted in devices that are much better switches (approx.1 micro sec switching time), and in a gold diffusion process that is much more controllable than those previously developed. Some results with injection-gated devices were also obtained. The current conduction for V less than VT was analyzed and seen to agree, for the most part, with Lampert's theory. Various sections of this report describe the device designs, wafer-processing techniques, and various measurements which include ac and dc characteristics and four-point probe.
QTL Analysis of Kernel-Related Traits in Maize Using an Immortalized F2 Population
Hu, Yanmin; Li, Weihua; Fu, Zhiyuan; Ding, Dong; Li, Haochuan; Qiao, Mengmeng; Tang, Jihua
2014-01-01
Kernel size and weight are important determinants of grain yield in maize. In this study, multivariate conditional and unconditional quantitative trait loci (QTL), and digenic epistatic analyses were utilized in order to elucidate the genetic basis for these kernel-related traits. Five kernel-related traits, including kernel weight (KW), volume (KV), length (KL), thickness (KT), and width (KWI), were collected from an immortalized F2 (IF2) maize population comprising of 243 crosses performed at two separate locations over a span of two years. A total of 54 unconditional main QTL for these five kernel-related traits were identified, many of which were clustered in chromosomal bins 6.04–6.06, 7.02–7.03, and 10.06–10.07. In addition, qKL3, qKWI6, qKV10a, qKV10b, qKW10a, and qKW7a were detected across multiple environments. Sixteen main QTL were identified for KW conditioned on the other four kernel traits (KL, KWI, KT, and KV). Thirteen main QTL were identified for KV conditioned on three kernel-shape traits. Conditional mapping analysis revealed that KWI and KV had the strongest influence on KW at the individual QTL level, followed by KT, and then KL; KV was mostly strongly influenced by KT, followed by KWI, and was least impacted by KL. Digenic epistatic analysis identified 18 digenic interactions involving 34 loci over the entire genome. However, only a small proportion of them were identical to the main QTL we detected. Additionally, conditional digenic epistatic analysis revealed that the digenic epistasis for KW and KV were entirely determined by their constituent traits. The main QTL identified in this study for determining kernel-related traits with high broad-sense heritability may play important roles during kernel development. Furthermore, digenic interactions were shown to exert relatively large effects on KL (the highest AA and DD effects were 4.6% and 6.7%, respectively) and KT (the highest AA effects were 4.3%). PMID:24586932
Kyle, B.; Bradley, E.; Ohya, S.; Sergeant, G. P.; McHale, N. G.; Thornbury, K. D.
2011-01-01
We have characterized the native voltage-dependent K+ (Kv) current in rabbit urethral smooth muscle cells (RUSMC) and compared its pharmacological and biophysical properties with Kv2.1 and Kv2.2 channels cloned from the rabbit urethra and stably expressed in human embryonic kidney (HEK)-293 cells (HEKKv2.1 and HEKKv2.2). RUSMC were perfused with Hanks′ solution at 37°C and studied using the patch-clamp technique with K+-rich pipette solutions. Cells were bathed in 100 nM Penitrem A (Pen A) to block large-conductance Ca2+-activated K+ (BK) currents and depolarized to +40 mV for 500 ms to evoke Kv currents. These were unaffected by margatoxin, κ-dendrotoxin, or α-dendrotoxin (100 nM, n = 3–5) but were blocked by stromatoxin-1 (ScTx, IC50 ∼130 nM), consistent with the idea that the currents were carried through Kv2 channels. RNA was detected for Kv2.1, Kv2.2, and the silent subunit Kv9.3 in urethral smooth muscle. Immunocytochemistry showed membrane staining for both Kv2 subtypes and Kv9.3 in isolated RUSMC. HEKKv2.1 and HEKKv2.2 currents were blocked in a concentration-dependent manner by ScTx, with estimated IC50 values of ∼150 nM (Kv2.1, n = 5) and 70 nM (Kv2.2, n = 6). The mean half-maximal voltage (V1/2) of inactivation of the USMC Kv current was −56 ± 3 mV (n = 9). This was similar to the HEKKv2.1 current (−55 ± 3 mV, n = 13) but significantly different from the HEKKv2.2 currents (−30 ± 3 mV, n = 11). Action potentials (AP) evoked from RUSMC studied under current-clamp mode were unaffected by ScTx. However, when ScTx was applied in the presence of Pen A, the AP duration was significantly prolonged. Similarly, ScTx increased the amplitude of spontaneous contractions threefold, but only after Pen A application. These data suggest that Kv2.1 channels contribute significantly to the Kv current in RUSMC. PMID:21813710
29 CFR 1926.1409 - Power line safety (over 350 kV).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 8 2012-07-01 2012-07-01 false Power line safety (over 350 kV). 1926.1409 Section 1926... Construction § 1926.1409 Power line safety (over 350 kV). The requirements of § 1926.1407 and § 1926.1408 apply to power lines over 350 kV except: (a) For power lines at or below 1000 kV, wherever the distance “20...
29 CFR 1926.1409 - Power line safety (over 350 kV).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 8 2014-07-01 2014-07-01 false Power line safety (over 350 kV). 1926.1409 Section 1926... Construction § 1926.1409 Power line safety (over 350 kV). The requirements of § 1926.1407 and § 1926.1408 apply to power lines over 350 kV except: (a) For power lines at or below 1000 kV, wherever the distance “20...
29 CFR 1926.1409 - Power line safety (over 350 kV).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 8 2013-07-01 2013-07-01 false Power line safety (over 350 kV). 1926.1409 Section 1926... Construction § 1926.1409 Power line safety (over 350 kV). The requirements of § 1926.1407 and § 1926.1408 apply to power lines over 350 kV except: (a) For power lines at or below 1000 kV, wherever the distance “20...
29 CFR 1926.1409 - Power line safety (over 350 kV).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 8 2011-07-01 2011-07-01 false Power line safety (over 350 kV). 1926.1409 Section 1926... Construction § 1926.1409 Power line safety (over 350 kV). The requirements of § 1926.1407 and § 1926.1408 apply to power lines over 350 kV except: (a) For power lines at or below 1000 kV, wherever the distance “20...
Tang, Yi-Quan; Liang, Ping; Zhou, Jingheng; Lu, Yanxin; Lei, Lei; Bian, Xiling; Wang, KeWei
2013-01-01
In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K+ channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1–4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12–17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19–21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation. PMID:23576435
Activation of KV7 channels stimulates vasodilatation of human placental chorionic plate arteries.
Mills, T A; Greenwood, S L; Devlin, G; Shweikh, Y; Robinson, M; Cowley, E; Hayward, C E; Cottrell, E C; Tropea, T; Brereton, M F; Dalby-Brown, W; Wareing, M
2015-06-01
Potassium (K(+)) channels are key regulators of vascular smooth muscle cell (VSMC) excitability. In systemic small arteries, Kv7 channel expression/activity has been noted and a role in vascular tone regulation demonstrated. We aimed to demonstrate functional Kv7 channels in human fetoplacental small arteries. Human placental chorionic plate arteries (CPAs) were obtained at term. CPA responses to Kv7 channel modulators was determined by wire myography. Presence of Kv7 channel mRNA (encoded by KCNQ1-5) and protein expression were assessed by RT-PCR and immunohistochemistry/immunofluorescence, respectively. Kv7 channel blockade with linopirdine increased CPA basal tone and AVP-induced contraction. Pre-contracted CPAs (AVP; 80 mM K(+) depolarization solution) exhibited significant relaxation to flupirtine, retigabine, the acrylamide (S)-1, and (S) BMS-204352, differential activators of Kv7.1 - Kv7.5 channels. All CPAs assessed expressed KCNQ1 and KCNQ3-5 mRNA; KCNQ2 was expressed only in a subset of CPAs. Kv7 protein expression was confirmed in intact CPAs and isolated VSMCs. Kv7 channels are present and active in fetoplacental vessels, contributing to vascular tone regulation in normal pregnancy. Targeting these channels may represent a therapeutic intervention in pregnancies complicated by increased vascular resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tang, Yi-Quan; Liang, Ping; Zhou, Jingheng; Lu, Yanxin; Lei, Lei; Bian, Xiling; Wang, KeWei
2013-05-24
In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K(+) channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1-4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12-17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19-21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation.
Development of a single-phase 30 m HTS power cable
NASA Astrophysics Data System (ADS)
Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook
2006-05-01
HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.
Merritt, B.T.; Dreifuerst, G.R.
1994-07-19
A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.
Gilling, Mette; Rasmussen, Hanne B; Calloe, Kirstine; Sequeira, Ana F; Baretto, Marta; Oliveira, Guiomar; Almeida, Joana; Lauritsen, Marlene B; Ullmann, Reinhard; Boonen, Susanne E; Brondum-Nielsen, Karen; Kalscheuer, Vera M; Tümer, Zeynep; Vicente, Astrid M; Schmitt, Nicole; Tommerup, Niels
2013-01-01
Heterozygous mutations in the KCNQ3 gene on chromosome 8q24 encoding the voltage-gated potassium channel KV7.3 subunit have previously been associated with rolandic epilepsy and idiopathic generalized epilepsy (IGE) including benign neonatal convulsions. We identified a de novo t(3;8) (q21;q24) translocation truncating KCNQ3 in a boy with childhood autism. In addition, we identified a c.1720C > T [p.P574S] nucleotide change in three unrelated individuals with childhood autism and no history of convulsions. This nucleotide change was previously reported in patients with rolandic epilepsy or IGE and has now been annotated as a very rare SNP (rs74582884) in dbSNP. The p.P574S KV7.3 variant significantly reduced potassium current amplitude in Xenopus laevis oocytes when co-expressed with KV7.5 but not with KV7.2 or KV7.4. The nucleotide change did not affect trafficking of heteromeric mutant KV7.3/2, KV7.3/4, or KV7.3/5 channels in HEK 293 cells or primary rat hippocampal neurons. Our results suggest that dysfunction of the heteromeric KV7.3/5 channel is implicated in the pathogenesis of some forms of autism spectrum disorders, epilepsy, and possibly other psychiatric disorders and therefore, KCNQ3 and KCNQ5 are suggested as candidate genes for these disorders.
Gilling, Mette; Rasmussen, Hanne B.; Calloe, Kirstine; Sequeira, Ana F.; Baretto, Marta; Oliveira, Guiomar; Almeida, Joana; Lauritsen, Marlene B.; Ullmann, Reinhard; Boonen, Susanne E.; Brondum-Nielsen, Karen; Kalscheuer, Vera M.; Tümer, Zeynep; Vicente, Astrid M.; Schmitt, Nicole; Tommerup, Niels
2012-01-01
Heterozygous mutations in the KCNQ3 gene on chromosome 8q24 encoding the voltage-gated potassium channel KV7.3 subunit have previously been associated with rolandic epilepsy and idiopathic generalized epilepsy (IGE) including benign neonatal convulsions. We identified a de novo t(3;8) (q21;q24) translocation truncating KCNQ3 in a boy with childhood autism. In addition, we identified a c.1720C > T [p.P574S] nucleotide change in three unrelated individuals with childhood autism and no history of convulsions. This nucleotide change was previously reported in patients with rolandic epilepsy or IGE and has now been annotated as a very rare SNP (rs74582884) in dbSNP. The p.P574S KV7.3 variant significantly reduced potassium current amplitude in Xenopus laevis oocytes when co-expressed with KV7.5 but not with KV7.2 or KV7.4. The nucleotide change did not affect trafficking of heteromeric mutant KV7.3/2, KV7.3/4, or KV7.3/5 channels in HEK 293 cells or primary rat hippocampal neurons. Our results suggest that dysfunction of the heteromeric KV7.3/5 channel is implicated in the pathogenesis of some forms of autism spectrum disorders, epilepsy, and possibly other psychiatric disorders and therefore, KCNQ3 and KCNQ5 are suggested as candidate genes for these disorders. PMID:23596459
Li, Cai; Lu, Qing; Huang, Pengcheng; Fu, Tianli; Li, Changjun; Guo, Lianjun; Xu, Xulin
2015-08-01
M-type (Kv7) K(+) channels, encoded by KCNQ2-KCNQ5 genes, play a pivotal role in controlling neuronal excitability. However, precisely how neuronal activity regulates Kv7 channel translocation has not yet been fully defined. Here we reported activity-dependent changes in Kv7 channel subunits Kv7.2 and Kv7.3 surface expression by glutamate (glu). In the present study, we found that treatment with glutamate rapidly caused a specific decrease in M-current as well as Kv7 channel surface expression in primary cultured hippocampal neurons. The glutamate effects were mimicked by NMDA and AMPA. The glutamate effects on Kv7 channels were partially attenuated by pre-treatment of NMDA receptors antagonist d,l-APV or AMPA-KA receptors antagonist CNQX. The signal required Ca(2+) influx through L-type Ca(2+) channel and intracellular Ca(2+) elevations. PKC activation was involved in the glutamate-induced reduction of Kv7 channel surface expression. Moreover, a significant reduction of Kv7 channel surface expression occurred following glycine-induced "chem"-LTP in vitro and hippocampus-dependent behavioral learning training in vivo. These results demonstrated that activity-dependent reduction of Kv7 channel surface expression through activation of ionotropic glutamate receptors (iGluRs)/Ca(2+)/PKC signaling pathway might be an important molecular mechanism for regulation of neuronal excitability and synaptic plasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ekonomou, L.; Karampelas, P.; Vita, V.; Chatzarakis, G. E.
2011-04-01
One of the most popular methods of protecting high voltage transmission lines against lightning strikes and internal overvoltages is the use of arresters. The installation of arresters in high voltage transmission lines can prevent or even reduce the lines' failure rate. Several studies based on simulation tools have been presented in order to estimate the critical currents that exceed the arresters' rated energy stress and to specify the arresters' installation interval. In this work artificial intelligence, and more specifically a Q-learning artificial neural network (ANN) model, is addressed for evaluating the arresters' failure probability. The aims of the paper are to describe in detail the developed Q-learning ANN model and to compare the results obtained by its application in operating 150 kV Greek transmission lines with those produced using a simulation tool. The satisfactory and accurate results of the proposed ANN model can make it a valuable tool for designers of electrical power systems seeking more effective lightning protection, reducing operational costs and better continuity of service.
An 8-GW long-pulse generator based on Tesla transformer and pulse forming network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Jiancang; Zhang, Xibo; Li, Rui
A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW andmore » a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.« less
An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.
Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin
2014-06-01
A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.
Santos Armentia, E; Tardáguila de la Fuente, G; Castellón Plaza, D; Delgado Sánchez-Gracián, C; Prada González, R; Fernández Fernández, L; Tardáguila Montero, F
2014-01-01
To study the differences in vascular image quality, bone subtraction, and dose of radiation of dual energy CT angiography of the supraaortic trunks using different tube voltages. We reviewed the CT angiograms of the supraaortic trunks in 46 patients acquired with a 128-slice dual source CT scanner using two voltage protocols (80/140 kV and 100/140 kV). The "head bone removal" tool was used for postprocessing. We divided the arteries into 15 segments. In each segment, we evaluated the image quality of the vessels and the effectiveness of bone removal in multiplanar reconstructions (MPR) and in maximum intensity projections (MIP) with each protocol, analyzing the trabecular and cortical bones separately. We also evaluated the dose of radiation received. Of the 46 patients, 13 were studied using 80/140 kV and 33 with 100/140 kV. There were no significant differences between the two groups in age or sex. Image quality in four segments was better in the group examined with 100/140 kV. Cortical bone removal in MPR and MIP and trabecular bone removal in MIP were also better in the group examined with 100/140 kV. The dose of radiation received was significantly higher in the group examined with 100/140 kV (1.16 mSv with 80/140 kV vs. 1.59 mSv with 100/140 kV). Using 100/140 kV increases the dose of radiation but improves the quality of the study of arterial segments and bone subtraction. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
Soldovieri, Maria Virginia; Ambrosino, Paolo; Mosca, Ilaria; De Maria, Michela; Moretto, Edoardo; Miceli, Francesco; Alaimo, Alessandro; Iraci, Nunzio; Manocchio, Laura; Medoro, Alessandro; Passafaro, Maria; Taglialatela, Maurizio
2016-01-01
Kv7.2 and Kv7.3 subunits underlie the M-current, a neuronal K+ current characterized by an absolute functional requirement for phosphatidylinositol 4,5-bisphosphate (PIP2). Kv7.2 gene mutations cause early-onset neonatal seizures with heterogeneous clinical outcomes, ranging from self-limiting benign familial neonatal seizures to severe early-onset epileptic encephalopathy (Kv7.2-EE). In this study, the biochemical and functional consequences prompted by a recurrent variant (R325G) found independently in four individuals with severe forms of neonatal-onset EE have been investigated. Upon heterologous expression, homomeric Kv7.2 R325G channels were non-functional, despite biotin-capture in Western blots revealed normal plasma membrane subunit expression. Mutant subunits exerted dominant-negative effects when incorporated into heteromeric channels with Kv7.2 and/or Kv7.3 subunits. Increasing cellular PIP2 levels by co-expression of type 1γ PI(4)P5-kinase (PIP5K) partially recovered homomeric Kv7.2 R325G channel function. Currents carried by heteromeric channels incorporating Kv7.2 R325G subunits were more readily inhibited than wild-type channels upon activation of a voltage-sensitive phosphatase (VSP), and recovered more slowly upon VSP switch-off. These results reveal for the first time that a mutation-induced decrease in current sensitivity to PIP2 is the primary molecular defect responsible for Kv7.2-EE in individuals carrying the R325G variant, further expanding the range of pathogenetic mechanisms exploitable for personalized treatment of Kv7.2-related epilepsies. PMID:27905566
Goodwill, Adam G.; Fu, Lijuan; Noblet, Jillian N.; Casalini, Eli D.; Berwick, Zachary C.; Kassab, Ghassan S.; Tune, Johnathan D.
2016-01-01
Hydrogen peroxide (H2O2) and voltage-dependent K+ (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed. Thus we examined the hypothesis that KV7 channels are present in cells of the coronary vascular wall and regulate vasodilation in swine. We performed a variety of molecular, biochemical, and functional (in vivo and ex vivo) studies. Coronary arteries expressed KCNQ genes (quantitative PCR) and KV7.4 protein (Western blot). Immunostaining demonstrated KV7.4 expression in conduit and resistance vessels, perhaps most prominently in the endothelial and adventitial layers. Flupirtine, a KV7 opener, relaxed coronary artery rings, and this was attenuated by linopirdine, a KV7 blocker. Endothelial denudation inhibited the flupirtine-induced and linopirdine-sensitive relaxation of coronary artery rings. Moreover, linopirdine diminished bradykinin-induced endothelial-dependent relaxation of coronary artery rings. There was no effect of intracoronary flupirtine or linopirdine on coronary blood flow at the resting heart rate in vivo. Linopirdine had no effect on coronary vasodilation in vivo elicited by ischemia, H2O2, or tachycardia. However, bradykinin increased coronary blood flow in vivo, and this was attenuated by linopirdine. These data indicate that KV7 channels are expressed in some coronary cell type(s) and influence endothelial function. Other physiological functions of coronary vascular KV7 channels remain unclear, but they do appear to contribute to endothelium-dependent responses to paracrine stimuli. PMID:26825518
G-protein βγ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity.
Stott, Jennifer B; Povstyan, Oleksandr V; Carr, Georgina; Barrese, Vincenzo; Greenwood, Iain A
2015-05-19
Kv7.4 channels are a crucial determinant of arterial diameter both at rest and in response to endogenous vasodilators. However, nothing is known about the factors that ensure effective activity of these channels. We report that G-protein βγ subunits increase the amplitude and activation rate of whole-cell voltage-dependent K(+) currents sensitive to the Kv7 blocker linopirdine in HEK cells heterologously expressing Kv7.4, and in rat renal artery myocytes. In excised patch recordings, Gβγ subunits (2-250 ng /mL) enhanced the open probability of Kv7.4 channels without changing unitary conductance. Kv7 channel activity was also augmented by stimulation of G-protein-coupled receptors. Gallein, an inhibitor of Gβγ subunits, prevented these stimulatory effects. Moreover, gallein and two other structurally different Gβγ subunit inhibitors (GRK2i and a β-subunit antibody) abolished Kv7 channel currents in the absence of either Gβγ subunit enrichment or G-protein-coupled receptor stimulation. Proximity ligation assay revealed that Kv7.4 and Gβγ subunits colocalized in HEK cells and renal artery smooth muscle cells. Gallein disrupted this colocalization, contracted whole renal arteries to a similar degree as the Kv7 inhibitor linopirdine, and impaired isoproterenol-induced relaxations. Furthermore, mSIRK, which disassociates Gβγ subunits from α subunits without stimulating nucleotide exchange, relaxed precontracted arteries in a linopirdine-sensitive manner. These results reveal that Gβγ subunits are fundamental for Kv7.4 activation and crucial for vascular Kv7 channel activity, which has major consequences for the regulation of arterial tone.
Soldovieri, Maria Virginia; Ambrosino, Paolo; Mosca, Ilaria; De Maria, Michela; Moretto, Edoardo; Miceli, Francesco; Alaimo, Alessandro; Iraci, Nunzio; Manocchio, Laura; Medoro, Alessandro; Passafaro, Maria; Taglialatela, Maurizio
2016-12-01
Kv7.2 and Kv7.3 subunits underlie the M-current, a neuronal K + current characterized by an absolute functional requirement for phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Kv7.2 gene mutations cause early-onset neonatal seizures with heterogeneous clinical outcomes, ranging from self-limiting benign familial neonatal seizures to severe early-onset epileptic encephalopathy (Kv7.2-EE). In this study, the biochemical and functional consequences prompted by a recurrent variant (R325G) found independently in four individuals with severe forms of neonatal-onset EE have been investigated. Upon heterologous expression, homomeric Kv7.2 R325G channels were non-functional, despite biotin-capture in Western blots revealed normal plasma membrane subunit expression. Mutant subunits exerted dominant-negative effects when incorporated into heteromeric channels with Kv7.2 and/or Kv7.3 subunits. Increasing cellular PIP 2 levels by co-expression of type 1γ PI(4)P5-kinase (PIP5K) partially recovered homomeric Kv7.2 R325G channel function. Currents carried by heteromeric channels incorporating Kv7.2 R325G subunits were more readily inhibited than wild-type channels upon activation of a voltage-sensitive phosphatase (VSP), and recovered more slowly upon VSP switch-off. These results reveal for the first time that a mutation-induced decrease in current sensitivity to PIP 2 is the primary molecular defect responsible for Kv7.2-EE in individuals carrying the R325G variant, further expanding the range of pathogenetic mechanisms exploitable for personalized treatment of Kv7.2-related epilepsies.
G-protein βγ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity
Stott, Jennifer B.; Povstyan, Oleksandr V.; Carr, Georgina; Barrese, Vincenzo; Greenwood, Iain A.
2015-01-01
Kv7.4 channels are a crucial determinant of arterial diameter both at rest and in response to endogenous vasodilators. However, nothing is known about the factors that ensure effective activity of these channels. We report that G-protein βγ subunits increase the amplitude and activation rate of whole-cell voltage-dependent K+ currents sensitive to the Kv7 blocker linopirdine in HEK cells heterologously expressing Kv7.4, and in rat renal artery myocytes. In excised patch recordings, Gβγ subunits (2–250 ng /mL) enhanced the open probability of Kv7.4 channels without changing unitary conductance. Kv7 channel activity was also augmented by stimulation of G-protein–coupled receptors. Gallein, an inhibitor of Gβγ subunits, prevented these stimulatory effects. Moreover, gallein and two other structurally different Gβγ subunit inhibitors (GRK2i and a β-subunit antibody) abolished Kv7 channel currents in the absence of either Gβγ subunit enrichment or G-protein–coupled receptor stimulation. Proximity ligation assay revealed that Kv7.4 and Gβγ subunits colocalized in HEK cells and renal artery smooth muscle cells. Gallein disrupted this colocalization, contracted whole renal arteries to a similar degree as the Kv7 inhibitor linopirdine, and impaired isoproterenol-induced relaxations. Furthermore, mSIRK, which disassociates Gβγ subunits from α subunits without stimulating nucleotide exchange, relaxed precontracted arteries in a linopirdine-sensitive manner. These results reveal that Gβγ subunits are fundamental for Kv7.4 activation and crucial for vascular Kv7 channel activity, which has major consequences for the regulation of arterial tone. PMID:25941381
Goodwill, Adam G; Fu, Lijuan; Noblet, Jillian N; Casalini, Eli D; Sassoon, Daniel; Berwick, Zachary C; Kassab, Ghassan S; Tune, Johnathan D; Dick, Gregory M
2016-03-15
Hydrogen peroxide (H2O2) and voltage-dependent K(+) (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed. Thus we examined the hypothesis that KV7 channels are present in cells of the coronary vascular wall and regulate vasodilation in swine. We performed a variety of molecular, biochemical, and functional (in vivo and ex vivo) studies. Coronary arteries expressed KCNQ genes (quantitative PCR) and KV7.4 protein (Western blot). Immunostaining demonstrated KV7.4 expression in conduit and resistance vessels, perhaps most prominently in the endothelial and adventitial layers. Flupirtine, a KV7 opener, relaxed coronary artery rings, and this was attenuated by linopirdine, a KV7 blocker. Endothelial denudation inhibited the flupirtine-induced and linopirdine-sensitive relaxation of coronary artery rings. Moreover, linopirdine diminished bradykinin-induced endothelial-dependent relaxation of coronary artery rings. There was no effect of intracoronary flupirtine or linopirdine on coronary blood flow at the resting heart rate in vivo. Linopirdine had no effect on coronary vasodilation in vivo elicited by ischemia, H2O2, or tachycardia. However, bradykinin increased coronary blood flow in vivo, and this was attenuated by linopirdine. These data indicate that KV7 channels are expressed in some coronary cell type(s) and influence endothelial function. Other physiological functions of coronary vascular KV7 channels remain unclear, but they do appear to contribute to endothelium-dependent responses to paracrine stimuli. Copyright © 2016 the American Physiological Society.
Matsuyoshi, Hiroko; Takimoto, Koichi; Yunoki, Takakazu; Erickson, Vickie L; Tyagi, Pradeep; Hirao, Yoshihiko; Wanaka, Akio; Yoshimura, Naoki
2012-09-17
Dorsal root ganglia contain heterogeneous populations of primary afferent neurons that transmit various sensory stimuli. This functional diversity may be correlated with differential expression of voltage-gated K(+) (Kv) channels. Here, we examine cellular distributions of Kv4 pore-forming and ancillary subunits that are responsible for fast-inactivating A-type K(+) current. Expression pattern of Kv α-subunit, β-subunit and auxiliary subunit was investigated using immunohistochemistry, in situ hybridization and RT-PCR technique. The two pore-forming subunits Kv4.1 and Kv4.3 show distinct cellular distributions: Kv4.3 is predominantly in small-sized C-fiber neurons, whereas Kv4.1 is seen in DRG neurons in various sizes. Furthermore, the two classes of Kv4 channel auxiliary subunits are also distributed in different-sized cells. KChIP3 is the only significantly expressed Ca(2+)-binding cytosolic ancillary subunit in DRGs and present in medium to large-sized neurons. The membrane-spanning auxiliary subunit DPP6 is seen in a large number of DRG neurons in various sizes, whereas DPP10 is restricted in small-sized neurons. Distinct combinations of Kv4 pore-forming and auxiliary subunits may constitute A-type channels in DRG neurons with different physiological roles. Kv4.1 subunit, in combination with KChIP3 and/or DPP6, form A-type K(+) channels in medium to large-sized A-fiber DRG neurons. In contrast, Kv4.3 and DPP10 may contribute to A-type K(+) current in non-peptidergic, C-fiber somatic afferent neurons. Copyright © 2012 Elsevier Inc. All rights reserved.
A Practical Study of the 66kV Fault Current Limiter (FCL) System with Rectifier
NASA Astrophysics Data System (ADS)
Tokuda, Noriaki; Matsubara, Yoshio; Yuguchi, Kyosuke; Ohkuma, Takeshi; Hobara, Natsuro; Takahashi, Yoshihisa
A fault current limiter (FCL) is extensively expected to suppress fault current, particularly required for trunk power systems heavily connected high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. By installing such FCL in the power system, the system interconnection is possible without the need to raise the capacity of the circuit breakers, and facilities can be configured for efficiency, among other benefits. For these reasons, fault current limiters based on various principles of operation have been developed both in Japan and abroad. In this paper, we have proposed a new type of FCL system, consisting of solid-state diodes, DC coil and bypass AC coil, and described the specification of distribution power system and 66kV model at the island power system and the superconducting cable power system. Also we have made a practical study of 66kV class, which is the testing items and the future subjects of the rectifier type FCL system.
Gasparoli, Luca; D'Amico, Massimo; Masselli, Marika; Pillozzi, Serena; Caves, Rachel; Khuwaileh, Rawan; Tiedke, Wolfgang; Mugridge, Kenneth; Pratesi, Alessandro; Mitcheson, John S; Basso, Giuseppe; Becchetti, Andrea; Arcangeli, Annarosa
2015-02-01
KV11.1 (hERG1) channels are often overexpressed in human cancers. In leukemias, KV11.1 regulates pro-survival signals that promote resistance to chemotherapy, raising the possibility that inhibitors of KV11.1 could be therapeutically beneficial. However, because of the role of KV11.1 in cardiac repolarization, blocking these channels may cause cardiac arrhythmias. We show that CD-160130, a novel pyrimido-indole compound, blocks KV11.1 channels with a higher efficacy for the KV11.1 isoform B, in which the IC50 (1.8 μM) was approximately 10-fold lower than observed in KV11.1 isoform A. At this concentration, CD-160130 also had minor effects on Kir2.1, KV 1.3, Kv1.5, and KCa3.1. In vitro, CD-160130 induced leukemia cell apoptosis, and could overcome bone marrow mesenchymal stromal cell (MSC)-induced chemoresistance. This effect was caused by interference with the survival signaling pathways triggered by MSCs. In vivo, CD-160130 produced an antileukemic activity, stronger than that caused by cytarabine. Consistent with its atypical target specificity, CD-160130 did not bind to the main binding site of the arrhythmogenic KV11.1 blockers (the Phe656 pore residue). Importantly, in guinea pigs CD-160130 produced neither alteration of the cardiac action potential shape in dissociated cardiomyocytes nor any lengthening of the QT interval in vivo. Moreover, CD-160130 had no myelotoxicity on human bone marrow-derived cells. Therefore, CD-160130 is a promising first-in-class compound to attempt oncologic therapy without cardiotoxicity, based on targeting KV11.1. Because leukemia and cardiac cells tend to express different ratios of the A and B KV11.1 isoforms, the pharmacological properties of CD-160130 may depend, at least in part, on isoform specificity. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Liu, Chiung-Hui; Chang, Hung-Ming; Wu, Tsung-Huan; Chen, Li-You; Yang, Yin-Shuo; Tseng, To-Jung; Liao, Wen-Chieh
2017-10-01
The voltage-gated potassium channels Kv1.1 and Kv1.2 that cluster at juxtaparanodal (JXP) regions are essential in the regulation of nerve excitability and play a critical role in axonal conduction. When demyelination occurs, Kv1.1/Kv1.2 activity increases, suppressing the membrane potential nearly to the equilibrium potential of K + , which results in an axonal conduction blockade. The recovery of K + -dependent communication signals and proper clustering of Kv1.1/Kv1.2 channels at JXP regions may directly reflect nerve regeneration following peripheral nerve injury. However, little is known about potassium channel expression and its relationship with the dynamic potassium ion distribution at the node of Ranvier during the regenerative process of peripheral nerve injury (PNI). In the present study, end-to-end neurorrhaphy (EEN) was performed using an in vivo model of PNI. The distribution of K + at regenerating axons following EEN was detected by time-of-flight secondary-ion mass spectrometry. The specific localization and expression of Kv1.1/Kv1.2 channels were examined by confocal microscopy and western blotting. Our data showed that the re-establishment of K + distribution and intensity was correlated with the functional recovery of compound muscle action potential morphology in EEN rats. Furthermore, the re-clustering of Kv1.1/1.2 channels 1 and 3 months after EEN at the nodal region of the regenerating nerve corresponded to changes in the K + distribution. This study provided direct evidence of K + distribution in regenerating axons for the first time. We proposed that the Kv1.1/Kv1.2 channels re-clustered at the JXP regions of regenerating axons are essential for modulating the proper patterns of K + distribution in axons for maintaining membrane potential stability after EEN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, A; Prior, P; Gore, E
Purpose: 4DCT has been widely used to generate internal tumor volume (ITV) for a lung tumor for treatment planning. However, lung tumors may show different respiratory motion on the treatment day. The purpose of this study is to evaluate 4D KV conebeam computed tomography (CBCT) for monitoring tumor interfractional motion variation between simulation and each fraction of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: 4D KV CBCT was acquired with the Elekta XVI system. The accuracy of 4D KV CBCT for image-guided radiation therapy (IGRT) was tested with a dynamic thorax motion phantom (CIRS, Virginia) with a linearmore » amplitude of 2 cm. In addition, an adult anthropomorphic phantom (Alderson, Rando) with optically stimulated luminescence (OSL) dosimeters embedded at the center and periphery of a slab of solid water was used to measure the dose of 4D KV CBCT and to compare it with the dose with 3D KV CBCT. The image registration was performed by aligning\\ each phase images of 4D KV CBCT to the planning images and the final couch shifts were calculated as a mean of all these individual shifts along each direction.A workflow was established based on these quality assurance tests for lung cancer patients. Results: 4D KV CBCT does not increase imaging dose in comparison to 3D KV CBCT. Acquisition of 4D KV CBCT is 4 minutes as compared to 2 minutes for 3D KV CBCT. Most of patients showed a small daily variation of tumor respiratory motion about 2 mm. However, some patients may have more than 5 mm variations of tumor respiratory motion. Conclusion: The radiation dose does not increase with 4D KV CBCT. 4D KV CBCT is a useful tool for monitoring interfractional variations of tumor respiratory motion before SBRT of lung cancer patients.« less
Dallas, Mark L; Atkinson, Lucy; Milligan, Carol J; Morris, Neil P; Lewis, David I; Deuchars, Susan A; Deuchars, Jim
2005-01-01
The voltage-gated potassium channel subunit Kv3.1 confers fast firing characteristics to neurones. Kv3.1b subunit immunoreactivity (Kv3.1b-IR) was widespread throughout the medulla oblongata, with labelled neurones in the gracile, cuneate and spinal trigeminal nuclei. In the nucleus of the solitary tract (NTS), Kv3.1b-IR neurones were predominantly located close to the tractus solitarius (TS) and could be GABAergic or glutamatergic. Ultrastructurally, Kv3.1b-IR was detected in NTS terminals, some of which were vagal afferents. Whole-cell current-clamp recordings from neurones near the TS revealed electrophysiological characteristics consistent with the presence of Kv3.1b subunits: short duration action potentials (4.2 ± 1.4 ms) and high firing frequencies (68.9 ± 5.3 Hz), both sensitive to application of TEA (0.5 mm) and 4-aminopyridine (4-AP; 30 μm). Intracellular dialysis of an anti-Kv3.1b antibody mimicked and occluded the effects of TEA and 4-AP in NTS and dorsal column nuclei neurones, but not in dorsal vagal nucleus or cerebellar Purkinje cells (which express other Kv3 subunits, but not Kv3.1b). Voltage-clamp recordings from outside-out patches from NTS neurones revealed an outward K+ current with the basic characteristics of that carried by Kv3 channels. In NTS neurones, electrical stimulation of the TS evoked EPSPs and IPSPs, and TEA and 4-AP increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. Synaptic inputs evoked by stimulation of a region lacking Kv3.1b-IR neurones were not affected, correlating the presence of Kv3.1b in the TS with the pharmacological effects. PMID:15528247
Dabrowska, J; Rainnie, D G
2010-12-15
The Kv4 potassium channel α subunits, Kv4.1, Kv4.2, and Kv4.3, determine some of the fundamental physiological properties of neurons in the CNS. Kv4 subunits are associated with auxiliary β-subunits, such as the potassium channel interacting proteins (KChIP1 - 4), which are thought to regulate the trafficking and gating of native Kv4 potassium channels. Intriguingly, KChIP1 is thought to show cell type-selective expression in GABA-ergic inhibitory interneurons, while other β-subunits (KChIP2-4) are associated with principal glutamatergic neurons. However, nothing is known about the expression of Kv4 family α- and β-subunits in specific interneurons populations in the BLA. Here, we have used immunofluorescence, co-immunoprecipitation, and Western Blotting to determine the relative expression of KChIP1 in the different interneuron subtypes within the BLA, and its co-localization with one or more of the Kv4 α subunits. We show that all three α-subunits of Kv4 potassium channel are found in rat BLA neurons, and that the immunoreactivity of KChIP1 closely resembles that of Kv4.3. Indeed, Kv4.3 showed almost complete co-localization with KChIP1 in the soma and dendrites of a distinct subpopulation of BLA neurons. Dual-immunofluorescence studies revealed this to be in BLA interneurons immunoreactive for parvalbumin, cholecystokin-8, and somatostatin. Finally, co-immunoprecipitation studies showed that KChIP1 was associated with all three Kv4 α subunits. Together our results suggest that KChIP1 is selectively expressed in BLA interneurons where it may function to regulate the activity of A-type potassium channels. Hence, KChIP1 might be considered as a cell type-specific regulator of GABAergic inhibitory circuits in the BLA. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Le Maout, S; Sewing, S; Coudrier, E; Elalouf, J M; Pongs, O; Merot, J
1996-01-01
Functional Kv 1-4 channels were stably expressed in filter-grown MDCK cells which form a polarized epithelium with two distinct plasma membrane domains: a basolateral and an apical cell surface. The Shaker-related Kv 1-4 channels mediated in MDCK cells fast transient (A-type) voltage-activated outward currents having similar properties to the ones reported for Kv 1-4 in the Xenopus oocytes expression system. Immunoblot analysis with specific anti-Kv 1-4 antibodies showed that two Kv 1-4 protein forms are expressed in MDCK cells which most likely represent the glycosylated and non-glycosylated Kv 1-4 protein, respectively. Using immunocytochemistry and confocal microscopy we showed that the Kv 1-4 channels are specifically localized in the basolateral membranes of MDCK cells. Thus, the MDCK cells may provide an important model system to analyse the polarized transport of ion channels such as Kv 1-4, which are distinctly expressed in the mammalian central nervous system.
SU-E-I-23: A General KV Constrained Optimization of CNR for CT Abdominal Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weir, V; Zhang, J
Purpose: While Tube current modulation has been well accepted for CT dose reduction, kV adjusting in clinical settings is still at its early stage. This is mainly due to the limited kV options of most current CT scanners. kV adjusting can potentially reduce radiation dose and optimize image quality. This study is to optimize CT abdomen imaging acquisition based on the assumption of a continuous kV, with the goal to provide the best contrast to noise ratio (CNR). Methods: For a given dose (CTDIvol) level, the CNRs at different kV and pitches were measured with an ACR GAMMEX phantom. Themore » phantom was scanned in a Siemens Sensation 64 scanner and a GE VCT 64 scanner. A constrained mathematical optimization was used to find the kV which led to the highest CNR for the anatomy and pitch setting. Parametric equations were obtained from polynomial fitting of plots of kVs vs CNRs. A suitable constraint region for optimization was chosen. Subsequent optimization yielded a peak CNR at a particular kV for different collimations and pitch setting. Results: The constrained mathematical optimization approach yields kV of 114.83 and 113.46, with CNRs of 1.27 and 1.11 at the pitch of 1.2 and 1.4, respectively, for the Siemens Sensation 64 scanner with the collimation of 32 x 0.625mm. An optimized kV of 134.25 and 1.51 CNR is obtained for a GE VCT 64 slice scanner with a collimation of 32 x 0.625mm and a pitch of 0.969. At 0.516 pitch and 32 x 0.625 mm an optimized kV of 133.75 and a CNR of 1.14 was found for the GE VCT 64 slice scanner. Conclusion: CNR in CT image acquisition can be further optimized with a continuous kV option instead of current discrete or fixed kV settings. A continuous kV option is a key for individualized CT protocols.« less
Fineberg, Jeffrey D.; Ritter, David M.
2012-01-01
A-type voltage-gated K+ (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na+ channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously elucidates contrasting inactivation pathways in neuronal A-type Kv channels and demonstrates how distinct pathways might impact neurophysiological activity. PMID:23109714
Heide, Juliane; Mann, Stefan A.; Vandenberg, Jamie I.
2012-01-01
Recent genome wide association studies identified a brain and primate specific isoform of a voltage-gated potassium channel, referred to as Kv11.1-3.1, which is significantly associated with schizophrenia. The 3.1 isoform replaces the first 102 amino acids of the most abundant isoform (referred to as Kv11.1-1A) with six unique amino acids. Here we show that the Kv11.1-3.1 isoform has faster rates of channel deactivation but a slowing of the rates of inactivation compared to the Kv11.1-1A isoform. The Kv11.1-3.1 isoform also has a significant depolarizing shift in the voltage-dependence of steady-state inactivation. The consequence of the altered gating kinetics is that there is lower current accumulation for Kv11.1-3.1 expressing cells during repetitive action potential firing compared to Kv11.1-1A expressing cells, which in turn will result in longer lasting trains of action potentials. Increased expression of Kv11.1-3.1 channels in the brain of schizophrenia patients might therefore contribute to disorganized neuronal firing. PMID:23029143
Ca2+-Calmodulin and PIP2 interactions at the proximal C-terminus of Kv7 channels.
Tobelaim, William S; Dvir, Meidan; Lebel, Guy; Cui, Meng; Buki, Tal; Peretz, Asher; Marom, Milit; Haitin, Yoni; Logothetis, Diomedes E; Hirsch, Joel A; Attali, Bernard
2017-11-02
In the heart, co-assembly of Kv7.1 with KCNE1 produces the slow I KS potassium current, which repolarizes the cardiac action potential and mutations in human Kv7.1 and KCNE1 genes cause cardiac arrhythmias. The proximal Kv7.1 C-terminus binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP 2 ) and recently we revealed the competition of PIP 2 with the calcified CaM N-lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor a LQT mutation. Data indicated that PIP 2 and Ca 2+ -CaM perform the same function on I KS channel gating to stabilize the channel open state. Here we show that similar features were observed for Kv7.1 currents expressed alone. We also find that conservation of homologous residues in helix B of other Kv7 subtypes confer similar competition of Ca 2+ -CaM with PIP2 binding to their proximal C-termini and suggest that PIP2-CaM interactions converge to Kv7 helix B to modulates channel activity in a Kv7 subtype-dependent manner.
Shah, Niyathi Hegde; Aizenman, Elias
2013-01-01
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system, and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K+ efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer’s disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage-dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels, and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons, and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases. PMID:24323720
Berg, Torill
2018-01-01
K+-channels of the Kv7/KCNQ-family hyperpolarize and stabilize excitable cells such as autonomic neurons and vascular smooth muscle cells (VSMC). Kv7 may therefore play a role in blood pressure (BP) homeostasis, and prevent a high total peripheral vascular resistance (TPR), a hallmark of hypertensive disease. The present study analyzed if Kv7 channels influence catecholamine release and TPR in normotensive (WKY) and spontaneously hypertensive rats (SHR), and if they may contribute to the antihypertensive protection seen in young, female SHR. Tyramine-stimulated norepinephrine release evokes an adrenergic cardiovascular response, and also allows modulation of release to be reflected in the overflow to plasma. The experiment itself activated some secretion of epinephrine. The results show: (1) XE-991 (Kv7.1-7.4-inhibitor), but not chromanol 293B (Kv7.1-inhibitor), increased tyramine-stimulated norepinephrine overflow and epinephrine secretion in both sexes in SHR, but not WKY. (2) Surprisingly, the Kv7-openers retigabine (Kv7.2-7.5) and ICA-27243 (Kv7.2-7.3-preferring) increased catecholamine release in female SHR. (3) The rise in TPR following tyramine-stimulated norepinephrine release was increased by XE-991 but not chromanol in the female WKY only. (4) Retigabine and ICA-27243 reduced the TPR-response to tyramine in the female SHR only. These results suggested: (1) Up-regulation of Kv7.2-7.3 function in sympathetic neurons and chromaffin cells hampered catecholamine release in SHR of both sexes. (2) The increase catecholamine release observed after channel openers in the female SHR may possibly involve reduced transmission in cholinergic neurons which hamper catecholamine release. These two mechanisms may serve to counter-act the hyperadrenergic state in SHR. (3) Kv7.4, most likely in the vasculature, opposed the tension-response to norepinephrine in the female WKY. (4) Vascular Kv7.4-7.5 could be stimulated and then opposed norepinephrine-induced vasoconstriction in the female SHR. (5) Vascular Kv7 channels did not counter-act norepinephrine induced vasoconstriction in male rats, possibly due to different Kv7 channel regulation. Kv7 channels may represent a novel target for antihypertensive therapy. PMID:29515459
Berg, Torill
2018-01-01
K + -channels of the Kv7/KCNQ-family hyperpolarize and stabilize excitable cells such as autonomic neurons and vascular smooth muscle cells (VSMC). Kv7 may therefore play a role in blood pressure (BP) homeostasis, and prevent a high total peripheral vascular resistance (TPR), a hallmark of hypertensive disease. The present study analyzed if Kv7 channels influence catecholamine release and TPR in normotensive (WKY) and spontaneously hypertensive rats (SHR), and if they may contribute to the antihypertensive protection seen in young, female SHR. Tyramine-stimulated norepinephrine release evokes an adrenergic cardiovascular response, and also allows modulation of release to be reflected in the overflow to plasma. The experiment itself activated some secretion of epinephrine. The results show: (1) XE-991 (Kv7.1-7.4-inhibitor), but not chromanol 293B (Kv7.1-inhibitor), increased tyramine-stimulated norepinephrine overflow and epinephrine secretion in both sexes in SHR, but not WKY. (2) Surprisingly, the Kv7-openers retigabine (Kv7.2-7.5) and ICA-27243 (Kv7.2-7.3-preferring) increased catecholamine release in female SHR. (3) The rise in TPR following tyramine-stimulated norepinephrine release was increased by XE-991 but not chromanol in the female WKY only. (4) Retigabine and ICA-27243 reduced the TPR-response to tyramine in the female SHR only. These results suggested: (1) Up-regulation of Kv7.2-7.3 function in sympathetic neurons and chromaffin cells hampered catecholamine release in SHR of both sexes. (2) The increase catecholamine release observed after channel openers in the female SHR may possibly involve reduced transmission in cholinergic neurons which hamper catecholamine release. These two mechanisms may serve to counter-act the hyperadrenergic state in SHR. (3) Kv7.4, most likely in the vasculature, opposed the tension-response to norepinephrine in the female WKY. (4) Vascular Kv7.4-7.5 could be stimulated and then opposed norepinephrine-induced vasoconstriction in the female SHR. (5) Vascular Kv7 channels did not counter-act norepinephrine induced vasoconstriction in male rats, possibly due to different Kv7 channel regulation. Kv7 channels may represent a novel target for antihypertensive therapy.
Perez-Neut, Mathew; Rao, Vidhya R; Gentile, Saverio
2016-09-13
The function of Kv11.1 is emerging in breast cancer biology, as a growing body of evidence indicates that the hERG1/Kv11.1 potassium channel is aberrantly expressed in several cancer types including breast cancers.The biological effects of Kv11.1 channel blockers and their associated side effects are very well known but the potential use of Kv11.1 activators as an anticancer strategy are still unexplored. In our previous work, we have established that stimulation of the Kv11.1 potassium channel activates a senescent-like program that is characterized by a significant increase in tumor suppressor protein levels, such as p21waf/cip and p16INK4A. In this study we investigated the mechanism linking Kv11.1 stimulation to augmentation of p21waf/cip protein level. We have demonstrated that the Kv11.1 channel activator NS1643 activates a calcineurin-dependent transcription of p21waf/cip and that this event is fundamental for the inhibitory effect of NS1643 on cell proliferation. Our results reveal a novel mechanism by which stimulation of Kv11.1 channel leads to transcription of a potent tumor suppressor and suggest a potential therapeutic use for Kv11.1 channel activators.
Perez-Neut, Mathew; Rao, Vidhya R.; Gentile, Saverio
2016-01-01
The function of Kv11.1 is emerging in breast cancer biology, as a growing body of evidence indicates that the hERG1/Kv11.1 potassium channel is aberrantly expressed in several cancer types including breast cancers. The biological effects of Kv11.1 channel blockers and their associated side effects are very well known but the potential use of Kv11.1 activators as an anticancer strategy are still unexplored. In our previous work, we have established that stimulation of the Kv11.1 potassium channel activates a senescent-like program that is characterized by a significant increase in tumor suppressor protein levels, such as p21waf/cip and p16INK4A. In this study we investigated the mechanism linking Kv11.1 stimulation to augmentation of p21waf/cip protein level. We have demonstrated that the Kv11.1 channel activator NS1643 activates a calcineurin-dependent transcription of p21waf/cip and that this event is fundamental for the inhibitory effect of NS1643 on cell proliferation. Our results reveal a novel mechanism by which stimulation of Kv11.1 channel leads to transcription of a potent tumor suppressor and suggest a potential therapeutic use for Kv11.1 channel activators. PMID:25945833
Mechanisms of Calmodulin Regulation of Different Isoforms of Kv7.4 K+ Channels.
Sihn, Choong-Ryoul; Kim, Hyo Jeong; Woltz, Ryan L; Yarov-Yarovoy, Vladimir; Yang, Pei-Chi; Xu, Jun; Clancy, Colleen E; Zhang, Xiao-Dong; Chiamvimonvat, Nipavan; Yamoah, Ebenezer N
2016-01-29
Calmodulin (CaM), a Ca(2+)-sensing protein, is constitutively bound to IQ domains of the C termini of human Kv7 (hKv7, KCNQ) channels to mediate Ca(2+)-dependent reduction of Kv7 currents. However, the mechanism remains unclear. We report that CaM binds to two isoforms of the hKv7.4 channel in a Ca(2+)-independent manner but that only the long isoform (hKv7.4a) is regulated by Ca(2+)/CaM. Ca(2+)/CaM mediate reduction of the hKv7.4a channel by decreasing the channel open probability and altering activation kinetics. We took advantage of a known missense mutation (G321S) that has been linked to progressive hearing loss to further examine the inhibitory effects of Ca(2+)/CaM on the Kv7.4 channel. Using multidisciplinary techniques, we demonstrate that the G321S mutation may destabilize CaM binding, leading to a decrease in the inhibitory effects of Ca(2+) on the channels. Our study utilizes an expression system to dissect the biophysical properties of the WT and mutant Kv7.4 channels. This report provides mechanistic insights into the critical roles of Ca(2+)/CaM regulation of the Kv7.4 channel under physiological and pathological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Development of a compact generator for gigawatt, nanosecond high-voltage pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Lin, E-mail: zhoulin-2003@163.com; Jiang, Zhanxing; Liang, Chuan
2016-03-15
A compact generator producing 2.2-ns 1.5 GW high-voltage pulses was developed. The generator employed a 27.6 Ω, 0.9 ns pulse-forming-line (PFL), which was charged by an iron core transformer with a turn ratio of 2:33.5 and a coefficient of 0.94. A 1.2 μF, 20 kV capacitor and a hydrogen thyratron were used in the primary circuit. When the thyratron closed at 14.5 kV, 3.4% of the energy stored in the capacitor was delivered to the PFL in 850 ns, producing a peak voltage of up to ∼500 kV. In addition, the principle of triple resonance transformation was employed by addingmore » a 50 pF tuning capacitor and a 1.15 mH inductor between the transformer and the PFL, which led to a significant reduction of the duration and peak value of the transformer voltage without reducing that in the PFL. Meanwhile, an adjustable self-break oil switch was applied. By using transmission lines with impedance overmatched to that of the PFL, the generator delivered a 512 kV pulse across an electron beam diode, generating radiation with a dose of 20 mR/pulse at 20 cm ahead of the diode. The generator provides an excellent ultra-short radiation pulse source for the studies on radiation physics.« less
Development of a compact generator for gigawatt, nanosecond high-voltage pulses.
Zhou, Lin; Jiang, Zhanxing; Liang, Chuan; Li, Mingjia; Wang, Wenchuan; Li, Zhenghong
2016-03-01
A compact generator producing 2.2-ns 1.5 GW high-voltage pulses was developed. The generator employed a 27.6 Ω, 0.9 ns pulse-forming-line (PFL), which was charged by an iron core transformer with a turn ratio of 2:33.5 and a coefficient of 0.94. A 1.2 μF, 20 kV capacitor and a hydrogen thyratron were used in the primary circuit. When the thyratron closed at 14.5 kV, 3.4% of the energy stored in the capacitor was delivered to the PFL in 850 ns, producing a peak voltage of up to ∼500 kV. In addition, the principle of triple resonance transformation was employed by adding a 50 pF tuning capacitor and a 1.15 mH inductor between the transformer and the PFL, which led to a significant reduction of the duration and peak value of the transformer voltage without reducing that in the PFL. Meanwhile, an adjustable self-break oil switch was applied. By using transmission lines with impedance overmatched to that of the PFL, the generator delivered a 512 kV pulse across an electron beam diode, generating radiation with a dose of 20 mR/pulse at 20 cm ahead of the diode. The generator provides an excellent ultra-short radiation pulse source for the studies on radiation physics.
Compagnon, Julien; Barone, Vanessa; Rajshekar, Srivarsha; Kottmeier, Rita; Pranjic-Ferscha, Kornelija; Behrndt, Martin; Heisenberg, Carl-Philipp
2014-12-22
Kupffer's vesicle (KV) is the zebrafish organ of laterality, patterning the embryo along its left-right (LR) axis. Regional differences in cell shape within the lumen-lining KV epithelium are essential for its LR patterning function. However, the processes by which KV cells acquire their characteristic shapes are largely unknown. Here, we show that the notochord induces regional differences in cell shape within KV by triggering extracellular matrix (ECM) accumulation adjacent to anterior-dorsal (AD) regions of KV. This localized ECM deposition restricts apical expansion of lumen-lining epithelial cells in AD regions of KV during lumen growth. Our study provides mechanistic insight into the processes by which KV translates global embryonic patterning into regional cell shape differences required for its LR symmetry-breaking function. Copyright © 2014 Elsevier Inc. All rights reserved.
Voros, Orsolya; Szilagyi, Orsolya; Balajthy, András; Somodi, Sándor; Panyi, Gyorgy; Hajdu, Péter
2018-04-12
Kv1.3 channels are expressed in several cell types including immune cells, such as T lymphocytes. The targeting of Kv1.3 to the plasma membrane is essential for T cell clonal expansion and assumed to be guided by the C-terminus of the channel. Using two point mutants of Kv1.3 with remarkably different features compared to the wild-type Kv1.3 (A413V and H399K having fast inactivation kinetics and tetraethylammonium-insensitivity, respectively) we showed that both Kv1.3 channel variants target to the membrane when the C-terminus was truncated right after the conserved HRET sequence and produce currents identical to those with a full-length C-terminus. The truncation before the HRET sequence (NOHRET channels) resulted in reduced membrane-targeting but non-functional phenotypes. NOHRET channels did not display gating currents, and coexpression with wild-type Kv1.3 did not rescue the NOHRET-A413V phenotype, no heteromeric current was observed. Interestingly, mutants of wild-type Kv1.3 lacking HRET(E) (deletion) or substituted with five alanines for the HRET(E) motif expressed current indistinguishable from the wild-type. These results demonstrate that the C-terminal region of Kv1.3 immediately proximal to the S6 helix is required for the activation gating and conduction, whereas the presence of the distal region of the C-terminus is not exclusively required for trafficking of Kv1.3 to the plasma membrane.
Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie
2014-01-01
Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.
Intense Pulsed Heavy Ion Beam Technology
NASA Astrophysics Data System (ADS)
Masugata, Katsumi; Ito, Hiroaki
Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.
Mechanism of the modulation of Kv4:KChIP-1 channels by external K+.
Kaulin, Yu A; De Santiago-Castillo, J A; Rocha, C A; Covarrubias, M
2008-02-15
In response to a prolonged membrane depolarization, inactivation autoregulates the activity of voltage-gated ion channels. Slow inactivation involving a localized constriction of the selectivity filter (P/C-type mechanism) is prevalent in many voltage-gated K(+) channels of the Kv1 subfamily. However, the generalization of this mechanism to other Kv channel subfamilies has remained uncertain and controversial. In agreement with a "foot-in-the-door" mechanism and the presence of ion-ion interactions in the pore, elevated external K(+) slows the development of P/C-type inactivation and accelerates its recovery. In sharp contrast and resembling the regulation of the hippocampal A-type K(+) current, we found that Kv4.x channels associated with KChIP-1 (an auxiliary subunit) exhibit accelerated inactivation and unaffected recovery from inactivation when exposed to elevated external K(+). This regulation depends on the ability of a permeant ion to enter the selectivity filter (K(+) = Rb(+) = NH4(+) > Cs(+) > Na(+)); and the apparent equilibrium dissociation constant of a single regulatory site is 8 mM for K(+). By applying a robust quantitative global kinetic modeling approach to all macroscopic properties over a 210-mV range of membrane potentials, we determined that elevated external K(+) inhibits unstable closed states outside the main activation pathway and thereby promotes preferential closed-state inactivation. These results suggest the presence of a vestigial and unstable P/C-type mechanism of inactivation in Kv4 channels and strengthen the concept of novel mechanisms of closed-state inactivation. Regulation of Kv4 channel inactivation by hyperkalemia may help to explain the pathophysiology of electrolyte imbalances in excitable tissues.
NASA Astrophysics Data System (ADS)
Arvind, Pratul
2012-11-01
The ability to identify and classify all ten types of faults in a distribution system is an important task for protection engineers. Unlike transmission system, distribution systems have a complex configuration and are subjected to frequent faults. In the present work, an algorithm has been developed for identifying all ten types of faults in a distribution system by collecting current samples at the substation end. The samples are subjected to wavelet packet transform and artificial neural network in order to yield better classification results. A comparison of results between wavelet transform and wavelet packet transform is also presented thereby justifying the feature extracted from wavelet packet transform yields promising results. It should also be noted that current samples are collected after simulating a 25kv distribution system in PSCAD software.
Review of the High Performance Antiproton Trap (HiPAT) Experiment
NASA Technical Reports Server (NTRS)
Martin, James J.; Lewis, Raymond A.; Pearson, J. Boise; Sims, W. Herb; Chakrabarti, Suman; Fant, Wallace E.; McDonald, Stan
2003-01-01
Many space propulsion concepts exist that use matter-antimatter reactions. Current antiproton production rates are enough to conduct proof-of-principle evaluation of these concepts. One enabling technology for such experiments is portable storage of low energy antiprotons, to transport antiprotons to experimental facilities. To address this need, HiPAT is being developed, with a design goal of containing 10(exp 12) particles for up to 18 days. HiPAT is a Penning-Malmberg trap with a 4 Tesla superconductor, 20kV electrodes, radio frequency (RF) network, and 10(exp -13) Torr vacuum. 'Normal' matter is being used to evaluate the system. An electron beam ionizes background gas in situ, and particle beams are captured dynamically. The experiment examines ion storage lifetimes, RF plasma diagnostics, charge exchange with background gases, and dynamic ion beam capture.
A Compact 700-KV Erected Pulse Forming Network for HPM Applications (Postprint)
2011-04-28
previously investigated for driving rail guns , electric launchers, or other nonlinear loads albeit for much longer pulse lengths [8]. In this version...The output of the generator was connected to a coaxial CuS04 resistor through 100-ft of coaxial high-voltage cable. The current pulse on the cable was...shown in Figure 6. This pulse was delivered to a 50-ohm cable and measured by a coaxial inline CVR at the generator output. Typical pulse
A micrometeoroid deceleration and capture experiment: Conceptual experiment design description
NASA Technical Reports Server (NTRS)
Wolfe, J. H.; Ballard, R. W.; Carle, G. C.; Bunch, T. E.
1986-01-01
The preliminary conceptual design for a cosmic dust collector is described. For the case of low Earth orbit (LEO), dust particles enter the collector through the collimator at a few volts negative potential due to charging in the ionosphere, at a velocity of 1 to 50 km/sec. The particles then pass through an electron stream and are charged to about 1 KV negative (regardless of incoming polarity). The 1 KV negatively charged particle then passes through three sensing grids coupled to charge sensitive preamps (CSP). The comparison of the two pulses provided by S(1) and S(2) are utilized by the microprocessor to determine the charge, q, on the particle (pulse amplitude) and its velocity, v (by time of flight). The third sensing grid, S(3), is kept at about 20 KV negative so that the dust particle will now be decelerated in passing from S(2) (zero potential) to S(3). S(3) is capacitively coupled to its CSP and the pulse from S(3) is utilized by the microprocessor to determine the particle's energy, E, and therefore its mass, m (again by time of flight) by comparison with the pulses from S(1) and S(2). The microprocessor can now precisely program the high-voltage switching network for the proper timing in the grounding of the successive deceleration grids. As determined by the microprocessor, each successive deceleration grid is grounded just after the dust particle passes, thus reducing the particle's energy by the amount q*100 KV at each stage. The microprocessor also determines at which stage the particle will fall below a certain critical energy where all remaining grids remain unswitched so that the particle will drift to the collector. The collector is kept at about 100V positive and is covered with gold foil to eliminate contamination and is removable for subsequent return to earth for detailed analysis.
75 FR 56051 - Bemidji to Grand Rapids Minnesota 230 kV Transmission Line Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-15
... Service Bemidji to Grand Rapids Minnesota 230 kV Transmission Line Project AGENCY: Rural Utilities Service... Environmental Impact Statement (EIS) for the proposed Bemidji to Grand Rapids, Minnesota 230 kV Transmission... Cooperative, Inc. for RUS financing to construct a 230 kilovolt (kV) transmission line between the Wilton...
Cortisone and hydrocortisone inhibit human Kv1.3 activity in a non-genomic manner.
Yu, Jing; Park, Mi-Hyeong; Choi, Se-Young; Jo, Su-Hyun
2015-06-01
Glucocorticoids are hormones released in response to stress that are involved in various physiological processes including immune functions. One immune-modulating mechanism is achieved by the Kv1.3 voltage-dependent potassium channel, which is expressed highly in lymphocytes including effector memory T lymphocytes (TEM). Although glucocorticoids are known to inhibit Kv1.3 function, the detailed inhibitory mechanism is not yet fully understood. Here we studied the rapid non-genomic effects of cortisone and hydrocortisone on the human Kv1.3 channel expressed in Xenopus oocytes. Both cortisone and hydrocortisone reduced the amplitude of the Kv1.3 channel current in a concentration-dependent manner. Both cortisone and hydrocortisone rapidly and irreversibly inhibited Kv1.3 currents, eliminating the possibility of genomic regulation. Inhibition rate was stable relative to the degree of depolarization. Kinetically, cortisone altered the activating gate of Kv1.3 and hydrocortisone interacted with this channel in an open state. These results suggest that cortisone and hydrocortisone inhibit Kv1.3 currents via a non-genomic mechanism, providing a mechanism for the immunosuppressive effects of glucocorticoids.
Tubert, Cecilia; Taravini, Irene R E; Flores-Barrera, Eden; Sánchez, Gonzalo M; Prost, María Alejandra; Avale, María Elena; Tseng, Kuei Y; Rela, Lorena; Murer, Mario Gustavo
2016-09-06
The mechanism underlying a hypercholinergic state in Parkinson's disease (PD) remains uncertain. Here, we show that disruption of the Kv1 channel-mediated function causes hyperexcitability of striatal cholinergic interneurons in a mouse model of PD. Specifically, our data reveal that Kv1 channels containing Kv1.3 subunits contribute significantly to the orphan potassium current known as IsAHP in striatal cholinergic interneurons. Typically, this Kv1 current provides negative feedback to depolarization that limits burst firing and slows the tonic activity of cholinergic interneurons. However, such inhibitory control of cholinergic interneuron excitability by Kv1.3-mediated current is markedly diminished in the parkinsonian striatum, suggesting that targeting Kv1.3 subunits and their regulatory pathways may have therapeutic potential in PD therapy. These studies reveal unexpected roles of Kv1.3 subunit-containing channels in the regulation of firing patterns of striatal cholinergic interneurons, which were thought to be largely dependent on KCa channels. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Casper to Dave Johnston 230-kV Transmission Line Project: Environmental assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
Western proposes to reconstruct the existing Casper-Glendo North 115-kV Transmission Line to 230-kV between a point 1.1 miles northeast of the Pacific Power and Light (Pacific) Casper Substation and the Dave Johnston (DJ) Powerplant near Glenrock, Wyoming. As part of the proposed action, Western proposes to remove the portion of the existing Casper-Glendo South 115-kV Transmission Line between Western's Casper Substation and the intersection with the Casper-Glendo North Transmission Line, about 15 miles east of Casper. The removed portion of the Casper-Glendo North Transmission Line would be rebuilt on steel, single-shaft, structures. The section between the point northeast of themore » Pacific Substation and the intersection with the Casper-Glendo South Transmission Line would be double circuit (230-kV/115-kV). At the intersection of the north and south lines, the new 115-kV section would be tied to the remaining portion of the Casper-Glendo South Line to complete the 115-kV Casper-Glendo circuit. 52 refs.,12 figs., 14 tabs.« less
Modulation by clamping: Kv4 and KChIP interactions.
Wang, Kewei
2008-10-01
The rapidly inactivating (A-type) potassium channels regulate membrane excitability that defines the fundamental mechanism of neuronal functions such as pain signaling. Cytosolic Kv channel-interacting proteins KChIPs that belong to neuronal calcium sensor (NCS) family of calcium binding EF-hand proteins co-assemble with Kv4 (Shal) alpha subunits to form a native complex that encodes major components of neuronal somatodendritic A-type K+ current, I(SA), in neurons and transient outward current, I(TO), in cardiac myocytes. The specific binding of auxiliary KChIPs to the Kv4 N-terminus results in modulation of gating properties, surface expression and subunit assembly of Kv4 channels. Here, I attempt to emphasize the interaction between KChIPs and Kv4 based on recent progress made in understanding the structure complex in which a single KChIP1 molecule laterally clamps two neighboring Kv4.3 N-termini in a 4:4 manner. Greater insights into molecular mechanism between KChIPs and Kv4 interaction may provide therapeutic potentials of designing compounds aimed at disrupting the protein-protein interaction for treatment of membrane excitability-related disorders.
Kouno, Takuya; Kuga, Noriyuki; Enzaki, Masahiro; Yamashita, Yuuki; Kitazato, Yumiko; Shimotabira, Haruhiko; Jinnouchi, Takashi; Kusuhara, Kazuo; Kawamura, Shinji
2015-04-01
The aim of this study was to reduce the exposed dose of radiotherapy treatment planning computed tomography (CT) by using low tube voltage technique. We used tube voltages of 80 kV, 100 kV, and 120 kV, respectively. First, we evaluated exposure dose with CT dose index (CTDI) for each voltage. Second, we compared image quality indexes such as modulation transfer function (MTF), noise power spectrum (NPS), and contrast to noise ratio (CNR) of phantom images with each voltage. Third, CT to electron density tables were measured in three voltages and monitor unit value was calculated along with clinical cases. Finally, CT surface exposed dose of chest skin was measured by thermoluminescent dosimeter (TLD). In image evaluation MTF and NPS were approximately equal; CNR slightly decreased, 2.0% for 100 kV. We performed check radiation dose accuracy for each tube voltage with each model phantom. As a result, the difference of MU value was not accepted. Finally, compared with 120 kV, CTDIvol and TLD value showed markedly decreased radiation dose, 60% for 80 kV and 30% for 100 kV. Using a technique with low tube voltages, especially 100 kV, is useful in radiotherapy treatment planning to obtain 20% dose reduction without compromising 120 kV image quality.
Anti-voltage-gated potassium channel Kv1.4 antibodies in myasthenia gravis.
Romi, Fredrik; Suzuki, Shigeaki; Suzuki, Norihiro; Petzold, Axel; Plant, Gordon T; Gilhus, Nils Erik
2012-07-01
Myasthenia gravis (MG) is an autoimmune disease characterized by skeletal muscle weakness mainly caused by acetylcholine receptor antibodies. MG can be divided into generalized and ocular, and into early-onset (<50 years of age) and late-onset (≥50 years of age). Anti-Kv1.4 antibodies targeting α-subunits (Kv1.4) of the voltage-gated potassium K(+) channel occurs frequently among patients with severe MG, accounting for 18% of a Japanese MG population. The aim of this study was to characterize the clinical features and serological associations of anti-Kv1.4 antibodies in a Caucasian MG population with mild and localized MG. Serum samples from 129 Caucasian MG patients with mainly ocular symptoms were tested for the presence of anti-Kv1.4 antibodies and compared to clinical and serological parameters. There were 22 (17%) anti-Kv1.4 antibody-positive patients, most of them women with late-onset MG, and all of them with mild MG. This contrasts to the Japanese anti-Kv1.4 antibody-positive patients who suffered from severe MG with bulbar symptoms, myasthenic crisis, thymoma, myocarditis and prolonged QT time on electrocardiography, despite equal anti-Kv1.4 antibody occurrence in both populations. No other clinical or serological parameters influenced anti-Kv1.4 antibody occurrence.
Use-dependent activation of neuronal Kv1.2 channel complexes.
Baronas, Victoria A; McGuinness, Brandon R; Brigidi, G Stefano; Gomm Kolisko, Rachel N; Vilin, Yury Y; Kim, Robin Y; Lynn, Francis C; Bamji, Shernaz X; Yang, Runying; Kurata, Harley T
2015-02-25
In excitable cells, ion channels are frequently challenged by repetitive stimuli, and their responses shape cellular behavior by regulating the duration and termination of bursts of action potentials. We have investigated the behavior of Shaker family voltage-gated potassium (Kv) channels subjected to repetitive stimuli, with a particular focus on Kv1.2. Genetic deletion of this subunit results in complete mortality within 2 weeks of birth in mice, highlighting a critical physiological role for Kv1.2. Kv1.2 channels exhibit a unique property described previously as "prepulse potentiation," in which activation by a depolarizing step facilitates activation in a subsequent pulse. In this study, we demonstrate that this property enables Kv1.2 channels to exhibit use-dependent activation during trains of very brief depolarizations. Also, Kv subunits usually assemble into heteromeric channels in the central nervous system, generating diversity of function and sensitivity to signaling mechanisms. We demonstrate that other Kv1 channel types do not exhibit use-dependent activation, but this property is conferred in heteromeric channel complexes containing even a single Kv1.2 subunit. This regulatory mechanism is observed in mammalian cell lines as well as primary cultures of hippocampal neurons. Our findings illustrate that use-dependent activation is a unique property of Kv1.2 that persists in heteromeric channel complexes and may influence function of hippocampal neurons. Copyright © 2015 the authors 0270-6474/15/353515-10$15.00/0.
A Drosophila Model of Essential Tremor.
Smith, Philip; Arias, Ronald; Sonti, Shilpa; Odgerel, Zagaa; Santa-Maria, Ismael; McCabe, Brian D; Tsaneva-Atanasova, Krasimira; Louis, Elan D; Hodge, James J L; Clark, Lorraine N
2018-05-16
Essential Tremor (ET) is one of the most common neurological diseases, with an estimated 7 million affected individuals in the US; the pathophysiology of the disorder is poorly understood. Recently, we identified a mutation (KCNS2 (Kv9.2), c.1137 T > A, p.(D379E) in an electrically silent voltage-gated K + channel α-subunit, Kv9.2, in a family with ET, that modulates the activity of Kv2 channels. We have produced transgenic Drosophila lines that express either the human wild type Kv9.2 (hKv9.2) or the ET causing mutant Kv9.2 (hKv9.2-D379E) subunit in all neurons. We show that the hKv9.2 subunit modulates activity of endogenous Drosophila K + channel Shab. The mutant hKv9.2-D379E subunit showed significantly higher levels of Shab inactivation and a higher frequency of spontaneous firing rate consistent with neuronal hyperexcitibility. We also observed behavioral manifestations of nervous system dysfunction including effects on night time activity and sleep. This functional data further supports the pathogenicity of the KCNS2 (p.D379E) mutation, consistent with our prior observations including co-segregation with ET in a family, a likely pathogenic change in the channel pore domain and absence from population databases. The Drosophila hKv9.2 transgenic model recapitulates several features of ET and may be employed to advance our understanding of ET disease pathogenesis.
Wang, Wenying; Flores, Maria Cristina Perez; Sihn, Choong-Ryoul; Kim, Hyo Jeong; Zhang, Yinuo; Doyle, Karen J; Chiamvimonvat, Nipavan; Zhang, Xiao-Dong; Yamoah, Ebenezer N
2015-03-01
Kv7.1 voltage-gated K(+) (Kv) channels are present in the apical membranes of marginal cells of the stria vascularis of the inner ear, where they mediate K(+) efflux into the scala media (cochlear duct) of the cochlea. As such, they are exposed to the K(+)-rich (∼ 150 mM of external K(+) (K(+) e)) environment of the endolymph. Previous studies have shown that Kv7.1 currents are substantially suppressed by high K(+) e (independent of the effects of altering the electrochemical gradient). However, the molecular basis for this inhibition, which is believed to involve stabilization of an inactivated state, remains unclear. Using sequence alignment of S5-pore linkers of several Kv channels, we identified a key residue, E290, found in only a few Kv channels including Kv7.1. We used substituted cysteine accessibility methods and patch-clamp analysis to provide evidence that the ability of Kv7.1 to sense K(+) e depends on E290, and that the charge at this position is essential for Kv7.1's K(+) e sensitivity. We propose that Kv7.1 may use this feedback mechanism to maintain the magnitude of the endocochlear potential, which boosts the driving force to generate the receptor potential of hair cells. The implications of our findings transcend the auditory system; mutations at this position also result in long QT syndrome in the heart. © 2015 Wang et al.
Iannotti, Fabio Arturo; Barrese, Vincenzo; Formisano, Luigi; Miceli, Francesco; Taglialatela, Maurizio
2013-01-01
Changes in the expression of potassium (K+) channels is a pivotal event during skeletal muscle differentiation. In mouse C2C12 cells, similarly to human skeletal muscle cells, myotube formation increased the expression of Kv7.1, Kv7.3, and Kv7.4, the last showing the highest degree of regulation. In C2C12 cells, Kv7.4 silencing by RNA interference reduced the expression levels of differentiation markers (myogenin, myosin heavy chain, troponinT-1, and Pax3) and impaired myotube formation and multinucleation. In Kv7.4-silenced cells, the differentiation-promoting effect of the Kv7 activator N-(2-amino-4-(4-fluorobenzylamino)-phenyl)-carbamic acid ethyl ester (retigabine) was abrogated. Expression levels for the repressor element-1 silencing transcription factor (REST) declined during myotube formation. Transcript levels for Kv7.4, as well as for myogenin, troponinT-1, and Pax3, were reduced by REST overexpression and enhanced upon REST suppression by RNA interference. Four regions containing potential REST-binding sites in the 5′ untranslated region and in the first intron of the Kv7.4 gene were identified by bioinformatic analysis. Chromatin immunoprecipitation assays showed that REST binds to these regions, exhibiting a higher efficiency in myoblasts than in myotubes. These data suggest that Kv7.4 plays a permissive role in skeletal muscle differentiation and highlight REST as a crucial transcriptional regulator for this K+ channel subunit. PMID:23242999
Retigabine holds KV7 channels open and stabilizes the resting potential
Corbin-Leftwich, Aaron; Mossadeq, Sayeed M.; Ha, Junghoon; Ruchala, Iwona; Le, Audrey Han Ngoc
2016-01-01
The anticonvulsant Retigabine is a KV7 channel agonist used to treat hyperexcitability disorders in humans. Retigabine shifts the voltage dependence for activation of the heteromeric KV7.2/KV7.3 channel to more negative potentials, thus facilitating activation. Although the molecular mechanism underlying Retigabine’s action remains unknown, previous studies have identified the pore region of KV7 channels as the drug’s target. This suggested that the Retigabine-induced shift in voltage dependence likely derives from the stabilization of the pore domain in an open (conducting) conformation. Testing this idea, we show that the heteromeric KV7.2/KV7.3 channel has at least two open states, which we named O1 and O2, with O2 being more stable. The O1 state was reached after short membrane depolarizations, whereas O2 was reached after prolonged depolarization or during steady state at the typical neuronal resting potentials. We also found that activation and deactivation seem to follow distinct pathways, suggesting that the KV7.2/KV7.3 channel activity displays hysteresis. As for the action of Retigabine, we discovered that this agonist discriminates between open states, preferentially acting on the O2 state and further stabilizing it. Based on these findings, we proposed a novel mechanism for the therapeutic effect of Retigabine whereby this drug reduces excitability by enhancing the resting potential open state stability of KV7.2/KV7.3 channels. To address this hypothesis, we used a model for action potential (AP) in Xenopus laevis oocytes and found that the resting membrane potential became more negative as a function of Retigabine concentration, whereas the threshold potential for AP firing remained unaltered. PMID:26880756
Retigabine holds KV7 channels open and stabilizes the resting potential.
Corbin-Leftwich, Aaron; Mossadeq, Sayeed M; Ha, Junghoon; Ruchala, Iwona; Le, Audrey Han Ngoc; Villalba-Galea, Carlos A
2016-03-01
The anticonvulsant Retigabine is a KV7 channel agonist used to treat hyperexcitability disorders in humans. Retigabine shifts the voltage dependence for activation of the heteromeric KV7.2/KV7.3 channel to more negative potentials, thus facilitating activation. Although the molecular mechanism underlying Retigabine's action remains unknown, previous studies have identified the pore region of KV7 channels as the drug's target. This suggested that the Retigabine-induced shift in voltage dependence likely derives from the stabilization of the pore domain in an open (conducting) conformation. Testing this idea, we show that the heteromeric KV7.2/KV7.3 channel has at least two open states, which we named O1 and O2, with O2 being more stable. The O1 state was reached after short membrane depolarizations, whereas O2 was reached after prolonged depolarization or during steady state at the typical neuronal resting potentials. We also found that activation and deactivation seem to follow distinct pathways, suggesting that the KV7.2/KV7.3 channel activity displays hysteresis. As for the action of Retigabine, we discovered that this agonist discriminates between open states, preferentially acting on the O2 state and further stabilizing it. Based on these findings, we proposed a novel mechanism for the therapeutic effect of Retigabine whereby this drug reduces excitability by enhancing the resting potential open state stability of KV7.2/KV7.3 channels. To address this hypothesis, we used a model for action potential (AP) in Xenopus laevis oocytes and found that the resting membrane potential became more negative as a function of Retigabine concentration, whereas the threshold potential for AP firing remained unaltered. © 2016 Corbin-Leftwich et al.
Morales-Cano, Daniel; Moreno, Laura; Barreira, Bianca; Pandolfi, Rachele; Chamorro, Virginia; Jimenez, Rosario; Villamor, Eduardo; Duarte, Juan; Perez-Vizcaino, Francisco; Cogolludo, Angel
2015-04-01
Voltage-gated potassium channels encoded by KCNQ genes (Kv7 channels) are emerging as important regulators of vascular tone. In this study, we analysed the contribution of Kv7 channels to the vasodilation induced by hypoxia and the cyclic AMP pathway in the coronary circulation. We also assessed their regional distribution and possible impairment by diabetes. We examined the effects of Kv7 channel modulators on K+ currents and vascular reactivity in rat left and right coronary arteries (LCAs and RCAs, respectively). Currents from LCA were more sensitive to Kv7 channel inhibitors (XE991, linopirdine) and activators (flupirtine, retigabine) than those from RCA. Accordingly, LCAs were more sensitive than RCAs to the relaxation induced by Kv7 channel enhancers. Likewise, relaxation induced by the adenylyl cyclase activator forskolin and hypoxia, which were mediated through Kv7 channel activation, were greater in LCA than in RCA. KCNQ1 and KCNQ5 expression was markedly higher in LCA than in RCA. After incubation with high glucose (HG, 30 mmol/L), myocytes from LCA, but not from RCA, were more depolarized and showed reduced Kv7 currents. In HG-incubated LCA, the effects of Kv7 channel modulators and forskolin were diminished, and the expression of KCNQ1 and KCNQ5 was reduced. Finally, vascular responses induced by Kv7 channel modulators were impaired in LCA, but not in RCA, from type 1 diabetic rats. Our results reveal that the high expression and function of Kv7 channels in the LCA and their down-regulation by diabetes critically determine the sensitivity to key regulators of coronary tone. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Inhibitory effects of pimozide on cloned and native voltage-gated potassium channels.
Zhang, Zhi-Hao; Lee, Yan T; Rhodes, Kenneth; Wang, Kewei; Argentieri, Thomas M; Wang, Qiang
2003-07-04
The primary goal of this study was to use the cloned neuronal Kv channels to test if pimozide (PMZD), an antipsychotic drug, modulates the activity of Kv channels. In CHO cells, PMZD blocked Kv2.1, a major neuronal delayed rectifier, in a manner that depends upon time and concentration. The estimated IC50 was 4.2 microM at +50 mV. Tail current analysis shows that PMZD reduced the amplitude of the currents, with no effect on the steady-state activation curve (V(1/2) from 14.1 to 11.1 mV) or the slope (16.7 vs. 14.0 mV). From -120 to -20 mV, PMZD did not impact the deactivation kinetics of Kv2.1. PMZD also blocked Kv1.1, another neuronal delayed rectifier, with 16.1 microM of IC50. When Kv1.1 was co-expressed with Kvbeta1, approximately 50% of the Kv1.1 were converted into an inactivating A-type current and the Kv1.1/Kvbeta1 A-type currents were insensitive to PMZD. PMZD (10 microM) had minimal effect on Kv1.4, and had no effect on the M-current candidates, KCNQ2 and KCNQ3 when co-expressed in Xenopus oocytes. In hippocampal neurons, PMZD inhibited the delayed rectifiers by approximately 60%, and A-type currents were insensitive to PMZD. The results suggest that PMZD inhibits certain neuronal Kv channels in heterologous expression systems and in hippocampal neurons. PMZD was less effective on A-type currents, presumably because its ability to block requires a prolonged opening of the K channels. It is thus conceivable that the time-dependent and/or subunit-specific inhibition of Kv channels may increase the release of neurotransmitters such as serotonin and glutamate.
Vydyanathan, Amaresh; Wu, Zi-Zhen; Chen, Shao-Rui; Pan, Hui-Lin
2005-06-01
Voltage-gated K+ channels (Kv) in primary sensory neurons are important for regulation of neuronal excitability. The dorsal root ganglion (DRG) neurons are heterogeneous, and the types of native Kv currents in different groups of nociceptive DRG neurons are not fully known. In this study, we determined the difference in the A-type Kv current and its influence on the firing properties between isolectin B4 (IB4)-positive and -negative DRG neurons. Whole cell voltage- and current-clamp recordings were performed on acutely dissociated small DRG neurons of rats. The total Kv current density was significantly higher in IB+-positive than that in IB(4)-negative neurons. Also, 4-aminopyridine (4-AP) produced a significantly greater reduction in Kv currents in IB4-positive than in IB4-negative neurons. In contrast, IB4-negative neurons exhibited a larger proportion of tetraethylammonium-sensitive Kv currents. Furthermore, IB4-positive neurons showed a longer latency of firing and required a significantly larger amount of current injection to evoke action potentials. 4-AP significantly decreased the latency of firing and increased the firing frequency in IB4-positive but not in IB4-negative neurons. Additionally, IB4-positive neurons are immunoreactive to Kv1.4 but not to Kv1.1 and Kv1.2 subunits. Collectively, this study provides new information that 4-AP-sensitive A-type Kv currents are mainly present in IB4-positive DRG neurons and preferentially dampen the initiation of action potentials of this subpopulation of nociceptors. The difference in the density of A-type Kv currents contributes to the distinct electrophysiological properties of IB4-positive and -negative DRG neurons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thor, Daniel; Brismar, Torkel B., E-mail: torkel.brismar@gmail.com; Fischer, Michael A.
Purpose: To evaluate the potential of low tube voltage dual source (DS) single energy (SE) and dual energy (DE) computed tomography (CT) to reduce contrast media (CM) dose in adult abdominal examinations of various sizes while maintaining soft tissue and iodine contrast-to-noise ratio (CNR). Methods: Four abdominal phantoms simulating a body mass index of 16 to 35 kg/m{sup 2} with four inserted syringes of 0, 2, 4, and 8 mgI/ml CM were scanned using a 64-slice DS-CT scanner. Six imaging protocols were used; one single source (SS) reference protocol (120 kV, 180 reference mAs), four low kV SE protocols (70more » and 80 kV using both SS and DS), and one DE protocol at 80/140 kV. Potential CM reduction with unchanged CNRs relative to the 120 kV protocol was calculated along with the corresponding increase in radiation dose. Results: The potential contrast media reductions were determined to be approximately 53% for DS 70 kV, 51% for SS 70 kV, 44% for DS 80 kV, 40% for SS 80 kV, and 20% for DE (all differences were significant, P < 0.05). Constant CNR could be achieved by using DS 70 kV for small to medium phantom sizes (16–26 kg/m{sup 2}) and for all sizes (16–35 kg/m{sup 2}) when using DS 80 kV and DE. Corresponding radiation doses increased by 60%–107%, 23%–83%, and 6%–12%, respectively. Conclusions: DS single energy CT can be used to reduce CM dose by 44%–53% with maintained CNR in adult abdominal examinations at the cost of an increased radiation dose. DS dual-energy CT allows reduction of CM dose by 20% at similar radiation dose as compared to a standard 120 kV single source.« less
Wang, Wan-Chen; Cheng, Chau-Fu; Tsaur, Meei-Ling
2015-03-01
Subthreshold A-type K(+) currents (ISA s) have been recorded from the cell bodies of hippocampal and neocortical interneurons as well as neocortical pyramidal neurons. Kv4 channels are responsible for the somatodendritic ISA s. It has been proposed that neuronal Kv4 channels are ternary complexes including pore-forming Kv4 subunits, K(+) channel-interacting proteins (KChIPs), and dipeptidyl peptidase-like proteins (DPPLs). However, colocalization evidence was still lacking. The distribution of DPP10 mRNA in rodent brain has been reported but its protein localization remains unknown. In this study, we generated a DPP10 antibody to label DPP10 protein in adult rat brain by immunohistochemistry. Absent from glia, DPP10 proteins appear mainly in the cell bodies of DPP10(+) neurons, not only at the plasma membrane but also in the cytoplasm. At least 6.4% of inhibitory interneurons in the hippocampus coexpressed Kv4.3, KChIP1, and DPP10, with the highest density in the CA1 strata alveus/oriens/pyramidale and the dentate hilus. Colocalization of Kv4.3/KChIP1/DPP10 was also detected in at least 6.9% of inhibitory interneurons scattered throughout the neocortex. Both hippocampal and neocortical Kv4.3/KChIP1/DPP10(+) inhibitory interneurons expressed parvalbumin or somatostatin, but not calbindin or calretinin. Furthermore, we found colocalization of Kv4.2/Kv4.3/KChIP3/DPP10 in neocortical layer 5 pyramidal neurons and olfactory bulb mitral cells. Together, although DPP10 is also expressed in some brain neurons lacking Kv4 (such as parvalbumin- and somatostatin-positive Golgi cells in the cerebellum), colocalization of DPP10 with Kv4 and KChIP at the plasma membrane of ISA -expressing neuron somata supports the existence of Kv4/KChIP/DPPL ternary complex in vivo. © 2014 Wiley Periodicals, Inc.
Tang, Yi-Quan; Zhou, Jing-Heng; Yang, Fan; Zheng, Jie; Wang, KeWei
2014-09-02
A-type Kv4 potassium channels undergo a conformational change toward a nonconductive state at negative membrane potentials, a dynamic process known as pre-open closed states or closed-state inactivation (CSI). CSI causes inhibition of channel activity without the prerequisite of channel opening, thus providing a dynamic regulation of neuronal excitability, dendritic signal integration, and synaptic plasticity at resting. However, the structural determinants underlying Kv4 CSI remain largely unknown. We recently showed that the auxiliary KChIP4a subunit contains an N-terminal Kv4 inhibitory domain (KID) that directly interacts with Kv4.3 channels to enhance CSI. In this study, we utilized the KChIP4a KID to probe key structural elements underlying Kv4 CSI. Using fluorescence resonance energy transfer two-hybrid mapping and bimolecular fluorescence complementation-based screening combined with electrophysiology, we identified the intracellular tetramerization (T1) domain that functions to suppress CSI and serves as a receptor for the binding of KID. Disrupting the Kv4.3 T1-T1 interaction interface by mutating C110A within the C3H1 motif of T1 domain facilitated CSI and ablated the KID-mediated enhancement of CSI. Furthermore, replacing the Kv4.3 T1 domain with the T1 domain from Kv1.4 (without the C3H1 motif) or Kv2.1 (with the C3H1 motif) resulted in channels functioning with enhanced or suppressed CSI, respectively. Taken together, our findings reveal a novel (to our knowledge) role of the T1 domain in suppressing Kv4 CSI, and that KChIP4a KID directly interacts with the T1 domain to facilitate Kv4.3 CSI, thus leading to inhibition of channel function. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Bartos, Daniel C; Giudicessi, John R; Tester, David J; Ackerman, Michael J; Ohno, Seiko; Horie, Minoru; Gollob, Michael H; Burgess, Don E; Delisle, Brian P
2014-03-01
Type 1 long QT syndrome (LQT1) is caused by loss-of-function mutations in the KCNQ1-encoded Kv7.1 channel that conducts the slowly activating component of the delayed rectifier K(+) current (IKs). Clinically, the diagnosis of LQT1 is complicated by variable phenotypic expressivity, whereby approximately 25% of genotype-positive individuals present with concealed LQT1 (resting corrected QT [QTc] interval ≤460 ms). To determine whether a specific molecular mechanism contributes to concealed LQT1. We identified a multigenerational LQT1 family whereby 79% of the patients genotype-positive for p.Ile235Asn-KCNQ1 (I235N-Kv7.1) have concealed LQT1. We assessed the effect I235N-Kv7.1 has on IKs and the ventricular action potential (AP) by using in vitro analysis and computational simulations. Clinical data showed that all 10 patients with I235N-Kv7.1 have normal resting QTc intervals but abnormal QTc interval prolongation during the recovery phase of an electrocardiographic treadmill stress test. Voltage-clamping HEK293 cells coexpressing wild-type Kv7.1 and I235N-Kv7.1 (to mimic the patients' genotypes) showed that I235N-Kv7.1 generated relatively normal functioning Kv7.1 channels but were insensitive to protein kinase A (PKA) activation. Phosphomimetic and quinidine sensitivity studies suggest that I235N-Kv7.1 limits the conformational changes in Kv7.1 channels, which are necessary to upregulate IKs after PKA phosphorylation. Computational ventricular AP simulations predicted that the PKA insensitivity of I235N-Kv7.1 is primarily responsible for prolonging the AP with β-adrenergic stimulation, especially at slower cycle lengths. KCNQ1 mutations that generate relatively normal Kv7.1 channels, but limit the upregulation of IKs by PKA activation, likely contribute to concealed LQT1. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Hernandez, Andrew M; Boone, John M
2014-04-01
Monte Carlo methods were used to generate lightly filtered high resolution x-ray spectra spanning from 20 kV to 640 kV. X-ray spectra were simulated for a conventional tungsten anode. The Monte Carlo N-Particle eXtended radiation transport code (MCNPX 2.6.0) was used to produce 35 spectra over the tube potential range from 20 kV to 640 kV, and cubic spline interpolation procedures were used to create piecewise polynomials characterizing the photon fluence per energy bin as a function of x-ray tube potential. Using these basis spectra and the cubic spline interpolation, 621 spectra were generated at 1 kV intervals from 20 to 640 kV. The tungsten anode spectral model using interpolating cubic splines (TASMICS) produces minimally filtered (0.8 mm Be) x-ray spectra with 1 keV energy resolution. The TASMICS spectra were compared mathematically with other, previously reported spectra. Using pairedt-test analyses, no statistically significant difference (i.e., p > 0.05) was observed between compared spectra over energy bins above 1% of peak bremsstrahlung fluence. For all energy bins, the correlation of determination (R(2)) demonstrated good correlation for all spectral comparisons. The mean overall difference (MOD) and mean absolute difference (MAD) were computed over energy bins (above 1% of peak bremsstrahlung fluence) and over all the kV permutations compared. MOD and MAD comparisons with previously reported spectra were 2.7% and 9.7%, respectively (TASMIP), 0.1% and 12.0%, respectively [R. Birch and M. Marshall, "Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector," Phys. Med. Biol. 24, 505-517 (1979)], 0.4% and 8.1%, respectively (Poludniowski), and 0.4% and 8.1%, respectively (AAPM TG 195). The effective energy of TASMICS spectra with 2.5 mm of added Al filtration ranged from 17 keV (at 20 kV) to 138 keV (at 640 kV); with 0.2 mm of added Cu filtration the effective energy was 9 keV at 20 kV and 169 keV at 640 kV. Ranging from 20 kV to 640 kV, 621 x-ray spectra were produced and are available at 1 kV tube potential intervals. The spectra are tabulated at 1 keV intervals. TASMICS spectra were shown to be largely equivalent to published spectral models and are available in spreadsheet format for interested users by emailing the corresponding author (JMB). © 2014 American Association of Physicists in Medicine.
Hernandez, Andrew M.; Boone, John M.
2014-01-01
Purpose: Monte Carlo methods were used to generate lightly filtered high resolution x-ray spectra spanning from 20 kV to 640 kV. Methods: X-ray spectra were simulated for a conventional tungsten anode. The Monte Carlo N-Particle eXtended radiation transport code (MCNPX 2.6.0) was used to produce 35 spectra over the tube potential range from 20 kV to 640 kV, and cubic spline interpolation procedures were used to create piecewise polynomials characterizing the photon fluence per energy bin as a function of x-ray tube potential. Using these basis spectra and the cubic spline interpolation, 621 spectra were generated at 1 kV intervals from 20 to 640 kV. The tungsten anode spectral model using interpolating cubic splines (TASMICS) produces minimally filtered (0.8 mm Be) x-ray spectra with 1 keV energy resolution. The TASMICS spectra were compared mathematically with other, previously reported spectra. Results: Using paired t-test analyses, no statistically significant difference (i.e., p > 0.05) was observed between compared spectra over energy bins above 1% of peak bremsstrahlung fluence. For all energy bins, the correlation of determination (R2) demonstrated good correlation for all spectral comparisons. The mean overall difference (MOD) and mean absolute difference (MAD) were computed over energy bins (above 1% of peak bremsstrahlung fluence) and over all the kV permutations compared. MOD and MAD comparisons with previously reported spectra were 2.7% and 9.7%, respectively (TASMIP), 0.1% and 12.0%, respectively [R. Birch and M. Marshall, “Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector,” Phys. Med. Biol. 24, 505–517 (1979)], 0.4% and 8.1%, respectively (Poludniowski), and 0.4% and 8.1%, respectively (AAPM TG 195). The effective energy of TASMICS spectra with 2.5 mm of added Al filtration ranged from 17 keV (at 20 kV) to 138 keV (at 640 kV); with 0.2 mm of added Cu filtration the effective energy was 9 keV at 20 kV and 169 keV at 640 kV. Conclusions: Ranging from 20 kV to 640 kV, 621 x-ray spectra were produced and are available at 1 kV tube potential intervals. The spectra are tabulated at 1 keV intervals. TASMICS spectra were shown to be largely equivalent to published spectral models and are available in spreadsheet format for interested users by emailing the corresponding author (JMB). PMID:24694149
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, Andrew M.; Boone, John M., E-mail: john.boone@ucdmc.ucdavis.edu
Purpose: Monte Carlo methods were used to generate lightly filtered high resolution x-ray spectra spanning from 20 kV to 640 kV. Methods: X-ray spectra were simulated for a conventional tungsten anode. The Monte Carlo N-Particle eXtended radiation transport code (MCNPX 2.6.0) was used to produce 35 spectra over the tube potential range from 20 kV to 640 kV, and cubic spline interpolation procedures were used to create piecewise polynomials characterizing the photon fluence per energy bin as a function of x-ray tube potential. Using these basis spectra and the cubic spline interpolation, 621 spectra were generated at 1 kV intervalsmore » from 20 to 640 kV. The tungsten anode spectral model using interpolating cubic splines (TASMICS) produces minimally filtered (0.8 mm Be) x-ray spectra with 1 keV energy resolution. The TASMICS spectra were compared mathematically with other, previously reported spectra. Results: Using pairedt-test analyses, no statistically significant difference (i.e., p > 0.05) was observed between compared spectra over energy bins above 1% of peak bremsstrahlung fluence. For all energy bins, the correlation of determination (R{sup 2}) demonstrated good correlation for all spectral comparisons. The mean overall difference (MOD) and mean absolute difference (MAD) were computed over energy bins (above 1% of peak bremsstrahlung fluence) and over all the kV permutations compared. MOD and MAD comparisons with previously reported spectra were 2.7% and 9.7%, respectively (TASMIP), 0.1% and 12.0%, respectively [R. Birch and M. Marshall, “Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector,” Phys. Med. Biol. 24, 505–517 (1979)], 0.4% and 8.1%, respectively (Poludniowski), and 0.4% and 8.1%, respectively (AAPM TG 195). The effective energy of TASMICS spectra with 2.5 mm of added Al filtration ranged from 17 keV (at 20 kV) to 138 keV (at 640 kV); with 0.2 mm of added Cu filtration the effective energy was 9 keV at 20 kV and 169 keV at 640 kV. Conclusions: Ranging from 20 kV to 640 kV, 621 x-ray spectra were produced and are available at 1 kV tube potential intervals. The spectra are tabulated at 1 keV intervals. TASMICS spectra were shown to be largely equivalent to published spectral models and are available in spreadsheet format for interested users by emailing the corresponding author (JMB)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherer, Brett M.
2003-02-19
BPA proposes to remove unwanted vegetation along the right-of-way, access roads, and around tower structures of the subject transmission line corridor that may impede the operation and maintenance of the identified transmission lines. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission line. BPA’s overall goal is to have low-growing plant communities along the rights-of-way to control the development of potentially threatening vegetation. Vegetation Management for the Eugene-Alvey 115 kV transmission line from structure 7/1 through structure 12/2m, and along portions of themore » following adjacent transmission lines: Hawkins-Alvey 115KV and Alvey-Lane 115KV.« less
Hameda, A Ben; Elosta, S; Havel, J
2005-08-19
Huperzine A, natural product from Huperzia serrata, is quite an important compound used to treat the Alzheimer's disease as a food supplement and also proposed as a prospective and prophylactic antidote against organophosphate poisoning. In this work, simple and fast capillary electrophoresis (CE) procedure with UV detection (at 230 nm) for determination of Huperzine A was developed and optimized. Capillary electrophoresis determination of Huperzine A was optimized using a combination of the experimental design (ED) and the artificial neural networks (ANN). In the first stage of optimization, the experiments were done according to the appropriate ED. Data evaluated by ANN allowed finding the optimal values of several analytical parameters (peak area, peak height, and analysis time). Optimal conditions found were 50 mM acetate buffer, pH 4.6, separation voltage 10 kV, hydrodynamic injection time 10 s and temperature 25 degrees C. The developed method shows good repeatability as relative standard division (R.S.D. = 0.9%) and it has been applied for determination of Huperzine A in various pharmaceutical products and in biological liquids. The limit of detection (LOD) in aqueous media was 0.226 ng/ml and 0.233 ng/ml for determination in the serum.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-02
... Grand Rapids 230 kV Transmission Line Project AGENCY: Rural Utilities Service, USDA. ACTION: Notice of... proposed Bemidji to Grand Rapids 230 kV Transmission Line Project (Project) in Beltrami, Hubbard, Itasca... financing to construct the 230 kilovolt (kV) transmission line between the Wilton Substation near Bemidji...
O’Brien, M.; Lamperti, P.; Williams, T.; Sander, T.
2000-01-01
A direct comparison was made between the air kerma primary standards used for the measurements of low-energy x rays at the National Institute of Standards and Technology (NIST) and the National Physical Laboratory (NPL). The comparison was conducted at the NPL using NPL reference radiation qualities between 10 kV and 80 kV. The results show the primary air-kerma standards to agree within 0.6 % of their values for beam qualities up to 80 kV. PMID:27551632
Loss Reduction on Adoption of High Voltage LT Less Distribution
NASA Astrophysics Data System (ADS)
Tiwari, Deepika; Adhikari, Nikhileshwar Prasad; Gupta, Amit; Bajpai, Santosh Kumar
2016-06-01
In India there is a need to improve the quality of the electricity distribution process which has increased varying from year to year. In distribution networks, the limiting factor to load carrying capacity is generally the voltage reduction. High voltage distribution system (HVDS) is one of the steps to reduce line losses in electrical distribution network. It helps to reduce the length of low tension (LT) lines and makes the power available close to the users. The high voltage power distribution system reduces the probability of power theft by hooking HVDS suggests an increase in installation of small capacity single-phase transformers in the network which again save considerable energy. This paper is compared to existing conventional low tension distribution network with HVDS. The paper gives a clear picture of reduction in distribution losses with adoption of HVDS system. Losses Reduction of 11 kV Feeder in Nuniya (India) with adoption of HVDS have been worked out/ quantified and benefits thereby in generating capacity have discussed.
NASA Astrophysics Data System (ADS)
Dinzi, R.; Hamonangan, TS; Fahmi, F.
2018-02-01
In the current distribution system, a large-capacity distribution transformer supplies loads to remote locations. The use of 220/380 V network is nowadays less common compared to 20 kV network. This results in losses due to the non-optimal distribution transformer, which neglected the load location, poor consumer profile, and large power losses along the carrier. This paper discusses how high voltage distribution systems (HVDS) can be a better system used in distribution networks than the currently used distribution system (Low Voltage Distribution System, LVDS). The proposed change of the system into the new configuration is done by replacing a large-capacity distribution transformer with some smaller-capacity distribution transformers and installed them in positions that closest to the load. The use of high voltage distribution systems will result in better voltage profiles and fewer power losses. From the non-technical side, the annual savings and payback periods on high voltage distribution systems will also be the advantage.
Resonant power supplies for a rapid-cycling accelerator
NASA Astrophysics Data System (ADS)
Karady, G.; Thiessen, H. A.; Schneider, E. J.
1988-10-01
A resonant power supply has been proposed as an efficient power supply for a future 60-GeV, Kaon-producing accelerator. The engineering design of the electric system of the main-ring power supplies is described. It is shown that the resonant power supply can be built with standard commercially available components. The most critical component is the bypass switch, which requires gate-turn off thyristors, connected in parallel. Standard metal-clad switchgear can be used for the AC system. The resonant power supplies can be fed directly from the 115-kV utility network, but the resonance power supplies draw pulse loads from the utility network. This pulse may produce disturbances. AC filter and reactive power compensation is needed for economical operation.
128 slice computed tomography dose profile measurement using thermoluminescent dosimeter
NASA Astrophysics Data System (ADS)
Salehhon, N.; Hashim, S.; Karim, M. K. A.; Ang, W. C.; Musa, Y.; Bahruddin, N. A.
2017-05-01
The increasing use of computed tomography (CT) in clinical practice marks the needs to understand the dose descriptor and dose profile. The purposes of the current study were to determine the CT dose index free-in-air (CTDIair) in 128 slice CT scanner and to evaluate the single scan dose profile (SSDP). Thermoluminescent dosimeters (TLD-100) were used to measure the dose profile of the scanner. There were three sets of CT protocols where the tube potential (kV) setting was manipulated for each protocol while the rest of parameters were kept constant. These protocols were based from routine CT abdominal examinations for male adult abdomen. It was found that the increase of kV settings made the values of CTDIair increased as well. When the kV setting was changed from 80 kV to 120 kV and from 120 kV to 140 kV, the CTDIair values were increased as much as 147.9% and 53.9% respectively. The highest kV setting (140 kV) led to the highest CTDIair value (13.585 mGy). The p-value of less than 0.05 indicated that the results were statistically different. The SSDP showed that when the kV settings were varied, the peak sharpness and height of Gaussian function profiles were affected. The full width at half maximum (FWHM) of dose profiles for all protocols were coincided with the nominal beam width set for the measurements. The findings of the study revealed much information on the characterization and performance of 128 slice CT scanner.
A potent potassium channel blocker from Mesobuthus eupeus scorpion venom.
Gao, Bin; Peigneur, Steve; Tytgat, Jan; Zhu, Shunyi
2010-12-01
Scorpion venom-derived peptidyl toxins are valuable pharmacological tools for investigating the structure-function relationship of ion channels. Here, we report the purification, sequencing and functional characterization of a new K(+) channel blocker (MeuKTX) from the venom of the scorpion Mesobuthus eupeus. Effects of MeuKTX on ten cloned potassium channels in Xenopus oocytes were evaluated using two-electrode voltage-clamp recordings. MeuKTX is the orthologue of BmKTX (α-KTx3.6), a known Kv1.3 blocker from the scorpion Mesobuthus martensii, and classified as α-KTx3.13. MeuKTX potently blocks rKv1.1, rKv1.2 and hKv1.3 channels with 50% inhibitory concentration (IC(50)) of 203.15 ± 4.06 pM, 8.92 ± 2.3 nM and 171 ± 8.56 pM, respectively, but does not affect rKv1.4, rKv1.5, hKv3.1, rKv4.3, and hERG channels even at 2 μM concentration. At this high concentration, MeuKTX is also active on rKv1.6 and Shaker IR. Our results also demonstrate that MeuKTX and BmKTX have the same channel spectrum and similar pharmacological potency. Analysis of the structure-function relationships of α-KTx3 subfamily toxins allows us to recognize several key sites which may be useful for designing toxins with improved activity on hKv1.3, an attractive target for T-cell mediated autoimmune diseases. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Transfer of Kv3.1 voltage sensor features to the isolated Ci-VSP voltage-sensing domain.
Mishina, Yukiko; Mutoh, Hiroki; Knöpfel, Thomas
2012-08-22
Membrane proteins that respond to changes in transmembrane voltage are critical in regulating the function of living cells. The voltage-sensing domains (VSDs) of voltage-gated ion channels are extensively studied to elucidate voltage-sensing mechanisms, and yet many aspects of their structure-function relationship remain elusive. Here, we transplanted homologous amino acid motifs from the tetrameric voltage-activated potassium channel Kv3.1 to the monomeric VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) to explore which portions of Kv3.1 subunits depend on the tetrameric structure of Kv channels and which properties of Kv3.1 can be transferred to the monomeric Ci-VSP scaffold. By attaching fluorescent proteins to these chimeric VSDs, we obtained an optical readout to establish membrane trafficking and kinetics of voltage-dependent structural rearrangements. We found that motifs extending from 10 to roughly 100 amino acids can be readily transplanted from Kv3.1 into Ci-VSP to form engineered VSDs that efficiently incorporate into the plasma membrane and sense voltage. Some of the functional features of these engineered VSDs are reminiscent of Kv3.1 channels, indicating that these properties do not require interactions between Kv subunits or between the voltage sensing and the pore domains of Kv channels. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Modulation of KvAP Unitary Conductance and Gating by 1-Alkanols and Other Surface Active Agents
Finol-Urdaneta, Rocio K.; McArthur, Jeffrey R.; Juranka, Peter F.; French, Robert J.; Morris, Catherine E.
2010-01-01
Abstract The actions of alcohols and anesthetics on ion channels are poorly understood. Controversy continues about whether bilayer restructuring is relevant to the modulatory effects of these surface active agents (SAAs). Some voltage-gated K channels (Kv), but not KvAP, have putative low affinity alcohol-binding sites, and because KvAP structures have been determined in bilayers, KvAP could offer insights into the contribution of bilayer mechanics to SAA actions. We monitored KvAP unitary conductance and macroscopic activation and inactivation kinetics in PE:PG/decane bilayers with and without exposure to classic SAAs (short-chain 1-alkanols, cholesterol, and selected anesthetics: halothane, isoflurane, chloroform). At levels that did not measurably alter membrane specific capacitance, alkanols caused functional changes in KvAP behavior including lowered unitary conductance, modified kinetics, and shifted voltage dependence for activation. A simple explanation is that the site of SAA action on KvAP is its entire lateral interface with the PE:PG/decane bilayer, with SAA-induced changes in surface tension and bilayer packing order combining to modulate the shape and stability of various conformations. The KvAP structural adjustment to diverse bilayer pressure profiles has implications for understanding desirable and undesirable actions of SAA-like drugs and, broadly, predicts that channel gating, conductance and pharmacology may differ when membrane packing order differs, as in raft versus nonraft domains. PMID:20197029
Fineberg, Jeffrey D.; Szanto, Tibor G.; Panyi, Gyorgy; Covarrubias, Manuel
2016-01-01
Voltage-gated K+ (Kv) channel activation depends on interactions between voltage sensors and an intracellular activation gate that controls access to a central pore cavity. Here, we hypothesize that this gate is additionally responsible for closed-state inactivation (CSI) in Kv4.x channels. These Kv channels undergo CSI by a mechanism that is still poorly understood. To test the hypothesis, we deduced the state of the Kv4.1 channel intracellular gate by exploiting the trap-door paradigm of pore blockade by internally applied quaternary ammonium (QA) ions exhibiting slow blocking kinetics and high-affinity for a blocking site. We found that inactivation gating seemingly traps benzyl-tributylammonium (bTBuA) when it enters the central pore cavity in the open state. However, bTBuA fails to block inactivated Kv4.1 channels, suggesting gated access involving an internal gate. In contrast, bTBuA blockade of a Shaker Kv channel that undergoes open-state P/C-type inactivation exhibits fast onset and recovery inconsistent with bTBuA trapping. Furthermore, the inactivated Shaker Kv channel is readily blocked by bTBuA. We conclude that Kv4.1 closed-state inactivation modulates pore blockade by QA ions in a manner that depends on the state of the internal activation gate. PMID:27502553
Redondo, L M; Fernando Silva, J; Margato, E
2007-03-01
This article discusses the operation of a modular generator topology, which has been developed for high-frequency (kHz), high-voltage (kV) pulsed applications. The proposed generator uses individual modules, each one consisting of a pulse circuit based on a modified forward converter, which takes advantage of the required low duty cycle to operate with a low voltage clamp reset circuit for the step-up transformer. This reduces the maximum voltage on the semiconductor devices of both primary and secondary transformer sides. The secondary winding of each step-up transformer is series connected, delivering a fraction of the total voltage. Each individual pulsed module is supplied via an isolation transformer. The assembled modular laboratorial prototype, with three 5 kV modules, 800 V semiconductor switches, and 1:10 step-up transformers, has 80% efficiency, and is capable of delivering, into resistive loads, -15 kV1 A pulses with 5 micros width, 10 kHz repetition rate, with less than 1 micros pulse rise time. Experimental results for resistive loads are presented and discussed.
IEA Wind Task 26: Offshore Wind Farm Baseline Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smart, Gavin; Smith, Aaron; Warner, Ethan
This document has been produced to provide the definition and rationale for the Baseline Offshore Wind Farm established within IEA Wind Task 26--Cost of Wind Energy. The Baseline has been developed to provide a common starting point for country comparisons and sensitivity analysis on key offshore wind cost and value drivers. The baseline project reflects an approximate average of the characteristics of projects installed between 2012 and 2014, with the project life assumed to be 20 years. The baseline wind farm is located 40 kilometres (km) from construction and operations and maintenance (O&M) ports and from export cable landfall. Themore » wind farm consists of 100 4-megawatt (MW) wind turbines mounted on monopile foundations in an average water depth of 25 metres (m), connected by 33-kilovolt (kV) inter-array cables. The arrays are connected to a single offshore substation (33kV/220kV) mounted on a jacket foundation, with the substation connected via a single 220kV export cable to an onshore substation, 10km from landfall. The wind farm employs a port-based O&M strategy using crew-transfer vessels.« less
Calcaterra, Nicholas E; Hoeppner, Daniel J; Wei, Huijun; Jaffe, Andrew E; Maher, Brady J; Barrow, James C
2016-02-16
The primate-specific brain voltage-gated potassium channel isoform Kv11.1-3.1 has been identified as a novel therapeutic target for the treatment of schizophrenia. While this ether-a-go-go related K(+)channel has shown clinical relevance, drug discovery efforts have been hampered due to low and inconsistent activity in cell-based assays. This poor activity is hypothesized to result from poor trafficking via the lack of an intact channel-stabilizing Per-Ant-Sim (PAS) domain. Here we characterize Kv11.1-3.1 cellular localization and show decreased channel expression and cell surface trafficking relative to the PAS-domain containing major isoform, Kv11.1-1A. Using small molecule inhibition of proteasome degradation, cellular expression and plasma membrane trafficking are rescued. These findings implicate the importance of the unfolded-protein response and endoplasmic reticulum associated degradation pathways in the expression and regulation of this schizophrenia risk factor. Utilizing this identified phenomenon, an electrophysiological and high throughput in-vitro fluorescent assay platform has been developed for drug discovery in order to explore a potentially new class of cognitive therapeutics.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-08
... DEPARTMENT OF AGRICULTURE Forest Service Final Tropic to Hatch 138 kV Transmission Line Project..., has prepared a Final Environmental Impact Statement (FEIS) for the Tropic to Hatch 138 kV Transmission.... ADDRESSES: Copies of the Tropic to Hatch 138 kV Transmission Line Project FEIS/PMPA for the Grand Staircase...
Transient Hippocampal Down-Regulation of Kv1.1 Subunit mRNA during Associative Learning in Rats
ERIC Educational Resources Information Center
Kourrich, Said; Manrique, Christine; Salin, Pascal; Mourre, Christiane
2005-01-01
Voltage-gated potassium channels (Kv) are critically involved in learning and memory processes. It is not known, however, whether the expression of the Kv1.1 subunit, constituting Kv1 channels, can be specifically regulated in brain areas important for learning and memory processing. Radioactive in situ hybridization was used to evaluate the…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... requested a right-of-way (ROW) authorization to construct, operate, and maintain a 230 kilovolt (kV... Substation to accommodate the new 230 kV line termination and installation of additional 345/230 kV transformation equipment. The construction involves approximately 35-40 miles of new double-circuit 230 kV...
Povstyan, Oleksandr V; Barrese, Vincenzo; Stott, Jennifer B; Greenwood, Iain A
2017-02-01
Kv7.4 channels are key determinants of arterial contractility and cochlear mechanosensation that, like all Kv7 channels, have an obligatory requirement for phosphatidylinositol 4,5-bisphosphate (PIP 2 ). βγ G proteins (Gβγ) have been identified as novel positive regulators of Kv7.4. The present study ascertained whether Gβγ increased Kv7.4 open probability through an increased sensitivity to PIP 2 . In HEK cells stably expressing Kv7.4, PIP 2 or Gβγ increased open probability in a concentration dependent manner. Depleting PIP 2 prevented any Gβγ-mediated stimulation whilst an array of Gβγ inhibitors prohibited any PIP 2 -induced current enhancement. A combination of PIP 2 and Gβγ at sub-efficacious concentrations increased channel open probability considerably. The stimulatory effects of three Kv7.2-7.5 channel activators were also lost by PIP 2 depletion or Gβγ inhibitors. This study alters substantially our understanding of the fundamental processes that dictate Kv7.4 activity, revealing a more complex and subtle paradigm where the reliance on local phosphoinositide is dictated by interaction with Gβγ.
Role of voltage-gated K(+) channels in regulating Ca(2+) entry in rat cortical astrocytes.
Wu, King-Chuen; Kuo, Chang-Shin; Chao, Chia-Chia; Huang, Chieh-Chen; Tu, Yuan-Kun; Chan, Paul; Leung, Yuk-Man
2015-03-01
Astrocytes have multiple functions such as provision of nourishment and mechanical support to the nervous system, helping to clear extracellular metabolites of neurons and modulating synaptic transmission by releasing gliotransmitters. In excitable cells, voltage-gated K(+) (Kv) channels serve to repolarize during action potentials. Astrocytes are considered non-excitable cells since they are not able to generate action potentials. There is an abundant expression of various Kv channels in astrocytes but the functions of these Kv channels remain unclear. We examined whether these astrocyte Kv channels regulate astrocyte "excitability" in the form of cytosolic Ca(2+) signaling. Electrophysiological examination revealed that neonatal rat cortical astrocytes possessed both delayed rectifier type and A-type Kv channels. Pharmacological blockade of both delayed rectifier Kv channels by TEA and A-type Kv channels by quinidine significantly suppressed store-operated Ca(2+) influx; however, TEA alone or quinidine alone did not suffice to cause such suppression. TEA and quinidine together dramatically enhanced current injection-triggered membrane potential overshoot (depolarization); either drug alone caused much smaller enhancements. Taken together, the results suggest both delayed rectifier and A-type Kv channels regulate astrocyte Ca(2+) signaling via controlling membrane potential.
Modulation of A-type potassium channels by a family of calcium sensors.
An, W F; Bowlby, M R; Betty, M; Cao, J; Ling, H P; Mendoza, G; Hinson, J W; Mattsson, K I; Strassle, B W; Trimmer, J S; Rhodes, K J
2000-02-03
In the brain and heart, rapidly inactivating (A-type) voltage-gated potassium (Kv) currents operate at subthreshold membrane potentials to control the excitability of neurons and cardiac myocytes. Although pore-forming alpha-subunits of the Kv4, or Shal-related, channel family form A-type currents in heterologous cells, these differ significantly from native A-type currents. Here we describe three Kv channel-interacting proteins (KChIPs) that bind to the cytoplasmic amino termini of Kv4 alpha-subunits. We find that expression of KChIP and Kv4 together reconstitutes several features of native A-type currents by modulating the density, inactivation kinetics and rate of recovery from inactivation of Kv4 channels in heterologous cells. All three KChIPs co-localize and co-immunoprecipitate with brain Kv4 alpha-subunits, and are thus integral components of native Kv4 channel complexes. The KChIPs have four EF-hand-like domains and bind calcium ions. As the activity and density of neuronal A-type currents tightly control responses to excitatory synaptic inputs, these KChIPs may regulate A-type currents, and hence neuronal excitability, in response to changes in intracellular calcium.
Compact, Intelligent, Digitally Controlled IGBT Gate Drivers for a PEBB-Based ILC Marx Modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, M.N.; Burkhart, C.; Olsen, J.J.
2010-06-07
SLAC National Accelerator Laboratory has built and is currently operating a first generation prototype Marx klystron modulator to meet ILC specifications. Under development is a second generation prototype, aimed at improving overall performance, serviceability, and manufacturability as compared to its predecessor. It is designed around 32 cells, each operating at 3.75 kV and correcting for its own capacitor droop. Due to the uniqueness of this application, high voltage gate drivers needed to be developed for the main 6.5 kV and droop correction 1.7 kV IGBTs. The gate driver provides vital functions such as protection of the IGBT from over-voltage andmore » over-current, detection of gate-emitter open and short circuit conditions, and monitoring of IGBT degradation (based on collector-emitter saturation voltage). Gate drive control, diagnostic processing capabilities, and communication are digitally implemented using an FPGA. This paper details the design of the gate driver circuitry, component selection, and construction layout. In addition, experimental results are included to illustrate the effectiveness of the protection circuit.« less
Repetitive compact flash x-ray generators for soft radiography
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Shikoda, Arimitsu; Kimura, Shingo; Sagae, Michiaki; Oizumi, Teiji; Takahashi, Kei; Hayasi, Yasuomi; Shoji, Tetsuo; Shishido, Koro; Tamakawa, Yoshiharu; Yanagisawa, Toru
1993-01-01
The construction and the fundamental studies for the repetitive flash x-ray generators designed by Japan Impulse Laboratory in Iwate Medical University are described. These generators are classified to the following two major types: (1) generators having diodes, and (2) generators having triodes. In order to generate high-voltage impulses, we employed the following transmission lines (pulsers): (a) high-voltage-inversion type with a maximum output voltage Vom of about 80 kV, (b) high-voltage- inversion type having a coaxial cable (Vom equals 130 kV), (c) two-stage Marx pulser (Vom equals 150 kV), (d) two-cable-type Blumlein (Vom equals 120 kV), (e) modified Blumlein (Vom equals 120 kV), (f) fundamental transmission line for triode (Vom equals 100 kV), and (g) transmission line for an enclosed triode (Vom equals 100 kV). Using these generators we succeeded in performing high-speed radiography as follows: (a) delayed radiography; (b) multiple-shot radiography; and (c) cineradiography.
Lightning protection of distribution systems
NASA Astrophysics Data System (ADS)
Darveniza, M.; Uman, M. A.
1982-09-01
Research work on the lightning protection of distribution systems is described. The rationale behind the planning of the first major phase of the work - the field experiments conducted in the Tampa Bay area during August 1978 and July to September 1979 is explained. The aims of the field work were to characterize lightning in the Tampa Bay area, and to identify the lightning parameters associated with the occurrence of line outages and equipment damage on the distribution systems of the participating utilities. The equipment developed for these studies is fully described. The field work provided: general data on lightning - e.g., electric and magnetic fields of cloud and ground flashes; data from automated monitoring of lightning activity; stroke current waveshapes and peak currents measured at distribution arresters; and line outage and equipment damage on 13 kV networks in the Tampa Bay area. Computer aided analyses were required to collate and to process the accumulated data. The computer programs developed for this work are described.
Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit.
Rettig, J; Heinemann, S H; Wunder, F; Lorra, C; Parcej, D N; Dolly, J O; Pongs, O
1994-05-26
Structural and functional diversity of voltage-gated Kv1-type potassium channels in rat brain is enhanced by the association of two different types of subunits, the membrane-bound, poreforming alpha-subunits and a peripheral beta-subunit. We have cloned a beta-subunit (Kv beta 1) that is specifically expressed in the rat nervous system. Association of Kv beta 1 with alpha-subunits confers rapid A-type inactivation on non-inactivating Kv1 channels (delayed rectifiers) in expression systems in vitro. This effect is mediated by an inactivating ball domain in the Kv beta 1 amino terminus.
Hermanstyne, Tracey O.; Mellor, Rebecca L.
2017-01-01
Abstract Rapidly activating and inactivating A-type K+ currents (IA) encoded by Kv4.2 and Kv4.3 pore-forming (α) subunits of the Kv4 subfamily are key regulators of neuronal excitability. Previous studies have suggested a role for Kv4.1 α-subunits in regulating the firing properties of mouse suprachiasmatic nucleus (SCN) neurons. To test this, we utilized an RNA-interference strategy to knockdown Kv4.1, acutely and selectively, in the SCN. Current-clamp recordings revealed that the in vivo knockdown of Kv4.1 significantly (p < 0.0001) increased mean ± SEM repetitive firing rates in SCN neurons during the day (6.4 ± 0.5 Hz) and at night (4.3 ± 0.6 Hz), compared with nontargeted shRNA-expressing SCN neurons (day: 3.1 ± 0.5 Hz; night: 1.6 ± 0.3 Hz). IA was also significantly (p < 0.05) reduced in Kv4.1-targeted shRNA-expressing SCN neurons (day: 80.3 ± 11.8 pA/pF; night: 55.3 ± 7.7 pA/pF), compared with nontargeted shRNA-expressing (day: 121.7 ± 10.2 pA/pF; night: 120.6 ± 16.5 pA/pF) SCN neurons. The magnitude of the effect of Kv4.1-targeted shRNA expression on firing rates and IA was larger at night. In addition, Kv4.1-targeted shRNA expression significantly (p < 0.001) increased mean ± SEM nighttime input resistance (Rin; 2256 ± 166 MΩ), compared to nontargeted shRNA-expressing SCN neurons (1143 ± 93 MΩ). Additional experiments revealed that acute knockdown of Kv4.1 significantly (p < 0.01) shortened, by ∼0.5 h, the circadian period of spontaneous electrical activity, clock gene expression and locomotor activity demonstrating a physiological role for Kv4.1-encoded IA channels in regulating circadian rhythms in neuronal excitability and behavior. PMID:28560311
Hermanstyne, Tracey O; Granados-Fuentes, Daniel; Mellor, Rebecca L; Herzog, Erik D; Nerbonne, Jeanne M
2017-01-01
Rapidly activating and inactivating A-type K + currents (I A ) encoded by Kv4.2 and Kv4.3 pore-forming (α) subunits of the Kv4 subfamily are key regulators of neuronal excitability. Previous studies have suggested a role for Kv4.1 α-subunits in regulating the firing properties of mouse suprachiasmatic nucleus (SCN) neurons. To test this, we utilized an RNA-interference strategy to knockdown Kv4.1, acutely and selectively, in the SCN. Current-clamp recordings revealed that the in vivo knockdown of Kv4.1 significantly ( p < 0.0001) increased mean ± SEM repetitive firing rates in SCN neurons during the day (6.4 ± 0.5 Hz) and at night (4.3 ± 0.6 Hz), compared with nontargeted shRNA-expressing SCN neurons (day: 3.1 ± 0.5 Hz; night: 1.6 ± 0.3 Hz). I A was also significantly ( p < 0.05) reduced in Kv4.1-targeted shRNA-expressing SCN neurons (day: 80.3 ± 11.8 pA/pF; night: 55.3 ± 7.7 pA/pF), compared with nontargeted shRNA-expressing (day: 121.7 ± 10.2 pA/pF; night: 120.6 ± 16.5 pA/pF) SCN neurons. The magnitude of the effect of Kv4.1-targeted shRNA expression on firing rates and I A was larger at night. In addition, Kv4.1-targeted shRNA expression significantly ( p < 0.001) increased mean ± SEM nighttime input resistance (R in ; 2256 ± 166 MΩ), compared to nontargeted shRNA-expressing SCN neurons (1143 ± 93 MΩ). Additional experiments revealed that acute knockdown of Kv4.1 significantly ( p < 0.01) shortened, by ∼0.5 h, the circadian period of spontaneous electrical activity, clock gene expression and locomotor activity demonstrating a physiological role for Kv4.1-encoded I A channels in regulating circadian rhythms in neuronal excitability and behavior.
NASA Astrophysics Data System (ADS)
Ni, C.; Huang, Y.; Lu, C.
2012-12-01
The pumping-induced land subsidence events are typically founded in coastal aquifers in Taiwan especially in the areas of lower alluvial fans. Previous investigations have recognized the irreversible situation for an aquifer deformation even if the pumped water is significantly reduced or stopped. Long-term monitoring projects on land subsidence in Choshui alluvial fan in central Taiwan have improved the understanding of the deformations in the aquifer system. To characterization the detailed land subsidence mechanism, this study develops an inverse numerical model to estimate the deformation parameters such as the specific storage (Ss) and vertical hydraulic conductivity (Kv) for interbeds. Similar to the concept of Hydraulic tomography survey (HTS), the developed model employs the iterative cokriging estimator to improve the accuracy of estimating deformation parameters. A one-dimensional numerical example is employed to assess the accuracy of the developed inverse model. The developed model is then applied to field-scale data from compaction monitoring wells (CMW) installed in the lower Choshui River fan. Results of the synthetic example show that the developed inverse model can reproduce well the predefined geologic features of the synthetic aquifer. The model provides better estimations of Kv patterns and magnitudes. Slightly less detail of the Ss was obtained due to the insensitivity of transient stresses for specified sampling times. Without prior information from field measurements, the developed model associated with deformation measurements form CMW can estimate Kv and Ss fields with great spatial resolution.
X-rays and photocarcinogenesis in hairless mice.
Lerche, Catharina M; Philipsen, Peter A; Wulf, Hans Christian
2013-08-01
It is well known that excessive X-ray radiation can cause non-melanoma skin cancers. With the increased incidence of sun-related skin cancer there is a need to investigate the combination of sunlight and X-rays. Immunocompetent C3.Cg/TifBomTac mice (n = 298) were divided into 12 groups. Mice were irradiated with 12, 29 or 50 kV X-rays. The mice received a total dose of 45 Gy. They were irradiated with 3 SED simulated solar radiation (SSR) either before or after irradiation with X-rays. The groups irradiated with X-rays alone, 0, 3, 9 and 10 mice (0, 12, 29 and 50 kV, respectively) developed squamous cell carcinoma. In the groups irradiated with SSR after X-rays the development of tumours was significantly faster in the 50 kV group than in the corresponding control group (175 vs. 194 days, p < 0.001). In the groups irradiated with SSR prior to the X-ray radiation the development of tumours was significantly faster in the 29 and the 50 kV groups than in the corresponding control group (175 vs. 202 days, p < 0.001 and 158 vs. 202 days, p < 0.001, respectively). In conclusion, X-ray radiation alone is a weak carcinogen in hairless mice. There is an added carcinogenic effect if X-ray radiation is given on prior sun-exposed skin or if the skin is sun-exposed after X-rays. We still believe that X-ray radiation is a safe and effective therapy for various dermatological diseases but caution should be observed if a patient has severely sun-damaged skin or has a high-risk sun behaviour.
Ubiquitin ligase Nedd4-2 modulates Kv1.3 current amplitude and ion channel protein targeting
Velez, Patricio; Schwartz, Austin B.; Iyer, Subashini R.; Warrington, Anthony
2016-01-01
Voltage-dependent potassium channels (Kv) go beyond the stabilization of the resting potential and regulate biochemical pathways, regulate intracellular signaling, and detect energy homeostasis. Because targeted deletion and pharmacological block of the Kv1.3 channel protein produce marked changes in metabolism, resistance to diet-induced obesity, and changes in olfactory structure and function, this investigation explored Nedd4-2-mediated ubiquitination and degradation to regulate Kv1.3 channel density. Heterologous coexpression of Nedd4-2 ligase and Kv1.3 in HEK 293 cells reduced Kv1.3 current density without modulation of kinetic properties as measured by patch-clamp electrophysiology. Modulation of current density was dependent on ligase activity and was lost through point mutation of cysteine 938 in the catalytic site of the ligase (Nedd4-2CS). Incorporation of adaptor protein Grb10 relieved Nedd4-2-induced current suppression as did application of the proteasome inhibitor Mg-132. SDS-PAGE and immunoprecipitation strategies demonstrated a channel/adaptor/ligase signalplex. Pixel immunodensity was reduced for Kv1.3 in the presence of Nedd4-2, which was eliminated upon additional incorporation of Grb10. We confirmed Nedd4-2/Grb10 coimmunoprecipitation and observed an increased immunodensity for Nedd4-2 in the presence of Kv1.3 plus Grb10, regardless of whether the catalytic site was active. Kv1.3/Nedd4-2 were reciprocally coimmunoprecipated, whereby mutation of the COOH-terminal, SH3-recognition (493–498), or ubiquitination sites on Kv1.3 (lysines 467, 476, 498) retained coimmunoprecipitation, while the latter prevented the reduction in channel density. A model is presented for which an atypical interaction outside the canonical PY motif may permit channel/ligase interaction to lead to protein degradation and reduced current density, which can involve Nedd4-2/Grb10 interactions to disrupt Kv1.3 loss of current density. PMID:27146988
Shin, Hyun Joo; Lee, Young Han; Choi, Jin-Young; Park, Mi-Suk; Kim, Myeong-Jin; Kim, Ki Whang
2013-01-01
Objective To evaluate the feasibility of sinogram-affirmed iterative reconstruction (SAFIRE) and automated kV modulation (CARE kV) in reducing radiation dose without increasing image noise for abdominal CT examination. Materials and Methods This retrospective study included 77 patients who received CT imaging with an application of CARE kV with or without SAFIRE and who had comparable previous CT images obtained without CARE kV or SAFIRE, using the standard dose (i.e., reference mAs of 240) on an identical CT scanner and reconstructed with filtered back projection (FBP) within 1 year. Patients were divided into two groups: group A (33 patients, CT scanned with CARE kV); and group B (44 patients, scanned after reducing the reference mAs from 240 to 170 and applying both CARE kV and SAFIRE). CT number, image noise for four organs and radiation dose were compared among the two groups. Results Image noise increased after CARE kV application (p < 0.001) and significantly decreased as SAFIRE strength increased (p < 0.001). Image noise with reduced-mAs scan (170 mAs) in group B became similar to that of standard-dose FBP images after applying CARE kV and SAFIRE strengths of 3 or 4 when measured in the aorta, liver or muscle (p ≥ 0.108). Effective doses decreased by 19.4% and 41.3% for groups A and B, respectively (all, p < 0.001) after application of CARE kV with or without SAFIRE. Conclusion Combining CARE kV, reduction of mAs from 240 to 170 mAs and noise reduction by applying SAFIRE strength 3 or 4 reduced the radiation dose by 41.3% without increasing image noise compared with the standard-dose FBP images. PMID:24265563
Nishijima, Yoshinori; Cao, Sheng; Chabowski, Dawid S.; Korishettar, Ankush; Ge, Alyce; Zheng, Xiaodong; Sparapani, Rodney; Gutterman, David D.; Zhang, David X.
2016-01-01
Rationale Hydrogen peroxide (H2O2) regulates vascular tone in the human microcirculation under physiological and pathophysiological conditions. It dilates arterioles by activating BKCa channels in subjects with coronary artery disease (CAD), but its mechanisms of action in subjects without CAD (non-CAD) as compared to those with CAD remain unknown. Objective We hypothesize that H2O2-elicited dilation involves different K+ channels in non-CAD versus CAD, resulting in an altered capacity for vasodilation during disease. Methods and Results H2O2 induced endothelium-independent vasodilation in non-CAD adipose arterioles, which was reduced by paxilline, a BKCa channel blocker, and by 4-AP, a KV channel blocker. Assays of mRNA transcripts, protein expression and subcellular localization revealed that KV1.5 is the major KV1 channel expressed in vascular smooth muscle cells (VSMCs) and is abundantly localized on the plasma membrane. The selective KV1.5 blocker DPO-1 and the KV1.3/1.5 blocker Psora-4 reduced H2O2-elicited dilation to a similar extent as 4-AP, but the selective KV1.3 blocker PAP-1 was without effect. In arterioles from CAD subjects, H2O2-induced dilation was significantly reduced and this dilation was inhibited by paxilline but not by 4-AP, DPO-1 or Psora-4. KV1.5 cell membrane localization and DPO-1-sensitive K+ currents were markedly reduced in isolated VSMCs from CAD arterioles, although mRNA or total cellular protein expression were largely unchanged. Conclusions In human arterioles, H2O2-induced dilation is impaired in CAD, which is associated with a transition from a combined BKCa- and KV (KV1.5)-mediated vasodilation toward a BKCa-predominant mechanism of dilation. Loss of KV1.5 vasomotor function may play an important role in microvascular dysfunction in CAD or other vascular diseases. PMID:27872049
Vanderpool, Kimberly G.; Yasumura, Thomas; Hickman, Jordan; Beatty, Jonathan T.; Nagy, James I.
2016-01-01
Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K+-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed “rosettes” of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K+ conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000–400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K+ conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in mammalian myelinated axons. PMID:26763782
Johnston, Jamie; Griffin, Sarah J; Baker, Claire; Skrzypiec, Anna; Chernova, Tatanya; Forsythe, Ian D
2008-01-01
The medial nucleus of the trapezoid body (MNTB) is specialized for high frequency firing by expression of Kv3 channels, which minimize action potential (AP) duration, and Kv1 channels, which suppress multiple AP firing, during each calyceal giant EPSC. However, the outward K+ current in MNTB neurons is dominated by another unidentified delayed rectifier. It has slow kinetics and a peak conductance of ∼37 nS; it is half-activated at −9.2 ± 2.1 mV and half-inactivated at −35.9 ± 1.5 mV. It is blocked by several non-specific potassium channel antagonists including quinine (100 μm) and high concentrations of extracellular tetraethylammonium (TEA; IC50 = 11.8 mm), but no specific antagonists were found. These characteristics are similar to recombinant Kv2-mediated currents. Quantitative RT-PCR showed that Kv2.2 mRNA was much more prevalent than Kv2.1 in the MNTB. A Kv2.2 antibody showed specific staining and Western blots confirmed that it recognized a protein ∼110 kDa which was absent in brainstem tissue from a Kv2.2 knockout mouse. Confocal imaging showed that Kv2.2 was highly expressed in axon initial segments of MNTB neurons. In the absence of a specific antagonist, Hodgkin–Huxley modelling of voltage-gated conductances showed that Kv2.2 has a minor role during single APs (due to its slow activation) but assists recovery of voltage-gated sodium channels (Nav) from inactivation by hyperpolarizing interspike potentials during repetitive AP firing. Current-clamp recordings during high frequency firing and characterization of Nav inactivation confirmed this hypothesis. We conclude that Kv2.2-containing channels have a distinctive initial segment location and crucial function in maintaining AP amplitude by regulating the interspike potential during high frequency firing. PMID:18511484
Hassinen, Minna; Laulaja, Salla; Paajanen, Vesa; Haverinen, Jaakko; Vornanen, Matti
2011-07-01
Ectothermic vertebrates experience acute and chronic temperature changes which affect cardiac excitability and may threaten electrical stability of the heart. Nevertheless, ectothermic hearts function over wide range of temperatures without cardiac arrhythmias, probably due to special molecular adaptations. We examine function and molecular basis of the slow delayed rectifier K(+) current (I(Ks)) in cardiac myocytes of a eurythermic fish (Carassius carassius L.). I(Ks) is an important repolarizing current that prevents excessive prolongation of cardiac action potential, but it is extremely slowly activating when expressed in typical molecular composition of the endothermic animals. Comparison of the I(Ks) of the crucian carp atrial myocytes with the currents produced by homomeric K(v)7.1 and heteromeric K(v)7.1/MinK channels in Chinese hamster ovary cells indicates that activation kinetics and pharmacological properties of the I(Ks) are similar to those of the homomeric K(v)7.1 channels. Consistently with electrophysiological properties and homomeric K(v)7.1 channel composition, atrial transcript expression of the MinK subunit is only 1.6-1.9% of the expression level of the K(v)7.1 subunit. Since activation kinetics of the homomeric K(v)7.1 channels is much faster than activation of the heteromeric K(v)7.1/MinK channels, the homomeric K(v)7.1 composition of the crucian carp cardiac I(Ks) is thermally adaptive: the slow delayed rectifier channels can open despite low body temperatures and curtail the duration of cardiac action potential in ectothermic crucian carp. We suggest that the homomeric K(v)7.1 channel assembly is an evolutionary thermal adaptation of ectothermic hearts and the heteromeric K(v)7.1/MinK channels evolved later to adapt I(Ks) to high body temperature of endotherms.
Barghaan, Jan; Tozakidou, Magdalini; Ehmke, Heimo; Bähring, Robert
2008-02-15
We examined the relationship between deactivation and inactivation in Kv4.2 channels. In particular, we were interested in the role of a Kv4.2 N-terminal domain and accessory subunits in controlling macroscopic gating kinetics and asked if the effects of N-terminal deletion and accessory subunit coexpression conform to a kinetic coupling of deactivation and inactivation. We expressed Kv4.2 wild-type channels and N-terminal deletion mutants in the absence and presence of Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-like proteins (DPPs) in human embryonic kidney 293 cells. Kv4.2-mediated A-type currents at positive and deactivation tail currents at negative membrane potentials were recorded under whole-cell voltage-clamp and analyzed by multi-exponential fitting. The observed changes in Kv4.2 macroscopic inactivation kinetics caused by N-terminal deletion, accessory subunit coexpression, or a combination of the two maneuvers were compared with respective changes in deactivation kinetics. Extensive correlation analyses indicated that modulatory effects on deactivation closely parallel respective effects on inactivation, including both onset and recovery kinetics. Searching for the structural determinants, which control deactivation and inactivation, we found that in a Kv4.2 Delta 2-10 N-terminal deletion mutant both the initial rapid phase of macroscopic inactivation and tail current deactivation were slowed. On the other hand, the intermediate and slow phase of A-type current decay, recovery from inactivation, and tail current decay kinetics were accelerated in Kv4.2 Delta 2-10 by KChIP2 and DPPX. Thus, a Kv4.2 N-terminal domain, which may control both inactivation and deactivation, is not necessary for active modulation of current kinetics by accessory subunits. Our results further suggest distinct mechanisms for Kv4.2 gating modulation by KChIPs and DPPs.
Discovery of a novel Kv7 channel opener as a treatment for epilepsy.
Davoren, Jennifer E; Claffey, Michelle M; Snow, Sheri L; Reese, Matthew R; Arora, Gaurav; Butler, Christopher R; Boscoe, Brian P; Chenard, Lois; DeNinno, Shari L; Drozda, Susan E; Duplantier, Allen J; Moine, Ludivine; Rogers, Bruce N; Rong, SuoBao; Schuyten, Katherine; Wright, Ann S; Zhang, Lei; Serpa, Kevin A; Weber, Mark L; Stolyar, Polina; Whisman, Tammy L; Baker, Karen; Tse, Karen; Clark, Alan J; Rong, Haojing; Mather, Robert J; Lowe, John A
2015-11-01
Facilitating activation, or delaying inactivation, of the native Kv7 channel reduces neuronal excitability, which may be beneficial in controlling spontaneous electrical activity during epileptic seizures. In an effort to identify a compound with such properties, the structure-activity relationship (SAR) and in vitro ADME for a series of heterocyclic Kv7.2-7.5 channel openers was explored. PF-05020182 (2) demonstrated suitable properties for further testing in vivo where it dose-dependently decreased the number of animals exhibiting full tonic extension convulsions in response to corneal stimulation in the maximal electroshock (MES) assay. In addition, PF-05020182 (2) significantly inhibited convulsions in the MES assay at doses tested, consistent with in vitro activity measure. The physiochemical properties, in vitro and in vivo activities of PF-05020182 (2) support further development as an adjunctive treatment of refractory epilepsy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Communications and control for electric power systems
NASA Technical Reports Server (NTRS)
Kirkham, H.; Goettsche, A.; Niebur, D.; Friend, H.; Johnston, A.
1991-01-01
The first section of the report describes the AbNET system, a hardware and software communications system designed for distribution automation (it can also find application in substation monitoring and control). The topology of the power system fixes the topology of the communications network, which can therefore be expected to include a larger number of branch points, tap points, and interconnections. These features make this communications network unlike any other. The network operating software has to solve the problem of communicating to all the nodes of a very complex network in as reliable a way as possible even if the network is damaged, and it has to do so with minimum transmission delays and at minimum cost. The design of the operating protocols is described within the framework of the seven-layer Open System Interconnection hierarchy of the International Standards Organization. Section 2 of the report describes the development and testing of a high voltage sensor based on an electro-optic polymer. The theory of operation is reviewed. Bulk fabrication of the polymer is discussed, as well as results of testing of the electro-optic coefficient of the material. Fabrication of a complete prototype sensor suitable for use in the range 1-20 kV is described. The electro-optic polymer is shown to be an important material for fiber optic sensing applications. Appendix A is theoretical support for this work. The third section of the report presents the application of an artificial neural network, Kohonen's self-organizing feature map, for the classification of power system states. This classifier maps vectors of an N-dimensional space to a 2-dimensional neural net in a nonlinear way preserving the topological order of the input vectors. These mappings are studied using a nonlinear power system model.
Dosimetric characteristics of a new unit for electronic skin brachytherapy
Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose
2014-01-01
Purpose Brachytherapy with radioactive high dose rate (HDR) 192Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya® Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Material and methods Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Results Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. Conclusions The new Esteya® Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy. PMID:24790622
NASA Astrophysics Data System (ADS)
Ellinwood, Nicholas; Dobrev, Dobromir; Morotti, Stefano; Grandi, Eleonora
2017-09-01
The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti-AF options.
A Role for DPPX Modulating External TEA Sensitivity of Kv4 Channels
Colinas, Olaia; Pérez-Carretero, Francisco D.; López-López, José R.; Pérez-García, M. Teresa
2008-01-01
Shal-type (Kv4) channels are expressed in a large variety of tissues, where they contribute to transient voltage-dependent K+ currents. Kv4 are the molecular correlate of the A-type current of neurons (ISA), the fast component of ITO current in the heart, and also of the oxygen-sensitive K+ current (KO2) in rabbit carotid body (CB) chemoreceptor cells. The enormous degree of variability in the physiological properties of Kv4-mediated currents can be attributable to the complexity of their regulation together with the large number of ancillary subunits and scaffolding proteins that associate with Kv4 proteins to modify their trafficking and their kinetic properties. Among those, KChIPs and DPPX proteins have been demonstrated to be integral components of ISA and ITO currents, as their coexpression with Kv4 subunits recapitulates the kinetics of native currents. Here, we explore the presence and functional contribution of DPPX to KO2 currents in rabbit CB chemoreceptor cells by using DPPX functional knockdown with siRNA. Additionally, we investigate if the presence of DPPX endows Kv4 channels with new pharmacological properties, as we have observed anomalous tetraethylammonium (TEA) sensitivity in the native KO2 currents. DPPX association with Kv4 channels induced an increased TEA sensitivity both in heterologous expression systems and in CB chemoreceptor cells. Moreover, TEA application to Kv4-DPPX heteromultimers leads to marked kinetic effects that could be explained by an augmented closed-state inactivation. Our data suggest that DPPX proteins are integral components of KO2 currents, and that their association with Kv4 subunits modulate the pharmacological profile of the heteromultimers. PMID:18411327
Madeja, Michael; Steffen, Wibke; Mesic, Ivana; Garic, Bojan; Zhorov, Boris S.
2010-01-01
Kv2.1 channels, which are expressed in brain, heart, pancreas, and other organs and tissues, are important targets for drug design. Flecainide and propafenone are known to block Kv2.1 channels more potently than other Kv channels. Here, we sought to explore structural determinants of this selectivity. We demonstrated that flecainide reduced the K+ currents through Kv2.1 channels expressed in Xenopus laevis oocytes in a voltage- and time-dependent manner. By systematically exchanging various segments of Kv2.1 with those from Kv1.2, we determined flecainide-sensing residues in the P-helix and inner helix S6. These residues are not exposed to the inner pore, a conventional binding region of open channel blockers. The flecainide-sensing residues also contribute to propafenone binding, suggesting overlapping receptors for the drugs. Indeed, propafenone and flecainide compete for binding in Kv2.1. We further used Monte Carlo-energy minimizations to map the receptors of the drugs. Flecainide docking in the Kv1.2-based homology model of Kv2.1 predicts the ligand ammonium group in the central cavity and the benzamide moiety in a niche between S6 and the P-helix. Propafenone also binds in the niche. Its carbonyl group accepts an H-bond from the P-helix, the amino group donates an H-bond to the P-loop turn, whereas the propyl group protrudes in the pore and blocks the access to the selectivity filter. Thus, besides the binding region in the central cavity, certain K+ channel ligands can expand in the subunit interface whose residues are less conserved between K+ channels and hence may be targets for design of highly desirable subtype-specific K+ channel drugs. PMID:20709754
Battefeld, Arne; Tran, Baouyen T; Gavrilis, Jason; Cooper, Edward C; Kole, Maarten H P
2014-03-05
Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na(v)) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these K(v)7 channels and the functional impact of colocalization with Na(v) channels remain poorly understood. Here, we quantitatively examined K(v)7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. K(v)7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ~12 (proximal) to 150 pS μm(-2) (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by K(v)7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (~15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic K(v)7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal K(v)7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains K(v)7.2/7.3 channels were found to increase Na(v) channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, K(v)7 clustering near axonal Na(v) channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential.
The secret life of ion channels: Kv1.3 potassium channels and proliferation.
Pérez-García, M Teresa; Cidad, Pilar; López-López, José R
2018-01-01
Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.
Glasscock, Edward; Voigt, Niels; McCauley, Mark D; Sun, Qiang; Li, Na; Chiang, David Y; Zhou, Xiao-Bo; Molina, Cristina E; Thomas, Dierk; Schmidt, Constanze; Skapura, Darlene G; Noebels, Jeffrey L; Dobrev, Dobromir; Wehrens, Xander H T
2015-09-01
Voltage-gated Kv1.1 channels encoded by the Kcna1 gene are traditionally regarded as being neural-specific with no known expression or intrinsic functional role in the heart. However, recent studies in mice reveal low-level Kv1.1 expression in heart and cardiac abnormalities associated with Kv1.1-deficiency suggesting that the channel may have a previously unrecognized cardiac role. Therefore, this study tests the hypothesis that Kv1.1 channels are associated with arrhythmogenesis and contribute to intrinsic cardiac function. In intra-atrial burst pacing experiments, Kcna1-null mice exhibited increased susceptibility to atrial fibrillation (AF). The atria of Kcna1-null mice showed minimal Kv1 family ion channel remodeling and fibrosis as measured by qRT-PCR and Masson's trichrome histology, respectively. Using RT-PCR, immunocytochemistry, and immunoblotting, KCNA1 mRNA and protein were detected in isolated mouse cardiomyocytes and human atria for the first time. Patients with chronic AF (cAF) showed no changes in KCNA1 mRNA levels relative to controls; however, they exhibited increases in atrial Kv1.1 protein levels, not seen in paroxysmal AF patients. Patch-clamp recordings of isolated human atrial myocytes revealed significant dendrotoxin-K (DTX-K)-sensitive outward current components that were significantly increased in cAF patients, reflecting a contribution by Kv1.1 channels. The concomitant increases in Kv1.1 protein and DTX-K-sensitive currents in atria of cAF patients suggest that the channel contributes to the pathological mechanisms of persistent AF. These findings provide evidence of an intrinsic cardiac role of Kv1.1 channels and indicate that they may contribute to atrial repolarization and AF susceptibility.
Glasscock, Edward; Voigt, Niels; McCauley, Mark D.; Sun, Qiang; Li, Na; Chiang, David Y.; Zhou, Xiao-Bo; Molina, Cristina E.; Thomas, Dierk; Schmidt, Constanze; Skapura, Darlene G.; Noebels, Jeffrey L.; Dobrev, Dobromir; Wehrens, Xander H. T.
2016-01-01
Voltage-gated Kv1.1 channels encoded by the Kcna1 gene are traditionally regarded as being neural-specific with no known expression or intrinsic functional role in the heart. However, recent studies in mice reveal low-level Kv1.1 expression in heart and cardiac abnormalities associated with Kv1.1-deficiency suggesting that the channel may have a previously unrecognized cardiac role. Therefore, this study tests the hypothesis that Kv1.1 channels are associated with arrhythmogenesis and contribute to intrinsic cardiac function. In intra-atrial burst pacing experiments, Kcna1-null mice exhibited increased susceptibility to atrial fibrillation (AF). The atria of Kcna1-null mice showed minimal Kv1 family ion channel remodeling and fibrosis as measured by qRT-PCR and Masson’s trichrome histology, respectively. Using RT-PCR, immunocytochemistry, and immunoblotting, KCNA1 mRNA and protein were detected in isolated mouse cardiomyocytes and human atria for the first time. Patients with chronic AF (cAF) showed no changes in KCNA1 mRNA levels relative to controls; however, they exhibited increases in atrial Kv1.1 protein levels, not seen in paroxysmal AF patients. Patch-clamp recordings of isolated human atrial myocytes revealed significant dendrotoxin-K (DTX-K)-sensitive outward current components that were significantly increased in cAF patients, reflecting a contribution by Kv1.1 channels. The concomitant increases in Kv1.1 protein and DTX-K-sensitive currents in atria of cAF patients suggest that the channel contributes to the pathological mechanisms of persistent AF. These findings provide evidence of an intrinsic cardiac role of Kv1.1 channels and indicate that they may contribute to atrial repolarization and AF susceptibility. PMID:26162324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongliang; Hong, Da Hye; Kim, Han Sol
We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivationmore » curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.« less
Inactivation gating of Kv7.1 channels does not involve concerted cooperative subunit interactions.
Meisel, Eshcar; Tobelaim, William; Dvir, Meidan; Haitin, Yoni; Peretz, Asher; Attali, Bernard
2018-01-01
Inactivation is an intrinsic property of numerous voltage-gated K + (Kv) channels and can occur by N-type or/and C-type mechanisms. N-type inactivation is a fast, voltage independent process, coupled to activation, with each inactivation particle of a tetrameric channel acting independently. In N-type inactivation, a single inactivation particle is necessary and sufficient to occlude the pore. C-type inactivation is a slower process, involving the outermost region of the pore and is mediated by a concerted, highly cooperative interaction between all four subunits. Inactivation of Kv7.1 channels does not exhibit the hallmarks of N- and C-type inactivation. Inactivation of WT Kv7.1 channels can be revealed by hooked tail currents that reflects the recovery from a fast and voltage-independent inactivation process. However, several Kv7.1 mutants such as the pore mutant L273F generate an additional voltage-dependent slow inactivation. The subunit interactions during this slow inactivation gating remain unexplored. The goal of the present study was to study the nature of subunit interactions along Kv7.1 inactivation gating, using concatenated tetrameric Kv7.1 channel and introducing sequentially into each of the four subunits the slow inactivating pore mutation L273F. Incorporating an incremental number of inactivating mutant subunits did not affect the inactivation kinetics but slowed down the recovery kinetics from inactivation. Results indicate that Kv7.1 inactivation gating is not compatible with a concerted cooperative process. Instead, adding an inactivating subunit L273F into the Kv7.1 tetramer incrementally stabilizes the inactivated state, which suggests that like for activation gating, Kv7.1 slow inactivation gating is not a concerted process.
Battefeld, Arne; Tran, Baouyen T.; Gavrilis, Jason; Cooper, Edward C.
2014-01-01
Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of Kv7 potassium channels and voltage-gated sodium (Nav) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these Kv7 channels and the functional impact of colocalization with Nav channels remain poorly understood. Here, we quantitatively examined Kv7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. Kv7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ∼12 (proximal) to 150 pS μm−2 (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by Kv7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (∼15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic Kv7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal Kv7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains Kv7.2/7.3 channels were found to increase Nav channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, Kv7 clustering near axonal Nav channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential. PMID:24599470
Lombardo, Joseph
2016-01-01
KCNQ/Kv7 channels form a slow noninactivating K+ current, also known as the M current. They activate in the subthreshold range of membrane potentials and regulate different aspects of excitability in neurons of the central nervous system. In spinal motoneurons (MNs), KCNQ/Kv7 channels have been identified in the somata, axonal initial segment, and nodes of Ranvier, where they generate a slow, noninactivating, K+ current sensitive to both muscarinic receptor-mediated inhibition and KCNQ/Kv7 channel blockers. In this study, we thoroughly reevaluated the function of up- and downregulation of KCNQ/Kv7 channels in mouse immature spinal MNs. Using electrophysiological techniques together with specific pharmacological modulators of the activity of KCNQ/Kv7 channels, we show that enhancement of the activity of these channels decreases the excitability of spinal MNs in mouse neonates. This action on MNs results from a combination of hyperpolarization of the resting membrane potential, a decrease in the input resistance, and depolarization of the voltage threshold. On the other hand, the effect of inhibition of KCNQ/Kv7 channels suggested that these channels play a limited role in regulating basal excitability. Computer simulations confirmed that pharmacological enhancement of KCNQ/Kv7 channel activity decreases excitability and also suggested that the effects of inhibition of KCNQ/Kv7 channels on the excitability of spinal MNs do not depend on a direct effect in these neurons but likely on spinal cord synaptic partners. These results indicate that KCNQ/Kv7 channels have a fundamental role in the modulation of the excitability of spinal MNs acting both in these neurons and in their local presynaptic partners. PMID:27512022
Inhibitory effects of cortisone and hydrocortisone on human Kv1.5 channel currents.
Yu, Jing; Park, Mi-Hyeong; Jo, Su-Hyun
2015-01-05
Glucocorticoids are the primary hormones that respond to stress and protect organisms from dangerous situations. The glucocorticoids hydrocortisone and its dormant form, cortisone, affect the cardiovascular system with changes such as increased blood pressure and cardioprotection. Kv1.5 channels play a critical role in the maintenance of cellular membrane potential and are widely expressed in pancreatic β-cells, neurons, myocytes, and smooth muscle cells of the pulmonary vasculature. We examined the electrophysiological effects of both cortisone and hydrocortisone on human Kv1.5 channels expressed in Xenopus oocytes using a two-microelectrode voltage clamp technique. Both cortisone and hydrocortisone rapidly and irreversibly suppressed the amplitude of Kv1.5 channel current with IC50 values of 50.2±4.2μM and 33.4±3.2μM, respectively, while sustained the current trace shape of Kv1.5 current. The inhibitory effect of cortisone on Kv1.5 decreased progressively from -10mV to +30mV, while hydrocortisone׳s inhibition of the channel did not change across the same voltage range. Both cortisone and hydrocortisone blocked Kv1.5 channel currents in a non-use-dependent manner and neither altered the channel׳s steady-state activation or inactivation curves. These results show that cortisone and hydrocortisone inhibited Kv1.5 channel currents differently, and that Kv1.5 channels were more sensitive to hydrocortisone than to cortisone. Copyright © 2014 Elsevier B.V. All rights reserved.
Ultra high voltage MOS controlled 4H-SiC power switching devices
NASA Astrophysics Data System (ADS)
Ryu, S.; Capell, C.; Van Brunt, E.; Jonas, C.; O'Loughlin, M.; Clayton, J.; Lam, K.; Pala, V.; Hull, B.; Lemma, Y.; Lichtenwalner, D.; Zhang, Q. J.; Richmond, J.; Butler, P.; Grider, D.; Casady, J.; Allen, S.; Palmour, J.; Hinojosa, M.; Tipton, C. W.; Scozzie, C.
2015-08-01
Ultra high voltage (UHV, >15 kV) 4H-silicon carbide (SiC) power devices have the potential to significantly improve the system performance, reliability, and cost of energy conversion systems by providing reduced part count, simplified circuit topology, and reduced switching losses. In this paper, we compare the two MOS based UHV 4H-SiC power switching devices; 15 kV 4H-SiC MOSFETs and 15 kV 4H-SiC n-IGBTs. The 15 kV 4H-SiC MOSFET shows a specific on-resistance of 204 mΩ cm2 at 25 °C, which increased to 570 mΩ cm2 at 150 °C. The 15 kV 4H-SiC MOSFET provides low, temperature-independent, switching losses which makes the device more attractive for applications that require higher switching frequencies. The 15 kV 4H-SiC n-IGBT shows a significantly lower forward voltage drop (VF), along with reasonable switching performance, which make it a very attractive device for high voltage applications with lower switching frequency requirements. An electrothermal analysis showed that the 15 kV 4H-SiC n-IGBT outperforms the 15 kV 4H-SiC MOSFET for applications with switching frequencies of less than 5 kHz. It was also shown that the use of a carrier storage layer (CSL) can significantly improve the conduction performance of the 15 kV 4H-SiC n-IGBTs.
Wu, Bin; Zhu, Yan; Shi, Jian; Tao, Jie; Ji, Yonghua
2016-01-01
BmP02, a short-chain peptide with 28 residues from the venom of Chinese scorpion Buthus martensi Karsch, has been reported to inhibit the transient outward potassium currents (Ito) in rat ventricular muscle cells. However, it remains unclear whether BmP02 modulates the Kv4.2 channel, one of the main contributors to Ito. The present study investigated the effects of BmP02 on Kv4.2 kinetics and its underlying molecular mechanism. The electrophysiological recordings showed that the inactivation of Kv4.2 expressed in HEK293T cells was significantly delayed by BmP02 in a dose-response manner with EC50 of ~850 nM while the peak current, activation and voltage-dependent inactivation of Kv4.2 were not affected. Meanwhile, the recovery from inactivation of Kv4.2 was accelerated and the deactivation was slowed after the application of BmP02. The site-directed mutagenesis combined with computational modelling identified that K347 and K353, located in the turret motif of the Kv4.2, and E4/E5, D20/D21 in BmP02 are key residues to interact with BmP02 through electrostatic force. These findings not only reveal a novel interaction between Kv4.2 channel and its peptidyl modulator, but also provide valuable information for design of highly-selective Kv4.2 modulators. PMID:27690098
Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo
2010-06-01
Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.
The phosphoinositide sensitivity of the KV channel family
Kruse, Martin; Hille, Bertil
2013-01-01
Recently, we screened several KV channels for possible dependence on plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). The channels were expressed in tsA-201 cells and the PI(4,5)P2 was depleted by several manipulations in whole-cell experiments with parallel measurements of channel activity. In contrast to reports on excised-patches using Xenopus laevis oocytes, we found only KV7, but none of the other tested KV channels, to be strongly dependent on PI(4,5)P2. We now have extended our study to KV1.2 channels, a KV channel we had not previously tested, because a new published study on excised patches showed regulation of the voltage-dependence of activation by PI(4,5)P2. In full agreement with those published results, we found a reduction of current amplitude by ~20% after depletion of PI(4,5)P2 and a small left shift in the activation curve of KV1.2 channels. We also found a small reduction of KV11.1 (hERG) currents that was not accompanied by a gating shift. In conclusion, our whole-cell methods yield a PI(4,5)P2-dependence of KV1.2 currents in tsA-201 cells that is comparable to findings from excised patches of Xenopus laevis oocytes. We discuss possible physiological rationales for PI(4,5)P2 sensitivity of some ion channels and insensitivity of others. PMID:23907203
Rigo, Flavia Karine; Rossato, Mateus Fortes; Trevisan, Gabriela; De Prá, Samira Dal-Toé; Ineu, Rafael Porto; Duarte, Mariane Bernardo; de Castro Junior, Célio José; Ferreira, Juliano; Gomez, Marcus Vinicius
2017-10-01
Cholinergic agents cause antinociception by mimicking the release of acetylcholine (ACh) from spinal cholinergic nerves. PhKv is a peptide isolated from the venom of the armed spider Phoneutria nigriventer. It has an antiarrythmogenic activity that involves the enhanced release of acetylcholine. The aim of this study was to investigate whether PhKv had an antinociceptive action in mice. Male albino Swiss mice (25-35g) were used in this study. The PhKv toxin was purified from a PhTx3 fraction of the Phoneutria nigriventer spider's venom. Because of its peptide nature, PhKv is not orally available and it was delivered directly into the central nervous system by an intrathecal (i.t.) route. PhKV on the thermal and mechanical sensitivity was evaluated using plantar test apparatus and the up-and-down method. The analgesic effects of PhKv were studied in neuropathic pain (CCI) and in the peripheral capsicin test. In order to test whether PhKv interfered with the cholinergic system, the mice were pre-treated with atropine (5mg/kg, i.p.) or mecamylamine (0.001mg/kg, i.p.) and the PhKv toxin (30pmol/site i.t.) or neostigmine (100pmol/site) were applied 15min before the intraplantar capsaicin (1nmol/paw) administrations. To investigate PhKv action on the AChE activities, was performed in vitro and ex vivo assay for AChE. For the in vitro experiments, mice spinal cord supernatants of tissue homogenates (1mg/ml) were used as source of AChE activity. The AChE assay was monitored at 37°C for 10min in a FlexStation 3 Multi-Mode Microplate Reader (Molecular Devices) at 405nm. PhKv (30 and 100pmol/site, i.t.) had no effect on the thermal or mechanical sensitivity thresholds. However, in a chronic constriction injury model of pain, PhKv (10pmol/site, i.t.) caused a robust reduction in mechanical withdrawal with an antinociceptive effect that lasted 4h. A pretreatment in mice with PhKv (30pmol/site, i.t.) or neostigmine (100pmol/site, i.t.) 15min before an intraplantar injection of capsaicin (1nmol/paw) caused a maximal antinociceptive effect of 69.5±4.9% and 85±2.5%, respectively. A pretreatment in mice with atropine; 5mg/kg, i.p. or mecamylamine 0.001mg/kg, i.p. inhibited a neostigimine and PhKv-induced antinociception, suggesting a cholinergic mechanism. Spinal acetylcholinesterase was inhibited by PhKv with ED 50 of 7.6 (4.6-12.6pmol/site, i.t.). PhKv also inhibited the in vitro AChE activity of spinal cord homogenates with an EC 50 of 20.8 (11.6-37.3nM), shifting the Km value from 0.06mM to 18.5mM, characterizing a competitive inhibition of AChE activity by PhKv. Our findings provide, to our knowledge, the first evidence that PhKv caused inhibition of AChE, it increased the ACh content at the neuronal synapses, leading to an activation of the cholinergic system and an antinociceptive response. Studies regarding the nociceptive mechanisms and the identification of potential targets for the treatment of pain have become top priorities. PhKv, by its action of stimulating the cholinergic receptors muscarinic and nicotinic system, reduces pain it may be an alternative for controlling the pain processes. Copyright © 2017 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Dula, K; Sanderink, G; van der Stelt, P F; Mini, R; Buser, D
1998-08-01
Dose reduction in digital panoramic radiography was studied. Intentional underexposure was performed with the Orthophos DS while six different human mandibles were radiographed. Exposure settings were 69 kV/15 mA (standard), 64 kV/16 mA, and 60 kV/16 mA. Standardized spherical defects, each either 1 or 1.25 mm in diameter, were simulated in 288 of 432 images, and seven observers decided whether defects were present or not. Areas under the receiver operating characteristics curves were calculated. They showed no significant differences in the detectability of the 1-mm defect at 69, 64, or 60 kV. For the 1.25-mm defect, no difference was found between the 69 and 60 kV images, but a statistically significant different detectability was found for 64 kV images in comparison with both 69 and 60 kV images. A dose reduction of up to 43% was ascertained with a Pedo-RT-Humanoid phantom when panoramic radiography was performed at 60 kV/16 mA. The conclusion is that with the Orthophos DS, it seems possible to reduce the dose rate of x-rays without loss of diagnostic quality in the case of radiolucent changes.
Barrese, Vincenzo; Taglialatela, Maurizio; Greenwood, Iain A; Davidson, Colin
2015-01-01
Ischemic stroke can cause striatal dopamine efflux that contributes to cell death. Since Kv7 potassium channels regulate dopamine release, we investigated the effects of their pharmacological modulation on dopamine efflux, measured by fast cyclic voltammetry (FCV), and neurotoxicity, in Wistar rat caudate brain slices undergoing oxygen and glucose deprivation (OGD). The Kv7 activators retigabine and ICA27243 delayed the onset, and decreased the peak level of dopamine efflux induced by OGD; and also decreased OGD-induced damage measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Retigabine also reduced OGD-induced necrotic cell death evaluated by lactate dehydrogenase activity assay. The Kv7 blocker linopirdine increased OGD-evoked dopamine efflux and OGD-induced damage, and attenuated the effects of retigabine. Quantitative-PCR experiments showed that OGD caused an ~6-fold decrease in Kv7.2 transcript, while levels of mRNAs encoding for other Kv7 subunits were unaffected; western blot experiments showed a parallel reduction in Kv7.2 protein levels. Retigabine also decreased the peak level of dopamine efflux induced by L-glutamate, and attenuated the loss of TTC staining induced by the excitotoxin. These results suggest a role for Kv7.2 in modulating ischemia-evoked caudate damage. PMID:25966943
Vacher, Helene; Trimmer, James S.
2012-01-01
Voltage-gated ion channels are a diverse family of signaling proteins that mediate rapid electrical signaling events. Among these, voltage-gated potassium or Kv channels are the most diverse, in part due to the large number of principal (or α) subunits and auxiliary subunits that can assemble in different combinations to generate Kv channel complexes with distinct structures and functions. The diversity of Kv channels underlies much of the variability in the active properties between different mammalian central neurons, and the dynamic changes that lead to experience-dependent plasticity in intrinsic excitability. Recent studies have revealed that Kv channel α subunits and auxiliary subunits are extensively phosphorylated, contributing to additional structural and functional diversity. Here we highlight recent studies that show that auxiliary subunits exert some of their profound effects on dendritic Kv4 and axonal Kv1 channels through phosphorylation-dependent mechanisms, either due to phosphorylation on the auxiliary subunit itself, or by influencing the extent and/or impact of α subunit phosphorylation. The complex effects of auxiliary subunits and phosphorylation provide a potent mechanism to generate additional diversity in the structure and function of Kv4 and Kv1 channels, as well as allowing for dynamic reversible regulation of these important ion channels. PMID:21822597
NASA Astrophysics Data System (ADS)
Schmidt, F.
1980-11-01
The components of a superconducting 110 kV ac cable for power ratings or = 2000 MVA were developed. The cable design is of the semiflexible type, with a rigid cryogenic envelope containing a flexible hollow coaxial cable core. The cable core consists of spirally wound Nb-A1 composite wires electrically insulated by high pressure polyethylene tape wrappings. A 35 m long single phase test cable with full load terminals rated at 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of this cable design.
Schulte, Uwe; Thumfart, Jörg-Oliver; Klöcker, Nikolaj; Sailer, Claudia A; Bildl, Wolfgang; Biniossek, Martin; Dehn, Doris; Deller, Thomas; Eble, Silke; Abbass, Karen; Wangler, Tanja; Knaus, Hans-Günther; Fakler, Bernd
2006-03-02
The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.
Preventive overhaul time for power transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarmadi, M.; Rouhi, J.; Fayyaz, A.
Power transformers are the major piece of equipment in high-voltage substations. A considerable number of these transformers exist in Iran`s integrated network. Due to the climate diversity and improper usage, many of these transformers age rapidly, suffer failure and are taken out of service before half their useful life. At the present time the utility companies have no specific time-frame and plan for preventive overhaul. Detection of preventive overhaul time will increase the remaining life of transformers and improve the reliability of substations. An exact check of the remaining lifetime of transformers is not yet possible by available diagnostic techniques.more » In this paper, the authors present a method of identifying the right time for preventive overhaul in 63 kV power transformers. This method is developed based on 25 year transformer performance records in Northern Iran (subtropical climate) and with the utilization of studies done by electrical engineering communities world-wide.« less
Guragai, B; Takizawa, S; Hashimoto, T; Oguma, K
2017-12-01
To investigate the effects of unequal supply hours on consumers' coping strategies and perceptions of the intermittent water supply (IWS) in the Kathmandu Valley (KV), Nepal we conducted a randomized household survey (n=369) and on-site water quality tests. Half of the households received piped water for 6 or fewer hours per week. To augment or cope with the inadequate supply, 28% of the households used highly contaminated and expensive tanker-delivered water. Half of the piped water samples (n=13) were contaminated with Escherichia coli. Free chlorine concentration in all piped water samples was below the national standards (0.1-0.2mg/L), but combined chlorine was detected at an average of 0.24mg/L, indicating ingression of contaminants in the network. Point-of-use devices could increase access to safe water in the KV from 42% to 80%. The use of Lorenz curves and Gini coefficients revealed inequality of piped water supply hours per week both between and within service areas in the KV, due mainly to a small percentage of households who receive longer supply hours. To cope with reduced supply hours, home owners pay more to get water from alternative sources, while tenants compromise their water consumption. Under IWS, expectations for improvements in piped water quality and supply regularity are higher than those for supply volume. Consumers' perceptions of the piped water services worsen with the reduction in supply hours, but perceptions of piped water tariff are independent of supply hours. Copyright © 2017 Elsevier B.V. All rights reserved.
Han, Ping; Luan, Feng; Yan, Xizu; Gao, Yuan; Liu, Huitao
2012-01-01
A method for the separation and determination of honokiol and magnolol in Magnolia officinalis and its medicinal preparation is developed by capillary zone electrophoresis and response surface methodology. The concentration of borate, content of organic modifier, and applied voltage are selected as variables. The optimized conditions (i.e., 16 mmol/L sodium tetraborate at pH 10.0, 11% methanol, applied voltage of 25 kV and UV detection at 210 nm) are obtained and successfully applied to the analysis of honokiol and magnolol in Magnolia officinalis and Huoxiang Zhengqi Liquid. Good separation is achieved within 6 min. The limits of detection are 1.67 µg/mL for honokiol and 0.83 µg/mL for magnolol, respectively. In addition, an artificial neural network with “3-7-1” structure based on the ratio of peak resolution to the migration time of the later component (Rs/t) given by Box-Behnken design is also reported, and the predicted results are in good agreement with the values given by the mathematic software and the experimental results. PMID:22291059
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posch, J.
Systems and philosophies perceived on a grand scale, encompassing new ideas, are often characterized as a dream. But in fact, such dreams often lead to the first step to fruitful development. This article is based on a preliminary study of the existing electrical high-tension networks of Western Europe, Eastern Europe and the Soviet Union - which, as explained herein, may be merged into a multinational energy supply system. Such a system would constitute a completely interconnected Eurasian Power Grid. The idea of a Eurasian super grid, spanning from the Atlantic to the Ural and Siberia, is not new. Various studiesmore » have been conducted by both western Europe and the Soviet Union on this topic. Our world is currently in an era of extra high voltage (EHV) and ultra high voltage (UHV) electrical systems. This translates into existing UHV lines of 1150 kV which have already been proven in successful operation. Such UHV systems are capable of transmitting thousands of megawatts over a distance of a 1000 miles. Furthermore, national boundaries are not more a hindrance than the challenge of interconnecting complete networks into an overall synchronized working system with load exchange capabilities in all directions.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-10
...): IEEE C37.20.4 Indoor AC Switches (1 kV-38 kV) for Use in Metal-Enclosed Switchgear \\a\\ IEEE C37.20.6 4.76 kV to 38 kV Rated Grounding and Testing Devices Used in Enclosures \\a\\ IEEE C37.23 Metal-Enclosed... Sprinkler Pipe for Fire Protection Service UL 962 Household and Commercial Furnishings \\c\\ UL 1340 Hoists UL...
Structural basis for the inhibition of voltage-dependent K+ channel by gating modifier toxin
Ozawa, Shin-ichiro; Kimura, Tomomi; Nozaki, Tomohiro; Harada, Hitomi; Shimada, Ichio; Osawa, Masanori
2015-01-01
Voltage-dependent K+ (Kv) channels play crucial roles in nerve and muscle action potentials. Voltage-sensing domains (VSDs) of Kv channels sense changes in the transmembrane potential, regulating the K+-permeability across the membrane. Gating modifier toxins, which have been used for the functional analyses of Kv channels, inhibit Kv channels by binding to VSD. However, the structural basis for the inhibition remains elusive. Here, fluorescence and NMR analyses of the interaction between VSD derived from KvAP channel and its gating modifier toxin, VSTx1, indicate that VSTx1 recognizes VSD under depolarized condition. We identified the VSD-binding residues of VSTx1 and their proximal residues of VSD by the cross-saturation (CS) and amino acid selective CS experiments, which enabled to build a docking model of the complex. These results provide structural basis for the specific binding and inhibition of Kv channels by gating modifier toxins. PMID:26382304
NASA Astrophysics Data System (ADS)
Besral, N.; Paul, T.; Thakur, S.; Sarkar, S.; Sardar, K.; Chanda, K.; Das, A.; Chattopadhyay, K. K.
2018-04-01
The impact of varying electron beam voltage upon room temperature CL (cathodoluminescence) properties of crystalline organic-inorganic lead halide perovskite CH3NH3PbBr3 (Methylammonium lead tribromide) microcubes have been studied. CH3NH3PbBr3 microcubes were synthesized at room temperature by a very straight forward wet chemical route. After preliminary characterizations like XRD (X-ray diffraction), FESEM (Field emission scanning electron microscopy), UV-Vis spectroscopy, CL study at three different beam voltages i.e. 5 kV, 10 kV and 15 kV respectively was performed at room temperature. Prominent emission signals were obtained with emission peaks at 2.190 eV (FWHM 0.120 eV), 2.222 eV (FWHM 0.108 eV) and 2.242 eV (FWHM 0.095 eV) for electron beam voltages 5 kV, 10 kV and 15 kV respectively.
Role of Kv4.3 in Vibration-Induced Muscle Pain in the Rat.
Conner, Lindsay B; Alvarez, Pedro; Bogen, Oliver; Levine, Jon D
2016-04-01
We hypothesized that changes in the expression of voltage-gated potassium channel (Kv) 4.3 contribute to the mechanical hyperalgesia induced by vibration injury, in a rodent model for hand-arm vibration syndrome in humans. Here we show that the exposure of the gastrocnemius muscle to vibration injury induces muscle hyperalgesia that is accompanied by a significant downregulation of Kv4.3 in affected sensory nerve fibers in dorsal root ganglia. We additionally show that the intrathecal administration of antisense oligonucleotides for Kv4.3 messenger RNA itself induces muscle hyperalgesia in the rat. Our results suggest that attenuation in the expression of Kv4.3 may contribute to neuropathic pain in people affected by hand-arm vibration syndrome. Our findings establish Kv4.3 as a potential molecular target for the treatment of hand-arm vibration syndrome. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Modulation of Kv7 channels and excitability in the brain.
Greene, Derek L; Hoshi, Naoto
2017-02-01
Neuronal Kv7 channels underlie a voltage-gated non-inactivating potassium current known as the M-current. Due to its particular characteristics, Kv7 channels show pronounced control over the excitability of neurons. We will discuss various factors that have been shown to drastically alter the activity of this channel such as protein and phospholipid interactions, phosphorylation, calcium, and numerous neurotransmitters. Kv7 channels locate to key areas for the control of action potential initiation and propagation. Moreover, we will explore the dynamic surface expression of the channel modulated by neurotransmitters and neural activity. We will also focus on known principle functions of neural Kv7 channels: control of resting membrane potential and spiking threshold, setting the firing frequency, afterhyperpolarization after burst firing, theta resonance, and transient hyperexcitability from neurotransmitter-induced suppression of the M-current. Finally, we will discuss the contribution of altered Kv7 activity to pathologies such as epilepsy and cognitive deficits.
Modulation of Kv7 channels and excitability in the brain
Greene, Derek L; Hoshi, Naoto
2016-01-01
Neuronal Kv7 channels underlie a voltage-gated non-inactivating potassium current known as the M-current. Due to its particular characteristics, Kv7 channels show pronounced control over the excitability of neurons. We will discuss various factors that have been shown to drastically alter the activity of this channel such as protein and phospholipid interactions, phosphorylation, calcium, and numerous neurotransmitters. Kv7 channels locate to key areas for the control of action potential initiation and propagation. Moreover, we will explore the dynamic surface expression of the channel modulated by neurotransmitters and neural activity. We will also focus on known principle functions of neural Kv7 channels: control of resting membrane potential and spiking threshold, setting the firing frequency, afterhyperpolarization after burst firing, theta resonance, and transient hyperexcitability from neurotransmitter-induced suppression of the M-current. Finally, we will discuss the contribution of altered Kv7 activity to pathologies such as epilepsy and cognitive deficits. PMID:27645822
The KCNE Tango – How KCNE1 Interacts with Kv7.1
Wrobel, Eva; Tapken, Daniel; Seebohm, Guiscard
2012-01-01
The classical tango is a dance characterized by a 2/4 or 4/4 rhythm in which the partners dance in a coordinated way, allowing dynamic contact. There is a surprising similarity between the tango and how KCNE β-subunits “dance” to the fast rhythm of the cell with their partners from the Kv channel family. The five KCNE β-subunits interact with several members of the Kv channels, thereby modifying channel gating via the interaction of their single transmembrane-spanning segment, the extracellular amino terminus, and/or the intracellular carboxy terminus with the Kv α-subunit. Best studied is the molecular basis of interactions between KCNE1 and Kv7.1, which, together, supposedly form the native cardiac IKs channel. Here we review the current knowledge about functional and molecular interactions of KCNE1 with Kv7.1 and try to summarize and interpret the tango of the KCNEs. PMID:22876232
Kv7.2 regulates the function of peripheral sensory neurons.
King, Chih H; Lancaster, Eric; Salomon, Daniela; Peles, Elior; Scherer, Steven S
2014-10-01
The Kv7 (KCNQ) family of voltage-gated K(+) channels regulates cellular excitability. The functional role of Kv7.2 has been hampered by the lack of a viable Kcnq2-null animal model. In this study, we generated homozygous Kcnq2-null sensory neurons using the Cre-Lox system; in these mice, Kv7.2 expression is absent in the peripheral sensory neurons, whereas the expression of other molecular components of nodes (including Kv7.3), paranodes, and juxtaparanodes is not altered. The conditional Kcnq2-null animals exhibit normal motor performance but have increased thermal hyperalgesia and mechanical allodynia. Whole-cell patch recording technique demonstrates that Kcnq2-null sensory neurons have increased excitability and reduced spike frequency adaptation. Taken together, our results suggest that the loss of Kv7.2 activity increases the excitability of primary sensory neurons. © 2014 Wiley Periodicals, Inc.
Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulsen, Per Rugaard, E-mail: per.poulsen@rm.dk; Jonassen, Johnny; Jensen, Carsten
2015-11-15
Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used for real-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without simultaneous radiation of the phantom with amore » 6 MV beam delivered perpendicular to the kV beam with 300 and 600 monitor units per minute (MU/min). An in-house built device triggered readout of zero, one, or multiple unexposed frames between the kV exposures. The unexposed frames contained part of the MV scatter, consequently reducing the amount of MV scatter accumulated in the exposed frames. The image quality with and without unexposed frame readout was quantified as the contrast-to-noise ratio (CNR) of the gold marker and air cavity for a range of imaging frequencies from 1 to 15 Hz. To gain more insight into the observed CNR changes, the image lag of the kV imager was measured and used as input in a simple model that describes the CNR with unexposed frame readout in terms of the contrast, kV noise, and MV noise measured without readout of unexposed frames. Results: Without readout of unexposed kV frames, the quality of intratreatment kV images decreased dramatically with reduced kV frequencies due to MV scatter. The gold marker was only visible for imaging frequencies ≥3 Hz at 300 MU/min and ≥5 Hz for 600 MU/min. Visibility of the air cavity required even higher imaging frequencies. Readout of multiple unexposed frames ensured visibility of both structures at all imaging frequencies and a CNR that was independent of the kV frame rate. The image lag was 12.2%, 2.2%, and 0.9% in the first, second, and third frame after an exposure. The CNR model predicted the CNR with triggered image readout with a mean absolute error of 2.0% for the gold marker. Conclusions: A device that triggers readout of unexposed frames during kV fluoroscopy was built and shown to greatly improve the quality of intratreatment kV images. A simple theoretical model successfully described the CNR improvements with the device.« less
Smith, Dean O; Rosenheimer, Julie L; Kalil, Ronald E
2008-02-13
Because of the importance of voltage-activated K(+) channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and betaIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K(+) currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells.
Impact of Ancillary Subunits on Ventricular Repolarization
Abbott, Geoffrey W.; Xu, Xianghua; Roepke, Torsten K.
2007-01-01
Voltage-gated potassium (Kv) channels generate the outward K+ ion currents that constitute the primary force in ventricular repolarization. Kv channels comprise tetramers of pore-forming α subunits and, in probably the majority of cases in vivo, ancillary or β subunits that help define the properties of the Kv current generated. Ancillary subunits can be broadly categorized as cytoplasmic or transmembrane, and can modify Kv channel trafficking, conductance, gating, ion selectivity, regulation and pharmacology. Because of their often profound effects on Kv channel function, studies of the molecular correlates of ventricular repolarization must take into account ancillary subunits as well as α subunits. Cytoplasmic ancillary subunits include the Kvβ subunits, which regulate a range of Kv channels and may link channel gating to redox potential; and the KChIPs, which appear most often associated with Kv4 subfamily channels that generate the ventricular Ito current. Transmembrane ancillary subunits include the MinK-related proteins (MiRPs) encoded by KCNE genes, which modulate members of most Kv α subunit subfamilies; and the putative 12-transmembrane domain KCR1 protein which modulates hERG. In some cases, such as the ventricular IKs channel complex, it is well-established that the KCNQ1 α subunit must co-assemble with the MinK (KCNE1) single transmembrane domain ancillary subunit for recapitulation of the characteristic, unusually slowly-activating IKs current. In other cases it is not so clear-cut, and in particular the roles of the other MinK-related proteins (MiRPs 1–4) in regulating cardiac Kv channels such as KCNQ1 and hERG in vivo are under debate. MiRP1 alters hERG function and pharmacology, and inherited MiRP1 mutations are associated with inherited and acquired arrhythmias, but controversy exists over the native role of MiRP1 in regulating hERG (and therefore ventricular IKr) in vivo. Some ancillary subunits may exhibit varied expression to shape spatial Kv current variation, e.g. KChIP2 and the epicardial-endocardial Ito current density gradient. Indeed, it is likely that most native ventricular Kv channels exhibit temporal and spatial heterogeneity of subunit composition, complicating both modeling of their functional impact on the ventricular action potential and design of specific current-targeted compounds. Here, we discuss current thinking and lines of experimentation aimed at resolving the complexities of the Kv channel complexes that repolarize the human ventricular myocardium. PMID:17993327
Kimm, Tilia; Khaliq, Zayd M.
2015-01-01
Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency–current (f–I) relationship, whereas BK channel inhibition had little effect on the f–I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f–I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. SIGNIFICANCE STATEMENT This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both channel types participate in action potential repolarization about equally, they have contrasting and partially opposite effects in regulating neuronal firing at frequencies typical of bursting. Our analysis shows that this results from their different kinetic properties, with fast-activating BK channels serving to short-circuit activation of Kv2 channels, which tend to slow firing by producing a deep afterhyperpolarization. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. PMID:26674866
Kimm, Tilia; Khaliq, Zayd M; Bean, Bruce P
2015-12-16
Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency-current (f-I) relationship, whereas BK channel inhibition had little effect on the f-I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f-I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both channel types participate in action potential repolarization about equally, they have contrasting and partially opposite effects in regulating neuronal firing at frequencies typical of bursting. Our analysis shows that this results from their different kinetic properties, with fast-activating BK channels serving to short-circuit activation of Kv2 channels, which tend to slow firing by producing a deep afterhyperpolarization. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. Copyright © 2015 the authors 0270-6474/15/3516404-14$15.00/0.
Pacheco Otalora, Luis F.; Skinner, Frank; Oliveira, Mauro S.; Dotson, Bianca Farrel; Arshadmansab, Massoud F.; Pandari, Tarun; Garcia, Ileana; Robles, Leslie; Rosas, Gerardo; Mello, Carlos F.; Ermolinsky, Boris S.; Garrido-Sanabria, Emilio R.
2010-01-01
Voltage gated K+ channels (Kv) are a highly diverse group of channels critical in determining neuronal excitability. Deficits of Kv channel subunit expression and function have been implicated in the pathogenesis of epilepsy. In this study, we investigate whether the expression of the specific subunit Kv3.4 is affected during epileptogenesis following pilocarpine-induced status epilepticus. For this purpose, we used immunohistochemistry, Western blotting assays and comparative analysis of gene expression using TaqMan-based probes and delta-delta cycle threshold (Δ ΔCT) method of quantitative real-time polymerase chain reaction (qPCR) technique in samples obtained from age-matched control and epileptic rats. A marked down-regulation of Kv3.4 immunoreactivity was detected in the stratum lucidum and hilus of dentate gyrus in areas corresponding to the mossy fiber system of chronically epileptic rats. Correspondingly, a 20% reduction of Kv3.4 protein levels was detected in the hippocampus of chronic epileptic rats. Real-time quantitative PCR analysis of gene expression revealed that a significant 33% reduction of transcripts for Kv3.4 (gene Kcnc4) occurred after 1 month of pilocarpine-induced status epilepticus and persisted during the chronic phase of the model. These data indicate a reduced expression of Kv3.4 channels at protein and transcript levels in the epileptic hippocampus. Down-regulation of Kv3.4 in mossy fibers may contribute to enhanced presynaptic excitability leading to recurrent seizures in the pilocarpine model of temporal lobe epilepsy. PMID:20971086
Eckey, Karina; Wrobel, Eva; Strutz-Seebohm, Nathalie; Pott, Lutz; Schmitt, Nicole; Seebohm, Guiscard
2014-08-15
Kv7.1 to Kv7.5 α-subunits belong to the family of voltage-gated potassium channels (Kv). Assembled with the β-subunit KCNE1, Kv7.1 conducts the slowly activating potassium current IKs, which is one of the major currents underlying repolarization of the cardiac action potential. A known regulator of Kv7 channels is the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 increases the macroscopic current amplitude by stabilizing the open conformation of 7.1/KCNE1 channels. However, knowledge about the exact nature of the interaction is incomplete. The aim of this study was the identification of the amino acids responsible for the interaction between Kv7.1 and PIP2. We generated 13 charge neutralizing point mutations at the intracellular membrane border and characterized them electrophysiologically in complex with KCNE1 under the influence of diC8-PIP2. Electrophysiological analysis of corresponding long QT syndrome mutants suggested impaired PIP2 regulation as the cause for channel dysfunction. To clarify the underlying structural mechanism of PIP2 binding, molecular dynamics simulations of Kv7.1/KCNE1 complexes containing two PIP2 molecules in each subunit at specific sites were performed. Here, we identified a subset of nine residues participating in the interaction of PIP2 and Kv7.1/KCNE1. These residues may form at least two binding pockets per subunit, leading to the stabilization of channel conformations upon PIP2 binding. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Christine H.; Gerry, Emily; Chmura, Steven J.
2015-01-01
Purpose: To calculate planning target volume (PTV) margins for chest wall and regional nodal targets using daily orthogonal kilovolt (kV) imaging and to study residual setup error after kV alignment using volumetric cone-beam computed tomography (CBCT). Methods and Materials: Twenty-one postmastectomy patients were treated with intensity modulated radiation therapy with 7-mm PTV margins. Population-based PTV margins were calculated from translational shifts after daily kV positioning and/or weekly CBCT data for each of 8 patients, whose surgical clips were used as surrogates for target volumes. Errors from kV and CBCT data were mathematically combined to generate PTV margins for 3 simulatedmore » alignment workflows: (1) skin marks alone; (2) weekly kV imaging; and (3) daily kV imaging. Results: The kV data from 613 treatment fractions indicated that a 7-mm uniform margin would account for 95% of daily shifts if patients were positioned using only skin marks. Total setup errors incorporating both kV and CBCT data were larger than those from kV alone, yielding PTV expansions of 7 mm anterior–posterior, 9 mm left–right, and 9 mm superior–inferior. Required PTV margins after weekly kV imaging were similar in magnitude as alignment to skin marks, but rotational adjustments of patients were required in 32% ± 17% of treatments. These rotations would have remained uncorrected without the use of daily kV imaging. Despite the use of daily kV imaging, CBCT data taken at the treatment position indicate that an anisotropic PTV margin of 6 mm anterior–posterior, 4 mm left–right, and 8 mm superior–inferior must be retained to account for residual errors. Conclusions: Cone-beam CT provides additional information on 3-dimensional reproducibility of treatment setup for chest wall targets. Three-dimensional data indicate that a uniform 7-mm PTV margin is insufficient in the absence of daily IGRT. Interfraction movement is greater than suggested by 2-dimensional imaging, thus a margin of at least 4 to 8 mm must be retained despite the use of daily IGRT.« less
Comparison of the NIST and BIPM Air-Kerma Standards for Measurements in the Low-Energy X-Ray Range
Burns, D. T.; Lamperti, P.; O’Brien, M.
1999-01-01
A direct comparison was made between the air-kerma standards used for the measurement of low-energy x rays at the National Institute of Standards and Technology (NIST) and the Bureau International des Poids et Mesures (BIPM). The comparison was carried out at the BIPM using the BIPM reference beam qualities in the range from 10 kV to 100 kV. The results show the standards to be in agreement to around 0.5 % at reference beam qualities up to 50 kV and at 100 kV. The result at the 80 kV beam quality is less favorable, with agreement at the 1 % level.
Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Achenbach, Stephan; Uder, Michael; Lell, Michael M
2013-12-01
To evaluate an automated attenuation-based kV-selection in computed tomography of the chest in respect to radiation dose and image quality, compared to a standard 120 kV protocol. 104 patients were examined using a 128-slice scanner. Fifty examinations (58 ± 15 years, study group) were performed using the automated adaption of tube potential (100-140 kV), based on the attenuation profile of the scout scan, 54 examinations (62 ± 14 years, control group) with fixed 120 kV. Estimated CT dose index (CTDI) of the software-proposed setting was compared with a 120 kV protocol. After the scan CTDI volume (CTDIvol) and dose length product (DLP) were recorded. Image quality was assessed by region of interest (ROI) measurements, subjective image quality by two observers with a 4-point scale (3--excellent, 0--not diagnostic). The algorithm selected 100 kV in 78% and 120 kV in 22%. Overall CTDIvol reduction was 26.6% (34% in 100 kV) overall DLP reduction was 22.8% (32.1% in 100 kV) (all p<0.001). Subjective image quality was excellent in both groups. The attenuation based kV-selection algorithm enables relevant dose reduction (~27%) in chest-CT while keeping image quality parameters at high levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
PKD Phosphorylation as Novel Pathway of KV11.1 Regulation.
Steffensen, Annette Buur; Bomholtz, Sofia Hammami; Andersen, Martin Nybo; Olsen, Jesper Velgaard; Mutsaers, Nancy; Lundegaard, Pia Rengtved; Lundby, Alicia; Schmitt, Nicole
2018-06-27
The voltage-gated potassium channel KV11.1 has been originally cloned from the brain and is expressed in a variety of tissues. The role of phosphorylation for channel function is a matter of debate. In this study, we aimed to elucidate the extent and role of protein kinase D mediated phosphorylation. We employed mass spectrometry, whole-cell patch clamp electrophysiology, confocal microscopy, site-directed mutagenesis, and western blotting. Using brain tissue from rat and mouse, we mapped several phosphorylated KV11.1 residues by LC-MS mass spectrometry and identified protein kinase D (PKD1) as possible regulatory kinase. Co-expression of KV11.1 with PKD1 reduced current amplitudes without altering protein levels or surface expression of the channel. Based on LC-MS results from in vivo and HEK293 cell experiments we chose four KV11.1 mutant candidates for further functional analysis. Ablation of the putative PKD phosphorylation site in the mutant S284A increased the maximal current indicating S284 as a main PKD target in KV11.1. Our data might help mitigating a long-standing controversy in the field regarding PKC regulation of KV11.1. We propose that PKD1 mediates the PKC effects on KV11.1 and we found that PKD targets S284 in the N-terminus of the channel. © 2018 The Author(s). Published by S. Karger AG, Basel.
De Melo, Daniela Pita; Cruz, Adriana Dibo; Melo, Saulo Leonardo Sousa; De Farias, Julyanna Filgueiras GonçAlves; Haiter-Neto, Francisco; De Almeida, Solange Maria
2015-04-01
To compare intraoral Phosphor Stimulable Plate digital system and intraoral film using different tube settings on incipient proximal caries detection. Five blocks, with five teeth each, were radiographically examined using phosphor plates and F-speed films. The images were acquired in 07 different tube potentials from 50-80 kV. The films were digitized. Three oral radiologists scored the images for the presence of caries using a 5-point rating scale. The areas under ROC curve were calculated. The influence of tube kilovoltage was verified by ANOVA and pair wise comparisons performed using Tukey test. Mean ROC curve areas varied from 0.446-0.628 for digital images and 0.494-0.559 for conventional images. The tube setting of 70 kV presented the best result both for digital and conventional images. Considering the image type separately, 70 kV scored highest followed by 75 and 65 kV for digital images (p=0.084). For conventional image modality, even though 70 kV presented the best result, it did not differ significantly from 80 kV, not differing from 60 and 55 kV, which did not differ from 75, 65 and 50 kV (p=0.53). Phosphor plate digital images seem to be more susceptible to tube setting potential variations then digitized film images.
KCNE1 constrains the voltage sensor of Kv7.1 K+ channels.
Shamgar, Liora; Haitin, Yoni; Yisharel, Ilanit; Malka, Eti; Schottelndreier, Hella; Peretz, Asher; Paas, Yoav; Attali, Bernard
2008-04-09
Kv7 potassium channels whose mutations cause cardiovascular and neurological disorders are members of the superfamily of voltage-gated K(+) channels, comprising a central pore enclosed by four voltage-sensing domains (VSDs) and sharing a homologous S4 sensor sequence. The Kv7.1 pore-forming subunit can interact with various KCNE auxiliary subunits to form K(+) channels with very different gating behaviors. In an attempt to characterize the nature of the promiscuous gating of Kv7.1 channels, we performed a tryptophan-scanning mutagenesis of the S4 sensor and analyzed the mutation-induced perturbations in gating free energy. Perturbing the gating energetics of Kv7.1 bias most of the mutant channels towards the closed state, while fewer mutations stabilize the open state or the inactivated state. In the absence of auxiliary subunits, mutations of specific S4 residues mimic the gating phenotypes produced by co-assembly of Kv7.1 with either KCNE1 or KCNE3. Many S4 perturbations compromise the ability of KCNE1 to properly regulate Kv7.1 channel gating. The tryptophan-induced packing perturbations and cysteine engineering studies in S4 suggest that KCNE1 lodges at the inter-VSD S4-S1 interface between two adjacent subunits, a strategic location to exert its striking action on Kv7.1 gating functions.
KCNE1 Constrains the Voltage Sensor of Kv7.1 K+ Channels
Yisharel, Ilanit; Malka, Eti; Schottelndreier, Hella; Peretz, Asher; Paas, Yoav; Attali, Bernard
2008-01-01
Kv7 potassium channels whose mutations cause cardiovascular and neurological disorders are members of the superfamily of voltage-gated K+ channels, comprising a central pore enclosed by four voltage-sensing domains (VSDs) and sharing a homologous S4 sensor sequence. The Kv7.1 pore-forming subunit can interact with various KCNE auxiliary subunits to form K+ channels with very different gating behaviors. In an attempt to characterize the nature of the promiscuous gating of Kv7.1 channels, we performed a tryptophan-scanning mutagenesis of the S4 sensor and analyzed the mutation-induced perturbations in gating free energy. Perturbing the gating energetics of Kv7.1 bias most of the mutant channels towards the closed state, while fewer mutations stabilize the open state or the inactivated state. In the absence of auxiliary subunits, mutations of specific S4 residues mimic the gating phenotypes produced by co-assembly of Kv7.1 with either KCNE1 or KCNE3. Many S4 perturbations compromise the ability of KCNE1 to properly regulate Kv7.1 channel gating. The tryptophan-induced packing perturbations and cysteine engineering studies in S4 suggest that KCNE1 lodges at the inter-VSD S4-S1 interface between two adjacent subunits, a strategic location to exert its striking action on Kv7.1 gating functions. PMID:18398469
77 FR 58828 - Northern Indiana Public Service Company; Notice of Petition for Declaratory Order
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-24
... kV transmission line from the Reynolds substation to the Greentown substation and (2) substation upgrades at Reynolds substation, including a 765 kV/345kV transformer, a Multi-Value Project approved under...
Naresh, P; Patel, Ankur; Sharma, Archana
2015-09-01
Pulse power systems with highly dynamic loads like klystron, backward wave oscillator (BWO), and magnetron generate highly dynamic noise. This noise leads to frequent failure of controlled switches in the inverter stage of charging power supply. Designing a reliable and compatible power supply for pulse power applications is always a tricky job when charging rate is in multiples of 10 kJ/s. A ±50 kV and 45 kJ/s capacitor charging power supply based on 4th order LCLC resonant topology has been developed for a 10 Hz repetitive Marx based system. Conditions for load independent constant current and zero current switching (ZCS) are derived mathematically. Noise generated at load end due to dynamic load is tackled effectively and reduction in magnitude noise voltage is achieved by providing shielding between primary and secondary of high voltage high frequency transformer and with LCLC low pass filter. Shielding scales down the ratio between coupling capacitance (Cc) and the collector-emitter capacitance of insulated gate bi-polar transistor switch, which in turn reduces the common mode noise voltage magnitude. The proposed 4th order LCLC resonant network acts as a low pass filter for differential mode noise in the reverse direction (from load to source). Power supply has been tested repeatedly with 5 Hz repetition rate with repetitive Marx based system connected with BWO load working fine without failure of single switch in the inverter stage.
NASA Astrophysics Data System (ADS)
Naresh, P.; Patel, Ankur; Sharma, Archana
2015-09-01
Pulse power systems with highly dynamic loads like klystron, backward wave oscillator (BWO), and magnetron generate highly dynamic noise. This noise leads to frequent failure of controlled switches in the inverter stage of charging power supply. Designing a reliable and compatible power supply for pulse power applications is always a tricky job when charging rate is in multiples of 10 kJ/s. A ±50 kV and 45 kJ/s capacitor charging power supply based on 4th order LCLC resonant topology has been developed for a 10 Hz repetitive Marx based system. Conditions for load independent constant current and zero current switching (ZCS) are derived mathematically. Noise generated at load end due to dynamic load is tackled effectively and reduction in magnitude noise voltage is achieved by providing shielding between primary and secondary of high voltage high frequency transformer and with LCLC low pass filter. Shielding scales down the ratio between coupling capacitance (Cc) and the collector-emitter capacitance of insulated gate bi-polar transistor switch, which in turn reduces the common mode noise voltage magnitude. The proposed 4th order LCLC resonant network acts as a low pass filter for differential mode noise in the reverse direction (from load to source). Power supply has been tested repeatedly with 5 Hz repetition rate with repetitive Marx based system connected with BWO load working fine without failure of single switch in the inverter stage.
Zimmer, Julia; Takahashi, Toshiaki; Hofmann, Alejandro Daniel; Puri, Prem
2017-02-01
Aim of the Study Nuclear factor of activated T-cell (NFATc2), a Ca 2+ /calcineurin-dependent transcription factor, is reported to be activated in human and animal pulmonary hypertension (PH). KV1.5, a voltage-gated K + (KV) channel, is expressed in pulmonary artery smooth muscle cells (PASMC) and downregulated in PASMC in patients and animals with PH. Furthermore, activation of NFATc2 downregulates expression of KV1.5 channels, leading to excessive PASMC proliferation. The aim of this study was to investigate the pulmonary vascular expression of NFATc2 and KV1.5 in rats with nitrofen-induced congenital diaphragmatic hernia (CDH). Materials and Methods After ethical approval, time-pregnant Sprague-Dawley rats received nitrofen or vehicle on gestational day 9 (D9). When sacrificed on D21, the fetuses ( n = 22) were divided into CDH and control groups. Using quantitative real-time polymerase chain reaction and western blotting, we determined the gene and protein expression of NFATc2 and KV1.5. Confocal microscopy was used to detect both proteins in the pulmonary vasculature. Results Relative mRNA levels of NFATc2 were significantly upregulated and KV1.5 levels were significantly downregulated in CDH lungs compared with controls ( p < 0.05). Western blotting confirmed the imbalanced pulmonary protein expression of both proteins. An increased pulmonary vascular expression of NFATc2 and a diminished expression of KV1.5 in CDH lungs compared with controls were seen in confocal microscopy. Conclusions This study demonstrates for the first time an altered gene and protein expression of NFATc2 and KV1.5 in the pulmonary vasculature of nitrofen-induced CDH. Upregulation of NFATc2 with concomitant downregulation of KV1.5 channels may contribute to abnormal vascular remodeling resulting in PH in this model. Georg Thieme Verlag KG Stuttgart · New York.
Brunetti, Orazio; Imbrici, Paola; Botti, Fabio Massimo; Pettorossi, Vito Enrico; D'Adamo, Maria Cristina; Valentino, Mario; Zammit, Christian; Mora, Marina; Gibertini, Sara; Di Giovanni, Giuseppe; Muscat, Richard; Pessia, Mauro
2012-01-01
Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by myokymia and attacks of ataxic gait often precipitated by stress. Several genetic mutations have been identified in the Shaker-like K+ channel Kv1.1 (KCNA1) of EA1 individuals, including V408A, which result in remarkable channel dysfunction. By inserting the heterozygous V408A, mutation in one Kv1.1 allele, a mouse model of EA1 has been generated (Kv1.1V408A/+). Here, we investigated the neuromuscular transmission of Kv1.1V408A/+ ataxic mice and their susceptibility to physiologically relevant stressors. By using in vivo preparations of lateral gastrocnemius (LG) nerve–muscle from Kv1.1+/+ and Kv1.1V408A/+ mice, we show that the mutant animals exhibit spontaneous myokymic discharges consisting of repeated singlets, duplets or multiplets, despite motor nerve axotomy. Two-photon laser scanning microscopy from the motor nerve, ex vivo, revealed spontaneous Ca2 + signals that occurred abnormally only in preparations dissected from Kv1.1V408A/+ mice. Spontaneous bursting activity, as well as that evoked by sciatic nerve stimulation, was exacerbated by muscle fatigue, ischemia and low temperatures. These stressors also increased the amplitude of compound muscle action potential. Such abnormal neuromuscular transmission did not alter fiber type composition, neuromuscular junction and vascularization of LG muscle, analyzed by light and electron microscopy. Taken together these findings provide direct evidence that identifies the motor nerve as an important generator of myokymic activity, that dysfunction of Kv1.1 channels alters Ca2 + homeostasis in motor axons, and also strongly suggest that muscle fatigue contributes more than PNS fatigue to exacerbate the myokymia/neuromyotonia phenotype. More broadly, this study points out that juxtaparanodal K+ channels composed of Kv1.1 subunits exert an important role in dampening the excitability of motor nerve axons during fatigue or ischemic insult. PMID:22609489
Liu, Pin W.
2014-01-01
Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716
Margatoxin-bound quantum dots as a novel inhibitor of the voltage-gated ion channel Kv1.3.
Schwartz, Austin B; Kapur, Anshika; Wang, Wentao; Huang, Zhenbo; Fardone, Erminia; Palui, Goutam; Mattoussi, Hedi; Fadool, Debra Ann
2017-02-01
Venom-derived ion channel inhibitors have strong channel selectivity, potency, and stability; however, tracking delivery to their target can be challenging. Herein, we utilized luminescent quantum dots (QDs) conjugated to margatoxin (MgTx) as a traceable vehicle to target a voltage-dependent potassium channel, Kv1.3, which has a select distribution and well-characterized role in immunity, glucose metabolism, and sensory ability. We screened both unconjugated (MgTx) and conjugated MgTx (QD-MgTx) for their ability to inhibit Shaker channels Kv1.1 to Kv1.7 using patch-clamp electrophysiology in HEK293 cells. Our data indicate that MgTx inhibits 79% of the outward current in Kv1.3-transfected cells and that the QD-MgTx conjugate is able to achieve a similar level of block, albeit a slightly reduced efficacy (66%) and at a slower time course (50% block by 10.9 ± 1.1 min, MgTx; vs. 15.3 ± 1.2 min, QD-MgTx). Like the unbound peptide, the QD-MgTx conjugate inhibits both Kv1.3 and Kv1.2 at a 1 nM concentration, whereas it does not inhibit other screened Shaker channels. We tested the ability of QD-MgTx to inhibit native Kv1.3 expressed in the mouse olfactory bulb (OB). In brain slices of the OB, the conjugate acted similarly to MgTx to inhibit Kv1.3, causing an increased action potential firing frequency attributed to decreased intraburst duration rather than interspike interval. Our data demonstrate a retention of known biophysical properties associated with block of the vestibule of Kv1.3 by QD-MgTx conjugate compared to that of MgTx, inferring QDs could provide a useful tool to deliver ion channel inhibitors to targeted tissues in vivo. © 2016 International Society for Neurochemistry.
Füll, Yvonne; Seebohm, Guiscard; Lerche, Holger; Maljevic, Snezana
2013-06-01
The voltage-gated potassium channels KV7.2 and KV7.3 (KCNQ2/3 genes) play an important role in regulating neuronal excitability. More than 50 KCNQ2/3 mutations have been identified to cause an inherited form of epilepsy in newborns. For two of those (E119G and S122L) found in the S1-S2 region of KV7.2, we previously showed a decreased channel availability mainly at action potential subthreshold voltages caused by a slight depolarizing shift of the activation curve. Interestingly, recent studies revealed that a threonine residue within the S1-S2 loop, highly conserved among different classes of KV channels, is crucial for both their function and surface expression. To investigate the functional role of the homologous threonine residues in KV7.2 (T114) and KV7.3 (T144) channels, we replaced them with alanine and examined the electrophysiological properties using heterologous expression in CHO cells and whole cell patch clamping. Channels comprising mutant subunits yielded decreased potassium currents with slowed activation and accelerated deactivation kinetics. However, the most striking effect was a depolarizing shift in the voltage dependence of activation reaching +30 mV upon co-expression of both mutant subunits. Potential interactions of T114 within the channel were analyzed by creating a 3D homology model of KV7.2 in an open state suggesting that this residue plays a central role in the formation of a stable interface between the S1-S2 and the S5 segment helices. This could be the explanation why substitution of the conserved threonine in KV7.2 and KV7.3 channels destabilizes the open and favors the closed state of these channels.
NASA Astrophysics Data System (ADS)
Tiemblo, Pilar; Hoyos, Mario; Gómez-Elvira, Jose Manuel; Guzmán, Julio; García, Nuria; Dardano, Andrea; Guastavino, Francesco
2008-06-01
Electrical treeing in LDPE and three LDPE nanocomposites, with spherical silica and fibrous and laminar phyllosilicates, has been studied. Electrical tests were performed at a 50 Hz frequency and voltages between 8 and 29 kV, and the time to inception of the first electrical partial discharges (TTI) of the electrical trees and the time to breakdown (TBD), related to the electrical stability of the insulator, were determined. Above 15 kV all the nanocomposites show longer inception times and shorter tree growth times than LDPE. It is proposed that both observations are caused by the modification of the polymer crystalline morphology induced by the presence of the fillers and by the development of a large number of interfacial structures, both organo-inorganic and amorphous-crystalline. Below 15 kV the TBD is increased in the nanocomposites with the laminar silicate because of tortuosity and the TTI is increased in the fibrous silicate containing a nanocomposite because of the LDPE crystalline morphology in the presence of the silicate. The nanosilica particles decrease the electrical stability in the whole voltage range by decreasing both TTI and TBD.
Kapplinger, Jamie D; Tseng, Andrew S; Salisbury, Benjamin A; Tester, David J; Callis, Thomas E; Alders, Marielle; Wilde, Arthur A M; Ackerman, Michael J
2015-04-01
Despite the overrepresentation of Kv7.1 mutations among patients with a robust diagnosis of long QT syndrome (LQTS), a background rate of innocuous Kv7.1 missense variants observed in healthy controls creates ambiguity in the interpretation of LQTS genetic test results. A recent study showed that the probability of pathogenicity for rare missense mutations depends in part on the topological location of the variant in Kv7.1's various structure-function domains. Since the Kv7.1's C-terminus accounts for nearly 50 % of the overall protein and nearly 50 % of the overall background rate of rare variants falls within the C-terminus, further enhancement in mutation calling may provide guidance in distinguishing pathogenic long QT syndrome type 1 (LQT1)-causing mutations from rare non-disease-causing variants in the Kv7.1's C-terminus. Therefore, we have used conservation analysis and a large case-control study to generate topology-based estimative predictive values to aid in interpretation, identifying three regions of high conservation within the Kv7.1's C-terminus which have a high probability of LQT1 pathogenicity.
Note: a 3-stage stacked Blumlein using ceramic for energy storage.
Wang, Songsong; Shu, Ting; Yang, Hanwu
2013-02-01
We have developed a novel stacked Blumlein with high compactness by using ceramic for energy storage. The total volume of this stacked Blumlein is only 320 × 100 × 185 mm(3). By triggering 3 spark gaps simultaneously, the developed stacked Blumlein is capable of producing a rectangular pulse with a voltage multiplication. A 32 ns quasi-rectangular pulse of 11.4 kV is measured across a 10 Ω dummy load when the 3-stage stacked Blumlein is DC charged up to 4 kV. The voltage multiplication is about 2.9, and the energy efficiency is about 96%. Simulation results indicate that vacuum or transformer oil is appropriate to be the insulation medium for the stacked Blumlein.
Note: A 3-stage stacked Blumlein using ceramic for energy storage
NASA Astrophysics Data System (ADS)
Wang, Songsong; Shu, Ting; Yang, Hanwu
2013-02-01
We have developed a novel stacked Blumlein with high compactness by using ceramic for energy storage. The total volume of this stacked Blumlein is only 320 × 100 × 185 mm3. By triggering 3 spark gaps simultaneously, the developed stacked Blumlein is capable of producing a rectangular pulse with a voltage multiplication. A 32 ns quasi-rectangular pulse of 11.4 kV is measured across a 10 Ω dummy load when the 3-stage stacked Blumlein is DC charged up to 4 kV. The voltage multiplication is about 2.9, and the energy efficiency is about 96%. Simulation results indicate that vacuum or transformer oil is appropriate to be the insulation medium for the stacked Blumlein.
Soares, David; Goldrick, Isabelle; Lemon, Roger N.; Kraskov, Alexander; Greensmith, Linda
2017-01-01
Abstract There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration “thin” spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin‐positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32‐postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. PMID:28213922
High Power Amplifier and Power Supply
NASA Technical Reports Server (NTRS)
Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew
2008-01-01
A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.
Park, Won Sun; Son, Youn Kyoung; Ko, Eun A; Ko, Jae-Hong; Lee, Hyang Ae; Park, Kyoung Sun; Earm, Yung E
2005-06-17
We examined the effects of the protein kinase C (PKC) inhibitor, bisindolylmaleimide (BIM) (I), on voltage-dependent K+ (K(V)) channels in rabbit coronary arterial smooth muscle cells using whole-cell patch clamp technique. BIM (I) reversibly and dose-dependently inhibited the K(V) currents with an apparent Kd value of 0.27 microM. The inhibition of the K(V) current by BIM (I) was highly voltage-dependent between -30 and +10 mV (voltage range of channel activation), and the additive inhibition of the K(V) current by BIM (I) was voltage-dependence in the full activation voltage range. The rate constants of association and dissociation for BIM (I) were 18.4 microM(-1) s(-1) and 4.7 s(-1), respectively. BIM (I) had no effect on the steady-state activation and inactivation of K(V) channels. BIM (I) caused use-dependent inhibition of K(V) current, which was consistent with the slow recovery from inactivation in the presence of BIM (I) (recovery time constants were 856.95 +/- 282.6 ms for control, and 1806.38 +/- 110.0 ms for 300 nM BIM (I)). ATP-sensitive K+ (K(ATP)), inward rectifier K+ (K(IR)), Ca2+-activated K+ (BK(Ca)) channels, which regulate the membrane potential and arterial tone, were not affected by BIM (I). The PKC inhibitor, chelerythrine, and protein kinase A (PKA) inhibitor, PKA-IP, had little effect on the K(V) current and did not significantly alter the inhibitory effects of BIM (I) on the K(V) current. These results suggest that BIM (I) inhibits K(V) channels in a phosphorylation-independent, and voltage-, time- and use-dependent manner.
Heide, Juliane; Zhang, Fengyu; Bigos, Kristin L; Mann, Stefan A; Carr, Vaughan J; Shannon Weickert, Cynthia; Green, Melissa J; Weinberger, Daniel R; Vandenberg, Jamie I
2016-01-01
Antipsychotic drugs target dopamine and serotonin receptors as well as Kv11.1 potassium channels encoded by KCNH2. Variable patient responses and a wide range of side effects, however, limit their efficacy. Slow metabolizer status and gene variants in KCNH2 associated with increased expression of Kv11.1-3.1, an alternatively spliced isoform of Kv11.1, are correlated with improved responses to antipsychotic medications. Here, the authors test the hypothesis that these effects may be influenced by differential drug binding to Kv11.1 channel isoforms. Drug block of Kv11.1 isoforms was tested in cellular electrophysiology assays. The effects of drug metabolism and KCNH2 genotypes on clinical responses were assessed in patients enrolled in the multicenter Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE). Risperidone caused greater in vitro block of the alternatively spliced Kv11.1-3.1 isoform than full-length Kv11.1-1A channels, whereas its metabolite paliperidone and other atypical antipsychotics have similar potencies for the two isoforms. In the CATIE study (N=362), patients with genotypes associated with increased Kv11.1-3.1 expression (N=52) showed a better treatment response to risperidone compared with other drugs, but this association was dependent on metabolism status. Patients with KCNH2 risk genotypes and slow metabolizer status (approximately 7% of patients) showed marked improvement in symptoms when treated with risperidone compared with patients with fast metabolizer status or without the KCNH2 risk genotypes. These data support the hypothesis that Kv11.1 channels play a role in the therapeutic action of antipsychotic drugs, particularly risperidone, and further highlight the promise of optimizing response with genotype-guided therapy for schizophrenia patients.
Yu, Z; IJzerman, A P; Heitman, L H
2015-01-01
Background and Purpose Drug-induced arrhythmia due to blockade of the Kv11.1 channel (also known as the hERG K+ channel) is a frequent side effect. Previous studies have primarily focused on equilibrium parameters, i.e. affinity or potency, of drug candidates at the channel. The aim of this study was to determine the kinetics of the interaction with the channel for a number of known Kv11.1 blockers and to explore a possible correlation with the affinity or physicochemical properties of these compounds. Experimental Approach The affinity and kinetic parameters of 15 prototypical Kv11.1 inhibitors were evaluated in a number of [3H]-dofetilide binding assays. The lipophilicity (logKW-C8) and membrane partitioning (logKW-IAM) of these compounds were determined by means of HPLC analysis. Key Results A novel [3H]-dofetilide competition association assay was set up and validated, which allowed us to determine the binding kinetics of the Kv11.1 blockers used in this study. Interestingly, the compounds' affinities (Ki values) were correlated to their association rates rather than dissociation rates. Overall lipophilicity or membrane partitioning of the compounds were not correlated to their affinity or rate constants for the channel. Conclusions and Implications A compound's affinity for the Kv11.1 channel is determined by its rate of association with the channel, while overall lipophilicity and membrane affinity are not. In more general terms, our findings provide novel insights into the mechanism of action for a compound's activity at the Kv11.1 channel. This may help to elucidate how Kv11.1-induced cardiotoxicity is governed and how it can be circumvented in the future. PMID:25296617
Wang, Huan; Wang, Hong-Fei; Wang, Chen; Chen, Yu-Fang; Ma, Rong; Xiang, Ji-Zhou; Du, Xin-Ling; Tang, Qiang
2016-10-15
In the present study, the inhibitory effects of hesperetin (HSP) on human cardiac Kv1.5 channels expressed in HEK 293 cells and the ultra-rapid delayed rectifier K(+) current (Ikur) in human atrial myocytes were examined by using the whole-cell configuration of the patch-clamp techniques. We found that hesperetin rapidly and reversibly suppressed human Kv1.5 current in a concentration dependent manner with a half-maximal inhibition (IC50) of 23.15 μΜ with a Hill coefficient of 0.89. The current was maximally diminished about 71.36% at a concentration of 300μM hesperetin. Hesperetin significantly positive shifted the steady-state activation curve of Kv1.5, while negative shifted the steady-state inactivation curve. Hesperetin also accelerated the inactivation and markedly slowed the recovery from the inactivation of Kv1.5 currents. Block of Kv1.5 currents by hesperetin was in a frequency dependent manner. However, inclusion of 30μM hesperetin in pipette solution produced no effect on Kv1.5 channel current, while the current were remarkable and reversibly inhibited by extracellular application of 30μM hesperetin. We also found that hesperetin potently and reversibly inhibited the ultra-repaid delayed K(+) current (Ikur) in human atrial myocytes, which is in consistent with the effects of hesperetin on Kv1.5 currents in HEK 293 cells. In conclusion, hesperetin is a potent inhibitor of Ikur (which is encoded by Kv1.5), with blockade probably due to blocking of both open state and inactivated state channels from outside of the cell. Copyright © 2016 Elsevier B.V. All rights reserved.
Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; Barrese, Vincenzo; Migliore, Michele; Cilio, Maria Roberta; Taglialatela, Maurizio
2013-01-01
Mutations in the KV7.2 gene encoding for voltage-dependent K+ channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of KV7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with KV7.2 and/or KV7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying KV7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal Kv7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K+ channel impairment, and set the preclinical basis for the potential use of Kv7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with KV7.2 encephalopathy. PMID:23440208
Wang, Juanjuan; Li, Yuan; Hui, Zhiyan; Cao, Min; Shi, Ruiming; Zhang, Wei; Geng, Limeng; Zhou, Xihui
2015-08-07
Kv7 (KCNQ) channels underlying a class of voltage-gated K+ current are best known for regulating neuronal excitability. The first glycine (G) residue in the pore helix of Kv7.2 (KCNQ2) subunit is highly conserved among different classes of Kv7 channel family. A missense mutation causing the replacement of the corresponding G residues with a valine (p.G271V) in Kv7.2 was found in a large, four-generation pedigree. Here, we set out to examine the molecular pathomechanism of G271V mutants using patch clamp technology combined with biochemical and immunocytochemical techniques in transiently transfected human embryonic kidney (HEK) 293 cells. The expression of Kv7.2 protein had the same intensity for both wild type (WT) and G271V. In transfected HEK cells, G271V mutants induced large depolarizing shifts of the conductance-voltage relationships and marked slowing of current activation kinetics compared to WT. In addition, G271V mutants abolished currents in homomeric channels, and resulted in about 50% reduction of current in Kv7.2/G271V/Kv7.3 heteromultimeric condition, indicating a more severe functional defect. To test for G271V mutant channel expression in surface membrane, we performed fluorescence confocal microscopy imaging, which revealed no differences between the mutant and WT, suggesting that G271V channels fail to open in response to depolarization even though they are present in the membrane. Furthermore, pharmacologic intervention experiments revealed that upon specific incubation of transfected HEK 293 cells expressing G271V heteromultimeric channels in presence of Kv7 channel enhancer retigabine (ezogabine), the potassium currents increased significantly, suggesting the potential of retigabine as gene-specific therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular determinants of Kv7.1/KCNE1 channel inhibition by amitriptyline.
Villatoro-Gómez, Kathya; Pacheco-Rojas, David O; Moreno-Galindo, Eloy G; Navarro-Polanco, Ricardo A; Tristani-Firouzi, Martin; Gazgalis, Dimitris; Cui, Meng; Sánchez-Chapula, José A; Ferrer, Tania
2018-06-01
Amitriptyline (AMIT) is a compound widely prescribed for psychiatric and non-psychiatric conditions including depression, migraine, chronic pain, and anorexia. However, AMIT has been associated with risks of cardiac arrhythmia and sudden death since it can induce prolongation of the QT interval on the surface electrocardiogram and torsade de pointes ventricular arrhythmia. These complications have been attributed to the inhibition of the rapid delayed rectifier potassium current (I Kr ). The slow delayed rectifier potassium current (I Ks ) is the main repolarizing cardiac current when I Kr is compromised and it has an important role in cardiac repolarization at fast heart rates induced by an elevated sympathetic tone. Therefore, we sought to characterize the effects of AMIT on Kv7.1/KCNE1 and homomeric Kv7.1 channels expressed in HEK-293H cells. Homomeric Kv7.1 and Kv7.1/KCNE1 channels were inhibited by AMIT in a concentration-dependent manner with IC50 values of 8.8 ± 2.1 μM and 2.5 ± 0.8 μM, respectively. This effect was voltage-independent for both homomeric Kv7.1 and Kv7.1/KCNE1 channels. Moreover, mutation of residues located on the P-loop and S6 domain along with molecular docking, suggest that T312, I337 and F340 are the most important molecular determinants for AMIT-Kv7.1 channel interaction. Our experimental findings and modeling suggest that AMIT preferentially blocks the open state of Kv7.1/KCNE1 channels by interacting with specific residues that were previously reported to be important for binding of other compounds, such as chromanol 293B and the benzodiazepine L7. Copyright © 2018 Elsevier Inc. All rights reserved.
Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage
NASA Astrophysics Data System (ADS)
Huda, Walter; Ogden, Kent M.
2004-05-01
The objective of this study was to identify the x-ray tube voltage that results in optimum performance for abdominal CT imaging for a range of imaging tasks and patient sizes. Theoretical calculations were performed of the contrast to noise ratio (CNR) for disk shaped lesions of muscle, fat, bone and iodine embedded in a uniform water background. Lesion contrast was the mean Hounsfield Unit value at the effective photon energy, and image noise was determined from the total radiation intensity incident on the CT x-ray detector. Patient size ranging from young infants (10 kg) to oversized adults (120 kg), with CNR values obtained for x-ray tube voltages ranging from 80 to 140 kV. Patients of varying sizes were modeled as an equivalent cylinder of water, and the mean section dose (D) was determined for each selected x-ray tube kV value at a constant mAs. For each patient size and lesion type, we identified an optimal kV as the x-ray tube voltage that yields a maximum value of the figure of merit (CNR2/D). Increasing the x-ray tube voltage from 80 to 140 kV reduced lesion contrast by 11% for muscle, 21% for fat, 35% for bone and 52% for iodine, and these reductions were approximately independent of patient size. Increasing the x-ray tube voltage from 80 to 140 kV increased a muscle lesion CNR relative to a uniform water background by a factor of 2.6, with similar trends observed for fat (2.3), bone (1.9) and iodine (1.4). The improvement in lesion CNR with increasing x-ray tube voltage was highest for the largest sized patients. Increasing the x-ray tube voltage from 80 to 140 kV increased the patient dose by a factor of between 5.0 and 6.2 depending on the patient size. For small sized patients (10 and 30 kg) and muscle lesions, best performance is obtained at 80 kV; however, for adults (70 kg) and oversized adults (120 kg), the best performance would be obtained at 140 kV. Imaging fat lesions was best performed at 80 kV for all patients except for oversized adults, where 140 kV offers the best imaging performance. For high Z lesions of bone and iodine, imaging performance generally degrades with increasing kV for all patient sizes, with the degree of degradation largest for the smallest patients. We conclude that 80 kV is optimal with respect to radiation dose in abdominal CT for all pediatric patients. For adults, 80 kV is the x-ray voltage of choice for high Z lesions, whereas 140 kV would generally be the voltage of choice of lesions that have an atomic number similar to that of water.
Accuracy of radiographic caries diagnosis using different X-ray generators.
Svenson, B; Petersson, A
1989-05-01
Dental X-ray machines utilizing five different combinations of X-ray generators and tube voltages (Philips Oralix 65 kV, Siemens Heliodent EC 60 kV, Siemens Heliodent 70 kV, Soredex Minray DC 60 kV and Soredex Minray DC 70 kV) were compared with respect to the accuracy of radiographic diagnosis of proximal caries. Nine observers diagnosed proximal caries in radiographs of extracted premolars. The findings of the observers were compared to the actual presence or absence of caries. The ROC-curve technique was used to evaluate differences in diagnostic accuracy between the X-ray machines. The results showed small differences in diagnostic accuracy between the different X-ray generators but they proved to be statistically non-significant.
Role of Kv 4.3 in vibration-induced muscle pain in the rat
Conner, Lindsay; Alvarez, Pedro; Bogen, Oliver; Levine, Jon D.
2015-01-01
We hypothesized that changes in the expression of Kv4.3 contribute to the mechanical hyperalgesia induced by vibration injury, a rodent model for hand-arm vibration syndrome in humans. Here we show that the exposure of the gastrocnemius muscle to vibration injury induces muscle hyperalgesia that is accompanied by a significant down-regulation of Kv4.3 in affected sensory nerve fibers in dorsal root ganglia (DRG). We additionally demonstrate that the intrathecal administration of antisense oligonucleotides for Kv4.3 mRNA itself induces muscle hyperalgesia in the rat. Our results suggest that attenuation in the expression of Kv4.3 may contribute to neuropathic pain in people affected by hand-arm vibration syndrome. PMID:26721612
Recent developments in high average power driver technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prestwich, K.R.; Buttram, M.T.; Rohwein, G.J>
1979-01-01
Inertial confinement fusion (ICF) reactors will require driver systems operating with tens to hundreds of megawatts of average power. The pulse power technology that will be required to build such drivers is in a primitive state of development. Recent developments in repetitive pulse power are discussed. A high-voltage transformer has been developed and operated at 3 MV in a single pulse experiment and is being tested at 1.5 MV, 5 kj and 10 pps. A low-loss, 1 MV, 10 kj, 10 pps Marx generator is being tested. Test results from gas-dynamic spark gaps that operate both in the 100 kVmore » and 700 kV range are reported. A 250 kV, 1.5 kA/cm/sup 2/, 30 ns electron beam diode has operated stably for 1.6 x 10/sup 5/ pulses.« less
Development of optimized PPP insulated pipe-cable systems in the commercial voltage range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allam, E.M.; McKean, A.L.
1992-05-01
The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulatedmore » with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allam, E.M.; McKean, A.L.
1992-05-01
The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulatedmore » with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.« less
[Optimal beam quality for chest digital radiography].
Oda, Nobuhiro; Tabata, Yoshito; Nakano, Tsutomu
2014-11-01
To investigate the optimal beam quality for chest computed radiography (CR), we measured the radiographic contrast and evaluated the image quality of chest CR using various X-ray tube voltages. The contrast between lung and rib or heart increased on CR images obtained by lowering the tube voltage from 140 to 60 kV, but the degree of increase was less. Scattered radiation was reduced on CR images with a lower tube voltage. The Wiener spectrum of CR images with a low tube voltage showed a low value under identical conditions of amount of light stimulated emission. The quality of chest CR images obtained using a lower tube voltage (80 kV and 100 kV) was evaluated as being superior to those obtained with a higher tube voltage (120 kV and 140 kV). Considering the problem of tube loading and exposure in clinical applications, a tube voltage of 90 to 100 kV (0.1 mm copper filter backed by 0.5 mm aluminum) is recommended for chest CR.
Gupta, Supriya; Gupta, Sanjay Mohan; Sane, Aniruddha P; Kumar, Nikhil
2012-06-01
Total chlorophyll content and chlorophyllase (chlorophyll-chlorophyllido hydrolase EC 3.1.1.14) activity in fresh leaves of Piper betle L. landrace KS was, respectively, twofold higher and eight fold lower than KV, showing negative correlation between chlorophyll and chlorophyllase activity. Specific chlorophyllase activity was nearly eightfold more in KV than KS. ORF of 918 nt was found in cloned putative chlorophyllase cDNAs from KV and KS. The gene was present as single copy in both the landraces. The encoded polypeptide of 306 amino acids differed only at two positions between the KV and KS; 203 (cysteine to tyrosine) and 301 (glutamine to glycine). Difference in chlorophyllase gene expression between KV and KS was evident in fresh and excised leaves. Up regulation of chlorophyllase gene by ABA and down regulation by BAP was observed in both the landraces; however, there was quantitative difference between KV and KS. Data suggests that chlorophyllase in P. betle is involved in chlorophyll homeostasis and chlorophyll loss during post harvest senescence.
Tracking single Kv2.1 channels in live cells reveals anomalous subdiffusion and ergodicity breaking
NASA Astrophysics Data System (ADS)
Weigel, Aubrey; Simon, Blair; Tamkun, Michael; Krapf, Diego
2011-03-01
The dynamic organization of the plasma membrane is responsible for essential cellular processes, such as receptor trafficking and signaling. By studying the dynamics of transmembrane proteins a greater understanding of these processes as a whole can be achieved. It is broadly observed that the diffusion pattern of membrane protein displays anomalous subdiffusion. However, the mechanisms responsible for this behavior are not yet established. We explore the dynamics of the voltage gated potassium channel Kv2.1 by using single-particle tracking. We analyze Kv2.1 channel trajectories in terms of the time and ensemble distributions of square displacements. Our results reveal that all Kv2.1 channels experience anomalous subdiffusion and we observe that the Kv2.1 diffusion pattern is non-ergodic. We further investigated the role of the actin cytoskeleton in these channel dynamics by applying actin depolymerizing drugs. It is seen that with the breakdown of the actin cytoskeleton the Kv2.1 channel trajectories recover ergodicity.
Salzer, Isabella; Erdem, Fatma Asli; Chen, Wei-Qiang; Heo, Seok; Koenig, Xaver; Schicker, Klaus W; Kubista, Helmut; Lubec, Gert; Boehm, Stefan; Yang, Jae-Won
2017-02-01
Phosphatidylinositol-4,5-bisphosphate (PIP 2 ) is a key regulator of many membrane proteins, including voltage-gated Kv7.2 channels. In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP 2 -binding domains in Kv7.2. Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP 2 . Dephosphorylation of Kv7.2 affected channel inhibition via M 1 muscarinic receptors, but not via bradykinin receptors. Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP 2 , thereby ensuring the tight regulation of the channel via G protein-coupled receptors. The function of numerous ion channels is tightly controlled by G protein-coupled receptors (GPCRs). The underlying signalling mechanisms may involve phosphorylation of channel proteins and participation of phosphatidylinositol-4,5-bisphosphate (PIP 2 ). Although the roles of both mechanisms have been investigated extensively, thus far only little has been reported on their interaction in channel modulation. GPCRs govern Kv7 channels, the latter playing a major role in the regulation of neuronal excitability by determining the levels of PIP 2 and through phosphorylation. Using liquid chromatography-coupled mass spectrometry for Kv7.2 immunoprecipitates of rat brain membranes and transfected cells, we mapped a cluster of five phosphorylation sites in one of the PIP2-binding domains. To evaluate the effect of phosphorylation on PIP 2 -mediated Kv7.2 channel regulation, a quintuple alanine mutant of these serines (S427/S436/S438/S446/S455; A 5 mutant) was generated to mimic the dephosphorylated state. Currents passing through these mutated channels were less sensitive towards PIP 2 depletion via the voltage-sensitive phosphatase Dr-VSP than were wild-type channels. In vitro phosphorylation assays with the purified C-terminus of Kv7.2 revealed that CDK5, p38 MAPK, CaMKIIα and PKA were able to phosphorylate the five serines. Inhibition of these protein kinases reduced the sensitivity of wild-type but not mutant Kv7.2 channels towards PIP 2 depletion via Dr-VSP. In superior cervical ganglion neurons, the protein kinase inhibitors attenuated Kv7 current regulation via M 1 receptors, but left unaltered the control by B2 receptors. Our results revealed that the phosphorylation status of serines located within a putative PIP 2 -binding domain determined the phospholipid sensitivity of Kv7.2 channels and supported GPCR-mediated channel regulation. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Salzer, Isabella; Erdem, Fatma Asli; Chen, Wei‐Qiang; Heo, Seok; Koenig, Xaver; Schicker, Klaus W.; Kubista, Helmut; Lubec, Gert; Boehm, Stefan
2016-01-01
Key points Phosphatidylinositol‐4,5‐bisphosphate (PIP2) is a key regulator of many membrane proteins, including voltage‐gated Kv7.2 channels.In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP2‐binding domains in Kv7.2.Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP2.Dephosphorylation of Kv7.2 affected channel inhibition via M1 muscarinic receptors, but not via bradykinin receptors.Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP2, thereby ensuring the tight regulation of the channel via G protein‐coupled receptors. Abstract The function of numerous ion channels is tightly controlled by G protein‐coupled receptors (GPCRs). The underlying signalling mechanisms may involve phosphorylation of channel proteins and participation of phosphatidylinositol‐4,5‐bisphosphate (PIP2). Although the roles of both mechanisms have been investigated extensively, thus far only little has been reported on their interaction in channel modulation. GPCRs govern Kv7 channels, the latter playing a major role in the regulation of neuronal excitability by determining the levels of PIP2 and through phosphorylation. Using liquid chromatography‐coupled mass spectrometry for Kv7.2 immunoprecipitates of rat brain membranes and transfected cells, we mapped a cluster of five phosphorylation sites in one of the PIP2‐binding domains. To evaluate the effect of phosphorylation on PIP2‐mediated Kv7.2 channel regulation, a quintuple alanine mutant of these serines (S427/S436/S438/S446/S455; A5 mutant) was generated to mimic the dephosphorylated state. Currents passing through these mutated channels were less sensitive towards PIP2 depletion via the voltage‐sensitive phosphatase Dr‐VSP than were wild‐type channels. In vitro phosphorylation assays with the purified C‐terminus of Kv7.2 revealed that CDK5, p38 MAPK, CaMKIIα and PKA were able to phosphorylate the five serines. Inhibition of these protein kinases reduced the sensitivity of wild‐type but not mutant Kv7.2 channels towards PIP2 depletion via Dr‐VSP. In superior cervical ganglion neurons, the protein kinase inhibitors attenuated Kv7 current regulation via M1 receptors, but left unaltered the control by B2 receptors. Our results revealed that the phosphorylation status of serines located within a putative PIP2‐binding domain determined the phospholipid sensitivity of Kv7.2 channels and supported GPCR‐mediated channel regulation. PMID:27621207
A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yi; Wang, Wei; Liu, Yi
2015-05-15
Compact solid-state system is the main development trend in pulsed power technologies. A compact solid-state high-voltage nanosecond pulse generator with output voltage of 300 kV amplitude, 10 ns duration (FWHM), and 3 ns rise-time was designed for a dielectric wall accelerator. The generator is stacked by 15 planar-plate Blumlein pulse forming lines (PFL). Each Blumlein PFL consists of two solid-state planar transmission lines, a GaAs photoconductive semiconductor switch, and a laser diode trigger. The key components of the generator and the experimental results are reported in this paper.
Visual ecology and potassium conductances of insect photoreceptors.
Frolov, Roman; Immonen, Esa-Ville; Weckström, Matti
2016-04-01
Voltage-activated potassium channels (Kv channels) in the microvillar photoreceptors of arthropods are responsible for repolarization and regulation of photoreceptor signaling bandwidth. On the basis of analyzing Kv channels in dipteran flies, it was suggested that diurnal, rapidly flying insects predominantly express sustained K(+) conductances, whereas crepuscular and nocturnally active animals exhibit strongly inactivating Kv conductances. The latter was suggested to function for minimizing cellular energy consumption. In this study we further explore the evolutionary adaptations of the photoreceptor channelome to visual ecology and behavior by comparing K(+) conductances in 15 phylogenetically diverse insects, using patch-clamp recordings from dissociated ommatidia. We show that rapid diurnal flyers such as the blowfly (Calliphora vicina) and the honeybee (Apis mellifera) express relatively large noninactivating Kv conductances, conforming to the earlier hypothesis in Diptera. Nocturnal and/or slow-moving species do not in general exhibit stronger Kv conductance inactivation in the physiological membrane voltage range, but the photoreceptors in species that are known to rely more on vision behaviorally had higher densities of sustained Kv conductances than photoreceptors of less visually guided species. No statistically significant trends related to visual performance could be identified for the rapidly inactivating Kv conductances. Counterintuitively, strong negative correlations were observed between photoreceptor capacitance and specific membrane conductance for both sustained and inactivating fractions of Kv conductance, suggesting insignificant evolutionary pressure to offset negative effects of high capacitance on membrane filtering with increased conductance. Copyright © 2016 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roussin, E; Archambault, L K; Wierzbicki, W
The advantages of kilovoltage cone beam CT (kV CBCT) imaging over electronic portal imaging device (EPID) such as accurate 3D anatomy, soft tissue visualization, fast rigid registration and enhanced precision on patient positioning has lead to its increasing use in clinics. The benefits of this imaging technique are at the cost of increasing the dose to healthy surrounding organs. Our center has moved toward the use of daily partial rotation kV CBCT to restrict the dose to healthy tissues. This study aims to better quantify radiation doses from different image-guidance techniques such as tangential EPID, complete and partial kV CBCTmore » for breast treatments. Cross-calibrated ionization chambers and kV calibrated Gafchromic films were used to measure the dose to the heart, lungs, breasts and skin. It was found that performing partial kV CBCT decreases the heart dose by about 36%, the lungs dose by 31%, the contralateral breast dose by 41% and the ipsilateral breast dose by 43% when compared to a full rotation CBCT. The skin dose measured for a full rotation CBCT was about 0.8 cGy for the contralateral breast and about 0.3 cGy for the ipsilateral breast. The study is still ongoing and results on skin doses for partial rotation kV CBCT as well as for tangential EPID images are upcoming.« less
Stott, Jennifer B; Barrese, Vincenzo; Jepps, Thomas A; Leighton, Emma V; Greenwood, Iain A
2015-03-01
The Kv7 family of voltage-gated potassium channels are expressed within the vasculature where they are key regulators of vascular tone and mediate cAMP-linked endogenous vasodilator responses, a pathway that is compromised in hypertension. However, the role of Kv7 channels in non-cAMP-linked vasodilator pathways has not been investigated. Natriuretic peptides are potent vasodilators, which operate primarily through the activation of a cGMP-dependent signaling pathway. This study investigated the putative role of Kv7 channels in natriuretic peptide-dependent relaxations in the vasculature of normal and hypertensive animals. Relaxant responses of rat aorta to both atrial and C-type natriuretic peptides and the nitric oxide donor sodium nitroprusside were impaired by the Kv7 blocker linopirdine (10 μmol/L) but not by the Kv7.1-specific blocker HMR1556 (10 μmol/L) and other K(+) channel blockers. In contrast, only the atrial natriuretic peptide response was sensitive to linopirdine in the renal artery. These Kv7-mediated responses were attenuated in arteries from hypertensive rats. Quantitative polymerase chain reaction showed that A- and B-type natriuretic peptide receptors were expressed at high levels in the aorta and renal artery from normal and spontaneously hypertensive rats. This study provides the first evidence that natriuretic peptide responses are impaired in hypertension and that recruitment of Kv7 channels is a key component of natriuretic peptide-dependent vasodilations. © 2014 American Heart Association, Inc.
Suppression of KV7/KCNQ potassium channel enhances neuronal differentiation of PC12 cells.
Zhou, Najing; Huang, Sha; Li, Li; Huang, Dongyang; Yan, Yunli; Du, Xiaona; Zhang, Hailin
2016-10-01
Membrane potential shift driven by electrical activity is critical in determining the cell fate of proliferation or differentiation. As such, the ion channels that underlie the membrane electrical activity play an important role in cell proliferation/differentiation. KV7/KCNQ potassium channels are critical in determining the resting membrane potentials in many neuronal cells. However, the role of these channels in cell differentiation is not well studied. In the present study, we used PC12 cells as well as primary cultured rat cortical neurons to study the role and mechanism of KV7/KCNQ in neuronal differentiation. NGF induced PC12 cell differentiation into neuron-like cells with growth of neurites showing typical growth cone-like extensions. The Kv7/KCNQ blocker XE991 promoted NGF-induced neurite outgrowth, whereas Kv7/KCNQ opener retigabine (RTG) inhibited outgrowth. M-type Kv7 channels are likely involved in regulating neurite growth because overexpression of KCNQ2/Q3 inhibited neurite growth whereas suppression of KCNQ2/Q3 with shRNA promoted neurite growth. Membrane depolarization possibly underpins enhanced neurite growth induced by the suppression of Kv7/KCNQ. Additionally, high extracellular K(+) likely induced membrane depolarization and also promoted neurite growth. Finally, T-type Ca(2+) channels may be involved in membrane-depolarization-induced neurite growth. This study provides a new perspective for understanding neuronal differentiation as well as KV7/KCNQ channel function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Calcineurin Dysregulation Underlies Spinal Cord Injury-Induced K+ Channel Dysfunction in DRG Neurons
Zemel, Benjamin M.; Brown, Eric V.; Urban, Mark W.; Tymanskyj, Stephen R.; Lepore, Angelo C.
2017-01-01
Dysfunction of the fast-inactivating Kv3.4 potassium current in dorsal root ganglion (DRG) neurons contributes to the hyperexcitability associated with persistent pain induced by spinal cord injury (SCI). However, the underlying mechanism is not known. In light of our previous work demonstrating modulation of the Kv3.4 channel by phosphorylation, we investigated the role of the phosphatase calcineurin (CaN) using electrophysiological, molecular, and imaging approaches in adult female Sprague Dawley rats. Pharmacological inhibition of CaN in small-diameter DRG neurons slowed repolarization of the somatic action potential (AP) and attenuated the Kv3.4 current. Attenuated Kv3.4 currents also exhibited slowed inactivation. We observed similar effects on the recombinant Kv3.4 channel heterologously expressed in Chinese hamster ovary cells, supporting our findings in DRG neurons. Elucidating the molecular basis of these effects, mutation of four previously characterized serines within the Kv3.4 N-terminal inactivation domain eliminated the effects of CaN inhibition on the Kv3.4 current. SCI similarly induced concurrent Kv3.4 current attenuation and slowing of inactivation. Although there was little change in CaN expression and localization after injury, SCI induced upregulation of the native regulator of CaN 1 (RCAN1) in the DRG at the transcript and protein levels. Consistent with CaN inhibition resulting from RCAN1 upregulation, overexpression of RCAN1 in naive DRG neurons recapitulated the effects of pharmacological CaN inhibition on the Kv3.4 current and the AP. Overall, these results demonstrate a novel regulatory pathway that links CaN, RCAN1, and Kv3.4 in DRG neurons. Dysregulation of this pathway might underlie a peripheral mechanism of pain sensitization induced by SCI. SIGNIFICANCE STATEMENT Pain sensitization associated with spinal cord injury (SCI) involves poorly understood maladaptive modulation of neuronal excitability. Although central mechanisms have received significant attention, recent studies have identified peripheral nerve hyperexcitability as a driver of persistent pain signaling after SCI. However, the ion channels and signaling molecules responsible for this change in primary sensory neuron excitability are still not well defined. To address this problem, this study used complementary electrophysiological and molecular methods to determine how Kv3.4, a voltage-gated K+ channel robustly expressed in dorsal root ganglion neurons, becomes dysfunctional upon calcineurin (CaN) inhibition. The results strongly suggest that CaN inhibition underlies SCI-induced dysfunction of Kv3.4 and the associated excitability changes through upregulation of the native regulator of CaN 1 (RCAN1). PMID:28751455
Distinct subunit contributions to the activation of M-type potassium channels by PI(4,5)P2
Telezhkin, Vsevolod; Brown, David A.
2012-01-01
Low-threshold voltage-gated M-type potassium channels (M channels) are tetraheteromers, commonly of two Kv7.2 and two Kv7.3 subunits. Though gated by voltage, the channels have an absolute requirement for binding of the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) to open. We have investigated the quantitative relation between the concentration of a water-soluble PI(4,5)P2 analog, dioctanoyl-PI(4,5)P2 (DiC8-PI(4,5)P2), and channel open probability (Popen) by fast application of increasing concentrations of DiC8-PI(4,5)P2 to the inside face of membrane patches excised from Chinese hamster ovary cells expressing M channels as heteromeric Kv7.2/7.3 subunits. The rationale for the experiments is that this will mimic the effect of changes in membrane PI(4,5)P2 concentration. Single-channel conductances from channel current–voltage relations in cell-attached mode were 9.2 ± 0.1 pS with a 2.5-mM pipette [K+]. Plots of Popen against DiC8-PI(4,5)P2 concentration were best fitted using a two-component concentration–Popen relationship with high and low affinity, half-maximal effective concentration (EC50) values of 1.3 ± 0.14 and 75.5 ± 2.5 µM, respectively, and Hill slopes of 1.4 ± 0.06. In contrast, homomeric channels from cells expressing only Kv7.2 or Kv7.3 constructs yielded single-component curves with EC50 values of 76.2 ± 19.9 or 3.6 ± 1.0 µM, respectively. When wild-type (WT) Kv7.2 was coexpressed with a mutated Kv7.3 subunit with >100-fold reduced sensitivity to PI(4,5)P2, the high-affinity component of the activation curve was lost. Fitting the data for WT and mutant channels to an activation mechanism with independent PI(4,5)P2 binding to two Kv7.2 and two Kv7.3 subunits suggests that the two components of the M-channel activation curve correspond to the interaction of PI(4,5)P2 with the Kv7.3 and Kv7.2 subunits, respectively, that channels can open when only the two Kv7.3 subunits have bound DiC8-PI(4,5)P2, and that maximum channel opening requires binding to all four subunits. PMID:22689829
Windley, Monique J; Mann, Stefan A; Vandenberg, Jamie I; Hill, Adam P
2016-07-01
Drug block of voltage-gated potassium channel subtype 11.1 human ether-a-go-go related gene (Kv11.1) (hERG) channels, encoded by the KCNH2 gene, is associated with reduced repolarization of the cardiac action potential and is the predominant cause of acquired long QT syndrome that can lead to fatal cardiac arrhythmias. Current safety guidelines require that potency of KV11.1 block is assessed in the preclinical phase of drug development. However, not all drugs that block KV11.1 are proarrhythmic, meaning that screening on the basis of equilibrium measures of block can result in high attrition of potentially low-risk drugs. The basis of the next generation of drug-screening approaches is set to be in silico risk prediction, informed by in vitro mechanistic descriptions of drug binding, including measures of the kinetics of block. A critical issue in this regard is characterizing the temperature dependence of drug binding. Specifically, it is important to address whether kinetics relevant to physiologic temperatures can be inferred or extrapolated from in vitro data gathered at room temperature in high-throughout systems. Here we present the first complete study of the temperature-dependent kinetics of block and unblock of a proarrhythmic drug, cisapride, to KV11.1. Our data highlight a complexity to binding that manifests at higher temperatures and can be explained by accumulation of an intermediate, non-blocking encounter-complex. These results suggest that for cisapride, physiologically relevant kinetic parameters cannot be simply extrapolated from those measured at lower temperatures; rather, data gathered at physiologic temperatures should be used to constrain in silico models that may be used for proarrhythmic risk prediction. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Subbotina, Julia; Yarov-Yarovoy, Vladimir; Lees-Miller, James; Durdagi, Serdar; Guo, Jiqing; Duff, Henry J; Noskov, Sergei Yu
2010-11-01
The hERG1 gene (Kv11.1) encodes a voltage-gated potassium channel. Mutations in this gene lead to one form of the Long QT Syndrome (LQTS) in humans. Promiscuous binding of drugs to hERG1 is known to alter the structure/function of the channel leading to an acquired form of the LQTS. Expectably, creation and validation of reliable 3D model of the channel have been a key target in molecular cardiology and pharmacology for the last decade. Although many models were built, they all were limited to pore domain. In this work, a full model of the hERG1 channel is developed which includes all transmembrane segments. We tested a template-driven de-novo design with ROSETTA-membrane modeling using side-chain placements optimized by subsequent molecular dynamics (MD) simulations. Although backbone templates for the homology modeled parts of the pore and voltage sensors were based on the available structures of KvAP, Kv1.2 and Kv1.2-Kv2.1 chimera channels, the missing parts are modeled de-novo. The impact of several alignments on the structure of the S4 helix in the voltage-sensing domain was also tested. Herein, final models are evaluated for consistency to the reported structural elements discovered mainly on the basis of mutagenesis and electrophysiology. These structural elements include salt bridges and close contacts in the voltage-sensor domain; and the topology of the extracellular S5-pore linker compared with that established by toxin foot-printing and nuclear magnetic resonance studies. Implications of the refined hERG1 model to binding of blockers and channels activators (potent new ligands for channel activations) are discussed. © 2010 Wiley-Liss, Inc.
A compact submicrosecond, high current generator
NASA Astrophysics Data System (ADS)
Kovalchuk, B. M.; Kharlov, A. V.; Zorin, V. B.; Zherlitsyn, A. A.
2009-08-01
Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 Ω damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (˜0.08 Ω). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24×1.2×0.18 m3 and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.
Smith, Dean O.; Rosenheimer, Julie L.; Kalil, Ronald E.
2008-01-01
Background Because of the importance of voltage-activated K+ channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Methodology/Principal Findings Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and βIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. Conclusions/Significance We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K+ currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells. PMID:18270591
Alternative splicing modulates Kv channel clustering through a molecular ball and chain mechanism
NASA Astrophysics Data System (ADS)
Zandany, Nitzan; Marciano, Shir; Magidovich, Elhanan; Frimerman, Teddy; Yehezkel, Rinat; Shem-Ad, Tzilhav; Lewin, Limor; Abdu, Uri; Orr, Irit; Yifrach, Ofer
2015-03-01
Ion channel clustering at the post-synaptic density serves a fundamental role in action potential generation and transmission. Here, we show that interaction between the Shaker Kv channel and the PSD-95 scaffold protein underlying channel clustering is modulated by the length of the intrinsically disordered C terminal channel tail. We further show that this tail functions as an entropic clock that times PSD-95 binding. We thus propose a ‘ball and chain’ mechanism to explain Kv channel binding to scaffold proteins, analogous to the mechanism describing channel fast inactivation. The physiological relevance of this mechanism is demonstrated in that alternative splicing of the Shaker channel gene to produce variants of distinct tail lengths resulted in differential channel cell surface expression levels and clustering metrics that correlate with differences in affinity of the variants for PSD-95. We suggest that modulating channel clustering by specific spatial-temporal spliced variant targeting serves a fundamental role in nervous system development and tuning.
NASA Astrophysics Data System (ADS)
Baik, Ki-Ho; Lem, Homer Y.; Dean, Robert L.; Osborne, Stephen; Mueller, Mark; Abboud, Frank E.
2003-08-01
In this paper, a process established with a positive-tone chemically amplified resist (CAR) from TOK REAP200 and Fujifilm Arch FEP171 and 50kV MEBES system is discussed. This TOK resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. In the mask industries, the most popular positive tone CAR is FEP171, which is a high activation energy type CAR. REAP (Raster E-beam Advanced Process) 200 is low activation energy type and new acetal protecting polymer. In this study, we compared to these different type resists in terms of contrast, PAB and PEB latitude, resist profile, footing, T-topping, PED stability, LER, Global CDU (Critical Dimension Uniformity) and resolution. The REAP200 Resist obtained 75nm isolated lines and spaces, 90nm dense patterns with vertical profile, and a good stability of delay time.
NASA Astrophysics Data System (ADS)
Bykov, Yu. A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.
2016-12-01
A pulsed power source with voltage amplitude up to 800 kV for fast charging (350-400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted in the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Popov, G. V.
A pulsed power source with voltage amplitude up to 800 kV for fast charging (350–400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted inmore » the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.« less
The anode power supply for the ECRH system on the J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Donghui, XIA; Fangtai, CUI; Changhai, LIU; Zhenxiong, YU; Yikun, JIN; Zhijiang, WANG; J-TEXT, Team1
2018-01-01
The electron cyclotron resonance heating (ECRH) system with a 60 GHz/200 kW/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD studies. Simultaneously, an anode power supply (APS) has been rebuilt and tested for the output power control of the gyrotron, of which the input voltage is derived from an 80 kV negative cathode power supply. The control strategy by controlling the grid voltage of the tetrode TH5186 is applied to obtain an accurate anode climbing voltage, of which the output voltage can be obtained from 0-30 kV with respect to the cathode power supply. The characteristics of the APS, including control, protection, modulation, and output waveform, were tested with a 100 kV/60 A negative cathode power supply, a dummy load and the ECRH control system. The results indicate that the APS can meet the requirements of the ECRH system on J-TEXT.
Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z
2017-07-01
Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.
Fletcher, Emily V.; Simon, Christian M.; Pagiazitis, John G.; Chalif, Joshua I.; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z.
2017-01-01
Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contribution of their synaptic partners to the disease process is largely unknown. Here, we show that in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission we observed a decrease in the motor neuron firing which could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Increasing neuronal activity pharmacologically by chronic exposure in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease. PMID:28504671
Voltage-gated K+ channel modulators as neuroprotective agents.
Leung, Yuk-Man
2010-05-22
A manifestation in neurodegeneration is apoptosis of neurons. Neurons undergoing apoptosis may lose a substantial amount of cytosolic K+ through a number of pathways including K+ efflux via voltage-gated K+ (Kv) channels. The consequent drop in cytosolic [K+] relieves inhibition of an array of pro-apoptotic enzymes such as caspases and nucleases. Blocking Kv channels has been known to prevent neuronal apoptosis by preventing K+ efflux. Some neural diseases such as epilepsy are caused by neuronal hyperexcitability, which eventually may lead to neuronal apoptosis. Reduction in activities of A-type Kv channels and Kv7 subfamily members is amongst the etiological causes of neuronal hyperexcitation; enhancing the opening of these channels may offer opportunities of remedy. This review discusses the potential uses of Kv channel modulators as neuroprotective drugs.
Balajthy, András; Somodi, Sándor; Pethő, Zoltán; Péter, Mária; Varga, Zoltán; Szabó, Gabriella P; Paragh, György; Vígh, László; Panyi, György; Hajdu, Péter
2016-08-01
In vitro manipulation of membrane sterol level affects the regulation of ion channels and consequently certain cellular functions; however, a comprehensive study that confirms the pathophysiological significance of these results is missing. The malfunction of 7-dehydrocholesterol (7DHC) reductase in Smith-Lemli-Opitz syndrome (SLOS) leads to the elevation of the 7-dehydrocholesterol level in the plasma membrane. T lymphocytes were isolated from SLOS patients to assess the effect of the in vivo altered membrane sterol composition on the operation of the voltage-gated Kv1.3 channel and the ion channel-dependent mitogenic responses. We found that the kinetic and equilibrium parameters of Kv1.3 activation changed in SLOS cells. Identical changes in Kv1.3 operation were observed when control/healthy T cells were loaded with 7DHC. Removal of the putative sterol binding sites on Kv1.3 resulted in a phenotype that was not influenced by the elevation in membrane sterol level. Functional assays exhibited impaired activation and proliferation rate of T cells probably partially due to the modified Kv1.3 operation. We concluded that the altered membrane sterol composition hindered the operation of Kv1.3 as well as the ion channel-controlled T cell functions.
Lin, Lin; Sun, Wei; Kung, Faith; Dell'Acqua, Mark L; Hoffman, Dax A
2011-01-26
Kv4.2, as the primary α-subunit of rapidly inactivating, A-type voltage-gated K(+) (Kv) channels expressed in hippocampal CA1 pyramidal dendrites, plays a critical role in regulating their excitability. Activity-dependent trafficking of Kv4.2 relies on C-terminal protein kinase A (PKA) phosphorylation. A-kinase-anchoring proteins (AKAPs) target PKA to glutamate receptor and ion channel complexes to allow for discrete, local signaling. As part of a previous study, we showed that AKAP79/150 interacts with Kv4.2 complexes and that the two proteins colocalize in hippocampal neurons. However, the nature and functional consequence of their interaction has not been previously explored. Here, we report that the C-terminal domain of Kv4.2 interacts with an internal region of AKAP79/150 that overlaps with its MAGUK (membrane-associated guanylate kinase)-binding domain. We show that AKAP79/150-anchored PKA activity controls Kv4.2 surface expression in heterologous cells and hippocampal neurons. Consistent with these findings, disrupting PKA anchoring led to a decrease in neuronal excitability, while preventing dephosphorylation by the phosphatase calcineurin resulted in increased excitability. These results demonstrate that AKAP79/150 provides a platform for dynamic PKA regulation of Kv4.2 expression, fundamentally impacting CA1 excitability.
Generation and analysis of clinically relevant breast imaging x-ray spectra.
Hernandez, Andrew M; Seibert, J Anthony; Nosratieh, Anita; Boone, John M
2017-06-01
The purpose of this work was to develop and make available x-ray spectra for some of the most widely used digital mammography (DM), breast tomosynthesis (BT), and breast CT (bCT) systems in North America. The Monte Carlo code MCNP6 was used to simulate minimally filtered (only beryllium) x-ray spectra at 8 tube potentials from 20 to 49 kV for DM/BT, and 9 tube potentials from 35 to 70 kV for bCT. Vendor-specific anode compositions, effective anode angles, focal spot sizes, source-to-detector distances, and beryllium filtration were simulated. For each 0.5 keV energy bin in all simulated spectra, the fluence was interpolated using cubic splines across the range of simulated tube potentials to produce spectra in 1 kV increments from 20 to 49 kV for DM/BT and from 35 to 70 kV for bCT. The HVL of simulated spectra with conventional filtration (at 35 kV for DM/BT and 49 kV for bCT) was used to assess spectral differences resulting from variations in: (a) focal spot size (0.1 and 0.3 mm IEC), (b) solid angle at the detector (i.e., small and large FOV size), and (c) geometrical specifications for vendors that employ the same anode composition. Averaged across all DM/BT vendors, variations in focal spot and FOV size resulted in HVL differences of 2.2% and 0.9%, respectively. Comparing anode compositions separately, the HVL differences for Mo (GE, Siemens) and W (Hologic, Philips, and Siemens) spectra were 0.3% and 0.6%, respectively. Both the commercial Koning and prototype "Doheny" (UC Davis) bCT systems utilize W anodes with a 0.3 mm focal spot. Averaged across both bCT systems, variations in FOV size resulted in a 2.2% difference in HVL. In addition, the Koning spectrum was slightly harder than Doheny with a 4.2% difference in HVL. Therefore to reduce redundancy, a generic DM/BT system and a generic bCT system were used to generate the new spectra reported herein. The spectral models for application to DM/BT were dubbed the Molybdenum, Rhodium, and Tungsten Anode Spectral Models using Interpolating Cubic Splines (MASMICS M -T , RASMICS M-T , and TASMICS M-T ; subscript "M-T" indicating mammography and tomosynthesis). When compared against reference models (MASMIP M , RASMIP M , and TASMIP M ; subscript "M" indicating mammography), the new spectral models were in close agreement with mean differences of 1.3%, -1.3%, and -3.3%, respectively, across tube potential comparisons of 20, 30, and 40 kV with conventional filtration. TASMICS b CT -generated bCT spectra were also in close agreement with the reference TASMIP model with a mean difference of -0.8%, across tube potential comparisons of 35, 49, and 70 kV with 1.5 mm Al filtration. The Mo, Rh, and W anode spectra for application in DM and BT (MASMICS M-T , RASMICS M-T , and TASMICS M-T ) and the W anode spectra for bCT (TASMICS bCT ) as described in this study should be useful for individuals interested in modeling the performance of modern breast x-ray imaging systems including dual-energy mammography which extends to 49 kV. These new spectra are tabulated in spreadsheet form and are made available to any interested party. © 2017 American Association of Physicists in Medicine.
Perry, Matthew D; Ng, Chai Ann; Phan, Kevin; David, Erikka; Steer, Kieran; Hunter, Mark J; Mann, Stefan A; Imtiaz, Mohammad; Hill, Adam P; Ke, Ying; Vandenberg, Jamie I
2016-07-15
Most missense long QT syndrome type 2 (LQTS2) mutations result in Kv11.1 channels that show reduced levels of membrane expression. Pharmacological chaperones that rescue mutant channel expression could have therapeutic potential to reduce the risk of LQTS2-associated arrhythmias and sudden cardiac death, but only if the mutant Kv11.1 channels function normally (i.e. like WT channels) after membrane expression is restored. Fewer than half of mutant channels exhibit relatively normal function after rescue by low temperature. The remaining rescued missense mutant Kv11.1 channels have perturbed gating and/or ion selectivity characteristics. Co-expression of WT subunits with gating defective missense mutations ameliorates but does not eliminate the functional abnormalities observed for most mutant channels. For patients with mutations that affect gating in addition to expression, it may be necessary to use a combination therapy to restore both normal function and normal expression of the channel protein. In the heart, Kv11.1 channels pass the rapid delayed rectifier current (IKr ) which plays critical roles in repolarization of the cardiac action potential and in the suppression of arrhythmias caused by premature stimuli. Over 500 inherited mutations in Kv11.1 are known to cause long QT syndrome type 2 (LQTS2), a cardiac electrical disorder associated with an increased risk of life threatening arrhythmias. Most missense mutations in Kv11.1 reduce the amount of channel protein expressed at the membrane and, as a consequence, there has been considerable interest in developing pharmacological agents to rescue the expression of these channels. However, pharmacological chaperones will only have clinical utility if the mutant Kv11.1 channels function normally after membrane expression is restored. The aim of this study was to characterize the gating phenotype for a subset of LQTS2 mutations to assess what proportion of mutations may be suitable for rescue. As an initial screen we used reduced temperature to rescue expression defects of mutant channels expressed in Xenopus laevis oocytes. Over half (∼56%) of Kv11.1 mutants exhibited functional gating defects that either dramatically reduced the amount of current contributing to cardiac action potential repolarization and/or reduced the amount of protective current elicited in response to premature depolarizations. Our data demonstrate that if pharmacological rescue of protein expression defects is going to have clinical utility in the treatment of LQTS2 then it will be important to assess the gating phenotype of LQTS2 mutations before attempting rescue. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Sharma, Surender Kumar; Shyam, Anurag
2015-02-01
High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.
Li, Na; Lu, Zhan-ying; Yu, Li-hua; Burnstock, Geoffrey; Deng, Xiao-ming; Ma, Bei
2014-03-18
ATP and P2X receptors play important roles in the modulation of trigeminal neuropathic pain, while the role of G protein-coupled P2Y₂ receptors and the underlying mechanisms are less clear. The threshold and frequency of action potentials, fast inactivating transient K+ channels (IA) are important regulators of membrane excitability in sensory neurons because of its vital role in the control of the spike onset. In this study, pain behavior tests, QT-RT-PCR, immunohistochemical staining, and patch-clamp recording, were used to investigate the role of P2Y₂ receptors in pain behaviour. In control rats: 1) UTP, an agonist of P2Y₂/P2Y₄ receptors, caused a significant decrease in the mean threshold intensities for evoking action potentials and a striking increase in the mean number of spikes evoked by TG neurons. 2) UTP significantly inhibited IA and the expression of Kv1.4, Kv3.4 and Kv4.2 subunits in TG neurons, which could be reversed by the P2 receptor antagonist suramin and the ERK antagonist U0126. In ION-CCI (chronic constriction injury of infraorbital nerve) rats: 1) mRNA levels of Kv1.4, Kv3.4 and Kv4.2 subunits were significantly decreased, while the protein level of phosphorylated ERK was significantly increased. 2) When blocking P2Y₂ receptors by suramin or injection of P2Y2R antisense oligodeoxynucleotides both led to a time- and dose-dependent reverse of allodynia in ION-CCI rats. 3) Injection of P2Y₂ receptor antisense oligodeoxynucleotides induced a pronounced decrease in phosphorylated ERK expression and a significant increase in Kv1.4, Kv3.4 and Kv4.2 subunit expression in trigeminal ganglia. Our data suggest that inhibition of P2Y₂ receptors leads to down-regulation of ERK-mediated phosphorylation and increase of the expression of I(A)-related Kv channels in trigeminal ganglion neurons, which might contribute to the clinical treatment of trigeminal neuropathic pain.
Abdul Aziz,, Siti Aishah; Mohd Saparudin, Abdul Khaliq; Harun, Ahmad Zaky
2013-01-01
Background: Different target-filter combinations in computed radiography have different impacts on the dose and image quality in digital radiography. This study aims to evaluate the mean glandular dose (MGD) and modulation transfer function (MTF) of various target-filter combinations by investigating the signal intensities of X-ray beams. Methods: General Electric (GE) Senographe DMR Plus mammography unit was used for MGD and MTF evaluation. The measured MGD was compared with the dose reference level (DRL), whereas the MTF was evaluated using ImageJ 1.46o software. A modified Mammography Accreditation Phantom RMI 156 was exposed using different target-filter combinations of molybdenum-molybdenum (Mo-Mo), molybdenum-rhodium (Mo-Rh) and rhodium-rhodium (Rh-Rh) at two different tube voltages, 26 kV and 32 kV with 50 mAs. Results: In the MGD evaluations, all target-filters gave an MGD value of < 1.5 mGy. The one-way ANOVA test showed a highly significant interaction between the MGD and the kilovoltage and target-filter material used (26 kV: F (2,12) = 49,234, P = 0.001;32 kV: F (2,12) = 89,972, P = 0.001). A Tukey post-hoc test revealed that the MGD for 26 kV and 32 kV was highly affected by the target-filter combinations. The test of homogeneity of variances indicates that the MGD varies significantly for 26 kV and 32 kV images (0.045 and 0.030 (P < 0.05), respectively). However, the one-way ANOVA for the MTF shows that no significant difference exists between the target-filter combinations used with 26 kV and 32 kV images either in parallel or perpendicular to the chest wall side F (2,189) = 0.26, P > 0.05). Conclusion: Higher tube voltage and atomic number target-filter yield higher MGD values. However, the MTF is independent of the X-ray energy and the type of target-filter combinations used. PMID:23966821
Kawaguchi, Ai; Matsunaga, Yuta; Suzuki, Shoichi; Chida, Koichi
2017-03-01
This study aimed to investigate the energy dependence and the angular dependence of commercially available optically stimulated luminescence (OSL) point dosimeters in the mammography energy range. The energy dependence was evaluated to calculate calibration factors (CFs). The half-value layer range was 0.31-0.60 mmAl (Mo/Mo 22-28 kV, Mo/Rh 28-32 kV, and W/Rh 30-34 kV at 2-kV intervals). Mo/Rh 28 kV was the reference condition. Angular dependence was tested by rotating the X-ray tube from -90° to 90° in 30° increments, and signal counts from angled nanoDots were normalized to the 0° signal counts. Angular dependence was compared with three tube voltage and target/filter combinations (Mo/Mo 26 kV, Mo/Rh 28 kV and W/Rh 32 kV). The CFs of energy dependence were 0.94-1.06. In Mo/Mo 26-28 kV and Mo/Rh 28-32 kV, the range of CF was 0.99-1.01, which was very similar. For angular dependence, the most deteriorated normalized values (Mo/Mo, 0.37; Mo/Rh, 0.43; and W/Rh, 0.58) were observed when the X-ray tube was rotated at a 90° angle, compared to 0°. The most angular dependences of ± 30°, 60°, and 90° decreased by approximately 4%, 14%, and 63% respectively. The mean deteriorated measurement 30° intervals from 0° to ± 30° was 2%, from ± 30° to ± 60° was 8%, and from ± 60° to ± 90° was 40%. The range of energy dependence in typical mammography energy range was not as much as that in general radiography and computed tomography. For accurate measurement using nanoDot, the tilt needs to be under 30°. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Brunetti, Orazio; Imbrici, Paola; Botti, Fabio Massimo; Pettorossi, Vito Enrico; D'Adamo, Maria Cristina; Valentino, Mario; Zammit, Christian; Mora, Marina; Gibertini, Sara; Di Giovanni, Giuseppe; Muscat, Richard; Pessia, Mauro
2012-09-01
Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by myokymia and attacks of ataxic gait often precipitated by stress. Several genetic mutations have been identified in the Shaker-like K(+) channel Kv1.1 (KCNA1) of EA1 individuals, including V408A, which result in remarkable channel dysfunction. By inserting the heterozygous V408A, mutation in one Kv1.1 allele, a mouse model of EA1 has been generated (Kv1.1(V408A/+)). Here, we investigated the neuromuscular transmission of Kv1.1(V408A/+) ataxic mice and their susceptibility to physiologically relevant stressors. By using in vivo preparations of lateral gastrocnemius (LG) nerve-muscle from Kv1.1(+/+) and Kv1.1(V408A/+) mice, we show that the mutant animals exhibit spontaneous myokymic discharges consisting of repeated singlets, duplets or multiplets, despite motor nerve axotomy. Two-photon laser scanning microscopy from the motor nerve, ex vivo, revealed spontaneous Ca(2+) signals that occurred abnormally only in preparations dissected from Kv1.1(V408A/+) mice. Spontaneous bursting activity, as well as that evoked by sciatic nerve stimulation, was exacerbated by muscle fatigue, ischemia and low temperatures. These stressors also increased the amplitude of compound muscle action potential. Such abnormal neuromuscular transmission did not alter fiber type composition, neuromuscular junction and vascularization of LG muscle, analyzed by light and electron microscopy. Taken together these findings provide direct evidence that identifies the motor nerve as an important generator of myokymic activity, that dysfunction of Kv1.1 channels alters Ca(2+) homeostasis in motor axons, and also strongly suggest that muscle fatigue contributes more than PNS fatigue to exacerbate the myokymia/neuromyotonia phenotype. More broadly, this study points out that juxtaparanodal K(+) channels composed of Kv1.1 subunits exert an important role in dampening the excitability of motor nerve axons during fatigue or ischemic insult. Copyright © 2012 Elsevier Inc. All rights reserved.
S-glutathionylation of an auxiliary subunit confers redox sensitivity to Kv4 channel inactivation.
Jerng, Henry H; Pfaffinger, Paul J
2014-01-01
Reactive oxygen species (ROS) regulate ion channels, modulate neuronal excitability, and contribute to the etiology of neurodegenerative disorders. ROS differentially suppress fast "ball-and-chain" N-type inactivation of cloned Kv1 and Kv3 potassium channels but not of Kv4 channels, likely due to a lack of reactive cysteines in Kv4 N-termini. Recently, we discovered that N-type inactivation of Kv4 channel complexes can be independently conferred by certain N-terminal variants of Kv4 auxiliary subunits (DPP6a, DPP10a). Here, we report that both DPP6a and DPP10a, like Kv subunits with redox-sensitive N-type inactivation, contain a highly conserved cysteine in their N-termini (Cys-13). To test if N-type inactivation mediated by DPP6a or DPP10a is redox sensitive, Xenopus oocyte recordings were performed to examine the effects of two common oxidants, tert-butyl hydroperoxide (tBHP) and diamide. Both oxidants markedly modulate DPP6a- or DPP10a-conferred N-type inactivation of Kv4 channels, slowing the overall inactivation and increasing the peak current. These functional effects are fully reversed by the reducing agent dithiothreitol (DTT) and appear to be due to a selective modulation of the N-type inactivation mediated by these auxiliary subunits. Mutation of DPP6a Cys-13 to serine eliminated the tBHP or diamide effects, confirming the importance of Cys-13 to the oxidative regulation. Biochemical studies designed to elucidate the underlying molecular mechanism show no evidence of protein-protein disulfide linkage formation following cysteine oxidation. Instead, using a biotinylated glutathione (BioGEE) reagent, we discovered that oxidation by tBHP or diamide leads to S-glutathionylation of Cys-13, suggesting that S-glutathionylation underlies the regulation of fast N-type inactivation by redox. In conclusion, our studies suggest that Kv4-based A-type current in neurons may show differential redox sensitivity depending on whether DPP6a or DPP10a is highly expressed, and that the S-glutathionylation mechanism may play a previously unappreciated role in mediating excitability changes and neuropathologies associated with ROS.
Singleton, C B; Valenzuela, S M; Walker, B D; Tie, H; Wyse, K R; Bursill, J A; Qiu, M R; Breit, S N; Campbell, T J
1999-01-01
The Kv4.3 gene is believed to encode a large proportion of the transient outward current (Ito), responsible for the early phase of repolarization of the human cardiac action potential. There is evidence that this current is involved in the dispersion of refractoriness which develops during myocardial ischaemia and which predisposes to the development of potentially fatal ventricular tachyarrhythmias. Epidemiological, clinical, animal, and cellular studies indicate that these arrhythmias may be ameliorated in myocardial ischaemia by n-3 polyunsaturated fatty acids (n-3 PUFA) present in fish oils. We describe stable transfection of the Kv4.3 gene into a mammalian cell line (Chinese hamster ovary cells), and using patch clamp techniques have shown that the resulting current closely resembles human Ito. The current is rapidly activating and inactivating, with both processes being well fit by double exponential functions (time constants of 3.8±0.2 and 5.3±0.4 ms for activation and 20.0±1.2 and 96.6±6.7 ms for inactivation at +45 mV at 23°C). Activation and steady state inactivation both show voltage dependence (V1/2 of activation=−6.7±2.5 mV, V1/2 of steady state inactivation=−51.3±0.2 mV at 23°C). Current inactivation and recovery from inactivation are faster at physiologic temperature (37°C) compared to room temperature (23°C). The n-3 PUFA docosahexaenoic acid blocks the Kv4.3 current with an IC50 of 3.6 μmol L−1. Blockade of the transient outward current may be an important mechanism by which n-3 PUFA provide protection against the development of ventricular fibrillation during myocardial ischaemia. PMID:10433502
Contribution of voltage-dependent K+ channels to metabolic control of coronary blood flow
Berwick, Zachary C.; Dick, Gregory M.; Moberly, Steven P.; Kohr, Meredith C.; Sturek, Michael; Tune, Johnathan D.
2011-01-01
The purpose of this investigation was to test the hypothesis that KV channels contribute to metabolic control of coronary blood flow and that decreases in KV channel function and/or expression significantly attenuate myocardial oxygen supply-demand balance in the metabolic syndrome (MetS). Experiments were conducted in conscious, chronically instrumented Ossabaw swine fed either a normal maintenance diet or an excess calorie atherogenic diet that produces the clinical phenotype of early MetS. Data were obtained under resting conditions and during graded treadmill exercise before and after inhibition of KV channels with 4-aminopyridine (4-AP, 0.3 mg/kg, i.v.). In lean-control swine, 4-AP reduced coronary blood flow ~15% at rest and ~20% during exercise. Inhibition of KV channels also increased aortic pressure (P < 0.01) while reducing coronary venous Po2 (P < 0.01) at a given level of myocardial oxygen consumption (MVo2). Administration of 4-AP had no effect on coronary blood flow, aortic pressure, or coronary venous Po2 in swine with MetS. The lack of response to 4-AP in MetS swine was associated with a ~20% reduction in coronary KV current (P < 0.01) and decreased expression of KV1.5 channels in coronary arteries (P < 0.01). Together, these data demonstrate that KV channels play an important role in balancing myocardial oxygen delivery with metabolism at rest and during exercise-induced increases in MVo2. Our findings also indicate that decreases in KV channel current and expression contribute to impaired control of coronary blood flow in the MetS. PMID:21771599
Remodeling of Kv1.5 channel in right atria from Han Chinese patients with atrial fibrillation.
Ou, Xian-hong; Li, Miao-ling; Liu, Rui; Fan, Xin-rong; Mao, Liang; Fan, Xue-hui; Yang, Yan; Zeng, Xiao-rong
2015-04-28
The incidence of atrial fibrillation (AF) in rheumatic heart diseases (RHD) is very high and increases with age. Occurrence and maintenance of AF are very complicated process accompanied by many different mechanisms. Ion-channel remodeling, including the voltage-gated potassium channel Kv1.5, plays an important role in the pathophysiology of AF. However, the changes of Kv1.5 channel expression in Han Chinese patients with RHD and AF remain poorly understood. The aim of the present study was to investigate whether the Kv1.5 channels of the right atria may be altered with RHD, age, and sex to contribute to AF. Right atrial appendages were obtained from 20 patients with normal cardiac functions who had undergone surgery, and 26 patients with AF. Subjects were picked from 4 groups: adult and aged patients in normal sinus rhythm (SR) and AF. Patients were divided into non-RHD and RHD groups or men and women groups in normal SR and AF, respectively. The expression of Kv1.5 protein and messenger RNA (mRNA) were measured using Western blotting and polymerase chain reaction (PCR) method, respectively. Compared with the SR group, the expression of Kv1.5 protein decreased significantly in the AF group. However, neither Kv1.5 protein nor KCNA5 mRNA had significant differences in adult and aged groups, non-RHD and RHD group, and men and women group of AF. The expression of Kv1.5 channel protein changes with AF but not with age, RHD, and sex in AF.
KCNE1 remodels the voltage sensor of Kv7.1 to modulate channel function.
Wu, Dick; Pan, Hua; Delaloye, Kelli; Cui, Jianmin
2010-12-01
The KCNE1 auxiliary subunit coassembles with the Kv7.1 channel and modulates its properties to generate the cardiac I(Ks) current. Recent biophysical evidence suggests that KCNE1 interacts with the voltage-sensing domain (VSD) of Kv7.1. To investigate the mechanism of how KCNE1 affects the VSD to alter the voltage dependence of channel activation, we perturbed the VSD of Kv7.1 by mutagenesis and chemical modification in the absence and presence of KCNE1. Mutagenesis of S4 in Kv7.1 indicates that basic residues in the N-terminal half (S4-N) and C-terminal half (S4-C) of S4 are important for stabilizing the resting and activated states of the channel, respectively. KCNE1 disrupts electrostatic interactions involving S4-C, specifically with the lower conserved glutamate in S2 (Glu(170) or E2). Likewise, Trp scanning of S4 shows that mutations to a cluster of residues in S4-C eliminate current in the presence of KCNE1. In addition, KCNE1 affects S4-N by enhancing MTS accessibility to the top of the VSD. Consistent with the structure of Kv channels and previous studies on the KCNE1-Kv7.1 interaction, these results suggest that KCNE1 alters the interactions of S4 residues with the surrounding protein environment, possibly by changing the protein packing around S4, thereby affecting the voltage dependence of Kv7.1. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Modulatory mechanisms and multiple functions of somatodendritic A-type K+ channel auxiliary subunits
Jerng, Henry H.; Pfaffinger, Paul J.
2014-01-01
Auxiliary subunits are non-conducting, modulatory components of the multi-protein ion channel complexes that underlie normal neuronal signaling. They interact with the pore-forming α-subunits to modulate surface distribution, ion conductance, and channel gating properties. For the somatodendritic subthreshold A-type potassium (ISA) channel based on Kv4 α-subunits, two types of auxiliary subunits have been extensively studied: Kv channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPLPs). KChIPs are cytoplasmic calcium-binding proteins that interact with intracellular portions of the Kv4 subunits, whereas DPLPs are type II transmembrane proteins that associate with the Kv4 channel core. Both KChIPs and DPLPs genes contain multiple start sites that are used by various neuronal populations to drive the differential expression of functionally distinct N-terminal variants. In turn, these N-terminal variants generate tremendous functional diversity across the nervous system. Here, we focus our review on (1) the molecular mechanism underlying the unique properties of different N-terminal variants, (2) the shaping of native ISA properties by the concerted actions of KChIPs and DPLP variants, and (3) the surprising ways that KChIPs and DPLPs coordinate the activity of multiple channels to fine-tune neuronal excitability. Unlocking the unique contributions of different auxiliary subunit N-terminal variants may provide an important opportunity to develop novel targeted therapeutics to treat numerous neurological disorders. PMID:24723849
Jerng, Henry H; Pfaffinger, Paul J
2014-01-01
Auxiliary subunits are non-conducting, modulatory components of the multi-protein ion channel complexes that underlie normal neuronal signaling. They interact with the pore-forming α-subunits to modulate surface distribution, ion conductance, and channel gating properties. For the somatodendritic subthreshold A-type potassium (ISA) channel based on Kv4 α-subunits, two types of auxiliary subunits have been extensively studied: Kv channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPLPs). KChIPs are cytoplasmic calcium-binding proteins that interact with intracellular portions of the Kv4 subunits, whereas DPLPs are type II transmembrane proteins that associate with the Kv4 channel core. Both KChIPs and DPLPs genes contain multiple start sites that are used by various neuronal populations to drive the differential expression of functionally distinct N-terminal variants. In turn, these N-terminal variants generate tremendous functional diversity across the nervous system. Here, we focus our review on (1) the molecular mechanism underlying the unique properties of different N-terminal variants, (2) the shaping of native ISA properties by the concerted actions of KChIPs and DPLP variants, and (3) the surprising ways that KChIPs and DPLPs coordinate the activity of multiple channels to fine-tune neuronal excitability. Unlocking the unique contributions of different auxiliary subunit N-terminal variants may provide an important opportunity to develop novel targeted therapeutics to treat numerous neurological disorders.
76 FR 77432 - Coordination of Federal Authorizations for Electric Transmission Facilities
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
... as ``high voltage transmission line projects (generally 230 kV or above), and their attendant... Qualifying Projects are generally 230 kV or above and cross jurisdictions administered by more than one... project is: (1) Equal or greater than 230 kV; (2) reasonably likely to require an EIS; or (3) reasonably...
Complex oligosaccharides are N-linked to Kv3 voltage-gated K+ channels in rat brain.
Cartwright, Tara A; Corey, Melissa J; Schwalbe, Ruth A
2007-04-01
Neuronal Kv3 voltage-gated K(+) channels have two absolutely conserved N-glycosylation sites. Here, it is shown that Kv3.1, 3.3, and 3.4 channels are N-glycosylated in rat brain. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced faster migrating immunobands than those of undigested membranes. Additionally, partial PNGase F digests showed that both sites are occupied by oligosaccharides. Neuraminidase treatment produced a smaller immunoband shift relative to PNGase F treatment. These results indicate that both sites are highly available and occupied by N-linked oligosaccharides for Kv3.1, 3.3, and 3.4 in rat brain, and furthermore that at least one oligosaccharide is of complex type. Additionally, these results point to an extracytoplasmic S1-S2 linker in Kv3 proteins expressed in native membranes. We suggest that N-glycosylation processing of Kv3 channels is critical for the expression of K(+) currents at the surface of neurons, and perhaps contributes to the pathophysiology of congenital disorders of glycosylation.
Ji, Shiqi; Zheng, Sheng; Wang, Fei; ...
2017-07-06
The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Shiqi; Zheng, Sheng; Wang, Fei
The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less
Harmonic voltage excess problem test and analysis in UHV and EHV grid particular operation mode
NASA Astrophysics Data System (ADS)
Lv, Zhenhua; Shi, Mingming; Fei, Juntao
2018-02-01
The test and analysis of the power quality of some 1000kV UHV transmission lines and 500kV EHV transmission lines is carried out. It is found that there is harmonic voltage excess problems when the power supply of the UHV and EHV voltage line is single-ended or single-loop, the problem basically disappeared after the operation mode change, different operating conditions, the harmonic current has not been greatly affected, indicating that the harmonic voltage changes mainly caused by the system harmonic impedance. With the analysis of MATLAB Simulink system model, it can be seen that there are specific harmonic voltage excess in the system under the specific operating mode, which results in serious distortion of the specific harmonic voltage. Since such phenomena are found in 500kV and 1000kV systems, it is suggested that the test evaluation work should be done under the typical mode of operation in 500kV, 1000kV Planning and construction process to prevent the occurrence of serious distortion and the regional harmonic current monitoring and suppression work should be done.
Kv7 potassium channel subunits and M currents in cultured hippocampal interneurons.
Grigorov, Alexej; Moskalyuk, Anastasia; Kravchenko, Mykola; Veselovsky, Nikolai; Verkhratsky, Alexei; Fedulova, Svetlana
2014-09-01
Potassium channels of the Kv7 family that mediate the non-inactivating M current regulate the excitability of many types of neurons in the central nervous system, including some in the hippocampus. We report here that individual interneurons from newborn rat hippocampi in long-term culture strongly express messenger RNA specific for Kv7.2 and Kv7.3 and, to a lesser extent, Kv7.5 channel subunits but not for the Kv7.4 subunit. An M-like current was electrophysiologically identified in two subpopulations of interneurons distinct in their spiking behaviour (regular or fast spiking). The M-channel enhancer retigabine reduced interneuronal excitability by constraining the number of action potentials generated during imposed depolarisations; this effect was inhibited by specific the M-channel blocking drugs. In paired synaptically connected interneuron-target cell recordings, anatomically localised applications of retigabine indicated that M channels were present in both the interneuron soma and its GABA-ergic inhibitory axon. We conclude that M-channel subunits and functional M channels are broadly expressed in hippocampal interneurons and their axons and are potentially capable of strongly regulating their firing properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H; Dolly, S; Zhao, T
Purpose: A prototype reconstruction algorithm that can provide direct electron density (ED) images from single energy CT scans is being currently developed by Siemens Healthcare GmbH. This feature can eliminate the need for kV specific calibration curve for radiation treatemnt planning. An added benefit is that beam-hardening artifacts are also reduced on direct-ED images due to the underlying material decomposition. This study is to quantitatively analyze the reduction of beam-hardening artifacts on direct-ED images and suggest additional clinical usages. Methods: HU and direct-ED images were reconstructed on a head phantom scanned on a Siemens Definition AS CT scanner at fivemore » tube potentials of 70kV, 80kV, 100kV, 120kV and 140kV respectively. From these images, mean, standard deviation (SD), and local NPS were calculated for regions of interest (ROI) of same locations and sizes. A complete analysis of beam-hardening artifact reduction and image quality improvement was conducted. Results: Along with the increase of tube potentials, ROI means and SDs decrease on both HU and direct-ED images. The mean value differences between HU and direct-ED images are up to 8% with absolute value of 2.9. Compared to that on HU images, the SDs are lower on direct-ED images, and the differences are up to 26%. Interestingly, the local NPS calculated from direct-ED images shows consistent values in the low spatial frequency domain for images acquired from all tube potential settings, while varied dramatically on HU images. This also confirms the beam -hardening artifact reduction on ED images. Conclusions: The low SDs on direct-ED images and relative consistent NPS values in the low spatial frequency domain indicate a reduction of beam-hardening artifacts. The direct-ED image has the potential to assist in more accurate organ contouring, and is a better fit for the desired purpose of CT simulations for radiotherapy.« less
Soares, David; Goldrick, Isabelle; Lemon, Roger N; Kraskov, Alexander; Greensmith, Linda; Kalmar, Bernadett
2017-06-15
There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration "thin" spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin-positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32-postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Guzman, David G.
An electrical substation is composed of various subsystems that allow for the effective and safe operation of the power grid. One of the subsystems integrating a conventional substation is defined as the ground grid system. This system allows for the effective operation of the power grid and all the electrical equipment connected to it by providing a ground potential reference, commonly known as the system ground. In addition, the ground grid system provides safety to the workers and the public transiting inside or living nearby a substation by reducing the step and touch potential (or voltage) levels present during a system fault. In today's utility industry practices there is an increasing trend for using pad-mounted electrical equipment for substation applications in an effort to construct new or upgrade existing electrical facilities inside limited property spaces. This thesis work presents an analysis for the effects of touch and step voltages at existing distribution substations where 23.9kV to 4.16kV & 13.8kV to 4.16kV pad-mounted transformers and other pad-mounted switchgear was installed to replace the traditional station class equipment. Moreover, this study will expose modeling techniques employed to define and determine the effects of floating grounds and other exposed metal bodies inside or surrounding these substations using WinIGS; this is in an effort to determine any risks of electric shock associated with this type of installations. The results presented in this work are intended to verify the requirements for the ground grid analysis and design for 4.16kV distribution substations with pad-mounted equipment in order to prevent dangerous step and touch voltage levels appearing at these sites during system faults; and ultimately prevent exposing individuals to the risk of an electric shock.
Direct block by bisindolylmaleimide of rat Kv1.5 expressed in Chinese hamster ovary cells.
Choi, B H; Choi, J S; Jeong, S W; Hahn, S J; Yoon, S H; Jo, Y H; Kim, M S
2000-05-01
The interaction of bisindolylmaleimide (BIM), widely used as a specific protein kinase C (PKC) inhibitor, with rat brain Kv1.5 (rKv1.5) channels stably expressed in Chinese hamster ovary cells was investigated using the whole-cell patch-clamp technique. BIM (I) and its inactive analog, BIM (V), inhibited rKv1.5 currents at +50 mV in a reversible concentration-dependent manner with an apparent K(d) value of 0.38 and 1.70 microM, respectively. BIM (I) accelerated the decay rate of inactivation of rKv1.5 currents but did not significantly modify the kinetics of current activation. Other specific PKC inhibitors, chelerythrine and PKC 19-36, had no effect on rKv1.5 and did not prevent the inhibitory effect of BIM (I). The inhibition of rKv1.5 by BIM (I) and BIM (V) was highly voltage-dependent between -30 and 0 mV (voltage range of channel opening), suggesting that both drugs interact preferentially with the open state of the channel. The additional inhibition by BIM (I) displayed a voltage dependence (delta = 0.19) in the full activation voltage range positive to 0 mV, but was not shown in BIM (V) (delta = 0). The rate constants of association and dissociation for BIM (I) were 9.63 microM(-1) s(-1) and 5.82 s(-1), respectively. BIM (I) increased the time constant of deactivation of tail currents from 26. 35 to 45.79 ms, resulting in tail crossover phenomenon. BIM (I) had no effect on the voltage dependence of steady-state inactivation. BIM (I) produced use-dependent inhibition of rKv1.5, which was consistent with the slow recovery from inactivation in the presence of drug. These results suggest that BIM (I) directly inhibits rKv1.5 channels in a phosphorylation-independent, and state-, voltage-, time-, and use-dependent manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu,; Chen, Y; Yu, Y
Purpose: Orthogonal kV image pairs are used for target localization when fiducial markers are implanted. CBCT is used to verify cone SRS setup. Therefore it is necessary to evaluate the isocenter congruence between radiation fields and kV imaging center. This study used a simple method to evaluate the isocenter congruence, and compared the results for MLC and cone fields on two different Linacs. Methods: Varian OBI block was attached on the couch. It has a central 1mm BB with markers on three surfaces to align with laser. KV and MV images were taken at four cardinal angles. A 3x3cm2 MLCmore » field and a 20mm cone field were irradiated respectively. On each kV image, the distance from BB center to the kV graticule center were measured. On the MV image of MLC field, the center of radiation field was determined manually, while for cone field, the Varian AM maintenance software was used to analyze the distance between BB and radiation field. The subtraction of the two distances gives the discrepancy between kV and radiation centers. Each procedure was repeated on five days at Trilogy and TrueBeam respectively. Results: The maximum discrepancy was found in the longitudinal direction at 180° gantry angel. It was 1.5±0.1mm for Trilogy and 0.6±0.1mm for TrueBeam. For Trilogy, although radiation center wobbled only 0.7mm and image center wobbled 0.8mm, they wobbled to the opposite direction. KV Pair using gantry 180° should be avoided in this case. Cone vs. kV isocenter has less discrepancy than MLC for Trilogy. Conclusion: Radiation isocenter of MLC and cone field is different, so is between Trilogy and TrueBeam. The method is simple and reproducible to check kV and radiation isocenter congruence.« less
McBride, Christie M; Smith, Ashley M; Smith, Jennifer L; Reloj, Allison R; Velasco, Ellyn J; Powell, Jonathan; Elayi, Claude S; Bartos, Daniel C; Burgess, Don E; Delisle, Brian P
2013-05-01
KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (I Kr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing I Kr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (I Kv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients' genotypes) mostly corrected the changes in I Kv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing I Kr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease I Kr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient.
Different KChIPs compete for heteromultimeric assembly with pore-forming Kv4 subunits.
Zhou, Jingheng; Tang, Yiquan; Zheng, Qin; Li, Meng; Yuan, Tianyi; Chen, Liangyi; Huang, Zhuo; Wang, KeWei
2015-06-02
Auxiliary Kv channel-interacting proteins 1-4 (KChIPs1-4) coassemble with pore-forming Kv4 α-subunits to form channel complexes underlying somatodendritic subthreshold A-type current that regulates neuronal excitability. It has been hypothesized that different KChIPs can competitively bind to Kv4 α-subunit to form variable channel complexes that can exhibit distinct biophysical properties for modulation of neural function. In this study, we use single-molecule subunit counting by total internal reflection fluorescence microscopy in combinations with electrophysiology and biochemistry to investigate whether different isoforms of auxiliary KChIPs, KChIP4a, and KChIP4bl, can compete for binding of Kv4.3 to coassemble heteromultimeric channel complexes for modulation of channel function. To count the number of photobleaching steps solely from cell membrane, we take advantage of a membrane tethered k-ras-CAAX peptide that anchors cytosolic KChIP4 proteins to the surface for reduction of background noise. Single-molecule subunit counting reveals that the number of KChIP4 isoforms in Kv4.3-KChIP4 complexes can vary depending on the KChIP4 expression level. Increasing the amount of KChIP4bl gradually reduces bleaching steps of KChIP4a isoform proteins, and vice versa. Further analysis of channel gating kinetics from different Kv4-KChIP4 subunit compositions confirms that both KChIP4a and KChIP4bl can modulate the channel complex function upon coassembly. Taken together, our findings show that auxiliary KChIPs can heteroassemble with Kv4 in a competitive manner to form heteromultimeric Kv4-KChIP4 channel complexes that are biophysically distinct and regulated under physiological or pathological conditions. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X; Belcher, AH; Grelewicz, Z
Purpose: Real-time kV fluoroscopic tumor tracking has the benefit of direct tumor position monitoring. However, there is clinical concern over the excess kV imaging dose cost to the patient when imaging in continuous fluoroscopic mode. This work addresses this specific issue by proposing a combined MV+kV direct-aperture optimization (DAO) approach to integrate the kV imaging beam into a treatment planning such that the kV radiation is considered as a contributor to the overall dose delivery. Methods: The combined MV+kV DAO approach includes three algorithms. First, a projected Quasi-Newton algorithm (L-BFGS) is used to find optimized fluence with MV+kV dose formore » the best possible dose distribution. Then, Engel’s algorithm is applied to optimize the total number of monitor units and heuristically optimize the number of apertures. Finally, an aperture shape optimization (ASO) algorithm is applied to locally optimize the leaf positions of MLC. Results: Compared to conventional DAO MV plans with continuous kV fluoroscopic tracking, combined MV+kV DAO plan leads to a reduction in the total number of MV monitor units due to inclusion of kV dose as part of the PTV, and was also found to reduce the mean and maximum doses on the organs at risk (OAR). Compared to conventional DAO MV plan without kV tracking, the OAR dose in the combined MV+kV DAO plan was only slightly higher. DVH curves show that combined MV+kV DAO plan provided about the same PTV coverage as that in the conventional DAO plans without kV imaging. Conclusion: We report a combined MV+kV DAO approach that allows real time kV imager tumor tracking with only a trivial increasing on the OAR doses while providing the same coverage to PTV. The approach is suitable for clinic implementation.« less
An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV.
Boone, J M; Seibert, J A
1997-11-01
A tungsten anode spectral model using interpolating polynomials (TASMIP) was used to compute x-ray spectra at 1 keV intervals over the range from 30 kV to 140 kV. The TASMIP is not semi-empirical and uses no physical assumptions regarding x-ray production, but rather interpolates measured constant potential x-ray spectra published by Fewell et al. [Handbook of Computed Tomography X-ray Spectra (U.S. Government Printing Office, Washington, D.C., 1981)]. X-ray output measurements (mR/mAs measured at 1 m) were made on a calibrated constant potential generator in our laboratory from 50 kV to 124 kV, and with 0-5 mm added aluminum filtration. The Fewell spectra were slightly modified (numerically hardened) and normalized based on the attenuation and output characteristics of a constant potential generator and metal-insert x-ray tube in our laboratory. Then, using the modified Fewell spectra of different kVs, the photon fluence phi at each 1 keV energy bin (E) over energies from 10 keV to 140 keV was characterized using polynomial functions of the form phi (E) = a0[E] + a1[E] kV + a2[E] kV2 + ... + a(n)[E] kVn. A total of 131 polynomial functions were used to calculate accurate x-ray spectra, each function requiring between two and four terms. The resulting TASMIP algorithm produced x-ray spectra that match both the quality and quantity characteristics of the x-ray system in our laboratory. For photon fluences above 10% of the peak fluence in the spectrum, the average percent difference (and standard deviation) between the modified Fewell spectra and the TASMIP photon fluence was -1.43% (3.8%) for the 50 kV spectrum, -0.89% (1.37%) for the 70 kV spectrum, and for the 80, 90, 100, 110, 120, 130 and 140 kV spectra, the mean differences between spectra were all less than 0.20% and the standard deviations were less than approximately 1.1%. The model was also extended to include the effects of generator-induced kV ripple. Finally, the x-ray photon fluence in the units of photons/mm2 per mR was calculated as a function of HVL, kV, and ripple factor, for various (water-equivalent) patient thicknesses (0, 10, 20, and 30 cm). These values may be useful for computing the detective quantum efficiency, DQE(f), of x-ray detector systems. The TASMIP algorithm and ancillary data are made available on line at http:/(/)www.aip.org/epaps/epaps.html.
Zemel, Benjamin M; Muqeem, Tanziyah; Brown, Eric V; Goulão, Miguel; Urban, Mark W; Tymanskyj, Stephen R; Lepore, Angelo C; Covarrubias, Manuel
2017-08-23
Dysfunction of the fast-inactivating Kv3.4 potassium current in dorsal root ganglion (DRG) neurons contributes to the hyperexcitability associated with persistent pain induced by spinal cord injury (SCI). However, the underlying mechanism is not known. In light of our previous work demonstrating modulation of the Kv3.4 channel by phosphorylation, we investigated the role of the phosphatase calcineurin (CaN) using electrophysiological, molecular, and imaging approaches in adult female Sprague Dawley rats. Pharmacological inhibition of CaN in small-diameter DRG neurons slowed repolarization of the somatic action potential (AP) and attenuated the Kv3.4 current. Attenuated Kv3.4 currents also exhibited slowed inactivation. We observed similar effects on the recombinant Kv3.4 channel heterologously expressed in Chinese hamster ovary cells, supporting our findings in DRG neurons. Elucidating the molecular basis of these effects, mutation of four previously characterized serines within the Kv3.4 N-terminal inactivation domain eliminated the effects of CaN inhibition on the Kv3.4 current. SCI similarly induced concurrent Kv3.4 current attenuation and slowing of inactivation. Although there was little change in CaN expression and localization after injury, SCI induced upregulation of the native regulator of CaN 1 (RCAN1) in the DRG at the transcript and protein levels. Consistent with CaN inhibition resulting from RCAN1 upregulation, overexpression of RCAN1 in naive DRG neurons recapitulated the effects of pharmacological CaN inhibition on the Kv3.4 current and the AP. Overall, these results demonstrate a novel regulatory pathway that links CaN, RCAN1, and Kv3.4 in DRG neurons. Dysregulation of this pathway might underlie a peripheral mechanism of pain sensitization induced by SCI. SIGNIFICANCE STATEMENT Pain sensitization associated with spinal cord injury (SCI) involves poorly understood maladaptive modulation of neuronal excitability. Although central mechanisms have received significant attention, recent studies have identified peripheral nerve hyperexcitability as a driver of persistent pain signaling after SCI. However, the ion channels and signaling molecules responsible for this change in primary sensory neuron excitability are still not well defined. To address this problem, this study used complementary electrophysiological and molecular methods to determine how Kv3.4, a voltage-gated K + channel robustly expressed in dorsal root ganglion neurons, becomes dysfunctional upon calcineurin (CaN) inhibition. The results strongly suggest that CaN inhibition underlies SCI-induced dysfunction of Kv3.4 and the associated excitability changes through upregulation of the native regulator of CaN 1 (RCAN1). Copyright © 2017 the authors 0270-6474/17/378257-17$15.00/0.
Regmi, Rajesh; Lovelock, D. Michael; Hunt, Margie; Zhang, Pengpeng; Pham, Hai; Xiong, Jianping; Yorke, Ellen D.; Goodman, Karyn A.; Rimner, Andreas; Mostafavi, Hassan; Mageras, Gig S.
2014-01-01
Purpose: Certain types of commonly used fiducial markers take on irregular shapes upon implantation in soft tissue. This poses a challenge for methods that assume a predefined shape of markers when automatically tracking such markers in kilovoltage (kV) radiographs. The authors have developed a method of automatically tracking regularly and irregularly shaped markers using kV projection images and assessed its potential for detecting intrafractional target motion during rotational treatment. Methods: Template-based matching used a normalized cross-correlation with simplex minimization. Templates were created from computed tomography (CT) images for phantom studies and from end-expiration breath-hold planning CT for patient studies. The kV images were processed using a Sobel filter to enhance marker visibility. To correct for changes in intermarker relative positions between simulation and treatment that can introduce errors in automatic matching, marker offsets in three dimensions were manually determined from an approximately orthogonal pair of kV images. Two studies in anthropomorphic phantom were carried out, one using a gold cylindrical marker representing regular shape, another using a Visicoil marker representing irregular shape. Automatic matching of templates to cone beam CT (CBCT) projection images was performed to known marker positions in phantom. In patient data, automatic matching was compared to manual matching as an approximate ground truth. Positional discrepancy between automatic and manual matching of less than 2 mm was assumed as the criterion for successful tracking. Tracking success rates were examined in kV projection images from 22 CBCT scans of four pancreas, six gastroesophageal junction, and one lung cancer patients. Each patient had at least one irregularly shaped radiopaque marker implanted in or near the tumor. In addition, automatic tracking was tested in intrafraction kV images of three lung cancer patients with irregularly shaped markers during 11 volumetric modulated arc treatments. Purpose-built software developed at our institution was used to create marker templates and track the markers embedded in kV images. Results: Phantom studies showed mean ± standard deviation measurement uncertainty of automatic registration to be 0.14 ± 0.07 mm and 0.17 ± 0.08 mm for Visicoil and gold cylindrical markers, respectively. The mean success rate of automatic tracking with CBCT projections (11 frames per second, fps) of pancreas, gastroesophageal junction, and lung cancer patients was 100%, 99.1% (range 98%–100%), and 100%, respectively. With intrafraction images (approx. 0.2 fps) of lung cancer patients, the success rate was 98.2% (range 97%–100%), and 94.3% (range 93%–97%) using templates from 1.25 mm and 2.5 mm slice spacing CT scans, respectively. Correction of intermarker relative position was found to improve the success rate in two out of eight patients analyzed. Conclusions: The proposed method can track arbitrary marker shapes in kV images using templates generated from a breath-hold CT acquired at simulation. The studies indicate its feasibility for tracking tumor motion during rotational treatment. Investigation of the causes of misregistration suggests that its rate of incidence can be reduced with higher frequency of image acquisition, templates made from smaller CT slice spacing, and correction of changes in intermarker relative positions when they occur. PMID:24989384
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regmi, Rajesh; Lovelock, D. Michael; Hunt, Margie
Purpose: Certain types of commonly used fiducial markers take on irregular shapes upon implantation in soft tissue. This poses a challenge for methods that assume a predefined shape of markers when automatically tracking such markers in kilovoltage (kV) radiographs. The authors have developed a method of automatically tracking regularly and irregularly shaped markers using kV projection images and assessed its potential for detecting intrafractional target motion during rotational treatment. Methods: Template-based matching used a normalized cross-correlation with simplex minimization. Templates were created from computed tomography (CT) images for phantom studies and from end-expiration breath-hold planning CT for patient studies. Themore » kV images were processed using a Sobel filter to enhance marker visibility. To correct for changes in intermarker relative positions between simulation and treatment that can introduce errors in automatic matching, marker offsets in three dimensions were manually determined from an approximately orthogonal pair of kV images. Two studies in anthropomorphic phantom were carried out, one using a gold cylindrical marker representing regular shape, another using a Visicoil marker representing irregular shape. Automatic matching of templates to cone beam CT (CBCT) projection images was performed to known marker positions in phantom. In patient data, automatic matching was compared to manual matching as an approximate ground truth. Positional discrepancy between automatic and manual matching of less than 2 mm was assumed as the criterion for successful tracking. Tracking success rates were examined in kV projection images from 22 CBCT scans of four pancreas, six gastroesophageal junction, and one lung cancer patients. Each patient had at least one irregularly shaped radiopaque marker implanted in or near the tumor. In addition, automatic tracking was tested in intrafraction kV images of three lung cancer patients with irregularly shaped markers during 11 volumetric modulated arc treatments. Purpose-built software developed at our institution was used to create marker templates and track the markers embedded in kV images. Results: Phantom studies showed mean ± standard deviation measurement uncertainty of automatic registration to be 0.14 ± 0.07 mm and 0.17 ± 0.08 mm for Visicoil and gold cylindrical markers, respectively. The mean success rate of automatic tracking with CBCT projections (11 frames per second, fps) of pancreas, gastroesophageal junction, and lung cancer patients was 100%, 99.1% (range 98%–100%), and 100%, respectively. With intrafraction images (approx. 0.2 fps) of lung cancer patients, the success rate was 98.2% (range 97%–100%), and 94.3% (range 93%–97%) using templates from 1.25 mm and 2.5 mm slice spacing CT scans, respectively. Correction of intermarker relative position was found to improve the success rate in two out of eight patients analyzed. Conclusions: The proposed method can track arbitrary marker shapes in kV images using templates generated from a breath-hold CT acquired at simulation. The studies indicate its feasibility for tracking tumor motion during rotational treatment. Investigation of the causes of misregistration suggests that its rate of incidence can be reduced with higher frequency of image acquisition, templates made from smaller CT slice spacing, and correction of changes in intermarker relative positions when they occur.« less
Yuan, Shouli; Gao, Bin
2017-01-01
The Kv1.2 channel plays an important role in the maintenance of resting membrane potential and the regulation of the cellular excitability of neurons, whose silencing or mutations can elicit neuropathic pain or neurological diseases (e.g., epilepsy and ataxia). Scorpion venom contains a variety of peptide toxins targeting the pore region of this channel. Despite a large amount of structural and functional data currently available, their detailed interaction modes are poorly understood. In this work, we choose four Kv1.2-targeted scorpion toxins (Margatoxin, Agitoxin-2, OsK-1, and Mesomartoxin) to construct their complexes with Kv1.2 based on the experimental structure of ChTx-Kv1.2. Molecular dynamics simulation of these complexes lead to the identification of hydrophobic patches, hydrogen-bonds, and salt bridges as three essential forces mediating the interactions between this channel and the toxins, in which four Kv1.2-specific interacting amino acids (D353, Q358, V381, and T383) are identified for the first time. This discovery might help design highly selective Kv1.2-channel inhibitors by altering amino acids of these toxins binding to the four channel residues. Finally, our results provide new evidence in favor of an induced fit model between scorpion toxins and K+ channel interactions. PMID:29104247
Tiran, Zohar; Peretz, Asher; Sines, Tal; Shinder, Vera; Sap, Jan; Attali, Bernard
2006-01-01
Tyrosine phosphatases (PTPs) ε and α are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPε and PTPα and the mechanisms by which they regulate K+ channels and Src were analyzed in vivo in mice lacking either or both PTPs. Lack of either PTP increases Kv channel activity and phosphorylation in Schwann cells, indicating these PTPs inhibit Kv current amplitude in vivo. Open probability and unitary conductance of Kv channels are unchanged, suggesting an effect on channel number or organization. PTPα inhibits Kv channels more strongly than PTPε; this correlates with constitutive association of PTPα with Kv2.1, driven by membranal localization of PTPα. PTPα, but not PTPε, activates Src in sciatic nerve extracts, suggesting Src deregulation is not responsible exclusively for the observed phenotypes and highlighting an unexpected difference between both PTPs. Developmentally, sciatic nerve myelination is reduced transiently in mice lacking either PTP and more so in mice lacking both PTPs, suggesting both PTPs support myelination but are not fully redundant. We conclude that PTPε and PTPα differ significantly in their regulation of Kv channels and Src in the system examined and that similarity between PTPs does not necessarily result in full functional redundancy in vivo. PMID:16870705
Induction of stable ER–plasma-membrane junctions by Kv2.1 potassium channels
Fox, Philip D.; Haberkorn, Christopher J.; Akin, Elizabeth J.; Seel, Peter J.; Krapf, Diego; Tamkun, Michael M.
2015-01-01
ABSTRACT Junctions between cortical endoplasmic reticulum (cER) and the plasma membrane are a subtle but ubiquitous feature in mammalian cells; however, very little is known about the functions and molecular interactions that are associated with neuronal ER–plasma-membrane junctions. Here, we report that Kv2.1 (also known as KCNB1), the primary delayed-rectifier K+ channel in the mammalian brain, induces the formation of ER–plasma-membrane junctions. Kv2.1 localizes to dense, cell-surface clusters that contain non-conducting channels, indicating that they have a function that is unrelated to membrane-potential regulation. Accordingly, Kv2.1 clusters function as membrane-trafficking hubs, providing platforms for delivery and retrieval of multiple membrane proteins. Using both total internal reflection fluorescence and electron microscopy we demonstrate that the clustered Kv2.1 plays a direct structural role in the induction of stable ER–plasma-membrane junctions in both transfected HEK 293 cells and cultured hippocampal neurons. Glutamate exposure results in a loss of Kv2.1 clusters in neurons and subsequent retraction of the cER from the plasma membrane. We propose Kv2.1-induced ER–plasma-membrane junctions represent a new macromolecular plasma-membrane complex that is sensitive to excitotoxic insult and functions as a scaffolding site for both membrane trafficking and Ca2+ signaling. PMID:25908859
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States. Bonneville Power Administration.
1974-10-22
Proposed is the construction of a 15-mile, 230-kV double-circuit transmission line from Franklin Substation near Pasco, Washington, to a proposed new Badger Canyon Substation to be constructed 5 miles west of Kennewick, Washington. Depending on the final route location chosen, approximately 15 miles of 230-kV double circuit transmission line requiring 5.6 miles of new and 9.4 miles of existing right-of-way would be needed as well as approximately 2500 feet of new access road. Land use affected includes crossing Sacajawea State Park and passig through irrigated cropland and grassland on existing right-of-way, and depending on the alternative route chosen, could crossmore » land proposed for residential development and a proposed interstate highway. An additional 10 to 11 acres of potential cropland would be required for the proposed substation. Disturbance to wildlife during construction would occur and habitat associated with the above land uses would be eliminated. Some erosion and sedimentation would occur. Visual impacts would affect Sacajawea State Park, a proposed highway, and potential residential development land. Noise and other disturbances to residents will occur, primarily during construction.« less
Development and test of a 100 kVA superconducting transformer operated at 77 K
NASA Astrophysics Data System (ADS)
Kummeth, P.; Schlosser, R.; Massek, P.; Schmidt, H.; Albrecht, C.; Breitfelder, D.; Neumüller, H.-W.
2000-05-01
High-temperature superconducting (HTS) transformers are very promising candidates for application in electrical power engineering. Their main advantages are reduced size, weight, better efficiency and reduced potential fire and environmental hazards. We have designed, constructed and tested a 100 kVA HTS power transformer operated at 77 K. The nominal primary and secondary currents (voltages) are 18 A (5.6 kV) and 92 A (1.1 kV), respectively. No-load tests, short-circuit tests and load tests proved repeatedly that the transformer has the rated capacity. HTS winding losses of 20.6 W and iron losses of 403 W were measured.