Brubaker, Linda B; Higuera, Philip E; Rupp, T Scott; Olson, Mark A; Anderson, Patricia M; Hu, Feng Sheng
2009-07-01
Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecologica model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a mid-Holocene fire-regime shift in boreal forests of the south-central Brooks Range, Alaska, U.S.A. Fire-return intervals (FRIs, number of years between fires) are estimated over the past 7000 calibrated 14C years (7-0 kyr BP [before present]) from short-term variations in charcoal accumulation rates (CHARs) at three lakes, and an index of area burned is inferred from long-term CHARs at these sites. ALFRESCO simulations of FRIs and annual area burned are based on prescribed vegetation and climate for 7-5 kyr BP and 5-0 kyr BP, inferred from pollen and stomata records and qualitative paleoclimate proxies. Two sets of experiments examine potential causes of increased burning between 7-5 and 5-0 kyr BP. (1) Static-vegetation scenarios: white spruce dominates with static mean temperature and total precipitation of the growing season for 7-0 kyr BP or with decreased temperature and/or increased precipitation for 5-0 kyr BP. (2) Changed-vegetation scenarios: black spruce dominates 5-0 kyr BP, with static temperature and precipitation or decreased temperature and/or increased precipitation. Median FRIs decreased between 7-5 and 5-0 kyr BP in empirical data and changed-vegetation scenarios but remained relatively constant in static-vegetation scenarios. Median empirical and simulated FRIs are not statistically different for 7-5 kyr BP and for two changed-vegetation scenarios (temperature decrease, precipitation increase) for 5-0 kyr BP. In these scenarios, cooler temperatures or increased precipitation dampened the effect of increased landscape flammability resulting from the increase in black spruce. CHAR records and all changed-vegetation scenarios indicate long-term increases in area burned between 7-5 and 5-0 kyr BP. The similarity of CHAR and ALFRESCO results demonstrates the compatibility of these independent data sets for investigating ecological mechanisms causing past fire-regime changes. The finding that vegetation flammability was a major driver of Holocene fire regimes is consistent with other investigations that suggest that landscape fuel characteristics will mediate the direct effects of future climate change on boreal fire regimes.
NASA Astrophysics Data System (ADS)
Jia, Feifei; Lu, Ruijie; Liu, Xiaokang; Zhao, Chao; Lv, Zhiqiang; Gao, Shangyu
2018-05-01
A high-resolution lacustrine-peat record from the desert-loess transitional zone in Northern China was obtained to reconstruct Holocene environmental change in the region. AMS 14C dates are used to provide a chronology. The results indicate that the site was a desert environment before 12.2 cal kyr BP, and was then occupied by a paleolake which started to shrink, with a wetland occurring from 6.2 to 3.0 cal kyr BP. Subsequently, the site became a seasonally water-filled depression. Based on the lithology and measurements of grain size and total organic carbon content, the climate changed from arid to humid at 12.2 cal kyr BP, and became more humid after 8.3 cal kyr BP. From 6.2 to 3.0 cal kyr BP, precipitation decreased but the climate remained at an optimum. After 3.0 cal kyr BP, the climate was dry overall but with several humid intervals. A comparison of paleoclimatic records from lacustrine and aeolian deposits from the region reveals a discrepancy about the nature of the early Holocene climate, and we conclude that this is because lacustrine sediments responded more sensitively to precipitation than aeolian deposits when the temperature was low. The environmental evolution of the region was synchronous with changes in the Asian summer monsoon (ASM), but temperature also played a key role in the early Holocene.
NASA Astrophysics Data System (ADS)
Tarasov, Pavel; Bezrukova, Elena; Solovieva, Nadia; Riedel, Frank
2010-05-01
Radiocarbon-dated pollen and diatom records from Lake Kotokel in southern Siberia are used to reconstruct the environmental history of the area since ~47 kyr BP. Pollen data and reconstructed biome scores suggest predominance of a tundra-steppe vegetation and variable woody cover (5-20%) between ~47-30 kyr BP, indicating generally a harsh and unstable climate during this interval, conventionally regarded as the MIS3 interstadial. The short-term climate amelioration episodes in the glacial part of the records are marked by the peaks in taiga and corresponding minima in steppe biome scores and appear synchronously with the hemispheric temperature and precipitation changes recorded in the Greenland ice cores and Chinese stalagmites. The interval ~30-24 kyr BP was probably the driest and coldest of the whole record, as indicated by highest scores for steppe biome, woody coverage <5%, absence of diatoms and reduced size of the lake. A slight amelioration of the regional climate ~24-22 kyr BP was followed by a shorter than the previous and less pronounced deterioration phase. After 14.7 kyr BP the climate became warmer and wetter than ever during ~47-14.7 kyr BP, resulting in the deepening of the lake and increase in the woody coverage to 20-30% ~14.5-14 kyr and ~13.3-12.8 kyr BP. These two intervals correspond to the Meiendorf and Allerød interstadials, which until now were interpreted as part of the undifferentiated Bølling/Allerød interstadial complex in the Lake Baikal region. The increase in tundra biome scores and pronounced change in the diatom composition allow (for the first time) the unambiguous identification of the Younger Dryas (YD) in the region ~12.7-11.65 kyr BP, suggesting the synchronous onset of the YD and the Holocene interglacial across Eurasia. The maximal spread of the taiga communities in the region is associated with a warmer and wetter climate than the present prior to ~7 kyr BP. This was followed by a wide spread of Scots pine, indicating the onset of modern environments. These results are a contribution to the German Research Foundation project TA-540/1 and to the RFBF project 09-05-00123.
Postglacial viability and colonization in North America’s ice-free corridor
NASA Astrophysics Data System (ADS)
Pedersen, Mikkel W.; Ruter, Anthony; Schweger, Charles; Friebe, Harvey; Staff, Richard A.; Kjeldsen, Kristian K.; Mendoza, Marie L. Z.; Beaudoin, Alwynne B.; Zutter, Cynthia; Larsen, Nicolaj K.; Potter, Ben A.; Nielsen, Rasmus; Rainville, Rebecca A.; Orlando, Ludovic; Meltzer, David J.; Kjær, Kurt H.; Willerslev, Eske
2016-09-01
During the Last Glacial Maximum, continental ice sheets isolated Beringia (northeast Siberia and northwest North America) from unglaciated North America. By around 15 to 14 thousand calibrated radiocarbon years before present (cal. kyr BP), glacial retreat opened an approximately 1,500-km-long corridor between the ice sheets. It remains unclear when plants and animals colonized this corridor and it became biologically viable for human migration. We obtained radiocarbon dates, pollen, macrofossils and metagenomic DNA from lake sediment cores in a bottleneck portion of the corridor. We find evidence of steppe vegetation, bison and mammoth by approximately 12.6 cal. kyr BP, followed by open forest, with evidence of moose and elk at about 11.5 cal. kyr BP, and boreal forest approximately 10 cal. kyr BP. Our findings reveal that the first Americans, whether Clovis or earlier groups in unglaciated North America before 12.6 cal. kyr BP, are unlikely to have travelled by this route into the Americas. However, later groups may have used this north-south passageway.
Postglacial viability and colonization in North America's ice-free corridor.
Pedersen, Mikkel W; Ruter, Anthony; Schweger, Charles; Friebe, Harvey; Staff, Richard A; Kjeldsen, Kristian K; Mendoza, Marie L Z; Beaudoin, Alwynne B; Zutter, Cynthia; Larsen, Nicolaj K; Potter, Ben A; Nielsen, Rasmus; Rainville, Rebecca A; Orlando, Ludovic; Meltzer, David J; Kjær, Kurt H; Willerslev, Eske
2016-09-01
During the Last Glacial Maximum, continental ice sheets isolated Beringia (northeast Siberia and northwest North America) from unglaciated North America. By around 15 to 14 thousand calibrated radiocarbon years before present (cal. kyr bp), glacial retreat opened an approximately 1,500-km-long corridor between the ice sheets. It remains unclear when plants and animals colonized this corridor and it became biologically viable for human migration. We obtained radiocarbon dates, pollen, macrofossils and metagenomic DNA from lake sediment cores in a bottleneck portion of the corridor. We find evidence of steppe vegetation, bison and mammoth by approximately 12.6 cal. kyr bp, followed by open forest, with evidence of moose and elk at about 11.5 cal. kyr bp, and boreal forest approximately 10 cal. kyr bp. Our findings reveal that the first Americans, whether Clovis or earlier groups in unglaciated North America before 12.6 cal. kyr bp, are unlikely to have travelled by this route into the Americas. However, later groups may have used this north-south passageway.
Precisely dated multidecadally resolved Asian summer monsoon dynamics 113.5-86.6 thousand years ago
NASA Astrophysics Data System (ADS)
Jiang, Xiuyang; Wang, Xiaoyan; He, Yaoqi; Hu, Hsun-Ming; Li, Zhizhong; Spötl, Christoph; Shen, Chuan-Chou
2016-07-01
We present a new 230Th-dated absolute chronology of Asian summer monsoon (ASM) variability from 113.5 to 86.6 kyr BP (before 1950 AD). This integrated multidecadally resolved record, based on 1435 oxygen isotope data and 46 230Th dates with 2-sigma errors as low as ±0.3 kyr from three stalagmites collected in Sanxing Cave, southwestern China, can be a new reference for calibrating paleoclimate proxy sequences. The Sanxing δ18O record follows the 23 kyr precessional cycle of insolation and is punctuated by prominent millennial-scale oscillations of the Chinese Interstadials (CIS) 25 to 22, corresponding to Greenland Interstadials (GIS) 25 to 22. The onset of CIS 25, 24, 23 and 22 is dated to 113.1 ± 0.4, 108.1 ± 0.3, 103.7 ± 0.3 and 91.4 ± 0.6 kyr BP in the Sanxing record, respectively. The end of CIS 24 and CIS 22 is constrained to 105.5 ± 0.4 and 87.7 ± 0.3 kyr BP, respectively. A centennial-scale precursor event at 104.1 ± 0.3 kyr BP preceding CIS 23 is clearly registered. These events in the Sanxing record are synchronous with those identified in stalagmites from the European Alps (NALPS), except for the onset of GIS 25 and the end of GIS 22, and differ by up to 2.3 kyr from the corresponding ones in Greenland ice core records. The high degree of similarity of the δ18O records between Sanxing Cave and Greenland supports a Northern Hemisphere forcing of the ASM. The anti-phase relationship of δ18O records between Sanxing stalagmites and Antarctic ice cores suggests an additional ASM linkage to the Southern Hemisphere.
NASA Astrophysics Data System (ADS)
Duprat-Oualid, Fanny; Begeot, Carole; Rius, Damien; Millet, Laurent; Magny, Michel
2016-04-01
Between 9 and 45 kyr cal. BP, two great transitions lead the global climate system to evolve from the Last-Glacial period (115-14.7 kyr cal. BP), to two successive warmer periods, the Late-Glacial Interstadial (14.7-11.7 kyr cal. BP) and the Holocene (11.7-0 kyr cal. BP). δ18O variations recorded in Greenland ice cores (GRIP & NGRIP) revealed high frequency climate variability within the Last Glacial. These reference isotopic records highlighted a succession of centennial-to-millennial warm/cold events, the so-called Greenland Interstadials (GI) and Greenland Stadials (GS). The number continental records about the period 14.7-0 kyr cal. BP is substantial. This allowed to understand the vegetation dynamics in response to climate changes this period at the North-Atlantic scale. However, sequences covering the glacial period (beyond 20 kyr cal.BP) remain rare, because of hiatuses mostly due to local glaciers. Therefore, sedimentary continuous records of vegetation dynamics are still needed to better understand climate changes during the Last Glacial in Western Europe (Heiri et al. 2014). Here we present a new high-resolution pollen record from Lake Bergsee (47°34'20''N, 7°56'11''E, 382 m a.s.l). This lake is located south of Black Forest and north of the Alps, beyond the zone of glaciers maximal extension. Therefore it could have recorded the whole last climatic cycle, i.e. 120-0 kyr cal. BP. In 2013, a 29 m long core was extracted from the Bergsee. According to the depth-age model based on 14C AMS dating and the Laacher See Tephra (LST), the record spans continuously at least the last 45 kyrs. The first series of pollen analysis, focused on the 45-9 kyr cal. BP time window, allows us to reconstruct a precise, faithful and continuous vegetation history at the centennial scale. This high temporal resolution enabled to assess the response of vegetation to secular climate events (e.g. GI-4 = 200 yrs). First, our results show that vegetation responded to climate changes at millennial/pluri-millennial scale. The well-known afforestation of the Late-Glacial interstadial and the Holocene (with pine and hazel-dominated forests respectively) are recorded. Our results also reveal a three-phase sequence in the Last-Glacial. The persistence of very cold conditions between 24 and 30 kyr cal. BP favored a drastic steppe grassland. In contrast, trees proportion increased during the two other periods (14.7-24 and 30-45 kyr cal. BP) in correlation with a relative favorable climate. Second, the respons of vegetation to centennial scale climatic events is characterized by the successive rapid establishment of two different landscapes. GS are dominated by steppic taxa (Artemisia, Helianthemum), whereas more or less complete ecological successions Juniperus-Betula-Pinus seem to occur for most GIs when edaphic conditions became more favorable. Therefore, we suggest a global forcing defined by the strong impact of the climate variability on vegetation changes. We also propose the contribution of local characteristics (latitude, topography) which favored flora migration and long distance pollen inputs from refuge areas. Heiri O., Koinig K.A., Spötl C., Barrett S, Brauer A., Drescher-Schneider R., Gaar D., Ivy-Ochs S., Kerschner H., Luetscher M., Moran A., Nicolussi K., Preusser F., Schmidt R., Schoeneich P., Schwörer C., Sprafke T., Terhorst B., Tinner W. -2014- "Palaeoclimate records 60-8 ka in the Austrian and Swiss Alps and their forelands", Quaternary Science Review, 106 : 186-205.
NASA Astrophysics Data System (ADS)
Müller, S.; Tarasov, P. E.; Andreev, A. A.; Diekmann, B.
2009-04-01
The study presented here is part of the IPY project 106 "Lake Records of late Quaternary Climate Variability in northeastern Siberia" and the German Research Foundation project RI 809/17-1,2 "Late Quaternary environmental history of interstadial and interglacial periods in the Arctic reconstructed from bioindicators in permafrost sequences in NE Siberia". Both projects focus on generating high-resolution vegetation and climate proxy records mainly from lacustrine sediments along a north-south transect from Yakutia, Republic of Russia. This region is known for its climate extremes, with the Verkhoyansk Mountain Range being the coldest area in the Northern Hemisphere - "Pole of Cold". Radiocarbon-dated pollen records from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) located in the central part of the Verkhoyansk Mountains were used to reconstruct vegetation and climate changes. The longest and oldest sediment core from the lake reaches back to >30 kyr BP, thus covering the last two Late Pleistocene Interstadials in Siberia. The pollen record and pollen-based biome reconstruction of the core PG 1756, which covers the last 15 kyr BP, suggest that open cool steppe and grass and sedge tundra communities with Poaceae, Cyperaceae, Artemisia, Chenopodiaceae, Caryophyllaceae and Selaginella rupestris dominated the area from 15 to 13.5 kyr BP. On the other hand, the constant presence of Larix pollen in quantities comparable to today's values points to the constant presence of boreal deciduous conifer trees in the regional vegetation during the last glaciation. A major spread of shrub tundra communities, including birch (Betula sect. Nanae), alder (Duschekia fruticosa) and willow (Salix) species, is dated to 13.5-12.7 kyr BP, indicating a noticeable increase in precipitation toward the end of the last glaciation, particularly during the Allerød Interstadial. Between 12.7 and 11.4 kyr BP pollen percentages of herbaceous taxa rapidly increased, whereas shrub taxa percentages decreased, suggesting strengthening of the steppe communities associated with the cold and dry Younger Dryas Stadial. However, the pollen data in hand indicate that Younger Dryas climate was less severe than the climate during the earlier interval from 15 to 13.5 kyr BP. The onset of the Holocene is marked in the pollen record by the highest values of shrub and lowest values of herbaceous taxa, suggesting a return of warmer and wetter conditions after 11.4 kyr BP. Percentages of tree taxa increase gradually and reach maximum values after 7 kyr BP, reflecting the spread of boreal cold deciduous and taiga forests in the region. An interval between 7 and 2 kyr BP is noticeable for the highest percentages of Scots pine (Pinus subgen. Diploxylon), spruce (Picea) and fir (Abies) pollen, indicating mid-Holocene spread of boreal forest communities in response to climate amelioration and degradation of the permafrost layer.
NASA Astrophysics Data System (ADS)
Kuroyanagi, Azumi; Kawahata, Hodaka; Narita, Hisashi; Ohkushi, Ken'ichi; Aramaki, Takafumi
2006-08-01
Planktonic foraminifera live in the upper ocean, and their assemblages can record the surrounding environment. To reconstruct changes in water masses and the timing of flow of the Oyashio and Tsugaru currents through the Tsugaru Strait after the Last Glacial Maximum, when the Japan Sea had been almost isolated from the surrounding seas, we investigated at high resolution the planktonic foraminiferal fauna in seafloor sediments off the Shimokita (core MD01-2409: 41°33.9'N, 141°52.1'E), in the northwestern North Pacific, over the last 26,900 years. Factor analysis of the foraminiferal assemblage suggests that the water mass changed significantly as a result of the deglacial sea-level rise and opening of the straits into the Japan Sea. Mass accumulation rates of some selected foraminiferal species that inhabit characteristic environments (e.g., warm stratified water, Oyashio Current, Tsushima Current) corroborate these changes in water mass and water column structure. We also used the ratio of the dextral form to total Neogloboquadrina pachyderma as an indicator of subsurface (below the pycnocline) water temperature. We recognized five distinct periods of oceanographic change at the study site, which is just east of the Tsugaru Strait: (1) Oyashio Current affecting both surface and subsurface waters (26.9-15.7 thousand calendar years before present (cal. kyr BP)); (2) vertical mixing and subsurface warming as the Oyashio Current began to flow into the Japan Sea through the Tsugaru Strait (15.7-10.6 cal. kyr BP); (3) outflow of the Tsugaru Current from the Japan Sea into the Pacific, leading to baroclinic conditions, with the surface layer under the influence of the Tsugaru and the subsurface layers of the Oyashio Current (10.6-9.0 cal. kyr BP); (4) stratification of the water column developed as the flow of the Tsugaru Current increased (9.0-6.2 cal. kyr BP); and (5) warming of the subsurface layer, disruption of the stratification, and dominance of the Tsugaru Current in both surface and subsurface layers, similar to the present situation (6.2-1.5 cal. kyr BP). The timing of flow of the Oyashio and Tsugaru currents through the strait at the study site off Shimokita is generally compatible with the results of studies in the Japan Sea. The flow of the Tsugaru Current led to progressive warming of the waters, from the surface to the subsurface layers and from the Japan Sea side to the Pacific side of the Tsugaru Strait, beginning in 8.3-6.8 cal. kyr BP on the western side, and in 6.2 cal. kyr BP on the eastern side of the strait. By 4.8 cal. kyr BP on the western side, and by ˜ 3.4 cal. kyr BP on the eastern side of the strait, warm water prevailed in both surface and subsurface layers.
Holarctic genetic structure and range dynamics in the woolly mammoth
Palkopoulou, Eleftheria; Dalén, Love; Lister, Adrian M.; Vartanyan, Sergey; Sablin, Mikhail; Sher, Andrei; Edmark, Veronica Nyström; Brandström, Mikael D.; Germonpré, Mietje; Barnes, Ian; Thomas, Jessica A.
2013-01-01
Ancient DNA analyses have provided enhanced resolution of population histories in many Pleistocene taxa. However, most studies are spatially restricted, making inference of species-level biogeographic histories difficult. Here, we analyse mitochondrial DNA (mtDNA) variation in the woolly mammoth from across its Holarctic range to reconstruct its history over the last 200 thousand years (kyr). We identify a previously undocumented major mtDNA lineage in Europe, which was replaced by another major mtDNA lineage 32–34 kyr before present (BP). Coalescent simulations provide support for demographic expansions at approximately 121 kyr BP, suggesting that the previous interglacial was an important driver for demography and intraspecific genetic divergence. Furthermore, our results suggest an expansion into Eurasia from America around 66 kyr BP, coinciding with the first exposure of the Bering Land Bridge during the Late Pleistocene. Bayesian inference indicates Late Pleistocene demographic stability until 20–15 kyr BP, when a severe population size decline occurred. PMID:24026825
NASA Astrophysics Data System (ADS)
Leunda, Maria; González-Sampériz, Penélope; Gil-Romera, Graciela; Aranbarri, Josu; Moreno, Ana; Oliva-Urcia, Belén; Sevilla-Callejo, Miguel; Valero-Garcés, Blas
2017-10-01
This paper presents the environmental, climate and vegetation changes reconstructed for the last 14.6 kyr cal BP from the Marboré Lake sedimentary sequence, the highest altitude record (2612 m a.s.l.) in the Pyrenees studied up to date. We investigate the sensitivity of this high altitude site to vegetational and climate dynamics and altitudinal shifts during the Holocene by comparing palynological spectra of the fossil sequence and pollen rain content from current moss pollsters. We hypothesize that the input of sediments in lakes at such altitude is strongly controlled by ice phenology (ice-free summer months) and that during cold periods Pollen Accumulation Rate (PAR) and Pollen Concentration (PC) reflect changes in ice-cover and thus is linked to temperature changes. Low sedimentation rates and low PC and PAR occurred during colder periods as the Younger Dryas (GS-1) and the Holocene onset (12.6-10.2 kyr cal BP), suggesting that the lake-surface remained ice-covered for most of the year during these periods. Warmer conditions are not evident until 10.2 kyr cal BP, when an abrupt increase in sedimentation rate, PC and PAR occur, pointing to a delayed onset of the Holocene temperature increase at high altitude. Well-developed pinewoods and deciduous forest dominated the mid montane belt since 9.3 kyr cal BP until mid-Holocene (5.2 kyr cal BP). A downwards shift in the deciduous forest occurred after 5.2 kyr cal BP, in agreement with the aridity trend observed at a regional and Mediterranean context. The increase of herbaceous taxa during the late-Holocene (3.5 kyr cal BP-present) reflects a general trend to reduced montane forest, as anthropogenic disturbances were not evident until 1.3 kyr cal BP when Olea proportions from lowland areas and other anthropogenic indicators clearly expand. Our study demonstrates the need to perform local experimental approaches to check the effect of ice phenology on high altitude lakes sensitivity to vegetation changes to obtain more realistic reconstructions of mountain vegetation belts dynamics.
NASA Astrophysics Data System (ADS)
Stern, J.; Lisiecki, L. E.
2013-12-01
The assumption of globally synchronous benthic foraminiferal δ18O changes is central to the development of global stacks (averages) and many other types of paleoclimate studies. However, a few well-dated individual benthic δ18O records have suggested the possibility of regional differences in the timing of Termination I (e.g., Skinner and Shackleton, 2005; Waelbroeck et al., 2011). These previous studies often used single core locations to describe vast areas of the ocean, so it has remained unclear whether the observed diachroneities are truly regional in scale or merely local. Here, we bridge the gap between global benthic δ18O stacks and individual records by presenting eight regional benthic δ18O stacks from 252 cores with age models based on a total of 776 planktonic foraminiferal radiocarbon dates from 61 of those cores. The earliest termination onset (beginning of deglacial benthic δ18O decrease) occurs in the intermediate South Atlantic stack at 18.5 kyr BP, shortly after the initial deglacial melting of Northern Hemisphere ice sheets. The latest termination onset occurs in the deep Indian stack at 14.5 kyr BP, coeval with the Bølling-Allerød warming. We find synchronous termination onsets at 17.5 kyr BP in the intermediate North Atlantic, deep North Atlantic, and deep South Atlantic, contrary to Waelbroeck et al. (2011). The deglacial benthic δ18O decrease in the deep Pacific lagged that of the deep Atlantic by an average of 1000 yr, with a maximum lag of ~1700 yr during the middle of the termination. The intermediate Pacific termination onset at 16.5 kyr BP happens 1000 yr after the deep Pacific termination onset at 17.5 kyr BP. The stacks extend beyond Termination I to ~40 kyr BP, allowing us to clarify and update certain aspects of millennial-scale benthic δ18O chronostratigraphy surrounding Heinrich events 2-3 and the transition into the Last Glacial Maximum. Our radiocarbon-dated regional benthic δ18O stacks demonstrate some of the limitations of benthic δ18O correlations while providing valuable regional-scale age models and constraints on water mass property and ocean circulation changes over the last ~40 kyr.
NASA Astrophysics Data System (ADS)
Sejrup, H. P.; Haflidason, H.; Flatebø, T.; Klitgaard Kristensen, D.; Grøsfjeld, K.; Larsen, E.
2001-02-01
Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine-grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9-7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large-scale sliding on the continental margin off Norway (the Storegga Tsunami).During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea-surface summer temperatures, possibly with year-round sea-ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea-surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4-9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0.4-0.8 kyr BP. Changes in the fjord hydrology through the past 11.3 kyr show a close correspondence, both in amplitude and timing of events, recorded in cores from the Norwegian Sea region and the North Atlantic. These data suggest a close relationship between fjord environments and variability in large-scale oceanic circulation.
A Million-Year Record of Glaciation in the Tropical Andes
NASA Astrophysics Data System (ADS)
Smith, J. A.; Seltzer, G. O.; Rodbell, D. T.; Farber, D. L.; Finkel, R. C.
2004-12-01
We present a longterm record of glaciation in the tropical Andes based on cosmogenic dating (10Be) of boulders on moraines. Well-preserved moraines in deglaciated valleys bordering the Junin Plain in central Peru ( ˜11° S, 76° W, 4000 m) were deposited during several glacial cycles extending back more than one million years before present (1 Myr BP). The presence of boulders with zero-erosion 10Be exposure ages >1 Myr constrains boulder erosion rates to relatively low values. For boulders at high altitudes, however, even low boulder erosion rates (0.3 to 0.5 m/Myr) make calculated old exposure ages markedly older [e.g., ˜20% older for a zero-erosion age of 400,000 10Be years (400 10Be kyr)]. Exposure ages recalculated with boulder erosion rates of 0.3 m/Myr straddle interglacial marine isotope stage (MIS) 11 ( ˜430-390 kyr BP), fall within glacial MIS 12 ( ˜480-430 kyr BP), but skip over glacial MIS 16 ( ˜670-630 kyr BP), perhaps the largest ice volume of the past 2 Myr. Increasing the erosion rate used in the calculations to 0.5 m/Myr moves ages into both MIS 11 and MIS 16. If we assume that the older Andean glaciations were indeed synchronous with global ice volume, our data suggest that boulder preservation cannot be treated as a simple linear process. Conversely, the data may be suggesting correctly that glaciation of the tropical Andes was not synchronous with the global glaciations as inferred from the marine isotope record. Our chronology for the last glacial maximum (LGM) in the region supports the idea of asynchrony between the global ice volume record and the terrestrial record of glaciation in the tropical Andes. The LGM in the Junin region of Peru and in the Cordillera Real of Bolivia (16° S 68° W) occurred ˜34 to 22 10Be kyr BP and was less extensive than older glaciations. Asynchrony between the LGM in the Northern Hemisphere ( ˜21 kyr BP) and the tropical Andes suggests that previous glaciations in the tropical Andes may have been similarly out of step.
NASA Astrophysics Data System (ADS)
Kawahata, Hodaka; Yamamoto, Hisashi; Ohkushi, Ken'ichi; Yokoyama, Yusuke; Kimoto, Katsunori; Ohshima, Hideki; Matsuzaki, Hiroyuki
2009-05-01
Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabi1ted the Sannai-Maruyama site from 5.9 to 4.2 ± 0.1 cal kyr BP However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C 37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4-7.9, 7.0-5.9, 5.1-4.1, and 2.3-1.4 cal kyr BP) and four of low (-8.4, 7.9-7.0, 5.9-5.1, and 4.1-2.3 cal kyr BP) SST. Thus, each SST cycle lasted 1.0-2.0 kyr, and the amplitude of fluctuation was about 1.5-2.0 °C. Total organic carbon (TOC) and C 37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal kyr BP, but was clearly increased between 5.9 and 4.0 cal kyr BP, because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 ± 0.1 cal kyr BP), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal kyr BP, in spite of warm terrestrial climates, the C 37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 ± 0.1 cal kyr BP, abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C 37 alkenone SST and an increase in the pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0-4.3 cal kyr BP) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ˜2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.
NASA Astrophysics Data System (ADS)
Zinke, J.; Pfeiffer, M.; Park, W.; Schneider, B.; Reuning, L.; Dullo, W.-Chr.; Camoin, G. F.; Mangini, A.; Schroeder-Ritzrau, A.; Garbe-Schönberg, D.; Davies, G. R.
2014-08-01
We report fossil coral records from the Seychelles comprising individual time slices of 14-20 sclerochronological years between 2 and 6.2 kyr BP to reconstruct changes in the seasonal cycle of western Indian Ocean sea surface temperature (SST) compared to the present (1990-2003). These reconstructions allowed us to link changes in the SST bimodality to orbital changes, which were causing a reorganization of the seasonal insolation pattern. Our results reveal the lowest seasonal SST range in the Mid-Holocene (6.2-5.2 kyr BP) and around 2 kyr BP, while the highest range is observed around 4.6 kyr BP and between 1990 and 2003. The season of maximum temperature shifts from austral spring (September to November) to austral autumn (March to May), following changes in seasonal insolation over the past 6 kyr. However, the changes in SST bimodality do not linearly follow the insolation seasonality. For example, the 5.2 and 6.2 kyr BP corals show only subtle SST differences in austral spring and autumn. We use paleoclimate simulations of a fully coupled atmosphere-ocean general circulation model to compare with proxy data for the Mid-Holocene around 6 kyr BP. The model results show that in the Mid-Holocene the austral winter and spring seasons in the western Indian Ocean were warmer while austral summer was cooler. This is qualitatively consistent with the coral data from 6.2 to 5.2 kyr BP, which shows a similar reduction in the seasonal amplitude compared to the present day. However, the pattern of the seasonal SST cycle in the model appears to follow the changes in insolation more directly than indicated by the corals. Our results highlight the importance of ocean-atmosphere interactions for Indian Ocean SST seasonality throughout the Holocene. In order to understand Holocene climate variability in the countries surrounding the Indian Ocean, we need a much more comprehensive analysis of seasonally resolved archives from the tropical Indian Ocean. Insolation data alone only provides an incomplete picture.
Warm ocean surface led to ice margin retreat in central-eastern Baffin Bay during the Younger Dryas
NASA Astrophysics Data System (ADS)
Oksman, Mimmi; Weckström, Kaarina; Miettinen, Arto; Juggins, Stephen; Divine, Dmitry; Jackson, Rebecca; Korsgaard, Niels J.; Telford, Richard; Kucera, Michal
2017-04-01
The Greenland ice sheet stability is linked to fast-flowing ice streams that are influenced by sea surface temperatures (SSTs) at their front. One of the largest ice streams in West Greenland is the Jakobshavn Isbræ, which has been shown to have collapsed at ca. 12.2 kyr BP in the middle of the Younger Dryas (YD) cold period (12.9-11.7 kyr BP). The cause for this collapse is still unknown yet hypotheses, such as warm Atlantic water inflow, have been put forward to explain it. Here we present the first diatom-based high-resolution reconstruction of sea surface conditions in the central-eastern Baffin Bay between 14.0 and 10.2 kyr BP. The sea surface temperatures reveal warmer conditions beginning at ca. 13.4 kyr BP and leading to intensive calving and iceberg discharge from Jakobshavn Isbræ visible as increased sedimentation rates and deposition of coarse-grained material in our sediment stratigraphy. The warm YD ocean surface conditions in Baffin Bay are out of phase with the δ18O record from the North Greenland Ice Core Project (NGRIP) and other SST records from northern North-Atlantic. We show that the ocean has had significant interactions with the Greenland ice sheet in the past and emphasize its importance under the current warming of the North Atlantic.
A Holocene Record of Hydrological Fluctuations in the Northern Chilean Altiplano (Lago Chungará)
NASA Astrophysics Data System (ADS)
Valero-Garces, B. L.; Saez, A.; Pueyo, J.; Taberner, C.; Bao, R.; Schnurrenberger, D.; Myrbo, A.; Shapley, M.; Herrera, C.; Moreno-Caballud, A.; Gonzalez-Samperiz, P.; Giralt, S.; Oriol-Gibert, R.; Edwards, L.; Schwalb, A.
2004-12-01
Holocene records of moisture availability in the Central Andes and the Altiplano show contrasting and even opposite signals and time-transgressive millennial-scale climatic changes across the region, particularly between the Titicaca Basin and the Atacama Altiplano. A multiproxy study of a 13 kyr record of Lago Chungará (18° 15' S, 69° 10' W, 4520 m a.s.l.) provides new data to solve some of the paleoclimate controversies as regional moisture availability patterns during the early and mid Holocene and the onset of modern ENSO conditions. Lago Chungara originated after the emplacement of the Parinacota volcano debris avalanche that blocked the Chungará River prior to 13 cal. kyrs ago. A seismic survey and fifteen Kullenberg cores allowed a detailed 3-D reconstruction of the 8 m long sedimentary sequence. The chronological model is based on 5 AMS 14C on bulk organic matter and 3 U/Th dates on authigenic carbonates and shells. To assess the typically large (and variable) reservoir effect, we dated modern sediments and waters, and constrained the model with time markers based on a 210Pb age model for the last 150 yrs, volcanic ashes of known age, and the U/Th dates. We performed high-resolution analyses by an X-ray fluorescence core scanner and magnetic, sedimentological, mineralogical, isotopic, and biological (pollen, diatoms and ostracodes) analyses on selected cores. Statistical analyses helped to separate the volcanism from climate as the key driving forces in the hydrological and sedimentological evolution of the lake. Three main lacustrine units are identified on top of the pre Parinacota avalanche substrate. The basal unit (13 - 7.2 cal. kyrs BP) is a finely laminated diatomite. The middle unit (7.2 - 4.5 cal. kyrs BP) is banded and it is composed of diatomites and carbonate-rich layers. The diatomaceous upper unit (after 4.5 cal. kyrs BP) is banded to massive, and it contains abundant volcanic layers (lapilli, ash layers). Increased volcanic activity after 6 cal kyrs BP and climate-driven hydrological changes seem to have been conducive to increase carbonate precipitation during the middle unit. Seismic features of the middle unit in littoral areas evidence an alluvial progradation compatible with lowstand intervals and a subsequent lake level rise episode during the upper unit. The reconstructed hydrological variability in the Lake Chungará shows fluctuating lake levels during the Pleistocene-Holocene transition and the early Holocene (13 to 7.2 cal kyrs BP), and the mid Holocene (7.2 - 4.5 cal kyrs BP), and the highest lake levels during the late Holocene. Preliminary frequency analyses in laminated basal unit suggest that ENSO-like variability was also present during the early Holocene in the Altiplano. The presence of mid - Holocene arid intervals supports the regional extent of this period of reduced moisture through the region.
NASA Astrophysics Data System (ADS)
Wagner, Bernd; Wennrich, Volker; Viehberg, Finn; Junginger, Annett; Kolvenbach, Anne; Rethemeyer, Janet; Schaebitz, Frank; Schmiedl, Gerhard
2018-04-01
A 12 m long sediment sequence was recovered from the eastern Dendi Crater lake, located on the central Ethiopian Plateau and in the region of the Blue Nile headwaters. 24 AMS radiocarbon dates from bulk organic carbon samples indicate that the sediment sequence spans the last ca. 12 cal kyr BP. Sedimentological and geochemical data from the sediment sequence that were combined with initial diatom information show only moderate change in precipitation and catchment runoff during that period, probably due to the elevated location of the study region in the Ethiopian highlands. Less humid conditions prevailed during the Younger Dryas (YD). After the return to full humid conditions of the African Humid Period (AHP), a 2 m thick tephra layer, probably originating from an eruption of the Wenchi crater 12 km to the west of the lake, was deposited at 10.2 cal kyr BP. Subsequently, single thin horizons of high clastic matter imply that short spells of dry conditions and significantly increased rainfall, respectively, superimpose the generally humid conditions. The end of the AHP is rather gradual and precedes relatively stable and less humid conditions around 3.9 cal kyr BP. Subsequently, slightly increasing catchment runoff led to sediment redeposition, increasing nutrient supply, and highest trophic states in the lake until 1.5 cal kyr BP. A highly variable increase in clastic matter indicates fluctuating and increasing catchment runoff over the last 1500 years. The data from Lake Dendi show, in concert with other records from the Nile catchment and the Eastern Mediterranean Sea (EMS), that the Blue Nile discharge was relatively high between ca. 10.0 and 8.7 cal kyr BP. Subsequent aridification peaked with some regional differences between ca. 4.0 and 2.6 cal kyr BP. Higher discharge in the Blue Nile hydraulic regime after 2.6 cal kyr BP is probably triggered by more local increase in rainfall, which is tentatively caused by a change in the influence of the Indian Ocean monsoon.
NASA Astrophysics Data System (ADS)
van Soelen, E. E.; Brooks, G.; Lammertsma, E.; Donders, T.; Wagner-Cremer, F.; Sangiorgi, F.; Cremer, H.; Sinninghe Damsté, J. S.; Reichart, G. J.
2009-04-01
The exact consequences of human induced climate change are as yet not known. One of the current debates concerns the relation between rising sea surface temperatures (SST) and enhanced hurricane activity. It has also been suggested that the El Niño Southern Oscillation (ENSO) variability plays a major role in providing favorable circumstances for hurricane development. Paleo-climate reconstructions can help understanding long-term trends in hurricane activity. However, reliable climate reconstructions first require that suitable proxies are developed and tested. For this purpose, a pilot-study was performed using biomarkers, pollen, dinoflagellates and diatoms in a core from Tampa-Bay, Florida, covering the Holocene. The hydrological cycle in this part of Florida is strongly affected by both ENSO [1] and hurricanes. Biomarkers of both terrestrial and marine origin were abundant in the core sediments. High taraxerol concentrations were found which are characteristic for the close proximity of mangrove forests on the bays fringes. Other vascular plant derived biomarkers include friedelanone and β-sitosterol. Marine biomarkers include amongst others dinosterol and long-chain C37 and C38 alkenones, indicative for dinoflagellates and haptophyte algae respectively. These biomarkers are absent in sediments older than 7 kyr BP, indicating a non-marine depositional environment. In sediments younger than 7 kyr BP, increasing amounts of marine biomarkers indicate a transition towards estuarine conditions. SST was reconstructed on the alkenones-based paleothermometer Uk'37 and indicates temperatures of ~ 26°C for the past ~4 kyr. Between 7 and 4 kyr BP, concentrations of alkenones in the sediments are too low for reliable SST reconstructions. The shift towards estuarine conditions is a consequence of rising sea-levels following the last deglaciation and is in agreement with earlier findings by Cronin et al. [2], who recognized a change from lacustrine to marine sediments around 7 kyr BP in the same sediment core. Dinoflagellates and diatoms indicate increasing marine conditions from 7 kyr BP onwards, implying that sea level continued rising. Also the pollen-record shows a shift around 7 kyr BP, with a decrease in Cypress swamp vegetation and a slight increase in mangrove pollen, indicative of transgression. Organic geochemical and micropaleontological proxies are in agreement with each other and confirm earlier findings for Holocene Tampa Bay development. The excellent preservation of both terrestrial and marine biomarkers makes them a useful proxy for the reconstruction of SST, precipitation and runoff and eventually hurricanes, especially when read a multi-proxy approach.
NASA Astrophysics Data System (ADS)
Zhao, Jiaju; An, Chen-Bang; Huang, Yongsong; Morrill, Carrie; Chen, Fa-Hu
2017-12-01
Numerous studies have demonstrated that there are major differences in the timing of maximum Holocene precipitation between the monsoonal East Asia and westerly dominated Central Asia, but it is unclear if the moisture differences are also associated with corresponding temperature contrasts. Here we present the first alkenone-based paleotemperature reconstructions for the past 21 kyr from Lake Balikun, central Asia. We show, unlike the initiation of Holocene warm conditions at ∼11 kyr BP in the monsoon regions, the arid central Asia remained in a glacial-like cold condition prior to 8 kyr BP and experienced abrupt warming of ∼9 °C after the collapse of the Laurentide ice sheet. Comparison with pollen and other geochemical data indicates the abrupt warming is closely associated with major increase in the moisture supply to the region. Together, our multiproxy data indicate ∼2 thousand years delay of temperature and moisture optimum relative to local summer insolation maximum, suggesting major influence of the Laurentide ice sheet and other high latitude ice sheet forcings on the regional atmospheric circulation. In addition, our data reveal a temperature drop by ∼4 °C around 4 kyr BP lasting multiple centuries, coinciding with severe increases in aridity previously reported based on multiproxy data. In contrast, model simulations display a much less pronounced delay in the initiation of Holocene warm conditions, raising unresolved questions about the relative importance of local radiative forcing and high-latitude ice on temperature in this region.
NASA Astrophysics Data System (ADS)
Dubois, N.; Kindler, P.; Spezzaferri, S.; Coric, S.
2007-12-01
The sediments deposited at ODP Site 1195 (Marion Plateau, NE Australia) record synchronous shifts in their chemistry, mineralogy, grain size and colour at 6 meters below sea floor. These significant changes are interpreted to reflect the onset of the southern province of the Great Barrier Reef (GBR). An increased deposition of carbonate-rich sediments of neritic origin, coincident with a decline in both sedimentation rate and terrigenous input, is attributed to inshore trapping of materials by the reefs. Based on an age model combining magnetostratigraphic and biostratigraphic data, we propose that the southern province of the GBR initiated between 560 and 670 kyr B.P. Our best estimate concurs with previous studies reporting an age between 500 and 930 kyr B.P., albeit constraining more tightly these earlier age estimates. However, it does not support research placing the birth of the GBR in Marine Isotope Stage 11 (about 400 kyr B.P.), nor the recent theory of a worldwide modern reef development at that time.
Middle East coastal ecosystem response to middle-to-late Holocene abrupt climate changes.
Kaniewski, D; Paulissen, E; Van Campo, E; Al-Maqdissi, M; Bretschneider, J; Van Lerberghe, K
2008-09-16
The Holocene vegetation history of the northern coastal Arabian Peninsula is of long-standing interest, as this Mediterranean/semiarid/arid region is known to be particularly sensitive to climatic changes. Detailed palynological data from an 800-cm alluvial sequence cored in the Jableh plain in northwest Syria have been used to reconstruct the vegetation dynamics in the coastal lowlands and the nearby Jabal an Nuşayriyah mountains for the period 2150 to 550 B.C. Corresponding with the 4.2 to 3.9 and 3.5 to 2.5 cal kyr BP abrupt climate changes (ACCs), two large-scale shifts to a more arid climate have been recorded. These two ACCs had different impacts on the vegetation assemblages in coastal Syria. The 3.5 to 2.5 cal kyr BP ACC is drier and lasted longer than the 4.2 to 3.9 cal kyr BP ACC, and is characterized by the development of a warm steppe pollen-derived biome (1100-800 B.C.) and a peak of hot desert pollen-derived biome at 900 B.C. The 4.2 to 3.9 cal kyr BP ACC is characterized by a xerophytic woods and shrubs pollen-derived biome ca. 2050 B.C. The impact of the 3.5 to 2.5 cal kyr BP ACC on human occupation and cultural development is important along the Syrian coast with the destruction of Ugarit and the collapse of the Ugarit kingdom at ca. 1190 to 1185 B.C.
Middle East coastal ecosystem response to middle-to-late Holocene abrupt climate changes
Kaniewski, D.; Paulissen, E.; Van Campo, E.; Al-Maqdissi, M.; Bretschneider, J.; Van Lerberghe, K.
2008-01-01
The Holocene vegetation history of the northern coastal Arabian Peninsula is of long-standing interest, as this Mediterranean/semiarid/arid region is known to be particularly sensitive to climatic changes. Detailed palynological data from an 800-cm alluvial sequence cored in the Jableh plain in northwest Syria have been used to reconstruct the vegetation dynamics in the coastal lowlands and the nearby Jabal an Nuşayriyah mountains for the period 2150 to 550 B.C. Corresponding with the 4.2 to 3.9 and 3.5 to 2.5 cal kyr BP abrupt climate changes (ACCs), two large-scale shifts to a more arid climate have been recorded. These two ACCs had different impacts on the vegetation assemblages in coastal Syria. The 3.5 to 2.5 cal kyr BP ACC is drier and lasted longer than the 4.2 to 3.9 cal kyr BP ACC, and is characterized by the development of a warm steppe pollen-derived biome (1100–800 B.C.) and a peak of hot desert pollen-derived biome at 900 B.C. The 4.2 to 3.9 cal kyr BP ACC is characterized by a xerophytic woods and shrubs pollen-derived biome ca. 2050 B.C. The impact of the 3.5 to 2.5 cal kyr BP ACC on human occupation and cultural development is important along the Syrian coast with the destruction of Ugarit and the collapse of the Ugarit kingdom at ca. 1190 to 1185 B.C. PMID:18772385
Sowa, Kohki; Watanabe, Tsuyoshi; Kan, Hironobu; Yamano, Hiroya
2014-01-01
To evaluate the relationships between coral calcification, thermal stress, and sedimentation and eutrophication linked to human impact (hereafter referred to as “land development”) by river discharge, we analyzed growth characteristics in the context of a paleoenvironment that was reconstructed from geochemical signals in modern and fossil (1.2 cal kyr BP and 3.5 cal kyr BP, respectively) massive Porites corals from Nagura Bay (“Nagura”) and from modern Porites corals from the estuary of the Todoroki River, Shiraho Reef (“Todoroki”). Both sites are on Ishigaki Island, Japan, and Nagura is located approximately 12 km west of Todoroki. At Nagura, the individual corals provide time windows of 13 (modern), 10 (1.2 cal kyr BP), and 38 yr in length (3.5 cal kyr BP). Here, we present the coral annual calcification for Nagura and Todoroki, and (bi) monthly resolved records of Sr/Ca (a proxy of sea surface temperature (SST)) and Ba/Ca (a proxy of sedimentation and nutrients related to land development) for Nagura. At Nagura, the winter SST was cooler by 2.8°C in the 1.2 cal kyr BP, and the annual and winter SSTs in the 3.5 cal kyr BP were cooler by 2.6°C and 4.6°C, respectively. The annual periodicity of Ba/Ca in modern coral is linked to river discharge and is associated with land development including sugar cane cultivation. Modern coral calcification also has declined with SST warming and increasing Ba/Ca peaks in winter. However, calcification of fossil corals does not appear to have been influenced by variations in Sr/Ca and Ba/Ca. Modern coral growth characteristics at Nagura and Todoroki indicate that coral growth is both spatially and temporally influenced by river discharge and land development. At Nagura, our findings suggest that land development induces negative thermal sensitivity for calcification in winter due to sugar cane harvest, which is a specifically modern phenomenon. PMID:24586393
NASA Astrophysics Data System (ADS)
Wagner, B.; Viehberg, F. A.; Wennrich, V.; Junginger, A.; Kolvenbach, A.; Rethemeyer, J.; Schaebitz, F.; Schmiedl, G. H.
2015-12-01
A 12 m long sediment sequence from Dendi Crater lakes, located on the central Ethiopian Plateau, was analysed with sedimentological and geochemical methods to reconstruct the regional environmental history. Bulk organic carbon samples from 23 horizons throughout the sequence were used for AMS radiocarbon dating and indicate that the sediment sequence spans the last ca. 12 cal kyr BP. Microscope analyses and sedimentological data reveal three tephra layers, of which the most prominent layer with a thickness of ~2 m was deposited at 10.2 cal kyr BP and probably originates from an eruption of the Wenchi crater 12 km to the west of the Dendi lakes. Sedimentological data of the pelagic deposits indicate shifts in erosion and rainfall throughout the record. A decrease in Ca and Sr at 11.6 cal kyr BP is related to the shift of less humid condition during the Younger Dryas (YD) to the return to full humid conditions of the African Humid Period (AHP). Single thin horizons with high carbonate content or high Ti and K imply that short spells of dry conditions and significantly increased rainfall superimpose the generally more humid conditions during the AHP. The end of the AHP is gradual. Relatively stable and less humid conditions characterised the Dendi Crater lakes until around 3.9 cal kyr BP. A highly variable increase in clastic matter over the last 1500 years indicates higher erosion due to short-term variations in precipitation within the Dendi catchment. Overall, the sediment record suggests moderate change of precipitation during the Holocene, which is probably due to their exposed location in the Ethiopian highlands. The data from the Dendi Crater lakes show, in concert with other records from the Nile catchment and the Eastern Mediterranean Sea (EMS), that the Blue Nile provided the main freshwater source for maintaining EMS stratification and sapropel S1 formation between ca. 10.0 and 8.7 cal kyr BP. Subsequent aridification is recorded from equatorial East Africa to the northeastern Mediterranean and peaked with some regional differences between ca. 4.0 and 2.6 cal kyr BP. Significant higher discharge in the Blue Nile hydraulic regime after 2.6 cal kyr BP is probably triggered by more local changes in precipitation, which are tentatively caused by a change in the influence of the Indian Ocean.
NASA Astrophysics Data System (ADS)
Ilyashuk, Boris P.; Ilyashuk, Elena A.
2007-03-01
Sediment cores from two mountain lakes (Lake Grusha at 2413 m a.s.l. and Ak-Khol at 2204 m a.s.l.) situated in the Tuva Republic (southern Siberia, Russia), just north of Mongolia, were studied for chironomid fossils in order to infer post-glacial climatic changes and to investigate responses of the lake ecosystems to these changes. The results show that chironomids are responding both to temperature and to changing lake depth, which is regarded as a sensitive proxy of regional effective moisture. The post-glacial history of this mountain region in Central Asia can be divided into seven successive climatic phases: the progressive warming during the last glacial-interglacial transition (ca 15.8-14.6 cal kyr BP), the warm and moist Bølling-Allerød-like interval (ca 14.6-13.1 cal kyr BP), the cool and dry Younger Dryas-like event (ca 13.1-12.1 cal kyr BP), warmer and wetter conditions during ca 12.1-8.5 cal kyr BP, a warm and dry phase ca 8.5-5.9 cal kyr BP, cold and wet conditions during ca 5.9-1.8 cal kyr BP, as well as cold and dry climate within the last 1800 years. The chironomid records reveal patterns of climatic variability during the Late-glacial and Holocene, which can be correlated with abrupt climatic events in the North Atlantic and the Asian monsoon-dominated regimes. Apparently, the water balance of the studied lakes is controlled by the interrelation between the dominant westerly system and the changing influence of the summer monsoon, as well as the influence of alpine glacier meltwater supply. It is possible that monsoon tracks could have reached the southwest Tuva, resulting in an increase in precipitation at ca 14.6-13.1 and ca 12.1-8.5 cal kyr BP, whereas cyclonic westerlies from the North Atlantic were likely responsible for considerable moisture transport accompanying the global Neoglacial cooling at ca 5.9-1.8 cal kyr BP. These events suggest the changes of the regional pattern of atmospheric circulation, which could be in turn induced by the global climatic shifts. Some discrepancies compared with other reconstructions from Central Asia may be associated with regional (spatial) differences between the changing predominant circulation mechanisms and with local differences in uplift and descent of air masses within the complicated mountain landscape. In this paper, we also discuss the possibilities and perspectives for using chironomids in reconstructions of past temperatures and climate-induced changes in water depth of lakes in Central Asia.
Oysters, estuaries, and Late Pleistocene-Holocene sea level, northeastern Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, W.W.; Shultz, A.W.
1993-03-01
The timing and magnitude of global sea level fluctuations over the past 35 kyr remain nondum ostenduntur after three decades of study. The construction of local relative sea level histories is often complicated by the need to assess regional tectonic and climatic components together. The authors attempt to contribute to an understanding of sea level fluctuations in the northeastern Gulf of Mexico through the application of faunal tracking, using fossil oyster shells as indicators of paleoestuarine environments. They assume that sites on the continental shelf where oysters have been collected were coastal and therefore are reasonable approximations of past shorelinemore » locations and sea-level elevations. They acknowledge that this assumption is a leap of faith for some observers, but is justified as a provisional step toward an independent determination. Insights into Quaternary coastal paleogeography are gathered from locations and radiocarbon ages of American oyster (Crassostrea virginica) shells collected from the Alabama continental shelf. Prior to the onset of the last Wisconsinan glaciation (35 to 26 kyr BP), estuaries occupied a zone 20 to 25 km seaward of today's coastline. As glaciation increased and sea level was lowered (23 to 21 kyr BP), open coastal estuarine conditions developed southward. Oysters dating from the lowstand period (20 to 16 kyr BP) have not been collected. As sea level rose over the next 10 kyr (16 to 6 kyr BP), estuaries were displaced northward in steps. This data on depths and ages can be viewed as supporting an interpretation of fluctuating Holocene sea level, rather than a steady sea-level rise.« less
Fifty thousand years of Arctic vegetation and megafaunal diet.
Willerslev, Eske; Davison, John; Moora, Mari; Zobel, Martin; Coissac, Eric; Edwards, Mary E; Lorenzen, Eline D; Vestergård, Mette; Gussarova, Galina; Haile, James; Craine, Joseph; Gielly, Ludovic; Boessenkool, Sanne; Epp, Laura S; Pearman, Peter B; Cheddadi, Rachid; Murray, David; Bråthen, Kari Anne; Yoccoz, Nigel; Binney, Heather; Cruaud, Corinne; Wincker, Patrick; Goslar, Tomasz; Alsos, Inger Greve; Bellemain, Eva; Brysting, Anne Krag; Elven, Reidar; Sønstebø, Jørn Henrik; Murton, Julian; Sher, Andrei; Rasmussen, Morten; Rønn, Regin; Mourier, Tobias; Cooper, Alan; Austin, Jeremy; Möller, Per; Froese, Duane; Zazula, Grant; Pompanon, François; Rioux, Delphine; Niderkorn, Vincent; Tikhonov, Alexei; Savvinov, Grigoriy; Roberts, Richard G; MacPhee, Ross D E; Gilbert, M Thomas P; Kjær, Kurt H; Orlando, Ludovic; Brochmann, Christian; Taberlet, Pierre
2014-02-06
Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25-15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.
NASA Astrophysics Data System (ADS)
Yuan, Zineng; Xing, Lei; Li, Li; Zhang, Hailong; Xiang, Rong; Zhao, Meixun
2013-12-01
The ecological environment in the East China Sea (ECS) and the Yellow Sea (YS) has changed significantly due to sea-level rising and the Kuroshio incursion since the last deglaciation. In this study, biomarker records of core F10B from the mud area southwest off Cheju Island (MSWCI) were generated to evaluate phytoplankton productivity and community structure changes in response to environmental evolution during the last 14 kyr. The contents of diatom, dinoflagellate and haptophyte biomarkers (brassicasterol, dinosterol and C37 alkenones) display similar trends, with increasing phytoplankton productivity during the last 14 kyr due to the increased influences of the Kuroshio, and especially due to the eddy-induced upwelling during the late Holocene. On the other hand, the contents of terrestrial biomarkers (C28 +C30 +C32 n-alkanols) and terrestrial organic matter (TOM) proxies (TMBR' and BIT) all reveal decreasing TOM input into the area around the sampling site for the 14 kyr, mostly due to sea-level rising. Phytoplankton biomarker ratios reveal a shift from a haptophyte-dominated community at 6.2-2.5 kyr BP to a diatom-dominated community at 2.5-1.45 kyr BP, likely caused by a stronger cold eddy circulation system at 2.5-1.45 kyr BP in the MSWCI.
NASA Astrophysics Data System (ADS)
Thevenon, Florian; Williamson, David; Bard, Edouard; Anselmetti, Flavio S.; Beaufort, Luc; Cachier, Hélène
2010-07-01
This paper addresses the quantification of combustion-derived products in oceanic and continental sediments by optical and chemical approaches, and the interest of combining such methods for reconstructing past biomass burning activity and the pyrogenic carbon cycle. In such context, the dark particles > 0.2 µm 2 remaining after the partial digestion of organic matter are optically counted by automated image analysis and defined as charcoal, while the elemental carbon remaining after thermal and chemical oxidative treatments is quantified as black carbon (BC). The obtained pyrogenic carbon records from three sediment core-based case studies, (i) the Late Pleistocene equatorial Pacific Ocean, (ii) the mid-Holocene European Lake Lucerne, and (iii) the Late Holocene African Lake Masoko, are interpreted as proxy records of regional transportation mechanisms and biomass burning activities. The results show that the burial of dark carbon-rich particles in the 360 kyr-long record from the west equatorial Pacific is controlled by the combination of sea-level changes and low-latitude atmospheric circulation patterns (summer monsoon dynamics). However, the three fold increases in charcoal and BC sediment influxes between 53-43 and 12-10 kyr BP suggest that major shifts in fire activity occur synchronously with human colonization in the Indo/Pacific region. The coarse charcoal distribution from a 7.2 kyr record from Lake Lucerne in Switzerland closely matches the regional timing of major technical, land-use, and socio-economic changes during the Neolithic (between ca. 5.7 and 5.2 kyr BP and 4.9-4.5 kyr BP), the Bronze and Iron Ages (at ca. 3.3 and 2.4 kyr BP, respectively), and the industrialization (after AD 1838), pointing to the key impact of human activities on the sources, transportation processes and reservoirs of refractory carbon during the Holocene. In the tropical Masoko maar lake in Tanzania, where charcoal and BC records are highly sensitive to the local climate and environment, surface runoffs from forested areas and/or aerial transportation over short distances are also important sources for detrital charred particles. However, this 4.3 kyr-long record exhibits a major increase in charcoal and BC sediment influxes between 1.8 and 0.6 kyr BP, synchronously with the regional extent of Late Iron Age and agricultural innovations. Therefore, in both marine and terrestrial depositional environments, the climate- and vegetation-controlled fire regimes appear to be strongly associated to societal changes, or directly affected by human practices. In fact, the anthropogenic effect associated to past human activities (e.g. settlement, agriculture, and metallurgy) has temporarily at least tripled the emissions of pyrogenic carbon in the environment. However, the data from the three Late Pleistocene to Holocene sequences also show that the redistribution of fossil particles by runoff and erosion processes is a significant source of pyrogenic carbon that should be understood as a prerequisite for interpreting sedimentary records of biomass burning.
Multidecadal variations in the early Holocene outflow of Red Sea Water into the Arabian Sea
NASA Astrophysics Data System (ADS)
Jung, S. J. A.; Ganssen, G. M.; Davies, G. R.
2001-12-01
We present Holocene stable oxygen isotope data from the deep Arabian Sea off Somalia at a decadal time resolution as a proxy for the history of intermediate/upper deep water. These data show an overall δ18O reduction by 0.5‰ between 10 and ˜6.5 kyr B.P. superimposed upon short-term δ18O variations at a decadal-centennial timescale. The amplitude of the decadal variations is 0.3‰ prior, and up to 0.6‰ subsequent, to ˜8.1 kyr B.P. We conclude from modeling experiments that the short-term δ18O variations between 10 and ˜6.5 kyr B.P. most likely document changes in the evaporation-precipitation balance in the central Red Sea. Changes in water temperature and salinity cause the outflowing Red Sea Water to settle roughly 800 m deeper than today.
Holocene climate dynamics in the central part of the East European plain (Russia)
NASA Astrophysics Data System (ADS)
Novenko, Elena
2013-04-01
The Holocene climate and vegetation dynamics in the broad-leaved forest zone of the central part of the East European plain have been reconstructed on the base of pollen, plant macrofossil, testate amoebae and radiocarbon data from the mire Klukva (N 53.834812, E 36.252488), located in the kast depression in the Upper Oka River basin (Tula region, European Russia). The reconstruction of main parameters of past climate (the mean annual temperature precipitation) was carried out by the "Best Modern Analog" approach. Reconstructions of vegetation show that in the early Holocene the territory was occupied mainly by birch and pine-birch forests. Significant changes in the plant cover of the Upper Oka River basin are attributed to the 7.5 cal kyr BP). The climatic conditions were favorable for development of the broad-leaved forests those persisted in this area up to industrial period. In the 17th century, when the population density greatly increased and watersheds were ploughed, natural vegetation communities were gradually destroyed and transformed into agricultural landscapes. According to obtained climatic reconstructions the period 10-8.5 cal kyr BP was relatively cold and wet, when the mean annual temperature was in 3°C lower and precipitation was in 50-100 mm higher then nowadays. The significant climate warming occurred in about 7.0-5.0 cal kyr BP (The Holocene thermal maximum): the mean annual temperature in 2°C exceeded the modern value and precipitation was close to that. The environment conditions were drier due to decrease of effective moisture. In the second part of the Holocene the sequence of second-, and even third-order climatic oscillations expressed against the background of the overall slight trend towards cooling have been determined. The most pronounced cool and wet intervals were reconstructed in 2.5-2.0 cal kyr BP and 1.5-1.3 cal kyr BP. The mean annual temperature decreased in 1.5-2 °C and precipitation rose in 200 mm in compare to modern ones. During the last millennium the warming of the Medieval Climatic Anomaly and cooling of the Little Ice Age were clearly determined. This work was supported by RFBR grant 11-05-00557.
Vegetation of Eurasia from the last glacial maximum to present: Key biogeographic patterns
NASA Astrophysics Data System (ADS)
Binney, Heather; Edwards, Mary; Macias-Fauria, Marc; Lozhkin, Anatoly; Anderson, Patricia; Kaplan, Jed O.; Andreev, Andrei; Bezrukova, Elena; Blyakharchuk, Tatiana; Jankovska, Vlasta; Khazina, Irina; Krivonogov, Sergey; Kremenetski, Konstantin; Nield, Jo; Novenko, Elena; Ryabogina, Natalya; Solovieva, Nadia; Willis, Kathy; Zernitskaya, Valentina
2017-02-01
Continental-scale estimates of vegetation cover, including land-surface properties and biogeographic trends, reflect the response of plant species to climate change over the past millennia. These estimates can help assess the effectiveness of simulations of climate change using forward and inverse modelling approaches. With the advent of transient and contiguous time-slice palaeoclimate simulations, vegetation datasets with similar temporal qualities are desirable. We collated fossil pollen records for the period 21,000-0 cal yr BP (kyr cal BP; calibrated ages) for Europe and Asia north of 40°N, using extant databases and new data; we filtered records for adequate dating and sorted the nomenclature to conform to a consistent yet extensive taxon list. From this database we extracted pollen spectra representing 1000-year time-slices from 21 kyr cal BP to present and used the biomization approach to define the most likely vegetation biome represented. Biomes were mapped for the 22 time slices, and key plant functional types (PFTs, the constituents of the biomes) were tracked though time. An error matrix and index of topographic complexity clearly showed that the accuracy of pollen-based biome assignments (when compared with modern vegetation) was negatively correlated with topographic complexity, but modern vegetation was nevertheless effectively mapped by the pollen, despite moderate levels of misclassification for most biomes. The pattern at 21 ka is of herb-dominated biomes across the whole region. From the onset of deglaciation (17-18 kyr cal BP), some sites in Europe record forest biomes, particularly the south, and the proportion of forest biomes gradually increases with time through 14 kyr cal BP. During the same period, forest biomes and steppe or tundra biomes are intermixed across the central Asian mountains, and forest biomes occur in coastal Pacific areas. These forest biome occurrences, plus a record of dated plant macrofossils, indicate that some tree populations existed in southern and Eastern Europe and central and far-eastern Eurasia. PFT composition of the herbaceous biomes emphasises the significant contribution of diverse forbs to treeless vegetation, a feature often obscured in pollen records. An increase in moisture ca. 14 kyr cal BP is suggested by a shift to woody biomes and an increase in sites recording initialization and development of lakes and peat deposits, particularly in the European portion of the region. Deforestation of Western Europe, presumably related to agricultural expansion, is clearly visible in the most recent two millennia.
Revised stratigraphy and chronology for Homo floresiensis at Liang Bua in Indonesia.
Sutikna, Thomas; Tocheri, Matthew W; Morwood, Michael J; Saptomo, E Wahyu; Jatmiko; Awe, Rokus Due; Wasisto, Sri; Westaway, Kira E; Aubert, Maxime; Li, Bo; Zhao, Jian-xin; Storey, Michael; Alloway, Brent V; Morley, Mike W; Meijer, Hanneke J M; van den Bergh, Gerrit D; Grün, Rainer; Dosseto, Anthony; Brumm, Adam; Jungers, William L; Roberts, Richard G
2016-04-21
Homo floresiensis, a primitive hominin species discovered in Late Pleistocene sediments at Liang Bua (Flores, Indonesia), has generated wide interest and scientific debate. A major reason this taxon is controversial is because the H. floresiensis-bearing deposits, which include associated stone artefacts and remains of other extinct endemic fauna, were dated to between about 95 and 12 thousand calendar years (kyr) ago. These ages suggested that H. floresiensis survived until long after modern humans reached Australia by ~50 kyr ago. Here we report new stratigraphic and chronological evidence from Liang Bua that does not support the ages inferred previously for the H. floresiensis holotype (LB1), ~18 thousand calibrated radiocarbon years before present (kyr cal. BP), or the time of last appearance of this species (about 17 or 13-11 kyr cal. BP). Instead, the skeletal remains of H. floresiensis and the deposits containing them are dated to between about 100 and 60 kyr ago, whereas stone artefacts attributable to this species range from about 190 to 50 kyr in age. Whether H. floresiensis survived after 50 kyr ago--potentially encountering modern humans on Flores or other hominins dispersing through southeast Asia, such as Denisovans--is an open question.
δ13Catm and [CO2] measurements in Antarctic ice cores, 160 kyrBP - present
NASA Astrophysics Data System (ADS)
Eggleston, Sarah; Schmitt, Jochen; Schneider, Robert; Joos, Fortunat; Fischer, Hubertus
2014-05-01
Measurements from Antarctic ice cores allow us to reconstruct atmospheric concentrations of climatically important gases including CO2 over the past 800 kyr. Such measurements show that [CO2] has varied in parallel with Antarctic temperatures on glacial-interglacial timescales. Knowledge of the variations of the stable carbon isotope of CO2, δ13Catm, can help us better understand the processes involved in these fluctuations. Here, we present a first complete δ13Catmrecord extending from 160 kyrBP to the present accompanied by δ15N2 measurements during Marine Isotope Stage 3 (MIS 3, 57 - 29 kyrBP). The present record, measured primarily on ice from the EPICA Dome C and Talos Dome ice cores, has an average resolution of 500 yr, focused mainly on the Last Glacial Maximum and termination (180 yr; Schmitt et al., 2012), MIS 3 (660 yr), and Termination II through MIS 5.4 (590 yr; Schneider et al., 2013). Throughout the record, δ13Catm varies between approximately -6.8 and -6.4‰Following a period of relatively constant δ13Catm at the end of MIS 6 (around -6.8), the boundaries of MIS 5 correspond roughly with the beginning and end of a gradual enrichment in this isotope. In comparison, the more recent record depicts three more abrupt excursions to lighter values around 63 - 59, 46, and 17 kyrBP, in each case followed by a slower return (0.4o over the course of 5 - 15 kyr) to more enriched isotopic values. These coincide with Heinrich events 6, 5, and 1, respectively. No direct correlation is observed between the concentration and carbon isotope of CO2 over the last 160 kyr. The data indicate rather that numerous processes, such as uptake and release of atmospheric CO2 by the ocean and land biosphere, perhaps influenced by regions of growing permafrost during MIS 3 and 4, acting on a variety of timescales must be considered in explaining the evolution of δ13Catm on glacial-interglacial timescales. References: Schmitt, J. et al. Science 336, 711-714 (2012) Schneider, R. et al. Clim. Past, 9, 2507-2523 (2013)
NASA Astrophysics Data System (ADS)
Moernaut, J.; Verschuren, D.; Charlet, F.; Kristen, I.; Fagot, M.; De Batist, M.
2010-02-01
Seismic-reflection data from crater lake Challa (Mt. Kilimanjaro, equatorial East Africa) reveal a ˜ 210-m thick sedimentary infill containing distinct seismic-stratigraphic signatures of late-Quaternary lake-level fluctuations. Extrapolation of a well-constrained age model on the cored upper part of the sequence suggests that these lake-level fluctuations represent a detailed and continuous record of moisture-balance variation in equatorial East Africa over the last 140 kyr. This record indicates that the most severe aridity occurred during peak Penultimate glaciation immediately before ˜ 128 kyr BP (coeval with Heinrich event 11) and during a Last Interglacial 'megadrought' period between ˜ 114 and ˜ 97 kyr BP; in comparison, Last Glacial Maximum (LGM) aridity was modest. It was preceded by ˜ 75 000 years of relatively stable and moist climate conditions interrupted by eleven short-lived dry spells, five of which match the timing of Heinrich events 2 to 6. Climate history near the East African equator reflects variation in the precessional forcing of monsoon rainfall modulated by orbital eccentricity, but precession-driven moisture fluctuations were less extreme than those observed in northern and southern tropical Africa. The near-continuous moist climate from ˜ 97 to 20.5 kyr BP recorded in the Lake Challa record contrasts with the trend towards greater aridity after ˜ 70 kyr BP documented in equatorial West Africa. This long period of moist glacial climate and a short, relatively modest LGM drought can be attributed to greater independence of western Indian Ocean monsoon dynamics from northern high-latitude glaciation than those in the tropical Atlantic Ocean. This rather persistent moist glacial climate regime may have helped maintain high biodiversity in the tropical forest ecosystems of the Eastern Arc mountains in Tanzania.
Holocene glacier activity reconstructed from proglacial lake Gjøavatnet on Amsterdamøya, NW Svalbard
NASA Astrophysics Data System (ADS)
de Wet, Gregory A.; Balascio, Nicholas L.; D'Andrea, William J.; Bakke, Jostein; Bradley, Raymond S.; Perren, Bianca
2018-03-01
Well-dated and highly resolved paleoclimate records from high latitudes allow for a better understanding of past climate change. Lake sediments are excellent archives of environmental change, and can record processes occurring within the catchment, such as the growth or demise of an upstream glacier. Here we present a Holocene-length, multi-proxy lake sediment record from proglacial lake Gjøavatnet on the island of Amsterdamøya, northwest Svalbard. Today, Gjøavatnet receives meltwater from the Annabreen glacier and contains a record of changes in glacier activity linked to regional climate conditions. We measured changes in organic matter content, dry bulk density, bulk carbon isotopes, elemental concentrations via Itrax core-scanning, and diatom community composition to reconstruct variability in glacier extent back through time. Our reconstruction indicates that glacially derived sedimentation in the lake decreased markedly at ∼11.1 cal kyr BP, although a glacier likely persisted in the catchment until ∼8.4 cal kyr BP. During the mid-Holocene (∼8.4-1.0 cal kyr BP) there was significantly limited glacial influence in the catchment and enhanced deposition of organic-rich sediment in the lake. The deposition of organic rich sediments during this time was interrupted by at least three multi-centennial intervals of reduced organic matter accumulation (∼5.9-5.0, 2.7-2.0, and 1.7-1.5 cal kyr BP). Considering our chronological information and a sedimentological comparison with intervals of enhanced glacier input, we interpret these intervals not as glacial advances, but rather as cold/dry episodes that inhibited organic matter production in the lake and surrounding catchment. At ∼1.0 cal kyr BP, input of glacially derived sediment to Gjøavatnet abruptly increased, representing the rapid expansion of the Annabreen glacier.
Hunter, K.L.; Betancourt, J.L.; Riddle, B.R.; Van Devender, T. R.; Cole, K.L.; Geoffrey, Spaulding W.
2000-01-01
1 A classic biogeographic pattern is the alignment of diploid, tetraploid and hexaploid races of creosote bush (Larrea tridentata) across the Chihuahuan, Sonoran and Mohave Deserts of western North America. We used statistically robust differences in guard cell size of modern plants and fossil leaves from packrat middens to map current and past distributions of these ploidy races since the Last Glacial Maximum (LGM). 2 Glacial/early Holocene (26-10 14C kyr BP or thousands of radiocarbon years before present) populations included diploids along the lower Rio Grande of west Texas, 650 km removed from sympatric diploids and tetraploids in the lower Colorado River Basin of south-eastern California/south-western Arizona. Diploids migrated slowly from lower Rio Grande refugia with expansion into the northern Chihuahuan Desert sites forestalled until after ???4.0 14C kyr BP. Tetraploids expanded from the lower Colorado River Basin into the northern limits of the Sonoran Desert in central Arizona by 6.4 14C kyr BP. Hexaploids appeared by 8.5 14C kyr BP in the lower Colorado River Basin, reaching their northernmost limits (???37??N) in the Mohave Desert between 5.6 and 3.9 14C kyr BP. 3 Modern diploid isolates may have resulted from both vicariant and dispersal events. In central Baja California and the lower Colorado River Basin, modern diploids probably originated from relict populations near glacial refugia. Founder events in the middle and late Holocene established diploid outposts on isolated limestone outcrops in areas of central and southern Arizona dominated by tetraploid populations. 4 Geographic alignment of the three ploidy races along the modern gradient of increasingly drier and hotter summers is clearly a postglacial phenomenon, but evolution of both higher ploidy races must have happened before the Holocene. The exact timing and mechanism of polyploidy evolution in creosote bush remains a matter of conjecture. ?? 2001 Blackwell Science Ltd.
Hunter, Kimberly L.; Betancourt, Julio L.; Riddle, Brett R.; Van Devender, Thomas R.; Cole, K.L.; Spaulding, W.G.
2001-01-01
1. A classic biogeographic pattern is the alignment of diploid, tetraploid and hexaploid races of creosote bush (Larrea tridentata) across the Chihuahuan, Sonoran and Mohave Deserts of western North America. We used statistically robust differences in guard cell size of modern plants and fossil leaves from packrat middens to map current and past distributions of these ploidy races since the Last Glacial Maximum (LGM). 2 Glacial/early Holocene (26a??10 14C kyr bp or thousands of radiocarbon years before present) populations included diploids along the lower Rio Grande of west Texas, 650 km removed from sympatric diploids and tetraploids in the lower Colorado River Basin of south-eastern California/south-western Arizona. Diploids migrated slowly from lower Rio Grande refugia with expansion into the northern Chihuahuan Desert sites forestalled until after ~4.0 14C kyr bp. Tetraploids expanded from the lower Colorado River Basin into the northern limits of the Sonoran Desert in central Arizona by 6.4 14C kyr bp. Hexaploids appeared by 8.5 14C kyr bp in the lower Colorado River Basin, reaching their northernmost limits (~37A?N) in the Mohave Desert between 5.6 and 3.9 14C kyr bp. 3 Modern diploid isolates may have resulted from both vicariant and dispersal events. In central Baja California and the lower Colorado River Basin, modern diploids probably originated from relict populations near glacial refugia. Founder events in the middle and late Holocene established diploid outposts on isolated limestone outcrops in areas of central and southern Arizona dominated by tetraploid populations. 4 Geographic alignment of the three ploidy races along the modern gradient of increasingly drier and hotter summers is clearly a postglacial phenomenon, but evolution of both higher ploidy races must have happened before the Holocene. The exact timing and mechanism of polyploidy evolution in creosote bush remains a matter of conjecture.
NASA Astrophysics Data System (ADS)
Belt, Simon T.; Vare, Lindsay L.; Massé, Guillaume; Manners, Hayley R.; Price, John C.; MacLachlan, Suzanne E.; Andrews, John T.; Schmidt, Sabine
2010-12-01
A 7000 year spring sea ice record for Victoria Strait (ARC-4) and Dease Strait (ARC-5) in the Canadian Arctic Archipelago (CAA) has been determined by quantification of the sea ice diatom-derived biomarker IP 25 in two marine sediment piston cores obtained in 2005. The chronologies of the ARC-4 and ARC-5 cores were determined using a combination of 14C AMS dates obtained from macrobenthic fossils and magnetic susceptibility measurements. The ages of the tops of the piston cores were estimated by matching chemical and physical parameters with those obtained from corresponding box cores. These analyses revealed that, while the top of the ARC-4 piston core was estimated to be essentially modern (ca. 60 cal yr BP), a few hundred years of sediment appeared to be absent from the ARC-5 piston core. Downcore changes to IP 25 fluxes for both cores were interpreted in terms of variations in spring sea ice occurrence, and correlations between the individual IP 25 flux profiles for Victoria Strait, Dease Strait and Barrow Strait (reported previously) were shown to be statistically significant at both 50 and 100-year resolutions. The IP 25 data indicate lower spring sea ice occurrences during the early part of the record (ca. 7.0-3.0 cal kyr BP) and for parts of the late Holocene (ca. 1.5-0.8 cal kyr BP), especially for the two lower latitude study locations. In contrast, higher spring sea ice occurrences existed during ca. 3.0-1.5 cal kyr BP and after ca. 800 cal yr BP. The observation of, consecutively, lower and higher spring sea ice occurrence during two periods of the late Holocene, coincides broadly with the Medieval Warm Period and Little Ice Age epochs, respectively. The IP 25 data are complemented by particle size and mineralogical data, although these may alternatively reflect changes in sea level at the study sites. The IP 25 data are also compared to previous proxy-based determinations of palaeo sea ice and palaeoclimate for the CAA, including those based on bowhead whale remains and dinocyst assemblages. The spatial consistency in the proxy data which, most notably, indicates an increase in spring sea ice occurrence around 3 cal kyr BP, provides a potentially useful benchmark for the termination of the Holocene Thermal Maximum for the central CAA.
NASA Astrophysics Data System (ADS)
Oyabu, Ikumi; Iizuka, Yoshinori; Uemura, Ryu; Miyake, Takayuki; Hirabayashi, Motohiro; Motoyama, Hideaki; Sakurai, Toshimitsu; Suzuki, Toshitaka; Hondoh, Takeo
2014-12-01
The flux and chemical composition of aerosols impact the climate. Antarctic ice cores preserve the record of past atmospheric aerosols, providing useful information about past atmospheric environments. However, few studies have directly measured the chemical composition of aerosol particles preserved in ice cores. Here we present the chemical compositions of sulfate and chloride salts from aerosol particles in the Dome Fuji ice core. The analysis method involves ice sublimation, and the period covers the last termination, 25.0-11.0 thousand years before present (kyr B.P.), with a 350 year resolution. The major components of the soluble particles are CaSO4, Na2SO4, and NaCl. The dominant sulfate salt changes at 16.8 kyr B.P. from CaSO4, a glacial type, to Na2SO4, an interglacial type. The sulfate salt flux (CaSO4 plus Na2SO4) inversely correlates with δ18O in Dome Fuji over millennial timescales. This correlation is consistent with the idea that sulfate salt aerosols contributed to the last deglacial warming of inland Antarctica by reducing the aerosol indirect effect. Between 16.3 and 11.0 kyr B.P., the presence of NaCl suggests that winter atmospheric aerosols are preserved. A high NaCl/Na2SO4 fraction between 12.3 and 11.0 kyr B.P. indicates that the contribution from the transport of winter atmospheric aerosols increased during this period.
NASA Astrophysics Data System (ADS)
De Cort, Gijs; Creutz, Mike; Barao, Lucia; Conley, Daniel; Haug, Gerald; Bodé, Samuel; Blaauw, Maarten; Engstrom, Dan; Verschuren, Dirk
2015-04-01
Following the generally arid conditions of the Last Glacial Maximum (LGM), a large part of the African continent experienced the Early to Mid-Holocene as a much more humid period than today. This so-called African Humid Period (AHP) coincided with high summertime insolation over the Northern Hemisphere subtropics, causing invigorated monsoons to create moist conditions over the northern parts of the continent. Similarly, equatorial and even low-latitude southeastern Africa experienced a wetter climate due to the post-glacial increase in atmospheric greenhouse gasses ultimately leading to altered Atlantic and Indian Ocean monsoon dynamics. The timing and abruptness of the onset and ending of the AHP in the different regions of the continent have been the subject of major discussion. On the other hand, shorter-lived climate fluctuations within the AHP have received much less attention, due to a scarcity of well-dated, high-resolution African paleoclimate records spanning the entire Holocene. In this study we used the sediment record of Lake Rutundu, a high-altitude crater lake on Mount Kenya, to document multidecadal to millennial-scale hydroclimate variability on the East African equator from the LGM to the present. A multiproxy approach combining core-surface scanning techniques (magnetic susceptibility, X-ray fluorescence) and close-interval bulk-sediment analyses (organic matter and biogenic Si content, grain size, organic δ15N and δ13C) resulted in a high-resolution record firmly anchored in time by an age model based on 210Pb dating and sixteen calibrated radiocarbon ages. This new Lake Rutundu hydroclimate record confirms that moister conditions following the LGM returned to East Africa ca.16 kyr BP, and it contains a perfectly timed Younger Dryas episode (12.8-11.5 kyr BP) of intermittent drought. We find that the Early- to Mid-Holocene period, which in African records is often described as uniformly wet, was in fact punctuated by three distinct, century-scale drought episodes. The first of these provides robust evidence that the 8.2 kyr cooling event, well-known from high northern latitudes, impacted tropical East Africa's moisture balance as well. The two other drought episodes, centered at c.6.5 and 5.5 kyr BP, punctuate the mid-Holocene drying which eventually ended the AHP in this region around 4 kyr BP.
NASA Astrophysics Data System (ADS)
Gázquez, Fernando; Morellón, Mario; Bauska, Thomas; Herwartz, Daniel; Surma, Jakub; Moreno, Ana; Staubwasser, Michael; Valero-Garcés, Blas; Delgado-Huertas, Antonio; Hodell, David A.
2018-01-01
Atmospheric relative humidity is an important parameter affecting vegetation yet paleo-humidity proxies are scarce and difficult to calibrate. Here we use triple oxygen (δ17O and δ18O) and hydrogen (δD) isotopes of structurally-bound gypsum hydration water (GHW) extracted from lacustrine gypsum to quantify past changes in atmospheric relative humidity. An evaporation isotope-mass-balance model is used together with Monte Carlo simulations to determine the range of climatological conditions that simultaneously satisfy the stable isotope results of GHW, and with statistically robust estimates of uncertainty. We apply this method to reconstruct the isotopic composition of paleo-waters of Lake Estanya (NE Spain) and changes in normalized atmospheric relative humidity (RHn) over the last glacial termination and Holocene (from ∼15 to 0.6 cal. kyrs BP). The isotopic record indicates the driest conditions occurred during the Younger Dryas (YD; ∼12-13 cal. kyrs BP). We estimate a RHn of ∼40-45% during the YD, which is ∼30-35% lower than today. Because of the southward displacement of the Polar Front to ∼42°N, it was both windier and drier during the YD than the Bølling-Allerød period and Holocene. Mean atmospheric moisture gradually increased from the Preboreal to Early Holocene (∼11 to 8 cal. kyrs BP, 50-60%), reaching 70-75% RHn from ∼7.5 cal. kyrs BP until present-day. We demonstrate that combining hydrogen and triple oxygen isotopes in GHW provides a powerful tool for quantitative estimates of past changes in relative humidity.
Multidecadally resolved Asian summer monsoon dynamics during MIS 5a-5d
NASA Astrophysics Data System (ADS)
Shen, C. C.; Jiang, X.; Hu, H. M.; Spoetl, C.
2016-12-01
A strong correlation between the Asian summer monsoon (ASM) and the North Atlantic climate on millennial and sub-millennial timescales during the last glacial period (MIS 4-2) and deglacial sequence has been demonstrated. However, our knowledge of this millennial- and sub-millennial-scale climatic link before MIS 4 is limited. Here, we present a new U-Th-dated absolute chronology of ASM variability from 113.5 to 86.6 kyr BP, covering marine isotope stages (MIS) 5a-5d. This integrated multidecadally resolved record, based on 1435 oxygen isotope data and 46 U-Th dates with 2-sigma errors as low as ±0.3 kyr from three stalagmites collected in Sanxing Cave, southwestern China, can be a reference for calibrating paleoclimate proxy sequences. The Sanxing oxygen isotope record follows the 23 kyr precessional cycle of insolation and is punctuated by prominent millennial-scale oscillations of the Chinese Interstadials (CIS) 25 to 22, corresponding to Greenland Interstadials (GIS) 25 to 22. A centennial-scale precursor event at 104.1 ± 0.3 kyr BP preceding CIS 23 is clearly registered. These events in the Sanxing record are synchronous with those identified in stalagmites from the European Alps (NALPS), except for the onset of GIS 25 and the end of GIS 22, and are up to 2.3 kyr older than the corresponding ones in Greenland ice core records. The high degree of similarity of the oxygen isotope records between Sanxing Cave and Greenland supports the northern hemisphere forcing of the ASM. The anti-phase relationship of oxygen isotope records between Sanxing stalagmites and Antarctic ice cores suggests an additional ASM linkage to the Southern Hemisphere.
The Ponto-Caspian basin as a final trap for southeastern Scandinavian Ice-Sheet meltwater
NASA Astrophysics Data System (ADS)
Tudryn, Alina; Leroy, Suzanne A. G.; Toucanne, Samuel; Gibert-Brunet, Elisabeth; Tucholka, Piotr; Lavrushin, Yuri A.; Dufaure, Olivier; Miska, Serge; Bayon, Germain
2016-09-01
This paper provides new data on the evolution of the Caspian Sea and Black Sea from the Last Glacial Maximum until ca. 12 cal kyr BP. We present new analyses (clay mineralogy, grain-size, Nd isotopes and pollen) applied to sediments from the river terraces in the lower Volga, from the middle Caspian Sea and from the western part of the Black Sea. The results show that during the last deglaciation, the Ponto-Caspian basin collected meltwater and fine-grained sediment from the southern margin of the Scandinavian Ice Sheet (SIS) via the Dniepr and Volga Rivers. It induced the deposition of characteristic red-brownish/chocolate-coloured illite-rich sediments (Red Layers in the Black Sea and Chocolate Clays in the Caspian Sea) that originated from the Baltic Shield area according to Nd data. This general evolution, common to both seas was nevertheless differentiated over time due to the specificities of their catchment areas and due to the movement of the southern margin of the SIS. Our results indicate that in the eastern part of the East European Plain, the meltwater from the SIS margin supplied the Caspian Sea during the deglaciation until ∼13.8 cal kyr BP, and possibly from the LGM. That led to the Early Khvalynian transgressive stage(s) and Chocolate Clays deposition in the now-emerged northern flat part of the Caspian Sea (river terraces in the modern lower Volga) and in its middle basin. In the western part of the East European Plain, our results confirm the release of meltwater from the SIS margin into the Black Sea that occurred between 17.2 and 15.7 cal kyr BP, as previously proposed. Indeed, recent findings concerning the evolution of the southern margin of the SIS and the Black Sea, show that during the last deglaciation, occurred a westward release of meltwater into the North Atlantic (between ca. 20 and 16.7 cal kyr BP), and a southward one into the Black Sea (between 17.2 and 15.7 cal kyr BP). After the Red Layers/Chocolate Clays deposition in both seas and until 12 cal kyr BP, smectite became the dominant clay mineral. The East European Plain is clearly identified as the source for smectite in the Caspian Sea sediments. In the Black Sea, smectite originated either from the East European Plain or from the Danube River catchment. Previous studies consider smectite as being only of Anatolian origin. However, our results highlight both, the European source for smectite and the impact of this source on the depositional environment of the Black Sea during considered period.
The Blake geomagnetic excursion recorded in a radiometrically dated speleothem
NASA Astrophysics Data System (ADS)
Osete, María-Luisa; Martín-Chivelet, Javier; Rossi, Carlos; Edwards, R. Lawrence; Egli, Ramon; Muñoz-García, M. Belén; Wang, Xianfeng; Pavón-Carrasco, F. Javier; Heller, Friedrich
2012-11-01
One of the most important developments in geomagnetism has been the recognition of polarity excursions of the Earth's magnetic field. Accurate timing of the excursions is a key point for understanding the geodynamo process and for magnetostratigraphic correlation. One of the best-known excursions is the Blake geomagnetic episode, which occurred during marine isotope stage MIS 5, but its morphology and age remain controversial. Here we show, for the first time, the Blake excursion recorded in a stalagmite which was dated using the uranium-series disequilibrium techniques. The characteristic remanent magnetisation is carried by fine-grained magnetite. The event is documented by two reversed intervals (B1 and B2). The age of the event is estimated to be between 116.5±0.7 kyr BP and 112.0±1.9 kyr BP, slightly younger (∼3-4 kyr) than recent estimations from sedimentary records dated by astronomical tuning. Low values of relative palaeointensity during the Blake episode are estimated, but a relative maximum in the palaeofield intensity coeval with the complete reversal during the B2 interval was observed. Duration of the Blake geomagnetic excursion is 4.5 kyr, two times lower than single excursions and slightly higher than the estimated diffusion time for the inner core (∼3 kyr).
NASA Astrophysics Data System (ADS)
Revelles, J.; Burjachs, F.; Palomo, A.; Piqué, R.; Iriarte, E.; Pérez-Obiol, R.; Terradas, X.
2018-03-01
The synthetic analysis of several pollen records from sub-Mediterranean lowland Pre-Pyrenean regions evidences expansion of forests during the Early Holocene in Northeastern Iberia and the establishment of dense deciduous broadleaf forests during the Holocene Climate Optimum. Pollen records show the broadleaf deciduous forests resilience against cooling phases during the Mid-Holocene period, with slight regressions of oak woodlands and expansion of conifers or xerophytic taxa contemporary to some cooling episodes (i.e. 8.2 and 7.2 kyr cal. BP). Major vegetation changes influenced by climate change occurred in the transition to the Late Holocene, in terms of the start of a succession from broadleaf deciduous forests to evergreen sclerophyllous woodlands. The lack of evidence of previous occupation seems to support the Neolithisation of the NE Iberian Peninsula as a result of a process of migration of farming populations to uninhabited or sparsely inhabited territories. In that context, remarkable changes in vegetation were recorded from 7.3 kyr cal. BP onwards in the Lake Banyoles area, where the establishment of permanent farming settlements caused the deforestation of oak woodlands. In La Garrotxa region, short deforestation episodes affecting broadleaf deciduous forests, together with expansion of grasslands and presence of Cerealia-t were documented in the period 7.4-6.0 kyr cal. BP. Finally, in the coastal area, where less evidence of Early Neolithic occupations is recorded, evidence of Neolithic impact is reflected in the presence of Cerealia-t in 6.5-6.2 kyr cal. BP, but no strong human transformation of landscape was carried out until more recent chronologies.
Climate controls on savanna C3 and C4 expansion in Southern Africa during the last 36 kyr BP
NASA Astrophysics Data System (ADS)
Wang, Y. V.; Larsen, T.; Andersen, N.; Blanz, T.; Schneider, R. R.
2010-12-01
Savannahs contain a mixture of C3 and C4 vegetation, accounting for more than a quarter of global primary production and are the second most important biome on the continents. However, our understanding on how savannahs will respond to rising CO2 concentration and temperatures or the IPCC estimated decrease in rainfall is not yet clear in spite of potential far reaching socio-economic consequences. In this study, we used the δD and δ13C of sedimentary long-chain n-alkanes (n-C27,29,31,33 ) in concert with reconstructions for sea surface temperatures and fluvial discharge from a marine sediment core (GIK16160-3, 18°14.47’S, 37°52.27’W, 1334m water depth), collected near the Zambezi river mouth to examine savannah responses under different hydrological and climate conditions in Southern Africa during the last 36 kyr BP. Our data show large variability in both δD and δ13C records of the four n-alkanes, with isotopic differences between individual n-alkanes being far more pronounced during the Glacial than during the Deglacial and Holocene. These large differences may be explained by proportionally higher contributions of C4 grasses over C3 trees to the n-C33,31, which seems to be opposite for n-C29. A strong anticorrelation between δD and δ13C from 36 to 16 kyr BP for n-C31 (R2=0.55) and n-C33 (R2=0.70) suggests that δD of these n-alkanes is strongly influenced by changes in vegetation types as well as physiological effects, rather than being directly related to evaporation/ precipitation balance. In contrast, no apparent relationship (R2=0.32) exists between δD and δ13C of n-C29, suggesting that n-C29 is the most promising hydrological proxy due to less variable vegetation type contributions to n-C29 throughout the core. The C4 plant contribution, which was estimated by taking into account the four n-alkanes δ13C signals and their abundance, implies dominance of C4 grass between 36 and 20 kyr BP, and more evenly distributed C3 and C4 vegetation from 20 kyr BP to Present. We further assume strong seasonal effects on δD of individual n-alkanes for the latter period. Changes in δD of n-C33,31 coincide with Latest Pleistocene to Holocene austral summer insolation, which is in agreement with modern observations that savannah C4 plants grow mainly during summer. Likewise, δD n-C29,27 records closely correspond with changes in austral spring insolation, also in line with modern observations that trees grow during spring and autumn. During glacial times less strong seasonal effects on the isotopic signature of individual n-alkanes are assumed due to predominance of C4 grasslands. The δD record of n-C29suggests wet conditions between 30 and 21 kyr BP and for the Holocene. Dry conditions prevailed during 35 to 31 kyr BP, part of the LGM and the Deglacial, with the driest climate at ~16kyr. According to our estimation, C4 relative to C3 plant abundance has remained rather stable throughout the entire Deglacial and Holocene. While rising temperature is generally assumed to stimulate C4 vegetation expansion, gradual increases in CO2 and humidity may have instead fostered C3 vegetation, counter-balancing expansion of C4 plants.
NASA Astrophysics Data System (ADS)
Zhang, Dongliang; Feng, Zhaodong; Yang, Yunpeng; Lan, Bo; Ran, Min; Mu, Guijin
2018-05-01
There have been large discrepancies in the proposed mechanisms accounting for the wetting trend since ∼8.0 cal. kyr BP in the Altai Mountains and the surrounding areas. To validate or invalidate the widely reported wetting trend, we obtained a carbon isotope of cellulose (δ13Ccelluose)-recorded warm-season moisture history from a Narenxia (NRX) peat core in the southern Altai Mountains, northern Xinjiang, NW China. The δ13Ccelluose-recorded warm-season moisture reconstruction of the NRX peat core provides a strong support to the widely-reported proposition that the climate was generally dry before ∼8.0 cal. kyr BP and was changed to a wetting trend during the past ∼8000 years in the Altai Mountains and the surrounding areas. The wetting trend since ∼8.0 cal. kyr BP well resembles the increasing trend of the reconnaissance drought index (RDI) that was calculated on the basis of pollen-inferred temperature and precipitation data from the same core. The resemblance implies that the wetting trend during the past ∼8000 years resulted from the combined effect of temperature and precipitation.
Did Heinrich Events Impact Climate in the Southwest Pacific? - Evidence From New Zealand Speleothems
NASA Astrophysics Data System (ADS)
Whittaker, T. E.; Hendy, C. H.; Hellstrom, J.
2008-12-01
Speleothems, layered calcium-carbonate cave deposits such as stalagmites, stalactites and flowstones, have been shown to offer much potential as paleoclimate archives. We present a new, high-resolution, independently-dated, paleoclimate record from a stalagmite which formed in Hollywood Cave (42.0°S, 171.5°E) on South Island, New Zealand. Over 700 stable oxygen and carbon isotope measurement pairs are supported by a chronology from 18 sequential 230Th dates. The stalagmite grew between 73 and 11 kyr B.P. Growth rates varied from ~1-54 mm/kyr and data resolution yields one sample per 10- 320 years. Weak covariance between δ13C and δ18O in the speleothem calcite suggests that recorded climate signals are primarily driven by mean annual precipitation amount and source. Both stable isotope proxies indicate relatively cold and dry conditions prevailed for much of the period 73-11 kyr B.P. However, abrupt-onset, millennial-scale shifts to wet and cool climate interrupt the dry conditions at 67.7-61, 56-55, 50.5-47.5, 40-39, 30.5-29, 25.5-24.3, 16.1-15, and 12.2-11.8 kyr B.P. Significantly, these eight abrupt climate changes occur synchronously with widely accepted ages for Heinrich events H6-H0 (including H5a). Many of these abrupt events can also be matched to known periods of glacier advance in the Southern Alps, New Zealand, which, arguably, were driven by increased mean annual precipitation and reduced potential for summer melting. In addition, preliminary stable isotope data (> 550 δ13C and δ18O pairs) from two North Island, New Zealand (~38°S), stalagmites will be shown that also displays abrupt shifts from relatively dry to wet climate during the period 60-6 kyr B.P. In combination, these results argue stongly for coeval climate changes in antipodean locations, and therefore provide compelling evidence for globally synchronous climate variability during the last glacial period.
Mid- to Late Holocene Climate Shift in the Southern Gulf of California and Tropical Pacific Ocean
NASA Astrophysics Data System (ADS)
Perez-Cruz, L. L.; Fucugauchi, J. U.; Velasco, V.; Rodriguez, A.; Choumiline, K.
2014-12-01
A multiproxy record has been acquired from a gravity core (DIPAL-I K47) taken in La Paz Basin, an area which is situated in the southwestern sector of the Gulf of California at the junction to the Tropical Pacific Ocean. The high-resolution data sets, from XRF, TOC, magnetic susceptibility and hysteresis measurements, were used to track climatic changes in the tropical climate system at sub-centennial time scales over the past 7.3 cal kyr BP. The paleoprecipitation record shows variation trends, with a shift during the mid- to late Holocene, characterized by changes from high to low humidity. Pluvial, biogenic and eolian input, marked by variations in Ti, Si, Fe, K, Ca, Zr/Ti, Ca/Ti and magnetic susceptibility, shows trend changes between 7-5 cal kyr, 5-4.5 cal kyr, 4.5-3.5 cal kyr and 2.15-1.4 kyr. Drought events are recognized from 3.7 to 3.4, 2.8 to 1.8 cal kyr BP, and between 1.4 and 1.2 cal kyr BP. The southern Gulf is well suited for documenting the climatic and precipitation changes in the tropical Pacific Ocean associated with ITCZ latitudinal migration, PDO, ENSO events and the North American monsoon. Analysis of sourcing, transport and deposition of sediments is used for reconstructing the changing ocean-atmosphere circulation patterns, particularly sensitive to paleoprecipitation. The Bay receives sediments mainly from the surrounding volcanic ranges of the peninsular Baja California. There are no rivers in the peninsula and sediments are related to pluvial input trough ephemeral creeks along the steep cliff ranges and narrow shelf. Biogenic sediments are associated with productivity and oceanographic conditions through upwellings and mesoscale gyres. Eolian sediments are transported into the basin from the peninsula and continent, including transport of fine dust from the northern desert of Sonora-Mojave and arid terrains in the peninsula. It is important to highlight that a common 1800 yr solar variation spectral periodicity has been captured. Correlation of the Bay of La Paz paleoprecipitation with records from Cariaco Basin, Gulf of Mexico and Santa Barbara documents regional variability, with spatial-temporal variation for the transitional interval from high to low humidity.
Identification of contrasting seasonal sea ice conditions during the Younger Dryas
NASA Astrophysics Data System (ADS)
Cabedo-Sanz, P.; Belt, S. T.; Knies, J.
2012-12-01
The presence of the sea ice diatom biomarker IP25 in Arctic marine sediments has been used in previous studies as a proxy for past spring sea ice occurrence and as an indicator of wider palaeoenvironmental conditions for different regions of the Arctic over various timescales [e.g. 1, 2]. The current study focuses on high-resolution palaeo sea ice reconstructions for northern Norway during the last ca. 15 cal. kyr BP. Within this study, particular emphasis has been placed on the identification of the sea ice conditions during the Younger Dryas and the application of different biomarker-based proxies to both identify and quantify seasonal sea ice conditions. Firstly, the appearance of the specific sea ice diatom proxy IP25 at ca. 12.9 cal. kyr BP in a marine sediment core (JM99-1200) obtained from Andfjorden has provided an unambiguous but qualitative measure of seasonal sea ice and thus the onset of the Younger Dryas stadial. The near continuous occurrence of IP25 for the next ca. 1400 yr demonstrates seasonal sea ice during this interval, although variable abundances suggest that the recurrent conditions in the early-mid Younger Dryas (ca. 12.9 - 11.9 cal. kyr BP) changed significantly from stable to highly variable sea ice conditions at ca. 11.9 cal. kyr BP and this instability in sea ice prevailed for the subsequent ca. 400 yr. At ca. 11.5 cal. kyr BP, IP25 disappeared from the record indicating ice-free conditions that signified the beginning of the Holocene. Similarly, a high resolution record from the Kveithola Through, western Barents Sea, showed clearly higher IP25 concentrations during the Younger Dryas stadial compared to the Holocene. For both marine records, the IP25 concentrations were also combined with those of the open water phytoplankton biomarker brassicasterol to generate PBIP25 data from which more quantitative measurements of sea ice were determined. The contrasting seasonal sea ice conditions during the Younger Dryas were further verified through a comparison of the concentrations of IP25 with those of another highly branched isoprenoid (HBI) alkene that is di-unsaturated and believed to also be produced by sea ice diatoms. The ratio of the HBI diene to IP25, termed DIP25, is believed to provide a useful indicator of stability or variability in sea ice conditions and complements the outcomes from the IP25 and PBIP25 index data. 1. Belt, S.T., Vare, L.L., Massé, G., Manners, H.R., Price, J.C., MacLachlan, S.E., Andrews, J.T. , Schmidt, S., 2010. Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years. Quaternary Science Reviews 29, 3489-3504. 2. Müller, J., Massé, G., Stein, R., Belt, S.T., 2009. Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nature Geoscience 2, 772-776.
NASA Astrophysics Data System (ADS)
Sabatier, Pierre; Wilhelm, Bruno; Ficetola, Gentile Francesco; Moiroux, Fanny; Poulenard, Jérôme; Develle, Anne-Lise; Bichet, Adeline; Chen, Wentao; Pignol, Cécile; Reyss, Jean-Louis; Gielly, Ludovic; Bajard, Manon; Perrette, Yves; Malet, Emmanuel; Taberlet, Pierre; Arnaud, Fabien
2017-08-01
The high-resolution sedimentological and geochemical analysis of a sediment sequence from Lake Savine (Western Mediterranean Alps, France) led to the identification of 220 event layers for the last 6000 years. 200 were triggered by flood events and 20 by underwater mass movements possibly related to earthquakes that occurred in 5 clusters of increase seismicity. Because human activity could influence the flood chronicle, the presence of pastures was reconstructed through ancient DNA, which suggested that the flood chronicle was mainly driven by hydroclimate variability. Weather reanalysis of historical floods allow to identify that mesoscale precipitation events called "East Return" events were the main triggers of floods recorded in Lake Savine. The first part of this palaeoflood record (6-4 kyr BP) was characterized by increases in flood frequency and intensity in phase with Northern Alpine palaeoflood records. By contrast, the second part of the record (i.e., since 4 kyr BP) was phased with Southern Alpine palaeoflood records. These results suggest a palaeohydrological transition at approximately 4 kyr BP, as has been previously described for the Mediterranean region. This may have resulted in a change of flood-prone hydro-meteorological processes, i.e., in the balance between occurrence and intensity of local convective climatic phenomena and their influence on Mediterranean mesoscale precipitation events in this part of the Alps. At a centennial timescale, increases in flood frequency and intensity corresponded to periods of solar minima, affecting climate through atmospheric changes in the Euro-Atlantic sector.
NASA Astrophysics Data System (ADS)
Peros, Matthew; Collins, Shawn; G'Meiner, Anna Agosta; Reinhardt, Eduard; Pupo, Felipe Matos
2017-07-01
We use sediments from a flooded sinkhole (Cenote Jennifer) in northern Cuba to provide new, well-dated, high-resolution evidence for the 8.2 kyr event. From 7600 to 8700 cal yr B.P. the sinkhole contained shallow, low-salinity water, which supported a marsh dominated by cattail and grass. Peaks in Cl and Br—occurring at 8150, 8200, and 8250 cal yr B.P.—are attributable to increased evaporation due to regional drying associated with the 8.2 kyr event. The three peaks in these elements also closely correspond to the greyscale record from the Cariaco Basin, indicative of increased upwelling in the southern Caribbean Sea at this time, supporting the notion of a multistage 8.2 kyr event. Our work provides new data that help to clarify the initiation, behavior, and impacts of the 8.2 kyr event in the northern tropics.
Piper, David Z.; Calvert, S.E.
2011-01-01
The elemental geochemistry of Late Pleistocene and Holocene sediments of the Black Sea, recovered in box cores from the basin margins and a 5-m gravity core from the central abyssal region of the basin, identifies two terrigenous sediment sources over the last 20 kyrs. One source region includes Anatolia and the southern Caucasus; the second region is the area drained by rivers entering the Black Sea from Eastern Europe. Alkali metal:Al and heavy:light rare-earth element ratios reveal that the relative contribution of the two sources shifted abruptly every few thousand years during the late glacial and early Holocene lacustrine phase of the basin. The shifts in source were coeval with changes in the lake level as determined from the distribution of quartz and the heavy mineral-hosted trace elements Ti and Zr.The geochemistry of the abyssal sediments further recorded a sequence of changes to the geochemistry of the water column following the lacustrine phase, when high salinity Mediterranean water entered the basin beginning 9.3 kyrs BP. Bottom water that had been oxic throughout the lake phase became anoxic at approximately 8.4 kyrs BP, as recorded by the accumulation from the water column of several redox-sensitive trace metals (Mo, Re, U). The accumulation of organic carbon and several trace nutrients (Cd, Cu, Ni, Zn) increased sharply ca. 0.4 kyrs later, at 8.0 kyrs BP, reflecting an increase of primary productivity. Its increase was coeval with a shift in the dinoflagellate ecology from stenohaline to euryhaline assemblages. During this profound environmental change from the lacustrine to the marine phase, the accumulation rate of the lithogenous sediment fraction decreased as much as 10-fold in response to the rise of the water level in the basin from a low stand ca. 9.3 ka to its current level.
Piper, D.Z.; Calvert, S.E.
2011-01-01
The elemental geochemistry of Late Pleistocene and Holocene sediments of the Black Sea, recovered in box cores from the basin margins and a 5-m gravity core from the central abyssal region of the basin, identifies two terrigenous sediment sources over the last 20. kyrs. One source region includes Anatolia and the southern Caucasus; the second region is the area drained by rivers entering the Black Sea from Eastern Europe. Alkali metal:Al and heavy:light rare-earth element ratios reveal that the relative contribution of the two sources shifted abruptly every few thousand years during the late glacial and early Holocene lacustrine phase of the basin. The shifts in source were coeval with changes in the lake level as determined from the distribution of quartz and the heavy mineral-hosted trace elements Ti and Zr. The geochemistry of the abyssal sediments further recorded a sequence of changes to the geochemistry of the water column following the lacustrine phase, when high salinity Mediterranean water entered the basin beginning 9.3. kyrs BP. Bottom water that had been oxic throughout the lake phase became anoxic at approximately 8.4. kyrs BP, as recorded by the accumulation from the water column of several redox-sensitive trace metals (Mo, Re, U). The accumulation of organic carbon and several trace nutrients (Cd, Cu, Ni, Zn) increased sharply ca. 0.4. kyrs later, at 8.0. kyrs BP, reflecting an increase of primary productivity. Its increase was coeval with a shift in the dinoflagellate ecology from stenohaline to euryhaline assemblages. During this profound environmental change from the lacustrine to the marine phase, the accumulation rate of the lithogenous sediment fraction decreased as much as 10-fold in response to the rise of the water level in the basin from a low stand ca. 9.3. ka to its current level.
Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model
NASA Astrophysics Data System (ADS)
Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry
2016-12-01
As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.
A new concept for paleohydrological evolution of the Younger Dryas in NE Brazil
NASA Astrophysics Data System (ADS)
Bouimetarhan, Ilham; Prange, Matthias; Gonzalez, Catalina; Dupont, Lydie
2016-04-01
The late deglacial interval from approximately 13 to 11 kyr BP contains some of the best documented abrupt climate changes in the Past, the Younger Dryas (YD). It is also an interval when the bipolar climatic signature of millennial-scale changes in the Atlantic meridional overturning circulation (AMOC) is well expressed. Here we present a high-resolution palynological record from core GeoB16205-4 (1°21.11'N, 43°05.80'W), retrieved off the Parnaíba River mouth, southeast of the Amazon River (~1955 m water depth). Pollen and organic-walled dinoflagellate cyst assemblages indicate a predominantly wet climate during the YD in the nowadays semi-arid Nordeste, whereby a second phase between ~12.3 and 11.7 kyr BP is wetter than the period before. This is recorded by a strong increase in the concentrations of river plume dinoflagellate cyst assemblages indicative of a stratified surface water column and reduced salinity environments, as well as a drop in grass pollen and microcharcoal particle concentrations along with strong fluctuations in the representation of rain forest, gallery forest and tree ferns suggesting year-round humid conditions. This shift from a relatively wet first phase to a much wetter second phase is in agreement with the transient TRACE-21k coupled climate model simulation which shows a first pluvial Parnaíba stage from ~12.8 to 12.3 kyr BP and a second stronger pluvial stage between ~12.3 and 11.7 kyr BP to be related to a very weak AMOC due to meltwater pulses in the North Atlantic. The AMOC variation induces a steep temperature gradient between the Southern and the Northern Hemisphere which forces a southward shift of the Intertropical Convergence Zone (ITCZ) and its associated rainfall. The two-step hydroclimatic and environmental evolution during the Younger Dryas has not been documented previously in this region.
NASA Astrophysics Data System (ADS)
Ridge, J. C.
2013-12-01
New varve cores and 54 radiocarbon ages, have allowed the correction, closure of a gap, calibration, and expansion of Ernst Antevs' (1922) New England Varve Chronology from sediments of glacial Lake Hitchcock and it's successors in the Connecticut Valley of western New England (northeastern U.S.A.). The continuous 5659-yr chronology (18.2-12.5 kyr BP) has been renumbered as the North American Varve Chronology. Glacial varve thickness (18.2-13.7 kyr BP) documents abrupt changes in meltwater production related to varying ablation rate (summer climate) that is linked to ice sheet recession rates and advances, i.e. cold intervals are times of thin varves and slower ice recession or glacial readvances. To take advantage of the varve-climate relationship it is necessary to identify non-climatic events that can cause varve thickness to change. This includes sudden changes in lake level and flood events triggered by the abrupt drainage of tributary glacial lakes. A chronology of ice recession for intervals terminated by four stillstands and readvances of 1-2 century durations have been determined for the Connecticut Valley (from S to N): 50-100 m/yr in northern Connecticut to southern Massachusetts; Chicopee Readvance; 30-40 m/yr in central Mass.; Hatfield event; 80-90 m/yr from northern Mass. to central New Hampshire; North Charlestown end moraines; 300 m/yr to northern N.H.; Littleton Readvance; >300 m/yr to Quebec. Meltwater produced by ice recession of 300 m/yr modeled as a receding 1-bar ice sheet profile (from 100 km up ice near ELA to margin, valley width of 80 km, glacier flow rate of 200 m/yr at ELA) would be a minimum glacial meltwater discharge in the Connecticut Valley of ~90 x 109 m3/yr. This is ~10X the modern Conn. River discharge at Walpole, NH compressed almost entirely to the melt season. Non-glacial varves deposited after ice receded from the basin (13.7-12.5 kyr BP) also document climate change as a result of varve thickness varying with changes in runoff, vegetation, and erosion on a recently deglaciated paraglacial landscape. However, in this case cooling events are recognized by higher sediment input and thicker varves. Comparison of varve thickness records to GISP2 ice core records (δ18O original measurements with GICC05 time scale applied) show that from 15.0-12.5 kyr BP climate changes of decadal and longer scale recorded in both records appear identical in spacing and magnitude. Independent time scales for both records (varve 14C calibration and ice core layer counts) are different by 55 yr (well within time scale uncertainties) when similar features in the two records are matched. Varves and the Greenland ice cores appear to simultaneously record the same regional climate changes or, less likely, there is a consistent offset at all scales. After 15.0 yr BP there appears to have been a link between North Atlantic climate and glacial processes (ablation, meltwater production, and ice recession/advance). Prior to 15.0 kyr BP, glacial events are marked by more subtle changes in varve thickness but there is only a weak relationship between varve thickness and Greenland climate.
NASA Astrophysics Data System (ADS)
Paisani, Julio Cesar; Pontelli, Marga Eliz; Osterrieth, Margarita Luisa; Paisani, Sani Daniela Lopes; Fachin, Andressa; Guerra, Simone; Oliveira, Leandro
2014-10-01
The Araucaria Plateau is a geomorphological unit that occupies approximately three-quarters of the terrain in the southern region of Brazil. The plateau displays different altitudinal levels (600 to <1400 m a.s.l.) that are locally recognized as remnants of planed surfaces (S8-S1). These surfaces are maintained by basic (S3-S8) and acidic (S1 and S2) volcanic flows from the Neocretaceous period of the Paraná Basin. The largest extent of this plateau is located in a humid subtropical climate zone. Colluvial, colluvial-alluvial, alluvial sediments and paleosols (Ab diagnostic horizons) occur predominantly in S2. The paleosols are located in low-hierarchical-order fossil valleys (first- to fourth-order in Strahler's stream classification) and valley heads, which are referred to as paleovalleys in this paper. We employed these paleosols as stratigraphic level markers of the pedogenesis of the regional Upper Quaternary and propose their importance as records of the paleoenvironmental conditions of the Araucaria Plateau in areas above 1200 m a.s.l. These paleosols were dated by 14C and show ages between 23.8 ± 0.05 kyr BP (28.06-29.08 kyr cal. BP) and 41.16 ± 0.48 kyr BP (44.13-45.58 kyr cal. BP). The calibrated ages are related to Marine Isotope Stage 3 (MIS 3), in which the last period of global warming occurred (approximately 60-25 kyr cal. BP). We integrated the morphological, pedogeochemical, clay fraction mineralogy, micromorphological and δC-13 analyses of five paleosols from S2 to verify the paleoenvironmental conditions of the Araucaria Plateau and its correspondence with the paleoclimatic phenomena that were identified on a global scale during MIS 3 in the Southern Hemisphere. We obtained the following conclusions: a) the properties of paleosols reflect pedological processes that are adjusted to the paleoenvironmental conditions at the end of MIS 3 and the transition to MIS 2 (Last Glacial Maximum); b) aplasmogenic partial acidolysis was the predominant pedogeochemical process during MIS 3; c) during this period, the water regime was sufficiently humid to develop hydromorphic horizons in the valley bottoms of the entire drainage network to the valley heads; d) regional change toward a drier hydric regime occurred in MIS 2, when erosion of the paleosols predominated; and e) in MIS 1 (current Holocene interglacial), burial of the paleosols and relief inversion occurred, which resulted in fossilization of the valleys.
NASA Astrophysics Data System (ADS)
Dee, S.; Russell, J. M.; Morrill, C.
2017-12-01
Climate models predict Africa will warm by up to 5°C in the coming century. Reconstructions of African temperature since the Last Glacial Maximum (LGM) have made fundamental contributions to our understanding of past, present, and future climate and can help constrain predictions from general circulation models (GCMs). However, many of these reconstructions are based on proxies of lake temperature, so the confounding influences of lacustrine processes may complicate our interpretations of past changes in tropical climate. These proxy-specific uncertainties require robust methodology for data-model comparison. We develop a new proxy system model (PSM) for paleolimnology to facilitate data-model comparison and to fully characterize uncertainties in climate reconstructions. Output from GCMs are used to force the PSM to simulate lake temperature, hydrology, and associated proxy uncertainties. We compare reconstructed East African lake and air temperatures in individual records and in a stack of 9 lake records to those predicted by our PSM forced with Paleoclimate Model Intercomparison Project (PMIP3) simulations, focusing on the mid-Holocene (6 kyr BP). We additionally employ single-forcing transient climate simulations from TraCE (10 kyr to 4 kyr B.P. and historical), as well as 200-yr time slice simulations from CESM1.0 to run the lake PSM. We test the sensitivity of African climate change during the mid-Holocene to orbital, greenhouse gas, and ice-sheet forcing in single-forcing simulations, and investigate dynamical hypotheses for these changes. Reconstructions of tropical African temperature indicate 1-2ºC warming during the mid-Holocene relative to the present, similar to changes predicted in the coming decades. However, most climate models underestimate the warming observed in these paleoclimate data (Fig. 1, 6kyr B.P.). We investigate this discrepancy using the new lake PSM and climate model simulations, with attention to the (potentially non-stationary) relationship between lake surface temperature and air temperature. The data-model comparison helps partition the impacts of lake-specific processes such as energy balance, mixing, sedimentation and bioturbation. We provide new insight into the patterns, amplitudes, sensitivity, and mechanisms of African temperature change.
On the long-term memory of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Rogozhina, I.; Martinec, Z.; Hagedoorn, J. M.; Thomas, M.; Fleming, K.
2011-03-01
In this study, the memory of the Greenland Ice Sheet (GIS) with respect to its past states is analyzed. According to ice core reconstructions, the present-day GIS reflects former climatic conditions dating back to at least 250 thousand years before the present (kyr BP). This fact must be considered when initializing an ice sheet model. The common initialization techniques are paleoclimatic simulations driven by atmospheric forcing inferred from ice core records and steady state simulations driven by the present-day or past climatic conditions. When paleoclimatic simulations are used, the information about the past climatic conditions is partly reflected in the resulting present-day state of the GIS. However, there are several important questions that need to be clarified. First, for how long does the model remember its initial state? Second, it is generally acknowledged that, prior to 100 kyr BP, the longest Greenland ice core record (GRIP) is distorted by ice-flow irregularities. The question arises as to what extent do the uncertainties inherent in the GRIP-based forcing influence the resulting GIS? Finally, how is the modeled thermodynamic state affected by the choice of initialization technique (paleo or steady state)? To answer these questions, a series of paleoclimatic and steady state simulations is carried out. We conclude that (1) the choice of an ice-covered initial configuration shortens the initialization simulation time to 100 kyr, (2) the uncertainties in the GRIP-based forcing affect present-day modeled ice-surface topographies and temperatures only slightly, and (3) the GIS forced by present-day climatic conditions is overall warmer than that resulting from a paleoclimatic simulation.
NASA Astrophysics Data System (ADS)
Uzquiano, P.; Ruiz-Zapata, MaB.; Gil-Garcia, MaJ.; Fernández, S.; Carrión, J. S.
2016-12-01
A synthesis of the occurrence of the evergreen oak (Quercus ilex-type) in the Cantabrian region (northern Spain) is presented on the basis of integrated charcoal and pollen analyses. Archaeological charcoal comes largely from sites along the littoral and pre-littoral territories of the Basque Country, Cantabria and Asturias dated from 45 to 3.7 Kyr cal BP, and culturally ranging from Mousterian to Iron Age. Pollen information is produced from a few archaeological sites but mainly from peats and lake sediments. Q. ilex-type is observed as early as at 45-30 Kyr cal BP, with sporadic occurrences in vegetation contexts dominated by Pinus sylvestris-type, which was widely exploited by Mousterian and Aurignacian inhabitants. Afterwards, during the Upper Palaeolithic, there is an important decline, and Q. ilex-type is hardly present between 29 and 15 Kyr cal BP, with open environments dominated by heathland shrubs. From Late Magdalenian onwards, Q. ilex-type expanded again, remaining in the landscape of the Cantabrian region throughout the Holocene, although subordinated in deciduous oak forests under the influence of oceanic climate conditions. Q. ilex-type had a more favourable position than deciduous Quercus across the Cantabrian southern slopes and northwest of the adjacent Iberian Cordillera, where oceanic influences have become attenuated by summer drought and continentality.
NASA Astrophysics Data System (ADS)
Montade, V.; Combourieu Nebout, N.; Siani, G.; Michel, E.; Kissel, C.; Carel, M.; Mulsow, S.
2010-12-01
The Chilean Patagonia (41°S to 56°S) crossed by the Andes from north to south represents a critical topographic constraint on atmospheric and oceanic systems, and the only continental landmass intercepting the entire Southern Westerlies Wind (SHW) belt in southern hemisphere. Therefore, the southern Chile is a key-area to study the paleoclimate changes and, to understand the synoptic scale ocean-atmospheric circulation systems of the mid to high southern latitudes. However, several questions remain partly unsolved: Is there abrupt reversal event during the Last Glacial-Interglacial transition (LGIT)? Is there a shift or an intensification of the SHW? When begin the Holocene onset? What are the inter or intra hemispheric climatic links? In this aim, we present here a detailed pollen record from the deep-sea core MD 07 3088 (46°04’S; 76°05’W, 1536 m) near Taitao peninsula, taken during the “Pachiderme” cruise (MD 159) within the IMAGES (International MArine Global changES) program (Kissel et al., 2007). The age model (Siani et al., in press) is based upon stable oxygen isotopes of planktonic foraminifera G. bulloïdes coupled to ten AMS 14C measurements performed on planktonic foraminifera and four tephrochronological markers attributed to the Hudson volcano (Haberle and Lumley, 1998). The pollen record expresses vegetation changes and thus climate variations during the last 20 kyr cal. BP. Several vegetation phases are observed during the LGIT and the Holocene onset: Before 18 kyr, the low diversity and pollen influx show the reduced vegetation due to the Patagonian Ice Cap extension and cold temperature. From 17.5 to 14.5 kyr, the diversity and pollen influx increase mark the vegetation development linked to the ice cap melting and temperature increase. From 14.5 to 12 kyr, the Astelia development illustrates the Magellanic Moorland extension and humid conditions linked to the SHW. Later 11.5 kyr, the forest diversification expresses the Holocene onset. Finally, comparison between the pollen and the oxygen isotope record from Antarctic core (EDML, Lemieux-Dudon et al., 2010) shows direct relationships between the vegetation changes and the major climatic events of the LGIT.
Uranium-234 anomalies in corals older than 150,000 years
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bard, E.; Fairbanks, R.G.; Zindler, A.
1991-08-01
The authors present new precise U-Th ages of well-preserved coral specimens collected from the island of Barbados, West Indies, and the atoll of Mururoa, French Polynesia. Their new data confirm the ages attributed to oxygen isotope stage 7 in the framework of the Milankovitch theory. By using thermal ionization mass spectrometry (TIMS), it is also possible to quantify precisely the [sup 234]U/[sup 238]U ratios in corals. Samples older than 150 kyr B.P. are shown to be characterized by significant excesses of [sup 234]U relative to the uranium isotopic composition expected if the corals grew in present-day sea water. Assuming thatmore » the [sup 230]Th-ingrowth ages are accurate, these anomalies translate into high initial [sup 234]U/[sup 238]U ratios: about 1.2 at 200 kyr and up to 1.5 at about 450 kyr B.P. They propose that the anomalies result from both diagenetic addition and replacement of U and possibly from global changes in the [sup 234]U/[sup 238]U composition of the sea water through time. The [sup 234]U anomalies cast doubt on the accuracy of the classical [sup 230]Th-ingrowth dating method in old corals, and in particular for the use of measured [sup 234]U/[sup 238]U ratios alone to date corals older than 150 kyr.« less
NASA Astrophysics Data System (ADS)
Stroeven, Arjen P.; Hättestrand, Clas; Kleman, Johan; Heyman, Jakob; Fabel, Derek; Fredin, Ola; Goodfellow, Bradley W.; Harbor, Jonathan M.; Jansen, John D.; Olsen, Lars; Caffee, Marc W.; Fink, David; Lundqvist, Jan; Rosqvist, Gunhild C.; Strömberg, Bo; Jansson, Krister N.
2016-09-01
To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and other ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, the LGM extent of the ice sheet in northwestern Russia was located far east and it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP. We also propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models.
Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica
Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.; ...
2015-05-19
The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission,more » atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \\"6 kyr\\"), last glacial inception (115 000 yr BP; hereafter \\"115 kyr\\") and Eemian (126 000 yr BP; hereafter \\"126 kyr\\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \\"21 kyr\\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.
The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission,more » atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \\"6 kyr\\"), last glacial inception (115 000 yr BP; hereafter \\"115 kyr\\") and Eemian (126 000 yr BP; hereafter \\"126 kyr\\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \\"21 kyr\\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climates.« less
Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse.
Orlando, Ludovic; Ginolhac, Aurélien; Zhang, Guojie; Froese, Duane; Albrechtsen, Anders; Stiller, Mathias; Schubert, Mikkel; Cappellini, Enrico; Petersen, Bent; Moltke, Ida; Johnson, Philip L F; Fumagalli, Matteo; Vilstrup, Julia T; Raghavan, Maanasa; Korneliussen, Thorfinn; Malaspinas, Anna-Sapfo; Vogt, Josef; Szklarczyk, Damian; Kelstrup, Christian D; Vinther, Jakob; Dolocan, Andrei; Stenderup, Jesper; Velazquez, Amhed M V; Cahill, James; Rasmussen, Morten; Wang, Xiaoli; Min, Jiumeng; Zazula, Grant D; Seguin-Orlando, Andaine; Mortensen, Cecilie; Magnussen, Kim; Thompson, John F; Weinstock, Jacobo; Gregersen, Kristian; Røed, Knut H; Eisenmann, Véra; Rubin, Carl J; Miller, Donald C; Antczak, Douglas F; Bertelsen, Mads F; Brunak, Søren; Al-Rasheid, Khaled A S; Ryder, Oliver; Andersson, Leif; Mundy, John; Krogh, Anders; Gilbert, M Thomas P; Kjær, Kurt; Sicheritz-Ponten, Thomas; Jensen, Lars Juhl; Olsen, Jesper V; Hofreiter, Michael; Nielsen, Rasmus; Shapiro, Beth; Wang, Jun; Willerslev, Eske
2013-07-04
The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.
NASA Astrophysics Data System (ADS)
Jia, Xin; Yi, Shuangwen; Sun, Yonggang; Wu, Shuangye; Lee, Harry F.; Wang, Lin; Lu, Huayu
2017-03-01
The West Liao River Basin is the hub of ancient civilizations as well as the birthplace of rain-fed agriculture in Northern China. In the present study, based on 276 archaeological sites on the south bank of the Xar Moron River, Northeastern China, we trace the changes in prehistoric cultures as well as the shifts in the spatial and temporal patterns of human settlement in the West Liao River Basin. Location information for those sites was obtained from fieldwork. Factors such as climate change, landform evolution of the Horqin Dunefield, and subsistence strategies practiced at the sites were extracted via the meta-analysis of published literature. Our results show that the Holocene Optimum promoted the emergence of Neolithic Culture on the south bank of the Xar Moron River. Monsoon failure might have caused the periodic collapse or transformation of prehistoric cultures at (6.5, 4.7, 3.9, and 3.0) kyr B.P., leaving spaces for new cultural types to develop after these gaps. The rise and fall of different cultures was also determined by subsistence strategies. The Xiaoheyan Culture, with mixed modes of subsistence, weakened after 4.7 kyr B.P., whereas the Upper Xiajiadian Culture, supported by sheep breeding, expanded after 3.0 kyr B.P. Global positioning system data obtained from the archaeological sites reveal that cultures with different subsistence strategies occupied distinct geographic regions. Humans who subsisted on hunting and gathering resided at higher altitudes during the Paleolithic Age (1074 m a.s.l.). Mixed subsistence strategies led humans to settle down at 600-1000 m a.s.l. in the Neolithic Age. Agricultural activities caused humans to migrate to 400-800 m a.s.l. in the early Bronze Age, whereas livestock production shifted human activities to 800-1200 m a.s.l. in the late Bronze Age.
NASA Astrophysics Data System (ADS)
Li, Q.; Wu, H.; Yu, Y.; Sun, A.; Luo, Y.
2017-12-01
Reconstructing patterns of past vegetation change on a large-scale facilitates a better understanding of the interactions and feedbacks between climate change and the terrestrial biosphere. In addition, reducing the uncertainty in predictions of vegetation change under global warming highlights the importance of reconstructing vegetation patterns during past warming intervals. Here, we present a quantitative regional vegetation reconstruction for China during three intervals: Last Glacial Maximum (LGM, 18±2 14C kyr B.P.), early Holocene (8.5±0.5 14C kyr B.P.), and mid-Holocene (6±0.5 14C kyr B.P.). The biomization method, based on 249 pollen records, was used for the reconstructions. The results demonstrate that during the LGM, steppe and desert expanded eastwards and southwards, reaching the present-day temperate deciduous forest (TEDE) zone, and dominated northern China. In contrast, the forest in Eastern China underwent a substantial southwards retreat and the percentage of forest-type sites was at a minimum. In addition, the warm mixed forest (WAMF) and TEDE shifted southwards of 10° N relative to the present-day, and tropical seasonal rain forest (TSFO) was almost absent. At the same time, the forest-steppe boundary shifted southwards to near the middle and lower reaches of Yangtze River. For the early Holocene and mid-Holocene, the TSFO, WAMF, and TEDE shifted northwards by 2-5° relative to today, and the percentage of forest sites increased and reached a maximum in the mid-Holocene. The slight expansion of forest from the early Holocene to the mid-Holocene caused the forest-steppe boundary to shift northwestwards to near the present-day 300 mm isohyet by the mid-Holocene. Our results also indicate that climatic warming since the LGM, which strengthened the East Asian summer monsoon, favored the development of forest in China. This is potentially an important finding for evaluating the possible response of forest in China to future global warming.
The Glacial-Interglacial Monsoon Recorded by Speleothems from Sulawesi, Indonesia
NASA Astrophysics Data System (ADS)
Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Hellstrom, J. C.; Rifai, H.
2015-12-01
The Indo-Pacific Warm Pool is a primary source of heat and moisture to the global atmosphere and a key player in tropical and global climate variability. There is mounting evidence that atmospheric convection and oceanic processes in the tropics can modulate global climate on orbital and sub-orbital timescales. Glacial-interglacial cycles represent the largest natural climate changes over the last 800 kyr with each cycle terminated by rapid global warming and sea level rise. Our understanding of the role and response of tropical atmospheric convection during these periods of dramatic warming is limited. We present the first speleothem paleomonsoon record for southwest Sulawesi (5ºS, 119ºE), spanning two glacial-interglacial cycles, including glacial termination IV (~340 kyr BP) and both phases of termination III (~248 and ~220 kyr BP). This unique record is constructed from multiple stalagmites from two separate caves and is based on a multi-proxy approach (δ18O, δ13C, Mg/Ca, Sr/Ca) that provides insight into the mechanisms controlling Australian-Indonesian summer monsoon variability. Speleothem δ18O and trace element data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. Terminations IV, III, and I are each characterized by an abrupt 3‰ decrease in δ18O. Variability in δ18O leading-in to glacial terminations is also similar, and corresponds to October insolation. Prior to deglaciation, there is a distinct shift to higher δ18O that is synchronized with weak monsoon intervals in Chinese speleothem records. The remarkably consistent pattern among terminations implies that the response of tropical convection to changing background climates is well regulated. Furthermore, we find that speleothem δ13C leads δ18O by ~5 kyr during glacial terminations. The early decrease in speleothem δ13C may reflect the response of tropical vegetation to rising atmospheric CO2 and temperature, rather than regional changes in rainfall.
NASA Astrophysics Data System (ADS)
Chen, Sang; Hoffmann, Sharon S.; Lund, David C.; Cobb, Kim M.; Emile-Geay, Julien; Adkins, Jess F.
2016-05-01
The El Niño-Southern Oscillation (ENSO) is the primary driver of interannual climate variability in the tropics and subtropics. Despite substantial progress in understanding ocean-atmosphere feedbacks that drive ENSO today, relatively little is known about its behavior on centennial and longer timescales. Paleoclimate records from lakes, corals, molluscs and deep-sea sediments generally suggest that ENSO variability was weaker during the mid-Holocene (4-6 kyr BP) than the late Holocene (0-4 kyr BP). However, discrepancies amongst the records preclude a clear timeline of Holocene ENSO evolution and therefore the attribution of ENSO variability to specific climate forcing mechanisms. Here we present δ18 O results from a U-Th dated speleothem in Malaysian Borneo sampled at sub-annual resolution. The δ18 O of Borneo rainfall is a robust proxy of regional convective intensity and precipitation amount, both of which are directly influenced by ENSO activity. Our estimates of stalagmite δ18 O variance at ENSO periods (2-7 yr) show a significant reduction in interannual variability during the mid-Holocene (3240-3380 and 5160-5230 yr BP) relative to both the late Holocene (2390-2590 yr BP) and early Holocene (6590-6730 yr BP). The Borneo results are therefore inconsistent with lacustrine records of ENSO from the eastern equatorial Pacific that show little or no ENSO variance during the early Holocene. Instead, our results support coral, mollusc and foraminiferal records from the central and eastern equatorial Pacific that show a mid-Holocene minimum in ENSO variance. Reduced mid-Holocene interannual δ18 O variability in Borneo coincides with an overall minimum in mean δ18 O from 3.5 to 5.5 kyr BP. Persistent warm pool convection would tend to enhance the Walker circulation during the mid-Holocene, which likely contributed to reduced ENSO variance during this period. This finding implies that both convective intensity and interannual variability in Borneo are driven by coupled air-sea dynamics that are sensitive to precessional insolation forcing. Isolating the exact mechanisms that drive long-term ENSO evolution will require additional high-resolution paleoclimatic reconstructions and further investigation of Holocene tropical climate evolution using coupled climate models.
A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P.
Bronk Ramsey, Christopher; Staff, Richard A; Bryant, Charlotte L; Brock, Fiona; Kitagawa, Hiroyuki; van der Plicht, Johannes; Schlolaut, Gordon; Marshall, Michael H; Brauer, Achim; Lamb, Henry F; Payne, Rebecca L; Tarasov, Pavel E; Haraguchi, Tsuyoshi; Gotanda, Katsuya; Yonenobu, Hitoshi; Yokoyama, Yusuke; Tada, Ryuji; Nakagawa, Takeshi
2012-10-19
Radiocarbon ((14)C) provides a way to date material that contains carbon with an age up to ~50,000 years and is also an important tracer of the global carbon cycle. However, the lack of a comprehensive record reflecting atmospheric (14)C prior to 12.5 thousand years before the present (kyr B.P.) has limited the application of radiocarbon dating of samples from the Last Glacial period. Here, we report (14)C results from Lake Suigetsu, Japan (35°35'N, 135°53'E), which provide a comprehensive record of terrestrial radiocarbon to the present limit of the (14)C method. The time scale we present in this work allows direct comparison of Lake Suigetsu paleoclimatic data with other terrestrial climatic records and gives information on the connection between global atmospheric and regional marine radiocarbon levels.
Antarctic ice dynamics and southern ocean surface hydrology during the last glacial maximum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labeyrie, L.D.; Burckle, L.; Labracherie, M.
1985-01-01
Eight high sedimentation rate cores located between 61/sup 0/S and 43/sup 0/S in the Atlantic and Indian sectors of the Southern Ocean have been studied in detail for foraminifera and diatom /sup 18/O//sup 16/O ratios, and changes in radiolarian and diatom specific abundance. Comparison of these different parameters permits a detailed description of the surface water hydrology during the last glacial maximum. The authors demonstrate that from 25 kyr BP to 15 kyr BP a large number of icebergs formed around the Antarctic continent. Melting along the Polar Front decreased surface salinity by approximately 1.5 per thousand between 43/sup 0/Smore » and 50/sup 0/S. They propose that an increase of snow accumulation at the Antarctic periphery and downdraw during maximum ice extension are primary causes for this major discharge of icebergs.« less
Schmidt, Marco; Muellner-Riehl, Alexandra Nora; Ogundipe, Oluwatoyin Temitayo; Paule, Juraj
2017-01-01
Processes shaping the African Guineo-Congolian rain forest, especially in the West African part, are not well understood. Recent molecular studies, based mainly on forest tree species, confirmed the previously proposed division of the western African Guineo-Congolian rain forest into Upper Guinea (UG) and Lower Guinea (LG) separated by the Dahomey Gap (DG). Here we studied nine populations in the area of the DG and the borders of LG and UG of the widespread liana species, Chasmanthera dependens (Menispermaceae) by amplified fragment length polymorphism (AFLP), a chloroplast DNA sequence marker, and modelled the distribution based on current as well as paleoclimatic data (Holocene Climate Optimum, ca. 6 kyr BP and Last Glacial Maximum, ca. 22 kyr BP). Current population genetic structure and geographical pattern of cpDNA was related to present as well as historical modelled distributions. Results from this study show that past historical factors played an important role in shaping the distribution of C. dependens across West Africa. The Cameroon Volcanic Line seems to represent a barrier for gene flow in the present as well as in the past. Distribution modelling proposed refugia in the Dahomey Gap, supported also by higher genetic diversity. This is in contrast with the phylogeographic patterns observed in several rainforest tree species and could be explained by either diverging or more relaxed ecological requirements of this liana species. PMID:28301470
NASA Astrophysics Data System (ADS)
Brovkin, V.; Lorenz, S.; Raddatz, T.; Claussen, M.; Dallmeyer, A.
2017-12-01
One of the interesting periods to investigate a climatic role of terrestrial biosphere is the Holocene, when, despite of the relatively steady global climate, the atmospheric CO2 grew by about 20 ppm from 7 kyr BP to pre-industrial. We use a new setup of the Max Planck Institute Earth System Model MPI-ESM1 consisting of the latest version of the atmospheric model ECHAM6, including the land surface model JSBACH3 with carbon cycle and vegetation dynamics, coupled to the ocean circulation model MPI-OM, which includes the HAMOCC model of ocean biogeochemistry. The model has been run for several simulations over the Holocene period of the last 8000 years under the forcing data sets of orbital insolation, atmospheric greenhouse gases, volcanic aerosols, solar irradiance and stratospheric ozone, as well as land-use changes. In response to this forcing, the land carbon storage increased by about 60 PgC between 8 and 4 kyr BP, stayed relatively constant until 2 kyr BP, and decreased by about 90 PgC by 1850 AD due to land use changes. At 8 kyr BP, vegetation cover was much denser in Africa, mainly due to increased rainfall in response to the orbital forcing. Boreal forests moved northward in both, North America and Eurasia. The boreal forest expansion in North America is much less pronounced than in Eurasia. Simulated physical ocean fields, including surface temperatures and meridional overturning, do not change substantially in the Holocene. Carbonate ion concentration in deep ocean decreases in both, prescribed and interactive CO2simulations. Comparison with available proxies for terrestrial vegetation and for the ocean carbonate chemistry will be presented. Vegetation and soil carbon changes significantly affected atmospheric CO2 during the periods of strong volcanic eruptions. In response to the eruption-caused cooling, the land initially stores more carbon as respiration decreases, but then it releases even more carbon die to productivity decrease. This decadal-scale variability helps to quantify the vegetation and land carbon feedbacks during the past periods when the temporal resolution of the ice-core CO2 record is not sufficient to capture fast CO2 variations. From a set of Holocene simulations with prescribed or interactive atmospheric CO2, we get estimates of climate-carbon feedback useful for future climate studies.
NASA Astrophysics Data System (ADS)
Schlolaut, Gordon; Marshall, Michael; Brauer, Achim; Nakagawa, Takeshi; Lamb, Henry; Staff, Richard; Bronk Ramsey, Christopher; Brock, Fiona; Bryant, Charlotte; 2006 Project Members, Suigetsu
2010-05-01
The 1993 sediment core from Lake Suigetsu is one of the most comprehensive terrestrial radiocarbon records. It is extremely rich in leaf fossils, providing a unique, truly atmospheric record of radiocarbon for the last 10-50 kyr BP (Kitagawa & van der Plicht, 2000). Since the Lake Suigetsu sediment is annually laminated (varved) for much of its depth it is suitable for extending the terrestrial radiocarbon calibration model up to 50 kyr BP. However, the data presented by Kitagawa & van der Plicht (2000) significantly diverged from alternative, marine-based calibration datasets, due to gaps in the sediment profile and varve counting uncertainties (Staff et al., 2009). In 2006 four new parallel cores were recovered from Lake Suigetsu and combined to construct a new complete and continuous master profile (SG06). Along with a new program of AMS radiocarbon measurement, varve counting is being carried out using two different techniques: i) thin section microscopy and ii) high-resolution X-ray fluorescence and X-radiography. In addition, a novel interpolation approach has been developed. First results are presented for the Late Glacial (10,200 - 15,000 kyr BP). The U-Oki Tephra at the top of this interval is used as tie point for the floating varve count chronology. Initially, the two counting methods are carried out independently. The results are then compared in detail to identify the differences down to the sub-mm scale. This new approach substantially reduces internal error and results in a greater degree of accuracy than previously possible. Due to poor varve preservation in some sediment intervals, the counts of these sections have to be interpolated. Commonly, interpolation is carried out manually using sedimentation rate estimates from neighbouring sections. The new approach presented here is based on an automated analysis of frequency distributions of annual sub-layers from the compromised section itself, allowing an estimate of the sedimentation rate unbiased by neighbouring sections or by subjective interpretation. Sedimentation rates are calculated from the independent varve counts and are then combined. The application of these sedimentation rates (combined and independent) to the raw counts yields a varve count synthesis as well as an error estimate for the age model. Comparison of the varve count synthesis with the Late Glacial radiocarbon dates calibrated using Intcal04 (Reimer et al. 2004) and Fairbanks et al. (2005) shows a good agreement between the chronologies. Reference: R.G. Fairbanks, R.A. Mortlock, T.-C. Chiu, L. Cao, A. Kaplan, T.P. Guilderson, T.W. Fairbanks, A.L. Bloom, P.M. Grootes, M.-J. Nadeau, (2005), Radiocarbon calibration curve spanning 0 to 50,000 years bp based on paired 230Th/234U/238U and 14C dates on pristine corals, Quaternary Science Reviews 24 H. Kitagawa, J. van der Plicht, (2000), Atmospheric radiocarbon calibration beyond 11,900 cal BP from Lake Suigetsu laminated sediments, Radiocarbon 42(3) P.J. Reimer, M.G.L. Baillie, E. Bard, A. Bayliss, J.W. Beck, C.J.H. Bertrand, P.G. Blackwell, C.E. Buck, G.S. Burr, K.B. Cutler, P.E. Damon, R.L. Edwards, R.G. Fairbanks, M. Friedrich, T.P. Guilderson, A.G. Hogg, K.A. Hughen, B. Kromer, G. McCormac, S. Manning, C. Bronk Ramsey, R.W. Reimer, S. Remmele, J.R. Southon, M. Stuiver, S. Talamo, F.W. Taylor, J. van der Plicht, C.E. Weyhenmeyer, (2004), IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr bp, Radiocarbon 46(3) R.A. Staff, C. Bronk Ramsey, T. Nakagawa and Suigetsu 2006 Project members, (2009), A re-analysis of the Lake Suigetsu terrestrial radiocarbon calibration dataset, Nuclear Instruments and Methods in Physics Research B
Long-Term ENSO Variation Over the Last 20,000 Years From the Peru Continental Margin
NASA Astrophysics Data System (ADS)
Skilbeck, G.; Fink, D.; Gagan, M.; Rein, B.
2006-12-01
Three ODP Leg 201 cores from the Peru continental margin comprise highly laminated diatomaceous ooze spanning Last Glacial Maximum to present. Geochemical proxy data, layer counting and spectral analysis of red color variation suggest the layers represent interannual accumulation under the influence tropical ENSO conditions, with darker layers representing El Niño events. AMS 14-C dating (Skilbeck &Fink, 2006) of bulk sediment from Sites 201-1228 and -1229 (~11°S) and comparison with Rein et al. (2005) Core SO147-106KL (~12°S) show that where the shelf is narrow south of ~10.5°S, regionally consistent rates of sediment accumulation have occurred over the late Deglaciation and Holocene, with high rates characterising the late (0-2.0 kyrBP, ~100 cm/ka) and the early (8.5-10 kyrBP, ~80 cm/ka) Holocene. Over these intervals laminae are of interannual resolution. Further north where the shelf is broader, Holocene-Late Deglaciation sediments are thin or absent, but the Early Deglaciation is well represented. In a core from ODP Site 201-1227 (~9°S, 427m water depth), the period 15.5-17.5 kyrBP is characterised by sediment accumulation rates in excess of 300 cm/ka, and interannual laminations are again present. Spectral analysis of the instrumental record of ENSO, the SOI, shows a relative stable mode of variation with an average frequency of about 5.5 yr for the past 130 years. Analysis of our ODP cores shows that the ENSO mode appears to be relatively stable for periods of 300-500 years throughout the Holocene with frequencies varying mostly between 5 and 8 years and relatively sudden mode switches, suggesting inter alia that the instrumental record is not long enough to test predictive models of ENSO variation. Throughout the Holocene, this pattern of variation transcends the sedimentation-rate zones identified above, with the inference that changes in the rate of sedimentation have not influenced the temporal pattern. The later part of the deglaciation period (10-14 kyrBP) appears to be a relatively long period of stable ENSO with a repeat frequency between 5 and 6 years. Layer variation over the interval between 14 to 15.5 yrBP loses interannual variability and is characterised by a dominant frequency of ~11-12 yr, but this may simply reflect the low sedimentation rate during this interval. During Early Deglaciation interannual- to decadal-scale layer variability is present, with over 600 discernable laminae recognisable across the ~1600 year interval represented in Core 210-1227B. ENSO during this time has multiple interannual frequency modes ranging between 4 and 10 yr, particularly over the interval 17.2- 16.2 kyrBP, with mode switches slightly more frequent than during the Holocene at between 200 and 300 years. In addition to the interannual laminations and the centennial-scale pattern of frequency mode variation described above, there is a regular oscillatory pattern in the contrast between dark and light laminations which can be traced to parasequence-like packets of laminations on a centimetre scale, and representing variability in the decadal to centennial range. References Rein, B., A. Luckge, et al. (2005). Paleoceanography 20(PA4003): 17p. Skilbeck, C.G. &D. Fink (2005). ODP Scientific Results 201.
NASA Astrophysics Data System (ADS)
Lawrence, Thomas; Long, Antony J.; Gehrels, W. Roland; Jackson, Luke P.; Smith, David E.
2016-11-01
The most significant climate cooling of the Holocene is centred on 8.2 kyr BP (the '8.2 event'). Its cause is widely attributed to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) associated with the sudden drainage of Laurentide proglacial Lakes Agassiz and Ojibway, but model simulations have difficulty reproducing the event with a single-pulse scenario of freshwater input. Several lines of evidence point to multiple episodes of freshwater release from the decaying Laurentide Ice Sheet (LIS) between ∼8900 and ∼8200 cal yr BP, yet the precise number, timing and magnitude of these events - critical constraints for AMOC simulations - are far from resolved. Here we present a high-resolution relative sea level (RSL) record for the period 8800 to 7800 cal yr BP developed from estuarine and salt-marsh deposits in SW Scotland. We find that RSL rose abruptly in three steps by 0.35 m, 0.7 m and 0.4 m (mean) at 8760-8640, 8595-8465, 8323-8218 cal yr BP respectively. The timing of these RSL steps correlate closely with short-lived events expressed in North Atlantic proxy climate and oceanographic records, providing evidence of at least three distinct episodes of enhanced meltwater discharge from the decaying LIS prior to the 8.2 event. Our observations can be used to test the fidelity of both climate and ice-sheet models in simulating abrupt change during the early Holocene.
Herrera, Christian; Gamboa, Carolina; Custodio, Emilio; Jordan, Teresa; Godfrey, Linda; Jódar, Jorge; Luque, José A; Vargas, Jimmy; Sáez, Alberto
2018-05-15
The Cordillera de la Costa is located along the coastline of northern Chile, in the hyperarid Atacama Desert area. Chemical and isotopic analyses of several small coastal springs and groundwater reservoirs between 22.5 °S and 25.5 °S allow understanding groundwater origin, renewal time and the probable timing of recharge. The aquifers are mostly in old volcanic rocks and alluvial deposits. All spring waters are brackish, of the sodium chloride type due to intensive concentration of precipitation due aridity and for deep groundwater to additional water-rock interaction in slowly renewed groundwater and mixing with deep seated brines. The heavy δ 18 O and δ 2 H values in spring water are explained by recharge by the arrival of moist air masses from the Pacific Ocean and the originally lighter values in the deep wells can be associated to past recharge by air masses coming from the Atlantic Ocean. Current recharge is assumed almost nil but it was significant in past wetter-than-present periods, increasing groundwater reserves, which are not yet exhausted. To explain the observed chloride content and radiocarbon ( 14 C) activity, a well-mixed (exponential) flow model has been considered for aquifer recharge. The average residence time of groundwater feeding the springs has been estimated between 1 and 2kyr, up to 5kyr and between 7 and 13kyr for deep well water, assuming that current recharge is much less than during the previous wetter period. The recharge period feeding the coastal springs could have been produced 1 to 5kyr BP, when the area was already inhabited, and recharge in the Michilla mine was produced during the 10 to 14.5kyr BP CAPE (Central Andean Pluvial Event) pluvial events of the central Andes. The approximate coincidence of turnover time with the past wet periods, as revealed by paleoclimate data, points to significant recharge during them. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Van Daele, Maarten; Moernaut, Jasper; De Batist, Marc; Verschuren, Dirk
2013-04-01
Lake Challa (Mt. Kilimanjaro, Kenya/Tanzania) is located in a key site for reconstructing the climate and landscape history of equatorial East Africa and hence, climatic influences on the living environment of early modern humans, Homo sapiens. Seismic-reflection data from this crater lake reveal a ~210-m thick sedimentary infill containing distinct seismic-stratigraphic signatures of late-Quaternary lake-level fluctuations. Extrapolation of a well-constrained age model on the cored upper part of the sequence shows that the signatures of these lake-level fluctuations represent a detailed record of climatic moisture-balance variation in equatorial East Africa, continuous over at least the last 140 kyr and encompassing in total ~250 kyr. The most severe aridity occurred during peak Penultimate glaciation immediately before 130 kyr BP (coeval with Heinrich event 11) and during a Last Interglacial 'megadrought' period between ~115 and ~98 kyr BP; in comparison, Last Glacial Maximum (LGM) aridity was modest. The LGM was preceded by ~75,000 years of relatively stable and moist climate conditions interrupted by eleven short-lived dry spells, five of which match the timing of Heinrich events 2 to 6. Also in the lower part of the sedimentary infill the seismic stratigraphy provides evidence for short-lived dry spells, but artefacts and changes in basin geometry complicate their detailed interpretation and dating, respectively. The ICDP deep-drilling project DeepCHALLA aims to core the entire sedimentary sequence, which will allow reconstructing regional climate and ecological dynamics for the past ~250 kyr, i.e., the entire documented existence of anatomically modern humans in East Africa. Knowledge of climate history in this equatorial region, where the northeasterly and southeasterly monsoons strongly interact, is crucial for documenting the severity and geographical distribution of prolonged drought episodes across tropical Africa, and thus for understanding the early dispersal of modern humans from Africa into Eurasia between ~100,000 and ~50,000 years ago.
NASA Astrophysics Data System (ADS)
Wündsch, Michael; Haberzettl, Torsten; Cawthra, Hayley C.; Kirsten, Kelly L.; Quick, Lynne J.; Zabel, Matthias; Frenzel, Peter; Hahn, Annette; Baade, Jussi; Daut, Gerhard; Kasper, Thomas; Meadows, Michael E.; Mäusbacher, Roland
2018-04-01
This study investigates Holocene sediments from Eilandvlei, a coastal lake located within the Wilderness embayment at the southern Cape coast of South Africa. The evolution of the present estuarine/coastal lake system is reconstructed based on seismic data as well as a multi-proxy approach on a 30.5 m sediment core spanning the last 8.9 kyr. Geochemical (Ca, TOC/S, Br/TOC) and micropalaeontological data (diatoms, foraminifera) reflect changes in the degree of marine influence at the core site. The embayment likely developed via distinct phases of connectivity to the Indian Ocean caused by sea level changes and dune progradation. Marine conditions prevailed at the core site from 8900 to 4700 cal BP. The rapid sea level rise during the early Holocene caused the inundation of a palaeovalley that most likely had formed at lower sea levels during the Pleistocene. Towards the mid-Holocene the sea level exceeded its present height around 7500 cal BP creating a marine embayment. At 4700 cal BP, the embayment became distinctly more disconnected from the ocean turning into a lagoon system that persisted until 1200 cal BP. Subsequently, the marine influence further decreased and the present estuarine/coastal lake system was established. Grain size and geochemical data (Fe, Si/Al, chemical index of alteration (CIA)) further reflect changes in the deposition of terrigenous sediments at the core site. While the sedimentation of fine-grained (<16 μm), iron-rich and highly weathered material is linked to periods of increased river discharge and rainfall, high amounts of deposited quartz (31-250 μm, high Si/Al) point to relatively dry and/or windy conditions during which increased aeolian transport of dune sands occurred. The proxies indicate reduced river discharge and hence possibly drier climatic conditions than today from 8900 to 7900 cal BP and 6400 to 3000 cal BP. In contrast, the periods between 7900-6400 cal BP and 3000 cal BP-present were likely characterized by high river discharge and thus, generally more rainfall. The reconstructed palaeoclimatic variations are discussed within the context of e.g., shifts in the position of the Antarctic sea ice extent and the mid-latitude westerly wind belt as well as changes in the El Niño-Southern Oscillation (ENSO).
NASA Astrophysics Data System (ADS)
Bradley, Sarah L.; Milne, Glenn A.; Horton, Benjamin P.; Zong, Yongqiang
2016-04-01
This study presents a new model of Holocene ice-volume equivalent sea level (ESL), extending a previously published global ice sheet model (Bassett et al., 2005), which was unconstrained from 10 kyr BP to present. This new model was developed by comparing relative sea level (RSL) predictions from a glacial isostatic adjustment (GIA) model to a suite of Holocene sea level index points from China and Malay-Thailand. Three consistent data-model misfits were found using the Bassett et al. (2005) model: an over-prediction in the height of maximum sea level, the timing of this maximum, and the temporal variation of sea level from the time of the highstand to present. The data-model misfits were examined for a large suite of ESL scenarios and a range of earth model parameters to determine an optimum model of Holocene ESL. This model is characterised by a slowdown in melting at ∼7 kyr BP, associated with the final deglaciation of the Laurentide Ice Sheet, followed by a continued rise in ESL until ∼1 kyr BP of ∼5.8 m associated with melting from the Antarctic Ice Sheet. It was not possible to identify an earth viscosity model that provided good fits for both regions; with the China data preferring viscosity values in the upper mantle of less than 1.5 × 1020 Pa s and the Malay-Thailand data preferring greater values. We suggest that this inference of a very weak upper mantle for the China data originates from the nearby subduction zone and Hainan Plume. The low viscosity values may also account for the lack of a well-defined highstand at the China sites.
NASA Astrophysics Data System (ADS)
Nanayakkara, N. U.; Ranasinghage, P. N.; Hawkes, A. D.; van Hengstum, P. J.; Donnelly, J. P.
2016-12-01
ABSTRACT Evolution of populated, dynamic coastal environments around the Gulf of Mexico is complicated due to the impact of multiple factors such as Holocene sea level changes, and hurricane impacts. The main purpose of the present study is to use foraminifera to create a separate account on coastal environmental changes in the area. For this purpose foraminifera were sampled at 20 cm intervals from an 8.55 m long age dated sediment core ( 8.0 ka) obtained from Choctawhatchee Bay, Florida, USA by Woods Hole Oceanographic Institution. This core was taken by vibracoring. Foraminifera were extracted, identified, counted separately and finally multiple variable analyses (cluster, PCA) were used to identify paleo-environments represented by different species assemblages. Three distinct foraminiferal communities represented by 18 species indicating three biofacies could be recognized. Organic rich protected deltaic marsh/lagoonal environment dominated by Bolivina spp and Buluminella spp existed from bottom of the core ( 8 cal kyr BP). As indicated by dominating Millioids spp., this environment was flooded and transformed to a marine open bay environment around 6 cal kyr BP at rising sea level during the Holocene transgression. Increasing sea level and intensified storminess during this period might have prevented barrier growth .This open bay environment converted to more brackish closed bay environment possibly due to the growth of the Santa Rosa Barrier around 3 kyrs BP and that environment exists till today. Abundance of Ammonia-Elphdium - Bolivina spp provide evidence for this transition. These results are comparable with physical and chemical proxy records of the same core as well as other published regional records.
A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core
NASA Astrophysics Data System (ADS)
D'Andrilli, Juliana; Foreman, Christine M.; Sigl, Michael; Priscu, John C.; McConnell, Joseph R.
2017-05-01
Englacial ice contains a significant reservoir of organic material (OM), preserving a chronological record of materials from Earth's past. Here, we investigate if OM composition surveys in ice core research can provide paleoecological information on the dynamic nature of our Earth through time. Temporal trends in OM composition from the early Holocene extending back to the Last Glacial Maximum (LGM) of the West Antarctic Ice Sheet Divide (WD) ice core were measured by fluorescence spectroscopy. Multivariate parallel factor (PARAFAC) analysis is widely used to isolate the chemical components that best describe the observed variation across three-dimensional fluorescence spectroscopy (excitation-emission matrices; EEMs) assays. Fluorescent OM markers identified by PARAFAC modeling of the EEMs from the LGM (27.0-18.0 kyr BP; before present 1950) through the last deglaciation (LD; 18.0-11.5 kyr BP), to the mid-Holocene (11.5-6.0 kyr BP) provided evidence of different types of fluorescent OM composition and origin in the WD ice core over 21.0 kyr. Low excitation-emission wavelength fluorescent PARAFAC component one (C1), associated with chemical species similar to simple lignin phenols was the greatest contributor throughout the ice core, suggesting a strong signature of terrestrial OM in all climate periods. The component two (C2) OM marker, encompassed distinct variability in the ice core describing chemical species similar to tannin- and phenylalanine-like material. Component three (C3), associated with humic-like terrestrial material further resistant to biodegradation, was only characteristic of the Holocene, suggesting that more complex organic polymers such as lignins or tannins may be an ecological marker of warmer climates. We suggest that fluorescent OM markers observed during the LGM were the result of greater continental dust loading of lignin precursor (monolignol) material in a drier climate, with lower marine influences when sea ice extent was higher and continents had more expansive tundra cover. As the climate warmed, the record of OM markers in the WD ice core changed, reflecting shifts in carbon productivity as a result of global ecosystem response.
NASA Astrophysics Data System (ADS)
Scroxton, N.; Gagan, M. K.; Ayliffe, L. K.; Hellstrom, J.; Cheng, H.; Edwards, R.; Zhao, J.; Hantoro, W. S.; Rifai, H.; Scott-Gagan, H.; Cowley, J. A.; Suwargadi, B. W.
2013-12-01
Most long-term speleothem climate records focus on δ18O (Cruz Jr. et al. 2005, Wang et al. 2005, Meckler et al. 2012, Carolin et al. 2013). In tropical regions, where temperature variability is relatively small, speleothem δ18O serves as a proxy for precipitation amount. On orbital timescales, changes in moisture source, sea level and global ice volume also influence speleothem δ18O. As both δ18O and δ13C are measured simultaneously, a wealth of potential paleoclimatic information from the δ13C records for numerous sites awaits publication. However, δ13C is less well understood as an environmental proxy, and a simple control and explanation may not be forthcoming. We present a new 92,000-year long speleothem δ13C record for Liang Luar cave in Flores, Indonesia. Here, δ13C acts as a proxy for soil CO2 production above the cave, which is strongly linked to vegetative changes. Since vegetation and soil CO2 production are closely linked to a climatic control, changes in speleothem δ13C can be considered an environmental response to climate change. The Liang Luar δ13C record mainly tracks the δ18O, indicating close affiliation between vegetation and climate. Peak vegetation cover and soil activity (lower δ13C) occur in the early Holocene. The Last Glacial Maximum does not have notably higher δ13C than Isotope Stages 3 and 5a. δ13C variability in the glacial is much higher than that in the Holocene. Differences between the δ13C and δ18O records indicate periods of vegetative change without a climatic cause. The largest increase in δ13C (8‰) during the last 90kyr occurred at 68kyr BP. This anomalous δ13C excursion represents a major loss of vegetation around Liang Luar. The last surviving non-human member of the Homo genus: Homo floresiensis, disappeared from the stratigraphic record in nearby Liang Bua cave between 17 and 10kyr BP (Roberts et al. 2009). The cause of the disappearance, (e.g. climate change, volcanic catastrophe or human competition, has not been established. In contrast to the environmental upheaval around 68kyr BP, the period between 17 and 10kyr BP is remarkably stable. With little change in vegetation at this time, we can rule out volcanism or climate change as a likely cause of the extinction. We are left with an intriguing puzzle as to what caused the recent extinction of Homo floresiensis. Cruz Jr. et al. 2005, Nature, v. 434, p. 63 Wang et al. 2005, Science, v. 308, p. 854 Meckler et al. 2012, Science, v. 336, p. 1301 Carolin et al. 2013, Science, v. 340, p. 1564 Roberts et al. 2009, J. Hum. Evol., v. 57, p. 484
NASA Astrophysics Data System (ADS)
Jaumann, Peter Josef
1995-01-01
Estimates of past natural climatic variability on long time scales (centuries to millennia) are crucial in testing climate models. The process of model validation takes advantage of long general circulation model (GCM) integrations, instrumental and satellite observations, and paleoclimatic records. Here I use paleoclimatic proxy records from central North America spanning the last 150 ka to characterize climatic variability on sub-orbital time scales. A terrestrial last interglacial (~ 130 to 75 kyr BP) pollen sequence from south-central Illinois, U.S.A., contains climatic variance in frequency bands between 1 cycle/10 kyr and 1 cycle/1 kyr. The temporal variance is best developed as alternating cycles of pollen assemblages indicative of wet and dry conditions. Spectral cross-correlations between selected pollen types and potential forcings (ETP (eccentricity, tilt, precession), SPECMAP delta^{18}O) implicate oceanic and solar processes as possible mechanisms driving last interglacial vegetation and climate change in the Midwestern U.S. During the last glacial stage (LGS; 20 to 16 kyr BP) a lacustrine sequence from the central Mississippi River valley experienced major flooding events caused by intermittent melting of the Laurentide ice sheet. Rock -magnetic and grain size data confirm the physical record of flood clays. Correlation of the flood clays to the Greenland (GRIP) ice core is weak. However, the Laurentide melting events seem to fall temporally between the releases of minor LGS iceberg discharges into the North Atlantic. The GRIP delta^{18}O and the Midwestern U.S. magnetic susceptibility time series indicate sub-Milankovitch climate variability modes. Mapping, multivariate, and time series analyses of Holocene (8 to 1 ka) pollen sequences from central North America suggest spatial patterns of vegetation and climate change on sub-orbital to millennial time scales. The rate, magnitude, and spatial patterns of change varied considerably over the study region. Major climatic variance contained in several well-dated pollen time series ranges between 1 cycle/6 kyr and 1 cycle/0.6 kyr. Singular and cross -spectral analyses, again, suggest solar and oceanic forcing. Although it is difficult to attribute past climatic changes to specific forcings, the geologic record of past global change will prove invaluable in the assessment of long-term future climate change and prediction.
NASA Astrophysics Data System (ADS)
Scroxton, N.; Gagan, M. K.; Ayliffe, L. K.; Hantoro, W. S.; Hellstrom, J. C.; Cheng, H.; Edwards, R. L.; Zhao, J. X.; Suwargadi, B. W.; Scott-Gagan, H.; Cowley, J. A.; Rifai, H.
2015-12-01
The last surviving non-human member of the Homo genus: Homo floresiensis, disappeared from the stratigraphic record in Liang Bua cave, Flores, Indonesia, between 17 and 10 kyr BP (Roberts et al. 2009, J. Hum. Evol.). The cause of the disappearance (e.g. climate change, volcanic catastrophe or human competition) has not been established. Here, we present a new 92,000-year long speleothem δ13C record for Liang Luar cave, 800m South of Liang Bua. Our record acts as a proxy for local environmental and vegetation health throughout H. floresiensis' occupation of the area. The Liang Luar speleothem δ13C record is primarily a record of vegetation productivity and soil respiration rates, highlighting local ecological responses to changing regional and global climate forcings such as temperature, atmospheric pCO2 and precipitation amount. Changes in speleothem δ13C can largely be considered an environmental response to climate change. Events that caused significant harm to the local environment and H. floresiensis are likely to be outside the natural range of variability: being quick enough or extreme enough that adaptation to new conditions is not possible. We identify disturbances to the vegetation system using two indicators in the speleothem record. 1) Abrupt positive δ13C excursions which indicate periods of reduced vegetative activity. 2) A loss of correlation between the δ13C and δ18O records, indicating that precipitation is no longer a dominant control on vegetation productivity. The largest (8‰) and longest (7 kyr) abrupt positive excursion, the 68 kyr event, sees positive speleothem δ13C values, due to increased bedrock contribution and/or C4 vegetation at this time. Crucially a H. floresiensis occupation interval dates to this period. The largest abrupt deterioration in vegetation (positive δ13C excursion) between 17 and 10 kyr BP is a 1 in 5kyr occurrence - An event of a magnitude that was likely encountered and survived by H. floresiensis multiple times during the last 90kyr. The mechanism/s that led to the disappearance of H. floresiensis must have been highly selective, and did not have a major impact on the local environment. This seemingly rules out volcanism and climate change as potential agents, leaving us with an intriguing puzzle as to what caused the recent extinction of Homo floresiensis.
Barron, John A.; Bukry, David; Dean, Walter E.; Addison, Jason A.; Finney, Bruce
2009-01-01
High-resolution records of diatoms, silicoflagellates, and geochemistry covering the past 15,000 years were studied in three cores from the Gulf of Alaska (GOA). Core EW0408-85JC in an oceanic setting on the Kayak Slope displays a paleoceanographic record similar to that at several locations on the California margin during deglaciation. Biologic productivity as reconstructed using geochemical and microfossil proxies increased abruptly during the Bølling–Alleröd (Bø–Al) warm interval (14.7–12.9 cal ka), declined during the Younger Dryas (YD) cold interval (12.9 to 11.7 cal kyr BP), and rose again during the earliest Holocene. At this site, the record after ~ 11 cal kyr BP is dominated by oceanic diatoms and silicoflagellates, with geochemical proxies displaying more subtle variation. Cores EW0408-66JC in the Yakobi Sea Valley near Cross Sound and EW0408-11JC in the Gulf of Esquibel contain an expanded, composite record along the southeast Alaskan margin. Core 66JC contains a detailed record of the Bø–Al and YD. Diatoms and silicoflagellates indicate that coastal upwelling and biosiliceous productivity were strong during the Bø–Al but declined during the YD. Sea ice-related diatoms increased in abundance during the YD, indicating cooler, but less productive waters. The glacial to biogenic marine sediment transition in core 11JC occurs at 1280 cmbsf (centimeters below sea floor), probably representing rising sea level and deglaciation early in the Bø–Al. Freshwater and sea-ice related diatoms are common in the lower part of the core (Bø–Al and YD), but upwelling-related diatoms and silicoflagellates quickly increased in relative abundance up-core, dominating the record of the past 11,000 years. Low oxygen conditions in the bottom water as reconstructed using geochemical proxies (U and Mo concentration) were most intense between ~ 6.5 and 2.8 cal kyr BP, the beginning of which is coincident with increases in abundance of upwelling-related diatoms. The records from these three cores jointly thus made it possible to reconstruct paleoclimatic and paleoceanographic conditions at high northern Pacific latitudes during the last 15 kyr.
NASA Astrophysics Data System (ADS)
Hyttinen, Outi; Kotilainen, Aarno; Virtasalo, Joonas; Kekäläinen, Pirkko; Snowball, Ian; Obrochta, Stephen; Andrén, Thomas
2017-04-01
In this study the Holocene depositional succession at the IODP Expedition 347 Sites M0061 and M0062 in the Ångermanälven River estuary, Bothnian Sea part of the Baltic Sea in northern Scandinavia was explored. Sediment cores and acoustic profiles comprise the dataset. Site M0062 is fully estuarine (69.3 m water depth) whereas Site M0061 is in a coastal offshore setting (87.9 m water depth). Three acoustic units (AUs) were recognized at the studied site. Lowermost AU1 was interpreted as a poorly to discontinuous stratified glaciofluvial deposit, AU2 as a stratified conformable glaciolacustrine drape, and AU3 as a stratified to poorly stratified mud drift. AU2 and AU3 are separated by a strong truncating reflector. From cored sediments, three lithological units (LUs) were defined. Glaciofluvial sand and silt (LU1) gradually change into glaciolacustrine varves (LU2). A sharp contact separates LU2 from the overlying brackish water mud (LU3).This contact is interpreted as a major unconformity, In the basal part of LU3, two debrites (site M0062) or one debrite (site M0061) were recognized. The LU division is supported by information yielded from sediment physical properties, geochemistry and grain size. The depositional succession was subdivided into two alloformations: Utansjö Alloformation and overlying Hemsön Alloformation. The Utansjö Alloformation was subdivided into two lithostratigraphic formations: Storfjärden (sandy outwash) and Åbordsön (glaciolacustrine rhythmite) Formation. Storfjärden and Åbordsön Formations represent a glacial retreat systems tract. Sediment deposition started at ca. 10.6 kyr BP and was mainly controlled by meltwater from the retreating ice-margin, glacio-isostatic land uplift and the regressive (glacial) lake level. Hemsön Alloformation (organic-rich brackish water mud) started to deposit possibly at ca. 9.5 kyr BP, during a period of forced regression. At around 7 kyr BP, brackish water fully reached the study area. The establishment of permanent halocline changed near-bottom currents, and increased organic deposition reduced the sediment consistency. This resulted in a sharp and erosional base of the brackish water mud. This study shows the benefits of the combined allostratigraphic and lithostratigraphic approach compared to the conventional Baltic Sea Stages scheme that is based on presumed synchronous changes in water level and salinity in the basin. This work is a part of the CISU project funded by the Academy of Finland.
Eemian and penultimate transition reflected in the chemical ice core record from Dome C
NASA Astrophysics Data System (ADS)
Bigler, M.; Lambert, F.; Stauffer, B.; Röthlisberger, R.; Wolff, E. W.
2003-04-01
Within the scope of the European Project for Ice Coring in Antarctica (EPICA) chemical analyses have been done along the Dome C ice core. Among other substances, Ca2+, dust, Na+, NH_4{}+, NO_3{}- and electrolytical melt water conductivity have been measured at 1 cm resolution with the Bern Continuous Flow Analysis (CFA) system. Here we present new data from the Eemian and the preceding transition covering an age interval from approximately 180 kyr to 110 kyr before present. This sequence is compared with the Holocene and the last transition, mainly with emphasis on terrestrial and marine tracers. Concentration levels for the two periods compare quite well, but the general shape differs considerably. The changes in dust input to Dome C seemed to have been much more abrupt during the penultimate transition than during the last transition (18 to 15 kyr BP). This may reflect different conditions and/or processes in the dust source region.
NASA Astrophysics Data System (ADS)
Wolff, C.; Verschuren, D.; Van Daele, M. E.; Waldmann, N.; Meyer, I.; Lane, C. S.; Van der Meeren, T.; Ombori, T.; Kasanzu, C.; Olago, D.
2017-12-01
Sediments on the bottom of Lake Challa, a 92-m deep crater lake on the border of Kenya and Tanzania near Mt. Kilimanjaro, contain a uniquely long and continuous record of past climate and environmental change in easternmost equatorial Africa. Supported in part by the International Continental Scientific Drilling Programme (ICDP), the DeepCHALLA project has now recovered this sediment record down to 214.8 m below the lake floor, with 100% recovery of the uppermost 121.3 m (the last 160 kyr BP) and ca.85% recovery of the older part of the sequence, down to the lowermost distinct reflector identified in seismic stratigraphy. This acoustic basement represents a ca.2-m thick layer of coarsely laminated, diatom-rich organic mud mixed with volcanic sand and silt deposited 250 kyr ago, overlying an estimated 20-30 m of unsampled lacustrine deposits representing the earliest phase of lake development. Down-hole logging produced profiles of in-situ sediment composition that confer an absolute depth- scale to both the recovered cores and the seismic stratigraphy. An estimated 74% of the recovered sequence is finely laminated (varved), and continuously so over the upper 72.3 m (the last 90 kyr). All other sections display at least cm-scale lamination, demonstrating persistence of a tranquil, profundal depositional environment throughout lake history. The sequence is interrupted only by 32 visible tephra layers 2 to 9 mm thick; and by several dozen fine-grained turbidites up to 108 cm thick, most of which are clearly bracketed between a non-erosive base and a diatom-laden cap. Tie points between sediment markers and the corresponding seismic reflectors support a preliminary age model inferring a near-constant rate of sediment accumulation over at least the last glacial cycle (140 kyr BP to present). This great time span combined with the exquisite temporal resolution of the Lake Challa sediments provides great opportunities to study past tropical climate dynamics at both short (inter-annual to decadal) and long (glacial-interglacial) time scales; and to assess the multi-faceted impact of this climate change on the region's freshwater resources, the functioning of terrestrial ecosystems, and the history of the African landscape in which modern humans (our species, Homo sapiens) originally evolved and have lived ever since.
Montoya, Encarni; Keen, Hayley F; Luzuriaga, Carmen X; Gosling, William D
2018-01-01
Tropical ecosystems play a key role in many aspects of Earth system dynamics currently of global concern, including carbon sequestration and biodiversity. To accurately understand complex tropical systems it is necessary to parameterise key ecological aspects, such as rates of change (RoC), species turnover, dynamism, resilience, or stability. To obtain a long-term (>50 years) perspective on these ecological aspects we must turn to the fossil record. However, compared to temperate zones, collecting continuous sedimentary archives in the lowland tropics is often difficult due to the active landscape processes, with potentially frequent volcanic, tectonic, and/or fluvial events confounding sediment deposition, preservation, and recovery. Consequently, the nature, and drivers, of vegetation dynamics during the last glacial are barely known from many non-montane tropical landscapes. One of the first lowland Amazonian locations from which palaeoecological data were obtained was an outcrop near Mera (Ecuador). Mera was discovered, and analysed, by Paul Colinvaux in the 1980s, but his interpretation of the data as indicative of a forested glacial period were criticised based on the ecology and age control. Here we present new palaeoecological data from a lake located less than 10 km away from Mera. Sediment cores raised from Laguna Pindo (1250 masl; 1°27'S, 78°05'W) have been shown to span the late last glacial period [50-13 cal kyr BP (calibrated kiloyears before present)]. The palaeoecological information obtained from Laguna Pindo indicate that the region was characterised by a relatively stable plant community, formed by taxa nowadays common at both mid and high elevations. Miconia was the dominant taxon until around 30 cal kyr BP, when it was replaced by Hedyosmum , Asteraceae and Ilex among other taxa. Heat intolerant taxa including Podocarpus , Alnus , and Myrica peaked around the onset of the Last Glacial Maximum (c. 21 cal kyr BP). The results obtained from Laguna Pindo support Colinvaux's hypothesis that glacial cooling resulted in a reshuffling of taxa in the region but did not lead to a loss of the forest structure. Wide tolerances of the plant species occurring to glacial temperature range and cloud formation have been suggested to explain Pindo forest stability. This scenario is radically different than the present situation, so vulnerability of the tropical pre-montane forest is highlighted to be increased in the next decades.
NASA Astrophysics Data System (ADS)
Veres, Daniel; Cosac, Marian; Muratoreanu, George; Niţǎ, Loredana; Schmidt, Christoph; Hambach, Ulrich; Hubay, Katalin; Alexandru, Radu; Cuculici, Roxana; Lucian Buzea, Dan; Dumitraşcu, Valentin
2016-04-01
The Middle to Upper Paleolithic transition is one of the crucial periods of change in the prehistory of Europe due to the full emergence, continent-wide, of modern human technologies, detrimental of Neanderthal survival. Knowledge about the transition is vast, however, the evidence for cultural and technological developments in the Carpathian - Lower Danube area is still rather sparse. Here we discuss latest results arising from an archaeological-chronological investigation of a Middle Paleolithic context within the Varghis karst, eastern Transylvania, Romania. Combining our results with these of previous excavations, we can distinguish several stages of habitation in the area comprising a rock shelter connected to a newly discovered filled-in cave entrance. Reanalysis of the deeper stratigraphy previously unexcavated shows that at least two main habitation levels have been preserved. In both levels, the bone assemblages (Bos/Bison, Capra, Canis lupus, Ursus spaeleus) directly associated with lithics point to human-accumulation of material. In order to augment the typological cultural considerations, we applied direct radiocarbon dating on bones from within the occupation layers and on scattered charcoal, for the latter following a two-step combustion protocol (1). Radiocarbon dating on bones suggests the lowermost occupation layer is >43.4 radiocarbon kyr BP old, whereas the preliminary infrared stimulated luminescence (IRSL) ages on the lowermost productive layer and above it indicate surprisingly old ages of ca. 120 kyr and respectively, ca. 70 kyr. Multiple-protocol dating of charcoal found within the two habitation layers produced ages >38 radiocarbon kyr BP, suggesting that the lowermost habitation layer unequivocally pertains to the Middle Paleolithic industries. For the upper productive layer, radiocarbon dating of charcoal found 20 cm above it produced a surprisingly young age of 17.4 radiocarbon kyr BP. However, as the carbon content of this sample was less than 3%, it shall be treated with caution until further age estimates are produced. Moreover, the upper habitation level is marked by a high percentage of lithics recovered from the excavated material; it is very likely that the assemblage represents yet another phase of a Middle Paleolithic industry. Overall, the recovered lithics, currently forming one of the most significant collections of this sort for the area, are consistent with two main habitation phases connected to Middle Paleolithic cultural affinities. (1) Molnár, M., Janovics, R., Major, I., Orsovszki, J., Gonczi, R., Veres, M., Leonard, A.G., Castle, S.M., Lange, T.E., Wacker, L., Hajdas, I., Jull, A.J.T., 2013. Status report of the new AMS 14C sample preparation lab of the Hertelendy laboratory of environmental studies (Debrecen, Hungary). Radiocarbon 55, 665-676.
NASA Astrophysics Data System (ADS)
Hildegard Zimmermann, Heike; Raschke, Elena; Saskia Epp, Laura; Rosmarie Stoof-Leichsenring, Kathleen; Schwamborn, Georg; Schirrmeister, Lutz; Overduin, Pier Paul; Herzschuh, Ulrike
2017-02-01
Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.
NASA Astrophysics Data System (ADS)
Zhao, Yongtao; An, Cheng-Bang; Mao, Limi; Zhao, Jiaju; Tang, Lingyu; Zhou, Aifeng; Li, Hu; Dong, Weimiao; Duan, Futao; Chen, Fahu
2015-10-01
Marine Isotope Stage (MIS) 2 is mostly a cold period encompassing the Last Glacial Maximum (LGM), but the regional expression of MIS2 in arid areas of China is not well known. In this paper, we use high-resolution lacustrine pollen and grain-size records from Balikun Lake to infer vegetation, lake evolution, and climate in arid western China during MIS2. Our results suggest that: 1) the regional vegetation around Balikun was mainly dominated by desert and/or desert-steppe, and Balikun Lake was relatively shallow and experienced high aeolian input during MIS2; 2) distinctive runoff from mountain glacial meltwater in the eastern parts of the Balikun basin caused a high relative abundance of Artemisia pollen during the LGM (26.5-19.2 cal kyr BP), while simultaneously the desert areas expanded as indicated by the high abundance of desert shrubs (e.g., Elaeagnaceae, Rhamnaceae, Hippophae). This cold and dry LGM climate triggered a substantial lowering of lake level; 3) an extremely cold and dry climate prevailing from 17.0 to 15.2 cal kyr BP, correlated with Heinrich event 1 (H1), would explain the low vegetation cover found then; and 4) the warm and humid Bølling/Allerød interstadial (BA: ca. 15-ca. 13 cal kyr BP) is clearly recorded in the Balikun region by the development of wetland herb communities (e.g., Poaceae, Cyperaceae, Typha), and the lake level rose due to increased runoff. Our results challenge the traditional view of cold and wet climatic conditions and high lake levels in arid western China during the LGM, and we propose that changes in local temperature modulated by July insolation was an indispensable factor in triggering vegetation evolution in the Balikun region during MIS2.
NASA Astrophysics Data System (ADS)
Kirby, M.; Heusser, L. E.; Scholz, C. A.; Anderson, M.; Rhodes, E. J.; Hiner, C.; Palermo, J. A.; Silveira, E.
2016-12-01
Future climate change is expected to alter the planet's water cycle, thus stressing water resources and ecologic stability. This impact is predicted to be especially significant in arid environments. Unfortunately, continuous, sub-centennially resolved paleo-terrestrial records are rare from arid environments such as the coastal southwest US (cswUS). Lake Elsinore, a pull-apart basin located 90 km SE of Los Angeles CA, is the largest natural lake in the cswUS. Gravity studies indicate nearly 1000 m of sediments occupy the basin. A recent seismic reflection survey imaged the upper 60-80 m of sediment, revealing continuous sediment accumulation. Here, we present a decadal-to-multi-decadal lacustrine sediment core record used to assess the relationship between vegetation (i.e., pollen) and run-off variability (i.e., grain size) during the late Wisconsin (10-32 kyrs BP). In general, the late Wisconsin is characterized by run-off greater than during the Holocene, indicating more frequent winter storms and/or higher intensity precipitation. A notable dry period, however, exists between 25.5-27.5 kyrs BP (Heusser et al., 2015), where lake level regressed but did not desiccate. Modern lake-level - grain size relationships are used to assess paleo-lake levels during this glacial mega-drought. Peak run-off occurs between 14.7 and 19.8 kyrs BP, generally post-dating the global LGM. A two-step decrease in run-off characterize the B-A to YD to Holocene (Kirby et al., 2013). Vegetation shows a fairly strong coupling to the run-off indicator, signifying rapid ecologic responses to changes in regional hydroclimates. This run-off - vegetation coupling is especially relevant to understanding future vegetative responses in the CA Floristic Province Biodiversity Hotspot. Finally, results are compared to potential forcings such as winter-summer insolation, Pacific SSTs, and Atlantic Meridional Overturning Circulation as well as regional paleo-records.
NASA Astrophysics Data System (ADS)
Durand, M.; Mojtahid, M.; Maillet, G. M.; Proust, J.-N.; Lehay, D.; Ehrhold, A.; Barré, A.; Howa, H.
2016-12-01
We used sedimentological and foraminiferal characteristics of four sedimentary cores, supported by paleogeographical and historical data, to reconstruct the depositional history of the inner Loire estuary (Near Saint-Nazaire, France) and the response of benthic foraminifera to the mid- to late-Holocene marine flooding of the incised valley. These were further used to evaluate the consequent changes in estuarine morphological and hydro-sedimentary patterns during this time period. Our results described significant changes in hydro-sedimentary dynamics over the past 6 kyrs BP. At our location, these changes expressed the combined influence of marine (e.g., tide, storm waves) and fluvial dynamics (e.g., floods), which are linked, on a broader scale, to sea-level variations and the regional climate regime. Three main periods stand out: (1) from 6.0 to 2.5 kyrs BP, when the sea-level rise slowed down, a large brackish bay extended over and around the study area. The fine-grained tidal rythmites recorded north of the Bilho bank (the main tidal bar located in our study area) indicated a calm depositional environment, protected from the main riverine influence. The presence of thick flood deposits from 5.4 to 4.0 kyrs BP near the Bilho bank indicates further the dominance of humid conditions. (2) From 2.5 kyrs BP to 1850 CE (pre-industrial state), sea-level stabilized at its present value, and the pre-existing bay was progressively infilled. North of the Bilho bank, near a major mudflat (Méan), the generally homogenous sedimentation composed of silty muds rich in organic matter indicated a sheltered environment; the main water flow channel being located south of the Bilho bank. Within this overall homogenous sedimentation, foraminiferal assemblages described rather accurately the progressive infilling of the valley (indicated by a decrease in the proportions of outer estuarine species), accompanied with the channelization of the main entering marine currents (tide, storm waves) (indicated by an increase in the proportions of transported species from the adjacent upper continental shelf), and finally the buildup of the Méan mudflat and the stabilization of the environment to its present day configuration (indicated by the dominance of autochthonous inner estuarine species). (3) Since 1850 CE, the human impact progressively modified the general landscape of our study area with the construction of the Saint-Nazaire shipyard, the digging of the northern navigation channel and the polderization of the northern Bay. The southern channel was progressively abandoned by the main water flow in favor of the newly dug northern channel, causing the southern migration of the Bilho sandbank and the progressive filling of the southern channel.
NASA Astrophysics Data System (ADS)
Alberti, Tommaso; Lepreti, Fabio; Vecchio, Antonio; Carbone, Vincenzo
2017-04-01
The Earth's climate is an extremely unstable complex system consisting of nonlinear and still rather unknown interactions among atmosphere, land surface, ice and oceans. The system is mainly driven by solar irradiance, even if internal components as volcanic eruptions and human activities affect the atmospheric composition thus acting as a driver for climate changes. Since the extreme climate variability is the result of a set of phenomena operating from daily to multi-millennial timescales, with different correlation times, a study of the scaling properties of the system can evidence non-trivial persistent structures, internal or external physical processes. Recently, the scaling properties of the paleoclimate changes have been analyzed by distinguish between interglacial and glacial climates [Shao and Ditlevsen, 2016]. The results show that the last glacial record (20-120 kyr BP) presents some elements of multifractality, while the last interglacial period (0-10 kyr BP), say the Holocene period, seems to be characterized by a mono-fractal structure. This is associated to the absence of Dansgaard-Oeschger (DO) events in the interglacial climate that could be the cause for the absence of multifractality. This hypothesis is supported by the analysis of the period between 18 and 27 kyr BP, i.e. during the Last Glacial Period, in which a single DO event have been registred. Through the Empirical Mode Decomposition (EMD) we were able to detect a timescale separation within the Last Glacial Period (20-120 kyr BP) in two main components: a high-frequency component, related to the occurrence of DO events, and a low-frequency one, associated to the cooling/warming phase switch [Alberti et al., 2014]. Here, we investigate the scaling properties of the climate fluctuations within the Last Glacial Period, where abrupt climate changes, characterized by fast increase of temperature usually called Dansgaard-Oeschger (DO) events, have been particularly pronounced. By using the MultiFractal Detrended Fluctuation Analysis (MF-DFA), we show that a multifractal structure exists for both high- and low-frequency fluctuations in Northern and Southern hemispheres, with different scaling exponents, thus indicating a long-range persistence of the climatic variability within the whole Last Glacial Period. Our results evidence that both DO events and cooling/warming cycles must be considered as processes of the internal component of the Earth's climate, rather than processes related to external forcings. This study should be helpful for investigation of the internal origin of climate changes. References Shao, Z.G. and Ditlevsen, P.D., Nature Commun., 7, 10951, (2016). Alberti, T., Lepreti, F., Vecchio, A., Bevacqua, E., Capparelli, V. and Carbone, V., Clim. Past, 10, 1751 (2014).
NASA Astrophysics Data System (ADS)
Stoner, J. S.; Lund, S.; Channell, J. E.; Mix, A. C.; Davies, M. H.; Lamy, F.
2008-12-01
Sediments that accumulate at around 1-m/kyr or greater preserve a paleomagnetic record that, under favorable conditions, may record the original geomagnetic input with little smoothing. However, such great rates of accumulation come with a price as features of interest are often deeply buried and may only be adequately recovered using drilling technologies. Here we present a full-vector geomagnetic reconstruction for the last 70,000 yrs from ultrahigh resolution records obtained through ODP drilling (Leg 202) on the Chilean Margin. ODP Site 1233 (41.0 S, 74.26 W, water depth 838 m) provides a 135-mcd u-channel derived directional paleomagnetic secular variation (PSV) and relative paleointensity (RPI) records. The chronology is constrained by AMS radiocarbon dates and tuning of alkenone sea surface temperature to Antarctic ice core temperature records back to 70,000 years BP. To the north, ODP Sites 1234 (36.13 S, 73.40W, water depth 1015 m) and 1235 (36.9 S, 73.33 W, water depth 489 m) provide independently dated shipboard and developing u-channel paleomagnetic records that reproduce many of the geomagnetic features observed at Site 1233 including excursions and high amplitude PSV intervals, while providing additional radiocarbon and isotopic constraints for development of a regional master chronology. All three Sites have exceptionally high glacial sedimentation rates that average 2-m/kyr for 1233, 80-cm/kyr for 1234 and 1-m/kyr for 1235. Fortuitously, the Laschamp magnetic excursion at Site 1233 occurs during an interval where sedimentation rates exceed 3-m/kyr. The Site 1233 chronology indicates that the Laschamp event, centered at 41,000 yrs BP, has a duration in reverse polarity of only 600 yrs, with polarity transitions occurring in less than 200 yrs within a 1500 yr long interval of low RPI. The path of virtual geomagnetic pole (VGP) positions for the Laschamp excursion at Site 1233 is generally consistent with the hypothesis of a simple field geometry because the large clockwise VGP loop mimics the path seen for other sites recording the same excursion. Unlike prior observations, this path begins and ends at approximately the same Alaskan location after making a complete loop through the Pacific to high (> 80 degrees) southerly latitudes. Insights into the dynamics PSV and RPI, the resolution of magnetic stratigraphies, the geomagnetic controls on cosmic ray shielding and whether these might affect climate will also be touched upon.
Growth of plants on the Late Weichselian ice-sheet during Greenland interstadial-1?
NASA Astrophysics Data System (ADS)
Zale, R.; Huang, Y.-T.; Bigler, C.; Wood, J. R.; Dalén, L.; Wang, X.-R.; Segerström, U.; Klaminder, J.
2018-04-01
Unglaciated forelands and summits protruding from ice-sheets are commonly portrayed as areas where plants first establish at the end of glacial cycles. But is this prevailing view of ice-free refugia too simplistic? Here, we present findings suggesting that surface debris supported plant communities far beyond the rim of the Late Weichselian Ice-sheet during Greenland interstadial 1 (GI-1 or Bølling-Allerød interstadial). We base our interpretations upon findings from terrigenous sediments largely resembling 'plant-trash' deposits in North America (known to form as vegetation established on stagnant ice became buried along with glacial debris during the deglaciation). In our studied deposit, we found macrofossils (N = 10) overlapping with the deglaciation period of the area (9.5-10 cal kyr BP) as well as samples (N = 2) with ages ranging between 12.9 and 13.3 cal kyr BP. The latter ages indicate growth of at least graminoids during the GI-1 interstadial when the site was near the geographic center of the degrading ice-sheet. We suggest that exposure of englacial material during GI-1 created patches of supraglacial debris capable of supporting vascular plants three millennia before deglaciation. The composition and resilience of this early plant community remain uncertain. Yet, the younger group of macrofossils, in combination with pollen and ancient DNA analyses of inclusions, imply that shrubs (Salix sp., Betula sp. and Ericaceae sp) and even tree species (Larix) were present in the debris during the final deglaciation stage.
Observation of 23 supernovae that exploded <300 pc from Earth during the past 300 kyr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, R. B., E-mail: rbfirestone@lbl.gov
2014-07-01
Four supernovae (SNe), exploding ≤300 pc from Earth, were recorded 44, 37, 32, and 22 kyr ago in the radiocarbon ({sup 14}C) record during the past 50 kyr. Each SN left a nearly identical signature in the record, beginning with an initial sudden increase in atmospheric radiocarbon, when the SN exploded, followed by a hiatus of 1500 yr, and concluding with a sustained 2000 yr increase in global radiocarbon due to γ-rays produced by diffusive shock in the SN remnant (SNR). For the past 18 kyr excess radiocarbon has decayed with the {sup 14}C half-life. SN22kyrBP, is identified as themore » Vela SN that exploded 250 ± 30 pc from Earth. These SN are confirmed in the {sup 10}Be, {sup 26}Al, {sup 36}Cl, and NO{sub 3}{sup −} geologic records. The rate of near-Earth SNe is consistent with the observed rate of historical SNe giving a galactic rate of 14 ± 3 kyr{sup –1} assuming the Chandra Galactic Catalog SNR distribution. The Earth has been used as a calorimeter to determine that ≈2 × 10{sup 49} erg were released as γ-rays at the time of each SN explosion and ≈10{sup 50} erg in γ-rays following each SN. The background rate of {sup 14}C production by cosmic rays has been determined as 1.61 atoms cm{sup –2} s{sup –1}. Approximately 1/3 of the cosmic ray energy produced by diffusive shock in the SNR was observed to be emitted as high-energy γ-rays. Analysis of the {sup 10}Be/{sup 9}Be ratio in marine sediment identified 19 additional near-Earth SNe that exploded 50-300 kyr ago. Comparison of the radiocarbon record with global temperature variations indicated that each SN explosion is correlated with a concurrent global warming of ≈3°C-4°C.« less
Reconstructing lake ice cover in subarctic lakes using a diatom-based inference model
NASA Astrophysics Data System (ADS)
Weckström, Jan; Hanhijärvi, Sami; Forsström, Laura; Kuusisto, Esko; Korhola, Atte
2014-03-01
A new quantitative diatom-based lake ice cover inference model was developed to reconstruct past ice cover histories and applied to four subarctic lakes. The used ice cover model is based on a calculated melting degree day value of +130 and a freezing degree day value of -30 for each lake. The reconstructed Holocene ice cover duration histories show similar trends to the independently reconstructed regional air temperature history. The ice cover duration was around 7 days shorter than the average ice cover duration during the warmer early Holocene (approximately 10 to 6.5 calibrated kyr B.P.) and around 3-5 days longer during the cool Little Ice Age (approximately 500 to 100 calibrated yr B.P.). Although the recent climate warming is represented by only 2-3 samples in the sediment series, these show a rising trend in the prolonged ice-free periods of up to 2 days. Diatom-based ice cover inference models can provide a powerful tool to reconstruct past ice cover histories in remote and sensitive areas where no measured data are available.
NASA Astrophysics Data System (ADS)
Fisler, J. A.; Hendy, I.
2005-12-01
The contribution of D. Kennett and J.P. Kennett to recent literature on native Chumash cultural evolution has linked societal changes between 500 and 1300 A.D. with a rapidly-changing environment. As large-amplitude fluctuations in surface water and climate conditions at the California Margin would have had severe implications for local flora and fauna, high resolution paleooceanographic records from ODP Site 893 should record these environmental changes. The planktonic foraminifera of Santa Barbara Basin are known to be sensitive to climate change over glacial/interglacial and stadial/interstadial time scales. Here we present a Holocene record of planktonic foraminiferal assemblage change that demonstrates this sensitivity continued through what is generally considered to be a warm stable climatic interval. Absolute numbers of planktonic foraminifera specimens decreased through the Holocene, from a peak of over 30,000 specimens/cm3 at 9 kyr BP to several thousand in the last millennia. Eurythermal, high nutrient species G. bulloides and G. quinqueloba show opposite abundance trends throughout deglaciation, with significant decreases in G. bulloides abundance during the Late Holocene while G. quinqueloba increases in abundance. Significant assemblage shifts occurring at 2 kyr BP are particularly pronounced in N. pachyderma dextral/sinistral ratios. Large fluctuations in the dextral/sinistral ratio occur during this interval, varying between 50 and 95%. The most recent decrease in the ratio occurs 800 yrs BP before returning to modern values at 500 yr BP. Assemblage data suggest more dramatic environmental change than indicated by planktonic oxygen isotope records. While N. pachyderma dextral/sinistral ratios generally follow oxygen isotopes throughout the Holocene, the records decouple at 2 kyr BP when the first substantial decrease in the ratio occurs. Salinity may, in part, explain this observation. ODP Site 893 is located at the confluence of the cool, relatively fresh California Current and the warm, saline Davidson Current. As sinistral N. pachyderma are not found in the modern Santa Barbara Basin assemblage, dextral/sinistral ratio decreases of up to 50% suggests that sea surface temperatures were much cooler during the intervals 1800 to 1300 and 800 to 200 years ago. We suggest during these intervals the California Current dominated surface water masses in the basin. These results are consistent with work of Kennett and colleagues, who proposed that rapid cultural evolution of the native Chumash during the medieval period (500-1300 A.D.) was a response to an anomalously cool, dry, and variable climate.
The Plio-Pleistocene climatic evolution as a consequence of orbital forcing on the carbon cycle
NASA Astrophysics Data System (ADS)
Paillard, Didier
2017-09-01
Since the discovery of ice ages in the 19th century, a central question of climate science has been to understand the respective role of the astronomical forcing and of greenhouse gases, in particular changes in the atmospheric concentration of carbon dioxide. Glacial-interglacial cycles have been shown to be paced by the astronomy with a dominant periodicity of 100 ka over the last million years, and a periodicity of 41 ka between roughly 1 and 3 million years before present (Myr BP). But the role and dynamics of the carbon cycle over the last 4 million years remain poorly understood. In particular, the transition into the Pleistocene about 2.8 Myr BP or the transition towards larger glaciations about 0.8 Myr BP (sometimes referred to as the mid-Pleistocene transition, or MPT) are not easily explained as direct consequences of the astronomical forcing. Some recent atmospheric CO2 reconstructions suggest slightly higher pCO2 levels before 1 Myr BP and a slow decrease over the last few million years (Bartoli et al., 2011; Seki et al., 2010). But the dynamics and the climatic role of the carbon cycle during the Plio-Pleistocene period remain unclear. Interestingly, the δ13C marine records provide some critical information on the evolution of sources and sinks of carbon. In particular, a clear 400 kyr oscillation has been found at many different time periods and appears to be a robust feature of the carbon cycle throughout at least the last 100 Myr (e.g. Paillard and Donnadieu, 2014). This oscillation is also visible over the last 4 Myr but its relationship with the eccentricity appears less obvious, with the occurrence of longer cycles at the end of the record, and a periodicity which therefore appears shifted towards 500 kyr (see Wang et al., 2004). In the following we present a simple dynamical model that provides an explanation for these carbon cycle variations, and how they relate to the climatic evolution over the last 4 Myr. It also gives an explanation for the lowest pCO2 values observed in the Antarctic ice core around 600-700 kyr BP. More generally, the model predicts a two-step decrease in pCO2 levels associated with the 2.4 Myr modulation of the eccentricity forcing. These two steps occur respectively at the Plio-Pleistocene transition and at the MPT, which strongly suggests that these transitions are astronomically forced through the dynamics of the carbon cycle.
NASA Astrophysics Data System (ADS)
Lane, Timothy; Roberts, David; Rea, Brice; Cofaigh, Colm Ó.; Vieli, Andreas
2013-04-01
At the Last Glacial Maximum (LGM), the Uummannaq Ice Stream System comprised a series coalescent outlet glaciers which extended along the trough to the shelf edge, draining a large proportion of the West Greenland Ice Sheet. Geomorphological mapping, terrestrial cosmogenic nuclide (TCN) exposure dating, and radiocarbon dating constrain warm-based ice stream activity in the north of the system to 1400 m a.s.l. during the LGM. Intervening plateaux areas (~ 2000 m a.s.l.) either remained ice free, or were covered by cold-based icefields, preventing diffluent or confluent flow throughout the inner to outer fjord region. Beyond the fjords, a topographic sill north of Ubekendt Ejland prevented the majority of westward ice flow, forcing it south through Igdlorssuit Sund, and into the Uummannaq Trough. Here it coalesced with ice from the south, forming the trunk zone of the UISS. Deglaciation of the UISS began at 14.9 cal. ka BP, rapidly retreating through the overdeepened Uummannaq Trough. Once beyond Ubekendt Ejland, the northern UISS retreated northwards, separating from the south. Retreat continued, and ice reached the present fjord confines in northern Uummannaq by 11.6 kyr. Both geomorphological (termino-lateral moraines) and geochronological (14C and TCN) data provide evidence for an ice marginal stabilisation at within Karrat-Rink Fjord, at Karrat Island, from 11.6-6.9 kyr. The Karrat moraines appear similar in both fjord position and form to 'Fjord Stade' moraines identified throughout West Greenland. Though chronologies constraining moraine formation are overlapping (Fjord Stade moraines - 9.3-8.2 kyr, Karrat moraines - 11.6-6.9 kyr), these moraines have not been correlated. This ice margin stabilisation was able to persist during the Holocene Thermal Maximum (~7.2 - 5 kyr). It overrode climatic and oceanic forcings, remaining on Karrat Island throughout peaks of air temperature and relative sea-level, and during the influx of the warm West Greenland Current into the Uummannaq region. Based upon analysis of fjord bathymetry and width, this ice marginal stabilisation has been shown to have been caused by increases in topographic constriction at Karrat Island. The location of the marginal stillstand is coincident with a dramatic narrowing of fjord width and bed shallowing. These increases in local lateral resistance reduces the ice flux necessary to maintain a stable grounding line, leading to ice margin stabilisation. This acted to negate the effects of the Holocene Thermal Maximum. Following this stabilisation, retreat within Rink-Karrat Fjord continued, driven by calving into the overdeepened Rink Fjord. Rink Isbræ reached its present ice margin or beyond after 5 kyr, during the Neoglacial. In contrast, the southern UISS reached its present margin at 8.7 kyr and Jakobshavn Isbræ reached its margin by 7 kyr. This work therefore provides compelling evidence for topographically forced asynchronous, non-linear ice stream retreat between outlet glaciers in West Greenland. In addition, it has major implications for our understanding and reconstruction of mid-Holocene ice sheet extent, and ice sheet dynamics during the Holocene Thermal Maximum to Neoglacial switch.
NASA Astrophysics Data System (ADS)
Dixit, Y.; Toucanne, S.; Bonnin, L.; Fontanier, C.; Jouet, G.; Tripati, A. K.
2016-12-01
The Mediterranean as a model miniature ocean is an ideal study area for the links between climate change and anoxia. Organic rich-sapropelic deposits punctuate Quaternary sediments series in the basin. These deposits reveal the occurrence of anoxic conditions during times when the circulation of the Mediterranean ocean was deeply perturbed. The `'Nilotic paradigm' proposes anoxia was a direct result of massive inputs of fresh water from the Nile. It is also possible that these sapropels could occur in response to periods of intense rainfall and riverine discharge on the northern Mediterranean coast. To resolve the sequence of events linked to sapropel deposition in the western Mediterranean, we use a multi-proxy (oxygen and carbon isotopes, benthic foraminifera assemblage and trace element geochemistry of foraminifera calcite) approach to examine sediments from the Tyrhennian Sea off the eastern Corsica margin in order to reconstruct climate variability during the penultimate glacial termination, and we compare results to those for the last glacial period. Our preliminary results show increased abundance of epifaunal and deep infaunal benthic species during MIS 5e ( 122-125 kyr BP), accompanied by a rise in Mg/Ca-based sea surface temperature (SST) using G. bulloides. A sharp decline in SST at 135 kyr BP coincides with Heinrich Stadial 5 in the North Atlantic. We will compare the timing of Mg/Ca-based SST minima and reconstructed water d18O variations to Heinrich Stadials in the North Atlantic in order to infer the mechanisms responsible for cooling in the Tyrrhenian Sea. This analysis should shed light on the proposed atmospheric teleconnection causing cooling of western Mediterranean waters via intensification of the Northern Hemisphere high-latitude wind systems.
Radiocarbon constraints on fossil thinolite tufa formation in the Mono Basin, CA, USA
NASA Astrophysics Data System (ADS)
Leroy, S. L.; Zimmerman, S. R.; Hemming, S. R.; Stine, S.; Guilderson, T. P.
2009-12-01
Mono Lake is a terminal lake located at the western edge of the Great Basin, and is famous for its tufa towers. Thinolite, which is thought to be a CaCO3 pseudomorph of ikaite, is found around the Mono Basin in many fossil tufa towers, particularly at elevations above 2000 meters. The subaqueous parent mineral ikaite forms at low temperatures (< 6 °C) (Bischoff et al., 1993) and requires specific water chemistry. Previous radiocarbon dating of fossil tufa towers around the Mono Basin has yielded a rather small range of ages for the highest elevation towers, between 11.8 and 14.1 14C kyr BP (no corrections for reservoir effects have been made). A thinolite fan collected from outcrops in Mill Creek, just north of the current Mono Lake yielded an age of 10,690 ± 45 14C yr BP (12,750 ± 80 cal yr BP), consistent with a ca. 1000 year reservoir age and coincidence with thinolite crystals found in a core from the northwestern embayment of Mono Lake (Davis, 1999, QR), and thus correlating with the Younger Dryas cooling event as exhibited in the GISP2 δ18O record. While most of the thinolite textures are found at high elevations, we sampled a mound at 1955 meters (near the current shoreline, north of the lake and just east of Black Point) that has many concentric layers, some containing thinolite textures. Although tufa mounds can form very rapidly, the location at low elevation and the presence of at least 19 distinct layers led us to consider that this mound might represent a long term record of Mono Lake’s chemistry. The new data confirm that the mound formed over a long period within the last glacial cycle, with ages ranging beyond the current limits of measurement (>34 kyr) to as young as 15.5 14C kyr BP. In general there is a consistent stratigraphic trend of ages within the mound, but the thinolite ages are anomalously young and one thinolite sample shows a large age reversal. The best estimate of the age of the precipitation of this tufa mound is given by the non-thinolite textures. More work is needed to determine the best sampling and sample preparation strategies in order to get a reliable age model for this mound.
NASA Astrophysics Data System (ADS)
Weiss, T. L. C.; Linsley, B. K.
2017-12-01
The last several glacial-interglacial cycles provide the perfect laboratory for investigating sea level, ocean circulation, and regional climate variability during pronounced global climate transitions. During the most recent deglaciation, the paleo-evidence for the Younger Dryas cold event and preceding meltwater pulse 1A (MWP-1A) and subsequent possible meltwater pulse 1B (MWP-1B) suggests rapid climate variability, in sharp contrast to the gradual deglacial forcing. MWP-1A has been documented in several locations, but there remains a controversy about whether deglacial MWP-1B existed and how much sea level rose across the interval from 11,450 to 11,000 kyr B.P. Due to its location and unusual bathymetry, the Sulu Sea is uniquely situated to monitor western Pacific boundary current (WBC) variability and changes in the proportion of North Pacific vs. South Pacific water in the far western Pacific near the entrance to the Indonesian Throughflow (ITF). Though the Sulu Sea is a relatively deep basin (>4,000 m), it is isolated from the South China Sea to the North and Sulawesi Sea to the south by shallow sills no deeper than 570 m that limit deepwater ventilation to the basin. As a result, deep basin water below the thermocline is a constant 10° C, a direct function of the ventilating WBCs. Observing past changes in thermocline conditions in the Sulu Sea should provide insight into WBC variability in addition to climate and circulation driven temperature and salinity variability in the South China and Sulawesi Seas. We will present δ18O evidence from the thermocline dwelling planktonic foraminifera Globorotalia tumida extracted from sediment core MD972141 in the Sulu Sea that the thermocline rapidly warmed and/or freshened near the time of MWP-1B. Our new G. tumida δ18O data indicates a 50% larger decrease in δ18O in the thermocline than observed in the surface dwelling Globigerinoides ruber. The Sulu Sea G. tumida δ18O results also indicate relatively cool and salty thermocline conditions from 10,000 kyr BP to 8,400 kyr BP. We will also present new G. tumida and benthic foraminifera Oridorsalis umbonatus δ18O and δ13C results from core MD972141 spanning the last 150 kyr and compare these records to existing G. ruber data from the same core with a focus on comparing Pacific WBC variability across Terminations I and II.
Deglaciation in the High Andes - a Record from Laguna Piuray (Cusco, Peru)
NASA Astrophysics Data System (ADS)
Nederbragt, A.; Thurow, J.; Brumsack, H.; Lowe, J.; Pearce, R.; Ramsey, C.
2007-12-01
The Peruvian Andes lie in a crucial location for paleoclimate investigation. Fluctuating Pacific and Atlantic air masses compete for long-term dominance of the region, with the El-Nino Southern Oscillation (ENSO) system causing further variability. A laminated glacial/interglacial sediment sequence (6m) exposed around the shores of Laguna Piuray, near Cusco, offers not only the potential to reconstruct the climate history of the area but also to test for strength and frequency of the Atlantic monsoonal and Pacific ENSO influence. A suite of continuous cores was collected from deep trenches. The sedimentary record is characterized by postglacial diatom-rich chalk overlying organic-rich clayey chalk. Between these units are 3 distinct organic layers (80% TOC) deposited between 12-14 cal. kyr BP (14C). The base of the record is probably as old as 25kyrs (U/Th). We obtained a multi- proxy record of the section including continuous XRF scanning data of the entire sequence, and stable isotopes, XRF, XRD, TOC, biogenic opal, and carbonate analysis of discrete samples as well as a relative paleotemperature record from analyses of soil biomarkers. All the data profiles we obtained show a pronounced increase in temperature and decrease in precipitation at 13.8kyrs and are in good correlation with published regional Andean records using single proxies. Our results confirm that the Deglaciation Cold Reversal in central South America is not identical to the Younger Dryas event in the Northern Hemisphere.
Benson, L.; Madole, R.; Phillips, W.; Landis, G.; Thomas, T.; Kubik, P.
2004-01-01
Eight uncorrected 36Cl ages for Pinedale boulders in north-central Colorado fall in the range 16.5 to 20.9 kyr. 10Be age determinations on four of five boulders are in close agreement (???6% difference) with 36Cl determinations. Hypothetical corrections for snow shielding increased the 36Cl ages of Pinedale boulder surfaces by an average of ???12%. Most ages for pre-Pinedale (Bull Lake) boulders fall within marine-isotope stage (MIS) 5, a time when continental and Sierran ice accumulations were small or nonexistent. Under the assumption that these boulders were deposited on moraines that formed before the end of MIS 6 (???140 kyr BP), calculations indicated that rock-surface erosion rates would have had to range from 5.9 to 10.7 mm kyr-1 to produce the observed 36Cl values. When compared to rates that have been documented for the past 20 kyr, these erosion rates are extremely high. Snow shielding accounts for 0-48% of the additional years needed to shift pre-Pinedale dates to MIS 6. This suggests that some combination of snow shielding, sediment shielding, or 36Cl leakage has greatly decreased the apparent ages of most pre-Pinedale boulders. Inability to account for the effects of these processes seriously hinders the use of cosmogenic ages of pre-Pinedale boulders as estimators of the timing of alpine glaciation.
Montoya, Encarni; Keen, Hayley F.; Luzuriaga, Carmen X.; Gosling, William D.
2018-01-01
Tropical ecosystems play a key role in many aspects of Earth system dynamics currently of global concern, including carbon sequestration and biodiversity. To accurately understand complex tropical systems it is necessary to parameterise key ecological aspects, such as rates of change (RoC), species turnover, dynamism, resilience, or stability. To obtain a long-term (>50 years) perspective on these ecological aspects we must turn to the fossil record. However, compared to temperate zones, collecting continuous sedimentary archives in the lowland tropics is often difficult due to the active landscape processes, with potentially frequent volcanic, tectonic, and/or fluvial events confounding sediment deposition, preservation, and recovery. Consequently, the nature, and drivers, of vegetation dynamics during the last glacial are barely known from many non-montane tropical landscapes. One of the first lowland Amazonian locations from which palaeoecological data were obtained was an outcrop near Mera (Ecuador). Mera was discovered, and analysed, by Paul Colinvaux in the 1980s, but his interpretation of the data as indicative of a forested glacial period were criticised based on the ecology and age control. Here we present new palaeoecological data from a lake located less than 10 km away from Mera. Sediment cores raised from Laguna Pindo (1250 masl; 1°27′S, 78°05′W) have been shown to span the late last glacial period [50–13 cal kyr BP (calibrated kiloyears before present)]. The palaeoecological information obtained from Laguna Pindo indicate that the region was characterised by a relatively stable plant community, formed by taxa nowadays common at both mid and high elevations. Miconia was the dominant taxon until around 30 cal kyr BP, when it was replaced by Hedyosmum, Asteraceae and Ilex among other taxa. Heat intolerant taxa including Podocarpus, Alnus, and Myrica peaked around the onset of the Last Glacial Maximum (c. 21 cal kyr BP). The results obtained from Laguna Pindo support Colinvaux’s hypothesis that glacial cooling resulted in a reshuffling of taxa in the region but did not lead to a loss of the forest structure. Wide tolerances of the plant species occurring to glacial temperature range and cloud formation have been suggested to explain Pindo forest stability. This scenario is radically different than the present situation, so vulnerability of the tropical pre-montane forest is highlighted to be increased in the next decades. PMID:29515609
Charcoal Reflectance Reveals Early Holocene Boreal Deciduous Forests Burned at High Intensities
Hudspith, Victoria A.; Belcher, Claire M.; Kelly, Ryan; Hu, Feng Sheng
2015-01-01
Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ∼10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks. PMID:25853712
Charcoal reflectance reveals early holocene boreal deciduous forests burned at high intensities.
Hudspith, Victoria A; Belcher, Claire M; Kelly, Ryan; Hu, Feng Sheng
2015-01-01
Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks.
Terrestrial biosphere changes over the last 120 kyr and their impact on ocean δ 13C
NASA Astrophysics Data System (ADS)
Hoogakker, B. A. A.; Smith, R. S.; Singarayer, J. S.; Marchant, R.; Prentice, I. C.; Allen, J. R. M.; Anderson, R. S.; Bhagwat, S. A.; Behling, H.; Borisova, O.; Bush, M.; Correa-Metrio, A.; de Vernal, A.; Finch, J. M.; Fréchette, B.; Lozano-Garcia, S.; Gosling, W. D.; Granoszewski, W.; Grimm, E. C.; Grüger, E.; Hanselman, J.; Harrison, S. P.; Hill, T. R.; Huntley, B.; Jiménez-Moreno, G.; Kershaw, P.; Ledru, M.-P.; Magri, D.; McKenzie, M.; Müller, U.; Nakagawa, T.; Novenko, E.; Penny, D.; Sadori, L.; Scott, L.; Stevenson, J.; Valdes, P. J.; Vandergoes, M.; Velichko, A.; Whitlock, C.; Tzedakis, C.
2015-03-01
A new global synthesis and biomization of long (>40 kyr) pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial-interglacial cycle. Global modelled (BIOME4) biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP). NPP is strongly influenced by atmospheric carbon dioxide (CO2) concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model) soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210-470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330-960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 ka BP, and between 60 and 65 ka BP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ13C) of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ13C based on modelled land carbon storage, and palaeo-archives of ocean δ13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ13C changes.
NASA Technical Reports Server (NTRS)
Ivins, E.; Raymond, C.; James, T.
1999-01-01
Much of the late-Quaternary ice sheet history in the northern hemisphere is now relatively well-constrained, with the total contributions to eustatic sea level change from North America and Eurasia estimated at roughly 60 (+-12) and 20 (+-7) m, respectively, and with deglaciation bracketed at 22 to 8.5 kyr BP.
NASA Astrophysics Data System (ADS)
Langone, Leonardo; Asioli, Alessandra; Tateo, Fabio; Giglio, Federico; Ridente, Domenico; Summa, Vito; Carraro, Anna; Luigia Giannossi, Maria; Piva, Andrea; Trincardi, Fabio
2010-05-01
The Antarctic area produces bottom waters that ventilate the vast majority of the deep basins in the rest of the world ocean. The rate of formation in the source area and the strength of these cold bottom waters are key factors affecting the Global Thermohaline Circulation during modern and past climate conditions. The western Ross Sea is considered a formation site for a particularly salty variety of AABW as well as an important area of off-shelf transfer of water as plumes entraining in Lower CDW and as rapid downhill cascades. The results here presented were obtained within the frame of the PNRA project 4.8. Among the goals of the project, the main is to detect a qualitative signal of possible changes in the rate of bottom water production during the Late Pleistocene-Holocene by integrating data on foraminifera assemblages with sediment geochemistry (bulk mineralogy, Total Organic Carbon, biogenic silica, C and N stable isotopes) and IRD. A gravity core was collected at 2377m water depth off Drygalski Basin on the slope adjacent the western continental shelf of the Ross Sea, along the pathway of bottom water spreading. The chronology is based on the best fitting of twelve control points selected among twenty-two 14C AMS datings performed on the bulk organic carbon and 210Pb excess data. The trend of the parameters allows the following observations: 1) two main intervals (15-10 and 7.5-6 cab kyr BP) mark a subsequent enhanced nutrient supply. Indeed, δ15N variations depend on the utilization degree of nitrates, in turn reflecting productivity/nutrient supply changes. The concurrent increase of OC and biogenic silica suggests an increase of the nutrient availability. As the Upper CDW is a water mass rich in nutrients we interpret these intervals as characterized by a higher efficiency in the Upper CDW upwelling; 2) around 7.5-7kyr BP (part of the Middle Holocene Climatic Optimum) the IRD content drops, suggesting the reduction of iceberg production or a change of the iceberg path. Within this general context, an oscillatory trend is present from 15 kyr BP to present time. Two hypotheses are proposed: a) minima in foraminifera concentrations reflect relatively stronger dissolution, weaker bottom currents (minima in dry density) and lower nutrient supply (lighter values of δ15N). These intervals may reflect a lower rate of bottom water formation; the intervals corresponding to maxima in foraminifers concentration should indicate better preservation, higher benthic productivity and/or better oxygenation at bottom, stronger bottom currents (maxima in dry density) and relatively higher nutrient supply reflecting a relatively higher rate of bottom water formation. b) alternatively, minima in foraminifers, corresponding to minima in %OC and to reversal of 14C (relative increase of older carbon), reflect dilution in the sediment because of rapid accumulation of fine sediment re-suspended at the shelf edge by the cascading currents. Therefore, the minima represent higher rate of bottom water formation. The comparison of the D/H ratio in ice-cores from the Ross Sea sector with the core AS05-10 record indicates that the foraminifers minima always correspond to colder condition. This scenario also correlates to the record reported in literature on the slope off Wilkes-Adelie Land. At last, a condensed/hiatus interval at ca. 3.5-4 kyr BP does not seems to mark a major change in the general pattern of our variables, apart from biogenic silica and sheets silicates showing an increase of the oscillation amplitude. Nevertheless, this feature is coeval to the base of the Neoglacial and it is time-equivalent to the beginning of major changes in the Antarctic environment.
Variable uplift rate through time: Holocene coral reef and neotectonics of Lutao, eastern Taiwan
NASA Astrophysics Data System (ADS)
Shen, Chuan-Chou; Wu, Chung-Che; Dai, Chang-Feng; Gong, Shou-Yeh
2018-05-01
Significant discrepancies have existed regarding rate and timing of the uplift of Lutao (Green Island), located at the border of the ongoing collision between the Eurasia continental plate and the Philippine Sea Plate. To document its neotectonic history, two cores were drilled into Holocene coral reefs exposed at the southeastern coast of Lutao. Twelve pristine fossil corals, nine taken from cores and three on the surface, were 230Th dated. The results show that the coral reefs started to develop at 8,736 ± 56 yr BP (before 1950 CE) with uplift rate varying from 3.6 mm/yr during 8.7-6.0 kyr BP to 1.2 mm/yr in the past six thousand years. Our study strongly suggests that the uplift rate can vary significantly on millennial time scale. Caution should be used when extrapolating uplift rate estimates based on Mid-late Holocene corals to early times for tectonic active locations, such as Lutao.
Historical Isotopic Temperature Record from the Vostok Ice Core (420,000 years BP-present)
Petit, J. R. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Raynaud, D. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Lorius, C. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Jouzel, J. [Laboratoire des Sciences du Climat et de l'Environnement; Delaygue, G. [Laboratoire des Sciences du Climat et de l'Environnement; Barkov, N. I. [Arctic and Antarctic Research Inst. (AARI), St. Petersburg (Russian Federation); Kotlyakov, V. M. [Institute of Geography, Russia
2000-01-01
Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (D) in snowfall are temperature-dependent and a strong spatial correlation exists between the annual mean temperature and the mean isotopic ratio (18O or δD) of precipitation, it is possible to derive ice-core climate records. The record presented by Jouzel et al. (1987) was the first ice core record to span a full glacial-interglacial cycle. That record was based on an ice core drilled at the Russian Vostok station in central east Antarctica. The 2083-m ice core was obtained during a series of drillings in the early 1970s and 1980s and was the result of collaboration between French and former-Soviet scientists. Drilling continued at Vostok and was completed in January 1998, reaching a depth of 3623 m, the deepest ice core ever recovered (Petit et al. 1997, 1999). The resulting core allows the ice core record of climate properties at Vostok to be extended to ~420 kyr BP.
Carbon starvation in glacial trees recovered from the La Brea tar pits, southern California
Joy K. Ward; John M. Harris; Thure E. Cerling; Alex Wiedenhoeft; Michael J. Lott; Maria-Denise Dearing; Joan B. Coltrain; James R. Ehleringer
2005-01-01
The Rancho La Brea tar pit fossil collection includes Juniperus (C3) wood specimens that 14C date between 7.7 and 55 thousand years (kyr) B.P., providing a constrained record of plant response for southern California during the last glacial period. Atmospheric CO2 concentration ([CO2]) ranged between 180 and 220 ppm during glacial periods, rose to 280 ppm before the...
New evidence of Hawaiian coral reef drowning in response to meltwater pulse-1A
NASA Astrophysics Data System (ADS)
Sanborn, Kelsey L.; Webster, Jody M.; Yokoyama, Yusuke; Dutton, Andrea; Braga, Juan C.; Clague, David A.; Paduan, Jennifer B.; Wagner, Daniel; Rooney, John J.; Hansen, John R.
2017-11-01
Fossil coral reefs are valuable recorders of glacio-eustatic sea-level changes, as they provide key temporal information on deglacial meltwater pulses (MWPs). The timing, rate, magnitude, and meltwater source of these sea-level episodes remain controversial, despite their importance for understanding ocean-ice sheet dynamics during periods of abrupt climatic change. This study revisits the west coast of the Big Island of Hawaii to investigate the timing of the -150 m H1d terrace drowning off Kawaihae in response to MWP-1A. We present eight new calibrated 14C-AMS ages, which constrain the timing of terrace drowning to at or after 14.75 + 0.33/-0.42 kyr BP, coeval with the age of reef drowning at Kealakekua Bay (U-Th age 14.72 ± 0.10 kyr BP), 70 kms south along the west coast. Integrating the chronology with high-resolution bathymetry and backscatter data, detailed sedimentological analysis, and paleoenvironmental interpretation, we conclude the H1d terrace drowned at the same time along the west coast of Hawaii in response to MWP-1A. The timing of H1d reef drowning is within the reported uncertainty of the timing of MWP-1A interpreted from the IODP Expedition 310 Tahitian reef record.
An East Siberian ice shelf during the Late Pleistocene glaciations: Numerical reconstructions
NASA Astrophysics Data System (ADS)
Colleoni, Florence; Kirchner, Nina; Niessen, Frank; Quiquet, Aurélien; Liakka, Johan
2016-09-01
A recent data campaign in the East Siberian Sea has revealed evidence of grounded and floating ice dynamics in regions of up to 1000 m water depth, and which are attributed to glaciations older than the Last Glacial Maximum (21 kyrs BP). The main hypothesis based on this evidence is that a small ice cap developed over Beringia and expanded over the East Siberian continental margin during some of the Late Pleistocene glaciations. Other similar evidence of ice dynamics that have been previously collected on the shallow continental shelves of the Arctic Ocean have been attributed to the penultimate glaciation, i.e. Marine Isotopes Stage 6 (≈140 kyrs BP). We use an ice sheet model, forced by two previously simulated MIS 6 glacial maximum climates, to carry out a series of sensitivity experiments testing the impact of dynamics and mass-balance related parameters on the geometry of the East Siberian ice cap and ice shelf. Results show that the ice cap developing over Beringia connects to the Eurasian ice sheet in all simulations and that its volume ranges between 6 and 14 m SLE, depending on the climate forcing. This ice cap generates an ice shelf of dimensions comparable with or larger than the present-day Ross ice shelf in West Antarctica. Although the ice shelf extent strongly depends on the ice flux through the grounding line, it is particularly sensitive to the choice of the calving and basal melting parameters. Finally, inhibiting a merging of the Beringia ice cap with the Eurasian ice sheet affects the expansion of the ice shelf only in the simulations where the ice cap fluxes are not large enough to compensate for the fluxes coming from the Eurasian ice sheet.
NASA Astrophysics Data System (ADS)
Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Di Nezio, P. N.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Rifai, H.
2016-12-01
Southwest Sulawesi lies within the Indo-Pacific Warm Pool (IPWP), at the center of atmospheric convection for two of the largest circulation cells on the planet, the meridional Hadley Cell and zonal Indo-Pacific Walker Circulation. Due to the geographic coincidence of these circulation cells, southwest Sulawesi serves as a hotspot for changes in tropical Pacific climate variability and Australian-Indonesian summer monsoon (AISM) strength over glacial-interglacial (G-I) timescales. The work presented here spans 386 - 127 ky BP, including glacial terminations IV ( 340 ky BP) and both phases of TIII (TIII 248 ky BP and TIIIa 217 ky BP). This record, along with previous work from southwest Sulawesi spanning the last 40 kyr, reveals coherent climatic features over three complete G-I cycles. The multi-stalagmite Sulawesi speleothem δ18O record demonstrates that on G-I timescales, the strength of the AISM is most sensitive to changes in sea level and its impact on the regional distribution of land and shallow ocean. Stalagmite δ18O and trace element (Mg/Ca) data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. TIV, TIII, TIIIa, and TI are each characterized by an abrupt 3‰ decrease in δ18O that coincides with sea level rise and flooding of the Sunda and Sahul shelves. Strong evidence for a sea level (flooding/exposure) threshold is found throughout the southwest Sulawesi record. This is most clearly demonstrated over the period 230 - 212 ky BP (MIS 7d-7c), when a sea level fall to only -80 to -60 m for 10 kyr results in a weakened AISM and glacial conditions, followed by a full termination. Taken together, both glaciations and glacial terminations imply a sea level threshold driving the AISM between two primary levels of intensity (`interglacial' & `glacial'). These massive, sea-level driven shifts in AISM strength are superimposed on precession-scale variability associated with boreal fall insolation at the equator, indicating sensitivity to tropical Pacific influence on warm pool convection.
NASA Astrophysics Data System (ADS)
Abarzua, Ana M.; Jarpa, Leonora; Martel, Alejandra; Vega, Rodrigo; Pino, Mario
2010-05-01
Multiproxy approach from Purén Lumaco Valley (38°S) describes the paleonvironmental history during the Last Maximum Glacial (LGM) in south-central Chile. Three sediment cores and severals AMS 14C dates were used to perform a complete pollen, diatoms, chironomids, and sedimentological records demonstrating the existence of a large and non profundal paleolake, between 25 and 20kyr BP. Some of these evidence are laminated silty-clay sediments (lacustrine rhythmites), associated with the presence of siderite mineral (FeCO3), besides biological proxies like Fragilaria construens and Stauroforma inermes (planctonic diatoms), and Dicrotendipes sp. and Tanytarsini tribe (littoral chironomids). The pollen ensemble reveals the first glacial refuge of Araucaria araucana forests in the low lands during the LGM. The lake was drained abruptly into a swamp/bog at 12kyr BP and colonized by Myrtaceae wet forest. This evidence suggest the dry/warm climate period of early Holocene in south-central Chile. Later, the sediments indicate variable lacustrine levels, and increase of charcoal particles, associated to current climatic conditions. The pollen spectrum dominated by Myrtaceae and Nothofagus contrasts with a strongly disturb current landscape. Actually, Purén-Lumaco valley constitutes a complex peat-bog system dominated by exotic grasses and forest species (Tritricum aestivum, Pinus radiata and Eucalyptus spp.). Some archaeological antecedents in the area document the human development at ca. 7yrs BP. The greatest archaeological characteristic present in the valley is the kuel, a Mapuche earth accumulation. The presence and extension of almost 300 kuel in the valley reflect the social/economic development, and partly explains why the region was the major resistance area for Spanish colonizer during XVI-XVII centuries. Also the archaeological findings reveal the presence of maize pollen (Zea mays) within their food consumption. The influence of climate and human impact in Holocene environments provide a better basis for understanding and managing the present landscape in Araucanian Region. Almost the absence of native forests in the area makes urgent strategies for the recovery and rehabilitation of a relict ecosystem that today represents their regional analog only in the tops of the Chilean Coastal Range. Acknowledgments: Universidad Austral de Chile (DID 2007-08, FORECOS P04-065-F), BSN-34567-04.
NASA Astrophysics Data System (ADS)
Aarons, Sarah M.; Aciego, Sarah M.; Arendt, Carli A.; Blakowski, Molly A.; Steigmeyer, August; Gabrielli, Paolo; Sierra-Hernández, M. Roxana; Beaudon, Emilie; Delmonte, Barbara; Baccolo, Giovanni; May, Nathaniel W.; Pratt, Kerri A.
2017-04-01
Mineral dust is transported in the atmosphere and deposited in oceans, ice sheets and the terrestrial biosphere. Temporal changes in locations of dust source areas and transport pathways have implications for global climate and biogeochemical cycles. The chemical and physical characterization of the dust record preserved in ice cores is useful for identifying of dust source regions, dust transport, dominant wind direction and storm trajectories. Here, we present a 50,000-year geochemical characterization of mineral dust entrapped in a horizontal ice core from the Taylor Glacier in East Antarctica. Strontium (Sr) and neodymium (Nd) isotopes, grain size distribution, trace and rare earth element (REE) concentrations, and inorganic ion (Cl- and Na+) concentrations were measured in 38 samples, corresponding to a time interval from 46 kyr before present (BP) to present. The Sr and Nd isotope compositions of insoluble dust in the Taylor Glacier ice shows distinct changes between the Last Glacial Period (LGP in this study ranging from ∼46.7-15.3 kyr BP) the early Holocene (in this study ranging from ∼14.5-8.7 kyr BP), and zero-age samples. The 87Sr/86Sr isotopic composition of dust in the Taylor Glacier ice ranged from 0.708 to 0.711 during the LGP, while the variability during the early Holocene is higher ranging from 0.707 to 0.714. The εNd composition ranges from 0.1 to -3.9 during the LGP, and is more variable from 1.9 to -8.2 during the early Holocene. The increased isotopic variability during the early Holocene suggests a shift in dust provenance coinciding with the major climate transition from the LGP to the Holocene. The isotopic composition and multiple physical and chemical constraints support previous work attributing Southern South America (SSA) as the main dust source to East Antarctica during the LGP, and a combination of both local Ross Sea Sector dust sources and SSA after the transition into the Holocene. This study provides the first high time resolution data showing variations in dust provenance to East Antarctic ice during a major climate regime shift, and we provide evidence of changes in the atmospheric transport pathways of dust following the last deglaciation.
NASA Astrophysics Data System (ADS)
Kovacs, Shawn E.; Reinhardt, Eduard G.; Chatters, James C.; Rissolo, Dominique; Schwarcz, Henry P.; Collins, Shawn V.; Kim, Sang-Tae; Nava Blank, Alberto; Luna Erreguerena, Pilar
2017-11-01
Two cores from calcite rafts deposits located in Cenote Ich Balam and Hoyo Negro were dated and analyzed for 87Sr/86Sr, δ18O, δ13C, Sr/Ca and Cl/Ca. The geochemical records show changing aquifer salinity spanning the last ∼ 8.5 cal kyrs BP and interrelationships with Holocene climate trends (wet and dry periods). During the wet mid-Holocene, the salinity of the meteoric Water Mass (WM; at 7.8-8.3 cal kyrs BP) was relatively high at 1.5-2.7 ppt and then became less saline (1.0-1.5 ppt) during the last ∼ 7000 yrs as climate became progressively drier. High salinity of the meteoric WM during the wet mid-Holocene is attributed to increased turbulent mixing between the meteoric and underlying marine WM. Increased precipitation, in terms of amount, frequency, and intensity (e.g. hurricanes) causes higher flow of meteoric water towards the coast and mixing at the halocline, a phenomenon recorded with recent instrumental monitoring of the aquifer. Conversely, during dry periods reduced precipitation and flow in the meteoric WM would result in lower salinity. Karst properties and Holocene sea-level rise also seem to have an effect on the aquifer. When the regionally extensive network of shallow cave passages (∼ 10-12 m water depth) are flooded at ∼ 8000 cal yrs BP, there is a rapid shift in salinity. This study demonstrates that calcite raft deposits can be used as paleo-environmental recorders documenting the effects of sea level and climate change on aquifer condition.
Wainer, Ilana; Prado, Luciana Figueiredo; Khodri, Myriam; Otto-Bliesner, Bette
2014-01-01
Climate indices based on sea surface temperature (SST) can synthesize information related to physical processes that describe change and variability in continental precipitation from floods to droughts. The South Atlantic Subtropical Dipole index (SASD) is based on the distribution of SST in the South Atlantic and fits these criteria. It represents the dominant mode of variability of SST in the South Atlantic, which is modulated by changes in the position and intensity of the South Atlantic Subtropical High. Here we reconstructed an index of the South Atlantic Ocean SST (SASD-like) for the past twelve thousand years (the Holocene period) based on proxy-data. This has great scientific implications and important socio-economic ramifications because of its ability to infer variability of precipitation and moisture over South America where past climate data is limited. For the first time a reconstructed index based on proxy data on opposite sides of the SASD-like mode is able to capture, in the South Atlantic, the significant cold events in the Northern Hemisphere at 12.9−11.6 kyr BP and 8.6−8.0 ky BP. These events are related, using a transient model simulation, to precipitation changes over South America. PMID:24924600
Wainer, Ilana; Prado, Luciana Figueiredo; Khodri, Myriam; Otto-Bliesner, Bette
2014-06-13
Climate indices based on sea surface temperature (SST) can synthesize information related to physical processes that describe change and variability in continental precipitation from floods to droughts. The South Atlantic Subtropical Dipole index (SASD) is based on the distribution of SST in the South Atlantic and fits these criteria. It represents the dominant mode of variability of SST in the South Atlantic, which is modulated by changes in the position and intensity of the South Atlantic Subtropical High. Here we reconstructed an index of the South Atlantic Ocean SST (SASD-like) for the past twelve thousand years (the Holocene period) based on proxy-data. This has great scientific implications and important socio-economic ramifications because of its ability to infer variability of precipitation and moisture over South America where past climate data is limited. For the first time a reconstructed index based on proxy data on opposite sides of the SASD-like mode is able to capture, in the South Atlantic, the significant cold events in the Northern Hemisphere at 12.9-11.6 kyr BP and 8.6-8.0 ky BP. These events are related, using a transient model simulation, to precipitation changes over South America.
Daniau, Anne-Laure; d'Errico, Francesco; Sánchez Goñi, Maria Fernanda
2010-01-01
Background It has been proposed that a greater control and more extensive use of fire was one of the behavioral innovations that emerged in Africa among early Modern Humans, favouring their spread throughout the world and determining their eventual evolutionary success. We would expect, if extensive fire use for ecosystem management were a component of the modern human technical and cognitive package, as suggested for Australia, to find major disturbances in the natural biomass burning variability associated with the colonisation of Europe by Modern Humans. Methodology/Principal Findings Analyses of microcharcoal preserved in two deep-sea cores located off Iberia and France were used to reconstruct changes in biomass burning between 70 and 10 kyr cal BP. Results indicate that fire regime follows the Dansgaard-Oeschger climatic variability and its impacts on fuel load. No major disturbance in natural fire regime variability is observed at the time of the arrival of Modern Humans in Europe or during the remainder of the Upper Palaeolithic (40–10 kyr cal BP). Conclusions/Significance Results indicate that either Neanderthals and Modern humans did not influence fire regime or that, if they did, their respective influence was comparable at a regional scale, and not as pronounced as that observed in the biomass burning history of Southeast Asia. PMID:20161786
NASA Astrophysics Data System (ADS)
Noda, S.; Kodera, K.; Deushi, M.; Kitoh, A.; Mizuta, R.; Yoshida, K.; Murakami, S.; Adachi, Y.; Yoden, S.
2017-12-01
A series of numerical simulations of the Last Glacial Maximum (21 kyr B.P.) climate are performed by using an Earth System Model of the Meteorological Research Institute of the Japan Meteorological Agency to investigate the impact of stratospheric ozone profile on the surface climate with decreased CO2 condition and different orbital parameters. The contribution of the interactive ozone chemistry reveals a significant anomaly of +0.5 K (approximately 20 %) in the tropics and up to +1.5 K in high-latitudes for the annual mean zonal mean surface air temperature compared with those of the corresponding experiments with a prescribed ozone profile for preindustrial simulation of the fifth Coupled Model Intercomparison Project (CMIP5). In the tropics, this mitigation of global cooling is related to longwave radiative feedbacks associated with circulation-driven increases in lower stratospheric ozone and related increase in stratospheric water vapor and related decrease in cirrus cloud. The relations are opposite signs to and consistent with those of a global warming simulation. In high-latitudes, the polar amplification of mitigation of cooling associated with the change of sea ice area that is the same sign to and consistent with our previous paleoclimate simulation in the mid-Holocene (6 kyr B.P.). We recommend that climate models include sea ice and ozone profile that are consistent with CO2 concentration.
NASA Astrophysics Data System (ADS)
Avigliano, Roberto; di Anastasio, Giulio; Improta, Salvatore; Peresani, Marco; Ravazzi, Cesare
2000-12-01
A late glacial to early Holocene lacustrine and peat succession, rich in conifer remains and including some palaeolithic flint artefacts, has been investigated in the Palughetto intermorainic basin (Venetian Pre-Alps). The geomorphological and stratigraphical relationships, 14C dates and pollen analyses allow a reconstruction of the environmental history of the basin and provide significant insights into the reforestation and peopling of the Pre-Alps. The onset of peat accumulation is dated to 14.4-14.1 kyr cal. BP, coinciding with reforestation at middle altitudes that immediately post-dates the immigration of Larix decidua and Picea abies subsp. europaea. Plant macrofossils point to the expansion of spruce about 14.3 kyr cal. BP, so far one of the earliest directly dated in the late glacial period of southern Europe. The previous hypothesis of an early Holocene spruce immigration in the Southern Alps from Slovenia needs reconsideration. Organic sedimentation stopped at the end of the Younger Dryas and was followed by the evolution of hydromorphic soils containing lithic artefacts, anthropic structures and wood charcoal. The typological features of the flint implements refer human occupation of the site to the end of the recent Epigravettian. Charcoals yielded dates either consistent with, or younger than, the archaeological chronology, in the early and middle Holocene.
Termination of the Last Glacial Maximum sea-level lowstand: The Sunda-Shelf data revisited
NASA Astrophysics Data System (ADS)
Hanebuth, T. J. J.; Stattegger, K.; Bojanowski, A.
2009-03-01
The sea-level history around the last glaciation is in the focus of recent, controversial debates. A profound understanding of sea-level changes during this time interval is, however, essential since sea level is a central parameter in the climate system as well as a major force on continental margin sedimentation. Here, we present a seismic record together with augmented data from the Sunda Shelf [Hanebuth, T.J.J., Stattegger, K., Saito, Y., 2002. The architecture of the central Sunda Shelf (SE Asia) recorded by shallow-seismic surveying. Geo-Marine Letters 22, 86-94.] and compare our results in a careful evaluation with the sparse existing data sets of global validity, i.e. the Bonaparte Gulf record [Yokoyama, Y., Lambeck, K., DeDeckker, P., Johnston, P., Fifield, L.K., 2000. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713-716.; Yokoyama, Y., De Deckker, P., Lambeck, K., Johnston, P., Fifield, L.K., 2001. Sea-level at the Last Glacial Maximum: evidence from nortwestern Australia to constrain ice volumes for oxygen isotope stage 2. Paleogeography Paleoclimatology Paleoecology 165, 281-297.], the Barbados coral record [Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting dates on the Younger Dryas event and deep ocean circulation. Nature 342, 637-642.; Peltier, W.R., Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25 (23-24), 3322-3337.] and the latest numerical model of continental deglaciation [Peltier, W.R., Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25 (23-24), 3322-3337.]. Sea level seems to have been lower shortly prior to the conventional Last Glacial Maximum (LGM; 21-19 cal kyr BP). The time interval around this glacial lowstand is not covered by ages from the Sunda Shelf, but documented by an ancient barrier — tidal-flat system. These palaeo-coastal relict forms indicate such an early lowstand some 5 m deeper than sea level was during LGM times. The LGM sea level on the Sunda shelf is recalculated to - 123 ± 2 m modern water depth. This depth fits nicely with the lowstand data derived from Barbados and the Bonaparte Gulf. The recently assumed 19-kyr sea-level rise is supported by the Sunda and Bonaparte data sets combined, although it might have started already as early as at 19.6 cal kyr BP lasting for some 800 kyr with an amplitude of at least 10 m. This early pulse-like rise might have played a crucial role in the physical preservation of the high-glacial to early deglacial deposits on the Sunda Shelf. The modelled sea-level history is, thus, supported with respect to an initial high-glacial lowstand prior to the LGM, which might be in apparent contrast to observations from Bonaparte. Nevertheless, field data suggest a glacial sea-level evolution about 10 m deeper than the model. Also, the gradual rising trend from 26 to 16 cal kyr BP, as deduced from the model, can definitively not be approved by any field data. However, our knowledge is still unsatisfactory and an expansion of field data from suited areas is urgently needed.
NASA Astrophysics Data System (ADS)
Mortlock, Richard A.; Abdul, Nicole A.; Wright, James D.; Fairbanks, Richard G.
2016-12-01
Abdul et al. (2016) presented a detailed record of sea level at Barbados (13.9-9 kyr B.P.) tightly constraining the timing and amplitude during the Younger Dryas and Meltwater Pulse 1B (MWP-1B) based on U-Th dated reef crest coral species Acropora palmata. The Younger Dryas slow stand and the large (14 m) rapid sea level jump are not resolved in the Tahiti record. Tahiti sea level estimates are remarkably close to the Barbados sea level curve between 13.9 and 11.6 kyr but fall below the Barbados sea level curve for a few thousand years following MWP-1B. By 9 kyr the Tahiti sea level estimates again converge with the Barbados sea level curve. Abdul et al. (2016) concluded that Tahiti reefs at the core sites did not keep up with intervals of rapidly rising sea level during MWP-1B. We counter Bard et al. (2016) by showing (1) that there is no evidence for a hypothetical fault in Oistins Bay affecting one of the Barbados coring locations, (2) that the authors confuse the rare occurrences of A. palmata at depths >5 m with the "thickets" of A. palmata fronds representing the reef-crest facies, and (3) that uncertainties in depth habitat proxies largely account for differences in Barbados and Tahiti sea level differences curves with A. palmata providing the most faithful proxy. Given the range in Tahiti paleodepth uncertainties at the cored sites, the most parsimonious explanation remains that Tahiti coralgal ridges did not keep up with the sea level rise of MWP-1B.
Ocean as the main driver of Antarctic ice sheet retreat during the Holocene
NASA Astrophysics Data System (ADS)
Crosta, Xavier; Crespin, Julien; Swingedouw, Didier; Marti, Olivier; Masson-Delmotte, Valérie; Etourneau, Johan; Goosse, Hugues; Braconnot, Pascale; Yam, Ruth; Brailovski, Irena; Shemesh, Aldo
2018-07-01
Ocean-driven basal melting has been shown to be the main ablation process responsible for the recession of many Antarctic ice shelves and marine-terminating glaciers over the last decades. However, much less is known about the drivers of ice shelf melt prior to the short instrumental era. Based on diatom oxygen isotope (δ18Odiatom; a proxy for glacial ice discharge in solid or liquid form) records from western Antarctic Peninsula (West Antarctica) and Adélie Land (East Antarctica), higher ocean temperatures were suggested to have been the main driver of enhanced ice melt during the Early-to-Mid Holocene while atmosphere temperatures were proposed to have been the main driver during the Late Holocene. Here, we present a new Holocene δ18Odiatom record from Prydz Bay, East Antarctica, also suggesting an increase in glacial ice discharge since 4500 years before present ( 4.5 kyr BP) as previously observed in Antarctic Peninsula and Adélie Land. Similar results from three different regions around Antarctica thus suggest common driving mechanisms. Combining marine and ice core records along with new transient accelerated simulations from the IPSL-CM5A-LR climate model, we rule out changes in air temperatures during the last 4.5 kyr as the main driver of enhanced glacial ice discharge. Conversely, our simulations evidence the potential for significant warmer subsurface waters in the Southern Ocean during the last 6 kyr in response to enhanced summer insolation south of 60°S and enhanced upwelling of Circumpolar Deep Water towards the Antarctic shelf. We conclude that ice front and basal melting may have played a dominant role in glacial discharge during the Late Holocene.
NASA Astrophysics Data System (ADS)
Fan, Jiawei; Xiao, Jule; Wen, Ruilin; Zhang, Shengrui; Wang, Xu; Cui, Linlin; Li, He; Xue, Dingshuai; Yamagata, Hideki
2016-11-01
Teleconnections to the high latitudes, forcing by the tropical oceans and solar variability have all been suggested as dominant factors in the sub-millennial global climate changes, yet there is little consensus as to the relative importance of these factors for the East Asian summer monsoon (EASM) variability. This study presents the results of high-resolution analyses of Ca and Mg concentrations, Mg/Ca ratio, δ18O and δ13C values of endogenic calcites from a sediment core from Dali Lake in the EASM margin, in order to investigate the sub-millennial EASM variability and its possible driving forces during the last 6 kyrs. Increases in these chemical proxy data were interpreted as drought events in the region due to the intensive evaporation losses overwhelming the water input to the lake. The chemical proxy data in this study combined with multi-proxy indicators including grain size component and total organic carbon concentrations from the same sediment core imply that declines in the EASM intensity may have played a dominant role in triggering the drought events during the last 6 kyrs. The results indicate that the EASM intensity significantly declined at the intervals of 5.8-4.75, 3.2-2.8, 1.65-1.15 and 0.65-0.2 kyrs BP. Large declines in the EASM intensity during the last 6 kyrs correspond in time to occurrences of ice-rafted debris in the North Atlantic, indicating that millennial-to-centennial scale changes in the EASM intensity were mainly controlled by climatic processes occurring in the northern high latitudes. These data imply that persistent global warming may be favorable for the strengthening of the EASM circulation and for the transportation of more rainfall to the semi-arid regions of northern China on sub-millennial scales.
The episodic influx of tin-rich cosmic dust particles during the last ice age
NASA Astrophysics Data System (ADS)
LaViolette, Paul A.
2015-12-01
This paper presents evidence of the first detection of interstellar dust in ice age polar ice. Neutron activation analysis (NAA) results are reported for 15 elements found in dust filtered from eight samples of Camp Century Greenland ice dating from 40 to 78 kyrs BP. High concentrations of Sn, Sb, Au, Ag, Ir, and Ni were found to be present in three out of these eight samples. One compositionally anomalous dust sample from an ice core depth of 1230.5 m (age ∼49 kyrs BP, near the beginning of D/O stadial No. 13) was found to contain tin with an average weight percent of 49% as determined by energy dispersive X-ray analysis (EDS). This sample was also found to contain high concentrations of Pb with an average weight abundance of 8.4% and matching the Sn:Pb ratio observed in interstellar spectra. Dust particles in this sample generally have a platy morphology and range from submicron size up to a size as large as 120 μm, a particle consisting almost entirely of SnO2 and being the largest monomineralic extraterrestrial dust particle so far discovered. One porous aggregate tin-bearing particle was found to contain nanometer sized chondrules indicating an extraterrestrial origin. The extraterrestrial origin for the tin is also indicated by the presence of isotopic anomalies in the 114Sn, 115Sn and 117Sn isotopes. Follow up isotopic measurements of this tin-rich dust need to be performed to improve confidence in the anomalies reported here. High abundances of the low melting point elements Ag, Au, and Sb are also present in this tin-rich sample along with elevated abundances of the siderophiles Ir, Ni, Fe, and Co, the latter being present in chondritic proportions and indicating that about 9% of the dust has a C1 chondrite component. Measurements indicate that about 97% of this dust is of extraterrestrial origin with a 3% residual being composed of terrestrial windblown dust. EDS analysis of another tin-rich Camp Century ice core dust sample dating to ∼130 kyrs BP was found to contain tin-rich particles with a similar platy morphology and to have Sn and Pb weight abundances averaging 39% and 7.5% respectively, again approximating the interstellar Sn:Pb ratio. The relative absence of cosmic microspheres and the unmelted appearance of the tin-rich particles in both of these samples suggests that these particles entered the Earth's atmosphere at low velocity, implicating a gradual accumulation of dust from a dispersed state in the near Earth space environment. The unusual enhancement of Sn and Pb could be explained if these dust particles were originally present in the solar system's interstellar environment in a superconducting native metal state and were preferentially concentrated through Meissner effect forces by the passage of cosmic ray driven hydromagnetic shocks which may also have transported them into the solar system. The 49 kyrs BP event is estimated to have lasted over 6 years and to have deposited dust onto the Earth at a rate 104-105 times higher than present rates. This had a significant cooling effect on climate and resulted in a transient 33 fold increase in snow accumulation. Future discovery of these events in ice cores at other locations should void any lingering thoughts that this heavy metal enhancement may be due to sample contamination.
NASA Astrophysics Data System (ADS)
Asioli, A.; Langone, L.; Tateo, F.; Giannossi, M. L.; Giglio, F.; Summa, V.; Piva, A.; Ridente, D.; Trincardi, F.
2009-04-01
The Antarctic area produces bottom waters that ventilate the vast majority of the deep basins in the rest of the world ocean. The rate of formation in the source area and the strength of these cold bottom waters affect their flow toward the equator and are key factors affecting the Global Thermohaline Circulation during modern and past climate conditions. We present the results of a multidisciplinary study carried out on a core collected in 2377m of water depth on the slope off the Drygalski Basin (Ross Sea), along the modern path of the bottom waters. The goal of this research is to detect a qualitative signal of possible changes in the rate of bottom water production during the Late Pleistocene-Holocene by integrating micropaleontological and geochemical proxies. The micropaleontological signal is represented by the quantitative and qualitative variations of the agglutinated benthic foraminifera assemblages, while the amount of TOC, nitrogen, δ13C, δ15N, biogenic silica, CaCO3 in the sediment, along with the bulk rock mineralogy, provide information on the paleoproductivity and allow reconstruction of changes in the paleocirculation. The chronology is supported by 14C AMS datings on organic matter. Although this study is still in progress, the results obtained allow the following observations: 1) the Holocene sequence includes a major turnover around 8-8.5 calib kyr BP, leading to reduced nutrient utilization, probably reflecting an increased nutrient supply induced by an enhanced Upper Circumpolar Deep Water upwelling; 2) within this general context, the total concentration of benthic foraminifera preserved in the fossil component records millennial scale cycles of variable amplitude after 8.5 calib kyr BP and to present time. This oscillatory trend is paralleled by other parameters, such as the magnetic susceptibility, the dry density, the sheet silicates and the δ15N; 3) minima in foraminifera concentration reflect relatively increased dissolution, weaker bottom currents (minima in dry density=higher amount of fine fraction), and lower nutrient supply; maxima in foraminifera concentration indicate better preservation, higher benthic productivity and/or better oxygenation at bottom, stronger bottom currents (maxima in dry density) and relatively higher nutrient supply; 4) these cycles are interpreted to reflect a relatively higher (maxima in forams concentration) or lower (minima in forams concentration) rate of bottom water formation; 5) between 8.5 and 6 kyr BP the amplitude of these cycles (and particularly those with increased rates of bottom water formation) is higher than the subsequent ones. We equate this interval with the early part of the Middle Holocene Climatic Optimum of the literature; 6) the condensed/hiatus interval centred at ca. 3.5-4 kyr BP does not seem to mark a major change in the general pattern. Nevertheless, this feature is time-equivalent to a major change in the circulation pattern in other Antarctic regions, such as the Antarctic Peninsula. This major change consists in oscillations between two contrasting circulation modes dominated respectively by: a) Upper Circumpolar Deep Water and b) shelf-water formation. This major change can therefore be ascribed to the southward migration of the Intertropical Convergence Zone vs. ENSO prevalence, respectively.
NASA Astrophysics Data System (ADS)
Huang, C.; Hinnov, L. A.; Tong, J.; Chen, Z.
2011-12-01
The mass extinctions near the Permian-Triassic boundary (PTB) resulted in the greatest dying of life on Earth. The cause of this catastrophe remains enigmatic. High-resolution chronology is crucial to understanding the recorded pattern of biotic evolution and possible causes for the extinctions. Magnetic susceptibility (MS) data from Shangsi, South China shows evidence for astronomical forcing through the PTB interval, with strong 405-kyr cycling. This allows development of an astrochronology for the PTB interval based on the 405-kyr orbital eccentricity metronome that has been proposed for the Mesozoic timescale. Radioisotope dating combined with the 405-kyr tuned MS series from Shangsi shows that the 405-kyr-cycle predominates throughout the PTB interval. In the Permian segment, ~100-kyr cyclicity dominates, and the 100-kyr-scale MS maxima correlate with high-amplitude precession-scale MS variations. Minima in the ~1.5-Myr, 405-kyr and ~100-kyr cycles converge at 252.6 Ma, approximately 200 kyr before the onset of the main mass extinction near the PTB. In the Triassic aftermath, the recorded astronomical signal is different, with predominant 405-kyr cycles and loss of 100 kyr cyclicity, and appearance of ~33 kyr (obliquity scale) cyclicity; 100-kyr cyclicity strengthens again 2 Myr later. This pattern indicates a change in the response of the depositional environment (or magnetic susceptibility) to astronomical forcing before and after the mass extinction interval. The astrochronology interpolates the timescale between the radioisotopically determined absolute dates; this facilitates estimation of ages for specific events in the PTB crisis, including magnetic reversals, biozone boundaries, and the mass extinctions. An estimated ~700 kyr duration for the Mass Extinction Interval (MEI) at Shangsi based on the 405-kyr tuning is supported by eccentricity-tuned estimates of three other sections in China (Meishan, Huangzhishan, and Heping), and two Alpine sections (Gartnerkofel, Austria and Bulla, Italy) from the eastern and western margins of the Palaeo-Tethys Ocean during PTB time. This suggests that the PTB mass extinctions were not the result of a single catastrophic event. Siberian trap volcanism was largely synchronous with the MEI and appears to be the most likely cause of the mass extinctions; astronomically paced climate change may also have played a role.
NASA Astrophysics Data System (ADS)
Barron, J. A.; Heusser, L. E.; Addison, J. A.; Burky, D.; Kusler, J. E.; Finney, B.
2013-12-01
Piston core TN062 0550, located 13 km offshore of Eureka, California (40.866 deg. N, 124.572 deg. W, 550 m water depth), contains a continuous high-resolution climate record of the past 7,300 yr. Deposition occurred at nearly constant sedimentation rates averaging 94 cm/kyr based on 14C AMS dating of planktonic foraminifers. Pollen and marine ecosystem proxies (diatoms, silicoflagellates, wt. percent biogenic silica) studied at 50-70 yr sample resolution show a stepwise development of the climate/ oceanographic system off northernmost California. The relative contributions of Sequoia sempervirens (coastal redwood) pollen, a proxy for coastal fog associated with offshore upwelling, and biogenic silica concentrations (a proxy for siliceous export productivity) increase (two fold and three fold, respectively) in successive steps at ~5,000 yr BP and from ~2,400 to 2,000 yr BP. These increases are interpreted to reflect a progressive intensification of spring upwelling based on modern observations of the California Current system. At 5,000 yr BP diatom assemblages change from an assorted mixture of warm, temperate, and cool-water taxa to a low diversity temperate-oceanic assemblage dominated by Thalassionema spp. At ~2,400 yr BP the diatom assemblage transitions to a mixture of nearshore upwelling taxa and taxa associated with the central North Pacific Gyre. Silicoflagellate assemblages undergo a similar increase in the representation of modern seasonal proxies at ~3,000 yr BP that may reflect intensified ENSO variability. A two-fold increase in the relative contributions of Quercus (oak) and riparian Alnus (alder) pollen between ~3,800 and 2,000 yr BP likely signals a period of enhanced fluvial runoff associated with increased winter precipitation. Given the present day association of the Eel River system with the northwestern half of the western US winter precipitation dipole, these pollen data suggest that the ~3,800 and 2,000 yr interval was dominated by protracted negative Pacific Decadal Oscillation-like (PDO) conditions. The widespread occurrence of drought in the southwestern US between ~3,800 and 2,200 yr BP supports this interpretation.
NASA Astrophysics Data System (ADS)
Kirana, Kartika Hajar; Bijaksana, Satria; King, John; Tamuntuan, Gerald Hendrik; Russell, James; Ngkoimani, La Ode; Dahrin, Darharta; Fajar, Silvia Jannatul
2018-02-01
Past changes in the Earth's magnetic field can be highlighted through reconstructions of magnetic paleointensity. Many magnetic field variation features are global, and can be used for the detailed correlation and dating of sedimentary records. On the other hand, sedimentary magnetic records also exhibit features on a regional, rather than a global scale. Therefore, the development of regional scale magnetic field reconstructions is necessary to optimize magnetic paleointensity dating. In this paper, a 60 thousand year (kyr) paleointensity record is presented, using the core TOW10-9B of Lake Towuti, located in the island of Sulawesi, Indonesia, as a part of the ongoing research towards understanding the Indonesian environmental history, and reconstructing a high-resolution regional magnetic record from dating the sediments. Located in the East Sulawesi Ophiolite Belt, the bedrock surrounding Lake Towuti consists of ultramafic rocks that render the lake sediments magnetically strong, creating challenges in the reconstruction of the paleointensity record. These sediment samples were subject to a series of magnetic measurements, followed by testing the obtained paleointensity records resulting from normalizing natural remanent magnetization (NRM) against different normalizing parameters. These paleointensity records were then compared to other regional, as well as global, records of magnetic paleointensity. The results show that for the magnetically strong Lake Towuti sediments, an anhysteretic remanent magnetization (ARM) is the best normalizer. A series of magnetic paleointensity excursions are observed during the last 60 kyr, including the Laschamp excursion at 40 kyr BP, that provide new information about the magnetic history and stratigraphy of the western tropical Pacific region. We conclude that the paleointensity record of Lake Towuti is reliable and in accordance with the high-quality regional and global trends.
NASA Astrophysics Data System (ADS)
Russell, J. M.; Vogel, H.; Bijaksana, S.; Melles, M.
2016-12-01
The Indo-Pacific region plays a critical role in the Earth's climate system. Changes in local insolation, greenhouse gas concentrations, ice volume, and local sea level are all hypothesized to exert a dominant control on Indo-Pacific hydroclimate, yet existing records from the region are generally short and exhibit fundamental differences in orbital-scale patterns that limit our understanding of the regional climate responses to orbital-scale forcings. In 2015 we conducted an ICDP drilling program on Lake Towuti, located near the equator in central Indonesia, one of the only terrestrial sedimentary archives in the region that continuously spans multiple glacial-interglacial cycles. We recovered over 1,000 meters of core including cores though the entire sediment sequence to bedrock. Previously published organic geochemical reconstructions of vegetation from relatively short, 60 kyr long piston from Lake Towuti exhibit strong drying during the Last Glacial Maximum, indicating that central Indonesian hydroclimate is sensitive to forcing from high-latitude ice-sheets. New, inorganic geochemical and mineralogical reconstructions of lake level also indicate a strong half-precessional climate signal during the last 60 kyr in which lake level highstands occur during austral and boreal summer insolation maxima, suggesting that equatorial rainfall varies in response to remote (likely subtropical) insolation forcing of the Asian monsoons. However, the short length of these records limits our understanding of the regional hydroclimatic response to the full range of global climate boundary conditions experienced during the late Quaternary. This presentation will discuss results from the last 60 kyr and present new geochemical reconstructions from the upper 100 m of core from Lake Towuti, dated using magnetic paleointensity, tephrachronology, and optically-stimulated luminescence to span the last 500 kyr BP.
Solar forcing of the Indian summer monsoon variability during the Ållerød period.
Gupta, Anil K; Mohan, Kuppusamy; Das, Moumita; Singh, Raj K
2013-09-25
Rapid climatic shifts across the last glacial to Holocene transition are pervasive feature of the North Atlantic as well as low latitude proxy archives. Our decadal to centennial scale record of summer monsoon proxy Globigerina bulloides from rapidly accumulating sediments from Hole 723A, Arabian Sea shows two distinct intervals of weak summer monsoon wind coinciding with cold periods within Ållerød inerstadial of the North Atlantic named here as IACP-A1 and IACP-A2 and dated (within dating uncertainties) at 13.5 and 13.3 calibrated kilo years before the present (cal kyr BP), respectively. Spectral analysis of the Globigerina bulloides time series for the segment 13.6-13.1 kyr (Ållerød period) reveals a strong solar 208-year cycle also known as de Vries or Suess cycle, suggesting that the centennial scale variability in Indian summer monsoon winds during the Ållerød inerstadial was driven by changes in the solar irradiance through stratospheric-tropospheric interactions.
NASA Astrophysics Data System (ADS)
Vannière, B.; Colombaroli, D.; Chapron, E.; Leroux, A.; Tinner, W.; Magny, M.
2008-06-01
A high-resolution sedimentary charcoal record from Lago dell'Accesa in southern Tuscany reveals numerous changes in fire regime over the last 11.6 kyr cal. BP and provides one of the longest gap-free series from Italy and the Mediterranean region. Charcoal analyses are coupled with gamma density measurements, organic-content analyses, and pollen counts to provide data about sedimentation and vegetation history. A comparison between fire frequency and lake-level reconstructions from the same site is used to address the centennial variability of fire regimes and its linkage to hydrological processes. Our data reveal strong relationships among climate, fire, vegetation, and land-use and attest to the paramount importance of fire in Mediterranean ecosystems. The mean fire interval (MFI) for the entire Holocene was estimated to be 150 yr, with a minimum around 80 yr and a maximum around 450 yr. Between 11.6 and 3.6 kyr cal. BP, up to eight high-frequency fire phases lasting 300-500 yr generally occurred during shifts towards low lake-level stands (ca 11,300, 10,700, 9500, 8700, 7600, 6200, 5300, 3400, 1800 and 1350 cal. yr BP). Therefore, we assume that most of these shifts were triggered by drier climatic conditions and especially a dry summer season that promoted ignition and biomass burning. At the beginning of the Holocene, high climate seasonality favoured fire expansion in this region, as in many other ecosystems of the northern and southern hemispheres. Human impact affected fire regimes and especially fire frequencies since the Neolithic (ca 8000-4000 cal. yr BP). Burning as a consequence of anthropogenic activities became more frequent after the onset of the Bronze Age (ca 3800-3600 cal. yr BP) and appear to be synchronous with the development of settlements in the region, slash-and-burn agriculture, animal husbandry, and mineral exploitation. The anthropogenic phases with maximum fire activity corresponded to greater sensitivity of the vegetation and triggered significant changes in vegetational communities (e.g. temporal declines of Quercus ilex forests and expansion of shrublands and macchia). The link between fire and climate persisted during the mid- and late Holocene, when human impact on vegetation and the fire regime was high. This finding suggests that climatic conditions were important for fire occurrence even under strongly humanised ecosystem conditions.
Holocene stratigraphy of the Ångermanälven River estuary, Bothnian Sea
NASA Astrophysics Data System (ADS)
Hyttinen, O.; Kotilainen, A. T.; Virtasalo, J. J.; Kekäläinen, P.; Snowball, I.; Obrochta, S.; Andrén, T.
2017-06-01
This study explores the Holocene depositional succession at the IODP Expedition 347 sites M0061 and M0062 in the vicinity of the Ångermanälven River estuary in the Bothnian Sea sector of the Baltic Sea in northern Scandinavia. Site M0061 is located in a coastal offshore setting (87.9 m water depth), whereas site M0062 is fully estuarine (69.3 m water depth). The dataset comprises acoustic profiles and sediment cores collected in 2007 and late 2013 respectively. Three acoustic units (AUs) were recognized. Lowermost AU1 is interpreted as a poorly to discontinuous stratified glaciofluvial deposit, AU2 as a stratified conformable drape of glaciolacustrine origin, and AU3 as a poorly stratified to stratified mud drift. A strong truncating reflector separates AU2 and AU3. Three lithological units (LUs) were defined in the sediment cores. LU1 consists of glaciofluvial sand and silt gradating into LU2, which consists of glaciolacustrine varves. A sharp contact interpreted as a major unconformity separates LU2 from the overlying LU3 (brackish-water mud). In the basal part of LU3, one debrite (site M0061) or two debrites (site M0062) were recognized. Information yielded from sediment physical properties (magnetic susceptibility, natural gamma ray, dry bulk density), geochemistry (total carbon, total organic carbon, total inorganic carbon and nitrogen), and grain size support the LU division. The depositional succession was formally subdivided into two alloformations: the Utansjö Alloformation and overlying Hemsön Alloformation; the Utansjö Alloformation was further subdivided into two lithostratigraphic formations: the Storfjärden and Åbordsön formations. The Storfjärden (sandy outwash) and Åbordsön (glaciolacustrine rhythmite) formations represent a glacial retreat systems tract, which started at ca. 10.6 kyr BP. Their deposition was mainly controlled by meltwater from the retreating ice margin, glacio-isostatic land uplift and the regressive (glacial) lake level. The Hemsön Alloformation (organic-rich brackish-water mud) represents a period of forced regression, starting possibly at ca. 9.5 kyr BP. At about 7 kyr BP, brackish water reached the study area as a result of the mid-Holocene marine flooding of the Baltic Sea Basin, but the rapid land uplift soon surpassed the associated (Littorina) transgression. Changed near-bottom current patterns, caused by the establishment of a permanent halocline, and the reduced sediment consistency caused by increased organic deposition resulted in a sharp and erosional base of the brackish-water mud. Estuarine processes and salinity stratification at site M0062 started to play a more important role. This study applies a combined allostratigraphic and lithostratigraphic approach over the conventional Baltic Sea stages. This approach makes it more straightforward to study this Baltic Sea deglaciation-postglacial sequence and compare it to other formerly glaciated shallow sea estuaries.
NASA Astrophysics Data System (ADS)
de Wet, Gregory A.; Castañeda, Isla S.; DeConto, Robert M.; Brigham-Grette, Julie
2016-02-01
Previous periods of extreme warmth in Earth's history are of great interest in light of current and predicted anthropogenic warming. Numerous so called "super interglacial" intervals, with summer temperatures significantly warmer than today, have been identified in the 3.6 million year (Ma) sediment record from Lake El'gygytgyn, northeast Russia. To date, however, a high-resolution paleotemperature reconstruction from any of these super interglacials is lacking. Here we present a paleotemperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) from Marine Isotope Stages (MIS) 35 to MIS 29, including super interglacial MIS 31. To investigate this period in detail, samples were analyzed with an unprecedented average sample resolution of 500 yrs from MIS 33 to MIS 30. Our results suggest the entire period currently defined as MIS 33-31 (∼1114-1062 kyr BP) was characterized by generally warm and highly variable conditions at the lake, at times out of phase with Northern Hemisphere summer insolation, and that cold "glacial" conditions during MIS 32 lasted only a few thousand years. Close similarities are seen with coeval records from high southern latitudes, supporting the suggestion that the interval from MIS 33 to MIS 31 was an exceptionally long interglacial (Teitler et al., 2015). Based on brGDGT temperatures from Lake El'gygytgyn (this study and unpublished results), warming in the western Arctic during MIS 31 was matched only by MIS 11 during the Pleistocene.
NASA Astrophysics Data System (ADS)
Hayashida, Akira; Ali, Mohammed; Kuniko, Yoshiki; Kitagawa, Hiroyuki; Torii, Masayuki; Takemura, Keiji
2007-07-01
We have conducted paleomagnetic and environmental magnetic analysis of a sediment piston core recovered from Lake Biwa, central Japan. Tephrochronology and AMS radiocarbon dating showed that this core covers the time period since about 40 kyr BP. The variation of paleomagnetic direction shows a good agreement with the PSV record for the last 10 kyrs from the deeper water site (BIWA SV-3; Ali et al., 1999), although the amplitudes are subdued probably due to the relatively lower accumulation rate at the shallower site. Inclination lows of the pre-Holocene interval are correlated to PSV records reported from the marine sediments off Shikoku and in the Japan Sea. In addition, the variation of magnetic mineral concentration reflects environmental changes during the last glacial period. It is suggested that the flux of fine-grained magnetite, probably associated with greater precipitation, was increased during interstadial periods. The variation of anhysteretic remanent magnetization is likely correlated to the Dansgaard-Oeschger (D-O) cycles recorded in Greenland ice cores. An apparent swing of the PSV curve is recognized at about 27 ka, but evidence for the Mono Lake excursion at 32 ka around the D-O events 6 and 7 is unclear. Combination of the detailed paleomagnetic record and the sub-Milankovitch climate cycles thus provides better resolution for understanding geomagnetic secular variation and polarity excursions in space and time.
Jaruzelska, J; Zietkiewicz, E; Batzer, M; Cole, D E; Moisan, J P; Scozzari, R; Tavaré, S; Labuda, D
1999-01-01
With 10 segregating sites (simple nucleotide polymorphisms) in the last intron (1089 bp) of the ZFX gene we have observed 11 haplotypes in 336 chromosomes representing a worldwide array of 15 human populations. Two haplotypes representing 77% of all chromosomes were distributed almost evenly among four continents. Five of the remaining haplotypes were detected in Africa and 4 others were restricted to Eurasia and the Americas. Using the information about the ancestral state of the segregating positions (inferred from human-great ape comparisons), we applied coalescent analysis to estimate the age of the polymorphisms and the resulting haplotypes. The oldest haplotype, with the ancestral alleles at all the sites, was observed at low frequency only in two groups of African origin. Its estimated age of 740 to 1100 kyr corresponded to the time to the most recent common ancestor. The two most frequent worldwide distributed haplotypes were estimated at 550 to 840 and 260 to 400 kyr, respectively, while the age of the continentally restricted polymorphisms was 120 to 180 kyr and smaller. Comparison of spatial and temporal distribution of the ZFX haplotypes suggests that modern humans diverged from the common ancestral stock in the Middle Paleolithic era. Subsequent range expansion prevented substantial gene flow among continents, separating African groups from populations that colonized Eurasia and the New World. PMID:10388827
Jaruzelska, J; Zietkiewicz, E; Batzer, M; Cole, D E; Moisan, J P; Scozzari, R; Tavaré, S; Labuda, D
1999-07-01
With 10 segregating sites (simple nucleotide polymorphisms) in the last intron (1089 bp) of the ZFX gene we have observed 11 haplotypes in 336 chromosomes representing a worldwide array of 15 human populations. Two haplotypes representing 77% of all chromosomes were distributed almost evenly among four continents. Five of the remaining haplotypes were detected in Africa and 4 others were restricted to Eurasia and the Americas. Using the information about the ancestral state of the segregating positions (inferred from human-great ape comparisons), we applied coalescent analysis to estimate the age of the polymorphisms and the resulting haplotypes. The oldest haplotype, with the ancestral alleles at all the sites, was observed at low frequency only in two groups of African origin. Its estimated age of 740 to 1100 kyr corresponded to the time to the most recent common ancestor. The two most frequent worldwide distributed haplotypes were estimated at 550 to 840 and 260 to 400 kyr, respectively, while the age of the continentally restricted polymorphisms was 120 to 180 kyr and smaller. Comparison of spatial and temporal distribution of the ZFX haplotypes suggests that modern humans diverged from the common ancestral stock in the Middle Paleolithic era. Subsequent range expansion prevented substantial gene flow among continents, separating African groups from populations that colonized Eurasia and the New World.
Levantine cranium from Manot Cave (Israel) foreshadows the first European modern humans.
Hershkovitz, Israel; Marder, Ofer; Ayalon, Avner; Bar-Matthews, Miryam; Yasur, Gal; Boaretto, Elisabetta; Caracuta, Valentina; Alex, Bridget; Frumkin, Amos; Goder-Goldberger, Mae; Gunz, Philipp; Holloway, Ralph L; Latimer, Bruce; Lavi, Ron; Matthews, Alan; Slon, Viviane; Mayer, Daniella Bar-Yosef; Berna, Francesco; Bar-Oz, Guy; Yeshurun, Reuven; May, Hila; Hans, Mark G; Weber, Gerhard W; Barzilai, Omry
2015-04-09
A key event in human evolution is the expansion of modern humans of African origin across Eurasia between 60 and 40 thousand years (kyr) before present (bp), replacing all other forms of hominins. Owing to the scarcity of human fossils from this period, these ancestors of all present-day non-African modern populations remain largely enigmatic. Here we describe a partial calvaria, recently discovered at Manot Cave (Western Galilee, Israel) and dated to 54.7 ± 5.5 kyr bp (arithmetic mean ± 2 standard deviations) by uranium-thorium dating, that sheds light on this crucial event. The overall shape and discrete morphological features of the Manot 1 calvaria demonstrate that this partial skull is unequivocally modern. It is similar in shape to recent African skulls as well as to European skulls from the Upper Palaeolithic period, but different from most other early anatomically modern humans in the Levant. This suggests that the Manot people could be closely related to the first modern humans who later successfully colonized Europe. Thus, the anatomical features used to support the 'assimilation model' in Europe might not have been inherited from European Neanderthals, but rather from earlier Levantine populations. Moreover, at present, Manot 1 is the only modern human specimen to provide evidence that during the Middle to Upper Palaeolithic interface, both modern humans and Neanderthals contemporaneously inhabited the southern Levant, close in time to the likely interbreeding event with Neanderthals.
NASA Astrophysics Data System (ADS)
Pouderoux, H.; Lamarche, G.; Proust, J.-N.
2012-06-01
Two ~20 m-long sedimentary cores collected in two neighbouring mid-slope basins of the Paritu Turbidite System in Poverty Bay, east of New Zealand, show a high concentration of turbidites (5 to 6 turbidites per meter), interlaid with hemipelagites, tephras and a few debrites. Turbidites occur as both stacked and single, and exhibit a range of facies from muddy to sandy turbidites. The age of each turbidite is estimated using the statistical approach developed in the OxCal software from an exceptionally dense set of tephrochronology and radiocarbon ages (~1 age per meter). The age, together with the facies and the petrophysical properties of the sediment (density, magnetic susceptibility and P-wave velocity), allows the correlation of turbidites across the continental slope (1400-2300 m water depth). We identify 73 synchronous turbidites, named basin events, across the two cores between 819 ± 191 and 17 729 ± 701 yr BP. Compositional, foraminiferal and geochemical signatures of the turbidites are used to characterise the source area of the sediment, the origin of the turbidity currents, and their triggering mechanism. Sixty-seven basin events are interpreted as originated from slope failures on the upper continental slope in water depth ranging from 150 to 1200 m. Their earthquake trigger is inferred from the heavily gullied morphology of the source area and the water depth at which slope failures originated. We derive an earthquake mean return time of ~230 yr, with a 90% probability range from 10 to 570 yr. The earthquake chronology indicates cycles of progressive decrease of earthquake return times from ~400 yr to ~150 yr at 0-7 kyr, 8.2-13.5 kyr, 14.7-18 kyr. The two 1.2 kyr-long intervals in between (7-8.2 kyr and 13.5-14.7 kyr) correspond to basin-wide reorganisations with anomalous turbidite deposition (finer deposits and/or non deposition) reflecting the emplacement of two large mass transport deposits much more voluminous than the "classical" earthquake-triggered turbidites. Our results show that the progressive characterisation of a turbidite record from a single sedimentary system can provide a continuous paleo-earthquake history in regions of short historical record and incomplete onland paleo-earthquake evidences. The systematic description of each turbidite enables us to infer the triggering mechanism.
NASA Astrophysics Data System (ADS)
Gu, Fang; Zonneveld, Karin A. F.; Chiessi, Cristiano M.; Arz, Helge W.; Pätzold, Jürgen; Behling, Hermann
2017-09-01
Long-term changes in vegetation and climate of southern Brazil, as well as ocean dynamics of the adjacent South Atlantic, were studied by analyses of pollen, spores and organic-walled dinoflagellate cysts (dinocysts) in marine sediment core GeoB2107-3 collected offshore southern Brazil covering the last 73.5 cal kyr BP. The pollen record indicates that grasslands were much more frequent in the landscapes of southern Brazil during the last glacial period if compared to the late Holocene, reflecting relatively colder and/or less humid climatic conditions. Patches of forest occurred in the lowlands and probably also on the exposed continental shelf that was mainly covered by salt marshes. Interestingly, drought-susceptible Araucaria trees were frequent in the highlands (with a similar abundance as during the late Holocene) until 65 cal kyr BP, but were rare during the following glacial period. Atlantic rainforest was present in the northern lowlands of southern Brazil during the recorded last glacial period, but was strongly reduced from 38.5 until 13.0 cal kyr BP. The reduction was probably controlled by colder and/or less humid climatic conditions. Atlantic rainforest expanded to the south since the Lateglacial period, while Araucaria forests advanced in the highlands only during the late Holocene. Dinocysts data indicate that the Brazil Current (BC) with its warm, salty and nutrient-poor waters influenced the study area throughout the investigated period. However, variations in the proportion of dinocyst taxa indicating an eutrophic environment reflect the input of nutrients transported mainly by the Brazilian Coastal Current (BCC) and partly discharged by the Rio Itajaí (the major river closest to the core site). This was strongly related to changes in sea level. A stronger influence of the BCC with nutrient rich waters occurred during Marine Isotope Stage (MIS) 4 and in particular during the late MIS 3 and MIS 2 under low sea level. Evidence of Nothofagus pollen grains from the southern Andes during late MIS 3 and MIS 2 suggests an efficient transport by the southern westerlies and Argentinean rivers, then by the Malvinas Current and finally by the BCC to the study site. Major changes in the pollen/spore and dinocyst assemblages occur with similar pacing, indicating strongly interlinked continental and marine environmental changes. Proxy comparisons suggest that the changes were driven by similar overarching factors, of which the most important was orbital obliquity.
NASA Astrophysics Data System (ADS)
Larrasoaña, J. C.; Borruel, V.; Gómez-Paccard, M.; Rico, M.; Valero-Garces, B.; Moreno-Caballud, A.; Soto, R.
2013-12-01
Lake Sanabria is located in the NW Spanish mountains at 1000 m a.s.l., and constitutes the largest lake of glacial origin in the Iberian Peninsula. Here we present an environmental magnetic study of a Late Pleistocene-Holocene sediment core from Lake Sanabria and from different lithologies that crop out in its catchment, which includes Paleozoic plutonic, metamorphic and vulcanosedimentary rocks, and Quaternary deposits of glacial origin. This study was designed to complement sedimentologic and geochemical studies aimed at unraveling the climatic evolution of the NW Iberian Peninsula during the last deglaciation. Our results indicate that magnetite and pyrrhotite dominate the magnetic assemblage of both the sediments from the lower half of the studied sequence (25.6 - 13 cal kyr BP) deposited in a proglacial environment, and the Paleozoic rocks that make up most of the catchment of the lake. The occurrence of these minerals both in the catchment rocks and in the lake sediments indicates that sedimentation was then driven by the erosion of a glacial flour, which suffered minimal chemical transformation in response to a rapid and short routing to the lake. Sediments from the upper half of the studied sequence, accumulated after 12.4 cal kyr BP in a fluviolacustrine environment, contain magnetite and greigite. This points to a prominent role of post-depositional reductive dissolution, driven by a sharp increase in the accumulation of organic matter into the lake and the creation of anoxic conditions in the sediments, in shaping the magnetic assemblage of Holocene sediments. Pyrrhotite is stable under reducing conditions as opposed to magnetite, which is unstable. We therefore interpret that previous pedogenic processes occurred in the then deglaciated catchment of the lake were responsible for the oxidation of pyrrhotite and authigenic formation of magnetite, which survived subsequent reductive diagenesis given its initial larger concentrations. This interpretation is supported by the magnetic properties of Quaternary till sediments, which in some cases retain their original magnetic assemblage (magnetite and pyrrhotite) and in other cases include larger concentrations of magnetite. The Holocene sequence includes some discrete layers with a magnetic signature identical to that of the glacial flour. These layers are interpreted as being deposited during extreme runoff events that eroded Quaternary tills. The sharp change in magnetic properties observed in the lake sediments between 13 and 12.4 kyr BP supports the rapid deglaciation of the catchment of Lake Sanabria inferred in previous studies on the basis of sedimentological, geochemical and geomorphological data.
NASA Astrophysics Data System (ADS)
Brovkin, Victor; Lorenz, Stephan; Raddatz, Thomas
2017-04-01
Plants influence climate through changes in the land surface biophysics (albedo, transpiration) and concentrations of the atmospheric greenhouse gases. One of the interesting periods to investigate a climatic role of terrestrial biosphere is the Holocene, when, despite of the relatively steady global climate, the atmospheric CO2 grew by about 20 ppm from 7 kyr BP to pre-industrial. We use a new setup of the Max Planck Institute Earth System Model MPI-ESM1 consisting of the latest version of the atmospheric model ECHAM6, including the land surface model JSBACH3 with carbon cycle and vegetation dynamics, coupled to the ocean circulation model MPI-OM, which includes the HAMOCC model of ocean biogeochemistry. The model has been run for several simulations over the Holocene period of the last 8000 years under the forcing data sets of orbital insolation, atmospheric greenhouse gases, volcanic aerosols, solar irradiance and stratospheric ozone, as well as land-use changes. In response to this forcing, the land carbon storage increased by about 60 PgC between 8 and 4 kyr BP, stayed relatively constant until 2 kyr BP, and decreased by about 90 PgC by 1850 AD due to land use changes. Vegetation and soil carbon changes significantly affected atmospheric CO2 during the periods of strong volcanic eruptions. In response to the eruption-caused cooling, the land initially stores more carbon as respiration decreases, but then it releases even more carbon due to productivity decrease. This decadal- scale variability helps to quantify the vegetation and land carbon feedbacks during the past periods when the temporal resolution of the ice-core CO2 record is not sufficient to capture fast CO2 variations. From a set of Holocene simulations with prescribed or interactive atmospheric CO2, we get estimates of climate-carbon feedback useful for future climate studies. Members of the Hamburg Holocene Team: Jürgen Bader1, Sebastian Bathiany2, Victor Brovkin1, Martin Claussen1,3, Traute Crüger1, Roberta D'agostino1, Anne Dallmeyer1, Sabine Egerer1, Vivienne Groner1, Matthias Heinze1, Tatiana Ilyina1, Johann Jungclaus1, Thomas Kleinen1, Alexander Lemburg1, Stephan Lorenz1, Thomas Raddatz1, Hauke Schmidt1, Gerhard Schmiedl3, Bjorn Stevens1, Claudia Timmreck1, Matthew Toohey4 1Max-Planck-Institut für Meteorologie, D 2Wageningen University, NL 3CEN, Universität Hamburg, D 4GEOMAR Helmholtz Zentrum für Ozeanforschung Kiel, D
A Resilient Greenland Ice Sheet More Than 900,000 Years Old.
NASA Astrophysics Data System (ADS)
Dahl-Jensen, D.; Funder, S.; Schmidt, A. Z. M.; Solgaard, A.; Steffensen, J. P.; Willerslev, E.
2014-12-01
The Greenland Ice Sheet (GRIS) has the potential of causing a 7.36 m global sea level rise (GSLR) if it were to melt away. To properly assess risk of future melting, it is crucial to understand the formation and growth of the GRIS during past climate regimes. However, despite decades of research, it remains debated when and in what environment GRIS got established and to what extent GRIS changed in size during past warm interglacials, such as MIS 5e some 130 kyr BP. Here, we present results from analyses of environmental DNA, 10Be/36Cl, 234U/238U, single grain optically stimulated luminescence (OSL), palaeomagnetics, macrofossils and molecular clock dating of basal ice from the Camp Century ice core in north western Greenland and the Kap København Formation in North Greenland. We combine these with results from the DYE 3 and GRIP ice cores from southern and central Greenland to evaluate the evolution of the GRIS. We find evidence that the present GRIS formed quickly some time before 900 kyr BP in a largely forested Greenland and that it has changed by only 30-40% of its present volume since it was established. Our DNA findings of boreal forest imply that warming of more than 10oC is needed to have an ice-free Greenland. This threshold is higher than earlier predictions and the corresponding palaeo-calibration of the GRIS contribution to sea level changes suggests a sensitivity of 0.3-0.5 m GSLR per degree Celsius of warming over Greenland. Ice core data from the deep Greenland ice cores can be used to reconstruct the size of the ice sheet during the present interglacial (the Holocene) and the last interglacial (the Eemian). Reconstructions based on stable water isotopes and gas content is used to validate the resilience of the GRIS.
Oceanographic Influences on Ice Shelves and Drainage in the Amundsen Sea
NASA Astrophysics Data System (ADS)
Minzoni, R. T.; Anderson, J. B.; Majewski, W.; Yokoyama, Y.; Fernandez, R.; Jakobsson, M.
2016-12-01
Marine sediment cores collected during the IB OdenSouthern Ocean 2009-2010 cruise are used to reconstruct the Holocene history of the Cosgrove Ice Shelf, which today occupies Ferrero Bay, a large embayment of eastern Pine Island Bay. Detailed sedimentology, geochemistry, and micropaleontology of cores, in conjunction with subbottom profiles, reveal an unexpected history of recession. Presence of planktic foraminifera at the base of Kasten Core-15 suggests an episode of enhanced circulation beneath a large ice shelf that covered the Amundsen Sea during the Early Holocene, and relatively warm water incursion has been interpreted as a potential culprit for major recession and ice mass loss by 10.7 cal kyr BP from radiocarbon dating. Fine sediment deposition and low productivity throughout the Mid Holocene indicate long-lived stability of the Cosgrove Ice Shelf in Ferrero Bay, despite regional warming evident from ice core data and ice shelf loss in the Antarctic Peninsula. High productivity and diatom abundance signify opening of Ferrero Bay and recession of the Cosgrove Ice Shelf to its present day configuration by 2.0 cal kyr BP. This coincides with deglaciation of an island near Canisteo Peninsula according to published cosmogenic exposure ages. Presence of benthic foraminifera imply that warm deep water influx beneath the extended Cosgrove Ice Shelf was a mechanism for under-melting the ice shelf and destabilizing the grounding line. Major ice shelf recession may also entail continental ice mass loss from the eastern sector of the Amundsen Sea during the Late Holocene. Oceanographic forcing remains a key concern for the current stability of the Antarctic Ice Sheet, especially along the tidewater margins of West Antarctica. Ongoing work on diatom and foraminiferal assemblages of the Late Holocene in Ferrero Bay and other fjord settings will improve our understanding of recent oceanographic changes and their potential influence on ice shelves and outlet glaciers that contribute to the mass balance of the West Antarctic Ice Sheet.
NASA Astrophysics Data System (ADS)
Zhang, Tao-Tao; Li, Ting-Yong; Cheng, Hai; Edwards, R. Lawrence; Shen, Chuan-Chou; Spötl, Christoph; Li, Hong-Chun; Han, Li-Yin; Li, Jun-Yun; Huang, Chun-Xia; Zhao, Xin
2017-03-01
We use a new spliced stalagmite oxygen isotope record from Yangkou Cave and Xinya Cave, Chongqing, southwest China, to reconstruct the centennial-millennial-scale changes in Asian Summer Monsoon (ASM) intensity between 58.0 and 79.3 thousand years before present (ka BP, before AD 1950). This multidecadally resolved record shows four strong ASM periods, corresponding to Greenland Interstadials (GIS) 17-20, and three weak ASM episodes, among which, the one starting at 61.5 ± 0.2 ka BP and ending at 59.4 ± 0.2 ka BP that may correlate with Heinrich Event 6. The close agreement of climate events between China and Greenland supports the notion that the ASM is dominantly governed by high-latitude forcings in the Northern Hemisphere. The short-lived interstadial GIS 18, however, lasted for over 3 kyr in the records derived from ASM region, reflecting a gradual decline of ASM intensity, which coincides with a millennial-scale warming trend in Antarctica. This suggests an additional forcing of the ASM by the Southern Hemisphere, which also affected GIS 8-12, H4 and H5, as shown by previous speleothem studies from the ASM region.
NASA Astrophysics Data System (ADS)
Gogorza, C. S.; Irurzun, M. A.; Lirio, J. M.; Nunez, H.; Chaparro, M. A.; Sinito, A. M.
2008-05-01
We conducted a detailed study of natural remanence and rock magnetic properties on sediments cores from lake Moreno (South-Western Argentina). Based on these measurements, we constructed a paleosecular variation (PSV) record (Irurzun et al., 2008) and a relative paleointensity stack for the period 11-21 14C. The Declination and Inclination logs of the characteristic remanent magnetization for the cores as function of shortened depth are obtained. The data from all cores were combined to obtain a composite record using the Fisher method. Comparison between stacked inclination and declination records of lake Moreno and results obtained in previous works, lake Escondido (Gogorza et al., 1999; Gogorza et al., 2002) and lake El Trébol (Irurzun et al., 2008), shows good agreement. This agreement made possible to transform the stacked curves into time series that spans the interval 11 and 21 14C kyr B.P. Rock magnetic properties of the sediments cores showed uniform magnetic mineralogy and grain size, suggesting that they were suitable for relative paleointensity studies. The remanent magnetization at 20mT (NRM20mT) was normalized using the anhysteric remanent magnetization at 20mT (ARM20mT), the saturation of the isothermal remanent magnetization at 20mT (SIRM20mT) and the low field magnetic susceptibility {k}. Coherence analysis showed that the normalized records were not affected by local environmental conditions. The recorded pseudo-Thellier paleointensity was compared with records obtained from conventional normalizing methods. Comparing the paleointensity curves with others obtained previously in other lakes in the area has allowed us to reach reliable conclusions about centennial-scale features. References: Gogorza, C.S.G., Sinito, A.M., Di Tommaso, I., Vilas, J.F., Creer, K., Núnez, H. Holocene Geomagnetic Secular Variations Recorded by Sediments from Escondido lake (South Argentina). Earth, Planets and Space, V51(2), 93- 106. 1999. Gogorza, C.S.G., Sinito, A.M., Lirio, J.M., Núnez, H., Chaparro, M.A.E., Vilas, J.F. Paleosecular Variations 0- 19,000 Years Recorded by Sediments from Escondido lake (Argentina). Physical of the Earth and Planetary Interiors, Elsevier, V133(1-4), 35-55. 2002. Irurzun, M.A., Gogorza, C.S.G., Sinito, A.M., Chaparro, M.A.E., Nuñez, H., Lirio, J.M. Paleosecular Variations 12-20 kyr. as Recorded by Sediments From lake Moreno (Southern Argentina). Studia Geophysica et Geodaetica. In Press. 2008.
Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Nakamura, Toshio; Newhall, Christopher G.; Kobayashi, Tetsuo
2006-01-01
This paper presents the AMS 14C dates of paleosols intercalated with tephra layers in the vicinity of Mayon Volcano, southern Luzon, Philippines. the obtained 14C dates are almost consistent with the stratigraphy of the Mayon tephra group. On the basis of calibrated 14C age of soil layer directly overlying the lowest ash layer, the oldest eruptive event must have taken place shortly before 20 cal kyr BP. This age is younger than the previous estimates for Mayon.
NASA Astrophysics Data System (ADS)
Chu, Shaoping
The exchange of moisture and heat between the atmosphere and the Earth's surface fundamentally affect the dynamics and thermodynamics of the climate system. In order to trace moisture flow through the climate system and examine its impact on climate, a hydrologic cycle and a land energy balance have been developed and incorporated into a coupled climate-thermodynamic sea ice (CCSI) model. The expanded CCSI model has been tested by comparing computed climate parameters with available observations and GCM modeling results. In general, the expanded model does a good job in simulating the large scale features of the atmospheric circulation and precipitation in both space and time. The expanded model has been used to examine the possibility that increased levels of CO_2 in the atmosphere may induce the growth of Northern Hemisphere ice sheets. Results of the study indicate that if summer ice albedo is high enough, and there is some mechanism for initially maintaining ice through the summer season, then it may be possible to have ice sheet growth under the conditions CO_2 induced warming, mainly the result of decreased summer ice melt in response to the higher land ice albedo, and not an increase in precipitation. The expanded model has also been used to examine the impact of Milankovitch solar radiation variations on the climate system, to study the mechanisms that produce glacial-interglacial cycles, especially with respect to the initiation of ice sheets. The results show the Milankovitch solar radiation variations affect the climate system most in the polar regions with the mean annual surface air temperature varying directly in response to changes in the annually averaged incoming solar radiation. However, the seasonal variations in the surface air temperatures are much more complex with large magnitude variations for brief times during the year. The study indicates that ice sheets may start to grow under the conditions of low insolation that occurred at 25, 70, and 115 kyr BP and a land ice minimum albedo of 0.53, with the largest growth rate at 115 kyr BP, approximately when the current 100 kyr cycle began as observed in the geological record.
NASA Astrophysics Data System (ADS)
Martinez Lamas, R.; Debret, M.; Deloffre, J.; Toucanne, S.
2017-12-01
The Black Sea has undergone alternating phases of lacustrine and marine environment over geological timescales directly related to its semi-enclosed character and to eustatic sea-level oscillations. During lowstand conditions, as during the last glacial period, the Black Sea was a giant lake disconnected from the global ocean. At that time, Black Sea water-level was controlled by regional climate, and by Eurasian rivers, including the Danube that acted as an outlet of European Ice Sheet and the Alpine ice cap. Thus, the paleo-mouth of the Danube river contains a high quality archive for the study of the paleohydrology of the Danube River and by extension of the European climate changes during the last 30 kyr. For this purpose, we have focused on the GAS-CS01 calypso long-piston core (33.4 m) which was taken during GHASS cruise (Ifremer, 2015) on the upper slope (240 m. depth) at about 25 km east of the Danube Canyon, i.e. in the sediment pile of the Danube paleo-mouth during the last glacial period. Our chronology reveals that core GAS-CS01 extends back to 31 cal kyr BP. The lithology of GAS-CS01 is characterized by clastic rythmites which are presented as a high-resolution Danube runoff proxy. Preliminary results of sedimentological and chronological analysis showed five peaks of terrestrial discharges between ca 31 and 14 ka BP, probably linked to five phases of the enhanced runoff during the studied period. In order to understand the origin and the depositional processes of this laminae, we combined sedimentary analysis (x-ray diffraction, x-ray fluorescence, grain size ...) and hyperspectral images analysis. Hyperspectral imagery is a non-destructive fast method classically used to quantify colour and provides data with high spatial (57-µm pixel size) and spectral (3 nm) resolution. The multi-proxy calibration is essential in order to obtain a high-resolution sedimentological dataset. This information allows us to reconstruct the nature and depositional process of the rythmites and thus decipher the Danube paleohydrology during the last 30 kyr.
NASA Astrophysics Data System (ADS)
Ahmed, M. N.; Bird, B. W.; Escobar, J.; Polissar, P. J.
2017-12-01
The Northern Hemisphere (NH) South American Monsoon (SAM) is a significant source of precipitation for the North Andes (north of 0˚) and has major control over regional hydroclimate variability. Holocene-length histories of NH SAM variability are few compared to the Southern Hemisphere (SH), limiting understanding of how these systems are connected on orbital and shorter timescales. Here, we present multi-proxy lake-sediment-based paleoclimate and paleohydrologic reconstructions from Lago de Tota, Colombia, using sedimentological, geochemical and leaf-wax hydrogen isotopic indicators from radiometically dated cores. The results indicate periods of wet and dry climate phases during the past 9000 BP with an average Holocene sedimentation rate 33cm/kyr. An increase in total organic matter (TOM) content and finer grain-size distributions was observed from 8000 to 3200 BP, suggesting a period of high lake level. This was followed by lower TOM and coarser grain sizes, suggesting lower lake levels from 3200 BP to the present. Although Tota's lake level pattern is antiphased with other lake level reconstructions from the NH and SH Andes, it is consistent with hypothesized changes in atmospheric convection over the Andes during the Holocene and the way in which they would be modified by the so-called dry island effect in the Colombian Andes. This suggests that a common forcing mechanism can be invoked to explain differing millennial-scale Andean hydroclimate changes, namely atmospheric convection. Orbital and Pacific atmosphere-forcing are therefore likely to have played a significant role in driving pan-Andean hydroclimate variability based on their inter-hemispheric influence on Andean convection.
NASA Astrophysics Data System (ADS)
Raynaud, D.; Duval, P.; Lemieux-Dudon, B.; Lipenkov, V.; Parrenin, F.
2006-12-01
Air content of polar ice, V, depends primarily on air pressure, temperature and pore volume at close-off prevailing at the site of ice formation. Here we present the recently measured V record of the EPICA DC (EDC) Antarctic ice core covering the last 650,000 years. The first 440,000 years remarkably displays the fundamental Milankovitch orbital frequencies. The 100 kyr period, corresponding to the eccentricity of the Earth's orbit and found in the V record, likely reflects essentially the pressure/elevation signature of V. But most of the variations observed in the V record cannot be explained neither by air pressure nor by temperature changes, and then should reflect properties influencing the porosity at close-off other than temperature. A wavelet analysis indicates a dominant period around 41 kyr, the period characteristic of the obliquity variations of the Earth's axis. We propose that the local insolation, via the solar radiation absorbed by the snow, leaves its imprint on the snow structure, then affects the snow-firn transition, and therefore is one of the controlling factors for the porosity at close-off. Such mechanism could account for the observed anti-correlation between local insolation and V. We estimate the variations of the absorbed solar flux in the near-surface snow layers on the basis of a simple albedo model (Lemieux-Dudon et al., this session). We compare the dating of the ice obtained using the local insolation signal deduced from the V record with a chronology based on ice flow modelling. We discuss the glaciological implications of the comparison between the two chronologies, as well as the potential of local insolation markers for approaching an absolute dating of ice core. The latest results covering the period 440-650 kyr BP will also be presented.
Glacier retreat in New Zealand during the Younger Dryas stadial.
Kaplan, Michael R; Schaefer, Joerg M; Denton, George H; Barrell, David J A; Chinn, Trevor J H; Putnam, Aaron E; Andersen, Bjørn G; Finkel, Robert C; Schwartz, Roseanne; Doughty, Alice M
2010-09-09
Millennial-scale cold reversals in the high latitudes of both hemispheres interrupted the last transition from full glacial to interglacial climate conditions. The presence of the Younger Dryas stadial (approximately 12.9 to approximately 11.7 kyr ago) is established throughout much of the Northern Hemisphere, but the global timing, nature and extent of the event are not well established. Evidence in mid to low latitudes of the Southern Hemisphere, in particular, has remained perplexing. The debate has in part focused on the behaviour of mountain glaciers in New Zealand, where previous research has found equivocal evidence for the precise timing of increased or reduced ice extent. The interhemispheric behaviour of the climate system during the Younger Dryas thus remains an open question, fundamentally limiting our ability to formulate realistic models of global climate dynamics for this time period. Here we show that New Zealand's glaciers retreated after approximately 13 kyr bp, at the onset of the Younger Dryas, and in general over the subsequent approximately 1.5-kyr period. Our evidence is based on detailed landform mapping, a high-precision (10)Be chronology and reconstruction of former ice extents and snow lines from well-preserved cirque moraines. Our late-glacial glacier chronology matches climatic trends in Antarctica, Southern Ocean behaviour and variations in atmospheric CO(2). The evidence points to a distinct warming of the southern mid-latitude atmosphere during the Younger Dryas and a close coupling between New Zealand's cryosphere and southern high-latitude climate. These findings support the hypothesis that extensive winter sea ice and curtailed meridional ocean overturning in the North Atlantic led to a strong interhemispheric thermal gradient during late-glacial times, in turn leading to increased upwelling and CO(2) release from the Southern Ocean, thereby triggering Southern Hemisphere warming during the northern Younger Dryas.
Volcanic synchronisation of the EPICA-DC and TALDICE ice cores for the last 42 kyr BP
NASA Astrophysics Data System (ADS)
Severi, M.; Udisti, R.; Becagli, S.; Stenni, B.; Traversi, R.
2012-04-01
An age scale synchronisation between the Talos Dome and the EPICA Dome C ice cores was carried on through the identification of several common volcanic signatures for the last 42 kyr. Using this tight stratigraphic link we transferred the EDC age scale to the Talos Dome ice core producing a new age scale for the last 12 kyr. We estimated the discrepancies between the modeled TALDICE-1 age scale and the new one during the studied period, by evaluating the ratio R of the apparent duration of temporal intervals between pairs of isochrones. Except for a very few cases, R ranges between 0.8 and 1.2 corresponding to an uncertainty of up to 20% in the estimate of the time duration in at least one of the two ice cores. At this stage our approach does not allow us unequivocally to find out which of the models is affected by errors, but, taking into account only the historically known volcanic events, we found that discrepancies up to 200 years appears in the last two millennia in the TALDICE-1 model, while our new age scale shows a much better agreement with the volcanic absolute horizons. Thus, we propose for the Talos Dome ice core a new age scale (covering the whole Holocene) obtained by a direct transfer, via our stratigraphic link, from the EDC modelled age scale by Lemieux-Dudon et al. (2010).
Effects of the Bering Strait closure on AMOC and global climate under different background climates
NASA Astrophysics Data System (ADS)
Hu, Aixue; Meehl, Gerald A.; Han, Weiqing; Otto-Bliestner, Bette; Abe-Ouchi, Ayako; Rosenbloom, Nan
2015-03-01
Previous studies have suggested that the status of the Bering Strait may have a significant influence on global climate variability on centennial, millennial, and even longer time scales. Here we use multiple versions of the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM, versions 2 and 3) to investigate the influence of the Bering Strait closure/opening on the Atlantic Meridional Overturning Circulation (AMOC) and global mean climate under present-day, 15 thousand-year before present (kyr BP), and 112 kyr BP climate boundary conditions. Our results show that regardless of the version of the model used or the widely different background climates, the Bering Strait's closure produces a robust result of a strengthening of the AMOC, and an increase in the northward meridional heat transport in the Atlantic. As a consequence, the climate becomes warmer in the North Atlantic and the surrounding regions, but cooler in the North Pacific, leading to a seesaw-like climate change between these two basins. For the first time it is noted that the absence of the Bering Strait throughflow causes a slower motion of Arctic sea ice, a reduced upper ocean water exchange between the Arctic and North Atlantic, reduced sea ice export and less fresh water in the North Atlantic. These changes contribute positively to the increased upper ocean density there, thus strengthening the AMOC. Potentially these changes in the North Atlantic could have a significant effect on the ice sheets both upstream and downstream in ice age climate, and further influence global sea level changes.
Carbon storage in the mid-depth Atlantic during millennial-scale climate events
NASA Astrophysics Data System (ADS)
Lacerra, Matthew; Lund, David; Yu, Jimin; Schmittner, Andreas
2017-08-01
Carbon isotope minima were a ubiquitous feature of the mid-depth Atlantic during Heinrich Stadial 1 (HS1, 14.5-17.5 kyr BP) and the Younger Dryas (YD, 11.5-12.9 kyr BP), yet their cause remains unclear. Recent evidence indicates that North Atlantic processes triggered the δ13C anomalies, with weakening of the Atlantic Meridional Overturning Circulation (AMOC) being the most likely driver. Model simulations suggest that slowing of the AMOC increases the residence time of mid-depth waters in the Atlantic, resulting in the accumulation of respired carbon. Here we assess ΣCO2 variability in the South Atlantic using benthic foraminiferal B/Ca, a proxy for [CO32-]. Using replicated high-resolution B/Ca records from 2 km water depth on the Brazil Margin, we show that [CO32-] decreased during HS1 and the YD, synchronous with apparent weakening of the AMOC. The [CO32-] response is smaller than in the tropical North Atlantic during HS1, indicating there was a north-south gradient in the [CO32-] signal similar to that for δ13C. The implied variability in ΣCO2 is consistent with model results, suggesting that carbon is temporarily sequestered in the mid-depth Atlantic during millennial-scale stadial events. Using a carbon isotope mass balance, we estimate that approximately 75% of the HS1 δ13C signal at the Brazil Margin was driven by accumulation of remineralized carbon, highlighting the nonconservative behavior of δ13C during the last deglaciation.
NASA Astrophysics Data System (ADS)
Roy, P.; Quiroz-Jiménez, D.; Charles-Polo, M.; Lozano-Santacruz, R.
2013-05-01
The arid northern Mexico is part of the Sonora and Chihuahua Deserts and both the deserts belong to the North American Desert system. The North American Monsoon (NAM) or Mexican Monsoon refers to the system that brings summer precipitation to arid northern Mexico and southwestern USA. It contributes ca. 70-80% of total annual precipitation along the western slopes of the Sierra Madre Occidental (northern Mexico) and ca. 40-50% of total precipitation in Arizona and New Mexico (southwest USA). High-resolution geochemical data from lacustrine deposits located between 23°N and 31°N (paleolakes La Salada, Babicora and San Felipe) provide spatio-temporal and millennial-scale paleohydrological records related to the dynamics of summer precipitation as well as westerly winter storms over the last glacial period. The inverse relationship between proxy records of runoff into lacustrine basins of northern Mexico and winter precipitation over the southwestern USA indicate that the westerly winter storms had minimal influence south of 30°N and the paleohydrological changes are mainly summer precipitation controlled. The variation in summer season precipitation between 20 and 60 cal. kyr BP was driven by long term changes in summer insolation. During an interval of lower summer insolation (i.e. >60 cal. kyr BP), the higher summer precipitation could be related to the NAM expansion as a result of reduced north hemisphere ice sheets. On a millennial-scale, the region received more than average precipitation during the warm interstadials and vice versa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, B.; Valdes, P.J.
The U.K. University Global Atmospheric Modeling Programme GCM is used to investigate whether the growth of Northern Hemisphere ice sheets could have been initiated by changes of orbital parameters and sea surface temperatures. Two different orbital configurations, corresponding to the present day and 115 kyr BP are used. The reduced summer solar insolation in the Northern Hemisphere results in a decrease of the surface temperature by 4{degrees} to 10{degrees}C in the northern continents and to perennial snow in some high-latitude regions. Therefore, the model results support the hypothesis that a deficit of summer insolation can create conditions favorable for initiationmore » of ice sheet growth in the Northern Hemisphere. A decreased sea surface temperature northward of 65{degrees}N during the Northern Hemisphere summer may contribute to the maintenance of ice sheets. A simple mixed-layer ocean model coupled to the GCM indicates that the changes of sea surface temperature and extension of sea ice due to insolation changes play an important role in inception of the Fennoscandian, Laurentide, and Cordilleran ice sheets. The model results suggest that the regions of greatest sensitivity for ice initiation are the Canadian Archipelago, Baffin Island, Tibetan Plateau, Scandinavia, Siberia, Alaska, and Keewatin, where changing orbital parameters to 115 kyr BP results in the snow cover remaining throughout the warmer summer, leading to long-term snow accumulation. The model results are in general agreement with geological evidence and are the first time that a GCM coupled with a mixed layer ocean has reproduced the inception of the Northern Hemisphere ice sheets. 69 refs., 21 figs., 3 tabs.« less
Bischoff, J.L.; Shamp, D.D.; Aramburu, Arantza; Arsuaga, J.L.; Carbonell, E.; Bermudez de Castro, Jose Maria
2003-01-01
The Sima de los Huesos site of the Atapuerca complex near Burgos, Spain contains the skeletal remains of at least 28 individuals in a mud breccia underlying an accumulation of the Middle Pleistocene cave bear (U. deningeri). Earlier dating estimates of 200 to 320 kyr were based on U-series and ESR methods applied to bones, made inaccurate by unquantifiable uranium cycling. We report here on a new discovery within the Sima de los Huesos of human bones stratigraphically underlying an in situ speleothem. U-series analyses of the speleothem shows the lower part to be at isotopic U/Th equilibrium, translating to a firm lower limit of 350 kyr for the SH hominids. Finite dates on the upper part suggest a speleothem growth rate of c. 1 cm/32 kyr. This rate, along with paleontological constraints, place the likely age of the hominids in the interval of 400 to 600 kyr. ?? 2002 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kingslake, Jonathan; Martín, Carlos; Arthern, Robert J.; Corr, Hugh F. J.; King, Edward C.
2016-09-01
We date a recent ice-flow reorganization of an ice divide in the Weddell Sea Sector, West Antarctica, using a novel combination of inverse methods and ice-penetrating radars. We invert for two-dimensional ice flow within an ice divide from data collected with a phase-sensitive ice-penetrating radar while accounting for the effect of firn on radar propagation and ice flow. By comparing isochronal layers simulated using radar-derived flow velocities with internal layers observed with an impulse radar, we show that the divide's internal structure is not in a steady state but underwent a disturbance, potentially implying a regional ice-flow reorganization, 2.5 (1.8-2.9) kyr B.P. Our data are consistent with slow ice flow in this location before the reorganization and the ice divide subsequently remaining stationary. These findings increase our knowledge of the glacial history of a region that lacks dated constraints on late-Holocene ice-sheet retreat and provides a key target for models that reconstruct and predict ice-sheet behavior.
Terrestrial biosphere changes over the last 120 kyr
NASA Astrophysics Data System (ADS)
Hoogakker, B. A. A.; Smith, R. S.; Singarayer, J. S.; Marchant, R.; Prentice, I. C.; Allen, J. R. M.; Anderson, R. S.; Bhagwat, S. A.; Behling, H.; Borisova, O.; Bush, M.; Correa-Metrio, A.; de Vernal, A.; Finch, J. M.; Fréchette, B.; Lozano-Garcia, S.; Gosling, W. D.; Granoszewski, W.; Grimm, E. C.; Grüger, E.; Hanselman, J.; Harrison, S. P.; Hill, T. R.; Huntley, B.; Jiménez-Moreno, G.; Kershaw, P.; Ledru, M.-P.; Magri, D.; McKenzie, M.; Müller, U.; Nakagawa, T.; Novenko, E.; Penny, D.; Sadori, L.; Scott, L.; Stevenson, J.; Valdes, P. J.; Vandergoes, M.; Velichko, A.; Whitlock, C.; Tzedakis, C.
2016-01-01
A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with simulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial-interglacial cycle. Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those inferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large-scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are reflected in BIOME4 simulations of global net primary productivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composition of seawater as terrestrial carbon is depleted in 13C.
NASA Astrophysics Data System (ADS)
Fang, Qiang; Wu, Huaichun; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong
2018-05-01
The Late Paleozoic Ice Age (ca. 335-260 Ma, LPIA) has long been considered as an analogy for the Cenozoic ice age since the Oligocene. The impact of astronomical forcing on the LPIA glaciation has been hampered due to the low-resolution (multi-million year scale) time framework. In the present study, high-resolution cyclostratigraphy based on magnetic susceptibility (MS), covering the Serpukhovian to late Moscovian icehouse climate, has been investigated in the Luokun section of South China. Power spectral analysis of the MS series reveals 3.44-4 m, 0.8-1.07 m, 0.3-0.32 m, and 0.17-0.19 m thick sedimentary cycles. Based on the available biostratigraphic constraints, calibrating the 3.44-4 m cycles to the 405 kyr eccentricity cycles indicates short eccentricity (136 and 100 kyr), short obliquity (34 kyr), and precession (19 and 15.9 kyr) orbital bands in addition to long eccentricity (405 kyr) band. We assigned the basal Serpukhovian and Moscovian stages in Luokun with the numerical ages from Geological Time Scale 2012 to construct two floating time scales ranging from 331.55 ± 0.5 Ma to 323.2 ± 0.5 Ma, and from 315.34 ± 0.35 Ma to 310.17 ± 0.35 Ma, respectively. The modulation of main obliquity (s4-s3 term) has a main periodicity of ∼1200 kyr. The modulation of ∼100 kyr eccentricity (g4-g3 term) shows a main periodicity of ∼2400 kyr with subordinate periodicities of ∼1620 and ∼1200 kyr for the Serpukhovian, and a main periodicity of ∼1600 kyr for the Moscovian. They may provide the geological evidence for a chaotic resonance associated with interactions between the orbits of Mars and the Earth in the Carboniferous. A duration of 7.68 ± 0.15 Myr was estimated for the Serpukhovian Stage. Eight higher accumulation rate events due to glacioeustatic drawdown were temporally constrained, and show close correspondence to far-field and near-field reconstructions of the LPIA glaciation. Glacioeustasy was paced with 405-kyr-long eccentricity and 1.2-Myr obliquity amplitude cycles during the Serpukhovian and Moscovian stages, likely indicating the nature in the warmer icehouse world similar to that of the Oligocene to Pliocene.
NASA Astrophysics Data System (ADS)
Muñoz, Paula; Gorin, Georges; Parra, Norberto; Velásquez, Cesar; Lemus, Diego; Monsalve-M., Carlos; Jojoa, Marcela
2017-01-01
The Páramo de Frontino (3460 m elevation) in Colombia is located approximately halfway between the Pacific and Atlantic oceans. It contains a 17 kyr long, stratigraphically continuous sedimentary sequence dated by 30 AMS 14C ages. Our study covers the last 11,500 cal yr and focuses on the biotic (pollen) and abiotic (microfluorescence-X or μXRF) components of this high mountain ecosystem. The pollen record provides a proxy for temperature and humidity with a resolution of 20-35 yr, and μXRF of Ti and Fe is a proxy for rainfall with a sub-annual (ca. 6-month) resolution. Temperature and humidity display rapid and significant changes over the Holocene. The rapid transition from a cold (mean annual temperature (MAT) 3.5 °C lower than today) and wet Younger Dryas to a warm and dry early Holocene is dated at 11,410 cal yr BP. During the Holocene, MAT varied from ca. 2.5 °C below to 3.5° above present-day temperature. Warm periods (11,410-10,700, 9700-6900, 4000-2400 cal yr BP) were separated by colder intervals. The last 2.4 kyr of the record is affected by human impact. The Holocene remained dry until 7500 cal yr BP. Then, precipitations increased to reach a maximum between 5000 and 4500 cal yr BP. A rapid decrease occurred until 3500 cal yr BP and the late Holocene was dry. Spectral analysis of μXRF data show rainfall cyclicity at millennial scale throughout the Holocene, and at centennial down to ENSO scale in more specific time intervals. The highest rainfall intervals correlate with the highest activity of ENSO. Variability in solar output is possibly the main cause for this millennial to decadal cyclicity. We interpret ENSO and ITCZ as the main climate change-driving mechanisms in Frontino. Comparison with high-resolution XRF data from the Caribbean Cariaco Basin (a proxy for rainfall in the coastal Venezuelian cordilleras) demonstrates that climate in Frontino was Pacific-driven (ENSO-dominated) during the YD and early Holocene, whereas it was Atlantic-driven in Cariaco (ITCZ-dominated). From ca. 8000 cal yr BP, climate in both areas was under the dual influence of ENSO and ITCZ, thereby showing existing teleconnections between the tropical Pacific and Atlantic oceans. The Frontino record is to date the highest-resolution Holocene study in NW Colombia. An implication of these results is that new records should be analyzed with multiproxy tools, in particular those providing high resolution time series, such as μXRF.
Indian Summer Monsoon dynamics during Termination II and MIS 5e
NASA Astrophysics Data System (ADS)
Magiera, Matthias; Erhardt, Andrea M.; Hartland, Adam; Kwiecien, Ola; Cheng, Hai; Immenhauser, Adrian; Turchyn, Alexandra; Breitenbach, Sebastian F. M.
2017-04-01
The interpretation of speleothem oxygen isotope ratios (δ18O) as proxy for Indian Summer Monsoon (ISM) dynamics is ambiguous, due to multiple influencing factors. Here we combine δ18O and calcium isotope δ44Ca analyses with elemental data to delineate regional shifts in moisture source, local rainfall amount, and changes in ISM intensity and length during Termination II and MIS 5e. Oxygen isotope ratios reflect a mixed signal of moisture source dynamics and rainfall amount; δ44Ca and Mg/Ca ratios are interpreted as proxies for local effective moisture and prior calcite precipitation (PCP) in the epikarst. The age of stalagmite MAW-3 from Mawmluh Cave, NE India, is constraint by six U-series dates. 108 samples, obtained at 0.4 mm resolution from the 70 mm long speleothem sample, have been analysed for δ18O, δ44Ca and Mg/Ca. Oxygen isotope ratios were measured on a ThermoFisher Scientific MAT 253 at Ruhr-University Bochum. Elemental ratios were measured on a quadrupole ICP-MS at Waikato University. Calcium isotope ratios were analyzed on a ThermoFisher Scientific Triton at University of Cambridge. MAW-3 grew from 136 kyrs BP to 96 kyrs BP, covering Termination II and MIS 5e. Oxygen isotope values are high (ca. +0.91 ‰) during Termination II, reach a minimum during MIS 5e (-3.5 ‰), and rise again to -0.2 ‰ at the end of MIS 5e. Calcium isotope ratios range from -0.32 ‰ to -0.70 ‰ and show a positive correlation (R2= 0.7) with δ18O. High δ18O values during Termination II reflect reduced atmospheric circulation and/or a proximal moisture source (Bay of Bengal), implying lowered ISM intensity. A positive correlation of δ18O with δ44Ca suggests concurrent changes of moisture source location and local rainfall amount, with a proximal moisture source and reduced effective rainfall during periods of weak ISM. Elevated Mg/Ca ratios at such intervals corroborate PCP occurrence, which reflects dry conditions. The beginning of MIS 5e (ca. 132 kyrs BP) is marked by a rapid change to lower δ18O and δ44Ca, suggesting increased local infiltration with increasing ISM rainfall, and a concurrent change to a more distal moisture source. The MAW-3 multi-proxy record compares well with reconstructions from China and northern India, the latter being more depleted, due to Rayleigh fractionation. We suggest that multi-proxy analyses of δ18O, δ44Ca and Mg/Ca greatly help to delineate regional circulation pattern and local effective moisture dynamics in monsoonal settings.
Volcanic synchronisation of the EPICA-DC and TALDICE ice cores for the last 42 kyr BP
NASA Astrophysics Data System (ADS)
Severi, M.; Udisti, R.; Becagli, S.; Stenni, B.; Traversi, R.
2012-03-01
The age scale synchronisation between the Talos Dome and the EPICA Dome C ice cores was carried on through the identification of several common volcanic signatures. This paper describes the rigorous method, using the signature of volcanic sulphate, which was employed for the last 42 kyr of the record. Using this tight stratigraphic link, we transferred the EDC age scale to the Talos Dome ice core, producing a new age scale for the last 12 kyr. We estimated the discrepancies between the modelled TALDICE-1 age scale and the new scale during the studied period, by evaluating the ratio R of the apparent duration of temporal intervals between pairs of isochrones. Except for a very few cases, R ranges between 0.8 and 1.2, corresponding to an uncertainty of up to 20% in the estimate of the time duration in at least one of the two ice cores. At this stage our approach does not allow us to unequivocally identify which of the models is affected by errors, but, taking into account only the historically known volcanic events, we found that discrepancies up to 200 yr appear in the last two millennia in the TALDICE-1 model, while our new age scale shows a much better agreement with the volcanic absolute horizons. Thus, we propose for the Talos Dome ice core a new age scale (covering the whole Holocene) obtained by a direct transfer, via our stratigraphic link, from the EDC modelled age scale by Lemieux-Dudon et al. (2010).
NASA Astrophysics Data System (ADS)
Margalef, O.; Cacho, I.; Pla-Rabes, S.; Cañellas-Boltà, N.; Pueyo, J. J.; Sáez, A.; Pena, L. D.; Valero-Garcés, B. L.; Rull, V.; Giralt, S.
2015-04-01
Marine Isotope Stage 3 (MIS 3, 59.4-27.8 kyr BP) is characterized by the occurrence of rapid millennial-scale climate oscillations known as Dansgaard-Oeschger cycles (DO) and by abrupt cooling events in the North Atlantic known as Heinrich events. Although both the timing and dynamics of these events have been broadly explored in North Atlantic records, the response of the tropical and subtropical latitudes to these rapid climatic excursions, particularly in the Southern Hemisphere, still remains unclear. The Rano Aroi peat record (Easter Island, 27° S) provides a unique opportunity to understand atmospheric and oceanic changes in the South Pacific during these DO cycles because of its singular location, which is influenced by the South Pacific Anticyclone (SPA), the Southern Westerlies (SW), and the Intertropical Convergence Zone (ITCZ) linked to the South Pacific Convergence Zone (SPCZ). The Rano Aroi sequence records 6 major events of enhanced precipitation between 38 and 65 kyr BP. These events are compared with other hydrological records from the tropical and subtropical band supporting a coherent regional picture, with the dominance of humid conditions in Southern Hemisphere tropical band during Heinrich Stadials (HS) 5, 5a and 6 and other Stadials while dry conditions prevailed in the Northern tropics. This antiphased hydrological pattern between hemispheres has been attributed to ITCZ migration, which in turn might be associated with an eastward expansion of the SPCZ storm track, leading to an increased intensity of cyclogenic storms reaching Easter Island. Low Pacific Sea Surface Temperature (SST) gradients across the Equator were coincident with the here-defined Rano Aroi humid events and consistent with a reorganization of Southern Pacific atmospheric and oceanic circulation also at higher latitudes during Heinrich and Dansgaard-Oeschger stadials.
NASA Astrophysics Data System (ADS)
Rella, S. F.; Uchida, M.
2012-12-01
Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), CaCO3, benthic foraminiferal δ18O and the coarse grain size fraction from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean. TOC shows orbital-scale increases and decreases during the past ~155 kyr that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold periods. At millennial scales, increases in TOC might correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 45 ka BP indicating a possible response to abrupt northern hemispheric temperature changes. Between 70 and 45 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC variability. CaCO3 contents tend to anti-correlate with TOC on both orbital and millennial time scales, which we interpret in terms of enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods and increased organic carbon advection from the Siberian Arctic during cold periods when the Beaufort Gyre contracted. We propose that this pattern may be related to orbital- and millennial-scale variations of dominant atmospheric surface pressure systems expressed in mode shifts of the Arctic Oscillation.
'Cape capture': Geologic data and modeling results suggest the holocene loss of a Carolina Cape
Thieler, E.R.; Ashton, A.D.
2011-01-01
For more than a century, the origin and evolution of the set of cuspate forelands known as the Carolina Capes-Hatteras, Lookout, Fear, and Romain-off the eastern coast of the United States have been discussed and debated. The consensus conceptual model is not only that these capes existed through much or all of the Holocene transgression, but also that their number has not changed. Here we describe bathymetric, lithologic, seismic, and chronologic data that suggest another cape may have existed between Capes Hatteras and Lookout during the early to middle Holocene. This cape likely formed at the distal end of the Neuse-Tar-Pamlico fiuvial system during the early Holocene transgression, when this portion of the shelf was fiooded ca. 9 cal (calibrated) kyr B.P., and was probably abandoned by ca. 4 cal kyr B.P., when the shoreline attained its present general configuration. Previously proposed mechanisms for cape formation suggest that the large-scale, rhythmic pattern of the Carolina Capes arose from a hydrodynamic template or the preexisting geologic framework. Numerical modeling, however, suggests that the number and spacing of capes can be dynamic, and that a coast can self-organize in response to a high-angle-wave instability in shoreline shape. In shoreline evolution model simulations, smaller cuspate forelands are subsumed by larger neighbors over millennial time scales through a process of 'cape capture.' The suggested former cape in Raleigh Bay represents the first interpreted geological evidence of dynamic abandonment suggested by the self-organization hypothesis. Cape capture may be a widespread process in coastal environments with large-scale rhythmic shoreline features; its preservation in the sedimentary record will vary according to geologic setting, physical processes, and sea-level history. ?? 2011 Geological Society of America.
‘Cape capture’: Geologic data and modeling results suggest the Holocene loss of a Carolina Cape
Thieler, E. Robert; Ashton, Andrew D.
2011-01-01
For more than a century, the origin and evolution of the set of cuspate forelands known as the Carolina Capes—Hatteras, Lookout, Fear, and Romain—off the eastern coast of the United States have been discussed and debated. The consensus conceptual model is not only that these capes existed through much or all of the Holocene transgression, but also that their number has not changed. Here we describe bathymetric, lithologic, seismic, and chronologic data that suggest another cape may have existed between Capes Hatteras and Lookout during the early to middle Holocene. This cape likely formed at the distal end of the Neuse-Tar-Pamlico fluvial system during the early Holocene transgression, when this portion of the shelf was flooded ca. 9 cal (calibrated) kyr B.P., and was probably abandoned by ca. 4 cal kyr B.P., when the shoreline attained its present general configuration. Previously proposed mechanisms for cape formation suggest that the large-scale, rhythmic pattern of the Carolina Capes arose from a hydrodynamic template or the preexisting geologic framework. Numerical modeling, however, suggests that the number and spacing of capes can be dynamic, and that a coast can self-organize in response to a high-angle-wave instability in shoreline shape. In shoreline evolution model simulations, smaller cuspate forelands are subsumed by larger neighbors over millennial time scales through a process of ‘cape capture.’ The suggested former cape in Raleigh Bay represents the first interpreted geological evidence of dynamic abandonment suggested by the self-organization hypothesis. Cape capture may be a widespread process in coastal environments with large-scale rhythmic shoreline features; its preservation in the sedimentary record will vary according to geologic setting, physical processes, and sea-level history.
The influence of extreme seasonality on lake temperatures during Younger Dryas
NASA Astrophysics Data System (ADS)
Schenk, F.; Stranne, C.; Wohlfarth, B.
2016-12-01
The Younger Dryas cold reversal ( 12.9 to 11.7 kyr BP) is the last abrupt climate change event interrupting the warming of the late deglaciation right before the onset of the Holocene. The spatial pattern of the cooling event seen in proxy data is largely consistent with those of climate simulations and suggests that the Younger Dryas is linked to a significant slowdown of the Atlantic Meridional Overturning Circulation (AMOC). However, despite the strong ocean cooling of up to 6 K along the European coasts and a significant southward extension of sea-ice during the Younger Dryas, different climate simulations do not reproduce summer cooling over Europe as seen in July lake temperature reconstructions based on chironomids. Aquatic plants used as climate indicator species do in contrast not show such a strong cooling and are more in line with climate simulations. To investigate this discrepancy, we use two numerical lake models driven by high resolution climate model output for the Younger Dryas and the preceding warm period of the late Alleröd ( 13 kyr BP). First, we investigate to which extent simulated lake temperatures in summer still reflect atmospheric summer temperatures despite a strong increase in seasonality during Younger Dryas. Because the (paleo-)lake depths are usually not well known, we use the lake models to test their sensitivity to changes in seasonality as a function of depth. Second, we artificially change the temperatures used as forcing for the lake models to investigate how cold air temperatures would need to be to match the up to 5 K July cooling suggested by chironomids. The results show that more care needs to be taken about the location and (paleo-)lake depths when comparing lake temperatures with simulated air temperatures. The simulated atmospheric circulation patterns during summer appears to be rather insensitive to the Younger Dryas cooling owing to the dominance of high atmospheric pressure over the Euro-Atlantic region. This would support a recent study linking extremely cold North Atlantic Ocean temperature anomalies to severe heat waves in Europe since the 1980s (Duchez et al. 2016, ERL, Vol. 11, No. 7).
NASA Astrophysics Data System (ADS)
Rella, S. F.; Uchida, M.
2011-12-01
Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), CaCO3, benthic foraminiferal δ18O and the coarse grain size fraction from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean, a region potentially sensitively responding to past variability in surface current regimes and sedimentary processes such as coastal erosion. An age model based on oxygen stratigraphy, radiocarbon dating and lithological constraints suggests that the piston core records paleoenvironmental changes of the last 155 kyr. TOC shows orbital-scale increases and decreases that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold episodes of the last two glacial-interglacial cycles. At millennial scales, increases in TOC might correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 45 ka before present (BP) indicating a possible response to abrupt northern hemispheric temperature changes. Between 70 and 45 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC variability. CaCO3 content tends to anti-correlate with TOC on both orbital and millennial time scales, which we interpret in terms of enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods of the last two glacial-interglacial cycles and increased organic carbon advection from the Siberian Arctic during cold periods when the Beaufort Gyre contracted. We propose that this pattern may be related to orbital- and millennial-scale variations of dominant atmospheric surface pressure systems expressed in mode shifts of the Arctic Oscillation.
Sedimentary organic matter variations in the Chukchi Borderland over the last 155 kyr
NASA Astrophysics Data System (ADS)
Rella, S. F.; Uchida, M.
2011-03-01
Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), C/N and CaCO3 from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean, a region potentially sensitively responding to past variability in surface current regimes and sedimentary processes such as coastal erosion. An age model based on correlation of our CaCO3 record with the benthic δ18O stack, supplemented by lithological constraints, suggests that the piston core records paleoenvironmental changes of the last 155 kyr. According to this age model, TOC and C/N show orbital-scale increases and decreases that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold episodes of the last two glacial-interglacial cycles. At millennial scales, increases in TOC and C/N appear to correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 40 ka before present (BP) and thus seem to respond to abrupt northern hemispheric temperature changes. Between 65 and 40 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC and C/N variability. CaCO3 content tends to anti-correlate with TOC and C/N on both orbital and millennial time scales, which we interpret as enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods of the last two glacial-interglacial cycles and increased terrestrial organic carbon advection from the Siberian Arctic during cold periods when the Beaufort Gyre contracted. We propose that this pattern may be related to orbital- and millennial-scale variations of dominant atmospheric surface pressure systems expressed in mode shifts of the Arctic Oscillation.
NASA Astrophysics Data System (ADS)
Ariztegui, Daniel; Anselmetti, Flavio; Zosso, Anouk
2016-04-01
In recent years, an increasing number of studies have focused on the role of the tropics and the Equator as triggers of changes in the climate system at different time scales. There is, however, a remarkable paucity of continuous paleoenvironmental records in these areas preventing a better understanding of their role as climate forcing mechanisms. Lac Divangui is located at 2° south of the Equator in the forest of Rabi-Kunga, Gabon. This 1-km diameter basin attains a maximum depth of 80 m and provides a unique site to obtain a continuous archive of environmental changes through time. Previous investigations have shown that these organic-rich sediments contains large amounts of gas that, from a seismic surveying perspective, has prevented penetration of the acoustic signal. A range-finding study of the total organic fraction using Rock-Eval pyrolysis in a sedimentary core from the center of the basin showed a stable total organic content that is very high in average (~10%). A more detailed look into both the total organic fraction and certain biological remains, however, have shown substantial changes in both the quality of the total organic matter as well as the dominant diatom assemblages since 4.2 kyrs. BP. Although wet conditions appear to dominate the studied interval, several periods of dryness were identified around 2.4, 1.5 and 0.75 kyrs. BP. Since this last date the prevailing environmental conditions appear to be similar than today. These data are in agreement with observations in other African regions and are interpreted as related to the north-south movement of the Intertropical Convergence Zone (ITCZ). Gabon has the highest biodiversity of tropical Africa and previous investigations have shown that the tropical rainforest has reacted to both climate and human-induced environmental changes throughout the Holocene. Our combined sedimentological and organic remains results allow reconstructing the tropical rainforest history through time, which can be in turn correlated with several well-preserved archaeological sites in the area showing variable intervals of human occupation since the middle Holocene.
Towards Greenland Glaciation: cumulative or abrupt transition?
NASA Astrophysics Data System (ADS)
Ramstein, Gilles; Tan, Ning; Ladant, Jean-baptiste; Dumas, Christophe; Contoux, Camille
2017-04-01
During the mid-Pliocene warming period (3-3.3 Ma BP), the global annual mean temperatures inferred by data and model studies were 2-3° warmer than pre-industrial values. Accordingly, Greenland ice sheet volume is supposed to reach at the most, only half of that of present-day [Haywood et al. 2010]. Around 2.7-2.6 Ma BP, just ˜ 500 kyr after the warming peak of mid-Pliocene, the Greenland ice sheet has reached its full size [Lunt et al. 2008]. A crucial question concerns the evolution of the Greenland ice sheet from half to full size during the 3 - 2.5 Ma period. Data show a decreasing trend of atmospheric CO2 concentration from 3 Ma to 2.5 Ma [Seki et al.2010; Bartoli et al. 2011; Martinez et al. 2015]. However, a recent study [Contoux et al. 2015] suggests that a lowering of CO2 is not sufficient to initiate a perennial glaciation on Greenland and must be combined with low summer insolation to preserve the ice sheet during insolation maxima. This suggests rather a cumulative process than an abrupt event. In order to diagnose the evolution of the ice sheet build-up, we carry on, for the first time, a transient simulation of climate and ice sheet evolutions from 3 Ma to 2.5 Ma. This strategy enables us to investigate the waxing and waning of the ice sheet during several orbital cycles. We use a tri-dimensional interpolation method designed by Ladant et al. (2014), which allows the evolution of CO2 concentration and of orbital parameters, and the evolution of the Greenland ice sheet size to be taken into account. By interpolating climatic snapshot simulations ran with various possible combinations of CO2, orbits and ice sheet sizes, we can build a continuous climatic forcing that is then used to provide 500 kyrs-long ice sheet simulations. With such a tool, we may offer a physically based answer to different CO2 reconstructions scenarios and analyse which one is the most consistent with Greenland ice sheet buildup.
The Holocene Indian Summer Monsoon Variability Recorded in a Stalagmite From NE India.
NASA Astrophysics Data System (ADS)
Breitenbach, S.; Plessen, B.; Oberhänsli, H.; Marwan, N.; Lund, D.; Adkins, J.; Günther, D.; Fricker, M.; Haug, G.
2007-12-01
South Asian economies depend on the timely onset of the Indian Summer Monsoon (ISM), but understanding of the ISM variability is incomplete, due to lack of information on past ISM. Our stalagmite is the first well-dated climate record from the heart of the ISM region spanning the past 11,000 years. The speleothem was collected from Krem Umsynrang Cave, located 825 m above sea level in NE India. This region is influenced by the ISM, with more than 75% of annual rainfall falling during the monsoon season. The chronology of the stalagmite is based on 36 U/Th multi-collector ICP MS dates. Our data reveal profound changes in ISM rainfall and moisture balance. A strong increase of the ISM between 11.4 and 9.3 kyr BP is followed by a gradual decline over the course of the Holocene. This may be best explained by a strong coupling between ISM and the Intertropical Convergence Zone (ITCZ), with a stronger ISM during a more northerly position of the ITCZ. This long-term trend is punctuated by centennial to multi- to sub-decadal events of a weaker ISM. The most pronounced events occurred at 10.7, 8.5-8.1, 7.4, 4.4-4.0, 3.5, 1.4, 0.3 kyr BP. The δ13C record is interpreted to reflect centennial to decadal changes in the drip rate of the stalagmite. δ13C fractionation during periods of higher drip rates (i.e. times of longer residence time of percolating water) correspond with periods of a weaker ISM as inferred from our δ18O record. Our record shows in great detail periods of weaker ISM. They provide new insights on the sensitivity of terrestrial climate archives on the Indian subcontinent. Drought events recorded in our stalagmite correspond well with intervals of severe aridity known from other regions of the Asian monsoon. Moreover, our 11,000 year climate record shows that NE India experienced its driest conditions during the last three millennia.
NASA Astrophysics Data System (ADS)
Liang, Dan; Liu, Chuanlian
2018-06-01
Coccolith assemblages in two gravity cores (KX21-2 and KX12-1) from the central Western Pacific Warm Pool (WPWP) have been analyzed with SYRACO. The variations of nutricline and primary productivity ( PP) have been reconstructed based on these assemblages. The results show that the coccolith assemblages were dominated by Florisphaera profunda, Gephyrocapsa and Emiliania huxleyi over the last 380 kyr. Variations of nutricline and primary productivity can be divided into three intervals. Interval I (about 380-300 kyr): PP was high and nutricline was shallow; Interval II (about 300-160 kyr): PP decreased dramatically for a short time after the acme of G. caribbeanica in Mid-Brunhes while nutricline became deeper; Interval III (about 160 kyr-present): PP fluctuated at low levels and nutricline was deep. Variations of each coccolith taxon and PP were highly correlated in the two cores, which means that the geological environment is similar in the two cores. Spectrum analysis is performed for all coccolith taxons and PP, and the 19-kyr cycle is the most prominent. It means that the production of coccolithophores in the WPWP is mainly controlled by precession.
Early stone technology on Flores and its implications for Homo floresiensis.
Brumm, Adam; Aziz, Fachroel; van den Bergh, Gert D; Morwood, Michael J; Moore, Mark W; Kurniawan, Iwan; Hobbs, Douglas R; Fullagar, Richard
2006-06-01
In the Soa Basin of central Flores, eastern Indonesia, stratified archaeological sites, including Mata Menge, Boa Lesa and Kobatuwa (Fig. 1), contain stone artefacts associated with the fossilized remains of Stegodon florensis, Komodo dragon, rat and various other taxa. These sites have been dated to 840-700 kyr bp (thousand years before present). The authenticity of the Soa Basin artefacts and their provenance have been demonstrated by previous work, but to quell lingering doubts, here we describe the context, attributes and production modes of 507 artefacts excavated at Mata Menge. We also note specific similarities, and apparent technological continuity, between the Mata Menge stone artefacts and those excavated from Late Pleistocene levels at Liang Bua cave, 50 km to the west. The latter artefacts, dated to between 95-74 and 12 kyr ago, are associated with the remains of a dwarfed descendent of S. florensis, Komodo dragon, rat and a small-bodied hominin species, Homo floresiensis, which had a brain size of about 400 cubic centimetres. The Mata Menge evidence negates claims that stone artefacts associated with H. floresiensis are so complex that they must have been made by modern humans (Homo sapiens).
Punctuated Shutdown of Atlantic Meridional Overturning Circulation during Greenland Stadial 1.
Hogg, Alan; Southon, John; Turney, Chris; Palmer, Jonathan; Bronk Ramsey, Christopher; Fenwick, Pavla; Boswijk, Gretel; Friedrich, Michael; Helle, Gerhard; Hughen, Konrad; Jones, Richard; Kromer, Bernd; Noronha, Alexandra; Reynard, Linda; Staff, Richard; Wacker, Lukas
2016-05-19
The Greenland Stadial 1 (GS-1; ~12.9 to 11.65 kyr cal BP) was a period of North Atlantic cooling, thought to have been initiated by North America fresh water runoff that caused a sustained reduction of North Atlantic Meridional Overturning Circulation (AMOC), resulting in an antiphase temperature response between the hemispheres (the 'bipolar seesaw'). Here we exploit sub-fossil New Zealand kauri trees to report the first securely dated, decadally-resolved atmospheric radiocarbon ((14)C) record spanning GS-1. By precisely aligning Southern and Northern Hemisphere tree-ring (14)C records with marine (14)C sequences we document two relatively short periods of AMOC collapse during the stadial, at ~12,920-12,640 cal BP and 12,050-11,900 cal BP. In addition, our data show that the interhemispheric atmospheric (14)C offset was close to zero prior to GS-1, before reaching 'near-modern' values at ~12,660 cal BP, consistent with synchronous recovery of overturning in both hemispheres and increased Southern Ocean ventilation. Hence, sustained North Atlantic cooling across GS-1 was not driven by a prolonged AMOC reduction but probably due to an equatorward migration of the Polar Front, reducing the advection of southwesterly air masses to high latitudes. Our findings suggest opposing hemispheric temperature trends were driven by atmospheric teleconnections, rather than AMOC changes.
Punctuated Shutdown of Atlantic Meridional Overturning Circulation during Greenland Stadial 1
Hogg, Alan; Southon, John; Turney, Chris; Palmer, Jonathan; Bronk Ramsey, Christopher; Fenwick, Pavla; Boswijk, Gretel; Friedrich, Michael; Helle, Gerhard; Hughen, Konrad; Jones, Richard; Kromer, Bernd; Noronha, Alexandra; Reynard, Linda; Staff, Richard; Wacker, Lukas
2016-01-01
The Greenland Stadial 1 (GS-1; ~12.9 to 11.65 kyr cal BP) was a period of North Atlantic cooling, thought to have been initiated by North America fresh water runoff that caused a sustained reduction of North Atlantic Meridional Overturning Circulation (AMOC), resulting in an antiphase temperature response between the hemispheres (the ‘bipolar seesaw’). Here we exploit sub-fossil New Zealand kauri trees to report the first securely dated, decadally-resolved atmospheric radiocarbon (14C) record spanning GS-1. By precisely aligning Southern and Northern Hemisphere tree-ring 14C records with marine 14C sequences we document two relatively short periods of AMOC collapse during the stadial, at ~12,920-12,640 cal BP and 12,050-11,900 cal BP. In addition, our data show that the interhemispheric atmospheric 14C offset was close to zero prior to GS-1, before reaching ‘near-modern’ values at ~12,660 cal BP, consistent with synchronous recovery of overturning in both hemispheres and increased Southern Ocean ventilation. Hence, sustained North Atlantic cooling across GS-1 was not driven by a prolonged AMOC reduction but probably due to an equatorward migration of the Polar Front, reducing the advection of southwesterly air masses to high latitudes. Our findings suggest opposing hemispheric temperature trends were driven by atmospheric teleconnections, rather than AMOC changes. PMID:27194601
NASA Astrophysics Data System (ADS)
Jennings, A. E.; Andrews, J. T.
2008-12-01
A complex sequence of abrupt glacial advances and retreats punctuate the late phases of Laurentide Ice Sheet deglaciation. These episodes have been reconstructed from interpretation and mapping of glacial deposits on land and in marine basins proximal to the former ice margins in Hudson Strait, Hudson Bay, and the SE Baffin Island shelf. As these events likely produced pulses of freshwater discharge into the North Altantic, which may be responsible for rapid climate change, their timing and magnitude need to be understood. The timing of these events is well constrained by radiocarbon ages, but the ocean reservoir age in ice proximal areas is subject to very large uncertainties, making it difficult to determine calibrated ages for the glacial events so that they can be compared to other climate records. We suggest that the sequence of high detrital carbonate peaks in Holocene and Late Glacial sediments in the Cartwright Saddle of the Labrador shelf provides a template of the abrupt glacial events of the NE margin of the Laurentide Ice Sheet, particularly events that issued from Hudson Strait and Hudson Bay, but possibly including events in Baffin Bay. Once the Labrador Shelf was deglaciated and the local ice had retreated inland, the Cartwright Saddle was a distal trap for sediments released from Hudson Strait and other ice sheet outlets farther north as their sediments and meltwater were carried southwards by surface currents. Core MD99-2236 contains a sediment record beginning c. 13.9 cal ka. We assume a marine reservoir age for the Cartwright Saddle of 450 yrs, which is reasonable given the ice distal and oceanic position of the site. Carbonate was measured on average at a 30 yr time resolution. Carbonate values are elevated between 11.7 and 7 cal kyr BP, with six spikes exceeding 30 percent. Each spike corresponds to a light isotope spike in foraminifers, suggesting that each major spike is associated with a pulse of glacial meltwater. Elevated IRD counts associated with the carbonate spikes suggest that at least some of the meltwater was released by icebergs. Age estimates of these peaks are: 11.5, 10.6, 9.5, 9.1, 8.7, and 8.2 cal kyr BP, and their duration ranges between 50 and 200 years. A 'red bed' is associated with a subsidiary carbonate spike 8.57 cal ka, very close to the estimated age of the timing of the final outburst drainage of lakes Agassiz and Ojibway: about 8.47 cal ka BP. A lower carbonate spike at 11.1 cal ka is associated with a light isotope event. The carbonate record of MD99-2236 promises to be an important key to the timing and role of deglacial episodes in freshwater forcing on North Altantic climate.
NASA Astrophysics Data System (ADS)
Braun, J.-J.; Riotte, J.; Audry, S.; Boeglin, J. L.; Descloitres, M.; Deschamps, P.; Maréchal, J. C.; Viers, J.; Ndam, J.-R.; Sekhar, M.
2009-04-01
Critical Zone Exploration in the Tropics: Clues from small experimental watersheds in South Cameroon and South India J.-J. BRAUN1,2*, J. RIOTTE1,2, S. AUDRY2, J. L. BOEGLIN2, M. DESCLOITRES3, P. DESCHAMPS4, J. C. MARÉCHAL1,2, J. VIERS2, J.-R. NDAM5, M. SEKHAR6, B. DUPRÉ2 1IFCWS, Indian Institute of Science, 560012 Bangalore, India. (*Correspondence: braun@civil.iisc.ernet.in) 2LMTG, Univ. Toulouse, CNRS IRD OMP, 14, avenue E. Belin, F-31400 Toulouse, France 3LTHE, Univ. Grenoble, CNRS, IRD, INPG, BP53, F-38041 Grenoble, Cedex 09, France 4CEREGE, Univ. Aix-Marseille, CNRS, IRD, Europôle Méditerranéen de l'Arbois, BP80, 13545 Aix en Provence, France. 5Université de Yaoundé I, Faculté des Sciences, Département des Sciences de la Terre, BP80, 13545 Yaoundé, Cameroun. 6Deprtment of Civil Engineering, Indian Institute of Science, 560012 Bangalore, India Understanding the relative controls of forcing factors on the silicate chemical weathering rates and the associated atmospheric CO2 consumption is usually assessed through investigations based on small to medium granito-gneissic watersheds from 1 to100 km2 located in different climatic and tectonic settings. In addition to climate, the importance of the thickness and nature of the blanket of loose and transportable weathered material, namely regolith, which overlies the intact bedrocks, was also recently invoked, especially in tropical environment. We have conducted an integrated approach of the Critical Zone in two pristine forested small watersheds located in Cameroon and India. Both watersheds have developed on granito-gneissic bedrocks of stable Precambrian shields. Our approach is directed at (i) understanding the bio-geochemical, hydro-geological and hydrological processes and (ii) assessing the long-term and contemporary chemical weathering rates. The Nsimi watershed, South Cameroon, has been the first to be monitored since 1994. It belongs to the Nyong River basin and has a humid tropical climate. It is characterized by a deep mature lateritic mantle and mean annual rainfall of 1600 mm. The second watershed, under investigation since 2003, is located at Mule Hole, South India. It belongs to the sub-humid zone of the climatic gradient of the Kabini River basin in the rain shadow of the Western Ghâts. It is characterized by an immature thick regolith and mean annual rainfall of 1100 mm. In both watersheds, the water balance was calculated from on time-series of hydrological and climatic data and then modelled for lean/normal/high rainfall years. The contemporary chemical weathering rates were established by coupling the water balance with geochemical time-series in groundwater, stream water and rainfall. The degree of weathering and the thickness of the regolith were achieved by combining investigations of geophysics (electrical resistivity logging and tomography), mineralogy, and bulk chemical analyses. This allowed us to assess the long-term chemical weathering mass balance at the watershed scale. In the Nsimi watershed, the contemporary chemical weathering rate, even though low (2.8 mm/kyr), predominates over the mechanical weathering rate (1.9 mm/kyr). Compared to the Rio Icacos watershed, the most studied tropical site, the chemical weathering fluxes of silica and sodium in the stream are 16 and 40 times lower, respectively. This is not only related to the protective role of the regolith, thick in both cases, but also to differences in the hydrological functioning. The carbon transfer occurs primarily in an organic form and essentially as colloids produced by the slow biodegradation of the swamp organic matter. These organic colloids contribute significantly to the mobilization and transfer of Fe, Al, Zr, Ti and Th in the uppermost first meter of the swamp regolith. In the Mule Hole watershed, the contemporary mechanical weathering rate (25 mm/kyr), predominates over the chemical weathering rate estimated for both stream (0.3 mm/kyr) and groundwater (3.0 mm/kyr). This difference is due to the disconnection of groundwater and stream during the monitored period of time. The contemporary denudation rate is then 28 mm/kyr, twice the one integrated over the last 100 kyr estimated with 10Be with the streambed sand. The immature, relatively thick regolith has a great potential to produce alkalinity by chemical weathering. Depending on the runoff and therefore climate variability with a more humid gradient (i. e. intensification of the monsoon), the production of alkalinity would increase and consequently increase the atmospheric CO2 consumption. This study has important signification in terms of quantification of the amount of weathered material at small watershed scale and hence of the assessment of the impact of silicate chemical weathering on atmospheric CO2 consumption. The hydrological functioning may then constitute a critical parameter for carbon cycle modelling. This study also stresses the need to have accurate monitoring at the watershed scale in a context of changing climate and to maintain such observatories for decades. Braun, J.-J. et al. (2008) Regolith mass balance inferred from combined mineralogical, geochemical and geophysical studies: Mule Hole gneissic watershed, South India. Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2008.11.013 Braun, J. J. (2005) Present weathering rates in a humid tropical watershed: Nsimi, South Cameroon. Geochimica et Cosmochimica Acta 69, 357-387. Maréchal, J.-C. et al. (2009) Indirect and direct recharges in a tropical forested watershed: Mule Hole, India. Journal of Hydrology 364, 272-284.
NASA Astrophysics Data System (ADS)
Lajeunesse, Patrick; St-Onge, Guillaume
2013-04-01
A series of ice-contact submarine fans and morainal banks along the Québec North-Shore of the Estuary and Gulf of St. Lawrence (Eastern Canada), between the Manicouagan River delta and the Mingan Islands, have been revealed with great detail by recent multibeam echosounder and high-resolution subbottom profiler surveys. These grounding-line landforms are observed between 65 and 190 m water depths and were constructed as the marine-based margin of the Laurentide Ice Sheet (LIS) stabilized or readvanced. Radiocarbon ages obtained from shells sampled in sediment cores collected in glaciomarine deposits 6 km south of a grounding line in the Sept-Iles area indicate a stabilisation that took place around 11 000 14C yr BP (12.5 ka cal BP with a ΔR=120 ± 40 yr). In the Mingan Islands area, organic matter collected in distal deposits of an ice-contact fan is dated at 10 800 14C yr BP (11.6 ka cal BP). The position of the Sept-Iles and Mingan deposits, 20 km south of the ~9.7-9.5 14C kyr BP North-Shore Moraine, suggests that these ice marginal landforms were constructed during the Younger Dryas (YD) cold episode and that they might be the eastward submarine extent of the early YD St. Narcisse morainic system. Superimposed till sheets and morainal banks observed within grounding line deposits indicate that this stability phase was interrupted by local readvances that were marked in some cases by ice streaming. Segments of this morainic system are also visible along the shoreline in some sectors, where they have been generally washed out of fine fragments by waves. Another series of ice-contact deposits and landforms of similar nature observed farther offshore and at greater depths (100-190 m) were formed during a previous phase of stabilisation of the LIS margin. This older morainic system was probably deposited immediately after the opening of the Estuary and Gulf of the St. Lawrence.
NASA Astrophysics Data System (ADS)
Berger, A.; Loutre, M. F.; Mélice, J. L.
The origin of all the fundamental frequencies characterising the long term variations of the astronomical parameters has been identified. This allows to discuss their inter- relationship and possible changes in times. Different sources for the so-called 100-kyr cycle have been found in the astronomical parameters and in the insolation itself. The most popular 100-kyr cycle is certainly the eccentricity one. Actually, the periods of the most important spectral components of e used in Berger (1978) are 412 885, 14 945, 123 297, 99 590 and 131 248 yr. Instability of the resulting average 100-kyr cy- cle has been shown related to the ~ 400-kyr cycle. The derivative of eccentricity is definitely showing a spectrum dominated by the 100-kyr cycle with the same spectral components as e itself. The inclination of the Earth orbital plane on the ecliptic does not display any 100-kyr cycle, but it is not the case for its inclination on the reference plane for which cycles of 98 046 and 107 478 years appear. Finally the frequency modulation of obliquity is characterised by cycles 171 kyr and 97 kyr long. For inso- lation, it is known that there is only a very weak signal around 100-kyr coming from e itself. However, if we consider the seasonal cycle at the equator, its amplitude varies with cycles of 400 kyr, 100 kyr, 41 kyr, 10 kyr and 5 kyr, all related to e. Although all these cycles are close to the 100 kyr cycle found in geological data, the origin of this kind of cycle can be best identified by comparing the proxy record to the re- sponse of the climate system to the astronomical forcing. This forcing signal which contains, in one way or another, the astronomical characteristics mentioned above is, at least, partly distorted and transformed, a modification which can only be estimated through climate models. Such a climate model has been developed in the early 80Ss in Louvain-la-Neuve and used since to simulate the last and next glacial-interglacial cycles.
Glacial-interglacial changes and Holocene variations in Arabian Sea denitrification
NASA Astrophysics Data System (ADS)
Gaye, Birgit; Böll, Anna; Segschneider, Joachim; Burdanowitz, Nicole; Emeis, Kay-Christian; Ramaswamy, Venkitasubramani; Lahajnar, Niko; Lückge, Andreas; Rixen, Tim
2018-01-01
At present, the Arabian Sea has a permanent oxygen minimum zone (OMZ) at water depths between about 100 and 1200 m. Active denitrification in the upper part of the OMZ is recorded by enhanced δ15N values in the sediments. Sediment cores show a δ15N increase during the middle and late Holocene, which is contrary to the trend in the other two regions of water column denitrification in the eastern tropical North and South Pacific. We calculated composite sea surface temperature (SST) and δ15N ratios in time slices of 1000 years of the last 25 kyr to better understand the reasons for the establishment of the Arabian Sea OMZ and its response to changes in the Asian monsoon system. Low δ15N values of 4-7 ‰ during the last glacial maximum (LGM) and stadials (Younger Dryas and Heinrich events) suggest that denitrification was inactive or weak during Pleistocene cold phases, while warm interstadials (ISs) had elevated δ15N. Fast changes in upwelling intensities and OMZ ventilation from the Antarctic were responsible for these strong millennial-scale variations during the glacial. During the entire Holocene δ15N values > 6 ‰ indicate a relatively stable OMZ with enhanced denitrification. The OMZ develops parallel to the strengthening of the SW monsoon and monsoonal upwelling after the LGM. Despite the relatively stable climatic conditions of the Holocene, the δ15N records show regionally different trends in the Arabian Sea. In the upwelling areas in the western part of the basin, δ15N values are lower during the mid-Holocene (4.2-8.2 ka BP) compared to the late Holocene ( < 4.2 ka BP) due to stronger ventilation of the OMZ during the period of the most intense southwest monsoonal upwelling. In contrast, δ15N values in the northern and eastern Arabian Sea rose during the last 8 kyr. The displacement of the core of the OMZ from the region of maximum productivity in the western Arabian Sea to its present position in the northeast was established during the middle and late Holocene. This was probably caused by (i) reduced ventilation due to a longer residence time of OMZ waters and (ii) augmented by rising oxygen consumption due to enhanced northeast-monsoon-driven biological productivity. This concurs with the results of the Kiel Climate Model, which show an increase in OMZ volume during the last 9 kyr related to the increasing age of the OMZ water mass.
Moisture sources of the Mono Lake deglacial pluvial events
NASA Astrophysics Data System (ADS)
Wang, X.; Liang, M. C.; Ali, G.; Shen, C. C.; Cai, Y.; Ke, L.; Hemming, S. R.
2016-12-01
Enormously expanded lakes existed in the today's dry western US Great Basin during the last glacial period. The ancient shorelines located well above modern lake levels suggest that precipitation in lake basins must have been substantially higher in the past. It is however under debate whether the subtropical North Pacific or the tropical Pacific is the major moisture source that contributed to the pluvial events, particularly during the deglaciation. Here, we collected a suite of tufa carbonate samples deposited at the 2,080 meter terrace ( 135 meters above today's lake level) in the Mono Basin, California, a closed lake basin for the last 130 thousand years (kyr). At Goat Ranch, we discovered white, shiny, laminated botryoidal carbonate coatings on tufa mounds. Most of these coatings present two generations of formation separated by a hiatus, which indicates lake level fluctuations. Using high-precision U-Th dating techniques, we found that the lower layer was formed 14.1-14.4 kyr BP (corresponding to the North Atlantic Bølling warming period). The upper layer of the coating was formed 11.9-12.3 kyr BP (within the Younger Dryas event). We then obtained d18O, d13C, D47 and 17O-excess values for the two carbonate layers. The upper part is characterized by low d18O values, -8 to -12 ‰ VPDB, whereas the lower one has higher d18O values, -5 to -6 ‰ VPDB. Both share similar d13C values ( 1-2‰ VPDB). D47 analysis on the carbonates suggests that both layers were deposited in a water temperature of 9±2 oC (1s, n = 4 and 8, respectively). The two generations of carbonates present 17O-excess of moisture in values of 50±5 (1s, n=4) and 25±5 (1s, n=8) per meg VSMOW-SLAP, respectively. The large difference in 17O-excess of parent meteoric water points to different origins of moisture for the tufa carbonate formations. The high 17O-excess values during YD suggest a moisture source with a low relative humidity, consistent with the conventional view that the moisture was brought from the subtropical North Pacific, aided by a strong southward shift of the jet stream. In contrast, the lower 17O-excess values during Bølling indicate a moisture source with a high relative humidity or strong continental recycling; each suggests a southern moisture source in the tropical Pacific.
NASA Astrophysics Data System (ADS)
Hinnov, L.; Ogg, J. G.
2009-12-01
Mesozoic cyclostratigraphy from around the world is being assessed to construct a continuous Astronomical Time Scale (ATS) based on Earth’s cyclic orbital parameters. The recognition of a prevalent sedimentary cycling with a ~400-kyr period associated with forcing by the stable 405-kyr orbital eccentricity variation is an important development. Numerous formations spanning 10 to 20 myr (and longer) intervals in the Cretaceous, Jurassic and Triassic clearly express this dominant cycle and provide a robust basis for 405-kyr-scale calibration of the ATS. This 405-kyr metronome will enable extension of the well-defined Cenozoic ATS for scaling of the past quarter-billion years of Earth history. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS have already provided new insights into long-standing geologic problems of seafloor spreading, tectonics, eustasy, and paleoclimate change. Ongoing work is focused on closing gaps in coverage and on collecting duplicate cyclostratigraphic records for the entire Mesozoic Era.
Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam
NASA Astrophysics Data System (ADS)
Ta, Thi Kim Oanh; Nguyen, Van Lap; Tateishi, Masaaki; Kobayashi, Iwao; Tanabe, Susumu; Saito, Yoshiki
2002-09-01
Evolutionary changes, delta progradation, and sediment discharge of the Mekong River Delta, southern Vietnam, during the late Holocene are presented based on detailed analyses of samples from six boreholes on the lower delta plain. Sedimentological and chronostratigraphic analyses indicate clearly that the last 3 kyr were characterized by delta progradation under increasing wave influence, southeastward sediment dispersal, decreasing progradation rates, beach-ridge formation, and steepening of the face of the delta front. Estimated sediment discharge of the Mekong River for the last 3 kyr, based on sediment-volume analysis, was 144±36 million t yr -1 on average, or almost the same as the present level. The constant rate of delta front migration and stable sediment discharge during the last 3 kyr indicate that a dramatic increase in sediment discharge owing to human activities, as has been suggested for the Yellow River watershed, did not occur. Although Southeast Asian rivers have been considered candidates for such dramatic increases in discharge during the last 2 kyr, the Mekong River example, although it is a typical, large river of this region, does not support this hypothesis. Therefore, estimates of the millennial-scale global pristine sediment flux to the oceans must be revised.
Geological dates and molecular rates: rapid divergence of rivers and their biotas.
Waters, Jonathan M; Rowe, Diane L; Apte, Smita; King, Tania M; Wallis, Graham P; Anderson, Leigh; Norris, Richard J; Craw, Dave; Burridge, Christopher P
2007-04-01
We highlight a novel molecular clock calibration system based on geologically dated river reversal and river capture events. Changes in drainage pattern may effect vicariant isolation of freshwater taxa, and thus provide a predictive framework for associated phylogeographic study. As a case in point, New Zealand's Pelorus and Kaituna rivers became geologically isolated from the larger Wairau River system 70 to 130 kyr BP. We conducted mitochondrial DNA phylogeographic analyses of two unrelated freshwater-limited fish taxa native to these river systems (Gobiomorphus breviceps, n = 63; Galaxias divergens, n = 95). Phylogenetic analysis of combined control region and cytochrome b sequences yielded reciprocally monophyletic clades of Pelorus-Kaituna and Wairau haplotypes for each species. Calibrated rates of molecular change based on this freshwater vicariant event are substantially faster than traditionally accepted rates for fishes but consistent with other recent inferences based on geologically young calibration points. A survey of freshwater phylogeographic literature reveals numerous examples in which the ages of recent evolutionary events may have been substantially overestimated through the use of "accepted" calibrations. We recommend that--wherever possible--biologists should start to reassess the conclusions of such studies by using more appropriate molecular calibrations derived from recent geological events.
Is the Earth's magnetic field heading for a flip? Hints from the past
NASA Astrophysics Data System (ADS)
Laj, C. E.; Kissel, C.
2017-12-01
The magnitude of the Earth's dipole magnetic field has decreased significantly over the last centuries at a mean rate of 16 nT/y. This decrease, which correlates with the growth of the South Atlantic Anomaly (SAA) therefore occurs at a rate which is about 10 times larger than expected from a free Ohmic decay process. This situation has led to speculations that an attempt to a reversal or a geomagnetic excursion might be underway. We investigate this hypothesis by examining past geomagnetic instabilities, focussing on the well documented Laschamp and Mono Lake excursions. We have selected high accumulation sedimentary records with very precise age model, leading to unprecedented temporal resolution, and accurate calibration of RPI between 20 and 75 kyr B.P. We also used the 10Be and 36Cl records from the Greenland ice cores. The rate of decay of the field intensity during these two excursions is virtually identical to that observed over the last centuries and much higher than that observed for another period of low intensity (around 65 kyr BP) not associated with a polarity change. Moreover, the global morphology of the Laschamp excursion obtained by Bayesian inversion (Leonhardt et al. (2009) is that reverse magnetic field patches at the core-mantle boundary are formed near the equator and then move poleward, a scenario reminiscent of that described for the present field in the litterature. Therefore, although these results from two excursions do not provide undisputable information on future evolution of the field, they show similarities with several aspects of the present-day geomagnetic field. Assuming that the dynamo processes for an eventual future instability would be similar to those of the past two excursions, we tentatively suggest that, whilst irreversible processes that will drive the geodynamo into a polarity change may have already started, some 1000 years would be needed for the directional changes to start to be significant.
Genetic and ecological insights into glacial refugia of walnut (Juglans regia L.)
Aradhya, Mallikarjuna; Ibrahimov, Zakir; Toktoraliev, Biimyrza; Maghradze, David; Musayev, Mirza; Bobokashvili, Zviadi; Preece, John E.
2017-01-01
The distribution and survival of trees during the last glacial maximum (LGM) has been of interest to paleoecologists, biogeographers, and geneticists. Ecological niche models that associate species occurrence and abundance with climatic variables are widely used to gain ecological and evolutionary insights and to predict species distributions over space and time. The present study deals with the glacial history of walnut to address questions related to past distributions through genetic analysis and ecological modeling of the present, LGM and Last Interglacial (LIG) periods. A maximum entropy method was used to project the current walnut distribution model on to the LGM (21–18 kyr BP) and LIG (130–116 kyr BP) climatic conditions. Model tuning identified the walnut data set filtered at 10 km spatial resolution as the best for modeling the current distribution and to hindcast past (LGM and LIG) distributions of walnut. The current distribution model predicted southern Caucasus, parts of West and Central Asia extending into South Asia encompassing northern Afghanistan, Pakistan, northwestern Himalayan region, and southwestern Tibet, as the favorable climatic niche matching the modern distribution of walnut. The hindcast of distributions suggested the occurrence of walnut during LGM was somewhat limited to southern latitudes from southern Caucasus, Central and South Asian regions extending into southwestern Tibet, northeastern India, Himalayan region of Sikkim and Bhutan, and southeastern China. Both CCSM and MIROC projections overlapped, except that MIROC projected a significant presence of walnut in the Balkan Peninsula during the LGM. In contrast, genetic analysis of the current walnut distribution suggested a much narrower area in northern Pakistan and the surrounding areas of Afghanistan, northwestern India, and southern Tajikistan as a plausible hotspot of diversity where walnut may have survived glaciations. Overall, the findings suggest that walnut perhaps survived the last glaciations in several refugia across a wide geographic area between 30° and 45° North latitude. However, humans probably played a significant role in the recent history and modern distribution of walnut. PMID:29023476
NASA Astrophysics Data System (ADS)
Morellón, Mario; Aranbarri, Josu; Moreno, Ana; González-Sampériz, Penélope; Valero-Garcés, Blas L.
2018-02-01
Comparison of selected, well-dated, lacustrine, speleothem and terrestrial pollen records spanning the Holocene onset and the Early Holocene (ca. 11.7-8 cal kyrs BP) in the Iberian Peninsula shows large hydrological fluctuations and landscape changes with a complex regional pattern in timing and intensity. Marine pollen records from Alboran, the Mediterranean and off shore Atlantic sites show a step-wise increase in moisture and forest during this transition. However, available continental records point to two main patterns of spatial and temporal hydrological variability: i) Atlantic-influenced sites located at the northwestern areas (Enol, Sanabria, Lucenza, PRD-4), characterized by a gradual increase in humidity from the end of the Younger Dryas to the Mid Holocene, similarly to most North Atlantic records; and ii) continental and Mediterranean-influenced sites (Laguna Grande, Villarquemado, Fuentillejo, Padul, Estanya, Banyoles, Salines), with prolonged arid conditions of variable temporal extension after the Younger Dryas, followed by an abrupt increase in moisture at 10-9 cal kyrs BP. Different local climate conditions influenced by topography or the variable sensitivity (gradual versus threshold values) of the proxies analyzed in each case are evaluated. Vegetation composition (conifers versus mesothermophilous taxa) and resilience would explain a subdued response of vegetation in central continental areas while in Mediterranean sites, insufficient summer moisture availability could not maintain high lake levels and promote mesophyte forest, in contrast to Atlantic-influenced areas. Comparison with available climate models, Greenland ice cores, North Atlantic marine sequences and continental records from Central and Northern Europe and the whole Mediterranean region underlines the distinctive character of the hydrological changes occurred in inner Iberia throughout the Early Holocene. The persistent arid conditions might be explained by the intensification of the summer drought due to the high seasonality contrast at these latitudes caused by the orbital-induced summer insolation maximum. New records, particularly from western and southernmost Iberia, and palaeoclimate models with higher spatial resolution would help to constrain these hypotheses.
Taillebois, Laura; Castelin, Magalie; Ovenden, Jennifer R.; Bonillo, Céline; Keith, Philippe
2013-01-01
Both present-day and past processes can shape connectivity of populations. Pleistocene vicariant events and dispersal have shaped the present distribution and connectivity patterns of aquatic species in the Indo-Pacific region. In particular, the processes that have shaped distribution of amphidromous goby species still remain unknown. Previous studies show that phylogeographic breaks are observed between populations in the Indian and Pacific Oceans where the shallow Sunda shelf constituted a geographical barrier to dispersal, or that the large spans of open ocean that isolate the Hawaiian or Polynesian Islands are also barriers for amphidromous species even though they have great dispersal capacity. Here we assess past and present genetic structure of populations of two amphidromous fish (gobies of the Sicydiinae) that are widely distributed in the Central West Pacific and which have similar pelagic larval durations. We analysed sections of mitochondrial COI, Cytb and nuclear Rhodospine genes in individuals sampled from different locations across their entire known range. Similar to other Sicydiinae fish, intraspecific mtDNA genetic diversity was high for all species (haplotype diversity between 0.9–0.96). Spatial analyses of genetic variation in Sicyopus zosterophorum demonstrated strong isolation across the Torres Strait, which was a geologically intermittent land barrier linking Australia to Papua New Guinea. There was a clear genetic break between the northwestern and the southwestern clusters in Si. zosterophorum (φST = 0.67502 for COI) and coalescent analyses revealed that the two populations split at 306 Kyr BP (95% HPD 79–625 Kyr BP), which is consistent with a Pleistocene separation caused by the Torres Strait barrier. However, this geographical barrier did not seem to affect Sm. fehlmanni. Historical and demographic hypotheses are raised to explain the different patterns of population structure and distribution between these species. Strategies aiming to conserve amphidromous fish should consider the presence of cryptic evolutionary lineages to prevent stock depletion. PMID:24130714
Genetic and ecological insights into glacial refugia of walnut (Juglans regia L.).
Aradhya, Mallikarjuna; Velasco, Dianne; Ibrahimov, Zakir; Toktoraliev, Biimyrza; Maghradze, David; Musayev, Mirza; Bobokashvili, Zviadi; Preece, John E
2017-01-01
The distribution and survival of trees during the last glacial maximum (LGM) has been of interest to paleoecologists, biogeographers, and geneticists. Ecological niche models that associate species occurrence and abundance with climatic variables are widely used to gain ecological and evolutionary insights and to predict species distributions over space and time. The present study deals with the glacial history of walnut to address questions related to past distributions through genetic analysis and ecological modeling of the present, LGM and Last Interglacial (LIG) periods. A maximum entropy method was used to project the current walnut distribution model on to the LGM (21-18 kyr BP) and LIG (130-116 kyr BP) climatic conditions. Model tuning identified the walnut data set filtered at 10 km spatial resolution as the best for modeling the current distribution and to hindcast past (LGM and LIG) distributions of walnut. The current distribution model predicted southern Caucasus, parts of West and Central Asia extending into South Asia encompassing northern Afghanistan, Pakistan, northwestern Himalayan region, and southwestern Tibet, as the favorable climatic niche matching the modern distribution of walnut. The hindcast of distributions suggested the occurrence of walnut during LGM was somewhat limited to southern latitudes from southern Caucasus, Central and South Asian regions extending into southwestern Tibet, northeastern India, Himalayan region of Sikkim and Bhutan, and southeastern China. Both CCSM and MIROC projections overlapped, except that MIROC projected a significant presence of walnut in the Balkan Peninsula during the LGM. In contrast, genetic analysis of the current walnut distribution suggested a much narrower area in northern Pakistan and the surrounding areas of Afghanistan, northwestern India, and southern Tajikistan as a plausible hotspot of diversity where walnut may have survived glaciations. Overall, the findings suggest that walnut perhaps survived the last glaciations in several refugia across a wide geographic area between 30° and 45° North latitude. However, humans probably played a significant role in the recent history and modern distribution of walnut.
NASA Astrophysics Data System (ADS)
Chen, C. Y.; McGee, D.; Quade, J.
2015-12-01
Cave stalagmite records show strong evidence of abrupt changes in summer monsoons during Heinrich events, but we lack rigorous constraints on the amount of wetting or drying occurring in monsoon regions. Studies on shoreline deposits of closed-basin lakes can establish quantitative bounds on water balance changes through mapping-based estimates of lake volume variations. We present new dating constraints on lake level variations in Agua Caliente I and Laguna Loyoques, two closed-basin, high-altitude paleolakes on the Altiplano-Puna plateau of the Central Andes (23.1°S, 67.4°W, 4250 masl). Because this area receives >70% of its total annual precipitation during austral summer, the region is ideally suited to capture a pure response to changes in the South American summer monsoon (SASM). The plateau is home to several small (<40 km2) lakes surrounded by well-preserved paleoshorelines that indicate past wetter conditions. Agua Caliente I is unique, having multiple shorelines encrusted with biologically-mediated calcium carbonate "tufa" deposits. Initial U-Th dating of these massive shoreline tufas reveals that these deposits are dateable to within ±50 to 300 years due to high U concentrations and low initial Th content (as indicated by high 230Th/232Th). Our U-Th dates show that Agua Caliente I was greater in lake surface area during two periods: 17.5-14.5 kyrs BP, coincident with Heinrich Event 1 (HE1), and 24-23 kyrs BP, roughly coincident with the Last Glacial Maximum (LGM). At these times, Agua Caliente I also overflowed into a neighboring lake basin (Loyoques) through an 8-km long southeast-trending stream channel. Thus, during HE1 and the LGM, the lake was ~9 times larger in surface area relative to modern. Hydrologic modeling constrained by paleotemperature estimates is used to provide bounds for these past precipitation changes. We also tentatively explore physical mechanisms linking Heinrich events and the regional hydroclimate by comparing freshwater hosing experiments and transient climate simulations. Our results in Agua Caliente I and Laguna Loyoques act as a proof of concept, and lend us confidence in expanding our U-Th work to other shoreline tufas in the surrounding region to produce a more detailed, spatiotemporal record of water balance changes in South America.
NASA Astrophysics Data System (ADS)
Niedermeyer, E. M.; Mulch, A.; Pross, J.
2017-12-01
The "8.2 ka event" has been an abrupt and prominent climate perturbation during the Holocene, and is characterized by an episode of generally colder and dryer conditions in the Northern Hemisphere realm. However, evidence to what extent this event has had an impact on climate in the Mediterranean region is ambiguous, in particular with respect to rainfall, temperature and vegetation change on land. Here we present a new, high-resolution record (ø 15 years during the event) of paleotemperatures from the Tenaghi Philippon peat deposit, Eastern Macedonia, Greece, using the MBT'/CBT index based on brGDGTs (branched Glycerol-Dialkyl-Glycerol-Tetraethers). Our data show fairly stable temperatures before the event, which is initiated at 8.1 ka by an abrupt and continuous cooling during the first 35 years of the event. After a short, 10-year episode of minimum temperatures, the event is ended by a similarly abrupt and continuous warming within 38 years. Comparison of our record with a previous study of the stable hydrogen isotopic composition of higher-plant waxes (δDwax) on the same core1 shows that changes in temperature occurred simultaneously with shifts in atmospherics moisture sources (Mediterranean vs Atlantic). Interestingly, further comparison of our data with a previous palynological study of the same core2 reveals that changes in vegetation associated with the 8.2 ka event precede shifts in hydrology and temperature by 100 years. This suggests either pronounced changes in seasonality of temperature and rainfall after the onset of the 8.2 ka event, i.e. at the peak of the event, or that changes in local atmospheric circulation (moisture sources) and temperature where not the initial trigger of changes in vegetation. References: Pross, J., Kotthoff, U., Müller, U.C., Peyron, O., Dormoy, I., Schmiedl, G., Kalaitzidis, S. and Smith, A.M. (2009): Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean region associated with the 8.2 kyr B.P. climatic event. Geology 37, 887-890. Schemmel, F., Niedermeyer, E.M., Schwab, V.F., Gleixner, G., Pross, J. and Mulch, A. (2016): Plant wax δD values record changing Eastern Mediterranean atmospheric circulation patterns during the 8.2 kyr B.P. climatic event. Quaternary Science Reviews 133, 96-107.
Astronomical cycle origin of bedded chert: A middle Triassic bedded chert sequence, Inuyama, Japan
NASA Astrophysics Data System (ADS)
Ikeda, Masayuki; Tada, Ryuji; Sakuma, Hironobu
2010-09-01
Astronomical forcing is one of the main drivers of climate change, and astronomical cyclicity recorded in sediments provides a clue to understand the dynamics of the global climate system. Bedded cherts consist of rhythmic alternations of chert and shale beds. Although previous studies have hypothesized that the origin of bedded chert is related to astronomical cycles (e.g. Fischer, 1976; Hori et al., 1993), conclusive proof remains elusive. To explore this possibility, we established a continuous, high-resolution lithostratigraphy of middle Triassic bedded chert in Central Japan. The average duration of each chert-shale couplet is 20 kyr, similar to that of the precession cycle. Spectral analysis of a bed number series of thickness variations in chert beds was performed assuming that each chert-shale couplet represents a 20-kyr precession cycle. The results reveal cycles involving approximately 200, 20, 5, and 2-3 beds, corresponding to periodicities of approximately 4000, 400, 100, and 40-60 kyr, respectively. By further assuming that the 20-bed cycle represents a 405-kyr eccentricity cycle of constant and stable periodicity, we converted the bed number series to a time series. Spectral analysis of the time series revealed distinct periodicities of 3600, 117, 97, and 38 kyr, in addition to 405 kyr. Besides 3600 kyr, these periodicities agree well with the 120, 95, and 37 kyr periodicities for eccentricity cycles and the obliquity cycle during the Triassic. Moreover, we detected amplitude modulation of the approximately 100-kyr cycle of thickness variations in chert beds with a 405-kyr periodicity, which may correspond to amplitude modulation of 100-kyr climatic precession cycle with the 405-kyr periodicity. The approximately 3600-kyr periodicity described above and 1800-kyr periodicity manifested as the amplitude modulation of the 405-kyr cycle are correlated to present-day long-term eccentricity cycles of 2400 and 4800 kyr evolved by chaotic behavior of solar planets. Collectively, these similarities in the periodicities of dominant cycles, their hierarchy, and the nature of amplitude modulation of cycles in chert bed thickness with those of astronomical cycles strongly support the hypothesis that the sedimentary rhythm of bedded chert is paced by astronomical cycles, thereby indicating the potential of bedded chert as a template for a Mesozoic cyclostratigraphy.
NASA Astrophysics Data System (ADS)
Sharp, Warren D.; Renne, Paul R.
2005-04-01
The Hawaii Scientific Drilling Project, phase 2 (HSDP-2), recovered core from a ˜3.1-km-thick section through the eastern flanks of Mauna Loa and Mauna Kea volcanoes. We report results of 40Ar/39Ar incremental heating by broad-beam infrared laser of 16 basaltic groundmass samples and 1 plagioclase separate, mostly from K-poor tholeiites. The tholeiites generally have mean radiogenic 40Ar enrichments of 1-3%, and some contain excess 40Ar; however, isochron ages of glass-poor samples preserve stratigraphic order in all cases. A 246-m-thick sequence of Mauna Loa tholeiitic lavas yields an isochron age of 122 ± 86 kyr (all errors 2σ) at its base. Beneath the Mauna Loa overlap sequence lie Mauna Kea's postshield and shield sequences. A postshield alkalic lava yields an age of 236 ± 16 kyr, in agreement with an age of 240 ± 14 kyr for a geochemically correlative flow in the nearby HSDP-1 core hole, where more complete dating of the postshield sequence shows it to have accumulated at 0.9 ± 0.4 m/kyr, from about 330 to <200 ka. Mauna Kea's shield consists of subaerial tholeiitic flows to a depth of 1079 m below sea level, then shallow submarine flows, hyaloclastites, pillow lavas, and minor intrusions to core bottom at 3098 m. Most subaerial tholeiitic flows fail to form isochrons; however, a sample at 984 m yields an age of 370 ± 180 kyr, consistent with ages from similar levels in HSDP-1. Submarine tholeiites including shallow marine vitrophyres, clasts from hyaloclastites, and pillow lavas were analyzed; however, only pillow lava cores from 2243, 2614, and 2789 m yield reliable ages of 482 ± 67, 560 ± 150, and 683 ± 82 kyr, respectively. A linear fit to ages for shield samples defines a mean accumulation rate of 8.6 ± 3.1 m/kyr and extrapolates to ˜635 kyr at core bottom. Alternatively, a model relating Mauna Kea's growth to transport across the Hawaiian hot spot that predicts downward accelerating accumulation rates that reach ˜20 m/kyr at core bottom (DePaolo and Stolper, 1996) is also consistent with all reliable ages except the deepest.
Uranium-series dating of the Mousterian occupation at Abric Romani, Spain
Bischoff, J.L.; Julia, R.; Mora, R.
1988-01-01
The precise evolutionary position of the Neanderthal people continues to be a major uncertainty in human evolution. Their origin and their relationship to anatomically modern people are unclear and are clouded by poor chronology. Lithic artefacts of' the Mousterian type, found throughout Europe and the Mediterranean Basin, are believed to be the tool kit of the Neanderthals, but dates within Mousterian-bearing deposits are extremely rare. We report here on 20 high-quality uranium-series dates from Mousterian beds at Abric Romani, a rock shelter near Barcelona, Spain. The dates range from 39 to 60 kyr before present (BP) in an orderly stratigraphic succession and provide precise chronological control on an important Mousterian archaeological site. ?? 1988 Nature Publishing Group.
Chronology of the Early Toarcian environmental crisis in the Lorraine Sub-Basin (NE Paris Basin)
NASA Astrophysics Data System (ADS)
Ruebsam, Wolfgang; Münzberger, Petra; Schwark, Lorenz
2014-10-01
Early Toarcian (Jurassic; ∼183 Ma) sediments recorded profound environmental changes, including mass extinction, global warming, marine transgression as well as widespread bottom water anoxia and organic matter accumulation on the Western Tethyan shelf. Enhanced organic matter accumulation was accompanied by a positive carbon isotope excursion (CIE) in pelagic carbonate, which marks the Toarcian Oceanic Anoxic Event. These environmental changes were accompanied by a major perturbation of the global carbon cycle, expressed by negative CIE, interrupting the positive trend. The duration of the carbon cycle perturbation is still debated, with estimates for the negative CIE range from ∼200 to ∼600 kyr. Here we present ultra high-resolution (<1 kyr) measurements of magnetic susceptibility and sediment color from a marine section located in the Lorraine Sub-Basin (NE Paris Basin) documenting Milankovitch-controlled fluctuations in depositional conditions that occurred superimposed onto the overall sea level evolution. Differences in the wavelength of the sedimentary cycles indicate variable sediment accumulation rates that mainly resulted from rapid sea level fluctuations. The most pronounced sea level rise that took place within the uppermost tenuicostatum zone resulted in a strong condensation of the basal Schistes Carton formation. Strong condensation can explain the discrepancy between durations previously calculated for the CIE placed at this stratigraphic interval. Our data support durations of ∼900 kyr and ∼600 kyr for the positive and negative CIE, respectively. The cyclostratigraphy-based timescale further proposes a duration of >555 kyr for the tenuicostatum zone and 1310 kyr for the serpentinum zone. The durations of the elegantulum and falciferum subzones can be estimated to ∼790 kyr and ∼520 kyr, respectively. A change in the orbital response from eccentricity- to obliquity-forcing, evident from other locations, is well-expressed in the Lorraine Sub-Basin and occurred within the CIE interval. The strong impact of the obliquity component in post-event deposits hints to processes most effective at high latitudes, such as the waxing and waning of polar ice. Paleogeographic features of the Western Tethyan shelf supported the tele-connection of higher to lower latitude processes via water exchange through the Viking Corridor.
NASA Astrophysics Data System (ADS)
Yamazaki, T.; Kanamatsu, T.; Mizuno, S.; Hokanishi, N.; Gaffar, E. Z.
2008-12-01
A paleomagnetic study was conducted on four piston cores newly obtained from the West Caroline Basin in the western equatorial Pacific in order to investigate variations in paleointensity and inclination during the last 400 kyr. An inclination-intensity correlation was previously reported in this region using giant piston cores, but the quality of the paleomagnetic data of the younger end, the last ca. 300 kyr, was needed to be checked because the upper part of the giant piston cores could suffer from perturbation by oversampling. Age control is based on the oxygen-isotope ratios for one core and inter-core correlation using relative paleointensity for other cores. The mean inclinations of the four cores show negative inclination anomalies ranging from -5.2 to -11.2 degree. The western equatorial Pacific is documented as a region of a large negative inclination anomalies, and the observed values are comparable to those expected from the time-averaged field (TAF) models [Johnson and Constable, 1997; Hatakeyama and Kono, 2002]. Stacked curves of paleointensity and inclination were constructed from the four cores. It was confirmed that geomagnetic variations on the order of 10 to 100 kyrs occur in inclination as well as paleointensity. A cross-correlation analysis showed that significant in-phase correlation occurs between intensity and inclination for periods longer than about 25 kyr, and power spectra of both paleointensity and inclination variations have peaks at ~100 kyr periods. The regional paleointensity stack with higher resolution than the Sint-800 stack [Guyodo and Valet, 1999] should be useful for paleointensity-assisted chronostratigraphy.
Milankovitch Modulated Eocene Growth Strata From the Jaca Piggyback Basin, Spanish Pyrenees
NASA Astrophysics Data System (ADS)
Anastasio, D. J.; Hinnov, L. A.; Newton, M. L.; Kodama, K. P.
2005-12-01
New stratigraphic and rock magnetic data from the southern margin of the Jaca basin, Spanish Pyrenees, shows evidence of Eocene sedimentary cycles modulated by the climatic effects of Milankovitch orbital forcing. Tectonic processes simultaneously controlled larger-scale stratigraphic sequences and overall wedge-top basin development. Within the context of existing magnetostratigraphy, we described 1 km of marine basinal and prodeltaic rocks near Pico del Aguila, a large-scale synsedimentary fold, and collected samples every ~4krs for ~4myrs for lithologic and rock magnetic analysis. In magnetochrons C17r, C18n.1n, and C18n.1r (1.27myrs) anhysteretic remanent magnetization (ARM) variations occur with strong hierarchical bundling patterns suggestive of precession-scale cycles grouped into 100 kyr eccentricity cycles, and "super bundled" into 400 kyr eccentricity cycles. This pattern was exploited to construct an "eccentricity time scale" for the series producing a minimally tuned time series that is 1.3 myrs in duration; comparing well with the magnetochron calibration. Spectral analysis of this ARM time series shows that the 100-kyr tuning has aligned power into all of the principal orbital frequency bands: long eccentricity (1/(400 kyrs)), obliquity (1/(40.4 kyrs)), long precession (1/(24.4 kyrs)), and short precession (1/(20 kyrs)). Lithologic data, including bed thickness and grain size also shows high frequency periodicity we attribute to precessional forcing. ARM variations may result from climate modulated carbonate production or more likely, variable detrital inputs such as atmospheric dust (varying wind intensity or aridity) or watershed erosion (runoff variation) rather than diagenetic sources. The Milankovitch based chronology within the growth stratigraphy was then used to calculate deformation rates. Tilt rates of 9 degrees / myr for folding are comparable to other studies in which deformation was averaged over more time. We show that Milankovitch rhythms in growth strata can be used to develop novel high resolution, long-term deformation histories.
NASA Astrophysics Data System (ADS)
Zanchetta, G.; di Vito, M.; Fallick, A. E.; Sulpizio, R.
2000-12-01
Stable isotopes were measured in the carbonate and organic matter of palaeosols in the Somma-Vesuvius area, southern Italy in order to test whether they are suitable proxy records for climatic and ecological changes in this area during the past 18000 yr. The ages of the soils span from ca. 18 to ca. 3 kyr BP. Surprisingly, the Last Glacial to Holocene climate transition was not accompanied by significant change in 18O of pedogenic carbonate. This could be explained by changes in evaporation rate and in isotope fractionation between water and precipitated carbonate with temperature, which counterbalanced the expected change in isotope composition of meteoric water. Because of the rise in temperature and humidity and the progressive increase in tree cover during the Holocene, the Holocene soil carbonates closely reflect the isotopic composition of meteoric water. A cooling of about 2°C after the Avellino eruption (3.8 ka) accounts for a sudden decrease of about 1 in 18O of pedogenic carbonate recorded after this eruption. The 13C values of organic matter and pedogenic carbonate covary, indicating an effective isotope equilibrium between the organic matter, as the source of CO2, and the pedogenic carbonate. Carbon isotopes suggest prevailing C3 vegetation and negligible mixing with volcanogenic or atmospheric CO2.
Falcon-Lang, H. J.; Heckel, P.H.; DiMichele, W.A.; Blake, B.M.; Easterday, C.R.; Eble, C.F.; Elrick, S.; Gastaldo, Robert A.; Greb, S.F.; Martino, R.L.; John, Nelson W.; Pfefferkorn, H.W.; Phillips, T.L.; Rosscoe, S.J.
2011-01-01
Interregional correlation of the marine zones of major cyclothems between North America and eastern Europe does not support assertions that a major stratigraphic gap exists between the traditional regional Desmoinesian and Missourian stages in North America. Such a gap was previously proposed to explain an abrupt change in megafloral assemblages in the northern Appalachian Basin and by extension across all of North America. Conodont-based correlation from the essentially complete low-shelf Midcontinent succession (distal from the highstand shoreline), through the mid-shelf Illinois Basin, to the high shelf of the Appalachian Basin (proximal to highstand shoreline) demonstrates that all major ???400 kyr cyclothem groupings in the Midcontinent are recognizable in the Illinois Basin. In the Appalachian Basin, however, the grouping at the base of the Missourian is represented only by paleosols and localized coal. The immediately preceding grouping was removed very locally by paleovalley incision, as is evident at the 7-11 Mine, Columbiana County, Ohio, from which the original megafloral data were derived. At the few localities where incised paleodrainage exists, there may be a gap of ???1000 kyr, but a gap of no more than ???600 kyr occurs elsewhere in the Appalachian Basin at that level and its magnitude progressively decreases westward into the Illinois (???300 kyr) and Midcontinent (<200 kyr) Basins. Thus, while a gap is present near the Desmoinesian-Missourian boundary in North America, it is typically more than an order of magnitude smaller than that originally proposed and is similar to the gaps inferred at sequence boundaries between cyclothems at many horizons in the Pennsylvanian of North America. Copyright ?? 2011, SEPM.
NASA Astrophysics Data System (ADS)
Thibault, N.; Jarvis, I.; Voigt, S.; Gale, A. S.; Attree, K.; Jenkyns, H. C.
2016-06-01
High-resolution records of bulk carbonate carbon isotopes have been generated for the Upper Coniacian to Lower Campanian interval of the sections at Seaford Head (southern England) and Bottaccione (central Italy). An unambiguous stratigraphic correlation is presented for the base and top of the Santonian between the Boreal and Tethyan realms. Orbital forcing of carbon and oxygen isotopes at Seaford Head points to the Boreal Santonian spanning five 405 kyr cycles (Sa1 to Sa5). Correlation of the Seaford Head time scale to that of the Niobrara Formation (Western Interior Basin) permits anchoring these records to the La2011 astronomical solution at the Santonian-Campanian (Sa/Ca) boundary, which has been recently dated to 84.19 ± 0.38 Ma. Among the five tuning options examined, option 2 places the Sa/Ca at the 84.2 Ma 405 kyr insolation minimum and appears as the most likely. This solution indicates that minima of the 405 kyr filtered output of the resistivity in the Niobrara Formation correlate to 405 kyr insolation minima in the astronomical solution and to maxima in the filtered δ13C of Seaford Head. We suggest that variance in δ13C is driven by climate forcing of the proportions of CaCO3 versus organic carbon burial on land and in oceanic basins. The astronomical calibration generates a 200 kyr mismatch of the Coniacian-Santonian boundary age between the Boreal Realm in Europe and the Western Interior, due either to diachronism of the lowest occurrence of the inoceramid Cladoceramus undulatoplicatus between the two regions or to remaining uncertainties of radiometric dating and cyclostratigraphic records.
New ages for human occupation and climatic change at Lake Mungo, Australia.
Bowler, James M; Johnston, Harvey; Olley, Jon M; Prescott, John R; Roberts, Richard G; Shawcross, Wilfred; Spooner, Nigel A
2003-02-20
Australia's oldest human remains, found at Lake Mungo, include the world's oldest ritual ochre burial (Mungo III) and the first recorded cremation (Mungo I). Until now, the importance of these finds has been constrained by limited chronologies and palaeoenvironmental information. Mungo III, the source of the world's oldest human mitochondrial DNA, has been variously estimated at 30 thousand years (kyr) old, 42-45 kyr old and 62 +/- 6 kyr old, while radiocarbon estimates placed the Mungo I cremation near 20-26 kyr ago. Here we report a new series of 25 optical ages showing that both burials occurred at 40 +/- 2 kyr ago and that humans were present at Lake Mungo by 50-46 kyr ago, synchronously with, or soon after, initial occupation of northern and western Australia. Stratigraphic evidence indicates fluctuations between lake-full and drier conditions from 50 to 40 kyr ago, simultaneously with increased dust deposition, human arrival and continent-wide extinction of the megafauna. This was followed by sustained aridity between 40 and 30 kyr ago. This new chronology corrects previous estimates for human burials at this important site and provides a new picture of Homo sapiens adapting to deteriorating climate in the world's driest inhabited continent.
Fault specific GIS based seismic hazard maps for the Attica region, Greece
NASA Astrophysics Data System (ADS)
Deligiannakis, G.; Papanikolaou, I. D.; Roberts, G.
2018-04-01
Traditional seismic hazard assessment methods are based on the historical seismic records for the calculation of an annual probability of exceedance for a particular ground motion level. A new fault-specific seismic hazard assessment method is presented, in order to address problems related to the incompleteness and the inhomogeneity of the historical records and to obtain higher spatial resolution of hazard. This method is applied to the region of Attica, which is the most densely populated area in Greece, as nearly half of the country's population lives in Athens and its surrounding suburbs, in the Greater Athens area. The methodology is based on a database of 24 active faults that could cause damage to Attica in case of seismic rupture. This database provides information about the faults slip rates, lengths and expected magnitudes. The final output of the method is four fault-specific seismic hazard maps, showing the recurrence of expected intensities for each locality. These maps offer a high spatial resolution, as they consider the surface geology. Despite the fact that almost half of the Attica region lies on the lowest seismic risk zone according to the official seismic hazard zonation of Greece, different localities have repeatedly experienced strong ground motions during the last 15 kyrs. Moreover, the maximum recurrence for each intensity occurs in different localities across Attica. Highest recurrence for intensity VII (151-156 times over 15 kyrs, or up to a 96 year return period) is observed in the central part of the Athens basin. The maximum intensity VIII recurrence (115 times over 15 kyrs, or up to a 130 year return period) is observed in the western part of Attica, while the maximum intensity IX (73-77/15 kyrs, or a 195 year return period) and X (25-29/15 kyrs, or a 517 year return period) recurrences are observed near the South Alkyonides fault system, which dominates the strong ground motions hazard in the western part of the Attica mainland.
NASA Astrophysics Data System (ADS)
Xu, Fangjian; Hu, Bangqi; Dou, Yanguang; Liu, Xiting; Wan, Shiming; Xu, Zhaokai; Tian, Xu; Liu, Zhaoqing; Yin, Xuebo; Li, Anchun
2017-07-01
The late Quaternary paleoceanography and paleoenvironment of the South China Sea (SCS) have been well reconstructed over the last decade. In contrast, the provenance of the terrigenous sediments that have accumulated in the northwestern continental shelf mud area remains enigmatic. This study investigated the provenance of these sediments and the paleoenvironmental changes archived in Core X2 via the analysis of geochemical elements, grain size, and accelerator mass spectrometry (AMS) 14C ages. Based on the upper continental crust (UCC)-normalized REE patterns and REE fractionation parameters, southwestern and western Taiwanese rivers and the Pearl River were identified as the main sources of the fine-grained sediment deposited in the northwestern shelf mud area off Hainan Island. This finding further confirms the long-distance transport (> 1000 km) of fine-grained sediment from Taiwanese rivers to the northern SCS shelf and slope. Obvious changes in the grain size and Chemical Index of Alteration (CIA) record occurred at approximately 4.0 cal kyr BP and were likely caused by increased Hainan Island inputs due to sea level changes.
NASA Astrophysics Data System (ADS)
Huang, C.; Hinnov, L. A.; Hesselbo, S. P.
2012-12-01
The Early Toarcian Oceanic Anoxic Event (OAE) in the Early Jurassic Period is associated with a major negative carbon isotope excursion (CIE), mass extinction, marine transgression and global warming. The Toarcian OAE is thought to have been caused by flood basalt magmatism, and may have been a trigger for mass extinction. However, these proposed causes of the Toarcian OAE and associated biotic crisis are not adequately resolved by a precise chronology. The duration of the Toarcian OAE has been estimated to be anywhere from ~0.12 to ~0.9 Myr, most recently 0.74 to 3.26 Myr from U-Pb dating. The CIE associated with the Toarcian OAE has a similar pattern at numerous localities, and there is evidence for astronomical forcing of marine carbon isotopes. Here we estimate a duration of ~625 kyr for the main negative CIE, ~860 kyr for the polymorphum zone and >1.58 Myr for the levisoni zone based on 405-kyr astronomical eccentricity tuning of the marine section at Peniche (Portugal). This 405-kyr tuned series provides a ~2.5 Myr continuous high-resolution chronology through the Early Toarcian. There are 6, or possibly 7 short eccentricity cycles in the main CIE interval at Peniche. To confirm this astronomically based estimate, we analyzed five other sections at Yorkshire (UK), Dotternhausen (Germany), Valdorbia (Italy), Mechowo (Poland) and Serrucho, Neuquén (Argentina), from marine and terrestrial carbon isotopic series. These six stratigraphic sections from Early Jurassic western Tethys and eastern Panthalassa record the Toarcian OAE with ~6 prominent carbon isotope cycles in the CIE that provide us a 600 ± 100 kyr duration. The Peniche 405 kyr-tuned series indicates that the pre- and post-CIE intervals experienced strong precession-eccentricity-forced climate change, whereas the CIE interval is marked by dominant obliquity forcing. These dramatic and abrupt changes in astronomical response in the carbon isotopes point to fundamental shifting in the Early Toarcian paleoclimate system that is directly linked to the global carbon cycle.
Impact of Anthropogenic CO2 on the Next Glacial Cycle
NASA Astrophysics Data System (ADS)
Herrero, C.; García-Olivares, A.; Pelegrí, J. L.
2014-12-01
A simple relaxation-type model (García-Olivares and Herrero, 2013) based on an optimization of Paillard and Parrenin (2004), has been used to predict the future evolution of atmospheric CO2, global ice volume and Antarctic ice cover during the next 300 kyr, with and without the atmospheric CO2 perturbation caused by anthropogenic emissions.The initial atmospheric CO2 condition is obtained after a critical data analysis that sets 1300 Gt as the most realistic carbon Ultimate Recoverable Resources, with the help of a global compartmental model to determine the carbon transfer function to the atmosphere. This analysis sets a peak of emissions on year 2037 AD and a maximum CO2 concentration of 519 ppmv in 2300 AD, leading to 20 kyr of abnormally high greenhouse effect. Weathering compensation and emission of methane from clathrates have also been considered as they have relevant effects on the dynamics of the system after the perturbation.The anthropogenic CO2 pulse clearly perturbs the natural cycle for all model variables during the forthcoming 300 kyr. The present interglacial will be lengthen by 25 kyr, as the anthropogenic perturbation will lead to a delay in the future advance of the ice sheet on the Antarctic shelf and a consequent perturbation of the deep ocean stratification, so the relative maximum of boreal insolation 65 kyr AP will not affect the developing glaciation. Instead, it will be the following insolation peak, about 110 kyr AP, which will find an appropriate climatic state to trigger the next deglaciation. The next glacial maximum will take place about 105 kyr AP and the following interglacial will be delayed forward in time by 44 kyr in relation to unperturbed conditions.This study endorses the idea that relaxation type coupled models, despite their simple structure, may retain the principal Earth's climatic interactions, being capable of accounting for the natural evolution of an externally imposed atmospheric CO2 pulse. - Garcia-Olivares, A. and Herrero, C. (2013) "Simulation of glacial-interglacial cycles by simple relaxation models: consistency with observational results" Clim. Dyn., 41:1307-1331- Paillard, D. and Parrenin, F. (2004) "The Antarctic ice sheet and the triggering of deglaciations" Earth. Planet. Sci. Lett., 227, 263 - 271
NASA Astrophysics Data System (ADS)
Sifeddine, A.; Meyers, P. A.; Gustavo, A.; Spadano Albuquerque, A. L.; Turcq, B.; Campbello Cordeiro, R.; Abrao, J. J.
2004-12-01
Two cores from Caco Lake, Maranhao State (North Brazil) record different histories of sediment accumulation on the margin and center of the lake that reflect changes in lake level. Seismic profiles, mineralogy and organic geochemical studies, backed by radiocarbon dating, reveal variable climatic and environmental conditions over the last 21 Cal Kyr BP. During the Last Glacial Maximum, regional climate was predominantly dry but was interrupted by short humid phases as reflected by a succession of very thin layers of sand and organic matter. The late glacial climate was relatively wet and included two rapid lake-level increases accompanied by forest expansion. The two wet phases were separated by a phase where the lake level remained stable and the forest changes were marked by the development of cool "Podocarpus" forest. These humid climate periods differed significantly from present warm tropical conditions.. The Holocene period is characterized by progressive increase of lake level, which reaches his maximum at around 7,000 Cal years BP. The period between 4,000 Cal years BP and the present shows high variability in lake level. Comparing with other South American and African records, we conclude that Late Glacial humid conditions were controlled by intensification of the ITCZ or shifts of its position, resulting in southeasterly trade wind variations and in interconnection between northern South America and the Atlantic tropical ocean-atmosphere system. The climatic variability during the Holocene is probably the result of sub-Milankovitch solar cycles and regional responses to these global forcings that are related to Atlantic and Pacific variability and their interconnections.
NASA Astrophysics Data System (ADS)
Viehberg, Finn A.; Assanov, Sergey; Kuhn, Steven; Reed, Jane; Ülgen, Umut B.; Namık Çaǧatay, M.; Melles, Martin
2013-04-01
Transcontinental dispersal of modern humans from the Near East to the Balkans in the Middle and Upper Palaeolithic is expected to have followed the coastline (i.e., Yarımburgaz, Karain and Üçaǧızlı caves). Lake Iznik is situated 80 km south of the Bosphorus (Western Turkey) close to the Marmara Sea. Here we retrieved a continuous sediment record covering the past ~40 ka cal BP. A multiproxy approach enabled us to reconstruct the environmental history. We included biological proxies i.e., diatoms, cladocerans and ostracods as biological proxies, but also physical and geochemical proxies were analysed. Geomorphological findings in the lake basin and geochemical analyses hint to changing lake water levels at least since 40 ka cal BP that lasted until c. 11 cal. kyr BP. This supports the theory of persisting dry climate conditions before the onset of the Holocene also inferred from geochemical sediment proxies (i.e., element analysis), diatoms and ostracod shell chemistry. The Upper Palaeolithic sequences (45-33 ka cal BP) at the Üçaǧızlı Cave (Hatay) yield clear evidence of the technological transition between Initial Upper Palaeolithic and Ahmarian, but also documents major shifts in diet of past hunting community. The identified animal remains in the cave sequence change from larger ungulates to smaller ungulates and increase in fish and shellfish. It is proposed that the compositional change in game is not solitarily caused by technology advances, but also by environmental and climatic changes as inferred from sediment archives of Lake Iznik.
A Revised Holocene History of Lake Kivu, East Africa
NASA Astrophysics Data System (ADS)
Votava, J. E.; Johnson, T. C.; Hecky, R. E.
2013-12-01
The great lakes of the East African Rift valley are a vast chain of lakes formed in a region of active tectonics. These large, deep lakes are relatively old and many (e.g. Tanganyika, Malawi, and Turkana) have greatly influenced our understanding of terrestrial, tropical East African paleoclimate. Lake Kivu (max depth, 485m) sits at the heart of these rift lakes, north of Lake Tanganyika between the Democratic Republic of the Congo and Rwanda (roughly 250 km west of Lake Victoria). At over 1,400 meters in elevation, this 2,060 km2 mesotrophic lake has a complex stratification regime imposed by hydrothermal springs and deep waters supersaturated at STP in CO2 and CH4 gasses. The active Virunga Volcanoes to the north of the lake supply heated, high-salinity waters below 280 meters water depth maintaining the modern crenogenic meromixis. Based on detailed studies of diatom assemblages and bulk sedimentology, previous workers have suggested this hydrothermal activity began roughly 5,000 years BP. Unfortunately, dating and stratigraphic correlations of these original cores from the 1970 Woods Hole Oceanographic Institution's expedition have been problematic. Here we offer an improved chronology and new carbonate analyses from cores recovered in 2012 and 2013. Our AMS radiocarbon ages come from six terrigeneous macrofossils spanning the last 9,100 years (cal BP). These ages suggest a rather high sedimentation rate on the order of 70cm/kyr, and hence, our 8 m-long core provides us with a high-resolution lake history for the past 10,000 years. Most notable over the past 5,000 years in the lake history is the repeated onset and cessation of carbonate deposition, punctuated by organic-rich intervals. Earlier studies of the Woods Hole cores placed the onset of carbonate deposition at ca. 11,000 years BP suggesting changes in lake hydrology (i.e. closed to open), while the abrupt cessation of carbonate was dated at ca. 5,000 years BP and attributed to the beginning of significant hydrothermal activity in the lake. However our new chronology places these events much younger with the first major onset of carbonate deposition occurring around 4,300 years BP and ceasing ca. 2,700 years BP. Indeed much of central and northern Africa began to dry out at this time, following the African Humid Period ca. 15,000 to 5,000 years BP. Arid conditions could certainly favor carbonate precipitation and hence our revised ages of deposition agree well with regional paleoclimate studies. This new age model opens up the carbonate record of Lake Kivu for reinterpretation. We are investigating the extent to which the carbonate signal is influenced by internal changes and hydrothermal activity or by climate.
NASA Technical Reports Server (NTRS)
Menking, Kirsten M.; Peteet, Dorothy M.; Anderson, Roger Y.
2012-01-01
Sediment cores from Lakes Minnewaska and Mohonk in the Shawangunk Mountains of southeastern New York were analyzed for pollen, plantmacrofossils, macroscopic charcoal, organic carbon content, carbon isotopic composition, carbon/nitrogen ratio, and lithologic changes to determine the vegetation and landscape history of the greater Catskill Mountain region since deglaciation. Pollen stratigraphy generally matches the New England pollen zones identified by Deevey (1939) and Davis (1969), with boreal genera (Picea, Abies) present during the late Pleistocene yielding to a mixed Pinus, Quercus and Tsuga forest in the early Holocene. Lake Minnewaska sediments record the Younger Dryas and possibly the 8.2 cal kyr BP climatic events in pollen and sediment chemistry along with an 1400 cal yr interval of wet conditions (increasing Tsuga and declining Quercus) centered about 6400 cal yr BP. BothMinnewaska andMohonk reveal a protracted drought interval in themiddle Holocene, 5700-4100 cal yr BP, during which Pinus rigida colonized the watershed, lake levels fell, and frequent fires led to enhanced hillslope erosion. Together, the records show at least three wet-dry cycles throughout the Holocene and both similarities and differences to climate records in New England and central New York. Drought intervals raise concerns for water resources in the New York City metropolitan area and may reflect a combination of enhanced La Niña, negative phase NAO, and positive phase PNA climatic patterns and/or northward shifts of storm tracks.
NASA Astrophysics Data System (ADS)
Mjell, Tor Lien; Ninnemann, Ulysses S.; Eldevik, Tor; Kleiven, Helga Kikki F.
2015-05-01
The Nordic Seas overflows are an important part of the Atlantic thermohaline circulation. While there is growing evidence that the overflow of dense water changed on orbital time scales during the Holocene, less is known about the variability on shorter time scales beyond the instrumental record. Here we reconstruct the relative changes in flow strength of Iceland-Scotland Overflow Water (ISOW), the eastern branch of the overflows, on multidecadal-millennial time scales. The reconstruction is based on mean sortable silt (SS>¯) from a sediment core on the Gardar Drift (60°19'N, 23°58'W, 2081 m). Our SS>¯ record reveals that the main variance in ISOW vigor occurred on millennial time scales (1-2 kyr) with particularly prominent fluctuations after 8 kyr. Superimposed on the millennial variability, there were multidecadal-centennial flow speed fluctuations during the early Holocene (10-9 kyr) and one prominent minimum at 0.9 kyr. We find a broad agreement between reconstructed ISOW and regional North Atlantic climate, where a strong (weak) ISOW is generally associated with warm (cold) climate. We further identify the possible contribution of anomalous heat and freshwater forcing, respectively, related to reconstructed overflow variability. We infer that ocean poleward heat transport can explain the relationship between regional climate and ISOW during the middle to late Holocene, whereas freshwater input provides a possible explanation for the reduced overflow during early Holocene (8-10 kyr).
NASA Astrophysics Data System (ADS)
Choumiline, K.; Lyons, T. W.; Carriquiry, J. D.; Perez-Cruz, L. L.; Raiswell, R.; Beaufort, L.; Rafter, P. A.
2017-12-01
The Eastern Tropical North Pacific (ETNP) is sensitive to climatic changes that either strengthen or weaken the Oxygen Minimum Zone (OMZ). Paleoproxy and model evidence indicate that the shifts from cold stadials (LGM, MIS4) to warm interstadials are often accompanied by sudden sea level rise, intensification of marine productivity and enhanced oceanic anoxia. These intermediate states remain enigmatic, especially with overimposed Dansgaard-Oeschger (DO) oscillations and Heinrich events. We present a high-resolution reconstruction of productivity (Corg, P, Cd, Ni, Ba) and redox (Fe/Al, FeHR/FeT, Mo, V, U) of the ETNP over the last glacial period with special emphasis on the MIS3 transition (roughly 30-60 kyr BP). We found that the OMZ was profoundly anoxic throughout that interval, based on marine sedimentary paleoproxy records. Our spatiotemporal reconstruction shows that the geographic extent of enhanced deoxygenation during the MIS3 not only encompassed the Gulf of California (Alfonso, La Paz and Guaymas Basin), Pacific margin off Mazatlan and Baja California (Soledad Basin), but also California (Santa Barbara Basin) and western Canadian margins. The OMZ achieved its peak strength during 45-60 kyr BP exposed by the highest Mo (35 mg/kg), V (120 mg/kg) and U (13 mg/kg) values, and then commenced weakening and contracting onto the LGM. Marine productivity was also reportedly high during the MIS3, mostly mirroring the redox signals. In contrast, MIS4 and LGM were well-oxygenated and depleted in redox proxies (as low as 4 mg/kg of Mo, 60 mg/kg of V and 4 mg/kg of U). Despite of enhanced anoxia or even euxinia during the MIS3, the effect of cold D-O and Heinrich events was unmistakable. Most of these perturbations corresponded to low export production (low Corg, P, Cd/Al, Ni/Al and Ba/Al) and good ventilation of the ETNP. The recoveries after these events were relatively quick and anoxic conditions were re-established within hundreds of years. As of now, there is no definitive explanation for the mechanisms by which D-O and Heinrich events exert changes in the intensity of ETNP OMZs during the MIS3, but a consensus is building. We will discuss the most popular hypotheses that involve changes in atmospheric and thermohaline circulation, as well as variability in deep-sea nutrients.
NASA Astrophysics Data System (ADS)
Vogel, Hendrik; Russell, James M.; Yudawati Cahyarini, Sri; Bijaksana, Satria; Wattrus, Nigel; Rethemeyer, Janet; Melles, Martin
2014-05-01
Lake Towuti (2.75°S, 121.5°E; 318 m a.s.l.) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 MYr) tectonic lakes in central Sulawesi, Indonesia. The Mahalona River constitutes the largest tributary and connects Lake Towuti with the two upstream lakes Matano and Mahalona. The Mahalona River Delta is prograding into the >200m deep northern basin of Lake Towuti. Tracing past variability of Mahalona River discharge is therefore an important puzzle piece for the understanding of depositional dynamics in Lake Towuti as well as catchment hydrology and hydrological connectivity between the Malili Lakes. Distal deltaic deposits can help identifying past variability in river discharge and delta dynamics. Using highly resolved seismic reflection data collected between 2007-2013 we identified a stack of acoustically laminated reflections in Towuti's extensive and morphologically flat deep northern basin. For detailed characterization of these acoustic features we collected a c. 20m long piston core from the basin centre at 200 m water depth reaching back to c. 30 kyrBP. Sediments in this piston core consist to 75% of mass wasting deposits (MWD) of variable thickness that are intercalated with pelagic muds (25%). MWD appear mostly homogenous (silt- to finesand-sized siliciclastics with high amounts of terrestrial plant macrofossils) with only thin (1-3 cm) basal sand layers and clay caps (<1 cm). Pelagic muds appear as thin to medium bedded slightly silty clays that are clearly distinguishable from MWD. The position of MWD identified in our piston core nicely correlates with acoustically laminated reflections identified in seismic profiles crossing the coring site. Based on these combined sedimentological and acoustic datasets we interpret MWD in Towuti's northern basin as distal deltaic deposits originating from the Mahalona River Delta. Frequencies and percentages (in terms of lithofacies contribution) of distal deltaic deposits differ substantially between the Holocene (56%) and last glacial (88%) sediment succession. In combination with data from hydrological proxies and seismic reflection data indicating dry climate conditions and lake level lowstands, respectively, we interpret the higher frequency of distal deltaic deposits during the last glacial as a result of subaerial exposure and erosion of Mahalona River Delta sediments. These findings imply that frequencies and percentages of distal deltaic deposits in Lake Towuti may be an additional indicator for hydrological variability in this particular system.
NASA Astrophysics Data System (ADS)
Qiu, Jiandong; Liu, Jian; Saito, Yoshiki; Yang, Zigeng; Yue, Baojing; Wang, Hong; Kong, Xianghuai
2014-10-01
Based on the stratigraphic sequence formed since the last glaciation and revealed by 3000 km long high-resolution shallow seismic profiles and the core QDZ03 acquired recently off the southern Shandong Peninsula, we addressed the sedimentary characteristics of a Holocene subaqueous clinoform in this paper. Integrated analyses were made on the core QDZ03, including sedimentary facies, sediment grain sizes, clay minerals, geochemistry, micro paleontology, and AMS 14C dating. The result indicates that there exists a Holocene subaqueous clinoform, whose bottom boundary generally lies at 15-40 m below the present sea level with its depth contours roughly parallel to the coast and getting deeper seawards. The maximum thickness of the clinoform is up to 22.5 m on the coast side, and the thickness contours generally spread in a banded way along the coastline and becomes thinner towards the sea. At the mouths of some bays along the coast, the clinoform stretches in the shape of a fan and its thickness is evidently larger than that of the surrounding sediments. This clinoform came into being in the early Holocene (about 11.2 cal kyr BP) and can be divided into the lower and upper depositional units (DU 2 and DU 1, respectively). The unit DU 2, being usually less than 3 m in thickness and formed under a low sedimentation rate, is located between the bottom boundary and the Holocene maximum flooding surface (MFS), and represents the sediment of a post-glacial transgressive systems tract; whereas the unit DU 1, the main body of the clinoform, sits on the MFS, belonging to the sediment of a high-stand systems tract from middle Holocene (about 7-6 cal kyr BP) to the present. The provenance of the clinoform differs from that of the typical sediments of the Yellow River and can be considered as the results of the joint contribution from both the Yellow River and the proximal coastal sediments of the Shandong Peninsula, as evidenced by the sediment geochemistry of the core. As is controlled mainly by coactions of multiple factors such as the Holocene sea-level changes, sediment supplies and coastal dynamic conditions, the development of the clinoform is genetically related with the synchronous clinoform or subaqueous deltas around the northeastern Shandong Peninsula and in the northern South Yellow Sea in the spatial distribution and sediment provenance, as previously reported, with all of them being formed from the initial stage of the Holocene up to the present.
NASA Astrophysics Data System (ADS)
Hennekam, Rick; Jilbert, Tom; Schnetger, Bernhard; De Lange, Gert J.
2014-05-01
Sediments in the southeast Mediterranean are characterized by high accumulation rates, being influenced by suspended matter from the Nile plume. Therefore, the sediments from this area offer an invaluable high-resolution climate archive. Earlier work has shown that Nile River outflow has influenced water chemistry in this region throughout the entire Holocene, being well recorded in the oxygen isotopic ratio of the planktic foraminifer Globigerinoides ruber (δ18Oruber). The deposition of organic-rich layers (sapropels) during precession minima is often linked to Nile discharge. Here we present a multi-proxy study of a well-dated sediment core from the southeast Mediterranean basin to study in high-resolution the variability in Nile discharge during the early- to mid-Holocene. High sedimentation rates and sample resolution allow for recognition of (multi-)centennial variability in Nile discharge as recorded by δ18Oruber. Moreover, we measured bulk sediment Ba/Al (representing export-productivity), V/Al (representing redox conditions), and total organic carbon (Corg) during deposition of sapropel S1 (~6-10 kyr BP). Nile discharge is influenced by moisture transport from both the Atlantic and Indian Oceans, being presently dominated by Atlantic moisture. We show that Nile discharge during the early- to mid-Holocene was dominated by Indian Ocean moisture transport. This is supported by the maximum in Nile discharge at ~9.5 cal. kyr BP, similar to the maximum intensity of Indian Ocean-influenced southwest Indian summer monsoon. Moreover, the strong solar activity signal observed in multi-centennial oscillations in Nile discharge during this time interval concords with those recorded in contemporaneous Indian Ocean-derived monsoon records, but not with those from the Atlantic Ocean. Solar-induced variability in Nile discharge also influenced the conditions relating to Sapropel S1 formation. During its deposition, similar multi-centennial variability is found in bulk sediment Ba/Al, V/Al, and Corg, indicating that nutrient availability and shallow water column ventilation in the eastern Mediterranean were sensitive to Nile discharge.
NASA Astrophysics Data System (ADS)
Yanchilina, A.; Ryan, W. B.; Kenna, T. C.
2013-12-01
Sapropelic sedimentation characterizes the mid-Holocene section of the Black Sea strata, ranging from ~7500 to 3000 kyr BP. The level of organic carbon in the sapropel reaches 20% and the timing of the onset is independent of depth. However, it is unclear what sequence of events led to the development of the sapropel and how exactly its deposition was related to the connection of the Black Sea with the Mediterranean. One component that contributes to the uncertainty is a ~1000 kyr BP jump in age across the sapropel interface derived from radiocarbon dating of carbonate material. This study looks at records of XRF done on dry and wet sediments (i.e., Cu, Mo, Br) in addition to radiocarbon and stable isotope measurements on shells of ostracods. Cu, Mo, and Br all increase substantially from their low abundances in the glacial, post-glacial, and early Holocene gray clay almost concurrently. An increase in Cu indicates the rise of nutrients in the surface water and is coincident with a rise in Corg. Mo rises after Cu; it is attributed to the onset of anoxia, as it precipitates out of the water column in an environment lacking oxygen. Br increases last, attributed to the rise of the bottom dense salt water layer to the surface and its uptake by phytoplankton. Stable isotope results show that the δ18O rises from -1 to 0.3 ‰ and δ13C rises from -3 to -0.5 ‰ prior to the disappearance of ostracods in the sediment and indicates that anoxia started after the Black Sea-Lake connected with the Mediterranean. These results suggest that it was increased biological productivity that initially led to the deposition of the sapropel and only later to anoxia that then reinforced the highly organic content of the preserved sediment for thousands of years. The one thousand year jump in radiocarbon is interpreted as a decrease in the reservoir age of the water due to the replacement of stratified Black Sea that has accumulated old carbon and a large reservoir age with Mediterranean water of a nearly zero reservoir age.
Multi-decadal Variability of the Indian Monsoon Rainfall for the last 14 kyr
NASA Astrophysics Data System (ADS)
Panmei, C.; Pothuri, D.
2017-12-01
Precise reconstruction of Indian monsoon fluctuation events and variability trends over the last 14 kyr has great implications for understanding the dynamics and possible forcing/feedback mechanisms associated with it. We have carried out high-resolution Indian monsoon variability studies of multi-decadal to sub-centennial timescales for the past 14 kyr through oxygen isotopes and Mg/Ca-derived sea surface temperatures (SST) from a western Bay of Bengal sediment core MD 161/17, using planktonic foraminifera Globigerinoides ruber. Indian summer monsoon (ISM) intensity was low during the Younger Dryas (YD) as evidenced by enriched δ18Osw coincides with a striking warming of 1.5°C. We observed ISM intensification from 12-9 kyr, followed by a milder period from 9-7.2 kyr. ISM gradually weakened from 7.2-2.5 kyr, after which there were two very prominent shifts in both ISM and SST; abrupt decrease at 2.4 kyr and increase at 1.4 kyr for ISM, while SST exhibited opposite trend. The contrasting trend continued from 1.4 kyr to the present wherein ISM precipitation has been decreasing and SST has been increasing. In addition, spectral analysis was done using Redfit and the ISM precipitation records reveal statistically significant periodicities at 2118, 411, 344, 144, 101 and 90 yrs. Furthermore, we compared our results with other existing records from the Northern Indian Ocean and adjacent regions, and found that the records share similarities suggesting regional dynamics being expressed coherently. Our results suggest that ISM precipitation and warming/cooling of the Northern Indian Ocean is directly associated with the southward/northward shift of the Intertropical Convergence Zone, which in turn is influenced by Atlantic Meridional Overturning Circulation, North Atlantic climate, and solar insolation interplaying differently at different timescales.
NASA Astrophysics Data System (ADS)
Schmidt, Peter; Lund, Björn; Näslund, Jens-Ove; Fastook, James
2014-05-01
Observations of glacial isostatic adjustment (GIA) have been used both to study the mechanical properties of the Earth and to invert for Northern Hemisphere palaeo-ice-sheets. This is typically done by solving the sea-level equation using simplified scaling laws to control ice-sheet thickness. However, past ice-sheets can also be reconstructed based on thermo-mechanical modelling driven by palaeo-climate data, invoking simple analytical models to account for the Earth's response. Commonly, both approaches use dated geological markers to constrain the ice-sheet margin location. Irrespective of the approach, the resulting ice-sheet reconstruction depends on the earth response, although the interdependence between the ice model and the earth model differs and therefore the two types of reconstructions could provide complementary information on Earth properties. We compare a thermo-mechanical reconstruction of the Weichselian ice-sheet using the UMISM model (Näslund, 2010) to two GIA driven reconstructions, ANU (Lambeck et al., 2010) and ICE-5G (Peltier & Fairbanks, 2006), commonly used in GIA modelling. We evaluate the three reconstructions both in terms of ice-sheet configurations and predicted Fennoscandian surface deformation ICE-5G comprise the largest reconstructed ice-sheet whereas ANU and UMISM are more similar in volume and areal extent. Significant differences still exists between ANU and UMISM, especially during the final deglaciation phase. Prior to the final retreat of the ice-sheet, ICE-5G is displays a massive and more or less constant ice-sheet configuration, while both ANU and UMISM fluctuates with at times almost ice-free conditions, such as during MIS3. This results in ICE-5G being close to isostatic equilibrium at LGM, whereas ANU and UMISM are not. Hence, the pre-LGM evolution of the Weichselian ice-sheet needs to be considered in GIA studies. For example, perturbing the ANU or UMISM reconstructions we find that changes more recent than 36 kyr BP may change the predicted uplift velocities by more than 0.1 mm/yr, while changes more recent than 55 kyr BP may change the predicted uplift 10 kyr ago by more than 5 m. Despite their differences we find that all three reconstructions can equally well fit observations of the present day uplift in Fennoscandia, as well as the observed sea-level curve along the Ångerman river, Sweden, albeit with different optimal earth models. However, only for ANU can a single optimal earth model be determined as a bifurcation in the optimal viscosity arises from the generally faster present day rebound rates in ICE-5G and UMISM, resulting in a range of well-fitting earth models for the latter reconstructions. Studying models with a reasonable fit to observed present day uplift velocities we find general trends of over- and under-prediction, indicating that all three ice-sheet reconstructions need improvement. In general, all three reconstructions tend to over-predict the uplift rates in southwestern Fennoscandia, whereas over Finland ICE-5G generally over-predicts and ANU generally under-predicts the uplift rates. UMISM tend to under-predict the velocities over central to northern Sweden and similar trends can also be seen in ANU and ICE-5G.
NASA Astrophysics Data System (ADS)
Köhler, Peter; Nehrbass-Ahles, Christoph; Schmitt, Jochen; Stocker, Thomas F.; Fischer, Hubertus
2017-06-01
Continuous records of the atmospheric greenhouse gases (GHGs) CO2, CH4, and N2O are necessary input data for transient climate simulations, and their associated radiative forcing represents important components in analyses of climate sensitivity and feedbacks. Since the available data from ice cores are discontinuous and partly ambiguous, a well-documented decision process during data compilation followed by some interpolating post-processing is necessary to obtain those desired time series. Here, we document our best possible data compilation of published ice core records and recent measurements on firn air and atmospheric samples spanning the interval from the penultimate glacial maximum ( ˜ 156 kyr BP) to the beginning of the year 2016 CE. We use the most recent age scales for the ice core data and apply a smoothing spline method to translate the discrete and irregularly spaced data points into continuous time series. These splines are then used to compute the radiative forcing for each GHG using well-established, simple formulations. We compile only a Southern Hemisphere record of CH4 and discuss how much larger a Northern Hemisphere or global CH4 record might have been due to its interpolar difference. The uncertainties of the individual data points are considered in the spline procedure. Based on the given data resolution, time-dependent cutoff periods of the spline, defining the degree of smoothing, are prescribed, ranging from 5000 years for the less resolved older parts of the records to 4 years for the densely sampled recent years. The computed splines seamlessly describe the GHG evolution on orbital and millennial timescales for glacial and glacial-interglacial variations and on centennial and decadal timescales for anthropogenic times. Data connected with this paper, including raw data and final splines, are available at doi:10.1594/PANGAEA.871273.
Preparation of bone samples in the Gliwice Radiocarbon Laboratory for AMS radiocarbon dating.
Piotrowska, N; Goslar, T
2002-12-01
In the Gliwice Radiocarbon Laboratory, a system for preparation of samples for AMS dating has been built. At first it was used to produce graphite targets from plant macrofossils and sediments. In this study we extended its capabilities with the preparation of bones. We dealt with 3 methods; the first was the classical Longin method of collagen extraction, the second one included additional treatment of powdered bone in alkali solution, while in the third one carboxyl carbon was separated from amino acids obtained after hydrolysis of protein. The suitability of the methods was tested on 2 bone samples. Most of our samples gave ages > 40 kyr BP, suggesting good performance of the adapted methods, except for one sample prepared with simple Longin method. For routine preparation of bones we chose the Longin method with additional alkali treatment.
NASA Astrophysics Data System (ADS)
Demaster, David J.; Ragueneau, Olivier; Nittrouer, Charles A.
1996-08-01
Rates of biogenic sediment accumulation (biogenic silica and organic C, N, and P) and pore water flux have been established for a variety of depositional environments in the Ross Sea. On the basis of 14C measurements in kasten cores, sediment accumulation rates ranged from 250 cm kyr-1 in the coastal basin of Granite Harbor to 1-2 cm kyr-1 in the shelf and slope environments of the northern and eastern Ross Sea. Burial of biogenic material was most rapid in the southwestern Ross Sea, where biogenic silica accumulation rates ranged from 2 to 31 g cm-2 kyr-1 and organic carbon accumulation rates ranged from 0.05 to 1.4 g cm-2 kyr-1. In the northern and eastern Ross Sea, biogenic silica and organic carbon accumulation rates typically equaled 0.02-0.03 g SiO2 cm-2 kyr-1 and 0.002-0.004 g C cm-2 kyr-1. Flux core measurements were used to estimate seabed regeneration rates for biogenic silica, organic carbon, and phosphorus. Pore water fluxes, in general, showed much less variability across the Ross Sea than did the biogenic accumulation rates. Pore water silicate fluxes in the study area ranged from 0.6 to 5.3 g SiO2 cm-2 kyr-1, whereas carbon fluxes ranged from 0.1 to 1.2 g C cm-2 kyr-1 and phosphate fluxes varied from -0.006 to 0.012 g P cm-2 kyr-1. Seabed preservation efficiencies were calculated for biogenic silica, organic carbon, and phosphorus by combining the solid-phase and pore water data. The seabed preservation efficiencies for biogenic silica (1-86%) were greater than for organic carbon (1-71%) at all nine stations examined. The preferential preservation of biogenic silica relative to organic carbon also was apparent in Ross Sea sediments because the biogenic silica/organic carbon ratio in the material buried in the seabed generally was 2 times greater than the ratio in sediment particles arriving at the sediment-water interface. Sediment accumulation rate correlated strongly with both the biogenic silica and the organic carbon preservation efficiency data. P preservation efficiencies remained relatively high (24-65%) even when the accumulation rates were low (1-2 cm kyr-1) because of the near-zero phosphate fluxes out of the seabed. Of the total P in the seabed (0.04-0.09 wt. %), approximately 25% existed in the form of organic P. The total amount of biogenic silica accumulating on the Ross Sea shelf is ˜2.3 × 1012 g SiO2 yr-1, which is approximately an order of magnitude less than the Ledford-Hoffman et al. [1986] estimate that was based on 210Pb chronologies. Biogenic silica accumulation rates in the southern, central, and western Ross Sea increased during the mid and late Holocene, reaching their maximum values during the past 500 to 1000 years.
Stalagmite Survival: 500kyr of Cyclical Growth and Natural Attrition of Stalagmites in Sulawesi
NASA Astrophysics Data System (ADS)
Scroxton, N.; Gagan, M. K.; Dunbar, G. B.; Ayliffe, L. K.; Hantoro, W. S.; Shen, C. C.; Hellstrom, J. C.; Zhao, J. X.; Cheng, H.; Edwards, R. L.; Sun, H.; Rifai, H.
2014-12-01
Numerous speleothem studies have analysed the age distribution of stalagmites harvested from multiple caves and inferred important changes in paleoclimates to explain stalagmite growth phases. However, stalagmites take tens to hundreds of thousands of years to grow, and thus the twin desires to preserve the cave condition for future generations and advance palaeoclimate science are often in conflict. In this study we use U/Th ages from low impact mini-cores extracted in situ from the bases of stalagmites, thus keeping the intrinsic value of the cave intact. Our case study is based on 77 individual stalagmites drilled in situ in thirteen caves located in and around Bantimurung-Bulusaraung National Park, South Sulawesi, Indonesia. The stalagmites grew during discrete time intervals within the last ~530,000 years, and analysis of their age distribution shows an exponential decrease in the number of older stalagmites surviving to the present day. The age distribution indicates that the rate of natural attrition of stalagmites is approximately constant through time, probably in response to a number of natural processes, including downward erosion of the karst terrain, cave collapse, in-cave erosional processes and in-cave sedimentation covering stalagmites. Natural attrition of stalagmites is likely to be a general cave phenomenon, and has important implications for cave conservation because it highlights that random removal of stalagmites without prior knowledge of their ages will result in unnecessary replication and a failure to sample the full length of the available paleoclimate record. Departure from this "normal" exponential profile can be used to infer palaeoclimate information: significant deviations are produced by periods of more frequent stalagmite growth, inferred here to reflect increases in monsoon rainfall over Sulawesi (345-340, 75-70 and 10-5 kyr BP). By adjusting the record to account for stalagmite attrition, more statistically robust paleoclimate information can be inferred. Crucially, these insights on past climates have been obtained entirely from reconnaissance-style basal mini-core ages. This novel technique is therefore suitable for caves where the removal of stalagmites would cause irreparable damage, or jeopardize local cultural and tourism potential.
Grain-size based sea-level reconstruction in the south Bohai Sea during the past 135 kyr
NASA Astrophysics Data System (ADS)
Yi, Liang; Chen, Yanping
2013-04-01
Future anthropogenic sea-level rise and its impact on coastal regions is an important issue facing human civilizations. Due to the short nature of the instrumental record of sea-level change, development of proxies for sea-level change prior to the advent of instrumental records is essential to reconstruct long-term background sea-level changes on local, regional and global scales. Two of the most widely used approaches for past sea-level changes are: (1) exploitation of dated geomorphologic features such as coastal sands (e.g. Mauz and Hassler, 2000), salt marsh (e.g. Madsen et al., 2007), terraces (e.g. Chappell et al., 1996), and other coastal sediments (e.g. Zong et al., 2003); and (2) sea-level transfer functions based on faunal assemblages such as testate amoebae (e.g. Charman et al., 2002), foraminifera (e.g. Chappell and Shackleton, 1986; Horton, 1997), and diatoms (e.g. Horton et al., 2006). While a variety of methods has been developed to reconstruct palaeo-changes in sea level, many regions, including the Bohai Sea, China, still lack detailed relative sea-level curves extending back to the Pleistocene (Yi et al., 2012). For example, coral terraces are absent in the Bohai Sea, and the poor preservation of faunal assemblages makes development of a transfer function for a relative sea-level reconstruction unfeasible. In contrast, frequent alternations between transgression and regression has presumably imprinted sea-level change on the grain size distribution of Bohai Sea sediments, which varies from medium silt to coarse sand during the late Quaternary (IOCAS, 1985). Advantages of grainsize-based relative sea-level transfer function approaches are that they require smaller sample sizes, allowing for replication, faster measurement and higher spatial or temporal resolution at a fraction of the cost of detail micro-palaeontological analysis (Yi et al., 2012). Here, we employ numerical methods to partition sediment grain size using a combined database of marine surface and core samples, and to quantitatively reconstruct sea-level variation since the late Pleistocene in the south Bohai Sea, China. New insights into regional relative sea-level changes since the late Pleistocene are obtained (Yi et al., 2012): (1) The grain size of surface and core samples can be mathematically partitioned using the Weibull distribution into four components. These four components with differing modal sizes and percentages could be interpreted as a long-term suspension component, which only settles under low turbulence conditions, sortable silt and very fine sand components transported by suspension during greater turbulence and bedload transport component, respectively. (2) Through regression and rigorous verification techniques, the reference water level could be reconstructed from sediment grain size. The reconstruction quantitatively extends the regional relative sea-level history to the late Pleistocene, providing a comparatively long dataset to evaluate regional sea-level variability. (3) We find no evidence of a sea-level high stand during MIS3 but rather a substantial regression during 70-30 cal kyr BP and potentially exposed land during 38-20 cal kyr BP. These results for the south Bohai Sea are in good agreement with published global sea-level records for the late Pleistocene, implying similarities between local and global sea-level patterns. Therefore, it is concluded that grain-size based sea-level reconstruction provide results that are comparable to other reconstruction methods and demonstrates great potential application for future works. (The data was shared on http://hurricane.ncdc.noaa.gov/) References Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y., Pillans, B., 1996. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters 141, 227-236. Chappell, J., Shackleton, N.J., 1986. Oxygen isotopes and sea level. Nature 324, 137-140. Charman, D.J., Roe, H.M., Roland Gehrels, W., 2002. Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variables. Journal of Quaternary Science 17, 387-409. Horton, B.P., 1997. Quantification of the indicative meaning of a range of Holocene sea-level index points from the western North Sea, Department of Geography. University of Durham, Durham City, UK, p. 509. Horton, B.P., Corbett, R., Culver, S.J., Edwards, R.J., Hillier, C., 2006. Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level. Estuarine, Coastal and Shelf Science 69, 381-394. IOCAS (Institute of Oceanology, Chinese Academy of Sciences), 1985. Bohai Sea Geology. Science Press, Beijing, China. Madsen, A.T., Murray, A.S., Andersen, T.J., Pejrup, M., 2007. Temporal changes of accretion rates on an estuarine salt marsh during the late Holocene -Reflection of local sea level changes? The Wadden Sea, Denmark. Marine Geology 242, 221-233. Mauz, B., Hassler, U., 2000. Luminescence chronology of Late Pleistocene raised beaches in southern Italy: new data of relative sea-level changes. Marine Geology 170, 187-203. Yi, L., Yu, H.J., Ortiz, J.D., Xu, X.Y., Qiang, X.K., Huang, H.J., Shi, X., Deng, C.L., 2012. A reconstruction of late Pleistocene relative sea level in the south Bohai Sea, China, based on sediment grain-size analysis. Sedimentary Geology 281, 88-100. Zong, Y., Shennan, I., Combellick, R.A., Hamilton, S.L., Rutherford, M.M., 2003. Microfossil evidence for land movements associated with the AD 1964 Alaska earthquake. The Holocene 13, 7-20.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peteet, D. M.; Beh, M.; Orr, C.
The conventionally accepted ages of the Last Glacial Maximum (LGM) retreat of the southeastern Laurentide Ice Sheet (LIS) are 26–21 cal. kyr (derived from bulk-sediment radiocarbon ages) and 28–23 cal. kyr (varve estimates). By utilizing accelerator mass spectrometry (AMS) 14C dating of earliest macrofossils in 13 lake/bog inorganic clays, we find that vegetation first appeared on the landscape at 16–15 cal. kyr, suggesting ice had not retreated until that time. The gap between previous age estimates and ours is significant and has large implications for our understanding of ocean-atmosphere linkages. Older ages imply extreme Arctic conditions for 9–5 cal kyr;more » a landscape with no ice, yet no deposition in lakes. Also, our new AMS chronology of LIS retreat is consistent with marine evidence of deglaciation from the N. Atlantic, showing significant freshwater input and sea level rise only after 19 cal kyr with a cold meltwater lid, perhaps delaying ice melt.« less
Peteet, D. M.; Beh, M.; Orr, C.; ...
2012-06-15
The conventionally accepted ages of the Last Glacial Maximum (LGM) retreat of the southeastern Laurentide Ice Sheet (LIS) are 26–21 cal. kyr (derived from bulk-sediment radiocarbon ages) and 28–23 cal. kyr (varve estimates). By utilizing accelerator mass spectrometry (AMS) 14C dating of earliest macrofossils in 13 lake/bog inorganic clays, we find that vegetation first appeared on the landscape at 16–15 cal. kyr, suggesting ice had not retreated until that time. The gap between previous age estimates and ours is significant and has large implications for our understanding of ocean-atmosphere linkages. Older ages imply extreme Arctic conditions for 9–5 cal kyr;more » a landscape with no ice, yet no deposition in lakes. Also, our new AMS chronology of LIS retreat is consistent with marine evidence of deglaciation from the N. Atlantic, showing significant freshwater input and sea level rise only after 19 cal kyr with a cold meltwater lid, perhaps delaying ice melt.« less
Frequency variations of the earth's obliquity and the 100-kyr ice-age cycles
NASA Technical Reports Server (NTRS)
Liu, Han-Shou
1992-01-01
Changes in the earth's climate are induced by variations in the earth's orbital parameters which modulate the seasonal distribution of solar radiation. Periodicities in the geological climate record with cycles of 100, 41, and 23 kyr have been linked with changes in obliquity, eccentricity, and precession of the equinoxes. The effect of variations of eccentricity during a 100 kyr period is weak relative to the signals from obliquity and precession variations and it may therefore be expected that the 100 kyr signal in the climate record would be of low intensity. However, this signal dominates the climate record and internal nonlinear processes within the climate system have previously been proposed to account for this fact. The author shows that variations in the frequency of the obliquity cycle can give rise to strong 100-kyr forcing of climate.
Hydrological and climate changes in southeast Siberia over the last 33 kyr
NASA Astrophysics Data System (ADS)
Katsuta, Nagayoshi; Ikeda, Hisashi; Shibata, Kenji; Saito-Kokubu, Yoko; Murakami, Takuma; Tani, Yukinori; Takano, Masao; Nakamura, Toshio; Tanaka, Atsushi; Naito, Sayuri; Ochiai, Shinya; Shichi, Koji; Kawakami, Shin-ichi; Kawai, Takayoshi
2018-05-01
Paleoenvironmental and paleoclimate changes in intracontinental Siberia were reconstructed by continuous, high-resolution records (biogenic silica, U, total organic carbon and N, total S, and grain size) from a sediment core retrieved from the Buguldeika Saddle, Lake Baikal, dating back to the last 33 cal. ka BP. The Holocene climate was wet relative to the last glacial period. The climate became gradually warm and wet from the early to middle Holocene, followed by a shift at ca. 6.5 cal. ka BP toward warm and dry, possibly because of evapotranspiration. This suggests that the climate system transition from the glacial to interglacial state occurred at that time. In the last glacial, the deposition of carbonate mud from the Primorsky Range was associated with Heinrich events (H3 and H1) and the Selenga River inflow during the Last Glacial Maximum was caused by meltwater of mountain glaciers in the Khamar-Daban Range. The anoxic bottom-water during the Allerød-Younger Dryas was probably a result of weakened ventilation associated with reduced Selenga River inflow and microbial decomposition of organic matters originating from moderate input of nutrients from the Primorsky Range. The rapid decline in precipitation during the early Holocene may have been a response to the 8.2 ka cooling event.
Riede, Felix
2011-01-01
The niche construction model postulates that human bio-social evolution is composed of three inheritance domains, genetic, cultural and ecological, linked by feedback selection. This paper argues that many kinds of archaeological data can serve as proxies for human niche construction processes, and presents a method for investigating specific niche construction hypotheses. To illustrate this method, the repeated emergence of specialized reindeer (Rangifer tarandus) hunting/herding economies during the Late Palaeolithic (ca 14.7–11.5 kyr BP) in southern Scandinavia is analysed from a niche construction/triple-inheritance perspective. This economic relationship resulted in the eventual domestication of Rangifer. The hypothesis of whether domestication was achieved as early as the Late Palaeolithic, and whether this required the use of domesticated dogs (Canis familiaris) as hunting, herding or transport aids, is tested via a comparative analysis using material culture-based phylogenies and ecological datasets in relation to demographic/genetic proxies. Only weak evidence for sustained niche construction behaviours by prehistoric hunter–gatherer in southern Scandinavia is found, but this study nonetheless provides interesting insights into the likely processes of dog and reindeer domestication, and into processes of adaptation in Late Glacial foragers. PMID:21320895
Riede, Felix
2011-03-27
The niche construction model postulates that human bio-social evolution is composed of three inheritance domains, genetic, cultural and ecological, linked by feedback selection. This paper argues that many kinds of archaeological data can serve as proxies for human niche construction processes, and presents a method for investigating specific niche construction hypotheses. To illustrate this method, the repeated emergence of specialized reindeer (Rangifer tarandus) hunting/herding economies during the Late Palaeolithic (ca 14.7-11.5 kyr BP) in southern Scandinavia is analysed from a niche construction/triple-inheritance perspective. This economic relationship resulted in the eventual domestication of Rangifer. The hypothesis of whether domestication was achieved as early as the Late Palaeolithic, and whether this required the use of domesticated dogs (Canis familiaris) as hunting, herding or transport aids, is tested via a comparative analysis using material culture-based phylogenies and ecological datasets in relation to demographic/genetic proxies. Only weak evidence for sustained niche construction behaviours by prehistoric hunter-gatherer in southern Scandinavia is found, but this study nonetheless provides interesting insights into the likely processes of dog and reindeer domestication, and into processes of adaptation in Late Glacial foragers.
NASA Astrophysics Data System (ADS)
Kandasamy, S.; Kao, S.; Hsu, S.; Lee, T.; Velasco, V. M.; Soon, W.; Chen, M.
2013-12-01
Rebuilding of past climate and oceanographic records from monsoon dominated Asia is of vital importance for understanding the causes and mechanisms of global and regional climate changes at orbital-millennial timescales. South China Sea (SCS) provides the best marine platform to investigate a number of paleoclimate and paleoceanographic problems on different timescales mainly because of high sedimentation rates, good preservation of microfossils and the location of SCS as a connector between the Western Pacific Warm Pool and the SE Asian monsoon. Here we investigate magnetic, geochemical and isotopic records from a piston core MD97-2142 rose from the southeastern SCS to understand the past glacial terminations, chemical weathering and carbon burial on orbital to millennial timescales for the last 800 kyr. Terrigenous content and Al/Ti ratio reveal higher terrigenous input during glacial periods and vice versa during interglacials. Proxies of chemical weathering reveal larger fluctuations between 150 and 500 kyr than that of the last 150 kyr. Records of C/N ratio and carbon isotope of total organic carbon (δ13CTOC) mimic each other with higher marine productivity during marine isotope stages (MIS) 8, 10 and 12. Enrichment factors of Mn and Mo (EF Mn and EF Mo) show roughly an opposite pattern with <1 EF Mo almost throughout the last 500 kyr may suggest that the southeastern part of SCS has never been attained anoxic condition both glacial and interglacial intervals from MIS 1 through MIS 13. EF Mn shows >1 in most odd MIS, whereas <~1 EF Mn was evident in even MIS, suggesting that the former condition was likely attributed to bottom water ventilation associated with high sea levels during interglacials. We found through two endmember mixing model of δ13CTOC that lower burial of terrigenous fraction of TOC (OCTERR) during glacial intervals (MIS 6, 8, 10 and 12), but vice versa during interglacial (MIS 7, 9 and 11) periods. Our bulk magnetic susceptibility (MS) time series documents the last seven glacial terminations (T1-T7) with distinctive behaviors of T4 and T6. Wavelet analysis of MS record exhibits statistically significant periodicity at 239 kyr, 142 kyr, 85 kyr, 45 kyr, 24 kyr and 13 kyr of eccentricity, obliquity and precession cycles. With the help of diverse proxy records, the role of insolation, monsoon forcing and sea level on the variation of productivity, terrigenous input and carbon burial will be discussed on orbital and millennial timescales.
Meridional Transect of Atlantic Overturning Circulation across the Mid-Pleistocene Transition
NASA Astrophysics Data System (ADS)
Goldstein, S. L.; Pena, L. D.; Seguí, M. J.; Kim, J.; Yehudai, M.; Farmer, J. R.; Ford, H. L.; Haynes, L.; Hoenisch, B.; Raymo, M. E.; Ferretti, P.; Bickert, T.
2016-12-01
The Mid-Pleistocene Transition (MPT) marked a major transition in glacial-interglacial periodicity from dominantly 41 kyr to 100 kyr cycles between 1.3-0.7 Ma. From Nd isotope records in the South Atlantic, Pena and Goldstein (Science, 2014) concluded that the Atlantic overturning circulation circulation experienced major weakening between 950-850 ka (MIS 25-21), which generated the climatic conditions that intensified cold periods, prolonged their duration, and stabilized 100 kyr cycles. Such weakening would provide a mechanism for decreased atmospheric CO2 (Hönisch et al., Science, 2009) by allowing for additional atmospheric CO2 to be stored in the deep ocean. We present a summary of work in-progress to generate two dimensional representations of the Atlantic meridional overturning circulation, from the north Atlantic to the Southern Ocean, at different time slices over the past 2Ma, including the MPT, based on Nd isotope ratios measured on Fe-Mn-oxide encrusted foraminifera and fish debris. Thus far we are analyzing samples from DSDP/ODP Sites 607, 1063 from the North Atlantic, 926 from the Equatorial Atlantic, 1264, 1267, 1088, 1090 in the South Atlantic, and 1094 from the Southern Ocean. Our data generated thus far support important changes in the overturning circulation during the MPT, and greater glacial-interglacial variability in the 100 kyr world compared with the 40 kyr world. In addition, the data indicate a North Atlantic-sourced origin for the ocean circulation disruption during the MPT. Comparison with ɛNd records in different ocean basins and with benthic foraminiferal δ13C and B/Ca ratios will also allow us to understand the links between deep ocean circulation changes and the global carbon cycle.
NASA Technical Reports Server (NTRS)
Rampino, M. R.
1981-01-01
Revisions in the dates of reported geomagnetic excursions during the Brunhes Epoch are proposed in light of possible correlations between a section at Gioia Tauro, Italy, deep-sea cores, a core from Lake Biwa, Japan, and some lava flows. The anomalously long, double Blake Event reported at Gioia Tauro is here correlated with the Blake Event (approximately 110 kyr) and the Biwa 1 event (180 plus or minus 5 kyr); an hiatus may be present in the section between these two events. The alpha event at Gioia Tauro is correlated with the Biwa 2 event at about 295 kyr; the beta event with the 'Biwa 3' event at about 400 kyr; the gamma event with the Snake River event at 480 plus or minus 50; and the delta event, not recorded elsewhere, is estimated to have occurred at approximately 620 kyr. These proposed refinements in the age estimates of the excursions suggest an approximately 100 kyr cyclicity. If the events are real and the revised dating is correct, the timing of the geomagnetic events seems to coincide with times of peak eccentricity of the earth's orbit, suggesting a causal connection.
Accelerating Thermokarst Transforms Ice-Cored Terrain Triggering a Downstream Cascade to the Ocean
NASA Astrophysics Data System (ADS)
Rudy, A. C. A.; Lamoureux, S. F.; Kokelj, S. V.; Smith, I. R.; England, J. H.
2017-11-01
Recent climate warming has activated the melt-out of relict massive ice in permafrost-preserved moraines throughout the western Canadian Arctic. This ice that has persisted since the last glaciation, buried beneath as little as 1 m of overburden, is now undergoing accelerated permafrost degradation and thermokarst. Here we document recent and intensifying thermokarst activity on eastern Banks Island that has increased the fluvial transport of sediments and solutes to the ocean. Isotopic evidence demonstrates that a major contribution to discharge is melt of relict ground ice, resulting in a significant hydrological input from thermokarst augmenting summer runoff. Accelerated thermokarst is transforming the landscape and the summer hydrological regime and altering the timing of terrestrial to marine and lacustrine transfers over significant areas of the western Canadian Arctic. The intensity of the landscape changes demonstrates that regions of cold, continuous permafrost are undergoing irreversible alteration, unprecedented since deglaciation ( 13 cal kyr B.P.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan Harrison; Ann V. Rowan; Neil F. Glasser
It is widely believed that the last glaciers in the British Isles disappeared at the end of the Younger Dryas stadial (12.9–11.7 cal. kyr BP). Here, we use a glacier–climate model driven by data from local weather stations to show for the first time that glaciers developed during the Little Ice Age (LIA) in the Cairngorm Mountains. Our model is forced from contemporary conditions by a realistic difference in mean annual air temperature of -1.5 degrees C and an increase in annual precipitation of 10%, and confirmed by sensitivity analyses. These results are supported by the presence of small bouldermore » moraines well within Younger Dryas ice limits, and by a dating programme on a moraine in one cirque. As a result, we argue that the last glaciers in the Cairngorm Mountains (and perhaps elsewhere in upland Britain) existed in the LIA within the last few hundred years, rather than during the Younger Dryas.« less
NASA Astrophysics Data System (ADS)
Huang, K.; Oppo, D.; Curry, W. B.
2012-12-01
Reconstruction of changes in Antarctic Intermediate Water (AAIW) circulation across the last deglaciation is critical in constraining the links between AAIW and Atlantic Meridional Overturning Circulation (AMOC) and understanding how AAIW influences oceanic heat transport and carbon budget across abrupt climate events. Here we systematically establish in situ calibrations for carbonate saturation state (B/Ca), nutrient (Cd/Ca and δ13C) and watermass proxies (ɛNd) in foraminifera using multicore tops and ambient seawater samples collected from the Demerara Rise, western tropical Atlantic. Through the multi-proxy reconstructions, deglacial variability of intermediate water circulation in the western tropical Atlantic can be further constrained. The reconstructed seawater Cd record from the Demerara Rise sediment core (KNR197-3-46CDH, at 947 m water depth) over the last 21 kyrs suggests reduced presence of AAIW during the cold intervals (LGM, H1 and YD) when AMOC was reduced. Down-core B/Ca record shows elevated intermediate water Δ[CO32-] during these cold intervals, further indicating a weaker influence of AAIW in the western tropical Atlantic. The δ13C record exhibits a pronounced deglacial minimum and a clear decoupling between δ13C and Cd/Ca after the AMOC completely recovered at around 8 kyr BP. This could be due to the carbonate ion effect on benthic Cd/Ca or the influence of organic matter remineralization on benthic δ13C. A new ɛNd record for the last deglaciation will be provided to evaluate the relative proportions of southern and northern waters at this intermediate site in the western tropical Atlantic.
NASA Astrophysics Data System (ADS)
Pailler, Delphine; Bard, Edouard; Rostek, Frauke; Zheng, Yan; Mortlock, Richard; van Geen, Alexander
2002-03-01
Authigenic metals (uranium, cadmium, and molybdenum), organic carbon (OC) and total C37 alkenone (totC37) concentrations were measured for the last 350 kyr in core MD900963, located in the eastern equatorial Arabian Sea. Authigenic metal concentrations on a carbonate-free basis range between 1 and 17 ppm, 0.5 and 6 ppm, and 0.5 and 4 ppm for U, Cd, and Mo, respectively. The profiles are characterized by well-defined 23 kyr cycles between oxic and mildly suboxic conditions. The redox-sensitive metal profiles also follow variations in the concentrations of OC (0.2-0.9%) and alkenones (0.2-6.7 ppm). The coupled variations in inorganic and organic constituents are attributed to a 23-kyr cycle in primary production above site MD900963, as suggested by clear correlations with independent micropaleontologic proxies (primary productivity indices based on foraminifera and coccoliths and fragmentation of foraminiferal shells). The 23-kyr cycles do appear to be primarily driven by productivity rather than changes in bottom water oxygen. Comparison with other records indicates that if this interpretation is correct, productivity variations across much of the Indian Ocean have been dominated by precessional forcing, with high productivity in phase with low summer insolation in the Northern Hemisphere. This interpretation contrasts with the traditional attribution of enhanced productivity in the Indian Ocean with periods of high summer insolation.
NASA Astrophysics Data System (ADS)
Tomczak, M.; Kaiser, J.; Borowka, R. K.; Chen, H.; Zhang, J.; Harff, J.; Qiu, Y.; Witkowski, A.
2014-12-01
Climate, oceanographic and sea level history during last glacial cycle (LGC) and Holocene at the NW continental margin of the South China Sea (SCS) are investigated within the SECEB project. For that purpose two sediment cores (HDQ2 & 83PC) and single-channel seismic sections were selected to serve as a proxy data source for paleoceanographic and paleoclimatic reconstructions. The sedimentary facies is interpreted by multi-proxy approaches considering micropaleontological, sedimentological and geochemical analyses. According to 14C and OSL datings, sediments of shallow water drill core HDQ2 (88.3 m) cover a time span of ca. 115 kyr BP. Seismic images of the sampling site show a series of reflectors which can be correlated with coarse layers of core HDQ2. These layers are interpreted as transgression / regression horizons. Due to the age model it is possible to correlate these horizons with the general sea level dynamics within the SCS as it is displayed in relative sea level excursions for the MIS 5 to 2 from the Sunda Shelf (Hanebuth et al. 2011). Core 83PC (8.6 m) retrieved from the continental slope provide constant record and calm environment. Therefore, this core is used as a source for data proxy for environmental reconstructions. According to δ18O and paleomagnetic analysis, a good age model which indicate age of this core to ca. 110 kyr BP was elaborated and help correlate the paleoenvironmental data with core HDQ2. Alkenones, δ18O, the Mg/Ca ratio, and microfossil proxies serve for paleo-SST curves and monsoon variability reconstructions. δ15N and δ13C indicate nutrient supply to the marine environment. Diatomological analysis outlines the environmental evolution and interrelations between their parameters during the LGC. Interpretation of seismic profiling allowed identification of submarine paleo-delta. It's anticipated that deposited sediments descent from the Hainan Island and allow correlation of the source and sink area.Hanebuth, T.J.J, Voris, H.K., Yokoyama, Y., Saito, Y., Okuno, J., 2011. Formation and fate of sedimentary depocentres on Southeast Asia's Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth-Science Reviews 104, p. 92-110The project was funded by the Polish National Science Centre allocated on the basis of the decision no. DEC-2011/01/N/ST10/07708
NASA Astrophysics Data System (ADS)
Hassan, F. A.; Hamdan, M. A.; Flower, R. J.; Shallaly, N. A.; Ebrahem, E.
2017-11-01
A suite of drill cores undertaken on the Saqqara-Memphisfloodplain revealed an array of Late Pleistocene-Holocene sediment facies that show a complex of spatio-temporal changes in sediment related to migration of the River Nile, Nile flood variations, settlement sites and climate change. The recovered data enhance our understanding of the history of the modern River Nile and its relationship to the emergence and continuity of Egyptian civilization. The floodplain of the Saqqara-Memphis area reveals a sequence of aggradation and degradation events comprising six clearly marked sedimentary units (I-VI), overlying Late Pleistocene fluvial sand and gravel (unit I). Deposition of unit II resumed during a period of high Nile flow, rapid sea level rise and locally wet climatic conditions. As a result, the floodplain was occupied by swamps and anastomosing channels. Subsequently, the Nile changed to a more stable meandering channel system with well-developed levees and flood basins (unit III). This aggradation unit was subsequently eroded by the end of Old Kingdom (ca. 4.2 kyr cal BP). The degradation hiatus was followed by a widespread layer of alluvial silt and sand indicating very high Nile floods that coincide with historical records of very high floods during the Middle Kingdom and frequently high floods during the New Kingdom (unit IV). During the last two thousand years (units VI-VII) floods generally diminished except for several notable lows and highs. Our calculations of the long-term rate of siltation during the Middle and Late Holocene suggest an average rate of 0.235 m/century rather than the commonly cited 0.09-0.12 m per century. In addition, our study of satellite imagery of the Memphite region in the context of archaeological data combined with our own geological studies reveal that the main Nile in Neolithic and Predynastic times (ca.7.0-5.0 kyr cal BP) ran along the eastern edge of the current floodplain. A lateral branch of the Nile ran along the western edge of the floodplain. It is on the bank of this branch that the first capital of a unified Egypt was established. Our cores also reveal during the Dynastic period, the western branch shifted eastwards, while the main Nile shifted westwards.
NASA Astrophysics Data System (ADS)
Li, Mingsong; Ogg, James; Zhang, Yang; Huang, Chunju; Hinnov, Linda; Chen, Zhong-Qiang; Zou, Zhuoyan
2016-05-01
The timing of the end-Permian mass extinction and subsequent prolonged recovery during the Early Triassic Epoch can be established from astronomically controlled climate cycles recorded in continuous marine sedimentary sections. Astronomical-cycle tuning of spectral gamma-ray logs from biostratigraphically-constrained cyclic stratigraphy through marine sections at Meishan, Chaohu, Daxiakou and Guandao in South China yields an integrated time scale for the Early Triassic, which is consistent with scaling of magnetostratigraphy from climatic cycles in continental deposits of the Germanic Basin. The main marine mass extinction interval at Meishan is constrained to less than 40% of a 100-kyr (kilo-year) cycle (i.e., <40 kyr) and the sharp negative excursion in δ13C is estimated to have lasted <6 kyr. The sharp positive shift in δ13C from - 2 ‰ to 4‰ across the Smithian-Spathian boundary at Chaohu was completed in 50 kyr. The earliest marine reptiles in the Mesozoic at Chaohu that are considered to represent a significant recovery of marine ecosystems did not appear until 4.7 myr (million years) after the end-Permian extinction. The durations of the Griesbachian, Dienerian, Smithian and Spathian substages, including the uncertainty in placement of widely used conodont biostratigraphic datums for their boundaries, are 1.4 ± 0.1, 0.6 ± 0.1, 1.7 ± 0.1 and 1.4 ± 0.1 myr, implying a total span for the Early Triassic of 5.1 ± 0.1 myr. Therefore, relative to an assigned 251.902 ± 0.024 Ma for the Permian-Triassic boundary from the Meishan GSSP, the ages for these substage boundaries are 250.5 ± 0.1 Ma for base Dienerian, 249.9 ± 0.1 Ma for base Smithian (base of Olenekian stage), 248.2 ± 0.1 Ma for base Spathian, and 246.8 ± 0.1 Ma for the base of the Anisian Stage. This astronomical-calibrated timescale provides rates for the recurrent carbon isotope excursions and for trends in sedimentation accumulation through the Early Triassic of studied sections in South China.
An 84-kyr paleomagnetic record from the sediments of Lake Baikal, Siberia
Peck, J.A.; King, J.W.; Colman, Steven M.; Kravchinsky, V.A.
1996-01-01
We have conducted a paleomagnetic study of sediment cores obtained from the Selenga prodelta region of Lake Baikal, Russia. This record, which spans approximately the last 84 kyr, contributes to a better understanding of the nature of geomagnetic field behavior in Siberia and is a useful correlation and dating tool. We demonstrate that the Lake Baikal sediments are recording variations in the geomagnetic field. The directional record displays secular variation behavior with a geomagnetic excursion at 20 ka and additional excursions appearing as large-amplitude secular variation at 41, 61, and 67 ka. Smoothing of the geomagnetic excursion behavior occurs in Lake Baikal sediments owing to the intermediate sedimentation rate (13 cm kyr-1). The Lake Baikal relative paleointensity record correlates to absolute paleointensity data for the last 10 kyr and to relative paleointensity records from the Mediterranean Sea and Indian Ocean for the last 84 kyr. This correlation suggests a strong global (i.e., dipole) component to these records and further supports the reliability of sediments as recorders of relative geomagnetic paleointensity. We show that a relative geomagnetic intensity stratigraphy has a potential resolution of 7 kyr by correlating continental and marine records. The geomagnetic intensity stratigraphy helps constrain the age of the difficult to date Lake Baikal sediments.
Noble Gas Thermometry and Hydrologic Ages: Evidence for Late Holocene Warming in Southwest Texas
NASA Astrophysics Data System (ADS)
Castro, M.; Goblet, P.
2003-12-01
Paleoclimatic reconstruction through the use of noble gases dissolved in groundwater has been the object of numerous studies in recent years. Unlike many other continental temperature proxies, noble gases have the advantage of providing direct information on atmospheric temperatures at the time rainwater penetrated the ground and joined a particular groundwater reservoir. In recent years, new methods for determination of noble gas temperatures have been developed, which provide a high level of accuracy on such temperature estimations. The issue of paleoclimatic reconstruction through noble gases however, is not only one of accurate temperature determination, but also one of accurate water age estimation so that a correct correspondence between noble gas temperatures and groundwater age can be established and proper paleoclimatic reconstruction attempted. The typical approach to estimate groundwater ages has been based on computing water travel times along streamlines from the recharge to the observation point taking into account only advection. This approach is limited because, like any other tracer, the movement of water in porous media is also affected by cinematic dispersion and molecular diffusion. We have therefore undertaken the formulation of hydrologic models that yield significantly better constraints on groundwater ages in the Carrizo aquifer and surrounding formations of south Texas, where noble gas temperatures have already been determined. To account for groundwater mixing we treat age as one would treat a solute concentration. In order to simulate groundwater ages we used a finite element model of groundwater flow that has been validated by 4He and 3He. The finite model spans a 120.6 Km cross-section between altitudes of +220m and -2210 m, and comprises 58,968 elements and 31,949 nodes. Combination of these newly calculated water ages and previously reported noble gas temperatures reveals new aspects of late Pleistocene and Holocene climate in southwestern Texas, in particular, an abrupt late Holocene temperature increase previously unidentified through 14C dating. Temperature increased by up to 3.4° C in the first half of the last millennium and by 1.5° C between ˜5.6 and 3.7 kyrs BP. More important than the resolution of individual paleoclimate episodes is the identification of a slow cooling trend between ˜1,200 kyrs and ˜200 kyrs, a trend that accelerates during the late Pleistocene and early Holocene. This cooling trend gives way to an extremely rapid increase in temperature in the late Holocene. Such abrupt warming seems to have accelerated in the last millennium and seems to continue at present. This temperature increase is the most striking feature arising from the determination of new groundwater ages.
NASA Astrophysics Data System (ADS)
Mc Kenzie, S. M.; Patterson, W. P.; Holmden, C.; Tibert, N. E.
2008-12-01
Biota preserved in marl lakes of western Ireland represent an excellent record of climatic variability in Western Europe and the North Atlantic Region. Oxygen isotope values of lacustrine biota conflate source precipitation and temperature variability while carbon isotope values serve as a proxy for Late Pleistocene and Early Holocene changes in vegetation and lake carbon cycling. Blanket bog carbonate sediments from Lough Monreagh in County Clare, Ireland, contain abundant ostracoda instars of Limnocytherina sanctipatricii and Metacypris cordata that were analyzed for stable oxygen and carbon isotope values. Basal marl (extrapolated age 18.3-17.9Kyr) contains an interval of benthic, cold water (4-5°C), Linmocytherina sanctipatricii with high δ13C values (-1 to +1‰VPDB) and low δ18O values (-7‰VPDB) suggesting Viséan bedrock control of lake water carbon chemistry and a moisture source with low δ18O values. This Limnocytherid bed represents a time when lake waters warmed to ~4°C (the preferred temperature for this species). Limnocytherina sanctipatricii make a second appearance at ~15.1 Kyr, in advance of Younger Dryas cold period represented by a clay layer in the core. They persist until 12.8Kyr when temperatures presumably became too cool for this species. As before, the ostracoda exhibit high δ13C values (0 to +2‰VPDB) through this period indicating relatively little terrestrial vegetation between deglaciation and the Younger Dryas. However, δ18O values are much higher than before (0 to - 3‰VPDB) indicating that the moisture source has changed. Limnocytherids return for a third time at 11.7Kyr, immediately following the Younger Dryas cold interval, when the climate had warmed enough to allow for recolonization. Their reappearance was short lived, however, and by 11.3Kyr steadily increasing temperatures caused their decline, while at the same time allowing for colonization by warm-water Paracandona euplectella and other Candonids. Lower δ13C and higher δ18O values in the Candonids represent a transition from bedrock dominated DIC of the lake water to terrestrial vegetation dominated DIC associated with increasing temperature and humidity. Further warming and increased humidity are inferred by the sudden appearance of very high concentrations of the littoral, warm water (14-20°C), eutrophic Limnocytherid Metacypris cordata at 8.7Kyr that exhibit low δ13C (-6 to -9‰VPDB) and high δ18O values (-2 to -4‰VPDB) that persist to the base of the peat at 7.8Kyr, when the lake becomes a blanket bog that limits ostracod shell preservation. The 8.2Kyr cold event appears at 8.425Kyr, evidenced by a 4‰ increase in δ13C and a sharp reduction in total ostracoda population from ~40 to 10 specimens per sample. Lough Monreagh isotope data from Limnocytherid fossil carapaces display a 12‰ shift in δ13C values over the last ~12,000 years indicative of a major shift in DIC control from bedrock weathering to vegetation adjacent to the lake. Oxygen isotope data infer changes in moisture source from meltwater-influenced surface waters during the Late Glacial and Younger Dryas periods and normal marine water during other periods.
NASA Astrophysics Data System (ADS)
Boch, Ronny; Spötl, Christoph; Kramers, Jan
2009-11-01
Two coeval stalagmites from Katerloch Cave show pronounced intervals of low δ18O values around 8.2, 9.1, and 10.0 kyr (all ages are reported before the year 2000 AD) and represent an inorganic U-Th dated climate archive from the southeast of the European Alps, a region where only very few well-dated climate records exist. The O isotope curves, providing near-annual resolution, allow a direct comparison to the Greenland ice core records, as temperature was the primary factor controlling the O isotopic composition of Katerloch speleothems. The 8.2 kyr climate anomaly lasted about one century, from 8196 to 8100 yr, with a maximum amplitude of 1.1‰ at 8175 yr. The event is characterized by a rapid onset and a more gradual demise and U-Th data as well as annual lamina counting support a rapid climate change towards cooler conditions within 10-20 yr. There is no strong evidence that the 8.2 kyr anomaly was superimposed on a pronounced longer-term cooling episode, nor do the new data support two separate cooling events within the 8.2 kyr event as reported by other studies. Our record also shows a distinct climate anomaly around 9.1 kyr, which lasted 70-110 yr and showed a maximum amplitude of 1.0‰, i.e. it had a similar duration and amplitude as the (central) 8.2 kyr event. Compared to the 8.2 kyr event, the 9.1 kyr anomaly shows a more symmetrical structure, but onset and demise still occurred within a few decades only. The different progression of the 8.2 (asymmetrical) and 9.1 kyr anomaly (symmetrical) suggests a fundamental difference in the trigger and/or the response of the climate system. Moreover, both stalagmites show evidence of a climate anomaly around 10.0 kyr, which was of comparable magnitude to the two subsequent events. Using a well constrained modern calibration between air temperature and δ18O of precipitation for the study area and cave monitoring data (confirming speleothem deposition in Katerloch reflecting cave air temperature), a maximum cooling by ca 3 °C can be inferred at 8.2 and 9.1 kyr, which is similar to other estimates, e.g., from Lake Ammersee north of the Alps. The O isotopic composition of meteoric precipitation, however, is a complex tracer of the hydrological cycle and these temperature estimates do not take into account additional effects such as changes in the source area or synoptic shifts. Apart from that, the relative thickness of the seasonally controlled lamina types in the Katerloch stalagmites remains rather constant across the intervals comprising the isotopic anomalies, i.e. the stalagmite petrography argues against major shifts in seasonality during the early Holocene climate excursions.
NASA Astrophysics Data System (ADS)
Channell, J. E.
2013-12-01
Improving the resolution of Quaternary marine stratigraphy is one of the major challenges in paleoceanography. IODP Expedition 303/306, and ODP Legs 162 and 172, have yielded multiple high-resolution records (mean sedimentation rates in the 7-20 cm/kyr range) of relative paleointensity (RPI) that are accompanied by oxygen isotope data and extend through much of the Quaternary. Tandem fit of RPI and oxygen isotope data to calibrated templates (LR04 and PISO), using the Match protocol, yields largely consistent stratigraphies, implying that both RPI and oxygen isotope data are dominated by regional/global signals. Based on the recent geomagnetic field, RPI can be expected to be a global signal (i.e. dominated by the axial dipole field) when recorded at sedimentation rates less than several decimeters/kyr. Magnetic susceptibility, on the other hand, is a local/regional lithologic signal, and therefore less useful for long-distance correlation. Magnetic excursions are directional phenomena and, when adequately recorded, are manifest as paired reversals in which the virtual geomagnetic poles (VGPs) reach high latitudes in the opposite hemisphere, and they occupy minima in RPI records. Reversed VGPs imply that excursions are attributable to the main axial dipole, and therefore provide global stratigraphy. The so-called Iceland Basin excursion is recorded at many IODP/ODP sites and lies at the MIS 6/7 boundary at ~188 ka, with a duration of 2-3 kyr. Other excursions in the Brunhes chron are less commonly recorded because their duration (perhaps <~1 kyr) requires sedimentation rates >20 cm/kyr to be adequately recorded. On the other hand, several excursions within the Matuyama Chron are more commonly recorded in North Atlantic drift sediments due to relatively elevated durations. With some notable exceptions (e.g. Iberian Margin), high quality RPI records from North Atlantic sediments, together with magnetic excursions, can be used in tandem with oxygen isotope data to strengthen Quaternary (North Atlantic) stratigraphy.
NASA Astrophysics Data System (ADS)
Wu, Huaichun; Zhang, Shihong; Hinnov, Linda A.; Jiang, Ganqing; Yang, Tianshui; Li, Haiyan; Wan, Xiaoqiao; Wang, Chengshan
2014-12-01
The Songke-1 north (SK-1n) borehole recovered a continuous, 1541.66 m Late Santonian-Early Danian terrestrial succession in Songliao Basin (SB), northeastern China. It provides a unique record for improving our understanding of continental paleoclimate and ecological system in Cretaceous greenhouse world. Here we use thorium (Th) logging data as a paleoenvironmental and paleoclimatic proxy to conduct a detailed cyclostratigraphic study on the SK-1n core. Power spectra, evolutionary fast Fourier transformation and wavelet analysis all reveal significant decameter- to meter-scale sedimentary cycles in the Nenjiang (K2n), Sifangtai (K2s) and Mingshui (K2m) formations. The ratios of cycle wavelengths in these stratigraphic units are ∼20:5:2:1, and are interpreted as Milankovitch cycles of 405 kyr and 100 kyr eccentricity, 38.4 kyr obliquity and 20 kyr precession cycles, respectively. An astronomical time scale (ATS) is established by tuning filtered 405 kyr eccentricity cycles to a target curve of the astronomical solution La2010d based on the magnetostratigraphic time framework of the SK-1n borehole. This ATS provides precise numerical ages for stratigraphic boundaries, biozones, geological and geophysical events, and serves as a basis for correlation of strata and events between marine and terrestrial systems. The Cretaceous/Paleogene (K/Pg), Campanian/Maastrichtian, Santonian/Campanian boundaries are estimated at core depths of 318 m, 752.8 m and 1751.1 m, respectively. A ∼3.8 myr-long hiatus between the Nenjiang (K2n) and Sifangtai (K2s) formations occurs from 76.1 to 79.9 million years ago. The ages and durations of magnetochrons C33r to C30n are precisely estimated and provide new constraints on the Late Cretaceous Geomagnetic Polarity Time Scale (GPTS) and South Atlantic sea-floor spreading rates.
NASA Astrophysics Data System (ADS)
Drury, Anna Joy; Westerhold, Thomas; Frederichs, Thomas; Tian, Jun; Wilkens, Roy; Channell, James E. T.; Evans, Helen; John, Cédric M.; Lyle, Mitch; Röhl, Ursula
2017-10-01
Accurate age control of the late Tortonian to early Messinian (8.3-6.0 Ma) is essential to ascertain the origin of benthic foraminiferal δ18O trends and the late Miocene carbon isotope shift (LMCIS), and to examine temporal relationships between the deep-sea, terrasphere and cryosphere. The current Tortonian-Messinian Geological Time Scale (GTS2012) is based on astronomically calibrated Mediterranean sections; however, no comparable non-Mediterranean stratigraphies exist for 8-6 Ma suitable for testing the GTS2012. Here, we present the first high-resolution, astronomically tuned benthic stable isotope stratigraphy (1.5 kyr resolution) and magnetostratigraphy from a single deep-sea location (IODP Site U1337, equatorial Pacific Ocean), which provides unprecedented insight into climate evolution from 8.3-6.0 Ma. The astronomically calibrated magnetostratigraphy provides robust ages, which differ by 2-50 kyr relative to the GTS2012 for polarity Chrons C3An.1n to C4r.1r, and eliminates the exceptionally high South Atlantic spreading rates based on the GTS2012 during Chron C3Bn. We show that the LMCIS was globally synchronous within 2 kyr, and provide astronomically calibrated ages anchored to the GPTS for its onset (7.537 Ma; 50% from base Chron C4n.1n) and termination (6.727 Ma; 11% from base Chron C3An.2n), confirming that the terrestrial C3:C4 shift could not have driven the LMCIS. The benthic records show that the transition into the 41-kyr world, when obliquity strongly influenced climate variability, already occurred at 7.7 Ma and further strengthened at 6.4 Ma. Previously unseen, distinctive, asymmetric saw-tooth patterns in benthic δ18O imply that high-latitude forcing played an important role in late Miocene climate dynamics from 7.7-6.9 Ma. This new integrated deep-sea stratigraphy from Site U1337 can act as a new stable isotope and magnetic polarity reference section for the 8.3-6.0 Ma interval.
Periodical climate variations and their impact on Earth rotation for the last 800Kyr
NASA Astrophysics Data System (ADS)
Chapanov, Yavor; Gambis, Daniel
2010-05-01
The Earth rotation variations are highly affected by climatic variations associated with the glacial cycles in the late Pleistocene. The processes of glaciation, followed by ice melting, are connected with significant changes of the mean sea level. These processes redistribute great amount of water masses between oceans and ice sheets, which lead to changes of the axial moment of inertia and corresponding variations of the Universal Time UT1 and Length of Day LOD, according to the law of angular momentum conservation. The climatic variations for the last 800Kyr are analyzed by means of time series of temperature changes, determined by deuterium data from Antarctica ice core. Reconstructed glacial sea level variations for the last 380Kyr, determined by the sediments from the Red sea, are used, too. Common periodicities of the temperature and mean sea level variations are determined. Time series of the long-periodical UT1 and LOD oscillations for the last 380Kyr and 800Kyr are reconstructed by means of empirical hydrological model of global water redistribution between the ocean and ice sheets during the last glacial events.
Kutzbach, J.-E.; Bartlein, P.J.; Foley, J.A.; Harrison, S.P.; Hosteller, S.W.; Liu, Z.; Prentice, I.C.; Webb, T.
1996-01-01
Previous climate model simulations have shown that the configuration of the Earth's orbit during the early to mid-Holocene (approximately 10-5 kyr) can account for the generally warmer-than-present conditions experienced by the high latitudes of the northern hemisphere. New simulations for 6 kyr with two atmospheric/mixed-layer ocean models (Community Climate Model, version 1, CCM1, and Global ENvironmental and Ecological Simulation of Interactive Systems, version 2, GENESIS 2) are presented here and compared with results from two previous simulations with GENESIS 1 that were obtained with and without the albedo feedback due to climate-induced poleward expansion of the boreal forest. The climate model results are summarized in the form of potential vegetation maps obtained with the global BIOME model, which facilitates visual comparisons both among models and with pollen and plant macrofossil data recording shifts of the forest-tundra boundary. A preliminary synthesis shows that the forest limit was shifted 100-200 km north in most sectors. Both CCM1 and GENESIS 2 produced a shift of this magnitude. GENESIS 1 however produced too small a shift, except when the boreal forest albedo feedback was included. The feedback in this case was estimated to have amplified forest expansion by approximately 50%. The forest limit changes also show meridional patterns (greatest expansion in central Siberia and little or none in Alaska and Labrador) which have yet to be reproduced by models. Further progress in understanding of the processes involved in the response of climate and vegetation to orbital forcing will require both the deployment of coupled atmosphere-biosphere-ocean models and the development of more comprehensive observational data sets.
NASA Astrophysics Data System (ADS)
Xiao, Xiayun; Haberle, Simon G.; Shen, Ji; Xue, Bin; Burrows, Mark; Wang, Sumin
2017-06-01
A high-resolution, continuous 18.5 kyr (1 kyr = 1000 cal yr BP) macroscopic charcoal record from Qinghai Lake in southwestern Yunnan Province, China, reveals postglacial fire frequency and variability history. The results show that three periods with high-frequency and high-severity fires occurred during the periods 18.5-15.0, 13.0-11.5, and 4.3-0.8 ka, respectively. This record was compared with major pollen taxa and pollen diversity indices from the same core, and tentatively related to the regional climate proxy records with the aim to separate climate- from human-induced fire activity, and discuss vegetation-fire-climate interactions. The results suggest that fire was mainly controlled by climate before 4.3 ka and by the combined actions of climate and humans after 4.3 ka. Before 4.3 ka, high fire activity corresponded to cold and dry climatic conditions, while warm and humid climatic conditions brought infrequent and weak fires. Fire was an important disturbance factor and played an important role in forest dynamics around the study area. Vegetation responses to fire after 4.3 ka are not consistent with those before 4.3 ka, suggesting that human influence on vegetation and fire regimes may have become more prevalent after 4.3 ka. The comparisons between fire activity and vegetation reveal that evergreen oaks are flammable plants and fire-tolerant taxa. Alnus is a fire-adapted taxon and a nonflammable plant, but density of Alnus forest is a key factor to decide its fire resistance. The forests dominated by Lithocarpus/Castanopsis and/or tropical trees and shrubs are not easy to ignite, but Lithocarpus/Castanopsis and tropical trees and shrubs are fire-sensitive taxa. Fire appears to be unfavourable to plant diversity in the study area.
Piper, David Z.
2016-01-01
The Black Sea is a 2200 m deep anoxic, marine sea connected to the Mediterranean Sea via the Dardanelles Strait, Marmara Sea, and the 3 km wide, 35 m deep Bosphorus Strait. The biogeochemistry of sediment from the Anatolia slope has recorded changes to the hydrography leading up to and following the input of Mediterranean water at ~9.4 ka (103 years B.P.), when global sea level rose to the level of the Bosphorus sill and high-salinity water from the Mediterranean began to spill into the then brackish lake. The water initially mixed little with the lake water but cascaded to the bottom where it remained essentially isolated for ~1.6 kyr, the time required to fill the basin from the bottom up at its present input rate. The accumulation of Mo in the seafloor sediments, a proxy of bottom-water anoxia, increased sharply at ~8.6 ka, when bacterial respiration in the bottom water advanced to SO42− reduction by the oxidation of organic detritus that settled out of the photic zone. Its accumulation remained elevated to ~5.6 ka, when it decreased 60%, only to again increase slightly at ~2.0 ka. The accumulation of Corg, a proxy of primary productivity, increased threefold to fourfold at ~7.8 ka, when upward mixing of the high-salinity bottom water replaced the then thin veneer of the brackish photic zone in less than 50 years. From that time onward, the accumulation of Corg, Mo, and additional trace metals has reflected the hydrography of the basin and Bosphorus Strait, controlled largely by climate.
Penultimate Glacial-Interglacial Climate Variability in the Southern Great Plains of North America
NASA Astrophysics Data System (ADS)
Bartow-Gillies, E.; Maupin, C. R.; Roark, E. B.; Chou, Y. C.; White, K.; Kampen-Lewis, S. V.; Shen, C. C.
2017-12-01
Projections of changes in rainfall under future warming scenarios vary in their sign and intensity over the Southern Great Plains (SGP). A scarcity of local paleoclimate information before the Last Glacial Maximum (LGM) limits our understanding of regional climate responses to changes in mean state and forcing. Here, we present absolutely U/Th-dated oxygen and carbon isotope records from a calcite stalagmite near Georgetown, Texas (30°N, 98°W), spanning 98 to 209 kyr before present (kyr BP). SGP moisture is primarily sourced from the Gulf of Mexico, and precipitation exhibits clear seasonality, with a biannual rainy season divided into late boreal spring and fall. We interpret the oxygen isotopic composition of the stalagmite to reflect changes in rainwater δ18O composition, as well as cave temperature, through time. There are no clear kinetic isotope effects observed within the stalagmite. More negative (positive) δ18O values are a reflection of warmer and wetter (cooler and drier) conditions based on modern observations of rainwater δ18O at the study site. Variations in stalagmite δ13C may be driven by shifts in overlying vegetation type and changes in the rates of karst flow and prior calcite precipitation. The stalagmite records include Marine Isotope Stage (MIS) 5e, an interval where global temperatures may have been as much as 2°C warmer and sea level 4-6 m higher than present. Thus, our δ18O record provides context of unique importance for how SGP hydroclimate may respond to future warming. Prominent features in the δ18O record, including a warm and wet MIS 5e appear to be paced by precession, with the timing of δ18O minima (maxima) broadly consistent with that of maxima (minima) in monthly insolation at 30°N. The δ13C record exhibits a striking similarity to canonical, sawtooth records of glacial-interglacial variability, which suggests Great Plains vegetation communities may be sensitive to the status of Northern Hemisphere glaciation. Our SGP stalagmite records help to reveal the fundamental character of SGP climate response to glacial-interglacial forcings and provide evidence for increased precipitation under past warming conditions.
NASA Astrophysics Data System (ADS)
Sagredo, E. A.; Ward, D.; Gonzalez, M. A.; Lowell, T. V.; Kelly, M. A.; Aravena, J. C.
2013-12-01
Documenting the magnitude of former glacial fluctuations is critical for understanding the mechanisms and climate signals underlying these glacial events. Here, we estimate the equilibrium line altitudes (ELA) associated with the most prominent glacial advance occurred during the Last Glacial Termination (T1) at Tranquilo glacier (47°S). Geomorphic evidence suggest that, following the Last Glacial Maximum, several small glaciers, which today occupy the headwalls of Río Tranquilo valley, expanded and coalesced, forming the extended version of the Tranquilo glacier at least three different times. 10Be ages suggest that the most prominent of these glacial advances occurred ~13 kyr BP, at the end of the Antarctic Cold Reversal (ACR). Based on glacial geomorphic mapping and the application of a glaciological model (GC2D), we reconstruct the former glacial surface at Tranquilo glacier and estimate the ELA for this major glacial advance. Preliminary data show that the equilibrium line altitude at Tranquilo glacier during the ACR could have been up to 500 m lower than the present. This study represents the first effort to quantify the ELA during the Antarctic Cold Reversal in Patagonia, and provides a baseline to decipher the climatic signals driving this glacial event.
Macario, K D; Souza, R C C L; Aguilera, O A; Carvalho, C; Oliveira, F M; Alves, E Q; Chanca, I S; Silva, E P; Douka, K; Decco, J; Trindade, D C; Marques, A N; Anjos, R M; Pamplona, F C
2015-05-01
On the Southeastern coast of Brazil the presence of many archaeological shellmounds offers a great potential for studying the radiocarbon marine reservoir effect (MRE). However, very few such studies are available for this region. These archaeological settlements, mostly dating from 5 to 2 kyr cal BP, include both terrestrial and marine remains in good stratigraphic context and secure association, enabling the comparison of different carbon reservoirs. In a previous study the chronology of the Sambaqui da Tarioba, located in Rio de Janeiro state, Brazil, was established based on marine mollusc shells and charcoal samples from hearths, from several layers in two excavated sectors. We now compare the different materials with the aim of studying the MRE in this region. Calibration was performed with Oxford software OxCal v4.2.3 using the marine curve Marine13 with an undetermined offset to account for local corrections for shell samples, and the atmospheric curve SHCal13 for charcoal samples. The distribution of results considering a phase model indicates a ΔR value of -127 ± 67 (14)C yr in the 1 sigma range and the multi-paired approach leads to a mean value of -110 ± 94 (14)C yr. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lourens, L. J.; Konijnendijk, T.; Ziegler, M.
2015-12-01
We present the first long (~1.2 Ma) benthic oxygen isotope record from the eastern Mediterranean, based on ODP Sites 967 and 968, which clearly reflects the behavior of global climate on a glacial-interglacial scale. The age model for our record is based on tuning the elemental ratio of titanium versus aluminum (Ti/Al) against insolation. The Ti/Al record is dominated by the precession-related changes in northern African climate, i.e. monsoonal forcing, and hence largely independent of glacial-interglacial variability. We found the largest offset between our chronology and that of the widely applied, open ocean stacked record LR04 (Lisiecki and Raymo, 2005) for TVII (~624 ka), which occurred ~9 kyr earlier according to our estimates, though in agreement with the AICC2012 δDice chronology of EPICA Dome C (Bazin et al., 2013). Spectral cross-correlation analysis between our benthic δ18O record and 65°N summer insolation reveals significant amounts of power in the obliquity and precession range, with an average lag of 5.5±0.8 kyr for obliquity, and 6.0±1.0 kyr for precession. In addition, our results show that the obliquity-related time lag was smaller (3.0±3.3 kyr) prior to ~900 ka than after (5.7±1.1 kyr), suggesting that on average the glacial response time to obliquity forcing increased during the mid-Pleistocene transition, much later than assumed by Lisiecki and Raymo (2005). Finally, we found that almost all glacial terminations have a consistent phase relationship of ~45±45 degrees with respect to the precession and obliquity-driven increases in 65°N summer insolation, consistent with the general consensus that both obliquity and precession are important for deglaciation during the Late Pleistocene. Exceptions are glacial terminations TIIIb, T36 and potentially T32 (and TVII T24 and T34), which show this consistent phase relationship only with precession (only with obliquity). Our findings point towards an early (>1200 ka) onset of the Mid Pleistocene Transition. Vice versa, the timing of TVII, which can only be explained as a response to obliquity forcing, indicates that the transition lasted until at least after MIS 15.
Obliquity Modulation of the Incoming Solar Radiation
NASA Technical Reports Server (NTRS)
Liu, Han-Shou; Smith, David E. (Technical Monitor)
2001-01-01
Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.
Holocene Record Of The Cuitzeo Lake, Michoacan, Central Mexico
NASA Astrophysics Data System (ADS)
Israde-Alcantar, I.; Bischoff, J.; Cram, S.; Ruiz-Fernandez, C.; Barron, J.; Lozano-Garcia, S.; Ortega-Guerrero, B.; Garduño-Monroy, V. H.
2007-05-01
A 205 cm-long core spanning the last ca.10,000 years was taken in the western basin of Lake Cuitzeo, located in the tectonic depressions of central Mexico. Age control for the core is provided by four AMS dates on organic sediment. The uppermost 30 cm of the core appears to be highly bioturbated according to Pb210 chronologies. A time plot of mass-accumulation rates of sediment (g/cm2/kyr) shows high rates from 10,000 to 6000 yrs BP, strikingly reduced mid-Holocene rates, and increasing rates post 1000 yrs (which could be due to introduction of European ranching and agriculture). Organic and inorganic carbon (TOC. TIC), diatoms, iron and titanium concentrations were analyzed and used to infer variations in the hydrological cycle and climatic conditions. The lower part of the core (ca.8000 C14 yr B.P.) is characterized by high percents of CaCO3 (more than 35 percent) which rapidly declines to values less than 20 percent after ca. 6000 C14 yr B.P., likely reflecting reduced summer precipitation due to decline summer insolation. Coincident with this decline in percents CaCO3 there is a decline greater that two-fold sediment accumulation rates and an increase in percents TOC. Two peaks TOC are recorded at 909 and 6744 C14 yr B.P. suggesting increased precipitation. The TOC peak at 909 C14 yr B.P. may be associated with increased precipitation during the Medieval Warm Period. The middle Holocene TOC peak at 6744 C14 yr B.P. coincides with a period of increased precipitation in the Cariaco Basin of Venezuela. These changes in precipitation are similar to those recorded in lake records from Guatemala and the marine record of the Cariaco Basin and can be explained by shifts in the mean latitude of the Atlantic Intertropical Convergence Zone (ITCZ). The upper 100 cm of the core was studied at 1 cm intervals for metals (Al, Fe, Ti, Pb, etc.) using ICPMS geochemistry. These metals show strong cycles throughout the studied interval which may reflect wet-dry cycles. A two fold reduction in percent Ti between ca. 56 and 31 cm in the core may reflect increased aridity between ca. 2,400 and 800 C14 yr B.P. A greater than three-fold increase in Ti mass accumulation rates in the uppermost part of the core likely is due to increase erosion caused by agriculture during the past ca. 400 years. Diatom, magnetic susceptibility and pollen analyses that are in progress on the Lake Cutizeo core will refine the paleoenvironmental history of this central Mexican lake and will be compared with other continental and marine Holocene records.
NASA Astrophysics Data System (ADS)
Li, Dawei; Zhao, Meixun; Tian, Jun
2017-09-01
Variability of the East Asian winter monsoon (EAWM), stronger during glacials and weaker during interglacials, has been tightly linked to the wax and wane of the Northern Hemisphere ice sheets (NHIS) via the Siberian High over the last 2.8 million years (Myr). However, the long eccentricity cycle (ca. 400 kyr) in the EAWM record from the late Pliocene to early-Pleistocene (2.8-1.2 Ma) could not be linked to NHIS changes, which lacked the long eccentricity cycle in the Pleistocene. Here, we present the first low latitude EAWM record of the last 2.8 Myr using surface and subsurface temperature difference from the northern South China Sea to evaluate interactions between tropical ocean and EAWM changes. The results show that the EAWM variability displayed significant 400 kyr cycle between 2.8 Ma and 1.2 Ma, with weak (strong) EAWM during high (low) earth orbital eccentricity state. A super El Niño-Southern Oscillation (ENSO) proxy record, calculated using west-east equatorial Pacific sea surface temperature differences, revealed 400 kyr cycles throughout the last 2.8 Myr with warm phase during high eccentricity state. Thus, we propose that super ENSO mean state strongly modulated the EAWM strength through remote forcing to generate the 400 kyr cycle between 2.8 Ma and 1.2 Ma, while low NHIS volume was not sufficient to dominate the EAWM variation as it did over the last 0.9 Myr with 100 kyr cycles in dominance.
A comparison of Holocene fluctuations of the eastern and western margins of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Levy, L.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Applegate, P. J.; Howley, J.; Axford, Y.
2013-12-01
Determining how the Greenland Ice Sheet (GrIS) responded to past temperature fluctuations is important for assessing its future stability in a changing climate. We present a record of the Holocene extents of the western GrIS margin near Kangerlussuaq (67.0°N, 50.7°W) and compare this with the past fluctuations of Bregne ice cap (71°N, 25.6° W), a small ice cap in the Scoresby Sund region 90 km from the eastern GrIS margin, to examine the mechanisms that influenced past ice margin fluctuations. The past extents of the Bregne ice cap are a proxy for the climatic conditions that influenced the nearby GrIS margin. We used glacial geomorphic mapping, 10Be dating of boulders and bedrock, and sediment cores from proglacial and non-glacial lakes. In western Greenland, 10Be ages on the Keglen moraines, 13 km west of the current GrIS margin and the Ørkendalen moraines, ≤2 km west of the current ice margin date to 7.3 × 0.1 ka (n=6) and 6.8 × 0.3 ka (n=9), respectively. Fresh moraines, ≤50 m from the current ice margin date to AD 1830-1950 and are likely associated with advances during the Little Ice Age (LIA). In some areas, the LIA moraines lie stratigraphically above the Ørkendalen moraines, indicating the GrIS was inboard of the Ørkendalen limit from 6.8 ka to the 20th century. In eastern Greenland, 10Be ages show that Bregne ice cap retreated within its late Holocene limit by 10.7 ka. A lack of clastic sediment in a proglacial lake suggests the ice cap was smaller or completely absent from ~10-2.6 ka. A snowline analysis indicates that temperatures ~0.5°C warmer than present would render the entire ice cap into an ablation zone. Glacial silts in the proglacial lake at ~2.6 and ~1.9 cal kyr BP to present indicate advances of Bregne ice cap. Fresh moraines ≤200 m of Bregne ice cap were deposited ≤2.6 cal kyr BP and mark the largest advance of the Holocene. Both the western GrIS margin and Bregne ice cap were influenced by Northern Hemisphere summer insolation during the Holocene. The western GrIS margin retreated significantly and Bregne ice cap likely disappeared during the warm early to middle Holocene. 10Be ages (10.7 ka) outboard of the late Holocene moraines at Bregne ice cap compared to those outside of the LIA moraines near Kangerlussuaq (6.8 ka) differ by ~4 kyr. This disparity in ages may have been caused by a large late Holocene advance in eastern Greenland, or perhaps the western GrIS margin retreated farther inland during the middle Holocene. Decreasing Northern Hemisphere summer insolation during the late Holocene, combined with a strong, cold East Greenland Current near Scoresby Sund may have influenced a significant ice cap advance. The temporal pattern of the responses of the eastern and western ice margins to Holocene climate changes may be indicative of how the GrIS will respond to future changes.
Pleistocene cave art from Sulawesi, Indonesia.
Aubert, M; Brumm, A; Ramli, M; Sutikna, T; Saptomo, E W; Hakim, B; Morwood, M J; van den Bergh, G D; Kinsley, L; Dosseto, A
2014-10-09
Archaeologists have long been puzzled by the appearance in Europe ∼40-35 thousand years (kyr) ago of a rich corpus of sophisticated artworks, including parietal art (that is, paintings, drawings and engravings on immobile rock surfaces) and portable art (for example, carved figurines), and the absence or scarcity of equivalent, well-dated evidence elsewhere, especially along early human migration routes in South Asia and the Far East, including Wallacea and Australia, where modern humans (Homo sapiens) were established by 50 kyr ago. Here, using uranium-series dating of coralloid speleothems directly associated with 12 human hand stencils and two figurative animal depictions from seven cave sites in the Maros karsts of Sulawesi, we show that rock art traditions on this Indonesian island are at least compatible in age with the oldest European art. The earliest dated image from Maros, with a minimum age of 39.9 kyr, is now the oldest known hand stencil in the world. In addition, a painting of a babirusa ('pig-deer') made at least 35.4 kyr ago is among the earliest dated figurative depictions worldwide, if not the earliest one. Among the implications, it can now be demonstrated that humans were producing rock art by ∼40 kyr ago at opposite ends of the Pleistocene Eurasian world.
The SE sector of the Middle Weichselian Eurasian Ice Sheet was much smaller than assumed
NASA Astrophysics Data System (ADS)
Räsänen, Matti E.; Huitti, Janne V.; Bhattarai, Saroj; Harvey, Jerry; Huttunen, Sanna
2015-08-01
Quaternary climatic and glacial history must be known in order to understand future environments. Reconstructions of the last Weichselian glacial cycle 117,000-11,700 years (kyr) ago propose that S Finland, adjacent Russia and the Baltic countries in the SE sector of the Eurasian Ice Sheet (EIS), were glaciated during the Middle Weichselian time [marine isotope stage (MIS) 4, 71-57 kyr ago] and that this glaciation was preceded in S Finland by an Early Weichselian interstadial (MIS 5c, 105-93 kyr ago) with pine forest. We apply glacial sequence stratigraphy to isolated Late Pleistocene onshore outcrop sections and show, that these events did not take place. The one Late Weichselian glaciation (MIS 2, 29-11 kyr ago) was preceded in S Finland by a nearly 90 kyr non-glacial period, featuring tundra with permafrost and probably birch forest. Our new Middle Weichselian paleoenvironmental scenario revises the configuration and hydrology of the S part of EIS and gives new setting for the evolution of Scandinavian biota. If future development during the coming glacial cycle proves to be similar, the high-level nuclear waste stored in the bedrock of SW Finland should be located deeper than currently planned, i.e. below any possible future permafrost.
NASA Astrophysics Data System (ADS)
Tomaszewska, M. A.; Henebry, G. M.
2017-12-01
The vertical transhumance practiced by herders in the highlands of Kyrgyzstan is vulnerable to environmental change. Herd movements and pasture conditions are both affected by spatial and temporal variations in snow cover and the timing of snowmelt. Early growing season soil moisture conditions affect the phenology and growth of vegetation, especially in the high elevation pastures used for summer forage. To evaluate snow seasonality, we examined three snow cover variables—the first day of snow (FDoS), the last day of snow (LDoS), and the duration of snow cover (DoSC) over 17 years based on 8-day snow product from MODIS Terra and Aqua (MOD/MYD10A2) across the Kyrgyz Republic (KYR). To track the "snow season" efficiently in the presence of snow-capped peaks, we start each snow season at day of year (DOY) 169, approximately the summer solstice, and extend to DOY 168 of the following year. To track the interannual variation of these variables, we applied two nonparametric statistics: the Mann-Kendall trend test and the Theil-Sen linear trend estimator. Our preliminary results focusing on four rayons in two oblasts indicate both large swaths of positive and negative significant trends over the different regions of the country. Positive trends in FDoS, meaning later snow arrival, were detected in parts of central KYR. Negative trends in FDoS meaning earlier arrival were detected at lower elevations in southwestern KYR. Earlier snowmelt (negative trend in LDoS) in eastern KYR resulted in a shorter snow season (negative trend in DoSC); in contrast, later snowmelt in southwestern KYR (positive trend in LDoS) resulted in a longer period of snow cover (positive trend of DoSC). We extend the analysis to the entire country and explore the influence of terrain attribites (elevation, slope, and aspect) and MODIS IGBP land cover type (MCD12Q1) on trends in snow cover seasonality. Additionally, we ran the trend tests for the Terra and Aqua snow products separately to evaluate the effect of overpass time on snow cover retrieval.
NASA Astrophysics Data System (ADS)
Khim, B.; Ikehara, K.; Sagawa, T.; Shibahara, A.; Yamamoto, M.
2010-12-01
Laminated sediments during the last deglaciation in the subarctic North Pacific indicate significant depletion of dissolved oxygen concentration at intermediate water depths. Such a strong oxygen minimum zone results primarily from a combination of high surface water productivity and poor ventilation of intermediate waters. We investigated a variety of paleoclimatic proxies using about 8-m long piston core sediment (GH02-1030; 42o13.770N, 144o12.530E; water depth, 1212 m) obtained from the continental slope off Tokachi (eastern Hokkaido Island), which is the main path of the southwestward Oyashio Current in the subarctic Northwest Pacific. Laminated sediments were identified at the two horizons in the core GH02-1030; the upper one at 11.4-12.2 cal.kyr BP and the lower one at 14.1-14.7 cal.kyr BP, corresponding to Bølling-Allerød (B/A) and Preboreal (PB), respectively. Between these laminated layers, Younger Dryas occurred. Both laminated sediment layers are characterized by Bolivina tumida, B. pacifica, and Buliminella tenuata, indicating dysoxic bottom water conditions. Increased Mg/Ca-derived intermediate-water temperature and δ18OW values at B/A and PB periods suggest the poor ventilation of intermediate water because of the surface water freshening (i.e., decrease of surface-water salinity). UK'37-derived temperature record also supports the increase of surface-water temperature during B/A and PB intervals. During the last deglaciation, short-chain C14-C18 n-fatty acids, derived mainly from marine organisms, showed higher concentrations, indicating the increased surface-water production, and at the same time, abundant lignin reflected more contribution of terrigenous organic matter, supporting increased freshwater discharge. Variation of CaCO3 contents show remarkable double peaks, corresponding to B/A and PB periods, respectively, leading to the increase of TOC contents. Opal contents also follow similar pattern to CaCO3 contents, but are much less than the Holocene values. Interesting are the remarkable double peaks of δ15N values, also corresponding to B/A and PB intervals, respectively. Such increased δ15N values indicated the enhanced nitrate utilization through the promoted phytoplankton production. Otherwise, the high δ15N records could be indicative of water column denitrification in the source region. Thus, our study area possibly experienced high surface water productivity at times of reduced intermediate ventilation in the subarctic Northwest Pacific during the last deglaciation.
Evidence for Increased Carbon Storage in the Mid-Depth South Atlantic During the Last Deglaciation
NASA Astrophysics Data System (ADS)
Lacerra, M.; Lund, D. C.; Yu, J.
2016-12-01
Carbon isotope anomalies were a ubiquitous feature in the mid-depth Atlantic during Heinrich Stadial 1 (HS1, 14.5-17.5 kyr BP) yet their cause is a matter of ongoing debate. New evidence points towards North Atlantic processes as the source of the δ13C anomalies, with the most likely driver being weakening of the Atlantic Meridional Overturning Circulation (AMOC) (1, 2). Model simulations suggest that slowing of the AMOC 1) minimizes sinking of high δ13C surface water in the North Atlantic, and 2) increases the residence time of deep water, leading to the accumulation of isotopically light respired carbon (3). The simulated tracer field shows the largest anomalies in the North Atlantic and progressively smaller anomalies in the tropical and South Atlantic, similar to observations. Here, we assess the accumulation of carbon in the mid-depth South Atlantic using foraminiferal B/Ca, a proxy for [CO32-] (which is inversely related to ΣCO2) (4). Using two high resolution records from the Brazil Margin, we show that [CO32-] decreased by 23±6 μmol/kg during HS1 and 15±7 μmol/kg during the Younger Dryas (YD, 11.5-12.9 kyr BP), synchronous with the apparent AMOC weakening recorded in 231Pa/230Th records (5). The [CO32-] response at the Brazil Margin is smaller than at 12°N (6), implying there was a north-south gradient in [CO32-] signals during HS1. The implied millennial scale increases in ΣCO2 are consistent with model results of AMOC shutdown, suggesting the mid-depth Atlantic acted as a temporary reservoir of stored carbon during both HS1 and the YD. On longer time-scales, changes in [CO32-] at the Brazil Margin likely reflect exchange with an atmosphere with progressively higher pCO2. Our results suggest that mid-depth δ13C anomalies were partly due to increased carbon storage, meaning δ13C behaved non-conservatively during the deglaciation. Our results also imply that mechanisms responsible for rising atmospheric CO2levels must have counteracted increased carbon sequestration in the mid-depth Atlantic. 1) Lund et al., 2015, Paleoceanography, 30, 1-18. 2) Oppo et al., 2015, Paleoceanography, 30, 353-368. 3) Schmittner & Lund, 2015, Clim. Past, 11, 135-152. 4) Yu & Elderfield, 2007, Earth Planet. Sci. Lett., 258, 73-86. 5) McManus et al., 2004, Nature,428, 834-837. 6) Yu et al., 2010, Science, 330, 1084-1087.
NASA Astrophysics Data System (ADS)
Hall, I. R.; Colmenero-Hidalgo, E.; Zahn, R.; Peck, V. L.; Hemming, S. R.
2011-06-01
In order to monitor the evolution of the British-Irish Ice Sheet (BIIS) and its influence in surface ocean structure during marine isotopic stages (MIS) 2 and 3, we have analyzed the sediments recovered in core MD04-2829CQ (Rosemary Bank, north Rockall Trough, northeast Atlantic) dated between ˜41 and ˜18 ka B.P. Ice-rafted debris flux and composition, 40Ar/39Ar ages of individual hornblende grains, multispecies planktonic stable isotope records, planktonic foraminifera assemblage data and faunal-based sea surface temperatures (SSTs) demonstrate a close interaction between BIIS dynamics and surface ocean structure and water properties in this region. The core location lies beneath the North Atlantic Current (NAC) and is ideal for monitoring the shifts in the position of its associated oceanic fronts, as recorded by faunal changes. These data reveal a succession of BIIS-sourced iceberg calving events related to low SST, usually synchronous with dramatic changes in the composition of the planktonic foraminifera assemblage and with variations in the stable isotope records of the taxa Neogloboquadrina pachyderma (sinistral coiling) and Globigerina bulloides. The pacing of the calving events, from typically Dansgaard-Oeschger millennial timescales during late MIS 3 to multicentennial cyclicity from ˜28 ka B.P., represents the build-up of the BIIS and its growing instability toward Heinrich Event (HE) 2 and the Last Glacial Maximum. Our data confirm the strong coupling between BIIS instabilities and the temperature and salinity of surface waters in the adjacent northeast Atlantic and demonstrate the BIIS's ability to modify the NAC on its flow toward the Nordic Seas. In contrast, subsurface water masses were less affected except during the Greenland stadials that contain HEs, when most intense water column reorganizations occurred simultaneously with the deposition of cream-colored carbonate sourced from the Laurentide Ice Sheet.
Eduardoff, Mayra; Xavier, Catarina; Strobl, Christina; Casas-Vargas, Andrea; Parson, Walther
2017-01-01
The analysis of mitochondrial DNA (mtDNA) has proven useful in forensic genetics and ancient DNA (aDNA) studies, where specimens are often highly compromised and DNA quality and quantity are low. In forensic genetics, the mtDNA control region (CR) is commonly sequenced using established Sanger-type Sequencing (STS) protocols involving fragment sizes down to approximately 150 base pairs (bp). Recent developments include Massively Parallel Sequencing (MPS) of (multiplex) PCR-generated libraries using the same amplicon sizes. Molecular genetic studies on archaeological remains that harbor more degraded aDNA have pioneered alternative approaches to target mtDNA, such as capture hybridization and primer extension capture (PEC) methods followed by MPS. These assays target smaller mtDNA fragment sizes (down to 50 bp or less), and have proven to be substantially more successful in obtaining useful mtDNA sequences from these samples compared to electrophoretic methods. Here, we present the modification and optimization of a PEC method, earlier developed for sequencing the Neanderthal mitochondrial genome, with forensic applications in mind. Our approach was designed for a more sensitive enrichment of the mtDNA CR in a single tube assay and short laboratory turnaround times, thus complying with forensic practices. We characterized the method using sheared, high quantity mtDNA (six samples), and tested challenging forensic samples (n = 2) as well as compromised solid tissue samples (n = 15) up to 8 kyrs of age. The PEC MPS method produced reliable and plausible mtDNA haplotypes that were useful in the forensic context. It yielded plausible data in samples that did not provide results with STS and other MPS techniques. We addressed the issue of contamination by including four generations of negative controls, and discuss the results in the forensic context. We finally offer perspectives for future research to enable the validation and accreditation of the PEC MPS method for final implementation in forensic genetic laboratories. PMID:28934125
600 kyr of Hydrothermal Activity on the Cleft Segment of the Juan de Fuca Ridge
NASA Astrophysics Data System (ADS)
Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; Katz, R. F.; Huybers, P. J.; Winckler, G.; Li, Y.
2017-12-01
Pressure fluctuations caused by glacially driven variations in sea level may modulate magmatic and hydrothermal output at submarine volcanic centers, with falling sea level driving increased volcanic activity. In turn, glacially paced changes in submarine volcanism could induce globally synchronous variations in the delivery of bioavailable iron and CO2 from mid-ocean ridges and thus provide solid-Earth feedbacks into the climate system. While evaluation of submarine volcanic output on orbital-timescales is technically challenging, near-ridge sediment cores hosting hydrothermal plume precipitates provide continuous, spatially integrated, and datable records to investigate the long-term behavior of hydrothermal systems. We will present new sedimentary records of hydrothermal variability spanning the past 600 kyr on the Cleft Segment of the Juan de Fuca Ridge in the Northeast Pacific. As an intermediate spreading-rate ridge, the Juan de Fuca Ridge is hypothesized to be particularly sensitive to sea level forcing at the Milankovitch frequencies of Pleistocene glacial cycles. Thus, the new records can be used to examine the connection between sea level and hydrothermal activity over multiple glacial cycles. Hydrothermal input is determined from iron and copper, with a titanium-based correction for lithogenic contributions. Sedimentary fluxes are then constrained using excess thorium-230 and extraterrestrial helium-3 as constant flux proxies. Preliminary results indicate 10-fold changes in hydrothermal iron and copper fluxes over the past 600 kyr and suggest a quasiperiodic variability in hydrothermal deposition on 100 to 120 kyr cycles. Comparison of the Juan de Fuca record with model predictions for an intermediate spreading ridge forced by Pleistocene glacial cycles finds frequent coincidence between predicted positive anomalies in magmatic output and observed peaks in hydrothermal deposition. This work encourages the continued exploration of the relationship between glacial cycles and submarine volcanic activity.
NASA Astrophysics Data System (ADS)
Cho, J. H.; Shin, D. H.; Kim, J. K.; Hyun, S.; Jang, S.; Kum, B. C.; Yoo, K. C.; Moh, T. J.
2017-12-01
The cruise of R/V ISABU focused on the detailed geological, geochemical and paleoceanographical investigations in the East Sea. The purpose of this cruise was the use of technically sophisticated Giant Piston Corer (GPC, OSIL) as well as the recovery of the longest piston core (20.7 m, ISA-16ESUB-2B) ever recorded in KIOST with a high resolution of stratigraphic sedimentary layer. The Late Pleistocene to the Holocene sediments in the Ulleung Basin are characterized by several volcanic tephra layers with alternations of fine light and dark clayey layers, reflecting variability in the paleoenvironment. Based on the previous researches and AMS results, we determine the ages of sedimentary layers from three tephra layers, 1.86 mbsf (U-Oki, 10.7 ka), 3.31 mbsf (AT, 29.4 ka), 11.67 mbsf (Aso-4, 88.0 ka) and 17.09 mbsf (Aso-3, 133.0 ka) respectively. Sediment textures are identified as hemipelagic mud, bioturbated mud and laminated mud with tephra layers. The sedimentation rates of each intervals are 0.174 m/kyr (present to U-Oki), 0.078 m/kyr (U-Oki to AT), 0.143 m/kyr (AT to Aso-4) and 0.120 m/kyr (Aso-4 to Aso-3) respectively. Sensitivity of XRF core scanner was obtained by establishing equivalences between peak areas. Element concentrations are analyzed by traditional techniques such as ICP-MS, ICP-OES. The Ca/Fe ratio reflects carbonate content and ISA-16ESUB-2B core shows strong correlation to sedimentary horizons. Sr/Ca ratio has good correlation with sedimentary units. Enhanced Sr contents indicates strong surface ocean production. Br/Cl ratio are high peak during MIS 5.5. Br content implies generally high organic rich sediments.
Astronomically Forced Hydrology of the Late Cretaceous Sub-tropical Potosí Basin, Bolivia
NASA Astrophysics Data System (ADS)
Tasistro-Hart, A.; Maloof, A. C.; Schoene, B.; Eddy, M. P.
2017-12-01
Orbital forcings paced the ice ages of the Pleistocene, demonstrating that periodic variations in the latitudinal distribution of insolation amplified by ice-albedo feedbacks can guide global climate. How these forcings operate in the hot-houses that span most of the planet's history, however, is unknown. The lacustrine El Molino formation of the late Cretaceous-early Paleogene Potosí Basin in present-day Bolivia contains carbonate-mud parasequences that record fluctuating hydrological conditions from 73 to 63 Ma. This study presents the first cyclostratigraphic analysis using high-resolution drone-derived imagery and 3D elevation models, combined with conventional stratigraphic measurements and magnetic susceptibility data. The drone-derived data are integrated over the entire outcrop at two field areas using a novel application of stratigraphic potential field modeling that increases signal-to-noise ratios prior to spectral analysis. We demonstrate that these parasequences exhibit significant periodicities consistent with eccentricity (400 and 100 kyr), obliquity (50 kyr, 40 kyr, and 29 kyr), precession (17-23 kyr), and semi-precession (9-11 kyr). New U-Pb ID-TIMS zircon ages from intercalacted ash beds corroborate the interpreted sedimentation rates at two sites, indicating that the Potosí Basin contains evidence for hot-house astronomical forcing of sub-tropical lacustrine hydrology. Global climate simulations of late Cretaceous orbital end-member configurations demonstrate precessional-eccentricity and obliquity driven modulation of basin hydrology. In model simulations, the forcings drive long-term shifts in the location of the intertropical convergence zone, changing precipitation along the northern extent of the Potosí Basin's catchment area. This study is the first to demonstrate orbital forcing of a lacustrine system during the Maastrichtian and could ultimately contribute to a precise age for the Cretaceous-Paleogene boundary.
NASA Astrophysics Data System (ADS)
Ma, Wentao; Wang, Pinxian; Tian, Jun
2017-05-01
The carbon isotope (δ13C) record from the Plio-Pleistocene shows prominent 400-kyr cycles with maximum values at eccentricity minima during the Pliocene. The period extends to 500 kyr in the Pleistocene after 1.6 Ma. Five δ13C maxima occurred at 0.2, 0.5, 1.0, 1.5 and 1.9 Ma over the last 2 Ma. Although several hypotheses have been suggested to explain why the 400-500-kyr cycles are so strong in δ13C records and how they may have originated, the mechanism is still not clear. The aim of this study was to test the dissolved organic carbon (DOC) hypothesis, which was proposed recently to explain this 400-500-kyr cycle in deeper time. We used an intermediate complexity box model that is computationally efficient for studies involving longer timescales. The model incorporates sophisticated microbial processes, dividing the oceanic carbon cycle into a rapid and a slow cycle. The model result suggests that when more nutrients enter the surface ocean, the rapid carbon cycle is more active, and less refractory DOC (RDOC) is produced. The opposite sequence occurs when fewer nutrients enter the ocean. The modeled RDOC concentration and the δ13C of dissolved inorganic carbon (DIC) are anti-correlated with riverine nutrient input. According to mass conservation, the release of isotopically lighter carbon from the RDOC pool leads to lighter DIC δ13C while an increase in the RDOC pool enriches it. The transient simulations produced a one-to-one correspondence between modeled and measured δ13C. This study supports the hypothesis that chemical weathering-induced variations in the DOC pool act as a pacemaker for δ13C changes over 400-500-kyr cycles.
Tracking dust deposition around the North Pacific Gyre over the past 500kyr
NASA Astrophysics Data System (ADS)
Costa, K.; McManus, J. F.; Winckler, G.; Anderson, R. F.; Middleton, J. L.; Mukhopadhyay, S.
2017-12-01
Across the North Pacific, dust delivery and distribution depends on atmospheric transport and precipitation, and dust fluxes generally decrease with distance away from the Asian continent. While it is well established that dust fluxes vary on glacial-interglacial timescales, how the dust distribution from the source to the sediment may have evolved is poorly constrained, largely due to a lack of long dust flux records from this region. Here we reconstruct dust flux variability from six piston cores on the Juan de Fuca Ridge in the Northeastern Pacific over the past 500kyr using 232Th as a lithogenic tracer and 230Th normalization to calculate fluxes. Minimal spatial variability between the six cores allows the compilation of a single regional dust flux stack. Dust fluxes vary by a factor of two between glacial, high-dust flux, and interglacial, low-dust flux periods, consistent with global patterns. Interglacial periods MIS7 and MIS9 dust fluxes remain relatively high compared to the adjacent glacial periods MIS6 and MIS 8 so that dust fluxes are fairly constant (3.3±0.6 ug 232Th/cm2kyr) from 135-335ka, excepting the high-lithogenic feature at 272ka (turbidite). Dust fluxes may be highest in MIS10 (6.0 ug 232Th/cm2kyr) than more recent glacial periods, for example MIS2 (3.9 ug 232Th/cm2kyr). Five multicores add high-resolution data for the last 30kyr. We compare these new records from the Northeast Pacific with dust flux records from the Northwest Pacific and the Equatorial Pacific to better constrain how dust deposition varied at different locations around the North Pacific Gyre on glacial-interglacial timescales.
NASA Astrophysics Data System (ADS)
Michetti, Alessandro Maria; Berlusconi, Andrea; Livio, Franz; Sileo, Giancanio; Zerboni, Andrea; Serva, Leonello; Vittori, Eutizio; Rodnight, Helena; Spötl, Christoph
2010-05-01
The seismicity of the Po Plain in Northern Italy is characterized by two strong Middle Ages earthquakes, the 1117, I° X MCS Verona, and the December 25, 1222, I° IX-X Brescia, events. Historical reports from these events describe relevant coseismic environmental effects, such as drainage changes, ground rupture and landslides. Due to the difficult interpretation of intensity data from such old seismic events, considerable uncertainty exists about their source parameters, and therefore about their causative tectonic structures. In a recent review, Stucchi et al. (2008) concluded that 'the historical data do not significantly help to constrain the assessment of the seismogenic potential of the area, which remains one of the most unknown, although potentially dangerous, seismic areas of the Italian region'. This issue needs therefore to be addressed by using the archaeological and geological evidence of past earthquakes, that is, archeoseismology and paleoseismology. Earthquake damage to archaeological sites in the study area has been the subject of several recent papers. Here we focus on new paleoseismological evidence, and in particular on the first observation of Holocene paleoseismic surface faulting in the Po Plain identified at the Monte Netto site, located ca. 10 km S of Brescia, in the area where the highest damage from the Christmas 1222 earthquake have been recorded. Monte Netto is a small hill, ca. 30 m higher than the surrounding piedmont plain, which represent the top of a growing fault-related fold belonging to the Quaternary frontal sector of the Southern Alps; the causative deep structure is a N-verging back thrust, well imaged in the industrial seismic reflection profiles kindly made available by ENI E&P. New trenching investigations have been conducted at the Cava Danesi of Monte Netto in October 2009, focused on the 1:10 scale analysis of the upper part of the 7 m high mid-Pleistocene to Holocene stratigraphic section exposed along the quarry walls. In particular, we excavated a 3 m deep trench across the graben that affects the crest of a decametric anticline due to paleoseismic bending-moment faulting; evidence of paleoseismicity is also provided by the observation of paleoliquefaction features near the graben. The trench walls allowed to identify 3 discrete events of graben reactivation, interpreted as generated by 3 strong paleoearthquakes. These paleoearthquakes occurred between ca. 45 kyr BP and ca. 5.5 kyr BP, based on OSL and AMS dating of stratigraphic units sampled on the main quarry walls, and mapped also in the October 2009 trench. The post 5.5 kyr BP stratigraphy is missing at the trench site, due to plowing and reworking. The paleoseismic deformation observed at Monte Netto is suitable to constrain the magnitude of the causative earthquakes. At a local scale, the November 24, 2004, Ml 5.2 Salò, earthquake, occurred ca. 40 km NE of Monte Netto, produced rockfalls and fractures in the Lake Garda shores, but no fault displacement at the surface. The only well known surface faulting earthquakes in the Southern Alps is the May 6, 1976, Ms 6.5 Friuli event; secondary surface ruptures were observed for a length of few km and with maximum offset of 20 cm. Using the global database of surface faulting events, the smallest thrust faulting earthquake known to be associated with secondary tectonic ruptures at the ground surface is the October 29, 1989, Mw 6.0 Mount Chenoua, Algeria, event. On the other hand, shallow crustal compressional earthquakes with M>7.0 such as the 1980 El Asnam, 1988 Spitak, and 1999 Taiwan events are invariably associated with tens of km of primary tectonic scarps, with maximum surface displacement of several meters. In the Monte Netto area there is no cumulative geomorphic evidence for repeated surface faulting events of this size. Therefore, our best estimate of the Monte Netto paleoseismic magnitudes is in the range of M6.0 to 6.8, in good agreement with the macroseismically estimated magnitude of the Christmas 1222 event. If this seismogenic potential is confirmed in the Brescia area, similar earthquake hazard should be associated to several Quaternary thrust and backthrust that have been mapped in the Lombardia and Ticino Southern Alps. In particular, Holocene reverse displacement recently observed near Como along the Gonfolite backthrust strongly suggests that tectonic structures capable of producing M6 to 6.8 earthquake may exist also in the region between Lake Como and Lake Maggiore.
Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr
NASA Astrophysics Data System (ADS)
Knudsen, Mads Faurschou; Riisager, Peter; Donadini, Fabio; Snowball, Ian; Muscheler, Raimund; Korhonen, Kimmo; Pesonen, Lauri J.
2008-07-01
All absolute paleointensity data published in peer-reviewed journals were recently compiled in the GEOMAGIA50 database. Based on the information in GEOMAGIA50, we reconstruct variations in the geomagnetic dipole moment over the past 50 kyr, with a focus on the Holocene period. A running-window approach is used to determine the axial dipole moment that provides the optimal least-squares fit to the paleointensity data, whereas associated error estimates are constrained using a bootstrap procedure. We subsequently compare the reconstruction from this study with previous reconstructions of the geomagnetic dipole moment, including those based on cosmogenic radionuclides ( 10Be and 14C). This comparison generally lends support to the axial dipole moments obtained in this study. Our reconstruction shows that the evolution of the dipole moment was highly dynamic, and the recently observed rates of change (5% per century) do not appear unique. We observe no apparent link between the occurrence of archeomagnetic jerks and changes in the geomagnetic dipole moment, suggesting that archeomagnetic jerks most likely represent drastic changes in the orientation of the geomagnetic dipole axis or periods characterized by large secular variation of the non-dipole field. This study also shows that the Holocene geomagnetic dipole moment was high compared to that of the preceding ˜ 40 kyr, and that ˜ 4 · 10 22 Am 2 appears to represent a critical threshold below which geomagnetic excursions and reversals occur.
NASA Astrophysics Data System (ADS)
Strojie, W. M.; Harper, D. T.; Zachos, J. C.
2017-12-01
The late Paleocene and Early Eocene were characterized by a series of brief hyperthermal events, the largest of which is the Paleocene-Eocene Thermal Maximum (PETM, 55.5 Ma) followed by a lower magnitude Eocene Thermal Maximum 2 (ETM2, 53.7 Ma), also known as H1. These events are characterized by a global negative Carbon Isotope Excursion (CIE) coincident with a dissolution horizon in pelagic sediment cores indicative of Carbonate Compensation Depth (CCD) shoaling and significant ocean acidification. The S.E. Atlantic Walvis Ridge ETM2 CIE is a δ13CCarb 1.0‰ - 1.5‰ and δ13CBulk 3.5‰ with an estimated 3oC surface and benthic warming. The record of transient hyperthermals such as ETM2 is not as extensive in the Pacific as the Atlantic. Given the size of the Pacific, this represents a critical gap in our understanding of the overall carbon cycle and oceanographic response of this event. Our research investigates the evolution of ocean thermal structure in the equatorial Pacific preceding, during, and after ETM-2. We generated new data on thermocline temperature from ODP Site 1209 Shatsky Rise using planktonic foraminifera δ18O and Mg/Ca while inferring carbon cycle dynamics from δ13C. The data shows 3 CIE's from 53.7Ma - 53.6Ma (ETM2, H2, and I1). ETM2 is preceded by 40kyr of bulk and thermocline δ13C convergence with two transient warming steps. The CIE duration 90kyr with an 50kyr recovery phase. The total magnitude of peak thermocline warming 2.0oC to 2.2oC for ETM2. No thermocline warming is observed for H2. I1 peak magnitude of thermocline warming 3.0oC. Orbital pacing of the carbon cycle is also evident from 100kyr separation of ETM2 and H2, an 300kyr separation of ETM2 and I1, and an 40kyr pre-CIE convergence of δ13Ccarb & δ13Cbulk with an apparent two warming steps 15-20kyr apart.
NASA Astrophysics Data System (ADS)
Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong
2016-07-01
The late Ordovician Pingliang Formation on the southwestern margin of the Ordos Basin, North China, consists of rhythmic alternations of shale, limestone, and siliceous beds. To explore the possible astronomical forcing preserved in this lithological record, continuous lithological rank and magnetic susceptibility (MS) stratigraphic series were obtained from a 34 m thick section of the Pingliang Formation at Guanzhuang. Power spectral analysis of the MS and rank series reveal 85.5 cm to 124 cm, 23 cm to 38 cm, and 15 cm to 27 cm thick sedimentary cycles that in ratio match that of late Ordovician short eccentricity, obliquity and precession astronomical cycles. The power spectrum of the MS time series, calibrated to interpreted short orbital eccentricity cycles, aligns with spectral peaks to astronomical parameters, including 95 kyr short orbital eccentricity, 35.3 kyr and 30.6 kyr obliquity, and 19.6 kyr and 16.3 kyr precession cycles. The 15 cm to 27 cm thick limestone-shale couplets mainly represent precession cycles, and siliceous bed deposition may be related to both precession and obliquity forcing. We propose that precession-forced sea-level fluctuations mainly controlled production of lime mud in a shallow marine environment, and transport to the basin. Precession and obliquity controlled biogenic silica productivity, and temperature-dependent preservation of silica may have been influenced by obliquity forcing.
Schindlbeck, Julie C; Jegen, Marion; Freundt, Armin; Kutterolf, Steffen; Straub, Susanne M; Mleneck-Vautravers, Maryline J; McManus, Jerry F
2018-03-13
It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth's climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the ~100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and δ 18 O record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and ∼13 ± 2 kyr before the δ 18 O minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7-1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the δ 18 O record diminishes, while the tephra record maintains its strong 100 kyr periodicity.
Evidence that higher CO2 increases tree growth sensitivity to ...
Aim: To test the growth-sensitivity to temperature under different ambient CO2 concentrations, we determined paleo tree growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatial variation in temperature across the modern species distributional range. During the deglacial period, [CO2] averaged about 230 ppm, whereas modern [CO2] averaged about 330 ppm.Location: Paleo oaks were sampled from Northern Missouri, USA. The paleo temperature reconstruction was from a lake in Northern Illinois, USA. Data used to quantify the growth-sensitivity to temperature for modern oaks were collected across the Great Plains, Midwest and Upper Great Lakes regions.Methods: Growth data were from 53 paleo bur oak log cross-sections collected in Missouri that were preserved in river and stream sediments. These oaks were radiocarbon-dated to between 10.5 and 13.3 cal kyr BP, which spans rapid warming during the last deglaciation. Growth data from modern bur oaks were obtained from increment core collections paired with USDA Forest Service Forest Inventory and Analysis data. Paleotemperatures were obtained from a high-resolution pollen-based reconstruction and modern temperatures were obtained from gridded meteorological data. Results: Growth-sensitivity to temperature (i.e. the slope of growth rate versus temperature) was significantly greater for modern oaks growing at an average [CO2
A complete representation of uncertainties in layer-counted paleoclimatic archives
NASA Astrophysics Data System (ADS)
Boers, Niklas; Goswami, Bedartha; Ghil, Michael
2017-09-01
Accurate time series representation of paleoclimatic proxy records is challenging because such records involve dating errors in addition to proxy measurement errors. Rigorous attention is rarely given to age uncertainties in paleoclimatic research, although the latter can severely bias the results of proxy record analysis. Here, we introduce a Bayesian approach to represent layer-counted proxy records - such as ice cores, sediments, corals, or tree rings - as sequences of probability distributions on absolute, error-free time axes. The method accounts for both proxy measurement errors and uncertainties arising from layer-counting-based dating of the records. An application to oxygen isotope ratios from the North Greenland Ice Core Project (NGRIP) record reveals that the counting errors, although seemingly small, lead to substantial uncertainties in the final representation of the oxygen isotope ratios. In particular, for the older parts of the NGRIP record, our results show that the total uncertainty originating from dating errors has been seriously underestimated. Our method is next applied to deriving the overall uncertainties of the Suigetsu radiocarbon comparison curve, which was recently obtained from varved sediment cores at Lake Suigetsu, Japan. This curve provides the only terrestrial radiocarbon comparison for the time interval 12.5-52.8 kyr BP. The uncertainties derived here can be readily employed to obtain complete error estimates for arbitrary radiometrically dated proxy records of this recent part of the last glacial interval.
Fernández-Mazuecos, Mario; Vargas, Pablo
2013-06-01
· The role of Quaternary climatic shifts in shaping the distribution of Linaria elegans, an Iberian annual plant, was investigated using species distribution modelling and molecular phylogeographical analyses. Three hypotheses are proposed to explain the Quaternary history of its mountain ring range. · The distribution of L. elegans was modelled using the maximum entropy method and projected to the last interglacial and to the last glacial maximum (LGM) using two different paleoclimatic models: the Community Climate System Model (CCSM) and the Model for Interdisciplinary Research on Climate (MIROC). Two nuclear and three plastid DNA regions were sequenced for 24 populations (119 individuals sampled). Bayesian phylogenetic, phylogeographical, dating and coalescent-based population genetic analyses were conducted. · Molecular analyses indicated the existence of northern and southern glacial refugia and supported two routes of post-glacial recolonization. These results were consistent with the LGM distribution as inferred under the CCSM paleoclimatic model (but not under the MIROC model). Isolation between two major refugia was dated back to the Riss or Mindel glaciations, > 100 kyr before present (bp). · The Atlantic distribution of inferred refugia suggests that the oceanic (buffered)-continental (harsh) gradient may have played a key and previously unrecognized role in determining Quaternary distribution shifts of Mediterranean plants. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Climatic differentiation in polyploid apomictic Ranunculus auricomus complex in Europe.
Paule, Juraj; Dunkel, Franz G; Schmidt, Marco; Gregor, Thomas
2018-05-21
Polyploidy and apomixis are important factors influencing plant distributions often resulting in range shifts, expansions and geographical parthenogenesis. We used the Ranunculus auricomus complex as a model to asses if the past and present distribution and climatic preferences were determined by these phenomena. Ecological differentiation among diploids and polyploids was tested by comparing the sets of climatic variables and distribution modelling using 191 novel ploidy estimations and 561 literature data. Significant differences in relative genome size on the diploid level were recorded between the "auricomus" and "cassubicus" groups and several new diploid occurrences were found in Slovenia and Hungary. The current distribution of diploids overlapped with the modelled paleodistribution (22 kyr BP), except Austria and the Carpathians, which are proposed to be colonized later on from refugia in the Balkans. Current and historical presence of diploids from the R. auricomus complex is suggested also for the foothills of the Caucasus. Based on comparisons of the climatic preferences polyploids from the R. auricomus complex occupy slightly drier and colder habitats than the diploids. The change of reproductive mode and selection due to competition with the diploid ancestors may have facilitated the establishment of polyploids within the R. auricomus complex in environments slightly cooler and drier, than those tolerated by diploid ancestors. Much broader distribution of polyploid apomicts may have been achieved due to faster colonization mediated by uniparental reproductive system.
PROMESS 1: Past Global Changes Investigated by Drilling Mediterranean Continental Margins
NASA Astrophysics Data System (ADS)
Berne, S.
2004-12-01
Between June, 24th and July, 22nd, 2004, a team of European scientists embarked from Brindisi (Italy) to Barcelona (Spain) onboard the Russian vessel "Bavenit", operated by the Dutch geotechnical company FUGRO, for a drilling expedition in the Adriatic Sea and the NW Mediterranean Sea. The purpose of this cruise was to collect long sediment sections and in situ measurements from two deltaic margins where the history of global changes during the last ca. 400 kyr is particularly well preserved. In the Adriatic, two boreholes were drilled at site PRAD1 (water depth 184 m), where the objective was to study the record of the last 4 glacial cycles. A pilot hole was first drilled for assessing the risk of shallow gases, a downhole logging was carried out in this borehole. A second site allowed continuous coring to the targeted depth (71m below sea-floor) with excellent recovery (better than 95%). Very preliminary interpretation indicates that seismic sequences previously identified correspond to 100 kyr glacial cycles. Downhole logging and physical properties of cores allow to identify magnetic events, and tephras. Site PRAD2 was devoted to the study of the recent most sediments (last 12,000 yrs) near the coastline, at a water depth of 56m. The targeted depth was 32 m below sea floor, sufficient to obtain a good record for the last ca 12,000 years. All together, six boreholes were drilled at PRAD2, including a pilot hole, one for continuous sediment recovery, and additional holes for in situ geotechnical tests and sampling. One of the objectives of these tests is to determine whether the wavy features shaping the sedimentary sequences are caused by near-bottom currents or result from liquefaction of unstable sediments triggered by earthquakes or storms. Site PRGL1 in the Gulf of Lion is at 298 m water depth, and the targeted depth below sea floor was 300 m, allowing to reach an expected age of about 430 kyr BP. A pilot hole was drilled down to 310 mbsf, and logged. Two geotechnical boreholes were drilled, allowing tests and measurements to a depth of 150 mbsf. Another borehole was drilled for continuous coring to the depth of 300 mbsf. The recovery was excellent (>95%). Preliminary estimations of coccolithophore assemblages provide a general time-frame for this site. Marine isotope stage (MIS) 12 was reached at the bottom of the hole. We have also good estimates of the position of the intervals corresponding to MIS 2-3, MIS 4, MIS 5a-d, and the transition between MIS 8 and 7. This shows that, as in the Adriatic Sea, seismic bounding surfaces are linked to 100 kyr cycles, that modify lithology and sedimentation rates on the upper slope. The presence of coarser sediment at the end of each "forced regression", and the occurrence of some biogenic gas, trapped by the overlying clayey sediments deposited during the ensuing warm period, is likely at the origin of seismic anomalies. Site PRGL2 is at 103 m water depth, an area where glacial shorelines that formed duringthe last ca. 500 kyr are the best preserved. A CPTU borehole was first drilled, followed by a sampling borehole, down to 100 mbsf. As expected, many sandy intervals were encountered, but the overall recovery was however quite good, in the order of 82%. Gamma ray downhole logging was performed in the drill pipe afterward. PROMESS 1 is an European Community funded project of the 5th framework programme (EVR1-2001-41). It belongs to the OMARC cluster of projects. It is a companion project of the joint Euro-US "EUROSTRATAFORM" project. The "PROMESS 1" shipboard party: S. Berne, M. Canals, A. Cattaneo, E. Colmenero, G. Floch, B. Dennielou, J. Frigola, R. Gelfort, J. Gravalosa, D. Ridente, T. Schoolmeester, N. Sultan, G. Tulloch, H.J. Wallrabe-Adams
Stable isotope chemistry of fossil bone as a new paleoclimate indicator
NASA Astrophysics Data System (ADS)
Kohn, Matthew J.; Law, J. Mclver
2006-02-01
During fossilization, bone is thought to recrystallize and alter chemically on timescales of kyr to a few tens of kyr, i.e., similar to the timescale for formation of soils. Therefore, C- and O-isotope compositions of bone apatite should correlate with trends in soil water composition and aridity, and serve as paleoclimate indicators. This hypothesis was tested by analyzing C- and O-isotope compositions of the CO 3 component of fossil bone apatite from mid-Oligocene through late Pleistocene units in Oregon and western Idaho, including the John Day (19.4-30.0 Ma), Mascall (15.2-15.8 Ma), and Rattlesnake (7.2-7.8 Ma) Formations, whose paleosol sequences have been studied in detail, and the Juntura (10-11 Ma), Hagerman (3.2 Ma), and Fossil Lake (<23-650 ka) fossil localities. Tooth enamel δ18O values provide a baseline of meteoric water compositions. Stable isotope compositions of bone CO 3 do change in response to broad climatic trends, but show poor correlation with compositions of corresponding paleosol CO 3 at specific horizons. Instead, compositional deviations between bone and paleosol CO 3 correlate with compositional deviations with the next higher paleosol; this suggests that the timescale for fossilization exceeds one paleosol cycle. Based on stratigraphic evidence and simple alteration models, fossilization timescales are estimated at 20-50 kyr, indicating that bone CO 3 will prove most useful for sequences spanning >100 kyr. C-isotopes show negative and strong positive deviations during wet and dry climates respectively, and short-term trends correspond well with changes in aridity within the Mascall and Rattlesnake Formations, as inferred from paleosols. A proposed correction to δ18O values based on δ13C anomalies implies a small, ˜1.5‰ increase in meteoric water δ18O during the late Oligocene global warming event, consistent with a minimum temperature increase of ˜4 °C. A strong inferred decrease in δ18O of 4-5‰ after 7 Ma closely parallels compositional changes in tooth enamel, and reflects a doubling in the height of the Cascade Range.
Amino acid epimerization implies rapid sedimentation rates in Arctic Ocean cores
Sejrup, H.P.; Miller, G.H.; Brigham-Grette, J.; Lovlie, R.; Hopkins, D.
1984-01-01
The palaeooceanography of the Arctic Ocean is less well known than any other ocean basin, due to difficulties in obtaining cores and in providing a secure chronological framework for those cores that have been raised. Most recent investigators have suggested that low sedimentation rates (0.05-0.1 cm kyr-1) have characterized the deep basins over the past 5 Myr (refs 1,2) despite the glacial-marine character of the sediment and proximity to major centres of shelf glaciation. These calculations have been primarily based on the down-core pattern in the inclination of magnetic minerals, supported by uranium-series, 14C and micropalaeontological evidence. Here we analyse amino acid diagnesis in foraminifera from two gravity cores raised from the floor of the Arctic Ocean, our results suggest that these cores span <200 kyr., conflicting with the earlier estimate of 3 Myr based on palaeomagnetic data. The chronology of other Arctic Ocean cores and previous palaeoenvironmental interpretations need re-evaluation. ?? 1984 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Ahn, Hyeon-Seon; Sohn, Young Kwan; Lee, Jin-Young; Kim, Jin Cheul
2018-05-01
Paleomagnetic and rock magnetic investigations were performed on a 64-cm-thick section of nonmarine unconsolidated muddy sediment from the Gosan Formation on Jeju Island, Korea. This sediment was recently dated to have been deposited between 22 and 17 kyr BP calibrated, with a sedimentation rate of 13-25 cm/kyr, based on many radiocarbon ages. Interestingly, stepwise alternating field (AF) demagnetization revealed characteristic natural remanent magnetizations with anomalous directions, manifested by marked deviations from the direction of today's axial dipole field, for some separate depth levels. On the other hand, stepwise thermal (TH) demagnetization showed more complex behavior, resulting in the identification of multiple remanence components. For all TH-treated specimens, consistently two different components are predominant: a low-temperature component unblocked below 240-320 °C entirely having normal-polarity apparently within the secular variation range of the Brunhes Chron, and a high-temperature component with unblocking temperatures (Tubs) between 240-320 and 520-580 °C that have anomalous directions, concentrated in the 13-34-cm-depth interval ( 17-19 ka in inferred age) and possibly below 53 cm depth (before 20 ka). Rock magnetic results also infer the dominance of low-coercivity magnetic particles having 300 and 580 °C Curie temperature as remanence carriers, suggestive of (titano)maghemite and/or Ti-rich titanomagnetite and magnetite (or Ti-poor titanomagnetite), respectively. A noteworthy finding is that AF demagnetizations in this study often lead to incomplete separation of the two remanence components possibly due to their strongly overlapping AF spectra. The unusual directions do not appear to result from self-reversal remanences. Then, one interpretation is that the low-temperature components are attributable to post-depositional chemical remanences, associated possibly with the later formation of the mineral phase having Tub 300 °C, whereas the high-temperature components are of primary detrital origin that survived later chemical influence. Accordingly, the unusual directions might record geomagnetic instability within the 17-22 ka period manifested by multiple excursional swings, partly associated with the Tianchi/Hilina Pali excursion. However, further work is needed to verify this interpretation and distinguish it from alternative explanations that invoke rock magnetic complexities as the cause of the unusual directions.[Figure not available: see fulltext.
Plant-wax D/H ratios in the southern European Alps record multiple aspects of climate variability
NASA Astrophysics Data System (ADS)
Wirth, Stefanie B.; Sessions, Alex L.
2016-09-01
We present a Younger Dryas-Holocene record of the hydrogen isotopic composition of sedimentary plant waxes (δDwax) from the southern European Alps (Lake Ghirla, N-Italy) to investigate its sensitivity to climatic forcing variations in this mid-latitude region (45°N). A modern altitudinal transect of δD values of river water and leaf waxes in the Lake Ghirla catchment is used to test present-day climate sensitivity of δDwax. While we find that altitudinal effects on δDwax are minor at our study site, temperature, precipitation amount, and evapotranspiration all appear to influence δDwax to varying extents. In the lake-sediment record, δDwax values vary between -134 and -180‰ over the past 13 kyr. The long-term Holocene pattern of δDwax parallels the trend of decreasing temperature and is thus likely forced by the decline of northern hemisphere summer insolation. Shorter-term fluctuations, in contrast, may reflect both temperature and moisture-source changes. During the cool Younger Dryas and Little Ice Age (LIA) periods we observe unexpectedly high δDwax values relative to those before and after. We suggest that a change towards a more D-enriched moisture source is required during these intervals. In fact, a shift from northern N-Atlantic to southern N-Atlantic/western Mediterranean Sea sources would be consistent with a southward migration of the Westerlies with climate cooling. Prominent δDwax fluctuations in the early and middle Holocene are negative and potentially associated with temperature declines. In the late Holocene (<4 kyr BP), excursions are partly positive (as for the LIA) suggesting a stronger influence of moisture-source changes on δDwax variation. In addition to isotopic fractionations of the hydrological cycle, changes in vegetation composition, in the length of the growing season, and in snowfall amount provide additional potential sources of variability, although we cannot yet quantitatively assess these in the paleo-record. We conclude that while our δDwax record from the Alps does contain climatic information, it is a complicated record that would require additional constraints to be robustly interpreted. This also has important implications for other water-isotope-based proxy records of precipitation and hydro-climate from this region, such as cave speleothems.
One million years of cultural evolution in a stable environment at Atapuerca (Burgos, Spain)
NASA Astrophysics Data System (ADS)
Rodríguez, J.; Burjachs, F.; Cuenca-Bescós, G.; García, N.; Van der Made, J.; Pérez González, A.; Blain, H.-A.; Expósito, I.; López-García, J. M.; García Antón, M.; Allué, E.; Cáceres, I.; Huguet, R.; Mosquera, M.; Ollé, A.; Rosell, J.; Parés, J. M.; Rodríguez, X. P.; Díez, C.; Rofes, J.; Sala, R.; Saladié, P.; Vallverdú, J.; Bennasar, M. L.; Blasco, R.; Bermúdez de Castro, J. M.; Carbonell, E.
2011-06-01
The present paper analyses the evidence provided by three sites (Sima del Elefante, Gran Dolina, and Galería) located in the Trinchera del Ferrocarril of the Sierra de Atapuerca. These three sites are cave infillings that contain sediments deposited from approximately 1.2 Ma to 200 kyr. Pollen, herpetofauna, and small and large mammal remains are used as proxies to obtain a general picture of the environmental changes that occurred at the Sierra de Atapuerca throughout the one million-year period represented at these sites. Similarly, cultural changes are tracked analyzing the evidence of human behavior obtained from the study of several bone and lithic assemblages from these three sites. At least three periods with different cultural features, involving technology, subsistence and behavior, are determined from the available evidence. The first two periods correspond to the Mode 1 technology and Homo antecessor: the first is dated around 1.2 to 1.0 Ma and reflects opportunistic behavior both in technology and subsistence. The second period is around 800 kyr BP. Mode 1 technology is still maintained, but subsistence strategies include systematic hunting and the use of base camps. The third period is dated between 500 ka and 200 ka and corresponds to the Mode 2 technology and the acquisition of directional hunting and other organizational strategies by Homo heidelbergensis. A transition from Mode 2 to Mode 3 seems to appear at the end of this time-range, and may reflect the early phases of a fourth cultural change. With regard to the environment, our main conclusion is that there was an absence of extremely harsh conditions at Atapuerca throughout this time period. The presence of Mediterranean taxa was constant and the dominant landscape was a savannah-like open environment, probably with small forest patches. An alternation of Mediterranean and mesic species as the dominant component of the tree storey was induced by the climatic cycles, and steppes spread across the landscape during the drier periods. In any case, it is not possible to establish clear cut-off points separating entirely different environmental episodes. Our results show no evidence of any relationship between environmental change and cultural change at the Sierra de Atapuerca.
Bischoff, James L.; Williams, Ross W.; Rosenbauer, Robert J.; Aramburu, Arantza; Arsuaga, Juan Luis; Garcia, Nuria; Cuenca-Bescos, Gloria
2007-01-01
The Sima de los Huesos site of the Atapuerca complex near Burgos, Spain contains the skeletal remains of at least 28 individuals in a mud-breccia underlying an accumulation of the Middle Pleistocene cave bear (Ursus deningeri). We report here on new high-precision dates on the recently discovered speleothem SRA-3 overlaying human bones within the Sima de los Huesos. Earlier analyses of this speleothem by TIMS (thermal-ionization mass-spectrometry) showed the lower part to be indistinguishable from internal isotopic equilibrium at the precision of the TIMS instrumentation used, yielding minimum age of 350 kyr (kyr = 103 yr before present). Reanalysis of six samples of SRA-3 by inductively-coupled plasma-multicollector mass-spectrometry (ICP-MS) produced high-precision analytical results allowing calculation of finite dates. The new dates cluster around 600 kyr. A conservative conclusion takes the lower error limit ages as the minimum age of the speleothem, or 530 kyr. This places the SH hominids at the very beginnings of the Neandertal evolutionary lineage.
Dome collapse eruption in Tatun Volcanic Group near metropolitan Taipei, Taiwan at ~6 kyrs
NASA Astrophysics Data System (ADS)
Chen, C.; Lee, T.
2010-12-01
The Tatun Volcanic Group (TVG) is located in the north of metropolitan Taipei, Taiwan. Over 6 million inhabitants are living in Taipei City and suburban area. Another critical issue is an international airport and two nuclear power plants are lying at the foot of the TVG. If the TGV will be re-active, the serious hazard for human lives and economies in this area will definitely occur. Understanding the youngest eruption history of the TVG will be much important for prediction the future activity of eruption. The core was collected from the Dream Lake at the eastern slop of Cising Mt.. Total 21 samples from depth 190 cm to 231.5 cm have been tested. Comparison of chemical compositions of glass and minerals in the volcanic clasts with those of lava around TVG, they clearly showed that the volcanic clasts can be correlated with the eruption of the closest Cising Mt. According to the radiocarbon (C-14) age of core sample at the depth 225 cm, the age was extrapolated around 6150 yrs ca. C-14 B.P.. Moreover, the respiratory cristobalite in the volcanic clasts were firstly identified by the identical morphology, chemical composition and Laser Raman Spectrometry (LRS). The crystalline silica was produced by vapor-phase crystallization and devitrification in the andesite lava dome and volcanic ash generated by pyroclastic flows formed by lava dome collapse in Soufriere Hills volcano, Montserrat (Baxter et al.,1999). These new evidence demonstrated that there would probably have the lava dome collapse eruptions in the TVG in the last 6 kyrs. The result in this paper also sustained that the landslide caused by the weak phreatic eruption within the last 6000 yrs in the TVG (Belousov et al., 2010). It must further be noted that an efficient program of the volcanic hazard reduction should be practiced for the metropolitan Taipei and suburban area.
NASA Astrophysics Data System (ADS)
Matthews-Bird, F.; Gosling, W. D.; Brooks, S. J.; Montoya, E.; Coe, A. L.
2014-12-01
Chironomidae (non-biting midges) is a family of two-winged aquatic insects of the order Diptera. They are globally distributed and one of the most diverse families within aquatic ecosystems. The insects are stenotopic, and the rapid turnover of species and their ability to colonise quickly favourable habitats means chironomids are extremely sensitive to environmental change, notably temperature. Through the development of quantitative temperature inference models chironomids have become important palaeoecological tools. Proxies capable of generating independent estimates of past climate are crucial to disentangling climate signals and ecosystem response in the palaeoecological record. This project has developed the first modern environmental calibration data set in order to use chironomids from the Tropical Andes as quantitative climate proxies. Using surface sediments from c. 60 lakes from Bolivia, Peru and Ecuador we have developed an inference model capable of reconstructing temperatures, with a prediction error of 1-2°C, from fossil assemblages. Here we present the first Lateglacial and Holocene chironomid-inferred temperature reconstructions from two sites in the tropical Andes. The first record, from a high elevation (4153 m asl) lake in the Bolivian Andes, shows persistently cool temperatures for the past 15 kyr, punctuated by warm episodes in the early Holocene (9-10 kyr BP). The chironomid-inferred Holocene temperature trends from a lake sediment record on the eastern Andean flank of Ecuador (1248 m asl) spanning the last 5 millennia are synchronous with temperature changes in the NGRIP ice core record. The temperature estimates suggest along the eastern flank of the Andes, at lower latitudes (~1°S), climate closely resemble the well-established fluctuations of the Northern Hemisphere for this time period. Late-glacial climate fluctuations across South America are still disputed with some palaeoecological records suggesting evidence for Younger Dryas like events. Estimates from quantitative climate proxies such as chironomids will help constrain these patterns and further our understanding of climate teleconnections on Quaternary timescales.
NASA Astrophysics Data System (ADS)
Glaubke, R.; Schmidt, M. W.; Warner, L.; Hertzberg, J. E.; Marcantonio, F.; Bianchi, T. S.
2017-12-01
The eastern equatorial Pacific (EEP) is an important climatological region given its influence in the modulation of the El Niño - Southern Oscillation (ENSO). The current climatic mean state of the EEP is characterized by cool sea surface temperatures (SST) and a strong, shallow thermocline. Nevertheless, there remains significant uncertainty about past changes in tropical Pacific climate and how ENSO variability relates to the millennial-scale climate events of the last deglaciation. Here, we will present 21 kyrs of Mg/Ca paleotemperature data from the surface-dwelling foraminifera Globigerinoides ruber and the thermocline-dwelling foraminifera Neogloboquadrina dutertrei collected from piston core MV1014-02-17JC (00° 10.83'S, 85° 52.00'W; 2846 m depth) on the Carnegie Ridge. Initial results reveal a 1.3°C warming of the surface ocean from the early-Holocene until 6 kyrs, a trend present in other EEP SST reconstructions (Pena et al., 2008; Timmerman et al., 2014; Lea et al., 2000). The surface ocean subsequently cools from 6 kyrs and reaches present-day temperatures by 3.5 kyrs. The subsurface reveals a nearly monotonic cooling of 1.8°C from 10.8 kyrs to the present day, which suggest a gradual shoaling of the thermocline across the Holocene. Furthermore, an increase in the vertical temperature gradient occurs from the late- to mid-Holocene, with the sharpest temperature difference centered at 6 kyrs, coincident with the mid-Holocene peak in SSTs. Taken together, these data suggest a gradual shoaling of the thermocline across the Holocene, with the variations in SST primarily governing the intensity of the vertical temperature gradient. Future work includes extending this record back to the last glacial maximum (LGM) to assess tropical Pacific mean state change across the abrupt climate events that characterized the last deglaciation.
NASA Astrophysics Data System (ADS)
Mannino, Marcello A.; Talamo, Sahra; Tagliacozzo, Antonio; Fiore, Ivana; Nehlich, Olaf; Piperno, Marcello; Tusa, Sebastiano; Collina, Carmine; di Salvo, Rosaria; Schimmenti, Vittoria; Richards, Michael P.
2015-11-01
Cetacean mass strandings occur regularly worldwide, yet the compounded effects of natural and anthropogenic factors often complicate our understanding of these phenomena. Evidence of past stranding episodes may, thus, be essential to establish the potential influence of climate change. Investigations on bones from the site of Grotta dell’Uzzo in North West Sicily (Italy) show that the rapid climate change around 8,200 years ago coincided with increased strandings in the Mediterranean Sea. Stable isotope analyses on collagen from a large sample of remains recovered at this cave indicate that Mesolithic hunter-gatherers relied little on marine resources. A human and a red fox dating to the 8.2-kyr-BP climatic event, however, acquired at least one third of their protein from cetaceans. Numerous carcasses should have been available annually, for at least a decade, to obtain these proportions of meat. Our findings imply that climate-driven environmental changes, caused by global warming, may represent a serious threat to cetaceans in the near future.
Mannino, Marcello A; Talamo, Sahra; Tagliacozzo, Antonio; Fiore, Ivana; Nehlich, Olaf; Piperno, Marcello; Tusa, Sebastiano; Collina, Carmine; Di Salvo, Rosaria; Schimmenti, Vittoria; Richards, Michael P
2015-11-17
Cetacean mass strandings occur regularly worldwide, yet the compounded effects of natural and anthropogenic factors often complicate our understanding of these phenomena. Evidence of past stranding episodes may, thus, be essential to establish the potential influence of climate change. Investigations on bones from the site of Grotta dell'Uzzo in North West Sicily (Italy) show that the rapid climate change around 8,200 years ago coincided with increased strandings in the Mediterranean Sea. Stable isotope analyses on collagen from a large sample of remains recovered at this cave indicate that Mesolithic hunter-gatherers relied little on marine resources. A human and a red fox dating to the 8.2-kyr-BP climatic event, however, acquired at least one third of their protein from cetaceans. Numerous carcasses should have been available annually, for at least a decade, to obtain these proportions of meat. Our findings imply that climate-driven environmental changes, caused by global warming, may represent a serious threat to cetaceans in the near future.
Mannino, Marcello A.; Talamo, Sahra; Tagliacozzo, Antonio; Fiore, Ivana; Nehlich, Olaf; Piperno, Marcello; Tusa, Sebastiano; Collina, Carmine; Di Salvo, Rosaria; Schimmenti, Vittoria; Richards, Michael P.
2015-01-01
Cetacean mass strandings occur regularly worldwide, yet the compounded effects of natural and anthropogenic factors often complicate our understanding of these phenomena. Evidence of past stranding episodes may, thus, be essential to establish the potential influence of climate change. Investigations on bones from the site of Grotta dell’Uzzo in North West Sicily (Italy) show that the rapid climate change around 8,200 years ago coincided with increased strandings in the Mediterranean Sea. Stable isotope analyses on collagen from a large sample of remains recovered at this cave indicate that Mesolithic hunter-gatherers relied little on marine resources. A human and a red fox dating to the 8.2-kyr-BP climatic event, however, acquired at least one third of their protein from cetaceans. Numerous carcasses should have been available annually, for at least a decade, to obtain these proportions of meat. Our findings imply that climate-driven environmental changes, caused by global warming, may represent a serious threat to cetaceans in the near future. PMID:26573384
Coqueugniot, Hélène; Dutour, Olivier; Arensburg, Baruch; Duday, Henri; Vandermeersch, Bernard; Tillier, Anne-marie
2014-01-01
The Qafzeh site (Lower Galilee, Israel) has yielded the largest Levantine hominin collection from Middle Palaeolithic layers which were dated to circa 90–100 kyrs BP or to marine isotope stage 5b–c. Within the hominin sample, Qafzeh 11, circa 12–13 yrs old at death, presents a skull lesion previously attributed to a healed trauma. Three dimensional imaging methods allowed us to better explore this lesion which appeared as being a frontal bone depressed fracture, associated with brain damage. Furthermore the endocranial volume, smaller than expected for dental age, supports the hypothesis of a growth delay due to traumatic brain injury. This trauma did not affect the typical human brain morphology pattern of the right frontal and left occipital petalia. It is highly probable that this young individual suffered from personality and neurological troubles directly related to focal cerebral damage. Interestingly this young individual benefited of a unique funerary practice among the south-western Asian burials dated to Middle Palaeolithic. PMID:25054798
NASA Astrophysics Data System (ADS)
Konijnendijk, T. Y. M.; Ziegler, M.; Lourens, L. J.
2015-12-01
Benthic oxygen isotope records of deep marine sedimentary archives have yielded a wealth of information regarding ice sheet dynamics and climate change during the Pleistocene. However, since they often lack independent age control, these records are generally bound by a fixed phase relationship between orbital forcing and the climate response, e.g. ice volume changes. We present the first long (∼1.2 Ma) benthic oxygen isotope record from the eastern Mediterranean, based on ODP Sites 967 and 968, which clearly reflects the behavior of global climate on a glacial-interglacial scale throughout the late Pleistocene time period. The age model for our record is based on tuning the elemental ratio of titanium versus aluminum (Ti/Al) against insolation. The Ti/Al record is dominated by the precession-related changes in northern African climate, i.e. monsoonal forcing, and hence largely independent of glacial-interglacial variability. We found the largest offset between our chronology and that of the widely applied, open ocean stacked record LR04 (Lisiecki and Raymo, 2005) for TVII (∼624 ka), which occurred ∼9 kyr earlier according to our estimates, though in agreement with the AICC2012 δDice chronology of EPICA Dome C (Bazin et al., 2013). Spectral cross-correlation analysis between our benthic δ18O record and 65°N summer insolation reveals significant amounts of power in the obliquity and precession range, with an average lag of 5.5 ± 0.8 kyr for obliquity, and 6.0 ± 1.0 kyr for precession. In addition, our results show that the obliquity-related time lag was smaller (3.0 ± 3.3 kyr) prior to ∼900 ka than after (5.7 ± 1.1 kyr), suggesting that on average the glacial response time to obliquity forcing increased during the mid-Pleistocene transition, much later than assumed by Lisiecki and Raymo (2005). Finally, we found that almost all glacial terminations have a consistent phase relationship of ∼45 ± 45° with respect to the precession and obliquity-driven increases in 65°N summer insolation, consistent with the general consensus that both obliquity and precession are important for deglaciation during the Late Pleistocene. Exceptions are glacial terminations TIIIb, T36 and potentially T32 (and TVII T24 and T34), which show this consistent phase relationship only with precession (only with obliquity). Our findings point towards an early (>1200 ka) onset of the Mid Pleistocene Transition. Vice versa, the timing of TVII, which can only be explained as a response to obliquity forcing, indicates that the transition lasted until at least after MIS 15.
Glaciation and Hydrologic Variability in Tropical South America During the Last 400,000 Years
NASA Astrophysics Data System (ADS)
Fritz, S. C.; Baker, P. A.; Seltzer, G. O.; Ekdahl, E. J.; Ballantyne, A.
2005-12-01
The expansion and contraction of northern continental ice sheets is a fundamental characteristic of the Quaternary. However, the extent of tropical glaciation is poorly constrained, particularly for periods prior to the Last Glacial Maximum (LGM). Similarly, the magnitude and timing of hydrologic variation in tropical South America is not clearly defined over multiple glacial cycles. Thus, the relative roles of global temperature change and insolation control of the South American Summer Monsoon (SASM) are unclear. We have reconstructed the timing of glaciation and precipitation variability in the tropical Andes of South America from drill cores from Lake Titicaca, Bolivia/Peru. The longest core (site LT01-2B, 235 m water depth) is 136 m and consists of four major silt-dominated units with high magnetic susceptibility, low organic carbon concentration, and no carbonate, which are indicative of extensive glacial activity in the cordillera surrounding the lake. These units alternate with laminated low-susceptibility units, with high carbonate and organic carbon concentrations, which reflect times when detrital input from the watershed was low and lake-level was lowered to below the outlet threshold, driving carbonate precipitation. Thus, the stratigraphy suggests that the core spans four major periods of glaciation and the subsequent interstadials. Core chronology is based on radiocarbon in the uppermost 25m, U-series dates on aragonite laminae, and tuning of the calcium carbonate stratigraphy in the lowermost sediments to the Vostok CO2 record. High-resolution (ca. 100 yr) sampling of sediments spanning the last glacial stage shows distinct millennial-scale variability from 20 - 65 kyr BP. This variability is evident in the periodic deposition of turbidites, which are characterized by low biogenic silica concentrations, elevated benthic diatom abundances, heavy carbon isotopic values, high C/N ratios, and an increase in mean grain size - a composite signal indicative of enhanced input to this deepwater site of material originally deposited in nearshore regions of the lake. U-series ages at the top of the penultimate (pre-Holocene) unit of laminated sediments suggest that the last major low stand of Lake Titicaca dates from MIS 5.5. Diatom data indicate that this was the most saline interval in the recovered sequence and thus suggest that MIS5.5 was the time of maximum aridity. The tuned drill-core magnetic susceptibility record suggests that glacial stages in the tropical Andes were approximately synchronous with high-latitude glacial stages and globally cold climate, with increased glacial activity in the periods 370-322, 300-238, 230-213, 188-139, and 65-15 kyr BP. Overall, the intervals of increased glaciation are periods when Lake Titicaca was deep, fresh, and overflowing, as inferred from calcium carbonate concentration, carbon isotopic values, and the diatom composition. The timing of lake-level change relative to high-latitude climate and insolation variation suggests that the water balance of the tropical Andes was at least as strongly influenced by global temperature change and global-scale boundary conditions as by insolation control of the SASM.
Ünal-İmer, Ezgi; Shulmeister, James; Zhao, Jian-Xin; Tonguç Uysal, I.; Feng, Yue-Xing; Duc Nguyen, Ai; Yüce, Galip
2015-01-01
Speleothem-based stable isotope records are valuable in sub-humid and semi-arid settings where many other terrestrial climate proxies are fragmentary. The Eastern Mediterranean is one such region. Here we present an 80-kyr-long precisely-dated (by U-series) and high-resolution oxygen (δ18O) and carbon (δ13C) records from Dim Cave (~36°N) in SW Turkey. The glacial-interglacial δ18O variations in the Dim Cave speleothem are best explained in terms of changes in the trajectories of winter westerly air masses. These are along a northerly (European) track (isotopically less depleted) during the early last glaciation but are gradually depressed southward closer to the modern westerly track along the North African coast (more depleted) after c.50 kyr and remain in the southern track through the Last Glacial Maximum. The southward displacement of the westerly track reflects growth of the Fennoscandian ice sheet and its impact on westerly wind fields. Changes in δ13C are interpreted as reflecting soil organic matter composition and/or thickness. δ13C values are significantly more negative in interglacials reflecting active carbonic acid production in the soil and less negative in glacial times reflecting carbonate rock values. Several Heinrich events are recorded in the Dim record indicating intensification of westerly flow across this part of the EM. PMID:26337921
Improving BP control through electronic communications: an economic evaluation.
Fishman, Paul A; Cook, Andrea J; Anderson, Melissa L; Ralston, James D; Catz, Sheryl L; Carrell, David; Carlson, James; Green, Beverly B
2013-09-01
Web-based collaborative approaches to managing chronic illness show promise for both improving health outcomes and increasing the efficiency of the healthcare system. Analyze the cost-effectiveness of the Electronic Communications and Home Blood Pressure Monitoring to Improve Blood Pressure Control (e-BP) study, a randomized controlled trial that used a patient-shared electronic medical record, home blood pressure (BP) monitoring, and web-based pharmacist care to improve BP control (<140/90 mm Hg). Incremental cost-effectiveness analysis conducted from a health plan perspective. Cost-effectiveness of home BP monitoring and web-based pharmacist care estimated for percent change in patients with controlled BP and cost per mm Hg in diastolic and systolic BP relative to usual care and home BP monitoring alone. A 1% improvement in number of patients with controlled BP using home BP monitoring and web-based pharmacist care-the e-BP program-costs $16.65 (95% confidence interval: 15.37- 17.94) relative to home BP monitoring and web training alone. Each mm HG reduction in systolic and diastolic BP achieved through the e-BP program costs $65.29 (59.91-70.67) relativeto home BP monitoring and web tools only. Life expectancy was increased at an incremental cost of $1850 (1635-2064) and $2220 (1745-2694) per year of life saved for men and women, respectively. Web-based collaborative care can be used to achieve BP control at a relatively low cost. Future research should examine the cost impact of potential long-term clinical improvements.
NASA Astrophysics Data System (ADS)
Schaller, M.; Ehlers, T. A.; Lang, K. A. H.; Schmid, M.; Fuentes-Espoz, J. P.
2018-05-01
The Earth surface is modulated by interactions among tectonics, climate, and biota. The influence of each of these factors on hillslope denudation rates is difficult to disentangle. The Chilean Coastal Cordillera offers a strong climate and vegetation gradient from arid and unvegetated in the North to humid and vegetated in the South. A similar (convergent) plate tectonic boundary lies to the West of the Coastal Cordillera. We present eight depth profiles analyzed for in situ-produced cosmogenic 10Be in four study areas. These profiles reveal denudation rates of soil-mantled hillslopes and the depth of mobile layers. Depth profiles were investigated from both S- and N-facing mid-slope positions. Results indicate the depth of the mobile layers in the four study areas increase from N to S in latitude. When mixing is present in the mobile layers they are completely mixed. In the S- and N-facing hillslopes of each study area, mid-slope positions do not show a systematic change in depth of the mobile layers nor in denudation rates based on cosmogenic depth profiles. From N to S in latitude, modelled denudation rates of hillslopes increase from ∼0.46 to ∼5.65 cm/kyr and then decrease to ∼3.22 cm/kyr in the southernmost, highest vegetation cover, study area. Calculated turnover times of soils decrease from ∼30 to ∼11 kyr and then increase to ∼22 kyr. In this work, the increasing denudation rates are attributed to increasing mean annual precipitation from N to S. However, despite the ongoing increase in precipitation from N to S, the denudation rate in the southernmost location does not continue to increase due to the protective nature of increasing vegetation cover. This indicates a vegetation induced non-linear relationship with denudation rates.
NASA Astrophysics Data System (ADS)
Channell, J. E. T.
2016-12-01
Integrated Ocean Drilling Program (IODP) Expedition 303 to the North Atlantic provided 16 records of the Matuyama-Brunhes polarity transition (MBT) and the top Jaramillo transition, based on u-channel and discrete samples, from holes drilled at three sites (Sites U1304, U1305 and U1306) that have mean Brunhes sedimentation rates of 16-18 cm/kyr. The MBT occurs during the transition from marine isotope stage (MIS) 19.3 to MIS 18.4, with mid-point at 773 ka, and a transition duration of 5-8 kyr. The top Jaramillo occurs during MIS 28 at 992 ka with a similar 5 kyr transition duration. Combining the new records with previously published North Atlantic records (ODP Sites 983, 984 and 1063) yields a total of 24 high sedimentation rate records. The MBT yields a repetitive pattern of transitional field states as virtual geomagnetic poles (VGPs) move from high southern latitudes to loop over the Pacific, cluster in NE Asia, and transit into the mid-latitude South Atlantic before reaching high latitudes in the Northern Hemisphere. The VGPs for the top Jaramillo transition feature a loop over the Pacific, then occupation of the NE Asia cluster before transit over the Indian Ocean to high southerly latitudes. The North Atlantic MBT records described here are very different to the longitudinally constrained North Atlantic VGP paths from MBT records that are the basis for a 2007 Bayesian inversion of the MBT field. We conclude that the relatively low sedimentation rate ( 4 cm/kyr) records utilized in the Bayesian inversion have been heavily smoothed by the remanence acquisition process, and do not adequately represent the MBT field. The VGPs at the MBT and top Jaramillo, as measured in the North Atlantic, have similarities with excursion (Iceland Basin) VGP paths, and are apparently guided by maxima in downward vertical flux in the modern non-dipole (ND) field, implying longevity in ND features through time.
NASA Astrophysics Data System (ADS)
Okazaki, Yusuke; Takahashi, Kozo; Katsuki, Kota; Ono, Ayumu; Hori, Joichi; Sakamoto, Tatsuhiko; Uchida, Masao; Shibata, Yasuyuki; Ikehara, Minoru; Aoki, Kaori
2005-08-01
High-resolution analyses of geochemical parameters (biogenic opal, calcium carbonate, organic carbon, and nitrogen) and microfossil assemblages (diatoms and radiolarians) on Core MD01-2412 clarified detailed paleoceanographic changes such as sea-ice cover and biological production in the southwestern Okhotsk Sea during the last 115 kyr. An age model of Core MD01-2412 was established based on δ 18O stratigraphy, accelerator mass spectrometer (AMS) 14C, and tephrochronology. Sea-ice history reconstructed by siliceous microplankton records indicated that the present sea-ice condition was formed during the last 8 kyr. Only during Marine Isotope Stage (MIS) 2 was the duration of sea-ice cover in this region much longer than that of today (4-5 months a year). Two diatom species, Thalassionema nitzschioides and Fragilariopsis doliolus, revealed that the Soya Warm Current Water (SWCW) flowed into the Okhotsk Sea near the site of Core MD01-2412 during the last 12-14 kyr and during MIS 5a, and was associated with sea-level rise. Biological productivity rapidly increased during MIS 1, associated with sea-ice retreat. Two major increases of organic carbon (OC) contents (wt%) and C org/N ratios were observed, and the timings of these events were 15.8-16.7 ka (Event 1) and 13.1-13.6 ka (Event 2). Corresponding to these events, the abundance of Cycladophora davisiana, an intermediate water dwelling radiolarian species, increased. This high C. davisiana abundance can be correlated to the input of terrestrial organic matter from the submerged shelf to the intermediate water. Apart from the radiolarians, the production of diatoms in the surface waters was suppressed by the development of well-stratified surface water along with sea-ice melting during the early Holocene. Diatom production increased gradually during the last 10 kyr with enhanced vertical mixing.
Scenarios for the dynamics of comet 67P/Churyumov-Gerasimenko over the past 500 kyr
NASA Astrophysics Data System (ADS)
Guzzo, Massimiliano; Lega, Elena
2017-07-01
The complex dynamics of 67P has the typical uncertainties of the Jupiter-family comets. The Rosetta mission provided a unique opportunity to dissipate them with fresh experimental data. We aim to constrain the residence time of the comet in a dynamics dominated by Jupiter and Saturn by comparing statistics of large sets of numerical integrations with assumptions on the erosion experienced by the comet. We integrated backward for 150 kyr 2000 clones of 67P selected from preliminary integrations of 500 000 clones. We find that the clones that did not arrive from hyperbolic/parabolic orbits have been mostly in the region dominated by Jupiter and Saturn in the last 150 kyr; they transit easily between dynamics dominated by Jupiter, dynamics also dominated by Saturn and, with smaller probability, by Saturn alone. Many clones were injected in the Jupiter family from hyperbolic orbits and orbits of large periods P > 500 yr, but none of the clones was injected from a Uranus-dominated dynamics through sequences of planetary scatterings, while 5 per cent of the clones were injected on this route in 500 kyr. 60 per cent of the clones had already been in an orbit with q < 1.5 au before 1959. Compatible with the uncertainties on the long-term model of non-gravitational forces, we conclude that 67P was injected from a cometary reservoir into a dynamics dominated by Jupiter and Saturn at an epoch that we estimate as being in between 30 and 150 kyr ago; this interval should be extended by considering periods of dormancies.
NASA Astrophysics Data System (ADS)
Silva, Pablo G.; Rodríguez Pascua, M. A.; Pérez López, R.; Giner Robles, J. L.; Roquero, E.; Tapias, F.; López Recio, M.; Rus, I.; Morin, J.
2010-05-01
Multiple evidences of soft-sediment to brittle deformation within the Pleistocene fluvial terraces of the Tagus, Jarama, Tajuña and Manzanares river valleys have been described since the middle 20th Century. Cryoturbation, hydroplastic deformations due to underlying karstic collapses or halokinesis on the substratum of neogene gypsums, and seismic shaking have been proposed to interpret these structures. These deformations are typically concentrated in the +18-20 m terrace levels, and closely linked to well-known Palaeolithic sites, in some cases overlaying and/or affecting true prehistoric settlements (i.e. Arganda, Arriaga and Tafesa sites) within the Jarama and Manzanares valleys. The affected settlements typically display acheulian lithic industry linked to the scavenging of large Pleistocene mammals (i.e. Elephas antiquus). Commonly, deformational structures are concentrated in relatively thin horizons (10-50 cm thick) bracketed by undeformed fluvial sands and gravels. The soft-sediment deformations usually consist on medium to fine sized sands injected and protruded in overlaying flood-plain clayey silts, showing a wide variety of convolutes, injections, sand-dikes, dish and pillar structures, mud volcanoes, faults and folds, some times it is possible to undertake their 3D geometrical analysis due to the exceptional conservation of the structures (Tafesa). Recent geo-archaeological prospecting on the for the Palaeolithic Site of Arriaga (South Madrid City) conducted during the year 2009, let to find out an exceptional horizon of deformation of about 1.20 m thick. It consisted on highly disturbed and pervasively liquefacted sands, which hardly can be attributed to no-seismic processes. The acheulian lithic industry of the Madrid Region have been classically attributed the Late Middle Pleistocene (< 350 kyr BP), but recent OSL dating indicate that the basal horizons of the +18-20 m fluvial terraces hold ages younger than c.a. 120-100 kyr BP in this zone. All the evidences point to the occurrence of concentrated seismic activity during the OIS 5 (Last Interglaciar) interfering early human activity in the zone. Presently, the Tagus Basin is subject to moderate seismic activity with strongest seismic events not exceeding intensity VI MSK (1954 AD), but most of them related to the Jarama, Tajuña and Tagus river valleys, which are bounded by large linear escarpments carved in Miocene gypsums. These escarpments display a wide variety of brittle and ductile deformations, as well as clear geomorphological indicators of late Quaternary tectonic activity. Considering the recent ESI-2007 Scale, the reported structures indicate the occurrence of larger paleoearthquakes during the Middle-Late Pleistocene of at least local intensity VIII. This study has been supported by the DGPH de la Comunidad de Madrid, AUDEMA S.A. (Proyecto Arriaga-2009). This is a contribution of GQM-AEQUA.
Greenhouse Gas Concentration Records Extended Back to 800,000 Years From the EPICA Dome C Ice Core
NASA Astrophysics Data System (ADS)
Chappellaz, J.; Luethi, D.; Loulergue, L.; Barnola, J.; Bereiter, B.; Blunier, T.; Jouzel, J.; Lefloch, M.; Lemieux, B.; Masson-Delmotte, V.; Raynaud, D.; Schilt, A.; Siegenthaler, U.; Spahni, R.; Stocker, T.
2007-12-01
The deep ice core recovered from Dome Concordia in the framework of EPICA, the European Project for Ice Coring in Antarctica, has extended the record of Antarctic climate history back to 800,000 years [Jouzel et al., 2007]. We present the current status of measurements of CO2, CH4 and N2O on air trapped in the bubbles of the Dome C ice core. CO2 is measured in two laboratories using different techniques (laser absorption spectroscopy or gas chromatography on samples of 8 and 40 g of ice which are mechanically crushed or milled, respectively). CH4 and N2O are extracted using a melt-refreeze technique and then measured by gas chromatography (in two laboratories for CH4). The greenhouse gas concentrations have now been measured on the lowest 200 m of the Dome C core, going back to Marine Isotope Stage 20 (MIS 20) as verified by a consistent gas age/ice age difference determined at termination IX [Jouzel et al., 2007]. The atmospheric CO2 concentration mostly lagged the Antarctic temperature with a rather strong correlation throughout the eight and a half glacial cycles, but with significantly lower CO2 values between 650 and 750 kyr BP. Its lowest level ever measured in ice cores (172 ppmv) is observed during MIS 16 (minimum centered at 667 kyr BP according to the EDC3 chronology) redetermining the natural span of CO2 to 172-300 ppmv. With 2245 individual measurements, the CH4 concentration is now reconstructed over 800,000 years from a single core, with an average time resolution of 380 years. Spectral analyses of the CH4 signal show an increasing contribution of precession during the last four climatic cycles compared with the four older ones, suggesting an increasing impact of low latitudes sources/sinks. Millennial scale features in this very detailed signal allows us to compare their occurrence with ice volume reconstructions and the isotopic composition of precipitation over the East Antarctic plateau. N2O is still affected by glaciological artefacts involving dust content in the ice, and its exact temporal evolution remains to be deciphered. These measurements represent the basis of the so-called "EPICA Challenge" [Wolff et al., 2005]: they will put the climate and carbon cycle modelers under the challenge of fully understanding how orbital parameters and climate system configurations could have built such tight coupling between atmospheric composition and natural climate change during the late Quaternary. Jouzel et al., Science 317, 793-796, 10 August 2007 Wolff et al., EOS 86, N°38, 341-345, 20 September 2005
Orbital Noise of the Earth Causes Intensity Fluctuation in the Geomagnetic Field
NASA Technical Reports Server (NTRS)
Liu, Han-Shou; Kolenkiewicz, R.; Wade, C., Jr.
2003-01-01
Orbital noise of Earth's obliquity can provide an insight into the core of the Earth that causes intensity fluctuations in the geomagnetic field. Here we show that noise spectrum of the obliquity frequency have revealed a series of frequency periods centered at 250-, 1OO-, 50-, 41-, 30-, and 26-kyr which are almost identical with the observed spectral peaks from the composite curve of 33 records of relative paleointensity spanning the past 800 kyr (Sint-800 data). A continuous record for the past two million years also reveals the presence of the major 100 kyr periodicity in obliquity noise and geomagnetic intensity fluctuations. These results of correlation suggest that obliquity noise may power the dynamo, located in the liquid outer core of the Earth, which generates the geomagnetic field.
NASA Astrophysics Data System (ADS)
Ortega-Guerrero, Beatriz; Lozano-García, Socorro; Herrera-Hernández, Dimitris; Caballero, Margarita; Beramendi-Orosco, Laura; Bernal, Juan Pablo; Torres-Rodríguez, Esperanza; Avendaño-Villeda, Diana
2017-11-01
The recognition of past climatic fluctuations in sedimentary sequences in central Mexico is relevant for understanding the forcing mechanisms and responses of climatic system in the northern American tropic. Moreover, in this active volcanic setting the sedimentary record preserves the history of past volcanic activity. Climatic and environmental variability has been documented for the last tenths of thousands of years from the upper lacustrine sediments in Chalco basin. A series of cores drilled down to 122 m depth in this basin offer a long, continuous and high resolution record of past climatic changes of the last ca. 150 kyr in this region. Here we present the detailed lithostratigraphy and some physical properties (magnetic susceptibility and density) of the master sequence. Sedimentary components and their abundance were identified and quantified in smear slides and direct core observations. Age model is based on 13 14C and one 230Th/U dates. Based on their facies association seven lithostratigraphic units were defined, which reflect the main stages of lake Chalco evolution. These phases closely match the marine isotopic stages. The data reveal that at the end of MIS6 Chalco was a relatively deep and stratified freshwater lake. During MIS5 the depositional environment fluctuated between low lake stands to marshy and marginal playa settings with sporadic flooding events, and severe arid periods resulted in aerial exposure of lake sediments. Low lake stands persisted during MIS4 and MIS3, with minor fluctuations towards slightly deeper phases. The Last Glacial Maximum (LGM) and the deglacial period (21-13 kyr) are characterized by intense volcanism. The early and mid-Holocene high calcareous content and alkaline-subsaline lake suggest dry conditions. The fluctuations of lake levels inferred provide the basis for future paleoclimatic works.
Modeling dynamic accumulation of gas hydrates in Shenhu area, northern South China Sea
NASA Astrophysics Data System (ADS)
Su, Z.; Cao, Y.; Wu, N.
2013-12-01
The accumulation of the hydrates in Shenhu area on northern continental slope of the South China Sea (SCS) could not be well quantified by the numerical models. The formation mechanism of the hydrate deposits remains an open question. Here, a conceptual model was applied for illustrating the formation pattern of hydrate accumulation in Shenhu area based on the studies of sedimentary and tectonic geologies. Our results indicated that the present hydrate deposits were a development of 'ancient hydrates' in the faulted sediment. The dynamic accumulation of the hydrates was further quantified by using a numerical model with two controlling parameters of seafloor sedimentation rate and water flow rate. The model results were testified with the hydrate saturations derived from the chloride abnormalities at site SH2 in Shenhu area. It suggested that the hydrate accumulation in Shenhu area had experienced two typical stages. In the first stage, the gas hydrates grew in the fractured sediment ~1.5 Ma. High permeability of the fractured sediment permitted rapid water flow that carrying methane gas toward the seafloor. Massive gas transformed to gas hydrate in the gas hydrate stability zone (GHSZ) at water flow rate of 50m/kyr within 40kyrs. The 'ancient hydrate' filled 20% volume of the sediment pores in the stage. The second stage was initiated after ending of the last faulting activity. The water flow rate dropped to 0.7m/kyr due to quick burial of fine-grained sediments. Inadequate gas supply could merely sustain hydrate growth slowly at the base of GHSZ, and ultimately yielded the current hydrate deposits in Shenhu area after a subsequent evolution of 1.5 Myrs.
NASA Astrophysics Data System (ADS)
Yager, Joyce A.; West, A. Joshua; Corsetti, Frank A.; Berelson, William M.; Rollins, Nick E.; Rosas, Silvia; Bottjer, David J.
2017-09-01
Changes in δ13Ccarb and δ13Corg from marine strata occur globally in association with the end-Triassic mass extinction and the emplacement of the Central Atlantic Magmatic Province (CAMP) during the break up of Pangea. As is typical in deep time, the timing and duration of these isotopic excursions has remained elusive, hampering attempts to link carbon cycle perturbations to specific processes. Here, we report δ13Ccarb and δ13Corg from Late Triassic and Early Jurassic strata near Levanto, Peru, where intercalated dated ash beds permit temporal calibration of the carbon isotope record. Both δ13Ccarb and δ13Corg exhibit a broad positive excursion through the latest Triassic into the earliest Jurassic. The first order positive excursion in δ13Corg is interrupted by a negative shift noted in many sections around the world coincident with the extinction horizon. Our data indicate that the negative excursion lasts 85 ± 25 kyrs, longer than inferred by previous studies based on cyclostratigraphy. A 260 ± 80 kyr positive δ13Corg shift follows, during which the first Jurassic ammonites appear. The overall excursion culminates in a return to pre-perturbation carbon isotopic values over the next 1090 ± 70 kyrs. Via chronologic, isotopic, and biostratigraphic correlation to other successions, we find that δ13Ccarb and δ13Corg return to pre-perturbation values as CAMP volcanism ceases and in association with the recovery of pelagic and benthic biota. However, the initiation of the carbon isotope excursion at Levanto predates the well-dated CAMP sills from North America, indicating that CAMP may have started earlier than thought based on these exposures, or that the onset of carbon cycle perturbations was not related to CAMP.
NASA Astrophysics Data System (ADS)
Glen, Jonathan M. G.; Liddicoat, Joseph C.; Coe, Robert S.
1999-06-01
More than 33 m of 2.5 Ma sediment from Searles Lake, California was studied in order to construct a record of secular variation (SV) across the Gauss/Matuyama (G/M) normal-to-reverse polarity transition. The behavior of the field preceding and following the reversal is considered here, while in a companion paper [Glen et al., this issue] the details of the transition are discussed. The record encompasses an interval of roughly 183,000 years beginning 50 kyr (9 m) before and extending more than 128 kyr (23 m) beyond the transition, while the main phase of the transition lasts for nearly 5 kyr (1 m). Because the core was rotary drilled, and declinations lost, SV was characterized by the inclination and its angular dispersion. Inclination-only statistics reveal that (1) the record displays overall higher than expected values of angular dispersion (normal S˜20°; reverse S˜19°; expected S˜15.5°), suggesting that the field proximal to transitions may be more noisy than the distal field. In addition, normal data from immediately before the transition display higher S than reverse data immediately following it, implying that the postransitional field is more stable than the pretransitional field. One of the most prominent features of this record is an excursion of the field occurring roughly 4 kyr prior to the onset of the reversal. A record of the G/M transition from Chinese loess (R. Zhu et al., submitted manuscript, 1999) displays a similar event (also occurring roughly 4 kyr before the transition). This and the fact that the event is associated with anomalously low intensities suggest that the disturbance may be global in nature. The fact that comparable features are associated with other transitions [Hartl and Tauxe, 1996; Clement, 1992] intimates that the field may commonly show signs of early instability. This precursory event is actually one of a sequence of oscillations (in inclination and intensity) preceding the transition. That these fluctuations occur at roughly 4 kyr intervals leading up to the reversal (which also appears at this same interval) strongly suggests that an oscillatory disturbance in the core, active over at least 15 kyr prior to the transition, had eventually triggered the reversal. In addition, that these waveforms are absent from the postransitional record suggests the reversal process actively rejuvenates and stabilizes the field.
NASA Astrophysics Data System (ADS)
Vidal, L.; Hage-Hassan, J.; Gasse, F. A.; Demory, F.; van Campo, E.; Develle, A.; Elias, A.
2013-12-01
The reconstruction of the Levantine post-glacial environmental evolution is essential to understand the interactions between variability of regional water cycle, dynamics of the global climate, and cultural evolution. Here, we present an Holocene record from the karstic Yammouneh basin (34.06N-34.09N; 36.0E-36.03E, 1360 m a.s.l.), located on the eastern flank of Mount Lebanon (northern Levant). Two new sedimentary profiles (from 1 gully and 1 trench) complement former data from 2 trenches and 1 core collected in different points of the basin (Daeron et al., 2007; Develle et al., 2009, 2010). A total of 42 AMS 14C dating (partly carbonized wood) provide a solid chronology from the YD to present. Holocene sediments (1.5 to 3.6 m thick) consist of pale lacustrine chalk interrupted by an ash layer and remarkable centimetric beds of ocher to dark brown silty clays used, in addition to 14C ages, as stratigraphical markers. Lacustrine biogenic remains are diversified and abundant (ostracods, gastropods, charophytes, chlorophyceae, plant debris...) all reflecting a freswater, generally shallow waterbody. We analysed the sediment mineralogy, TOM contents, magnetic properties (magnetic susceptibility and its frequency dependence), pollen and calcite oxygen isotope composition derived from ostracod shells. Results reveal the following main features : 1- intervals dominated by authigenic calcite suggest that the major water supply was the karstic springs, which still deliver Ca-rich water and low surface runoff; 2- the lake oxygen isotope composition has been impacted by the source isotope composition throughout the Holocene and by increased inland rainfall during the early Holocene; 3- a decideous oak forest, implying much more soil water availability than today, was developed around the lake from ca. 11.5 to 9.5 kyr (the very bad pollen preservation after 8.3 kyr reflects oxidation or frequent oscillations of the water level); 4- four paleosols evidenced from lithofacies and magnetic properties are identified, during the YD, and around 8 kyr, 6 kyr and 2 kyr. Our data are compared with other Holocene paleohydrological (lake and speleothem) records from the Levant. A marked climate shift from humid to dry conditions occurred around 6 kyr in the northern Levant (Verheyden et al., 2008; Hajar et al., 2008) while the water level of the Dead Sea, in southern Levant, was very low from 8.6 to 5.6 kyr (Migowski et al., 2006).
NASA Astrophysics Data System (ADS)
Bhattacharya, A.; Mukhopadhyay, S.; Hull, P. M.; Norris, R. D.
2010-12-01
Located in the North Pacific Ocean, site 1209 on the Shatsky rise offers one of the best-preserved sections for studying biological, oceanographic and climatic events in the aftermath of the K-T impact at ~65 Ma. At this site, the first 450 kyrs after the boundary is represented by an extended carbonate section [1]. The expanded section, also known as the ‘strange interval’ [1] is in direct contrast to sites in the Atlantic and Indian Ocean that have low carbonate deposition during this interval. The strange interval is important for evaluating the immediate changes in climate, ocean circulation, and evolutionary dynamics that accompanied K-T impact in the Pacific Ocean. Here we present measurements of extraterrestrial 3He at site 1209 for the first one million year following the K-T impact event at a resolution of 2.5 cm. Our goal is to better constrain the timescale of climatic and biotic events during this interval of time. Accumulation rates of interplanetary dust particles (IDPs), as traced by extraterrestrial 3He [2], provide a tool with which to investigate sedimentation rates at high resolution. Prior work has shown that the accretion rate of IDPs across the K-T boundary is constant [2], allowing us to invert the extraterrestrial 3He flux for instantaneous sedimentation rates. Sedimentation rates derived from extraterrestrial 3He for the first 1.91 meters i.e. 261.60-259.72 revised composite meters depth (rmcd) following the K-T impact are on an average 0.48 cm/kyr- a factor of 1.6 lower than previously suggested [1]. For a brief period, between 259.69-259.44 rmcd after the K/T boundary, 3He-based sedimentation rates increase sharply to 2.88cm/kyr—a factor of 4.23 higher than has been reported for the same time interval [1]. The short lived increase in sedimentation rate may be explained by higher productivity and/or better carbonate preservation through a deepening lysocline. The 3He based sedimentation rates indicate that the duration of the ‘strange interval’ is 721 kyrs and not 450 kyrs as previously suggested based on astronomical tuning [1]. Hence, our results indicate that there are significant differences between the astronomically tuned timescale [1] and the 3He-derived timescale over the first million years following the K-T impact event. [1] Westerhold et al. Paleogeography, paleoclimatology,paleoecology vol 257. pp373. 2008. [2] Mukhopadhyay et al. Geochimica Cosmochimica Acta. Vol 65. pp 653. 2001.
Insolation-driven 100 kyr glacial cycles and millennial climate change
NASA Astrophysics Data System (ADS)
Abe-Ouchi, A.; Saito, F.; Kawamura, K.; Raymo, M. E.; Okuno, J.; Takahashi, K.; Blatter, H.
2013-12-01
The waxing and waning of Northern Hemisphere ice sheets over the past one million years is dominated by an approximately 100-kyr periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. However, insolation alone cannot explain the strong 100 kyr cycle which presumably arises through internal climatic feedbacks. Prior work with conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms of 100-kyr cycle at work remain unclear. Here, using comprehensive climate and ice sheet models, we show that the ~100-kyr periodicity is explained by insolation and internal feedback amongst the climate, ice sheet and lithosphere/asthenosphere system (reference). We found that equilibrium states of ice sheets exhibit hysteresis responses to summer insolation, and that the shape and position of the hysteresis loop play a key role in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that, after its inception, the ice sheet mass balance remains mostly positive or neutral through several precession cycles whose amplitude decreases towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to turn the mass balance to negative. Therefore, once the large ice sheet is established, only a moderate increase in insolation can trigger a negative mass balance, leading to a complete retreat within several thousand years, due to the delayed isostatic rebound. The effect of ocean circulation and millennial scale climate change are not playing the dominant role for determing the 100kyr cycle, but are effective for modifying the speed and geographical pattern of the waxing and waning of the Northern Hemisphere ice sheets and their melt water. (reference of the basic results: Abe-Ouchi et al, 2013, Insolation-driven 100,000 year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190-193.)
NASA Astrophysics Data System (ADS)
De Vleeschouwer, David; Rakociński, Michał; Racki, Grzegorz; Bond, David P. G.; Sobień, Katarzyna; Claeys, Philippe
2013-03-01
Rhythmical alternations between limestone and shales or marls characterize the famous Kowala section, Holy Cross Mountains, Poland. Two intervals of this section were studied for evidence of orbital cyclostratigraphy. The oldest interval spans the Frasnian-Famennian boundary, deposited under one of the hottest greenhouse climates of the Phanerozoic. The youngest interval encompasses the Devonian-Carboniferous (D-C) boundary, a pivotal moment in Earth's climatic history that saw a transition from greenhouse to icehouse. For the Frasnian-Famennian sequence, lithological variations are consistent with 405-kyr and 100-kyr eccentricity forcing and a cyclostratigraphic floating time-scale is presented. The interpretation of observed lithological rhythms as eccentricity cycles is confirmed by amplitude modulation patterns in agreement with astronomical theory and by the recognition of precession cycles in high-resolution stable isotope records. The resulting relative time-scale suggests that ˜800 kyr separate the Lower and Upper Kellwasser Events (LKE and UKE, respectively), two periods of anoxia that culminated in massive biodiversity loss at the end of the Frasnian. Th/U and pyrite framboid analyses indicate that during the UKE, oxygen levels remained low for 400 kyr and δ13Corg measurements demonstrate that more than 600 kyr elapsed before the carbon cycle reached a steady state after a +3‰ UKE excursion. The Famennian-Tournaisian (D-C) interval also reveals eccentricity and precession-related lithological variations. Precession-related alternations clearly demonstrate grouping into 100-kyr bundles. The Famennian part of this interval is characterized by several distinctive anoxic black shales, including the Annulata, Dasberg and Hangenberg shales. Our high-resolution cyclostratigraphic framework indicates that those shales were deposited at 2.2 and 2.4 Myr intervals respectively. These durations strongly suggest a link between the long-period (˜2.4 Myr) eccentricity cycle and the development of the Annulata, Dasberg and Hangenberg anoxic shales. It is assumed that these black shales form under transgressive conditions, when extremely high eccentricity promoted the collapse of small continental ice-sheets at the most austral latitudes of western Gondwana.
Chronology of magmatic and biological events during mass extinctions
NASA Astrophysics Data System (ADS)
Schaltegger, U.; Davies, J.; Baresel, B.; Bucher, H.
2016-12-01
For mass extinctions, high-precision geochronology is key to understanding: 1) the age and duration of mass extinction intervals, derived from palaeo-biodiversity or chemical proxies in marine sections, and 2) the age and duration of the magmatism responsible for injecting volatiles into the atmosphere. Using high-precision geochronology, here we investigate the sequence of events linked to the Triassic-Jurassic boundary (TJB) and the Permian-Triassic boundary (PTB) mass extinctions. At the TJB, the model of Guex et al. (2016) invokes degassing of early magmas produced by thermal erosion of cratonic lithosphere as a trigger of climate disturbance in the late Rhaetian. We provide geochronological evidence that such early intrusives from the CAMP (Central Atlantic Magmatic Province), predate the end-Triassic extinction event (Blackburn et al. 2013) by 100 kyr (Davies et al., subm.). We propose that these early intrusions and associated explosive volcanism (currently unidentified) initiate the extinction, followed by the younger basalt eruptions of the CAMP. We also provide accurate and precise calibration of the PTB in marine sections in S. China: The PTB and the extinction event coincide within 30 kyr in deep water settings; a hiatus followed by microbial limestone deposition in shallow water settings is of <100 kyr duration. The PTB extinction interval is preceded by up to 300 kyr by the onset of partly alkaline explosive, extrusive and intrusive rocks, which are suggested as the trigger of the mass extinction, rather than the subsequent basalt flows of the Siberian Traps (Burgess and Bowring 2015). From temporal constraints, the main inferences that can be made are: The duration of extinction events is in the x10 kyr range during the initial intrusive activity of a Large Igneous Province, and is postdated by the majority of basalt flows over several 100 kyr. For modeling climate change associated with mass extinctions, volatiles released from the basalt flows may thus not be relevant. Initial igneous activity must be explosive for producing sufficient volumes of volatiles over a sufficiently long time that could generate climatic change. Baresel et al., submitted; Blackburn et al. 2013, Science; Burgess and Bowring 2015, Sci Advances; Davies et al., submitted; Guex et al., 2016, Sci. Rep.
Dean, W.E.; Zheng, Yen; Ortiz, J.D.; VanGeen, A.
2006-01-01
Concentrations of organic carbon (orgC), cadmium (Cd), and molybdenum (Mo) were measured in two sediment cores raised from depths of 430 and 700 m within the oxygen-minimum zone (OMZ) off southern Baja California at a temporal resolution of e10.5 kyr over the past 52 kyr. These records are supplemented with diffuse spectral reflectance (DSR) measurements obtained on board ship soon after collection at a resolution of e10.05 kyr. In the core from 700 m depth, a component extracted from the DSR data and the three geochemical proxies generally vary in concert with each other and over a wide range (4-22% orgC; 1-40 mg/kg Cd; 5-120 mg/kg Mo). Intervals of increased orgC, Cd, and Mo accumulation generally correspond to warm periods recorded in the oxygen-isotopic composition of Greenland ice, with the exception of the Bolling/Allerod which is only weakly expressed off Baja California. Concentrations of the biogenic proxies are higher in the core from 430 m depth, but erratic sediment accumulation before 15 ka precludes dating of the older intervals that are laminated and contain elevated orgC, Cd, and Mo concentrations. The new data provide further evidence of an intimate teleconnection between global climate and the intensity of the OMZ and/or productivity along the western margin of North America. On the basis of a comparison with Cd and Mo records collected elsewhere in the region, we conclude that productivity may actually have varied off southern Baja California by no more than a factor of 2 over the past 52 kyr. Copyright 2006 by the American Geophysical Union.
An Early Pleistocene 190 kyr pollen record from the ODP Site 976, Western Mediterranean region
NASA Astrophysics Data System (ADS)
Joannin, Sebastien; Combourieu Nebout, Nathalie
2010-05-01
The Mid-Pleistocene Transition (1.200 to 0.500 Ma) corresponded to a period of increased cooling and the shift from "41 kyr world" to "100 kyr world". Climate cycles were 41 kyr long as a response of the climate system to the obliquity orbital parameter forcing, then the climate system responded to a combination of eccentricity and precession resulting in 100 kyr long cycles. The Mediterranean region offers the opportunity to study climate response to orbital forcing at this particular period. It is usually done on marine proxies that are preserved in continuous sediments with good age attributions but may be affected by calorific inertia of marine environments. We investigate continental palaeoenvironment changes inferred from pollen analyses through time on a short interval of the ODP Site 976 (259.50 to 230.42 mcd). In order to search for short climate oscillations, the chronology has been refined according to the comparison between the pollen ratio "mesothermic vs. Caryophyllaceae, Amaranthaceae-Chenopodiaceae and steppe elements" curve and Mediterranean and LR04 oxygen isotope curves. The time slice runs from ~1.090 Ma (MIS 31) to ~0.900 Ma (MIS 23). Pollen analyses provide a new record of the south western Mediterranean vegetation and climate changes at the beginning of the Mid-Pleistocene Transition. Vegetation successions are evidenced in pollen diagram with replacement of mesothermic elements by mid- and high-altitude trees, ended by strengthening of Caryophyllaceae, Amaranthaceae-Chenopodiaceae, and steppe vegetation. These vegetation successions reveal two overlapping rhythms that may be related to climate responses to both obliquity and precession orbital parameters, while wavelet analyses on pollen ratio only indicate the shift from precession to obliquity dominance. The comparison of these two approaches raised the question of their own limit.
Drawz, Paul; Pajewski, Nicholas M.; Bates, Jeffrey T.; Bello, Natalie A.; Cushman, William C.; Dwyer, Jamie P.; Fine, Lawrence J.; Goff, David C.; Haley, William E.; Krousel-Wood, Marie; McWilliams, Andrew; Rifkin, Dena E.; Slinin, Yelena; Taylor, Addison; Townsend, Raymond; Wall, Barry; Wright, Jackson T.; Rahman, Mahboob
2016-01-01
The effect of clinic-based intensive hypertension treatment on ambulatory blood pressure (BP) is unknown. The goal of the Systolic Blood Pressure Intervention Trial (SPRINT) Ambulatory BP Ancillary Study was to evaluate the effect of intensive versus standard clinic-based BP targets on ambulatory BP. Ambulatory BP was obtained within 3 weeks of the 27 month study visit in 897 SPRINT participants. Intensive treatment resulted in lower clinic systolic BP (mean difference between groups = 16.0 mmHg (95% CI: 14.1 to 17.8 mmHg)), nighttime systolic BP (mean difference = 9.6 mmHg (95% CI: 7.7 to 11.5 mmHg)), daytime systolic BP (mean difference = 12.3 mmHg (95% CI: 10.6 to 13.9 mmHg)), and 24 hour systolic BP (mean difference = 11.2 mmHg (95% CI: 9.7 to 12.8 mmHg)). The night/day systolic BP ratio was similar between the intensive (0.92 ± 0.09) and standard treatment groups (0.91 ± 0.09). There was considerable lack of agreement within participants between clinic systolic BP and daytime ambulatory systolic BP with wide limits of agreement on Bland-Altman plots. In conclusion, targeting a systolic BP of less than 120 mmHg, as compared with less than 140 mmHg, resulted in lower nighttime, daytime, and 24 hour systolic BP, but did not change the night/day systolic BP ratio. Ambulatory BP monitoring may be required to assess the effect of targeted hypertension therapy on out of office BP. Further studies are needed to assess whether targeting hypertension therapy based on ambulatory BP improves clinical outcomes. PMID:27849563
Drawz, Paul E; Pajewski, Nicholas M; Bates, Jeffrey T; Bello, Natalie A; Cushman, William C; Dwyer, Jamie P; Fine, Lawrence J; Goff, David C; Haley, William E; Krousel-Wood, Marie; McWilliams, Andrew; Rifkin, Dena E; Slinin, Yelena; Taylor, Addison; Townsend, Raymond; Wall, Barry; Wright, Jackson T; Rahman, Mahboob
2017-01-01
The effect of clinic-based intensive hypertension treatment on ambulatory blood pressure (BP) is unknown. The goal of the SPRINT (Systolic Blood Pressure Intervention Trial) ambulatory BP ancillary study was to evaluate the effect of intensive versus standard clinic-based BP targets on ambulatory BP. Ambulatory BP was obtained within 3 weeks of the 27-month study visit in 897 SPRINT participants. Intensive treatment resulted in lower clinic systolic BP (mean difference between groups=16.0 mm Hg; 95% confidence interval, 14.1-17.8 mm Hg), nighttime systolic BP (mean difference=9.6 mm Hg; 95% confidence interval, 7.7-11.5 mm Hg), daytime systolic BP (mean difference=12.3 mm Hg; 95% confidence interval, 10.6-13.9 mm Hg), and 24-hour systolic BP (mean difference=11.2 mm Hg; 95% confidence interval, 9.7-12.8 mm Hg). The night/day systolic BP ratio was similar between the intensive (0.92±0.09) and standard-treatment groups (0.91±0.09). There was considerable lack of agreement within participants between clinic systolic BP and daytime ambulatory systolic BP with wide limits of agreement on Bland-Altman plots. In conclusion, targeting a systolic BP of <120 mm Hg, when compared with <140 mm Hg, resulted in lower nighttime, daytime, and 24-hour systolic BP, but did not change the night/day systolic BP ratio. Ambulatory BP monitoring may be required to assess the effect of targeted hypertension therapy on out of office BP. Further studies are needed to assess whether targeting hypertension therapy based on ambulatory BP improves clinical outcomes. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01835249. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Da Silva, A. C.; Hladil, J.; Chadimová, L.; Slavík, L.; Hilgen, F. J.; Bábek, O.; Dekkers, M. J.
2016-12-01
The Early Devonian geological time scale (base of the Devonian at 418.8 ± 2.9 Myr, Becker et al., 2012) suffers from poor age control, with associated large uncertainties between 2.5 and 4.2 Myr on the stage boundaries. Identifying orbital cycles from sedimentary successions can serve as a very powerful chronometer to test and, where appropriate, improve age models. Here, we focus on the Lochkovian and Pragian, the two lowermost Devonian stages. High-resolution magnetic susceptibility (χin - 5 to 10 cm sampling interval) and gamma ray spectrometry (GRS - 25 to 50 cm sampling interval) records were gathered from two main limestone sections, Požár-CS (118 m, spanning the Lochkov and Praha Formations) and Pod Barrandovem (174 m; Praha Formation), both in the Czech Republic. An additional section (Branžovy, 65 m, Praha Formation) was sampled for GRS (every 50 cm). The χin and GRS records are very similar, so χin variations are driven by variations in the samples' paramagnetic clay mineral content, reflecting changes in detrital input. Therefore, climatic variations are very likely captured in our records. Multiple spectral analysis and statistical techniques such as: Continuous Wavelet Transform, Evolutive Harmonic Analysis, Multi-taper method and Average Spectral Misfit, were used in concert to reach an optimal astronomical interpretation. The Požár-CS section shows distinctly varying sediment accumulation rates. The Lochkovian (essentially equivalent to the Lochkov Formation (Fm.)) is interpreted to include a total of nineteen 405 kyr eccentricity cycles, constraining its duration to 7.7 ± 2.8 Myr. The Praha Fm. includes fourteen 405 kyr eccentricity cycles in the three sampled sections, while the Pragian Stage only includes about four 405 kyr eccentricity cycles, thus exhibiting durations of 5.7 ± 0.6 Myr and 1.7 ± 0.7 Myr respectively. Because the Lochkov Fm. contains an interval with very low sediment accumulation rate and because the Praha Fm. was cross-validated in three different sections, the uncertainty in the duration of the Lochkov Fm. and the Lochkovian is larger than that of the Praha Fm. and Pragian. The new floating time scales for the Lochkovian and Pragian stages have an unprecedented precision, with reduction in the uncertainty by a factor of 1.7 for the Lochkovian and of ∼6 for the Pragian. Furthermore, longer orbital modulation cycles are also identified with periodicities of ∼1000 kyr and 2000-2500 kyr.
Antiquity of Homo sapiens in China.
Tiemei, C; Quan, Y; En, W
1994-03-03
Ten years ago a well-preserved skull of an early form of Homo sapiens was unearthed from Pleistocene cave deposits at the Jinniushan site in China. Here we present electron-spin resonance (ESR) and uranium-series dates from five fossil animal teeth collected from the hominid locality. The minimum ESR ages (195-165 kyr) are about 50 kyr younger than the uranium-series dates. Taken together, the results suggest an age of about 200 kyr or older for the Jinniushan skull, making it among the oldest H. sapiens material found in China, and almost as old as some of the latest Chinese H. erectus. This raises the possibility of the coexistence of the two species in China. The morphology of the skull suggests a strong local component of evolution, consonant with the 'multi-regional continuity' model of the evolution of H. sapiens.
NASA Astrophysics Data System (ADS)
Hodell, David A.; Benson, Richard H.; Kent, Dennis V.; Boersma, Anne; Rakic-El Bied, Kruna
1994-12-01
We report a high-resolution stable isotope, carbonate, magnetostratigraphic, and biostratigraphic record from a 175-m drill core from the Salé Briqueterie, which is part of the Bou Regreg section in northwestern Morocco. The Salé drill core spans the interval from paleomagnetic Chron C4n partim to C3r (earliest Gilbert), which represents the time leading up to and including the isolation and desiccation of the Mediterranean (i.e., the Messinian salinity crisis). During Chrons C3An and C3Ar (6.935 to 5.894 Ma) the isotope and carbonate signals display quasi-periodic variations with estimated periods of 40 and 100 kyr, respectively. We interpret the 40-kyr δ18O variations as reflecting changes in global ice volume caused by obliquity-induced changes (41 kyr) in solar insolation in polar regions. The 100-kyr carbonate variations probably represent long-term modulation of the amplitude of the precessional cycle (˜21 kyr), which is not resolved by our sampling frequency. The cyclic nature of the oxygen isotope signal permits us to extend the isotope nomenclature of Shackleton et al. (1994a) from stage TG24 in Chron C3r (earliest Gilbert) to stage C3Ar.δ18O.18 at the base of Chron C3Ar (6.935 Ma). A major change in paleoceanographic conditions is recorded across the Tortonian/Messinian boundary, which we correlate to Chron C3Bn at 7.04 Ma. Benthic foraminiferal δ18O values increased by an average of 0.4‰ in two steps at 7.17 Ma and 6.8 Ma and δ13C values decreased by 0.7-0.8‰ between 7.1 and 6.8 Ma, representing the late Miocene carbon shift. The first step in δ18O values coincides with an inferred reversal in deep water circulation through the Rifian Corridor, and the second correlates with the base of the Tripoli Formation and onset of "crisis conditions" in the Mediterranean. We suggest that the increase in δ18O values represents, at least in part, an increase in global ice volume that lowered sea level and contributed to the establishment of a negative water budget in the Mediterranean. Average δ18O values remained high throughout most of Chrons C3Ar and C3An, reaching maximum δ18O values during isotope stages TG20 and 22 in Chron C3r (earliest Gilbert). The glacio-eustatic falls associated with these events may have resulted in the complete isolation of the Mediterranean from the world ocean (Shackleton et al., 1994a). Following stage TG12 in the Salé record, there exists a trend toward progressively lower δ18O values that may represent a series of marine transgressions that eventually reflooded the Mediterranean and ended the Salinity Crisis.
Modern, Sangamon and Yarmouth soil development in loess of unglaciated southwestern Illinois
Grimley, D.A.; Follmer, L.R.; Hughes, R.E.; Solheid, P.A.
2003-01-01
The Thebes Section in unglaciated southwestern Illinois contains a well preserved ??? 500 kyr loess-paleosol sequence with four loesses and three interglacial soils. Various magnetic, mineralogical, and elemental properties were analyzed and compared over the thickness of soil sola. These proxies for soil] development intensity have the following trend: Yarmouth Geosol > Sangamon Geosol > modern soil. Quartz/plagioclase, Zr/Sr, and TiO2/Na2O ratios were most sensitive to weathering. Frequency dependent magnetic susceptibility and anhysteretic remanent magnetization, greatest in A horizons, also correspond well with soil development intensity. Neoformed mixed-layered kaolinite/expandables, suggestive of a warm/humid climate, were detected in the Sangamon and Yarmouth soil sola. Clay illuviation in soils was among the least sensitive indicators of soil development. Differences in properties among interglacial soils are interpreted to primarily reflect soil development duration, with climatic effects being secondary. Assuming logarithmic decreases in weathering rates, the observed weathering in the Sangamon Geosol is consistent with 50 kyr of interglacial weathering (Oxygen Isotope Stage 5) compared to 10 kyr for the modern soil (Oxygen Isotope Stage 1). We propose that the Yarmouth Geosol in the central Midwest formed over 180 kyr of interglacial weathering (including oxygen isotope stages 7, 9, and 11). ?? 2002 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Werner, Christian; Liakka, Johan; Schmid, Manuel; Fuentes, Juan-Pablo; Ehlers, Todd A.; Hickler, Thomas
2017-04-01
Vegetation composition and establishment is strongly dependent on climate conditions but also a result of vegetation dynamics (competition for light, water and nutrients). In addition, vegetation exerts control over the development of landscapes as it mediates the climatic and hydrological forces shaping the terrain via hillslope and fluvial processes. At the same time, topography as well as soil texture and soil depth affect the microclimate, soil water storage and rooting space that is defining the environmental envelope for vegetation development. Within the EarthShape research program (www.earthshape.net) we evaluate these interactions by simulating the co-evolution of landscape and vegetation with a dynamic vegetation model (LPJ-GUESS) and a landscape evolution model (LandLab). LPJ-GUESS is a mechanistic model driven by daily or monthly weather data and explicitly simulates vegetation physiology, succession, competition and water and nutrient cycling. Here we present the results of first transient vegetation simulations from 21kyr BP to present-day using the TraCE-21ka climate dataset for four focus sites along the coastal cordillera of Chile that are exposed to a substantial meridional climate gradient (ranging from hyper-arid to humid-temperate conditions). We show that the warming occurring in the region from LGM to present, in addition to the increase of atmospheric CO2 concentrations, led to a shift in vegetation composition and surface cover. Future work will show how these changes resonate in the dynamics of hillslope and fluvial erosion and ultimately bi-directional feedback mechanisms of vegetation development and landscape evolution/ soil formation (see also companion presentation by Schmid et al., this session).
Guimarães, Guilherme V; Cruz, Lais G B; Tavares, Aline C; Dorea, Egidio L; Fernandes-Silva, Miguel M; Bocchi, Edimar A
2013-12-01
High blood pressure (BP) increases the risk of cardiovascular diseases, and its control is a clinical challenge. Regular exercise lowers BP in patients with mild-to-moderate hypertension. No data are available on the effects of heated water-based exercise in hypertensive patients. Our objective was to evaluate the effects of heated water-based exercise on BP in patients with resistant hypertension. We tested the effects of 60-min heated water-based exercise training three times per week in 16 patients with resistant hypertension (age 55±6 years). The protocol included walking and callisthenic exercises. All patients underwent 24-h ambulatory blood pressure monitoring (ABPM) before and after a 2-week exercise program in a heated pool. Systolic office BP was reduced from 162 to 144 mmHg (P<0.004) after heated-water training. After the heated-water exercise training during 24-h ABPM, systolic BP decreased from 135 to 123 mmHg (P=0.02), diastolic BP decreased from 83 to 74 mmHg (P=0.001), daytime systolic BP decreased from 141 to 125 mmHg (P=0.02), diastolic BP decreased from 87 to 77 mmHg (P=0.009), night-time systolic BP decreased from 128 to 118 mmHg (P=0.06), and diastolic BP decreased from 77 to 69 mmHg (P=0.01). In addition, BP cardiovascular load was reduced significantly during the 24-h daytime and night-time period after the heated water-based exercise. Heated water-based exercise reduced office BP and 24-h daytime and night-time ABPM levels. These effects suggest that heated water-based exercise may have a potential as a new therapeutic approach to resistant hypertensive patients.
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Osterberg, E. C.; Lasher, G. E.; Farnsworth, L. B.; Howley, J. A.; Axford, Y.; Zimmerman, S. R. H.
2015-12-01
North Ice Cap (~76.9°N, 68°W, summit elevation 1322 m asl), a small, independent ice cap in northwestern Greenland, is located within ~25 km of the Greenland Ice Sheet margin and Harald Molkte Bræ outlet glacier. We present geochronological, geomorphic and sedimentological data constraining the Holocene extents of North Ice Cap and suggest that its past fluctuations can be used as a proxy for climate conditions along the northwestern margin of the Greenland Ice Sheet. Prior work by Goldthwait (1960) used glacial geomorphology and radiocarbon ages of subfossil plants emerging along shear planes in the ice cap margin to suggest that that North Ice Cap was not present during the early Holocene and nucleated in the middle to late Holocene time, with the onset of colder conditions. Subfossil plants emerging at shear planes in the North Ice Cap margin yield radiocarbon ages of ~4.8-5.9 cal kyr BP (Goldthwait, 1960) and ~AD 1000-1350 (950-600 cal yr BP), indicating times when the ice cap was smaller than at present. In situ subfossil plants exposed by recent ice cap retreat date to ~AD 1500-1840 (450-110 cal yr BP) and indicate small fluctuations of the ice cap margin. 10Be ages of an unweathered, lichen-free drift <100 m from the present North Ice Cap margin range from ~500 to 8000 yrs ago. We suggest that the drift was deposited during the last ~500 yrs and that the older 10Be ages are influenced by 10Be inherited from a prior period of exposure. We also infer ice cap fluctuations using geochemical data from a Holocene-long sediment core from Deltasø, a downstream lake that currently receives meltwater from North Ice Cap. The recent recession of the North Ice Cap margin influenced a catastrophic drainage of a large proglacial lake, Søndre Snesø, that our field team documented in August 2012. To our knowledge, this is the first significant lowering of Søndre Snesø in historical time.
Reconstructing ice-age palaeoclimates: Quantifying low-CO2 effects on plants
NASA Astrophysics Data System (ADS)
Prentice, I. C.; Cleator, S. F.; Huang, Y. H.; Harrison, S. P.; Roulstone, I.
2017-02-01
We present a novel method to quantify the ecophysiological effects of changes in CO2 concentration during the reconstruction of climate changes from fossil pollen assemblages. The method does not depend on any particular vegetation model. Instead, it makes use of general equations from ecophysiology and hydrology that link moisture index (MI) to transpiration and the ratio of leaf-internal to ambient CO2 (χ). Statistically reconstructed MI values are corrected post facto for effects of CO2 concentration. The correction is based on the principle that e, the rate of water loss per unit carbon gain, should be inversely related to effective moisture availability as sensed by plants. The method involves solving a non-linear equation that relates e to MI, temperature and CO2 concentration via the Fu-Zhang relation between evapotranspiration and MI, Monteith's empirical relationship between vapour pressure deficit and evapotranspiration, and recently developed theory that predicts the response of χ to vapour pressure deficit and temperature. The solution to this equation provides a correction term for MI. The numerical value of the correction depends on the reconstructed MI. It is slightly sensitive to temperature, but primarily sensitive to CO2 concentration. Under low LGM CO2 concentration the correction is always positive, implying that LGM climate was wetter than it would seem from vegetation composition. A statistical reconstruction of last glacial maximum (LGM, 21±1 kyr BP) palaeoclimates, based on a new compilation of modern and LGM pollen assemblage data from Australia, is used to illustrate the method in practice. Applying the correction brings pollen-reconstructed LGM moisture availability in southeastern Australia better into line with palaeohydrological estimates of LGM climate.
NASA Astrophysics Data System (ADS)
Pearce, Christof; Varhelyi, Aron; Wastegård, Stefan; Muschitiello, Francesco; Barrientos, Natalia; O'Regan, Matt; Cronin, Thomas M.; Gemery, Laura; Semiletov, Igor; Backman, Jan; Jakobsson, Martin
2017-04-01
The caldera-forming eruption of the Aniakchak volcano in the Aleutian Range on the Alaskan Peninsula at 3.6 cal kyr BP was one of the largest Holocene eruptions worldwide. The resulting ash is found as a visible sediment layer in several Alaskan sites and as a cryptotephra on Newfoundland and Greenland. This large geographic distribution, combined with the fact that the eruption is relatively well constrained in time using radiocarbon dating of lake sediments and annual layer counts in ice cores, makes it an excellent stratigraphic marker for dating and correlating mid-late Holocene sediment and paleoclimate records. This study presents the outcome of a targeted search for the Aniakchak tephra in a marine sediment core from the Arctic Ocean, namely Core SWERUS-L2-2-PC1 (2PC), raised from 57 m water depth in Herald Canyon, western Chukchi Sea. High concentrations of tephra shards, with a geochemical signature matching that of Aniakchak ash, were observed across a more than 1.5 m long sediment sequence. Since the primary input of volcanic ash is through atmospheric transport, and assuming that bioturbation can account for mixing up to ca. 10 cm of the marine sediment deposited at the coring site, the broad signal is interpreted as sustained reworking at the sediment source input. The isochron is therefore placed at the base of the sudden increase in tephra concentrations rather than at the maximum concentration. This interpretation of major reworking is strengthened by analysis of grain size distribution which points to ice rafting as an important secondary transport mechanism of volcanic ash. Combined with radiocarbon dates on mollusks in the same sediment core, the volcanic marker is used to calculate a marine radiocarbon reservoir age offset ΔR = 477 ± 60 years. This relatively high value may be explained by the major influence of typically carbon-old
Pacific waters, and it agrees well with recent estimates of ΔR along the northwest Alaskan coast, possibly indicating stable oceanographic conditions during the second half of the Holocene. Our use of a volcanic absolute age marker to obtain the marine reservoir age offset is the first of its kind in the Arctic Ocean and provides an important framework for improving chronologies and correlating marine sediment archives in this region. Core 2PC has a high sediment accumulation rate averaging 200 cm kyr-1 throughout the last 4000 years, and the chronology presented here provides a solid base for high-resolution reconstructions of late Holocene climate and ocean variability in the Chukchi Sea.
Stalagmites from Spannagel cave (Austria) and holocene climate
NASA Astrophysics Data System (ADS)
Vollweiler, N.; Mangini, A.; Spötl, C.; Scholz, D.; Mühlinghaus, C.
2009-04-01
The Spannagel cave is located around 2,500 m asl at the end of the Tux Valley in Tyrol (Austria) close to the Hintertux glacier. While the area above the cave is ice free at present, it was covered by ice during past glacials as well as during colder periods of Interglacials. Presently, the temperature inside the cave is between 1.8° and 2.0° C. We used the d18O time-series of three stalagmites which grew in small distance from each other. This speleothem record is not influenced by effects of kinetic isotope fractionation due to the low temperatures in the cave. The stalagmites were precisely dated with the U/Th-method. The combined record (COMNISPA, Vollweiler et al. 2006) shows substantial variability within the last 9 kyr with features like the Holocene Climatic Optimum between 7.5 and 6.5 kyr, the Mediaeval Warm Period between 1.2 and 0.7 kyr and the Roman Warm Period between 2.25 and 1.7 kyr. In contrast, periods of lower temperatures are visible between 7.9 and 7.5, 5.9 and 5.1, 3.5 and 3 kyr, and during the LIA between 600 and 150 yr. The period between 5.9 and 5.1 kyr has equivalence in many records from various regions in both hemispheres corresponding to global cooling. It also includes the time of the Alpine Iceman at 5.3 kyr. The timing of the climatic variations revealed by COMNISPA agrees approximately with that shown by other Alpine archives. Joerin et al. (2006) dated wood and peat samples which were released by melting Swiss Alpine glaciers located between Engadin and Valais. Both the d18O maxima and minima recorded in COMNISPA clearly have counterparts in the glacier recession record. Comparisons of COMNISPA with other archives have shown that our stalagmite curve does not only record local climate but also the history of European climate. The extremely high correlation to the Hematite Stained Grain record of Bond et al. (2001) suggests that COMNISPA is a good archive for climate in the North Atlantic region (Mangini et al. 2007). In addition we found that COMNISPA is also an archive for human activities such as rise and fall of cultures and settlement. For example archaeologists know from their excavations that their are several epochs of Troy culture. The reasons for the downfalls are still under consideration. We think that the absence of precipitation as shown in COMNISPA could be an important cause for the fall of the Troyan empire especially of the famous Homerian epoch Troy VI.
DuRoss, Christopher B.; Hylland, Michael D.; McDonald, Greg N.; Crone, Anthony J.; Personius, Stephen F.; Gold, Ryan D.; Mahan, Shannon
2014-01-01
The Salt Lake City segment (SLCS) of the Wasatch fault zone (WFZ) and the West Valley fault zone (WVFZ) compromise Holocene-active normal faults that bound a large intrabasin graben in northern Salt Lake Valley and have evidence of recurrent, large-magnitude (M ~6-7) surface-faulting earthquakes. However, at the time of this investigation, questions remained regarding the timing, displacement, and recurrence of latest Pleistocene and Holocene earthquakes on the northern SLCS and WVFZ , and whether the WVFZ is seismically independent of, or moves coseismically with, the SLCS. To improve paleoseismic data for the SLCS, we conducted a fault-trench investigation at the Penrose Drive site on the northern SLCS. Two trenches, excavated across an 11-m-high scarp near the northern end of the East Bench fault, exposed colluvial-wedge evidence for fize of six (preferred) surface-faulting earthquakes postdating to Provo-phase shoreline of Lake Bonneville (~14-18 ka). Radiocarbon and luminescence ages support earthquake times at 4.0 ± 0.5 ka (2σ) (PD1), 5.9 ± 0.7 ka (PD2), 7.5 ± 0.8 ka (PD3a), 9.7 ± 1.1 ka (PD3b), 10.9 ± 0.2 ka (PD4), and 12.1 ± 1.6 ka (PD5). At least one additional earthquake occurred at 16.5 ± 1.9 ka (PD6) based on an erosional unconformity that separates deformed Lake Bonneville sily and flat-lying Provo-phase shoreline gravel. Earthquakes PD5-PD1 yield latest Pleistocene (post-Provo) and Holocene mean recurrence intervals of ~1.6 kyr and ~1.7-1.9 kyr, respectively. Using 1.0-1.4 m of per-event vertical displacement for PD5-PD3b corroborate previously identified SLCS earthquakes at 4-10 ka. PD4 and PD5 occurred within an ~8-kyr *17-9 ka) time interval on the SLCS previously interpreted as a period of seismic quiescence, and PD6 possibly corresponds with a previously identified earthquake at ~17 ka (although both events have large timing uncertainties). The Penrose data, when combined with previous paleoseismic results, improve the latest Pleistocene-Holocene earthquake chronology of the SLCS, and demonstrate that the SLCS has been a consistently active source of large-magnitude earthquakes since the latest Pleistocene. At least nine surface-faulting earthquakes (S1-S9) have occurred since the highstand of Lake Bonneville (~18 ka). Where the SLCS earthquake record is most complete (since ~14 ka), per-site estimates of mean recurrence are similar for the latest Pleistocene (post-Provo) (~1.6 kyr), Holocene (~1.6-1.9 kyr), and late Holocene (~1.2-1.4 kyr). These SLCS paleoearthquake data indicate an essentially stable rate of earthquake recurrence since the latest Pleistocene and are important for understanding the earthquake potential of the SLCS, clarifying the seismogenic relation between the SLCS and WVFZ, and forecasting the probabilities of future large-magnitude earthquake in the Wasatch Front region.
Giaccio, Biagio; Hajdas, Irka; Isaia, Roberto; Deino, Alan; Nomade, Sebastien
2017-04-06
The Late Pleistocene Campanian Ignimbrite (CI) super-eruption (Southern Italy) is the largest known volcanic event in the Mediterranean area. The CI tephra is widely dispersed through western Eurasia and occurs in close stratigraphic association with significant palaeoclimatic and Palaeolithic cultural events. Here we present new high-precision 14 C (34.29 ± 0.09 14 C kyr BP, 1σ) and 40 Ar/ 39 Ar (39.85 ± 0.14 ka, 95% confidence level) dating results for the age of the CI eruption, which substantially improve upon or augment previous age determinations and permit fuller exploitation of the chronological potential of the CI tephra marker. These results provide a robust pair of 14 C and 40 Ar/ 39 Ar ages for refining both the radiocarbon calibration curve and the Late Pleistocene time-scale at ca. 40 ka. In addition, these new age constraints provide compelling chronological evidence for the significance of the combined influence of the CI eruption and Heinrich Event 4 on European climate and potentially evolutionary processes of the Early Upper Palaeolithic.
CO2 and fire influence tropical ecosystem stability in response to climate change.
Shanahan, Timothy M; Hughen, Konrad A; McKay, Nicholas P; Overpeck, Jonathan T; Scholz, Christopher A; Gosling, William D; Miller, Charlotte S; Peck, John A; King, John W; Heil, Clifford W
2016-07-18
Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28-15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.
NASA Astrophysics Data System (ADS)
Gromig, R.; Viehberg, F. A.; Damcı, E.; Ülgen, U. B.; Assonov, S.; Franz, S. O.; Cagatay, M. N.; Litt, T.; Melles, M.; Wagner, B.; Staubwasser, M.
2016-12-01
The Marmara region is a key area to investigate the teleconnection and environmental changes of the Black Sea/Eastern Mediterranean Sea and northern hemisphere climate patterns. Lake Iznik, an oligohaline lake, is the largest lake in the Bosphorous region, which holds a continuous sediment archive. A hydro-acoustic survey screened the locations of three sediment cores (5 to 17 m) from previous field campaigns. The longest record reaches back almost to the Campanian Ignimbrite (39.3 cal kyr BP), which represents most likely the lowermost high amplitude reflector in hydro-acoustic profiles. The late Pleistocene ostracode fauna appears low in diversity and evolves abruptly to an abundant monospecific species assemblage of Limnocythere inopinata during the Younger Dryas after substantial alteration in the hydrocarbonate and alkalinity system of Lake Iznik. This distinct change in hydrochemistry is reflected in the appearence of different shell phenotypes and the occurence of a population with sexual reproduction (males/females). Independently, results from stable isotope analyses (δ18O and δ13C) on ostracode shells also suggest that Lake Iznik evolves from a freshwater system to a closed basin sensitive to temperature and precipitation changes.
CO2 and fire influence tropical ecosystem stability in response to climate change
NASA Astrophysics Data System (ADS)
Shanahan, Timothy M.; Hughen, Konrad A.; McKay, Nicholas P.; Overpeck, Jonathan T.; Scholz, Christopher A.; Gosling, William D.; Miller, Charlotte S.; Peck, John A.; King, John W.; Heil, Clifford W.
2016-07-01
Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28-15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.
A rock engraving made by Neanderthals in Gibraltar.
Rodríguez-Vidal, Joaquín; d'Errico, Francesco; Giles Pacheco, Francisco; Blasco, Ruth; Rosell, Jordi; Jennings, Richard P; Queffelec, Alain; Finlayson, Geraldine; Fa, Darren A; Gutiérrez López, José María; Carrión, José S; Negro, Juan José; Finlayson, Stewart; Cáceres, Luís M; Bernal, Marco A; Fernández Jiménez, Santiago; Finlayson, Clive
2014-09-16
The production of purposely made painted or engraved designs on cave walls--a means of recording and transmitting symbolic codes in a durable manner--is recognized as a major cognitive step in human evolution. Considered exclusive to modern humans, this behavior has been used to argue in favor of significant cognitive differences between our direct ancestors and contemporary archaic hominins, including the Neanderthals. Here we present the first known example of an abstract pattern engraved by Neanderthals, from Gorham's Cave in Gibraltar. It consists of a deeply impressed cross-hatching carved into the bedrock of the cave that has remained covered by an undisturbed archaeological level containing Mousterian artifacts made by Neanderthals and is older than 39 cal kyr BP. Geochemical analysis of the epigenetic coating over the engravings and experimental replication show that the engraving was made before accumulation of the archaeological layers, and that most of the lines composing the design were made by repeatedly and carefully passing a pointed lithic tool into the grooves, excluding the possibility of an unintentional or utilitarian origin (e.g., food or fur processing). This discovery demonstrates the capacity of the Neanderthals for abstract thought and expression through the use of geometric forms.
Giaccio, Biagio; Hajdas, Irka; Isaia, Roberto; Deino, Alan; Nomade, Sebastien
2017-01-01
The Late Pleistocene Campanian Ignimbrite (CI) super-eruption (Southern Italy) is the largest known volcanic event in the Mediterranean area. The CI tephra is widely dispersed through western Eurasia and occurs in close stratigraphic association with significant palaeoclimatic and Palaeolithic cultural events. Here we present new high-precision 14C (34.29 ± 0.09 14C kyr BP, 1σ) and 40Ar/39Ar (39.85 ± 0.14 ka, 95% confidence level) dating results for the age of the CI eruption, which substantially improve upon or augment previous age determinations and permit fuller exploitation of the chronological potential of the CI tephra marker. These results provide a robust pair of 14C and 40Ar/39Ar ages for refining both the radiocarbon calibration curve and the Late Pleistocene time-scale at ca. 40 ka. In addition, these new age constraints provide compelling chronological evidence for the significance of the combined influence of the CI eruption and Heinrich Event 4 on European climate and potentially evolutionary processes of the Early Upper Palaeolithic. PMID:28383570
North Atlantic Storm Activity During the Younger Dryas
NASA Astrophysics Data System (ADS)
Toomey, M.
2015-12-01
The risks posed to cities along the Eastern Seaboard by a potential intensification of tropical cyclone activity over the coming decades remain poorly constrained, in part, due to a lack of available storm proxy records that extend beyond the relatively stable climates of the late Holocene. Previous work in the Bahamas shows that coarse-grained, high-energy event layers in carbonate bank margin sediments: (1) closely track recent historic hurricane events and (2) that the sensitivity of this proxy may be less affected by the deglacial changes in sea level that have limited our ability to reconstruct past hurricane activity using overwash records from back-barrier beach settings. Here we present a record of storm triggered turbidite deposition from a suite of well dated (e.g. Lynch-Stieglitz et al., 2011, Paleoceanography) jumbo piston cores taken offbank (300-500 mbsl) the Dry Tortugas, Florida, that spans abrupt transitions in North Atlantic sea surface temperature and thermohaline circulation during the Younger Dryas (12.9 - 11.5 kyr BP). This record, along with General Circulation Model output (TraCE: NCAR-CGD), indicates strong hurricane activity may have occurred along Southeastern US coasts through this interval despite considerably colder North Atlantic SSTs.
A rock engraving made by Neanderthals in Gibraltar
Rodríguez-Vidal, Joaquín; d’Errico, Francesco; Pacheco, Francisco Giles; Blasco, Ruth; Rosell, Jordi; Jennings, Richard P.; Queffelec, Alain; Finlayson, Geraldine; Fa, Darren A.; Gutiérrez López, José María; Carrión, José S.; Negro, Juan José; Finlayson, Stewart; Cáceres, Luís M.; Bernal, Marco A.; Fernández Jiménez, Santiago; Finlayson, Clive
2014-01-01
The production of purposely made painted or engraved designs on cave walls—a means of recording and transmitting symbolic codes in a durable manner—is recognized as a major cognitive step in human evolution. Considered exclusive to modern humans, this behavior has been used to argue in favor of significant cognitive differences between our direct ancestors and contemporary archaic hominins, including the Neanderthals. Here we present the first known example of an abstract pattern engraved by Neanderthals, from Gorham’s Cave in Gibraltar. It consists of a deeply impressed cross-hatching carved into the bedrock of the cave that has remained covered by an undisturbed archaeological level containing Mousterian artifacts made by Neanderthals and is older than 39 cal kyr BP. Geochemical analysis of the epigenetic coating over the engravings and experimental replication show that the engraving was made before accumulation of the archaeological layers, and that most of the lines composing the design were made by repeatedly and carefully passing a pointed lithic tool into the grooves, excluding the possibility of an unintentional or utilitarian origin (e.g., food or fur processing). This discovery demonstrates the capacity of the Neanderthals for abstract thought and expression through the use of geometric forms. PMID:25197076
Synchronous environmental and cultural change in the prehistory of the northeastern United States.
Munoz, Samuel E; Gajewski, Konrad; Peros, Matthew C
2010-12-21
Climatic changes during the late Quaternary have resulted in substantial, often abrupt, rearrangements of terrestrial ecosystems, but the relationship between these environmental changes and prehistoric human culture and population size remains unclear. Using a database of archaeological radiocarbon dates alongside a network of paleoecological records (sedimentary pollen and charcoal) and paleoclimatic reconstructions, we show that periods of cultural and demographic change in the northeastern United States occurred at the same times as the major environmental-climatic transitions of that region. At 11.6, 8.2, 5.4, and 3.0 kyr BP (10(3) calendar years before present), changes in forest composition altered the distribution, availability, and predictability of food resources which triggered technological adjustments manifested in the archaeological record. Human population level has varied in response to these external changes in ecosystems, but the adoption of maize agriculture during the late Holocene also resulted in a substantial population increase. This study demonstrates the long-term interconnectedness of prehistoric human cultures and the ecosystems they inhabited, and provides a consolidated environmental-cultural framework from which more interdisciplinary research and discussion can develop. Moreover, it emphasizes the complex nature of human responses to environmental change in a temperate region.
Shanahan, Timothy M.; Beck, J. Warren; Overpeck, Jonathan T.; McKay, Nicholas P.; Pigati, Jeffrey S.; Peck, John A.; Scholz, Christopher A.; Heil, Clifford W.; King, John W.
2012-01-01
The Lake Bosumtwi sediment record represents one of the longest and highest-resolution terrestrial records of paleoclimate change available from sub-Saharan Africa. Here we report a new sediment age model framework for the last ~ 45 cal kyr of sedimentation using a combination of high-resolution radiocarbon dating, Bayesian age-depth modeling and lamination counting. Our results highlight the practical limits of these methods for reducing age model uncertainties and suggest that even with very high sampling densities, radiocarbon uncertainties of at least a few hundred years are unavoidable. Age model uncertainties are smallest during the Holocene (205 yr) and the glacial (360 yr) but are large at the base of the record (1660 yr), due to a combination of decreasing sample density, larger calibration uncertainties and increases in radiocarbon age scatter. For portions of the chronology older than ~ 35 cal kyr, additional considerations, such as the use of a low-blank graphitization system and more rigorous sample pretreatment were necessary to generate a reliable age depth model because of the incorporation of small amounts of younger carbon. A comparison of radiocarbon age model results and lamination counts over the time interval ~ 15–30 cal kyr agree with an overall discrepancy of ~ 10% and display similar changes in sedimentation rate, supporting the annual nature of sediment laminations in the early part of the record. Changes in sedimentation rates reconstructed from the age-depth model indicate that intervals of enhanced sediment delivery occurred at 16–19, 24 and 29–31 cal kyr, broadly synchronous with reconstructed drought episodes elsewhere in northern West Africa and potentially, with changes in Atlantic meridional heat transport during North Atlantic Heinrich events. These data suggest that millennial-scale drought events in the West African monsoon region were latitudinally extensive, reaching within several hundred kilometers of the Guinea coast. This is inconsistent with a simple southward shift in the mean position of the monsoon rainbelt, and requires changes in moisture convergence as a result of either a reduction in the moisture content of the tropical rainbelt, decreased convection, or both.
Sharp, W.D.; Turrin, B.D.; Renne, P.R.; Lanphere, M.A.
1996-01-01
Mauna Kea lava flows cored in the HilIo hole range in age from <200 ka to about 400 ka based on 40Ar/39Ar incremental heating and K-Ar analyses of 16 groundmass samples and one coexisting plagioclase. The lavas, all subaerially deposited, include a lower section consisting only of tholeiitic basalts and an upper section of interbedded alkalic, transitional tholeiitic, and tholeiitic basalts. The lower section has yielded predominantly complex, discordant 40Ar/39Ar age spectra that result from mobility of 40Ar and perhaps K, the presence of excess 40Ar, and redistribution of 39Ar by recoil. Comparison of K-Ar ages with 40Ar/39Ar integrated ages indicates that some of these samples have also lost 39Ar. Nevertheless, two plateau ages of 391 ?? 40 and 400 ?? 26 ka from deep in the hole, combined with data from the upper section, show that the tholeiitic section accumulated at an average rate of about 7 to 8 m/kyr and has an mean recurrence interval of 0.5 kyr/flow unit. Samples from the upper section yield relatively precise 40Ar/39Ar plateau and isotope correlation ages of 326 ?? 23, 241 ?? 5, 232 ?? 4, and 199 ?? 9 ka for depths of -415.7 m to -299.2 m. Within their uncertainty, these ages define a linear relationship with depth, with an average accumulation rate of 0.9 m/kyr and an average recurrence interval of 4.8 kyr/flow unit. The top of the Mauna Kea sequence at -280 m must be older than the plateau age of 132 ?? 32 ka, obtained for the basal Mauna Loa flow in the corehole. The upward decrease in lava accumulation rate is a consequence of the decreasing magma supply available to Mauna Kea as it rode the Pacific plate away from its magma source, the Hawaiian mantle plume. The age-depth relation in the core hole may be used to test and refine models that relate the growth of Mauna Kea to the thermal and compositional structure of the mantle plume.
NASA Astrophysics Data System (ADS)
Russell, J. M.; Vogel, H.; Konecky, B.; Bijaksana, S.; King, J. W.; Cahyarini, S. Y.; Tamuntuan, G. H.; Noren, A. J.; Wattrus, N. J.
2011-12-01
Indonesia sits at the western edge of the tropical Pacific warm pool, and its climate responds to the Australasian monsoon and the intertropical convergence zone (ITCZ). Despite Indonesia's climatological significance, we have very few records of the region's hydrology. To fill this gap, in 2010 we collected long sediment piston cores and seismic reflection data from Lake Towuti, Sulawesi (2.5 S, 121 E), the largest lake in Indonesia. We are building new reconstructions of regional hydrology based upon sedimentological, geochemical, magnetic, core-scanning x-ray fluorescence, and compound-specific stable isotopic data to develop the first continuous record of rainfall and drought over the last 60,000 years from the maritime continent. Our record shows that, at the orbital scale, the boreal winter monsoon-dominated climate of central Indonesia responds to both precessional forcing of the Australasian monsoon and high latitude glacial processes. We observe relatively dry conditions at 60 kyr BP, wet conditions during much of Marine Isotope Stage 3 (MIS3), and a dry early/wet late Holocene. This is antiphased with speleothem 18O/16O records from China (e.g. Wang et al., 2008, Nature 451: 1090-1093), and is consistent with southward migration of the ITCZ over Indonesia and Australia during precession maxima. However, we observe the driest conditions of the last 60 kyr during the last glacial maximum (LGM), when southern hemisphere summer insolation was low. Previous studies (e.g. Griffiths et al., 2009, Nature Geosciences 2: 636-639) have suggested that exposure of the Sunda Shelf during the LGM reduces central Indonesian convection. However, we observe little effect of Sunda Shelf exposure on Indonesian hydrology during MIS3, and the deglacial rise in precipitation appears rapid in our data relative to sea level rise. We suggest that cool sea surface temperatures in the maritime continent, driven by greenhouse gas minima and associated glacial processes, reduced LGM convection over Indonesia. We observe substantial millennial-scale variability during MIS3 as well as the last glacial termination. For instance, Heinrich event 1 is a prominent arid event, as is the Younger Dryas. Aridity in central Indonesia during these North Atlantic stadials indicates that the "northern mode" of millennial climate variability observed in mainland Asia propagates south of the equator over maritime Indonesia, despite clear evidence for southward migration of the ITCZ. This suggests that water vapor content and convection within the ITCZ controls central Indonesian hydrology more than ITCZ position.
Sulfide geochronlogy along the Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Yang, W.; Tao, C.; Li, H.; Liang, J.; Liao, S.
2017-12-01
Dragon Flag and Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones in the ultraslow-spreading Southwest Indian Ridge (SWIR). Ten subsamples from active and inactive vents of Dragon Flag hydrothermal field and twenty-eight subsamples from Duanqiao hydrothermal field were dated using the 230Th/238U method. Four main episodes of hydrothermal activity of Duanqiao were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. And sulfide samples from the nearby Dragon Flag filed at the same time and the results show that the ages of most sulfides from Dragon Flag field range from 1.496(±0.176) to 5.416 (±0.116) kyrs with the oldest age estimated at 15.997 (±0.155) kyrs Münch et al. (2001) reconstructed the evolution history of Mt. Jourdanne hydrothermal field. The age dating results indicate activity in two episodes, at 70-40 and 27-13 kyrs. The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. All these results suggest that hydrothermal activity of Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. Mt. Jourdanne is situated on an axial volcanic ridge which has both volcanic and tectonic activity. This is necessary to develop the heat source and pathways for the fluid convection, which enables the hydrothermal circulation. Hydrothermal activity in Dragon Flag Field is located next to the detachment fault termination. The detachment fault system provides a pathway for hydrothermal convection. Such style of heat source can contribute to continuous hydrothermal activity for over 1000 years. Duanqiao field is located near the central volcano and there is a hot mantle and/or fertile melt beneath Duanqiao field. The crust thickness is 9.5 km, suggesting the existence of AMC (Axial Magma Chamber) which provides magma source to the field (Li et al. 2015; Mendel et al. 2003). The periodic hydrothermal activity at Duanqiao may be related to the heat source provided by the local interaction of magmatism and tectonism.
Extraterrestrial 3He as a tracer of marine sediment transport and accumulation
NASA Astrophysics Data System (ADS)
Marcantonio, Franco; Anderson, Robert F.; Stute, Martin; Kumar, Niraj; Schlosser, Peter; Mix, Alan
1996-10-01
THE deposition rate of deep-sea sediments, and their focused redeposition by deep-sea currents, can be evaluated from analyses of sedimentary 230Th with a temporal resolution limited only by bioturbation6,7,10,11. 230Th is produced uniformly throughout the ocean by radioactive decay of dissolved 234U and is removed sufficiently fast by sorption onto sinking particles to act as a 'constant-flux' tracer of sedimentation rates. But the half-life of 230Th (75 kyr) limits its use for this purpose to the past 200-250 kyr. Here we explore the use of extraterrestrial 3He from interplanetary dust particles1-4 (IDPs) as a constant-flux proxy that is free from this limitation. A comparison of 3He with 230Th in two cores from the equatorial Pacific Ocean indicates that the variability in the mean flux of IDPs over the past 200 kyr is less than 75%. But in contrast to this relatively constant rate of supply of 3He to the deep sea, the local burial rates of 3He and 230Th have varied by a factor of five over the past 450 and 200 kyr, respect-ively. We interpret this variability as reflecting sediment focusing, with a temporal pattern that suggests regular cycles of climate-driven reorganization of near-bottom currents in the deep Pacific Ocean.
230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Yang, Weifang; Tao, Chunhui; Li, Huaiming; Liang, Jin; Liao, Shili; Long, Jiangping; Ma, Zhibang; Wang, Lisheng
2017-06-01
Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28'E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5-2.9 million tons.
Turdi, Muyessar; Yang, Linsheng
2016-09-23
Tap water samples were collected from 180 families in four agricultural (KYR: Keyir, KRW: Kariwak, YTR: Yatur, DW: Dawanqi) and two pastoral areas (B: Bulong and Y: Yangchang) in Bay County, Xinjiang, China, and levels of seven trace elements (Cd, Cr, As Ni, Pb, Zn, Se) were analyzed using inductively-coupled plasma mass spectrometry (ICP-MS) to assess potential health risks. Remarkable spatial variations of contamination were observed. Overall, the health risk was more severe for carcinogenic versus non-carcinogenic pollutants due to heavy metal. The risk index was greater for children overall (Cr > As > Cd and Zn > Se for carcinogenic and non-carcinogenic elements, respectively). The total risk index was greater in agricultural areas (DW > KYR > YTR > KRW > B > Y). Total risk indices were greater where well water was the source versus fountain water; for the latter, the total health risk index was greater versus glacier water. Main health risk factors were Cr and As in DW, KYR, YTR, KRW, and B, and Zn, Cr, and As in the Y region. Overall, total trace element-induced health risk (including for DW adults) was higher than acceptable (10(-6)) and lower than priority risk levels (10(-4)) (KYR, YTR, KRW, Y, and B). For DW children, total health risk reached 1.08 × 10(-4), higher than acceptable and priority risk levels (10(-4)).
Kario, Kazuomi; Tomitani, Naoko; Matsumoto, Yuri; Hamasaki, Haruna; Okawara, Yukie; Kondo, Maiko; Nozue, Ryoko; Yamagata, Hiromi; Okura, Ayako; Hoshide, Satoshi
2016-01-01
Asians have specific characteristics of hypertension (HTN) and its relationship with cardiovascular disease. The morning surge in blood pressure (BP) in Asians is more extended, and the association slope between higher BP and the risk for cardiovascular events is steeper in this population than in whites. Thus, 24-hour BP control including at night and in the morning is especially important for Asian patients with HTN. There are 3 components of "perfect 24-hour BP control": the 24-hour BP level, adequate dipping of nocturnal BP (dipper type), and adequate BP variability such as the morning BP surge. The morning BP-guided approach using home BP monitoring (HBPM) is the first step toward perfect 24-hour BP control. After controlling morning HTN, nocturnal HTN is the second target. We have been developing HBPM that can measure nocturnal BP. First, we developed a semiautomatic HBPM device with the function of automatic fixed-interval BP measurement during sleep. In the J-HOP (Japan Morning Surge Home Blood Pressure) study, the largest nationwide home BP cohort, we successfully measured nocturnal home BP using this device with data memory, 3 times during sleep (2, 3, and 4 am), and found that nocturnal home BP is significantly correlated with organ damage independently of office and morning BP values. The second advance was the development of trigger nocturnal BP (TNP) monitoring with an added trigger function that initiates BP measurements when oxygen desaturation falls below a variable threshold continuously monitored by pulse oximetry. TNP can detect the specific nocturnal BP surges triggered by hypoxic episodes in patients with sleep apnea syndrome. We also added the lowest heart rate-trigger function to TNP to detect the "basal nocturnal BP," which is determined by the circulating volume and structural cardiovascular system without any increase in sympathetic tonus. This double TNP is a novel concept for evaluating the pathogenic pressor mechanism of nocturnal BP. These data are now collected using an information and communication technology (ICT)-based monitoring system. The BP variability includes different time-phase variability from the shortest beat-by-beat, positional, diurnal, day-by-day, visit-to-visit, seasonal, and the longest yearly changes. The synergistic resonance of each type of BP variability would produce great dynamic BP surges, which trigger cardiovascular events. Thus, in the future, the management of HTN based on the simultaneous assessment of the resonance of all of the BP variability phenotypes using a wearable "surge" BP monitoring device with an ICT-based data analysis system will contribute to the ultimate individualized medication for cardiovascular disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferguson, J. E.; Henderson, G. M.; Fa, D.; Finlayson, C.
2008-12-01
Molluscs have shown great potential to act as seasonal-resolution archives of sea-surface temperatures (SST) at mid to high latitudes, outside the range of tropical surface corals. Seasonal resolution climate records from higher latitudes are important to allow investigation of the role of seasonality in controlling mean climate on diverse timescales, and of the evolution of climate systems such as the North Atlantic Oscillation. Long sequences of intertidal mollusc shells are difficult to find due to sea level fluctuations over glacial- interglacial periods. This study makes use of Patella shells collected by Neanderthals and humans and transported inland to caves on Gibraltar over at least the last 120 kyrs. Some 30 fossil Patella shells were selected from several hundred excavated from Gorham's and Vanguard Caves at Gibraltar. Oxygen isotope analysis of micromilled samples of modern Patella shells from the Gibraltar coastline demonstrate that the shells accurately record absolute SSTs and capture more than 80% of the full seasonal range. Analysis of fossil Patella shells, dated using 14C, provides records of the change in absolute SST and seasonality during the last glacial. Paired Mg/Ca ratios of micromilled samples in modern Patella shells follow a consistent positive relationship with SST providing an independent paleothermometer, analogous with coral Sr/Ca. Applying this Mg/Ca-SST relationship to fossil Patella shells allows the independent reconstruction of the absolute values and range of SSTs and the reconstruction of seawater δ18O for the western Mediterranean. Results show a cooling of glacial summer SSTs from 36 kyr BP to the LGM with maximum cooling of glacial summer SSTs of 7.5 °C relative to modern. In contrast, winter SSTs show greater variability on millennial timescales with a maximum cooling of up to 10 °C. SST seasonality is therefore extended due to greater winter cooling but SST seasonality is highly variable as a result of large fluctuation in the extent of winter cooling. These results contrast with GCM model estimates of SST values and seasonality during the glacial.
NASA Astrophysics Data System (ADS)
Rasskazov, S.; Chebykin, E.
2012-04-01
Eastern Sayans, Siberia and Hangay, Central Mongolia are mountainous uplifts effected by Quaternary volcanism, but only the former area was covered by glaciers that were as thick as 500 m. Glaciation time intervals were marked by moraines and sub-glacial hyaloclastite-bearing volcanic edifices, whereas interglacial ones were exhibited by sub-aerial "valley" flows and cinder cones. To estimate temporal variations of maximum rates of melting and mantle upwelling in the glacial and glacial-free areas, we measured radionuclides of the U-Th system for 74 samples of the Middle-Late Pleistocene through Holocene basalts by ICP-MS technique (Chebykin et al. Russian Geol. Geophys. 2004. 45: 539-556) using mass-spectrometer Agilent 7500ce. The obtained U-Th isochron ages for the Pleistocene volcanic units in the age interval of the last 400 Kyr are mostly consistent with results of K-Ar dating. The measured (230Th/238U) ratios for the Holocene basalts from both areas are within the same range of 1.08-1.16 (parentheses denote units of activity), whereas the 50 Kyr lavas yield, respectively, the higher and lower initial (230Th0/238U) ratios (1.18-1.46 and 1.05-1.13). This discrepancy demonstrates contrast maximum rates of melting in conventional garnet peridotite sources. We suggest that this dynamical feature was provided by the abrupt Late Pleistocene deglaciation that caused the mantle decompression expressed by the earlier increasing melting beneath Eastern Sayans than beneath Hangay. In the last 400 Kyr, magmatic liquids from both Eastern Sayans and Hangay showed the overall temporal decreasing (230Th0/238U) (i.e. relative increasing rates of melting and upwelling of the mantle) with the systematically lower isotopic ratios (i.e. increased mantle activity) in the former area than in the latter. The 400 Kyr phonotephrites in Hangay showed elevated concentrations of Th (6-8 ppm) and Th/U (3.7-3.9). The high (230Th0/238U) (4.3-6.0) reflected slow fractional melting, accompanied by rapid removal of melts. In episodes of 50-35 and ~9 Kyr, the ratio decreased from interval 1.23-1.52 to 1.08-1.22, indicating a relative increase of the porosity, maximum rates of melting, and upwelling of the mantle. The 350 Kyr magmatic melts in Eastern Sayans revealed the lower concentrations of Th (~2 ppm) and Th/U (2.7-2.9) due to more depleted composition of the source region, but their high (230Th0/238U) (2.7-2.9) also demonstrated slow fractional melting and upwelling. The defined maxima of melting and upwelling of the mantle beneath this area at 170 and 50 Kyr (Mmax = 1.1 × 10-3 kg/m3/yr, Wmax = 11 cm yr-1) were separated from each other by a minimum at 150 Kyr. These variations are interpreted in terms of temporal control of the mantle dynamic parameters by growing and thawing glaciers. The work was supported by the Russian Federal Aim Program "Scientific and scientific-pedagogical personnel of innovative Russia" for 2009-2013, the state contract number P736.
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Jackson, M. S.; Russel, J.; Doughty, A. M.; Howley, J. A.; Cavagnaro, D. B.; Zimmerman, S. R. H.
2016-12-01
The tropics exert a profound influence on global climate; however, the role of the tropics in past climate change is uncertain. In particular, it is unclear whether the tropics may initiate abrupt climate changes or instead respond to high-latitude change. Determining the timing and spatial variability of past change in the tropics is a first step to addressing the role of the low-latitudes in both past and future climate changes. To investigate these questions, we present a cosmogenic 10Be chronology from a suite of moraines in the Rwenzori Mountains, Uganda. These results indicate that ice was most extensive early during the Last Glacial Maximum (LGM; 26.0-19.5 kyr), prior to the global sea-level lowstand at 20.5 kyr. Low-magnitude, millennial-scale glacial oscillations occurred throughout the LGM. Retreat from the LGM position was underway by 21.5 kyr, though ice remained extensive in the Rwenzori until at least 18.5 ka. Similar chronologies from elsewhere in the tropics suggest that glaciers across the low-latitudes achieved their maxima in the earliest stages of the LGM, during a period of high (mean annual) equatorial insolation and decreasing Northern Hemisphere summer insolation. In addition, the larger-scale recession that occurred subsequent to 21.5 kyr predates the post-glacial rise in atmospheric CO2 at 18.1 kyr. Therefore, we suggest that something other than Northern Hemisphere or equatorial insolation or atmospheric CO2 may have influenced the millennial-scale glacial oscillations throughout the LGM as registered by Rwenzori moraines. The chronology of glacial fluctuations in the Rwenzori Mountains is similar to other glacial chronologies located outside the tropics in both the Northern and Southern Hemispheres, suggesting that glaciers across the globe may have responded to a common forcing throughout the LGM and Termination 1.
NASA Astrophysics Data System (ADS)
Zachos, James C.; McCarren, Heather; Murphy, Brandon; Röhl, Ursula; Westerhold, Thomas
2010-10-01
The upper Paleocene and lower Eocene are marked by several prominent (> 1‰) carbon isotope (δ 13C) excursions (CIE) that coincide with transient global warmings, or thermal maxima, including the Paleocene-Eocene Thermal Maximum (PETM). The CIE, which are recorded mainly in marine sedimentary sequences, have also been identified in continental sequences, occurred episodically, and yet appear to be paced or triggered by orbital forcing. To constrain the timing and scale of the CIE relative to long-term baseline variability, we have constructed a 4.52 million year (myr) long, high-resolution (~ 3 kyr) bulk sediment carbon isotope record spanning the lower Eocene to upper Paleocene (C25r-C24n) from a pelagic sediment section recovered at ODP Site 1262 in the southeast Atlantic. This section, which was orbitally-tuned utilizing high-resolution core log physical property and geochemical records, is the most stratigraphically complete upper Paleocene to lower Eocene sequence recovered to date. Time-series analysis of the carbon isotope record along with a high-resolution Fe intensity record obtained by XRF core scanner reveal cyclicity with variance concentrated primarily in the precession (21 kyr) and eccentricity bands (100 and 400-kyr) throughout the upper Paleocene-lower Eocene. In general, minima in δ 13C correspond with peaks in Fe (i.e., carbonate dissolution), both of which appear to be in phase with maxima in eccentricity. This covariance is consistent with excess oceanic uptake of isotopically depleted carbon resulting in lower carbonate saturation during periods of high eccentricity. This relationship includes all late Paleocene and early Eocene CIE confirming pacing by orbital forcing. The lone exception is the PETM, which appears to be out of phase with the 400-kyr cycle, though possibly in phase with the 100-kyr cycle, reinforcing the notion that a mechanism other than orbital forcing and/or an additional source of carbon is required to account for the occurrence and unusual scale of this event.
NASA Astrophysics Data System (ADS)
Peterson, C.; Lisiecki, L. E.
2016-12-01
Across the deglaciation, atmospheric CO2 and global temperatures rise while the deep ocean ventilates carbon to the atmosphere and terrestrial biosphere. As the terrestrial biosphere expands, the mean global ocean δ13C signature increases in response. How well constrained is the global mean benthic δ13C from 20-6 ka? Are the atmosphere and terrestrial biosphere signals in benthic δ13C coupled across the deglaciation? Improved understanding of deglacial carbon cycle interactions can help close the gap between data-based and model-based estimates of global mean benthic δ13C and deep ocean carbon storage changes. Here we present a 118-record compilation of Cibicides wuellerstorfi δ13C time series that span 20-6 kyr. The δ13C records with a resolution better than 3 kyr and gaps between data smaller than 4 kyr are aligned to age models that are constrained by planktic 14C ages (Stern and Lisiecki, 2014). The δ13C records are stacked within nine regions. Then these regional stacks are combined using volume-weighted averages to create intermediate, deep and whole ocean δ13C stacks. The δ13C gradient between the intermediate and deep stacks covaries with atmospheric CO2 change. Meanwhile the deglacial global ocean mean δ13C rise tracks the expansion of the global terrestrial biosphere from 19-6 ka. From this volume-weighted global δ13C stack, the LGM-Holocene mean δ13C change is 0.35±0.10‰ similar to previous estimates (Curry et al., 1988; Duplessy et al., 1988; Peterson et al., 2015; Gebbie et al., 2015). The δ13C stacks and this 4D δ13C compilation are ideal for model-data comparisons and time-stepping 3D visualizations.
Collevatti, Rosane Garcia; de Castro, Thaís Guimarães; de Souza Lima, Jacqueline; de Campos Telles, Mariana Pires
2012-01-01
Many endemic species present disjunct geographical distribution; therefore, they are suitable models to test hypotheses about the ecological and evolutionary mechanisms involved in the origin of disjunct distributions in these habitats. We studied the genetic structure and phylogeography of Tibouchina papyrus (Melastomataceae), endemic to rocky savannas in Central Brazil, to test hypothesis of vicariance and dispersal in the origin of the disjunct geographical distribution. We sampled 474 individuals from the three localities where the species is reported: Serra dos Pirineus, Serra Dourada, and Serra de Natividade. Analyses were based on the polymorphisms at cpDNA and on nuclear microsatellite loci. To test for vicariance and dispersal we constructed a median-joining network and performed an analysis of molecular variance (AMOVA). We also tested population bottleneck and estimated demographic parameters and time to most recent common ancestor (TMRCA) using coalescent analyses. A remarkable differentiation among populations was found. No significant effect of population expansion was detected and coalescent analyses showed a negligible gene flow among populations and an ancient coalescence time for chloroplast genome. Our results support that the disjunct distribution of T. papyrus may represent a climatic relict. With an estimated TMRCA dated from ∼836.491 ± 107.515 kyr BP (before present), we hypothesized that the disjunct distribution may be the outcome of bidirectional expansion of the geographical distribution favored by the drier and colder conditions that prevailed in much of Brazil during the Pre-Illinoian glaciation, followed by the retraction as the climate became warmer and moister. PMID:22837846
NASA Astrophysics Data System (ADS)
Morgan, J. D.; Bereiter, B.; Baggenstos, D.; Kawamura, K.; Shackleton, S. A.; Severinghaus, J. P.
2017-12-01
Antarctic temperature variations during Heinrich events, as recorded by δ18Oice, generally show more gradual changes than the abrupt warmings seen in Greenland ice. However, quantitative temperature interpretation of the water isotope temperature proxy is difficult as the relationship between δ18Oice and temperature is not constant through time. Fortunately, ice cores offer a second temperature proxy based on trapped gases. During times of surface warming, thermal fractionation of gases in the column of unconsolidated snow (firn) on top of the ice sheet results in isotopically heavier nitrogen (N2) and argon (Ar) being trapped in the ice core bubbles. During times of surface cooling, isotopically lighter gases are trapped. Measurements of δ15N and δ40Ar can therefore be used, in combination with a model for the height of the column of firn, to quantitatively reconstruct surface temperatures. In the WAIS Divide Ice Core, the two temperature proxies show a brief disagreement during Heinrich Stadial 1. Despite δ18Oice recording relatively constant temperature, the nitrogen and argon isotopes imply an abrupt warming between 16 and 15.8 kyr BP, manifest as an abrupt 1.25oC increase in the firn temperature gradient. To our knowledge, this would be the first evidence that such abrupt climate change has been recorded in an Antarctic climate proxy. If confirmed by more detailed studies, this event may represent warming due to an extreme southward shift of the Earth's thermal equator (and the southern hemisphere westerly wind belt), caused by the 16.1 ka Heinrich Event.
Team-Based Care with Pharmacists to Improve Blood Pressure: a Review of Recent Literature.
Kennelty, Korey A; Polgreen, Linnea A; Carter, Barry L
2018-01-18
We review studies published since 2014 that examined team-based care strategies and involved pharmacists to improve blood pressure (BP). We then discuss opportunities and challenges to sustainment of team-based care models in primary care clinics. Multiple studies presented in this review have demonstrated that team-based care including pharmacists can improve BP management. Studies highlighted the cost-effectiveness of a team-based pharmacy intervention for BP control in primary care clinics. Little information was found on factors influencing sustainability of team-based care interventions to improve BP control. Future work is needed to determine the best populations to target with team-based BP programs and how to implement team-based approaches utilizing pharmacists in diverse clinical settings. Future studies need to not only identify unmet clinical needs but also address reimbursement issues and stakeholder engagement that may impact sustainment of team-based care interventions.
Gorostidi, Manuel; Sarafidis, Pantelis A; de la Sierra, Alejandro; Segura, Julian; de la Cruz, Juan J; Banegas, Jose R; Ruilope, Luis M
2013-08-01
Previous studies have examined control rates of office blood pressure (BP) in chronic kidney disease (CKD). However, recent evidence suggests major discrepancies between office and 24-hour BP values in hypertensive populations. This study examined concordance/discordance between office- and ambulatory-based BP control in a large cohort of patients with CKD. Cross-sectional. 5,693 hypertensive individuals with CKD stages 1-5 from the Spanish ABPM (ambulatory BP monitoring) Registry. Thresholds of 140/90 and 130/80 mm Hg for office BP and 24-hour ambulatory BP, respectively. Age, sex, body mass index, waist circumference, hypertension duration, kidney measures, diabetes, dyslipidemia, target-organ damage, and cardiovascular comorbid conditions. Misclassification of BP control as "white-coat" hypertension (office BP ≥140/90 mm Hg, 24-hour BP <130/80 mm Hg) or masked hypertension (office BP <140/90 mm Hg, 24-hour BP ≥130/80 mm Hg). Standardized office-based BP and 24-hour ABPM. Mean age was 61.0 ± 13.9 (SD) years and 52.6% were men. The proportion with white-coat hypertension was 28.8% (36.8% of patients with office BP ≥140/90 mm Hg) and that of masked hypertension was 7.0% (but 32.1% of patients with office BP <140/90 mm Hg). Female sex, aging, obesity, and target-organ damage were associated with white-coat hypertension; aging and obesity were associated with masked hypertension. Only 21.7% and 8.1% of the CKD population had office BP <140/90 and <130/80 mm Hg, respectively. In contrast, 43.5% of individuals had average 24-hour BP <130/80 mm Hg. Cross-sectional design, longitudinal associations cannot be established. Misclassification of BP control at the office was observed in 1 of 3 hypertensive patients with CKD. Ambulatory-based control rates were far better than office-based rates. Nevertheless, the burden of uncontrolled ambulatory BP and misclassification of BP control at the office constitutes a call for wider use of ABPM to evaluate the success of hypertension treatment in patients with CKD. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Toward a continuous 405-kyr-calibrated Astronomical Time Scale for the Mesozoic Era
NASA Astrophysics Data System (ADS)
Hinnov, Linda; Ogg, James; Huang, Chunju
2010-05-01
Mesozoic cyclostratigraphy is being assembled into a continuous Astronomical Time Scale (ATS) tied to the Earth's cyclic orbital parameters. Recognition of a nearly ubiquitous, dominant ~400-kyr cycling in formations throughout the era has been particularly striking. Composite formations spanning contiguous intervals up to 50 myr clearly express these long-eccentricity cycles, and in some cases, this cycling is defined by third- or fourth-order sea-level sequences. This frequency is associated with the 405-kyr orbital eccentricity cycle, which provides a basic metronome and enables the extension of the well-defined Cenozoic ATS to scale the majority of the Mesozoic Era. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, but with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS provide solutions to long-standing geologic problems of tectonics, eustasy, paleoclimate change, and rates of seafloor spreading.
Gong, Zimu; Medeiros, L. Jeffrey; Cortes, Jorge E.; Chen, Zi; Zheng, Lan; Li, Yan; Bai, Shi; Lin, Pei; Miranda, Roberto N.; Jorgensen, Jeffrey L.; McDonnell, Timothy J.; Wang, Wei; Kantarjian, Hagop M.
2017-01-01
The high fatality of patients with blast phase (BP) chronic myeloid leukemia (CML) necessitates identification of high-risk (HR) patients to prevent onset of BP. Here, we investigated the risk of BP based on additional chromosomal abnormality (ACA) profiles in a cohort of 2326 CML patients treated with tyrosine kinase inhibitors (TKIs). We examined the time intervals from initial diagnosis to ACA emergence (interval 1), from ACA emergence to onset of BP (interval 2), and survival after onset of BP (interval 3). Based on BP risk associated with each ACA, patients were stratified into intermediate-1, intermediate-2, and HR groups, with a median duration of interval 2 of unreached, 19.2 months, and 1.9 months, respectively. There was no difference in durations of intervals 1 or 3 among 3 groups. Including patients without ACAs who formed the standard-risk group, the overall 5-year cumulative probability of BP was 9.8%, 28.0%, 41.7%, and 67.4% for these 4 groups, respectively. The pre-BP disease course in those who developed BP was similar regardless of cytogenetic alterations, and 84.4% of BP patients developed BP within the first 5 years of diagnosis. In summary, interval 2 is the predominant determinant of BP risk and patient outcome. By prolonging the duration of interval 2, TKI therapy mitigates BP risk associated with low-risk ACAs or no ACAs but does not alter the natural course of CML with HR ACAs. Thus, we have identified a group of patients who have HR of BP and may benefit from timely alternative treatment to prevent onset of BP. PMID:29296906
NASA Astrophysics Data System (ADS)
Boulila, Slah; Charbonnier, Guillaume; Galbrun, Bruno; Gardin, Silvia
2015-07-01
The Valanginian sediments outcropping in the Vocontian Basin (SE France) exhibit striking marl-limestone alternations, which were formed under the influence of orbital forcing and which have served for geochronological and paleoenvironmental studies. Previous studies have suggested an obliquity forcing during the Late Valanginian interval, reflecting specific environmental conditions such as polar ice. Using a cyclostratigraphic correlation of previously studied sections and performing time-series analysis on the most complete Late Valanginian interval we argue that the climatic precession cycle is the primary driver of these marl-limestone alternations. In addition, we highlight the modulation of the precession by the ~ 100 and 405 kyr eccentricity cycles. We suggest that the cyclostratigraphic misinterpretation (i.e., obliquity-forcing hypothesis) results mainly from poorly preserved 405 kyr eccentricity cycles, due to local hiatuses and/or "missed beats". This study shows the potential of cyclostratigraphic correlations for the detection and quantification of differential hiatuses and/or "missed beats" within intrabasinal sequences, hence providing constraints on cyclostratigraphic interpretations. The recorded 405 kyr eccentricity cycle is of prominent amplitude, and controlled the fourth-order sea-level sequences. These latter are faithfully detected through cyclostratigraphically inferred sedimentation rate. Finally, we show that the well-known, pronounced lithostratigraphic markers/intervals in the basin were orbitally paced by the 405 kyr eccentricity extrema. This is a good argument for the strong impact of this cyclicity on the sedimentary processes, especially during greenhouse periods.
Turdi, Muyessar; Yang, Linsheng
2016-01-01
Tap water samples were collected from 180 families in four agricultural (KYR: Keyir, KRW: Kariwak, YTR: Yatur, DW: Dawanqi) and two pastoral areas (B: Bulong and Y: Yangchang) in Bay County, Xinjiang, China, and levels of seven trace elements (Cd, Cr, As Ni, Pb, Zn, Se) were analyzed using inductively-coupled plasma mass spectrometry (ICP-MS) to assess potential health risks. Remarkable spatial variations of contamination were observed. Overall, the health risk was more severe for carcinogenic versus non-carcinogenic pollutants due to heavy metal. The risk index was greater for children overall (Cr > As > Cd and Zn > Se for carcinogenic and non-carcinogenic elements, respectively). The total risk index was greater in agricultural areas (DW > KYR > YTR > KRW > B > Y). Total risk indices were greater where well water was the source versus fountain water; for the latter, the total health risk index was greater versus glacier water. Main health risk factors were Cr and As in DW, KYR, YTR, KRW, and B, and Zn, Cr, and As in the Y region. Overall, total trace element–induced health risk (including for DW adults) was higher than acceptable (10−6) and lower than priority risk levels (10−4) (KYR, YTR, KRW, Y, and B). For DW children, total health risk reached 1.08 × 10−4, higher than acceptable and priority risk levels (10−4). PMID:27669274
NASA Astrophysics Data System (ADS)
Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Tian, Wenqian; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong
2018-04-01
At the end of the Late Paleozoic Ice Age (LPIA) from late Early Permian to early Late Permian, the global climate was impacted by a prevailing megamonsoon and Gondwanan deglaciation. To better understand the abiotic and biotic responses to Milankovitch-forced climate changes during this time period, multi-element X-ray fluorescence (XRF) geochemistry analyses were conducted on 948 samples from the late Early-late Middle Permian Maokou Formation at Shangsi, South China. The Fe/Ti, S/Ti, Ba/Ti and Ca time series, which were calibrated with an existing "floating" astronomical time scale (ATS), show the entire suite of Milankovitch rhythms including 405 kyr long eccentricity, 128 and 95 kyr short eccentricity, 33 kyr obliquity and 20 kyr precession. Spectral coherency and cross-phase analysis reveals that chemical weathering (monitored by Fe/Ti) and upwelling (captured by S/Ti and Ba/Ti) are nearly antiphase in the precession band, which suggests a contrast between summer and winter monsoon intensities. Strong obliquity signal in the Ba/Ti series is proposed to derive from changes in thermohaline circulation intensity from glaciation dynamics in southern Gondwana. The abundance of foraminifer, brachiopod and ostracod faunas within the Maokou Formation were mainly controlled by the 1.1 Myr obliquity modulation cycle. The obliquity-forced high-nutrient and oxygen-depleted conditions generally produced a benthic foraminifer bloom, but threatened the brachiopod and ostracod faunas.
Equatorial Precession Drove Mid-Latitude Changes in ENSO-Scale Variation in the Earliest Miocene
NASA Astrophysics Data System (ADS)
Fox, B.; D'Andrea, W. J.; Lee, D. E.; Wilson, G. S.
2014-12-01
Foulden Maar is an annually laminated lacustrine diatomite deposit from the South Island of New Zealand. The deposit was laid down over ~100 kyr of the latest Oligocene and earliest Miocene, during the peak and deglaciation phase of the Mi-1 Antarctic glaciation event. At this time, New Zealand was located at approximately the same latitude as today (~45°S). Evidence from organic geochemical proxies (δD, δ13C) and physical properties (density, colour) indicates the presence of an 11-kyr cycle at the site. Although it is known that 11-kyr insolation (half-precession) cycles occur between the Tropics, this cycle is rarely seen in sedimentary archives deposited outside the immediate vicinity of the Equator. Records from Foulden Maar correlate well with the amplitude and phase of the modelled equatorial half-precession cycle for the earliest Miocene. High-resolution (50 µm) colour intensity measurements and lamina thickness measurements both indicate the presence of significant ENSO-like (2-8 year) variation in the Foulden Maar sediments. Early results from targeted lamina thickness measurements suggest that ENSO-band variation is modulated by the 11-kyr cycle, with power in the ENSO band increasing during periods of increased insolation at the Equator. This implies that equatorial half-precession had a significant effect on ENSO-like variation in the early Miocene, and that this effect was felt as far afield as the mid-latitudes of the Southern Hemisphere.
Transient nature of late Pleistocene climate variability.
Crowley, Thomas J; Hyde, William T
2008-11-13
Climate in the early Pleistocene varied with a period of 41 kyr and was related to variations in Earth's obliquity. About 900 kyr ago, variability increased and oscillated primarily at a period of approximately 100 kyr, suggesting that the link was then with the eccentricity of Earth's orbit. This transition has often been attributed to a nonlinear response to small changes in external boundary conditions. Here we propose that increasing variablility within the past million years may indicate that the climate system was approaching a second climate bifurcation point, after which it would transition again to a new stable state characterized by permanent mid-latitude Northern Hemisphere glaciation. From this perspective the past million years can be viewed as a transient interval in the evolution of Earth's climate. We support our hypothesis using a coupled energy-balance/ice-sheet model, which furthermore predicts that the future transition would involve a large expansion of the Eurasian ice sheet. The process responsible for the abrupt change seems to be the albedo discontinuity at the snow-ice edge. The best-fit model run, which explains almost 60% of the variance in global ice volume during the past 400 kyr, predicts a rapid transition in the geologically near future to the proposed glacial state. Should it be attained, this state would be more 'symmetric' than the present climate, with comparable areas of ice/sea-ice cover in each hemisphere, and would represent the culmination of 50 million years of evolution from bipolar nonglacial climates to bipolar glacial climates.
A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.
Miao, Fen; Fu, Nan; Zhang, Yuan-Ting; Ding, Xiao-Rong; Hong, Xi; He, Qingyun; Li, Ye
2017-11-01
Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation.
NASA Astrophysics Data System (ADS)
Pickering, K. T.; Scotchman, J. I.; Robinson, S. A.
2009-12-01
Analysis of the sedimentary record in deep time requires the deconvolution of tectonic and climatic drivers. The deep-marine siliciclastic systems in the Middle Eocene Ainsa-Jaca basin, Spanish Pyrenees, with their excellent outcrops and good temporal resolution, provide an opportunity to identify the relative importance of tectonic and climatic drivers on deposition over ~10 Myr at a time when the Earth’s climate was shifting from a greenhouse to icehouse conditions. The cumulative ~4 km of stratigraphy contains 8 sandy systems with a total of ~25 discrete channelized sandbodies that accumulated in water depths of ~400-800 m, and that were controlled by the ~400-kyr Milkankovitch frequency with modes, at ~100 kyr and ~41 kyr (possibly stacked ~23-kyr) influencing bottom-water conditions, causing periodic stratification in the water column across a submarine sill within the eastern, more proximal depositional systems in the Ainsa basin. We also identify a range of sub-Milankovitch millennial-scale cycles (Scotchman et al. 2009). In the Ainsa basin, the interplay of basin-bounding growth anticlines defined and controlled the position and stacking patterns of the sandy systems and their constituent channelized sandbodies, in a process of seesaw tectonics by: (i) Westward lateral offset-stacking of channelized sandbodies due to growth of the eastern anticline (Mediano), and (ii) Eastward (orogenwards) back-stepping of the depositional axis of each sandy system, due to phases of relative uplift of the opposing Boltaña growth anticline. The first-order control on accommodation, and the flow paths, for deep-marine sedimentation were tectonic, with the pacing of the supply of coarse siliciclastics being driven by global climatic processes, particularly Milankovitch-type frequencies. The dominance of eccentricity and obliquity is similar to results from the continental lacustrine Eocene Green River Formation, and the observations from ODP Site 1258 that the early to middle Eocene climatic record is characterized by eccentricity-modulated precession cycles (Westerhold & Rohl 2009), The age model for the Ainsa basin yields an average sediment accumulation rate of ~40 cm kyr-1, that is consistent with that inferred from the spectral analysis on bioturbation intensity for fine-grained sedimentation (~30 cm kyr-1). References Scotchman, J.I., Pickering, K.T. & Robinson, S.A. 2009. Sub-Milankovitch millennial-scale climate variability in Middle Eocene deep-marine sediments. AGU Fall Meeting San Francisco 2009. Westerhold, T. & Rohl, U. 2009. High resolution cyclostratigraphy of the early Eocene - new insights into the origin of the Cenozoic cooling trend. Climate of the Past, 5, 309-327.
NASA Astrophysics Data System (ADS)
Gogorza, C. S.
2008-05-01
I present a review of the research carried out by the Group of Geomagnetism at Universidad Nacional del Centro (Argentina) on paleointensity records from bottom sediments from three lakes: Escondido (Gogorza et al., 2004), Moreno (Gogorza et al., 2006) and El Trébol (Gogorza et al., 2007; Irurzun et al., 2008) (South-Western Argentina, 41° S, 71° 30'W). Based on these studies, we construct a first relative (RPI) stack for South-Western Argentina covering the last 21,000 14C years BP. The degree of down-core homogeneity of magnetic mineral content as well as magnetic mineral concentration and grain sizes vary between all lakes and are quantified by high-resolution rock magnetic measurements. Rock magnetic studies suggest that the main carriers of magnetization are ferrimagnetic minerals, predominantly pseudo-single domain magnetite The remanent magnetization at 20 mT (NRM20mT) was normalized using the anhysteric remanent magnetization at 20mT (ARM20mT), the saturation of the isothermal remanent at 20 mT (SIRM20mT) and the low field magnetic susceptibility {k}. Coherence function analysis indicates that the normalised records are free of environmental influences. Our paleointensity (NRM20mT/ ARM20mT) versus age curve shows a good agreement with published records from other parts of the world suggesting that, in suitable sediments, paleointensity of the geomagnetic field can give a globally coherent, dominantly dipolar signal. References Gogorza, C.S.G., Irurzun, M.A., Chaparro, M.A.E., Lirio, J.M., Nuñez, H., Bercoff, P.G., Sinito, A.M. Relative Paleointensity of the Geomagnetic Field over the last 21,000 years bp from Sediment Cores, Lake El Trébol, (Patagonia, Argentina). Earth, Planets and Space. V58(10), 1323-1332. 2006. Gogorza, C.S.G., Sinito, A.M., Lirio, J.M., Nuñez, H., Chaparro, M.A.E., Bertorello, H.R. Paleointensity Studies on Holocene-Pleistocene Sediments from Lake Escondido, Argentina. Physical of the Earth and Planetary Interiors, Elsevier, ISSN 0031-9201. V145, 219-238. 2004. Gogorza, C.S.G., Torcida, S., Irurzun, A., Chaparro, M.A.E., Sinito, A.M. A Pseudo-Thellier Relative Paleointensity Record in Sediments From Lake El Trébol, South Argentina. Geofísica Internacional. In Revision. 2007. Irurzun, M.A., Gogorza, C.S.G., Torcida, S., Lirio, J.M., Núnez, H., Bercoff, P., Chaparro, M.A.E., Sinito, A.M. Rock Magnetic Properties and Relative Paleointensity Stack Between 11 and 21 14C kyr B.P. from Sediment Cores, Lake Moreno (Patagonia, Argentina). In Preparation. 2008.
WS-BP: An efficient wolf search based back-propagation algorithm
NASA Astrophysics Data System (ADS)
Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah
2015-05-01
Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.
Ding, Xiaorong; Zhang, Yuanting; Tsang, Hon Ki
2016-02-01
Continuous blood pressure (BP) measurement without a cuff is advantageous for the early detection and prevention of hypertension. The pulse transit time (PTT) method has proven to be promising for continuous cuffless BP measurement. However, the problem of accuracy is one of the most challenging aspects before the large-scale clinical application of this method. Since PTT-based BP estimation relies primarily on the relationship between PTT and BP under certain assumptions, estimation accuracy will be affected by cardiovascular disorders that impair this relationship and by the calibration frequency, which may violate these assumptions. This study sought to examine the impact of heart disease and the calibration interval on the accuracy of PTT-based BP estimation. The accuracy of a PTT-BP algorithm was investigated in 37 healthy subjects and 48 patients with heart disease at different calibration intervals, namely 15 min, 2 weeks, and 1 month after initial calibration. The results showed that the overall accuracy of systolic BP estimation was significantly lower in subjects with heart disease than in healthy subjects, but diastolic BP estimation was more accurate in patients than in healthy subjects. The accuracy of systolic and diastolic BP estimation becomes less reliable with longer calibration intervals. These findings demonstrate that both heart disease and the calibration interval can influence the accuracy of PTT-based BP estimation and should be taken into consideration to improve estimation accuracy.
NASA Astrophysics Data System (ADS)
Noble, Paula; Zimmerman, Susan; Ball, Ian; Adams, Kenneth; Maloney, Jillian; Smith, Shane
2016-04-01
A mid Holocene dry period has been reported from lake records in the Great Basin and Sierra Nevada, yet the spatial and temporal extent of this interval is not well understood. We present evidence for a millennial-scale interval of high winter precipitation (neopluvial) at the end of the mid Holocene in the Lake Tahoe-Pyramid Lake watershed in the northern Sierra Nevada that reached its peak ˜3.7 kcal yr BP. A transect of 4 cores recovered from Fallen Leaf Lake in the Tahoe Basin were dated using AMS14C on plant macrofossils, and analyzed using scanning XRF, C and N elemental and stable isotope measurements, and diatoms as paleoclimate proxies. Fallen Leaf Lake is a deep glacially-derived lake situated in the Glen Alpine Valley at an elevation of 1942m, ˜45 m above the level of Lake Tahoe. In Fallen Leaf Lake, the end of the neopluvial is dated at 3.65 ± 0.09 kcal yr BP, and is the largest post-glacial signal in the cores. The neopluvial interval is interpreted to be a period of increased snowpack in the upper watershed, supported by depleted g δ13Corg (-27.5) values, negative baseline shifts in TOC and TN, lower C:N, and high abundances of Aulacoseira subarctica, a winter-early spring diatom. Collectively, these proxies indicate cooler temperatures, enhanced mixing, and/or shortened summer stratification resulting in increased algal productivity relative to terrestrial inputs. The neopluvial interval ends abruptly at 3.65 ka, with a change from mottled darker opaline clay to a homogeneous olive clay with decreased A. subarctica and opal, and followed by a 50% reduction in accumulation rates. After this transition δ13Corg becomes enriched by 2‰ and TOC, TN, and C:N all show the start of positive trends that continue through the Holocene. Pyramid Lake is an endorheic basin situated at the terminal end of the watershed, and inflow arrives from the Lake Tahoe basin via the Truckee River. At Pyramid Lake, existing ages on paleo-shorelines indicate a significant lake-level rise beginning at some point after 5 kcal yr BP and reaching a highstand of about 1186 m between 3.8 - 4.1 kcal yr BP (Briggs et al., 2005), but new OSL ages on Holocene shorelines are pending. In the Walker, Mono, and Owens lake basins, the neopluvial shorelines represent the highest late Holocene shorelines (Stine, 1990; Adams et al., 2014). Collectively, these studies indicate that the neopluvial and subsequent aridification intervals preserved in Fallen Leaf Lake sediments were at least regional in scale, affecting the watersheds in the northern Sierra Nevada-western Great Basin
Thermogenic methane release as a cause for the long duration of the PETM
Frieling, Joost; Svensen, Henrik H.; Planke, Sverre; Cramwinckel, Margot J.; Selnes, Haavard; Sluijs, Appy
2016-01-01
The Paleocene–Eocene Thermal Maximum (PETM) (∼56 Ma) was a ∼170,000-y (∼170-kyr) period of global warming associated with rapid and massive injections of 13C-depleted carbon into the ocean–atmosphere system, reflected in sedimentary components as a negative carbon isotope excursion (CIE). Carbon cycle modeling has indicated that the shape and magnitude of this CIE are generally explained by a large and rapid initial pulse, followed by ∼50 kyr of 13C-depleted carbon injection. Suggested sources include submarine methane hydrates, terrigenous organic matter, and thermogenic methane and CO2 from hydrothermal vent complexes. Here, we test for the contribution of carbon release associated with volcanic intrusions in the North Atlantic Igneous Province. We use dinoflagellate cyst and stable carbon isotope stratigraphy to date the active phase of a hydrothermal vent system and find it to postdate massive carbon release at the onset of the PETM. Crucially, however, it correlates to the period within the PETM of longer-term 13C-depleted carbon release. This finding represents actual proof of PETM carbon release from a particular reservoir. Based on carbon cycle box model [i.e., Long-Term Ocean–Atmosphere–Sediment Carbon Cycle Reservoir (LOSCAR) model] experiments, we show that 4–12 pulses of carbon input from vent systems over 60 kyr with a total mass of 1,500 Pg of C, consistent with the vent literature, match the shape of the CIE and pattern of deep ocean carbonate dissolution as recorded in sediment records. We therefore conclude that CH4 from the Norwegian Sea vent complexes was likely the main source of carbon during the PETM, following its dramatic onset. PMID:27790990
Earthquake Clustering on Normal Faults: Insight from Rate-and-State Friction Models
NASA Astrophysics Data System (ADS)
Biemiller, J.; Lavier, L. L.; Wallace, L.
2016-12-01
Temporal variations in slip rate on normal faults have been recognized in Hawaii and the Basin and Range. The recurrence intervals of these slip transients range from 2 years on the flanks of Kilauea, Hawaii to 10 kyr timescale earthquake clustering on the Wasatch Fault in the eastern Basin and Range. In addition to these longer recurrence transients in the Basin and Range, recent GPS results there also suggest elevated deformation rate events with recurrence intervals of 2-4 years. These observations suggest that some active normal fault systems are dominated by slip behaviors that fall between the end-members of steady aseismic creep and periodic, purely elastic, seismic-cycle deformation. Recent studies propose that 200 year to 50 kyr timescale supercycles may control the magnitude, timing, and frequency of seismic-cycle earthquakes in subduction zones, where aseismic slip transients are known to play an important role in total deformation. Seismic cycle deformation of normal faults may be similarly influenced by its timing within long-period supercycles. We present numerical models (based on rate-and-state friction) of normal faults such as the Wasatch Fault showing that realistic rate-and-state parameter distributions along an extensional fault zone can give rise to earthquake clusters separated by 500 yr - 5 kyr periods of aseismic slip transients on some portions of the fault. The recurrence intervals of events within each earthquake cluster range from 200 to 400 years. Our results support the importance of stress and strain history as controls on a normal fault's present and future slip behavior and on the characteristics of its current seismic cycle. These models suggest that long- to medium-term fault slip history may influence the temporal distribution, recurrence interval, and earthquake magnitudes for a given normal fault segment.
Complexity in Matuyama-Brunhes polarity transitions from North Atlantic IODP/ODP deep-sea sites
NASA Astrophysics Data System (ADS)
Channell, J. E. T.
2017-06-01
Integrated Ocean Drilling Program (IODP) Expedition 303 to the North Atlantic provided 16 records of the Matuyama-Brunhes polarity transition (MBT), based on u-channel and discrete samples, from holes drilled at three sites (Sites U1304, U1305 and U1306) that have mean Brunhes sedimentation rates of 16-18 cm/kyr. The MBT occurs during the transition from marine isotope stage (MIS) 19c to MIS 18e, with mid-point at ∼773 ka, and a transition duration of ∼8 kyr. Combining the new MBT records, including one new record for the top Jaramillo, with previously published North Atlantic MBT records (ODP Sites 983, 984 and 1063) yields a total of more than 20 high-sedimentation-rate polarity transition records. The MBT yields a repetitive pattern of transitional field states as virtual geomagnetic poles (VGPs) move from high southern latitudes to loop over the Pacific, group in NE Asia, and transit into the mid-latitude South Atlantic before reaching high latitudes in the Northern Hemisphere. The VGPs for the top Jaramillo transition feature a loop over the Pacific, then a NE Asia group before transit over the Indian Ocean to high southerly latitudes. The North Atlantic MBT records described here contrast with longitudinally-constrained VGP paths for the MBT, indicating that relatively low sedimentation rate (∼4 cm/kyr) records of the MBT are heavily smoothed by the remanence acquisition process and do not adequately represent the MBT field. The VGPs at the MBT and top Jaramillo, as measured in the North Atlantic, have similarities with excursion (Iceland Basin) VGP paths, and were apparently guided by maxima in downward vertical flux similar to those seen in the modern non-dipole (ND) field, implying longevity in ND features through time.
Comparing Four Age Model Techniques using Nine Sediment Cores from the Iberian Margin
NASA Astrophysics Data System (ADS)
Lisiecki, L. E.; Jones, A. M.; Lawrence, C.
2017-12-01
Interpretations of paleoclimate records from ocean sediment cores rely on age models, which provide estimates of age as a function of core depth. Here we compare four methods used to generate age models for sediment cores for the past 140 kyr. The first method is based on radiocarbon dating using the Bayesian statistical software, Bacon [Blaauw and Christen, 2011]. The second method aligns benthic δ18O to a target core using the probabilistic alignment algorithm, HMM-Match, which also generates age uncertainty estimates [Lin et al., 2014]. The third and fourth methods are planktonic δ18O and sea surface temperature (SST) alignments to the same target core, using the alignment algorithm Match [Lisiecki and Lisiecki, 2002]. Unlike HMM-Match, Match requires parameter tuning and does not produce uncertainty estimates. The results of these four age model techniques are compared for nine high-resolution cores from the Iberian margin. The root mean square error between the individual age model results and each core's average estimated age is 1.4 kyr. Additionally, HMM-Match and Bacon age estimates agree to within uncertainty and have similar 95% confidence widths of 1-2 kyr for the highest resolution records. In one core, the planktonic and SST alignments did not fall within the 95% confidence intervals from HMM-Match. For this core, the surface proxy alignments likely produce more reliable results due to millennial-scale SST variability and the presence of several gaps in the benthic δ18O data. Similar studies of other oceanographic regions are needed to determine the spatial extents over which these climate proxies may be stratigraphically correlated.
Astrochronology of a Late Oligocene to Early Miocene Magnetostratigraphy from the Northwest Atlantic
NASA Astrophysics Data System (ADS)
van Peer, T. E.; Xuan, C.; Liebrand, D.; Lippert, P. C.; Wilson, P. A.
2016-12-01
The Oligocene-Miocene Boundary is defined by the geomagnetic polarity reversal C6Cn.2n/C6Cn.2r with an astronomically tuned age of 23 Ma. For late Oligocene to early Miocene reversals, only a few records (mainly from the equatorial Pacific and South Atlantic) integrate magneto- and cyclo-stratigraphy with astronomical tuning. Reversal ages acquired from these records show differences up to 100 kyr. We report new astronomically tuned ages for reversals between 21-26.5 Ma, based on integrated palaeomagnetic and X-Ray Fluorescence (XRF) data from rapidly accumulated drift sediments (mean sedimentation rate of 2.5 cm/kyr) at Integrated Ocean Drilling Program (IODP) Site U1406 (northwest Atlantic). The natural remanence preserved in the sediments is relatively weak (especially at high demagnetisation steps) and prone to influence from measurement noise. We introduce an optimisation protocol to improve the estimation of component directions used to define the reversals. For each 1-cm interval measurement, the protocol searches for the combination of a fixed number of steps of demagnetisation data that minimises the maximum angular deviation, statistically excluding the noisy measurement steps. For the tuning, we use the logarithm of the calcium over potassium ratio ln(Ca/K) from XRF core scanning data, a proxy of carbonate content in the sediment. Spectral and wavelet analyses of the 140-m long ln(Ca/K) record highlight dominant obliquity (including the 178 and 1200 kyr modulation) and additional eccentricity forcing. Supported by preliminary stable isotope analysis on benthic foraminifera, we tuned ln(Ca/K) minima to obliquity minima and eccentricity maxima. The resulting age model yield new independent ages for all reversals between C6Ar/C6AAn to C8r/C9n. Our results are generally consistent (within an obliquity cycle) with the Ocean Drilling Program (ODP) Site 1090 age model [Billups et al., 2004], but deviate up to 80 kyr relative to ODP Site 1218 [Pälike et al., 2006] and ATNTS2004 [Lourens et al., 2004] age models. The concurrent high-fidelity reversal ages from ODP Site 1090 and IODP Site U1406 reconcile discrepancies in the early Miocene GPTS, and provide improved temporal constraints, which are critical to the study of palaeomagnetic and environmental changes of this time interval.
NASA Astrophysics Data System (ADS)
Olsen, P. E.; Mundil, R.; Kent, D.; Rasmussen, C.
2017-12-01
Two questions addressed by the CPCP are: 1) is Milankovitch-paced climate cyclicity recorded in the fluvial Late Triassic age Chinle Formation ( 227-202 Ma); and 2) do geochronological data from the Chinle support the Newark-Hartford astrochronological polarity time scale (1) (APTS). To these ends we examined the upper 157 m (stratigraphic thickness) of Petrified Forest National Park core 1A (Owl Rock, Petrified Forest, and upper Sonsela members), consisting mostly of massive red paleosols and less important fluvial sandstones. A linear age model tied to new U-Pb zircon CA ID-TIMS dates from core 1A, consistent with published data from outcrop (2), yields a duration of about 5 Myr for this interval. Magnetic susceptibility variations, interpreted as reflecting penecontemporaneous soil and sandstone redox conditions, show a clear 12 m cycle corresponding to a 400 kyr cycle based on Fourier analysis in both core and hole. Similar cyclicity is apparent in spectrophotometric data, largely reflecting hematite variability. Weak, higher frequency cycles are present consistent with 100 kyr variability. There is no interpretable 20 kyr signal. Such cyclicity is not an anticipated direct effect of Milankvitch insolation variations, but must reflect non-linear integration of variability that changes dramatically at the eccentricity-scale, brought about by the sedimentary and climate systems. Our results support a direct 405 kyr-level correlation between the fluvial medial Chinle and lacustrine Newark Basin section (middle Passaic Formation), consistent with new and published (3) paleomagnetic polarity stratigraphy from the Chinle, showing that the Milankovitch eccentricity cycles are recorded in lower accumulation rate fluvial systems. Our results also independently support the continuity of the Newark Basin section and corroborate the Newark-Hartford APTS, not allowing for a multi-million year hiatus in the Passaic Formation, as has been asserted (4). We anticipate further testing our hypothesis by integrating additional results from U-Pb zircon geochronology and rock magnetic analyses of core and outcrop of the Chinle Formation. 1 Kent+ 2017 Earth Sci Rev 166:153-180; 2 Ramezani+ 2011 GSA Bull 123:2142-2159; 3 Steiner & Lucas 2000 JGR 105:25,791-25,808; 4 Tanner & Lucas 2015 Stratigraphy 12:47-65.
Pleistocene Indian Monsoon rainfall variability dominated by obliquity
NASA Astrophysics Data System (ADS)
Gebregiorgis, D.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Nuernberg, D.; Frank, M.
2015-12-01
The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea while Quaternary proxy records of Indian monsoon precipitation are still lacking. Here we utilize scanning x-ray fluorescence (XRF) data from a sediment core obtained by the IODP vessel JOIDES Resolution in the Andaman Sea (Site 17) to investigate changes in sediment supply from the peak monsoon precipitation regions to the core site. We use Ti/Ca and K/Rb ratios to trace changes in terrigenous flux and weathering regime, respectively, while Zr/Rb ratios suggest grain size variations. The age model of Site 17 is based on correlation of benthic C. wuellerstorfi/C. mundulus δ18O data to the LR04 global benthic δ18O stack at a resolution of ~3 kyr (Lisiecki and Raymo, 2005) for the last 2 Myrs. In its youngest part the age model is supported by five 14C ages on planktic foraminifera and the youngest Toba ash layer (Ali et al., 2015) resulting in a nearly constant sedimentation rate of ~6.5 cm/kyr. Frequency analysis of the 4 mm resolution Ti/Ca, K/Rb, and Zr/Rb time series using the REDFIT program (Schulz and Mudelsee, 2002), reveals the three main Milankovitch orbital cycles above the 90% confidence level. Depth domain spectral analysis reveals the presence of significant cyclicity at wavelengths of 28.5 and 2.8 m corresponding to the ~400 kyr and ~41 kyr cycles, respectively, during the last 2 Myr. These records suggest that Indian monsoon variability has varied in the obliquity and eccentricity bands, the latter in particular after the mid Pleistocene transition (MPT), while strong precession forcing is lacking in this super-high resolution record. Northern summer insolation and Southern Hemisphere latent heat export are out of phase during precessional cycles, but in phase in the obliquity band, which indicates that Indian monsoon precipitation has likely been more sensitive to both NH pull and SH push mechanisms (Clemens and Prell, 2003). References Ali, S., et al., 2015. Geochem., Geophy., Geosys., 16, 505-521. Clemens, S.C. and Prell, W.L., 2003. Marine Geology, 201(1): 35-51. Lisiecki, L. E. and M. E. Raymo ,2005. Paleoceanography, 20, PA1003. Schulz, M., and Mudelsee, M., 2002. Computers & Geosciences, v. 28, p. 421-426.
Ding, Xiaorong; Yan, Bryan P; Zhang, Yuan-Ting; Liu, Jing; Zhao, Ni; Tsang, Hon Ki
2017-09-14
Cuffless technique enables continuous blood pressure (BP) measurement in an unobtrusive manner, and thus has the potential to revolutionize the conventional cuff-based approaches. This study extends the pulse transit time (PTT) based cuffless BP measurement method by introducing a new indicator - the photoplethysmogram (PPG) intensity ratio (PIR). The performance of the models with PTT and PIR was comprehensively evaluated in comparison with six models that are based on sole PTT. The validation conducted on 33 subjects with and without hypertension, at rest and under various maneuvers with induced BP changes, and over an extended calibration interval, respectively. The results showed that, comparing to the PTT models, the proposed methods achieved better accuracy on each subject group at rest state and over 24 hours calibration interval. Although the BP estimation errors under dynamic maneuvers and over extended calibration interval were significantly increased for all methods, the proposed methods still outperformed the compared methods in the latter situation. These findings suggest that additional BP-related indicator other than PTT has added value for improving the accuracy of cuffless BP measurement. This study also offers insights into future research in cuffless BP measurement for tracking dynamic BP changes and over extended periods of time.
Astronomical calibration of the geological timescale: closing the middle Eocene gap
NASA Astrophysics Data System (ADS)
Westerhold, T.; Röhl, U.; Frederichs, T.; Bohaty, S. M.; Zachos, J. C.
2015-09-01
To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.
Calcareous microfossil-based orbital cyclostratigraphy in the Arctic Ocean
Marzen, Rachel; DeNinno, Lauren H.; Cronin, Thomas M.
2016-01-01
Microfaunal and geochemical proxies from marine sediment records from central Arctic Ocean (CAO) submarine ridges suggest a close relationship over the last 550 thousand years (kyr) between orbital-scale climatic oscillations, sea-ice cover, marine biological productivity and other parameters. Multiple paleoclimate proxies record glacial to interglacial cycles. To understand the climate-cryosphere-productivity relationship, we examined the cyclostratigraphy of calcareous microfossils and constructed a composite Arctic Paleoclimate Index (API) "stack" from benthic foraminiferal and ostracode density from 14 sediment cores. Following the hypothesis that API is driven mainly by changes in sea-ice related productivity, the API stack shows the Arctic experienced a series of highly productive interglacials and interstadials every ∼20 kyr. These periods signify minimal ice shelf and sea-ice cover and maximum marine productivity. Rapid transitions in productivity are seen during shifts from interglacial to glacial climate states. Discrepancies between the Arctic API curves and various global climatic, sea-level and ice-volume curves suggest abrupt growth and decay of Arctic ice shelves related to climatic and sea level oscillations.
NASA Astrophysics Data System (ADS)
Hennissen, Jan A. I.; Head, Martin J.; De Schepper, Stijn; Groeneveld, Jeroen
2014-06-01
The position of the North Atlantic Current (NAC) during the intensification of Northern Hemisphere glaciation (iNHG) has been evaluated using dinoflagellate cyst assemblages and foraminiferal geochemistry from a 260 kyr interval straddling the base of the Quaternary System from two sites: eastern North Atlantic Deep Sea Drilling Project Site 610 in the path of the present NAC and central North Atlantic Integrated Ocean Drilling Program Site U1313 in the subtropical gyre. Stable isotope and foraminiferal Mg/Ca analyses confirm cooling near the marine isotope stage (MIS) G7-G6 transition (2.74 Ma). However, a continued dominance of the dinoflagellate cyst Operculodinium centrocarpum sensu Wall and Dale (1966) indicates an active NAC in the eastern North Atlantic for a further 140 kyr. At MIS 104 ( 2.60 Ma), a profound dinoflagellate cyst assemblage turnover indicates NAC shutdown in the eastern North Atlantic, implying elevated atmospheric pressure over the Arctic and a resulting shift in the westerlies that would have driven the NAC. These findings challenge recent suggestions that there was no significant southward shift of the NAC or the Arctic Front during iNHG, and reveal a fundamental climatic reorganization near the base of the Quaternary.
NASA Astrophysics Data System (ADS)
Tofelde, Stefanie; Schildgen, Taylor F.; Savi, Sara; Pingel, Heiko; Wickert, Andrew D.; Bookhagen, Bodo; Wittmann, Hella; Alonso, Ricardo N.; Cottle, John; Strecker, Manfred R.
2017-09-01
Fluvial fill terraces in intermontane basins are valuable geomorphic archives that can record tectonically and/or climatically driven changes of the Earth-surface process system. However, often the preservation of fill terrace sequences is incomplete and/or they may form far away from their source areas, complicating the identification of causal links between forcing mechanisms and landscape response, especially over multi-millennial timescales. The intermontane Toro Basin in the southern Central Andes exhibits at least five generations of fluvial terraces that have been sculpted into several-hundred-meter-thick Quaternary valley-fill conglomerates. New surface-exposure dating using nine cosmogenic 10Be depth profiles reveals the successive abandonment of these terraces with a 100 kyr cyclicity between 75 ± 7 and 487 ± 34 ka. Depositional ages of the conglomerates, determined by four 26Al/10Be burial samples and U-Pb zircon ages of three intercalated volcanic ash beds, range from 18 ± 141 to 936 ± 170 ka, indicating that there were multiple cut-and-fill episodes. Although the initial onset of aggradation at ∼1 Ma and the overall net incision since ca. 500 ka can be linked to tectonic processes at the narrow basin outlet, the superimposed 100 kyr cycles of aggradation and incision are best explained by eccentricity-driven climate change. Within these cycles, the onset of river incision can be correlated with global cold periods and enhanced humid phases recorded in paleoclimate archives on the adjacent Bolivian Altiplano, whereas deposition occurred mainly during more arid phases on the Altiplano and global interglacial periods. We suggest that enhanced runoff during global cold phases - due to increased regional precipitation rates, reduced evapotranspiration, or both - resulted in an increased sediment-transport capacity in the Toro Basin, which outweighed any possible increases in upstream sediment supply and thus triggered incision. Compared with two nearby basins that record precessional (21-kyr) and long-eccentricity (400-kyr) forcing within sedimentary and geomorphic archives, the recorded cyclicity scales with the square of the drainage basin length.
NASA Astrophysics Data System (ADS)
Kemp, A. E. S.; Grigorov, I.; Pearce, R. B.; Naveira Garabato, A. C.
2010-08-01
The Antarctic Polar Front is an important biogeochemical divider in the Southern Ocean. Laminated diatom mat deposits record episodes of massive flux of the diatom Thalassiothrix antarctica beneath the Antarctic Polar Front and provide a marker for tracking the migration of the Front through time. Ocean Drilling Program Sites 1091, 1093 and 1094 are the only deep piston cored record hitherto sampled from the sediments of the circumpolar biogenic opal belt. Mapping of diatom mat deposits between these sites indicates a glacial-interglacial front migration of up to 6 degrees of latitude in the early/mid Pleistocene. The mid-Pleistocene transition marks a stepwise minimum 7° northward migration of the locus of the Polar Front sustained for about 450 kyr until an abrupt southward return to a locus similar to its modern position and further south than any mid-Pleistocene locus. This interval from a "900 ka event" that saw major cooling of the oceans and a δ 13C minimum through to the 424 ka Mid-Brunhes Event at Termination V is also seemingly characterised by 1) sustained decreased carbonate in the sub-tropical south Atlantic, 2) reduced strength of Antarctic deep meridional circulation, 3) lower interglacial temperatures and lower interglacial atmospheric CO 2 levels (by some 30 per mil) than those of the last 400 kyr, evidencing less complete deglaciation. This evidence is consistent with a prolonged period lasting 450 kyr of only partial ventilation of the deep ocean during interglacials and suggests that the mechanisms highlighted by recent hypotheses linking mid-latitude atmospheric conditions to the extent of deep ocean ventilation and carbon sequestration over glacial-interglacial cycles are likely in operation during the longer time scale characteristic of the mid-Pleistocene transition. The cooling that initiated the "900 ka event" may have been driven by minima in insolation amplitude related to eccentricity modulation of precession that also affected low latitude climates as marked by threshold changes in the African monsoon system. The major thresholds in earth system behaviour through the mid-Pleistocene transition were likely governed by an interplay of the 100 kyr and 400 kyr eccentricity modulation of precession.
Stratigraphy and tephra of the Kibish Formation, southwestern Ethiopia.
Brown, Francis H; Fuller, Chad R
2008-09-01
The Kibish Formation in southwestern Ethiopia, with an aggregate thickness of approximately 105 m, consists of lacustrine, marginal lacustrine, and deltaic deposits. It is divided into four members numbered I to IV on the basis of erosion surfaces (disconformities) between the strata of each member. It overlies the Mursi and Nkalabong formations, the latter of which is here shown to correlate with the Shungura Formation. Tephra layers in each member allow for secure correlation between geographically separated sections on the basis of the composition of their volcanic glass. Members I, III, and IV of the Kibish Formation appear to have been deposited at the same times as sapropels S7 (197 ka), S4 (104 ka), and S1 (8 ka) in the eastern Mediterranean Sea, respectively. We correlate the KHS Tuff of the Kibish Formation with a >154-kyr-old unnamed tuff in the Konso Formation. Tephra in Member IV may derive from Mount Wenchi, a volcano situated on the divide between the Omo and Blue Nile drainage basins. Thin-bedded sedimentary layers probably represent annual deposition reflecting rapid sedimentation (approximately 30 m/kyr) of parts of the formation. This conclusion is supported by variation in paleomagnetic inclination through a sequence of these layers at KHS. Two fossils of early Homo sapiens (Omo I and Omo II) derive from Member I. Their stratigraphic placement is confirmed by analysis of the KHS Tuff in the lower part of Member II at both fossil sites. The KHS Tuff lies above a disconformity, which itself lies above the fossils at both sites. (40)Ar/(39)Ar dates provide an estimated age of approximately 195 kyr for these fossils. Omo III, a third fossil H. sapiens, probably also derives from Member I of the Kibish Formation and is of similar age. Hominin fossils from AHS, a new site, also derive from Member I. Hominin fossils from CHS can only be placed between 104 ka and 10 ka, the H. sapiens specimen from JHS is most likely 9-13 kyr in age, and a partial skeleton of H. sapiens from Pelvic Corner is most likely approximately 6.6 kyr in age.
Ice Age Reboot: Thermohaline Circulation Crisis during the Mid-Pleistocene Transition
NASA Astrophysics Data System (ADS)
Pena, L.; Goldstein, S. L.
2014-12-01
The mid-Pleistocene transition (MPT) marked a fundamental change in glacial-interglacial periodicity, when it increased from ~41- to 100-kyr cycles and developed higher amplitude climate variability. Because it took place without significant changes in the Milankovitch forcing, this fundamental change must reflect either non-linear responses of the climate system to these external forcings, or internal changes in the ocean-atmosphere-cryosphere system that led to longer periodicities and more intense glacial periods. We document using Nd isotopes a major disruption of the ocean thermohaline circulation (THC) system during the MPT between MIS 25-21 at ~950-860 ka, which effectively marks the first 100-kyr cycle, including an exceptional weakening through critical interglacial MIS 23 at ~900 ka. The data are from ODP Sites 1088 (41°8.163'S, 13°33.77'E, 2082m) and 1090 (42°54.82'S, 8°53.98E', 3702m) in the SE Atlantic Subantarctic Zone, near the upper and lower boundaries of NADW and Circumpolar Deep Water (CDW). Given evidence for nearly stable NADW and North Pacific Water (NPW) ɛNd-values over the last 2 Ma, we interpret the ɛNd variations to reflect changes in the NADW:NPW mixing fractions. During the studied pre-MPT 41-kyr world (MIS 31-25, 1,100-950 ka), at both sites the differences in glacial and interglacial ɛNd-values are small, indicating strong glacial as well as interglacial export of NADW. A major weakening of NADW export occurred during MIS 24-22, including MIS 23, which is unique as the only known interglacial in which the THC did not strengthen, and thus can be considered as a 'trans-glacial' period. The recovery into the post-MPT 100-kyr world is characterized by continued weak glacial THC. We conclude that the MPT ocean circulation crisis 'rebooted' the pacing and intensity of ice ages and facilitated the coeval drawdown of atmospheric CO2 and high latitude ice sheet growth, generating the conditions that stabilized 100-kyr cycles.
NASA Astrophysics Data System (ADS)
Vidal, Laurence; Jenna, Hage-Hassen; Demory, François; Develle, Anne-Lise; van Campo, Elise; Elias, Ata
2016-04-01
The reconstruction of the Levantine post-glacial environmental evolution is essential to understand the interactions between variability of regional water cycle, dynamics of the global climate, and cultural evolution. We present a paleolacustrine record from the karstic Yammouneh basin (34.06N-34.09N; 36.0E-36.03E, 1360 m a.s.l.), located on the eastern flank of Mount Lebanon (northern Levant). Holocene sediments (retrieved from gully and a trenbch) (1.5 to 3.6 m thick) consist of pale lacustrine chalk interrupted by an ash layer and remarkable centimetric beds of ocher to dark brown silty clays used, in addition to 14C ages, as stratigraphical markers. Lacustrine biogenic remains are diversified and abundant (ostracods, gastropods, charophytes, chlorophyceae, plant debris…) all reflecting a freswater, generally shallow waterbody. We analysed the sediment mineralogy and geochemistry, TOM contents, magnetic properties, pollen and calcite oxygen isotope composition derived from ostracod shells. These sequences are compared to former data from 2 trenches and 1 core collected in different points of the basin (Daeron et al., 2007; Develle et al., 2009, 2010). A total of 42 AMS 14C dating (partly carbonized wood) provide a solid chronology from the YD to present. Results reveal the following main features : 1- intervals dominated by authigenic calcite suggest that the major water supply was the karstic springs, which still deliver Ca-rich water and low surface runoff; 2- the lake oxygen isotope composition has been impacted by the source isotope composition throughout the Holocene and by increased inland rainfall during the early Holocene; 3- a decideous oak forest, implying much more soil water availability than today, was developed around the lake from ca. 11.5 to 9.5 kyr (the very bad pollen preservation after 8.3 kyr reflects oxidation or frequent oscillations of the water level); 4- four paleosols evidenced from lithofacies and magnetic properties are identified, during the YD, and around 8 kyr, 6 kyr and 2 kyr. Our data are compared with other Holocene paleohydrological (lake and speleothem) records from the northern and southern Levant.
NASA Astrophysics Data System (ADS)
Barnet, J.; Littler, K.; Kroon, D.; Leng, M. J.; Westerhold, T.; Roehl, U.; Zachos, J. C.
2017-12-01
The "greenhouse" world of the latest Cretaceous-Early Paleogene ( 70-34 Ma) was characterised by multi-million year variability in climate and the carbon-cycle. Throughout this interval the pervasive imprint of orbital-cyclicity, particularly eccentricity and precession, is visible in elemental and stable isotope data obtained from multiple deep-sea sites. Periodic "hyperthermal" events, occurring largely in-step with these orbital cycles, have proved particularly enigmatic, and may be the closest, albeit imperfect, analogues for anthropogenic climate change. This project utilises CaCO3-rich marine sediments recovered from ODP Site 1262 at a paleo-depth of 3600 m on the Walvis Ridge, South Atlantic, of late Maastrichtian-mid Paleocene age ( 67-60 Ma). We have derived high-resolution (2.5-4 kyr) carbon and oxygen isotope data from the epifaunal benthic foraminifera species Nuttallides truempyi. Combining the new record with the existing Late Paleocene-Early Eocene record generated from the same site by Littler et al. (2014), yields a single-site reference curve detailing 13.5 million years of orbital cyclicity in paleoclimate and carbon cycle from the latest Cretaceous to near the peak warmth of the Early Paleogene greenhouse. Spectral analysis of this new combined dataset allows us to identify long (405-kyr) eccentricity, short (100-kyr) eccentricity, and precession (19-23-kyr) as the principle forcing mechanisms governing pacing of the background climate and carbon-cycle during this time period, with a comparatively weak obliquity (41-kyr) signal. Cross-spectral analysis suggests that changes in climate lead the carbon cycle throughout most of the record, emphasising the role of the release of temperature-sensitive carbon stores as a positive feedback to an initial warming induced by changes in orbital configuration. The expression of comparatively understudied Early Paleocene events, including the Dan-C2 Event, Latest Danian Event, and Danian/Selandian Transition Event, are also identified within this new record, confirming the global nature and orbital pacing of the Latest Danian Event and Danian/Selandian Transition Event, but questioning the Dan-C2 event as a global hyperthermal.
Featured Image: Stars from Broken Clouds and Disks
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-04-01
This still from a simulation captures binary star formation in action. Researchers have long speculated on the processes that lead to clouds of gas and dust breaking up into smaller pieces to form multiple-star systems but these take place over a large range of scales, making them difficult to simulate. In a new study led by Leonardo Sigalotti (UAM Azcapotzalco, Mexico), researchers have used a smoothed-particle hydrodynamics code to model binary star formation on scales of thousands of AU down to scales as small as 0.1 AU. In the scene shown above, a collapsing cloud of gas and dust has recently fragmented into two pieces, forming a pair of disks separated by around 200 AU. In addition, we can see that smaller-scale fragmentation is just starting in one of these disks, Disk B. Here, one of the disks spiral arms has become unstable and is beginning to condense; it will eventually form another star, producing a hierarchical system: a close binary within the larger-scale binary. Check out the broaderprocessin the four panels below (which show the system as it evolves over time), or visitthe paper linked below for more information about what the authors learned.Evolution of a collapsed cloud after large-scale fragmentation into a binary protostar: (a) 44.14 kyr, (b) 44.39 kyr, (c) 44.43 kyr, and (d) 44.68 kyr. The insets show magnifications of the binary cores. [Adapted from Sigalotti et al. 2018]CitationLeonardo Di G. Sigalotti et al 2018 ApJ 857 40. doi:10.3847/1538-4357/aab619
NASA Astrophysics Data System (ADS)
Kuiper, K.; Condon, D.; Hilgen, F.; Laskar, J.; Mezger, K.; Pälike, H.; Quidelleur, X.; Schaltegger, U.; Sprovieri, M.; Storey, M.; Wijbrans, J. R.
2009-12-01
The principal scientific objective of the Marie Curie Initial Trainings Network GTSnext is to establish the next generation standard Geological Time Scale with unprecedented accuracy, precision and resolution through integration and intercalibration of state-of-the-art numerical dating techniques. Such time scales underlie all fields in the Earth Sciences and their application will significantly contribute to a much enhanced understanding of Earth System evolution. During the last decade deep marine successions were successfully employed to establish an astronomical tuning for the entire Neogene, as incorporated in the standard Geological Time Scale (ATNTS2004). In GTSnext we aim to fine-tune this Neogene time scale, before it can reliably be used to accurately determine phase relations between astronomical forcing and climate response in the Neogene and possibly also the Oligocene. Radio-isotopic dating of late Neogene ash layers offers excellent opportunities for gaining insight into isotope systematics via their independent dating by astronomical tuning. An example of this synergy is the development of astronomically calibrated standards for 40Ar/39Ar geochronology. The cross-calibration between the different methods might also yield information on the fundamental problem of potential residence times in U/Pb dating. Extension of the astronomical time scale into the Paleogene seems limited to ~40 Ma due to the accuracy of the current astronomical solution. However, the 405 kyr eccentricity component is very stable permitting its use in time scale calibrations back to 250 Ma using only this frequency. This cycle is strong and well developed in Oligocene and even Eocene records. Phase relations between cyclic paleo-climate records and the 405 kyr eccentricity cycle are typically straightforward and unambiguous. Therefore, a first-order tuning to ~405 kyr eccentricity can only be revised by shifting the tuning with (multiples of) ~405 kyr. Isotopic age constraints of both U/Pb and 40Ar/39Ar will be used to anchor floating astronomical tunings, but absolute uncertainties in isotopic ages should be less than ± 200 kyr. The Cretaceous is famous for its remarkable cyclic successions of marine pelagic sediments which bear the unmistakable imprint of astronomical climate forcing. As a consequence floating astrochronologies which are based on number of cycles have been developed for significant portions of the Cretaceous, covering a number of geological stages. Unfortunately, such floating time scales provide us only with the duration of stages but not with their age. However, due to significant improvements in numerical astronomical solutions for the Solar System and in the accuracy of radio-isotopic dating we will try to establish a tuned time scale for the Late Cretaceous. Classical cyclic sections in Europe (e.g. Sopelana, Spain) will be used for the tuning, but lack ash beds. Therefore, radio-isotopic age constraints necessary for the tuning will come from ash beds in the Western Interior Basin in North America. Here we will present the first results of the GTSnext project.
Stable high-power saturable absorber based on polymer-black-phosphorus films
NASA Astrophysics Data System (ADS)
Mao, Dong; Li, Mingkun; Cui, Xiaoqi; Zhang, Wending; Lu, Hua; Song, Kun; Zhao, Jianlin
2018-01-01
Black phosphorus (BP), a rising two-dimensional material with a layer-number-dependent direct bandgap of 0.3-1.5 eV, is very interesting for optoelectronics applications from near- to mid-infrared wavebands. In the atmosphere, few-layer BP tends to be oxidized or degenerated during interacting with lasers. Here, we fabricate few-layer BP nanosheets based on a liquid exfoliation method using N-methylpyrrolidone as the dispersion liquid. By incorporating BP nanosheets with polymers (polyvinyl alcohol or high-melting-point polyimide), two flexible filmy BP saturable absorbers are fabricated to realize passive mode locking in erbium-doped fiber lasers. The polymer-BP saturable absorber, especially the polyimide-BP saturable absorber, can prevent the oxidation or water-induced etching under high-power laser illuminations, providing a promising candidate for Q-switchers, mode lockers, and light modulators.
NASA Astrophysics Data System (ADS)
Martins, G. S.; Cordeiro, R. C.; Turcq, B.; Moreira, L. S.; Bouloubassi, I.; Sifeddine, A.
2014-12-01
Bulk, Isotope and biolomecular analysis supported by 22 14C AMS dates, allowed the reconstruction of environmental changes during the last 35 000 years BP in the Southeast Amazonian basin. A terrestrial origin has been inferred for the odd carbon-numbered long-chain (>C27) n-alkanes. The entire n-alkane δ13C range between -31.7‰ and -36.8‰, which is the isotopic range occupied by C3 vegetation. The C29:C31 ratio shows that a gramineae contribution is higher during the Pleistocene than in Holocene. The n-alkanes concentration decrease between 32 000 - 18 000, suggesting a increase in arid conditions. The ACL index confirm this interpretation showing high values due the Pleistocene linked to more hydrological stress. A shift in the abundance of n-alkane and isotopic values are observed across the late Pleistocene glacial-Holocene interglacial climate change, suggesting a climate-induced vegetational change. During the middle Holocene the n-alcanes values decreases indicating rain forest regression accompanied by increase in the ACL values confirming the dry climate conditions. Comparison with other South American records, our record indicates regression/expansion of the rain forest linked to the South American System monsoon activity since 35 kyrs.
NASA Astrophysics Data System (ADS)
Manzano, Saúl; Carrión, José S.; López-Merino, Lourdes; Ochando, Juan; Munuera, Manuel; Fernández, Santiago; González-Sampériz, Penélope
2018-02-01
The southern European Doñana wetlands host a highly biodiverse landscape mosaic of complex transitional ecosystems. It is one of the largest protected natural sites in Europe, nowadays endangered by intensive agricultural practices, and more recently tourism and human-induced fires. Its present-day spatial heterogeneity has been deeply investigated for the last three decades. However, a long-term perspective has not been applied systematically to this unique landscape. In this new study, a palaeoecological approach was selected in order to unravel patterns of landscape dynamism comparing dry upland and aquatic ecosystems. A 709 cm-long sediment core was retrieved and a multi-proxy approach applied (palynological, microcharcoal, grain size, magnetic susceptibility, loss-on-ignition and multivariate statistical analyses). Pollen signatures show how sensitive aquatic wetland vegetation was to environmental changes while terrestrial vegetation was stable at millennial scale. The impact of several high energy events punctuates the Early and Middle Holocene sequence, two of which relate to the local tsunami record ( 6.6 and 9.1 cal. kyr BP). Contrasting impacts of these two events in the aquatic and upland ecosystems show the importance of landscape configuration and the contingent history as key elements for coastal protection.
Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest
NASA Astrophysics Data System (ADS)
Farrar, C. D.; Sorey, M. L.; Evans, W. C.; Howle, J. F.; Kerr, B. D.; Kennedy, B. M.; King, C.-Y.; Southon, J. R.
1995-08-01
MAMMOTH Mountain, in the western United States, is a large dacitic volcano with a long history of vo lean ism that began 200 kyr ago1 and produced phreatic eruptions as recently as 500 +/- 200 yr BP (ref. 2). Seismicity, ground deformation and changes in fumarole gas composition suggested an episode of shallow dyke intrusion in 1989-90 (refs 3, 4). Areas of dying forest and incidents of near asphyxia in confined spaces, first reported in 1990, prompted us to search for diffuse flank emissions of magmatic CO2, as have been described at Mount Etna5 and Vulcano6. Here we report the results of a soil-gas survey, begun in 1994, that revealed CO2 concentrations of 30-96% in a 30-hectare region of killed trees, from which we estimate a total CO2 flux of >=1,200 tonnes per day. The forest die-off is the most conspicuous surface manifestation of magmatic processes at Mammoth Mountain, which hosts only weak fumarolic vents and no summit activity. Although the onset of tree kill coincided with the episode of shallow dyke intrusion, the magnitude and duration of the CO2 flux indicates that a larger, deeper magma source and/or a large reservoir of high-pressure gas is being tapped.
Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest
Farrar, C.D.; Sorey, M.L.; Evans, William C.; Howle, J.F.; Kerr, B.D.; Kennedy, B.M.; King, C.-Y.; Southon, J.R.
1995-01-01
MAMMOTH Mountain, in the western United States, is a large dacitic volcano with a long history of volcamsm that began 200 kyr ago1 and produced phreatic eruptions as recently as 500 ?? 200 yr BP (ref. 2). Seismicity, ground deformation and changes in fumarole gas composition suggested an episode of shallow dyke intrusion in 1989-90 (refs 3, 4). Areas of dying forest and incidents of near asphyxia in confined spaces, first reported in 1990, prompted us to search for diffuse flank emissions of magmatic CO2, as have been described at Mount Etna5 and Vulcano6. Here we report the results of a soil-gas survey, begun in 1994, that revealed CO2 concentrations of 30-96% in a 30-hectare region of killed trees, from which we estimate a total CO2 flux of ???1,200 tonnes per day. The forest die-off is the most conspicuous surface manifestation of magmatic processes at Mammoth Mountam, which hosts only weak fumarolic vents and no summit activity. Although the onset of tree kill coincided with the episode of shallow dyke intrusion, the magnitude and duration of the CO2 flux indicates that a larger, deeper magma source and/or a large reservoir of high-pressure gas is being tapped.
The Laschamp geomagnetic excursion featured in nitrate record from EPICA-Dome C ice core
Traversi, R.; Becagli, S.; Poluianov, S.; Severi, M.; Solanki, S. K.; Usoskin, I. G.; Udisti, R.
2016-01-01
Here we present the first direct comparison of cosmogenic 10Be and chemical species in the period of 38–45.5 kyr BP spanning the Laschamp geomagnetic excursion from the EPICA-Dome C ice core. A principal component analysis (PCA) allowed to group different components as a function of the main sources, transport and deposition processes affecting the atmospheric aerosol at Dome C. Moreover, a wavelet analysis highlighted the high coherence and in-phase relationship between 10Be and nitrate at this time. The evident preferential association of 10Be with nitrate rather than with other chemical species was ascribed to the presence of a distinct source, here labelled as “cosmogenic”. Both the PCA and wavelet analyses ruled out a significant role of calcium in driving the 10Be and nitrate relationship, which is particularly relevant for a plateau site such as Dome C, especially in the glacial period during which the Laschamp excursion took place. The evidence that the nitrate record from the EDC ice core is able to capture the Laschamp event hints toward the possibility of using this marker for studying galactic cosmic ray flux variations and thus also major geomagnetic field excursions at pluri-centennial-millennial time scales, thus opening up new perspectives in paleoclimatic studies. PMID:26819064
Blood pressure (BP) assessment-from BP level to BP variability.
Feber, Janusz; Litwin, Mieczyslaw
2016-07-01
The assessment of blood pressure (BP) can be challenging in children, especially in very young individuals, due to their variable body size and lack of cooperation. In the absence of data relating BP with cardiovascular outcomes in children, there is a need to convert absolute BP values (in mmHg) into age-, gender- and height appropriate BP percentiles or Z-scores in order to compare a patient's BP with the BP of healthy children of the same age, but also of children of different ages. Traditionally, the interpretation of BP has been based mainly on the assessment of the BP level obtained by office, home or 24-h BP monitoring. Recent studies suggest that it is not only BP level (i.e. average BP) but also BP variability that is clinically important for the development of target organ damage, including the progression of chronic kidney disease. In this review we describe current methods to evaluate of BP level, outline available methods for BP variability assessment and discuss the clinical consequences of BP variability, including its potential role in the management of hypertension.
Team-Based Care and Improved Blood Pressure Control
Proia, Krista K.; Thota, Anilkrishna B.; Njie, Gibril J.; Finnie, Ramona K.C.; Hopkins, David P.; Mukhtar, Qaiser; Pronk, Nicolaas P.; Zeigler, Donald; Kottke, Thomas E.; Rask, Kimberly J.; Lackland, Daniel T.; Brooks, Joy F.; Braun, Lynne T.; Cooksey, Tonya
2015-01-01
Context Uncontrolled hypertension remains a widely prevalent cardiovascular risk factor in the U.S. team-based care, established by adding new staff or changing the roles of existing staff such as nurses and pharmacists to work with a primary care provider and the patient. Team-based care has the potential to improve the quality of hypertension management. The goal of this Community Guide systematic review was to examine the effectiveness of team-based care in improving blood pressure (BP) outcomes. Evidence acquisition An existing systematic review (search period, January 1980–July 2003) assessing team-based care for BP control was supplemented with a Community Guide update (January 2003–May 2012). For the Community Guide update, two reviewers independently abstracted data and assessed quality of eligible studies. Evidence synthesis Twenty-eight studies in the prior review (1980–2003) and an additional 52 studies from the Community Guide update (2003–2012) qualified for inclusion. Results from both bodies of evidence suggest that team-based care is effective in improving BP outcomes. From the update, the proportion of patients with controlled BP improved (median increase=12 percentage points); systolic BP decreased (median reduction=5.4 mmHg); and diastolic BP also decreased (median reduction=1.8 mmHg). Conclusions Team-based care increased the proportion of people with controlled BP and reduced both systolic and diastolic BP, especially when pharmacists and nurses were part of the team. Findings are applicable to a range of U.S. settings and population groups. Implementation of this multidisciplinary approach will require health system–level organizational changes and could be an important element of the medical home. PMID:24933494
Team-based care and improved blood pressure control: a community guide systematic review.
Proia, Krista K; Thota, Anilkrishna B; Njie, Gibril J; Finnie, Ramona K C; Hopkins, David P; Mukhtar, Qaiser; Pronk, Nicolaas P; Zeigler, Donald; Kottke, Thomas E; Rask, Kimberly J; Lackland, Daniel T; Brooks, Joy F; Braun, Lynne T; Cooksey, Tonya
2014-07-01
Uncontrolled hypertension remains a widely prevalent cardiovascular risk factor in the U.S. team-based care, established by adding new staff or changing the roles of existing staff such as nurses and pharmacists to work with a primary care provider and the patient. Team-based care has the potential to improve the quality of hypertension management. The goal of this Community Guide systematic review was to examine the effectiveness of team-based care in improving blood pressure (BP) outcomes. An existing systematic review (search period, January 1980-July 2003) assessing team-based care for BP control was supplemented with a Community Guide update (January 2003-May 2012). For the Community Guide update, two reviewers independently abstracted data and assessed quality of eligible studies. Twenty-eight studies in the prior review (1980-2003) and an additional 52 studies from the Community Guide update (2003-2012) qualified for inclusion. Results from both bodies of evidence suggest that team-based care is effective in improving BP outcomes. From the update, the proportion of patients with controlled BP improved (median increase=12 percentage points); systolic BP decreased (median reduction=5.4 mmHg); and diastolic BP also decreased (median reduction=1.8 mmHg). Team-based care increased the proportion of people with controlled BP and reduced both systolic and diastolic BP, especially when pharmacists and nurses were part of the team. Findings are applicable to a range of U.S. settings and population groups. Implementation of this multidisciplinary approach will require health system-level organizational changes and could be an important element of the medical home. Published by Elsevier Inc.
Li, C C; Chen, Y T; Lin, Y T; Sie, S F; Chen-Yang, Y W
2014-03-01
In the present study, about 45 and 34 wt% of benzophenone-3 (BP-3), an organic UV filter, was adsorbed on a high surface area mesoporous silica (MS) drug carrier to prepare BP-3-bearing MS (MSBP) sunscreen materials MSBP-1 and MSBP-2, respectively. The effect of the adsorption of BP-3 by MS on the UV protection ability of MSBP was demonstrated and a synergistic UV protection effect was observed in the as-prepared MSBP UV filters. Compared with free BP-3, adsorbed BP-3 had greatly reduced crystallinity and the dispersion of MSBP was significantly improved in the sunscreen. The in vitro sun protection factor (SPF) and in vitro UV-A values of the MSBP-2-based sunscreen was about 17.3% and 17.0% higher than that of free BP-3-based sunscreen, respectively, indicating that the ability of the sunscreen to protect against UV-B and UV-A improved because of the BP-3 content of the MS matrix. In addition, the decrease in SPF and UV-A values over time was significantly less in the MSBP-based sunscreens than in free BP-3-based sunscreen. Results of this study reveal that MS is a promising organic sunscreen carrier as well as a potential carrier for other topical drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
Kario, Kazuomi
There are notable differences between Asians and Westerners regarding hypertension (HTN) and the relationship between HTN and cardiovascular disease (CVD). Asians show greater morning surges in blood pressure (BP) and a steeper slope illustrating the link between higher BP and the risk of CVD events. It is thus particularly important for Asian hypertensives to achieve 24-h BP control, including morning and night-time control. There are three components of 'perfect 24-h BP control:' the 24-h BP level, nocturnal BP dipping, and BP variability (BPV), such as the morning BP surge that can be assessed by ambulatory BP monitoring. The morning BP-guided approach using home BP monitoring (HBPM) is the first step toward perfect 24-h BP control, followed by the control of nocturnal HTN. We have been developing new HBPM devices that can measure nocturnal BP. BPV includes different time-phase variability from the shortest beat-by-beat, positional, diurnal, day-by-day, visit-to-visit, seasonal, and yearly changes. The synergistic resonance of each type of BPV would produce a great dynamic BP surge (resonance hypothesis), which triggers a CVD event, especially in the high-risk patients with systemic hemodynamic atherothrombotic syndrome (SHATS). In the future, the innovative management of HTN based on the simultaneous assessment of the resonance of all of the BPV phenotypes using a beat by beat wearable 'surge' BP monitoring device (WSP) and an information and communication technology (ICT)-based data analysis system will produce a paradigm shift from 'dots' BP management to 'seamless' ultimate individualized 'anticipation medication' for reaching a zero CVD event rate. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Variations of the Milankovitch frequencies in time
NASA Technical Reports Server (NTRS)
Loutre, Marie-France; Berger, A.
1992-01-01
The sensitivity of the amplitudes and frequencies in the development of the Earth's orbital and rotational elements involved in the astronomical theory of paleoclimates (eccentricity, obliquity, and climate precession), to the Earth-Moon distance and consequently to the length of the day and to the dynamical ellipticity of the Earth has been discussed for the last billions of years. The shortening of the Earth-Moon distance and of the length of the day, as well as the lengthening of the dynamical ellipticity of the Earth back in time induce a shortening of the fundamental astronomical periods for precession and obliquity. At the same time, the amplitudes of the different terms in the development of the obliquity are undergoing a relative enlargement of about 50 percent at 2 x 10(exp 9) yr BP but the independent term is increasing very weakly (less than 0.1 percent). In other words, the value of the obliquity, which lies within a range of 21.7 to 24.9 deg over the Quarternary was restricted to a range of 22.5 to 24.1 deg at 2 x 10(exp 9) yr BP. On the other hand, the amplitudes in the development of the climatic precession do not change. Moreover, these changes in the frequencies and amplitudes for both obliquity and climatic precession are larger for longer period terms. Finally, the periods in the eccentricity development are not influenced by the variation of the lunar distance. But the motion of the solar system, especially of the inner planets, was shown to be chaotic. It means that it is impossible to compute the exact motion of the planets over more than about 100 Myr, and the fundamental frequencies of the systems are not fixed quantities, but are slowly varying with time. As long as we consider the most important terms, the maximum deviation from the present-day value of the 19-kyr precessional period due to the chaotic motion of the solar system only does not reach more than a few tens of years around 80 Myr BP. Therefore the shortening of the obliquity and climatic precession periods is mostly driven by the change in the lunar distance and the consequent variations in the dynamical ellipticity of the Earth's angular speed. At first sight, the deviation in the period for the eccentricity can be neglected, as the chaotic behavior of the solar system implies a relative change of the main periods by less than 0.2 percent, 1.4 percent, and 1.9 percent respectively, this maximum change being achieved around 80 Myr BP. This implies, in particular, that the eccentricity periods for Quarternary climate studies may be considered more or less constant for pre-Quaternay times and equal to their Quaternary values.
NASA Astrophysics Data System (ADS)
Hahn, Annette; Schefuß, Enno; Andò, Sergio; Cawthra, Hayley C.; Frenzel, Peter; Kugel, Martin; Meschner, Stephanie; Mollenhauer, Gesine; Zabel, Matthias
2017-06-01
Due to the high sensitivity of southern Africa to climate change, a reliable understanding of its hydrological system is crucial. Recent studies of the regional climatic system have revealed a highly complex interplay of forcing factors on precipitation regimes. This includes the influence of the tropical easterlies, the strength of the southern hemispheric westerlies as well as sea surface temperatures along the coast of the subcontinent. However, very few marine records have been available in order to study the coupling of marine and atmospheric circulation systems. Here we present results from a marine sediment core, recovered in shallow waters off the Gouritz River mouth on the south coast of South Africa. Core GeoB18308-1 allows a closer view of the last ˜ 4 kyr. Climate sensitive organic proxies, like the distribution and isotopic composition of plant-wax lipids as well as indicators for sea surface temperatures and soil input, give information on oceanographic and hydrologic changes during the recorded time period. Moreover, the micropaleontology, mineralogical and elemental composition of the sediments reflect the variability of the terrigenous input to the core site. The combination of down-core sediment signatures and a catchment-wide provenance study indicate that the Little Ice Age ( ˜ 300-650 cal yr BP) was characterized by climatic conditions favorable to torrential flood events. The Medieval Climate Anomaly ( ˜ 950-650 cal yr BP) is expressed by lower sea surface temperatures in the Mossel Bay area and humid conditions in the Gouritz River catchment. These new results suggest that the coincidence of humid conditions and cooler sea surface temperatures along the south coast of South Africa resulted from a strengthened and more southerly anticyclonic circulation. Most probably, the transport of moisture from the Indian Ocean by strong subtropical easterlies was coupled with Agulhas Bank upwelling pulses, which were initiated by an increase in Agulhas Current strength.
Holocene millennial to centennial scale carbonate cycles (leeward margin, Great Bahama Bank)
NASA Astrophysics Data System (ADS)
Roth, S.; Reijmer, J. J. G.
2003-04-01
The main research topic of this project is the evaluation of Holocene to Recent climatic variability and the impact on shallow-water sediment production of carbonate platforms. A 38m long sediment core (MD992201) was analyzed, obtained from 290m water depth on the leeward margin of Great Bahama Bank. Fourteen Accelerator Mass Spectrometry (AMS) dates determined a core bottom age of 7,230 years BP and permitted the construction of a precise time frame. With a sampling interval of 5cm, a decadal time resolution could be achieved. Sedimentation rates varied between 3 to 14m/kyr. Carbonate content ranges from 96 to almost 100wt%, most of which is aragonite (83-92wt%). High Magnesium Calcite (HMC) makes up the second major fraction with 2-9wt%, while Low Magnesium Calcite occurs with minor percentages (0.5-4wt%). Singular Spectrum Analysis (SSA) of the aragonitic carbonate phase showed two different trends and two primary oscillatory signals. Aragonite production on Great Bahama Bank started at 7,230yr BP when the Holocene sea-level rise flooded the shallow platform top. The first eigenvector captures this long-term trend extending over the entire Mid to Late Holocene succession displaying the Holocene sea-level fluctuations. The second trend indicates millennial scale variations, which can be attributed to a combination of geomagnetic shielding and solar parameters. The two quasi-periodic signals show wavelengths of 400-600 years and approx. 210 years. These oscillations are interpreted in terms of instabilities of the thermohaline circulation and solar parameters, respectively. The oscillatory aragonite signals and oxygen isotope derived temperatures (planktonic foraminifers) agree with northern hemisphere temperature changes (e.g. Medieval Warm Period and Little Ice Age) and the delta-14C record of tree rings (e.g. Oort to Dalton solar minima). This study shows that carbonate platform systems not only respond to sea-level variations but also are precise recorders of short-term climate changes.
The Influence of the East Asian Winter Monsoon on Indonesian Rainfall During the Past 60,000 Years
NASA Astrophysics Data System (ADS)
Konecky, B. L.; Russell, J. M.; Vogel, H.; Bijaksana, S.; Huang, Y.
2013-12-01
The Indo-Pacific Warm Pool (IPWP) invigorates the oceanic-atmospheric circulation in the tropics, with far-reaching climate impacts that extend into the high latitudes. A growing number of deglacial proxy reconstructions from the Maritime Continent and its surrounding seas have revealed the importance of both high- and low-latitude climate processes to IPWP rainfall during the deglaciation and the Holocene. However, few records extend beyond the Last Glacial Maximum (LGM), making it difficult to assess regional rainfall characteristics and monsoon interactions under the glacial/interglacial boundary conditions of the Pleistocene. Proxy reconstructions of the oxygen and hydrogen isotopic composition of rainfall (δ18O/δDprecip) have proven useful in understanding millennial to orbital scale changes in the climate of the Maritime Continent, but the tendency for δ18O/δDprecip in this region to reflect regional and/or remote climate processes has highlighted the need to reconstruct δ18O/δDprecip alongside independent proxies for continental rainfall amount. Here we present a reconstruction of δDprecip using leaf wax compounds preserved in the sediments of Lake Towuti, Central Sulawesi, from 60,000 years before present (kyr BP) to today. Our δDprecip reconstruction provides a precipitation isotopic counterpart to multi-proxy geochemical reconstructions of surface hydrology and vegetation characteristics from the same sediment cores, enabling for the first time an independent assessment of both continental rainfall intensity and δDprecip from this region on glacial/interglacial timescales. We find that orbital-scale variations in δDprecip and rainfall intensity are strongly tied to the East Asian Winter Monsoon (EAWM), which is an important contributor to the band of convection over the Maritime Continent during austral summer. Unlike today, however, severely dry conditions in Central Sulawesi during the Last Glacial Maximum were accompanied by a strengthened EAWM and D-depleted precipitation. In contrast, wet conditions in Central Sulawesi during Marine Isotope Stage 3 (MIS3) and during the early Holocene occurred when the EAWM was weakened. These findings support previous inferences based on Australian data that glacial boundary conditions modified the relationship between the EAWM and the Australian-Indonesian Summer Monsoon (AISM). However, previously proposed mechanisms for this modified EAWM/AISM relationship are not sufficient to explain our observations in Indonesia, and must be expanded. We propose revisions to these mechanisms in order to explain observations of Indonesian rainfall and δDprecip. Our findings provide important context for the circulation patterns that drove rainfall variations in Central Sulawesi during the past 60 kyr, and help to reconcile some of the disagreements among late Pleistocene records of surface runoff and δ18O/δDprecip from the IPWP region.
Prediction of Industrial Electric Energy Consumption in Anhui Province Based on GA-BP Neural Network
NASA Astrophysics Data System (ADS)
Zhang, Jiajing; Yin, Guodong; Ni, Youcong; Chen, Jinlan
2018-01-01
In order to improve the prediction accuracy of industrial electrical energy consumption, a prediction model of industrial electrical energy consumption was proposed based on genetic algorithm and neural network. The model use genetic algorithm to optimize the weights and thresholds of BP neural network, and the model is used to predict the energy consumption of industrial power in Anhui Province, to improve the prediction accuracy of industrial electric energy consumption in Anhui province. By comparing experiment of GA-BP prediction model and BP neural network model, the GA-BP model is more accurate with smaller number of neurons in the hidden layer.
El Sayed, Salah Mohamed; Baghdadi, Hussam; Zolaly, Mohammed; Almaramhy, Hamdi H; Ayat, Mongi; Donki, Jagadish G
2017-03-01
3-Bromopyruvate (3BP) is a promising effective anticancer drug against many different tumors in children and adults. 3BP exhibited strong anticancer effects in both preclinical and human studies e.g. energy depletion, oxidative stress, anti-angiogenesis, anti-metastatic effects, targeting cancer stem cells and antagonizing the Warburg effect. There is no report about 3BP metabolism to guide researchers and oncologists to improve clinical practice and prevent drug resistance. In this article, we provide evidences that 3BP is metabolized through glutathione (GSH) conjugation as a novel report where 3BP was confirmed to be attached to GSH followed by permanent loss of pharmacological effects in a picture similar to cisplatin. Both cisplatin and 3BP are alkylating agents. Reported decrease in endogenous cellular GSH content upon 3BP treatment was confirmed to be due to the formation of 3BP-GSH complex i.e. GSH consumption for conjugation with 3BP. Cancer cells having high endogenous GSH exhibit resistance to 3BP while 3BP sensitive cells acquire resistance upon adding exogenous GSH. Being a thiol blocker, 3BP may attack thiol groups in tissues and serum proteins e.g. albumin and GSH. That may decrease 3BP-induced anticancer effects and the functions of those proteins. We proved here that 3BP metabolism is different from metabolism of hydroxypyruvate that results from metabolism of D-serine using D-amino acid oxidase. Clinically, 3BP administration should be monitored during albumin infusion and protein therapy where GSH should be added to emergency medications. GSH exerts many physiological effects and is safe for human administration both orally and intravenously. Based on that, reported GSH-induced inhibition of 3BP effects makes 3BP effects reversible, easily monitored and easily controlled. This confers a superiority of 3BP over many anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bandgap- and local field-dependent photoactivity of Ag/black phosphorus nanohybrids
Lei, Wanying; Zhang, Tingting; Liu, Ping; ...
2016-10-18
Black phosphorus (BP) is the most exciting post-graphene layered nanomaterial that serendipitously bridges the 2D materials gap between semimetallic graphene and large bandgap transition-metal dichalcogenides in terms of high charge-carrier mobility and tunable direct bandgap, yet research into BP-based solar to chemical energy conversion is still in its infancy. Herein, a novel hybrid photocatalyst with Ag nanoparticles supported on BP nanosheets is prepared using a chemical reduction approach. Spin-polarized density functional theory (DFT) calculations show that Ag nanoparticles are stabilized on BP by covalent bonds at the Ag/BP interface and Ag–Ag interactions. In the visible-light photocatalysis of rhodamine B bymore » Ag/BP plasmonic nanohybrids, a significant rise in photoactivity compared with pristine BP nanosheets is observed either by decreasing BP layer thickness or increasing Ag particle size, with the greatest enhancement being up to ~20-fold. By virtue of finite-difference time domain (FDTD) simulations and photocurrent measurements, we give insights into the enhanced photocatalytic performance of Ag/BP nanohybrids, including the effects of BP layer thickness and Ag particle size. In comparison with BP, Ag/BP nanohybrids present intense local field amplification at the perimeter of Ag NPs, which is increased by either decreasing the BP layer thickness from multiple to few layers or increasing the Ag particle size from 20 to 40 nm. Additionally, when the BP layer thickness is decreased from multiple to few layers, the bandgap becomes favorable to generate more strongly oxidative holes in the proximity of the Ag/BP interface to enhance photoactivity. Our findings illustrate a synergy between locally enhanced electric fields and BP bandgap, in which BP layer thickness and Ag particle size can be independently tuned to enhance photoactivity. Lastly, this study may open a new avenue for further exploiting BP-based plasmonic nanostructures in photocatalysis, photodetectors, and photovoltaics.« less
Bandgap- and local field-dependent photoactivity of Ag/black phosphorus nanohybrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Wanying; Zhang, Tingting; Liu, Ping
Black phosphorus (BP) is the most exciting post-graphene layered nanomaterial that serendipitously bridges the 2D materials gap between semimetallic graphene and large bandgap transition-metal dichalcogenides in terms of high charge-carrier mobility and tunable direct bandgap, yet research into BP-based solar to chemical energy conversion is still in its infancy. Herein, a novel hybrid photocatalyst with Ag nanoparticles supported on BP nanosheets is prepared using a chemical reduction approach. Spin-polarized density functional theory (DFT) calculations show that Ag nanoparticles are stabilized on BP by covalent bonds at the Ag/BP interface and Ag–Ag interactions. In the visible-light photocatalysis of rhodamine B bymore » Ag/BP plasmonic nanohybrids, a significant rise in photoactivity compared with pristine BP nanosheets is observed either by decreasing BP layer thickness or increasing Ag particle size, with the greatest enhancement being up to ~20-fold. By virtue of finite-difference time domain (FDTD) simulations and photocurrent measurements, we give insights into the enhanced photocatalytic performance of Ag/BP nanohybrids, including the effects of BP layer thickness and Ag particle size. In comparison with BP, Ag/BP nanohybrids present intense local field amplification at the perimeter of Ag NPs, which is increased by either decreasing the BP layer thickness from multiple to few layers or increasing the Ag particle size from 20 to 40 nm. Additionally, when the BP layer thickness is decreased from multiple to few layers, the bandgap becomes favorable to generate more strongly oxidative holes in the proximity of the Ag/BP interface to enhance photoactivity. Our findings illustrate a synergy between locally enhanced electric fields and BP bandgap, in which BP layer thickness and Ag particle size can be independently tuned to enhance photoactivity. Lastly, this study may open a new avenue for further exploiting BP-based plasmonic nanostructures in photocatalysis, photodetectors, and photovoltaics.« less
Bonanno, Laura; Costa, Carlota; Majem, Margarita; Sanchez, Jose Javier; Gimenez-Capitan, Ana; Rodriguez, Ignacio; Vergenegre, Alain; Massuti, Bartomeu; Favaretto, Adolfo; Rugge, Massimo; Pallares, Cinta; Taron, Miquel; Rosell, Rafael
2013-01-01
Platinum-based chemotherapy is the standard first-line treatment for non-oncogene-addicted non-small cell lung cancers (NSCLCs) and the analysis of multiple DNA repair genes could improve current models for predicting chemosensitivity. We investigated the potential predictive role of components of the 53BP1 pathway in conjunction with BRCA1. The mRNA expression of BRCA1, MDC1, CASPASE3, UBC13, RNF8, 53BP1, PIAS4, UBC9 and MMSET was analyzed by real-time PCR in 115 advanced NSCLC patients treated with first-line platinum-based chemotherapy. Patients expressing low levels of both BRCA1 and 53BP1 obtained a median progression-free survival of 10.3 months and overall survival of 19.3 months, while among those with low BRCA1 and high 53BP1 progression-free survival was 5.9 months (P <0.0001) and overall survival was 8.2 months (P=0.001). The expression of 53BP1 refines BRCA1-based predictive modeling to identify patients most likely to benefit from platinum-based chemotherapy. PMID:24197907
Seasonal variation in home blood pressure: findings from nationwide web-based monitoring in Japan
Miura, Katsuyuki; Obayashi, Keiichi; Ohkubo, Takayoshi; Nakajima, Hiroshi; Shiga, Toshikazu; Ueshima, Hirotsugu
2018-01-01
Objectives Our aim was to assess seasonal variation in home blood pressure (BP) among free-living nationwide participants using home BP values accumulated from a web-based healthcare platform established in Japan. Settings An observational study. OMRON Healthcare Co., Ltd. has been developing web-based personal healthcare record systems in Japan since November 2010; over two million voluntary participants had joined this platform in September 2015. Nationwide home BP measurements made by oscillometric-type electronic sphygmomanometers from over 110 000 voluntary participants have been transmitted to the system from devices. Participants Seasonal variation in home BP was evaluated among 64 536 (51 335 men, 13 201 women; mean age 52.9 years) free-living nationwide users for whom data were automatically and simultaneously transmitted to the system from devices. Primary outcome measures Mean monthly and weekly home BP. Results In multiple regression analysis, the relationship between BP and temperature was a significant inverse association, independent of age, gender and geological locations. Highest and lowest BP was observed in December and July, respectively. Substantial seasonal differences in the mean values of morning and evening home systolic BP between summer and winter were 6.2 mmHg and 5.5 mmHg in men, and 7.3 mmHg and 6.5 mmHg in women. Seasonal variation was a little greater in older (7.3 mmHg in men, 8.7 mmHg in women) than in younger individuals (5.8 mmHg in men, 6.5 mmHg in women). BP from February to July was approximately 1.5 mmHg lower than the value from August to December. Conclusions A web-based healthcare platform has enabled easier monitoring of population-wide BP. Tighter BP control is necessary in winter than in summer, and especially in a colder climate toward winter than toward summer. New technologies using web-based self-monitoring systems for health-related indexes are expected to initiate a new phase of cardiovascular disease prevention and public health promotion. PMID:29306878
Desingu, P A; Singh, S D; Dhama, K; Kumar, O R Vinodh; Singh, R; Singh, R K
2015-02-01
A rapid and accurate method of detection and differentiation of virulent and avirulent Newcastle disease virus (NDV) pathotypes was developed. The NDV detection was carried out for different domestic avian field isolates and pigeon paramyxo virus-1 (25 field isolates and 9 vaccine strains) by using APMV-I "fusion" (F) gene Class II specific external primer A and B (535bp), internal primer C and D (238bp) based reverses transcriptase PCR (RT-PCR). The internal degenerative reverse primer D is specific for F gene cleavage position of virulent strain of NDV. The nested RT-PCR products of avirulent strains showed two bands (535bp and 424bp) while virulent strains showed four bands (535bp, 424bp, 349bp and 238bp) on agar gel electrophoresis. This is the first report regarding development and use of degenerate primer based nested RT-PCR for accurate detection and differentiation of NDV pathotypes by demonstrating multiple PCR band patterns. Being a rapid, simple, and economical test, the developed method could serve as a valuable alternate diagnostic tool for characterizing NDV isolates and carrying out molecular epidemiological surveillance studies for this important pathogen of poultry. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Arvin, T. A.; Cullen, J. L.; Oppo, D. W.; McManus, J. F.
2004-05-01
Many recent paleoceanographic studies have focused on using high sedimentation rate deep-sea sediment sections that have produced records of abrupt climate variability operating at sub-orbital time scales. This is particularly true in the North Atlantic where proxies of changing surface water conditions from high quality sediment records have repeatedly demonstrated that millennial-scale climate change has been the rule rather than the exception over the past 500 kyr, during both glacial and interglacial intervals. Abrupt climate change during warm interglacials is an area of special interest as it may relate more directly to an understanding of recent and future climate change. With this in mind we have focused our efforts on documenting millennial-scale climate change from sediments deposited at ODP Site 980, northeast Atlantic Ocean during Marine Isotope Stage (MIS) 11. We have used unsplit, whole sample >150 micron size fractions from over 200 sediment samples to record changes in the number lithic grains per gram sediment to measure changes in the input of Ice-Rafted Debris (IRD). We then compare our new IRD record to previously generated records of changing surface water conditions during MIS11: variations in oxygen isotopic composition of the surface dwelling planktic foraminifer species N. pachyderma, right coiling and changes in the relative abundance of the polar species N. pachyderma, left coiling. Our MIS11 results are then compared to compatible records from MIS5e and the Holocene. Our detailed IRD record from around 418 kya to 382 kya reveals a remarkable lack of even trace amounts IRD input into sediments at ODP Site 980. IRD concentration abruptly drops and remains 0 to trace amounts per gram as soon as benthic delta O-18 values fall to and remain at < 3.5 per mil at the onset of MIS11. Only three very small amplitude IRD events are observed over the entire 35 kyr interval. The earliest 8 kyr of MIS11 is completely devoid of any IRD, despite the fact that the relative abundance of the polar species N. pachyderma, left coiling, after dropping from near 90% to below 10% at 418 kya, rises to as high as 30% during this early MIS11 time interval. This seems to indicate the influx of non-ice bearing colder polar waters to the region above Site 980 that don't seem to be influencing he N. pachyderma, right coiling isotope record in a simple way. The MIS11 IRD record significantly differs from our records from MIS5e and the Holocene, particularly when we focus on the earliest 12 kyr of MIS11. Both the approximately 10 kyr long MIS5e interval and the last 11 kyr of the Holocene exhibit a series of between 6 and 9 discrete small amplitude increases in IRD against a background of little or no IRD. At the same time relative abundances of N. pachyderma, left coiling are considerably less during both MIS5e and the Holocene when compared to the first 10 kyr of MIS11. The evidence presented here suggests that MIS11 surface water conditions above Site 980 were somewhat different from conditions recorded in sediments from two other warm interglacial intervals, MIS5e and the Holocene and that its use as an ancient analog to modern and future climate may be less straightforward than previously thought.
Variations in the Strength of the North Atlantic Bottom water during Holocene.
NASA Astrophysics Data System (ADS)
Kissel, C.; Van Toer, A.; Michel, E.; Cortijo, E.
2012-04-01
One aspect of the Past4Future project is to combine multidisciplinary approaches to monitor changes in ocean circulation during previous interglacial periods. In the framework of this project, our study focusses on the changes in the strength of the North Atlantic deep water during the Holocene period using multiproxy analysis (magnetic and sedimentary). The main part of the study has been conducted on two cores located at the western termination of the northern deep channel of the Charlie-Gibbs fracture zone. This natural E-W corridor is bathed by the Iceland-Scotland overflow water (ISOW) when it passes westward out of the Iceland Basin into the western North Atlantic basin. At present, it is also described as the place where southern sourced silicate-rich Lower Deep Water (LDW) derived from the Antarctic Bottom Waters (AABW) are passing westward, mixing with the ISOW. One core had been taken by the R. V. Charcot in 1977 and the second one is a CASQ core taken during the IMAGES-AMOCINT MD168- cruise in the framework of the 06-EuroMARC-FP-008 Project on board the R.V. Marion Dufresne (French Polar Institute, IPEV) in 2008. Radiocarbon ages indicate an average sedimentation rate of about 90 cm/kyr during early Holocene and 50 cm/kyr through middle and late Holocene allowing a data resolution ranging from 40 to 100 years depending on the proxy. We coupled magnetic properties, anisotropy, sortable silt and benthic foraminifera isotopes. On the long term, a decrease in the amount of magnetic particles (normalized by the carbonate content) is first observed from 10 kyr to 8.6 kyr and then from 6 to 2 kyrs before reaching a steady state during the last two millenia. Following Kissel et al. (2009), this indicates a two steps decrease in the ISOW strength. The mean sortable silt shows exactly the same pattern indicating that not only the intensity of the ISOW but the whole deep water mass bathing the sites has decreased. On the short term, a first very prominent event centered at about 8.4 kyr (cal. ages) is marked by a pronounced minima in magnetic content and the smaller mean sortable silt sizes, typical for an abrupt reduction in deep flow speed. At the same time, the benthic delta13C values which could be obtained from Cib. wuellerstorfi reach significantly negative values (-0.5‰) providing evidence of a significant change to a major downwelling limb of the Atlantic meridional overturning circulation. This event is in phase with the meltwater outbursts from the final drainage of the proglacial lakes associated with the decaying Laurentide Ice Sheet margin. In addition, all through the Holocene, a series of short-term events of lower bottom flow speed and weaker ISOW always illustrated by minima mean size of the sortable silt and in magnetic concentration respectively are observed with a periodicity of 300-600 years between 6 and 2 kyr. These results are compared to those we obtained from other cores located along the Gardar Drift (P.I.C.A.S.S.O cruise in 2003) and the Eirik drift and with recently published results.
Mollerup, P M; Lausten-Thomsen, U; Fonvig, C E; Baker, J L; Holm, J-C
2017-10-01
Due to the pandemic of childhood obesity and thus obesity-related hypertension, improvements in treatment availability are needed. Hence, we investigated whether reductions in blood pressure (BP) would occur in children with overweight and obesity exhibiting prehypertension/hypertension during a community-based overweight and obesity treatment program, and if changes in body mass index (BMI) are associated with changes in BP. The study included 663 children aged 3-18 years with a BMI ⩾85th percentile for sex and age that entered treatment from June 2012 to January 2015. Height, weight and BP were measured upon entry and every 3-6 months. BMI and BP s.d. scores (SDSs) were calculated according to sex and age, or sex, age and height. Prehypertension was defined as a BP SDS ⩾1.28 and <1.65. Hypertension was defined as a BP SDS ⩾1.65. Upon entry, 52% exhibited prehypertension (11.9%) or exhibited hypertension (40.1%). After 12 months (range: 3-29) of treatment, 29.3% of the children with prehypertension/hypertension were normotensive. Children with systolic prehypertension/hypertension upon entry reduced their systolic BP SDSs by 0.31 (95% confidence interval (CI): 0.70-0.83, P<0.0001). Children with diastolic prehypertension/hypertension upon entry reduced their diastolic BP SDSs by 0.78 (95% CI: 0.78-0.86, P<0.0001). BMI SDS changes were positively associated with BP SDS changes (P<0.0001). Nonetheless, some children reduced BP SDSs while increasing their BMI SDSs, and prehypertension/hypertension developed in 23.3% of the normotensive children despite reductions in BMI SDSs (P<0.0001). These results suggest that community-based overweight and obesity treatment can reduce BP, and thus may help improve treatment availability.
Biodegradable black phosphorus-based nanomaterials in biomedicine: theranostic applications.
Wang, Zhen; Liu, Zhiming; Su, Chengkang; Yang, Biwen; Fei, Xixi; Li, Yi; Hou, Yuqing; Zhao, Henan; Guo, Yanxian; Zhuang, Zhengfei; Zhong, Huiqing; Guo, Zhouyi
2017-09-20
Ascribe to the unique two-dimensional planar nanostructure with exceptional physical and chemical properties, black phosphorous (BP) as the emerging inorganic two-dimensional nanomaterial with high biocompatibility and degradability has been becoming one of the most promising materials of great potentials in biomedicine. The exfoliated BP sheets possess ultra-high surface area available for valid bio-conjugation and molecular loading for chemotherapy. Utilizing the intrinsic near-infrared optical absorbance, BP-based photothermal therapy in vivo, photodynamic therapy and biomedical imaging has been realized, achieving unprecedented anti-tumor therapeutic efficacy in animal experiments. Additionally, the BP nanosheets can strongly react with oxygen and water, and finally degrade to non-toxic phosphate and phosphonate in the aqueous solution. This manuscript aimed to summarize the preliminary progresses on theranostic application of BP and its derivatives black phosphorus quantum dots (BPQDs), and discussed the prospects and the state-of-art unsolved critical issues of using BP-based material for theranostic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Quan, Jinling; Zhan, Wenfeng; Chen, Yunhao; Wang, Mengjie; Wang, Jinfei
2016-03-01
Previous time series methods have difficulties in simultaneous characterization of seasonal, gradual, and abrupt changes of remotely sensed land surface temperature (LST). This study proposed a model to decompose LST time series into trend, seasonal, and noise components. The trend component indicates long-term climate change and land development and is described as a piecewise linear function with iterative breakpoint detection. The seasonal component illustrates annual insolation variations and is modeled as a sinusoidal function on the detrended data. This model is able to separate the seasonal variation in LST from the long-term (including gradual and abrupt) change. Model application to nighttime Moderate Resolution Imaging Spectroradiometer (MODIS)/LST time series during 2000-2012 over Beijing yielded an overall root-mean-square error of 1.62 K between the combination of the decomposed trend and seasonal components and the actual MODIS/LSTs. LST decreased (~ -0.086 K/yr, p < 0.1) in 53% of the study area, whereas it increased with breakpoints in 2009 (~0.084 K/yr before and ~0.245 K/yr after 2009) between the fifth and sixth ring roads. The decreasing trend was stronger over croplands than over urban lands (p < 0.05), resulting in an increasing trend in surface urban heat island intensity (SUHII, 0.022 ± 0.006 K/yr). This was mainly attributed to the trends in urban-rural differences in rainfall and albedo. The SUHII demonstrated a concave seasonal variation primarily due to the seasonal variations of urban-rural differences in temperature cooling rate (related to canyon structure, vegetation, and soil moisture) and surface heat dissipation (affected by humidity and wind).
Secular obliquity variations for Ceres
NASA Astrophysics Data System (ADS)
Bills, Bruce; Scott, Bryan R.; Nimmo, Francis
2016-10-01
We have constructed secular variation models for the orbit and spin poles of the asteroid (1) Ceres, and used them to examine how the obliquity, or angular separation between spin and orbit poles, varies over a time span of several million years. The current obliquity is 4.3 degrees, which means that there are some regions near the poles which do not receive any direct Sunlight. The Dawn mission has provided an improved estimate of the spin pole orientation, and of the low degree gravity field. That allows us to estimate the rate at which the spin pole precesses about the instantaneous orbit pole.The orbit of Ceres is secularly perturbed by the planets, with Jupiter's influence dominating. The current inclination of the orbit plane, relative to the ecliptic, is 10.6 degrees. However, it varies between 7.27 and 11.78 degrees, with dominant periods of 22.1 and 39.6 kyr. The spin pole precession rate parameter has a period of 205 kyr, with current uncertainty of 3%, dominated by uncertainty in the mean moment of inertia of Ceres.The obliquity varies, with a dominant period of 24.5 kyr, with maximum values near 26 degrees, and minimum values somewhat less than the present value. Ceres is currently near to a minimum of its secular obliquity variations.The near-surface thermal environment thus has at least 3 important time scales: diurnal (9.07 hours), annual (4.60 years), and obliquity cycle (24.5 kyr). The annual thermal wave likely only penetrates a few meters, but the much long thermal wave associated with the obliquity cycle has a skin depth larger by a factor of 70 or so, depending upon thermal properties in the subsurface.
Paleoproductivity and Nutrient Cycling on the Sumatra Margin during the Past Half Million Years
NASA Astrophysics Data System (ADS)
Gibson, K.; Mitt Schwamborn, T.; Thunell, R.; Tuten, E. C.; Swink, C.; Tappa, E.
2017-12-01
In the IndoPacific, changes in paleoproductivity on orbital timescales are often linked to changes in precession, particularly in areas of coastal upwelling. These changes are in turn related to variations in zonal wind patterns and thermocline tilt associated with the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), and commensurate changes in Asian, Indian, and Australian monsoon precipitation and wind-driven upwelling. Previous studies have revealed varying phase relationships amongst monsoon precipitation, upwelling variability and precession minima in the Indo-Pacific region. Regional records have additionally displayed power in the 41-kyr band, attributed to changes in deepwater ventilation and preservation, and the 100-kyr band, related to the influence of sea level on the Indonesian Throughflow (ITF). To provide further insight into the regional and distal forcing on paleoproductivity and nutrient cycling in this clearly complex region, we present %TOC, %CaCO3, and sedimentary δ15N data from core MD98-2152, off the Sumatra margin in a region influenced by both ITF variability and wind-driven upwelling. By comparing our paleoproductivity and paleonutrient data with planktonic δ18O (tuned to composite Chinese cave speleothem records) and benthic δ18O (tuned to the Lisiecki-Raymo Stack), we compare timing of local productivity changes to high latitude ice-volume changes and local hydrographic changes. A strong 23-kyr signal in the %TOC record supports the strong influence of precession on paleoproductivity in this region. In contrast, strong power in the 100 and 41-kyr bands is observed in %CaCO3 and δ15N with a relatively minor contribution from precession, indicating a complex relationship between nutrient cycling, upwelling, production, and preservation on the Sumatra coast.
NASA Astrophysics Data System (ADS)
van der Meulen, Bas; Abels, Hemmo; Meijer, Niels; Gingerich, Philip; Lourens, Lucas
2016-04-01
The addition of major amounts of carbon to the exogenic carbon pool caused rapid climate change and faunal turnover during the Paleocene-Eocene Thermal Maximum (PETM) around 56 million years ago. Constraints are still needed on the duration of the onset, main body, and recovery of the event. The Bighorn Basin in Wyoming provides expanded terrestrial sections spanning the PETM and lacking the carbonate dissolution present in many marine records. Here we provide new carbon isotope records for the Polecat Bench and Head of Big Sand Coulee sections, two parallel sites in the northern Bighorn Basin, at unprecedented resolution. Cyclostratigraphic analysis of these fluvial sediment records using descriptive sedimentology and proxy records allows subdivision into intervals dominated by avulsion deposits and intervals dominated by overbank deposits. These sedimentary sequences alternate in a regular fashion and are related to climatic precession. Correlation of the two, 8-km-spaced sections shows that the avulsion-overbank cycles are laterally consistent. The presence of longer-period alternations, related to modulation by the 100-kyr eccentricity cycle, corroborates the precession influence on the sediments. Sedimentary cyclicity is then used to develop a floating precession-scale age model for the PETM carbon isotope excursion (CIE). We find a CIE body encompassing 95 kyrs aligning with marine cyclostratigraphic age models. The duration of the CIE onset is estimated at 5 kyrs, but difficult to determine because sedimentation rates vary at the sub-precession scale. The CIE recovery starts with a 2 to 4 per mille step and lasts 40 or 90 kyrs, depending on what is considered the carbon isotope background state.
Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic)
NASA Astrophysics Data System (ADS)
Wetterich, Sebastian; Tumskoy, Vladimir; Rudaya, Natalia; Kuznetsov, Vladislav; Maksimov, Fedor; Opel, Thomas; Meyer, Hanno; Andreev, Andrei A.; Schirrmeister, Lutz
2016-09-01
Ice Complex deposits (locally known as the Buchchagy Ice Complex) are exposed at both coasts of the East Siberian Dmitry Laptev Strait and preserved below the Yedoma Ice Complex that formed during MIS3 and MIS2 (Marine Isotope Stage) and lateglacial-Holocene thermokarst deposits (MIS1). Radioisotope disequilibria (230Th/U) of peaty horizons date the Buchchagy Ice Complex deposition to 126 + 16/-13 kyr and 117 + 19/-14 kyr until 98 ± 5 kyr and 89 ± 5 kyr. The deposit is characterised by poorly-sorted medium-to-coarse silts with cryogenic structures of horizontal ice bands, lens-like, and lens-like reticulated segregation ice. Two peaty horizons within the Buchchagy Ice Complex and syngenetic ice wedges (2-4 m wide, up to 10 m high) are striking. The isotopic composition (δ18O, δD) of Buchchagy ice-wedge ice indicates winter conditions colder than during the MIS3 interstadial and warmer than during MIS2 stadial, and similar atmospheric winter moisture sources as during the MIS2 stadial. Buchchagy Ice Complex pollen spectra reveal tundra-steppe vegetation and harsher summer conditions than during the MIS3 interstadial and rather similar vegetation as during the MIS2 stadial. Short-term climatic variability during MIS5 is reflected in the record. Even though the regional chronostratigraphic relationship of the Buchchagy Ice Complex to the Last Interglacial remains unclear because numerical dating is widely lacking, the present study indicates permafrost (Ice Complex) formation during MIS5 sensu lato, and its preservation afterwards. Palaeoenvironmental insights into past climate and the periglacial landscape dynamics of arctic lowlands in eastern Siberia are deduced from the record.
Jehle, Sofie; Bornemann, André; Deprez, Arne; Speijer, Robert P
2015-01-01
The marine ecosystem has been severely disturbed by several transient paleoenvironmental events (<200 kyr duration) during the early Paleogene, of which the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) was the most prominent. Over the last decade a number of similar events of Paleocene and Eocene age have been discovered. However, relatively little attention has been paid to pre-PETM events, such as the "Latest Danian Event" ("LDE", ~62.18 Ma), specifically from an open ocean perspective. Here we present new foraminiferal isotope (δ13C, δ18O) and faunal data from Ocean Drilling Program (ODP) Site 1210 at Shatsky Rise (Pacific Ocean) in order to reconstruct the prevailing paleoceanographic conditions. The studied five-meter-thick succession covers ~900 kyr and includes the 200-kyr-lasting LDE. All groups surface dwelling, subsurface dwelling and benthic foraminifera show a negative δ13C excursion of >0.6‰, similar in magnitude to the one previously reported from neighboring Site 1209 for benthic foraminifera. δ18O-inferred warming by 1.6 to 2.8°C (0.4-0.7‰ δ18O measured on benthic and planktic foraminiferal tests) of the entire water column accompanies the negative δ13C excursion. A well stratified upper ocean directly before and during the LDE is proposed based on the stable isotope gradients between surface and subsurface dwellers. The gradient is less well developed, but still enhanced after the event. Isotope data are supplemented by comprehensive planktic foraminiferal faunal analyses revealing a dominance of Morozovella species together with Parasubbotina species. Subsurface-dwelling Parasubbotina shows high abundances during the LDE tracing changes in the strength of the isotope gradients and, thus, may indicate optimal living conditions within a well stratified surface ocean for this taxon. In addition, distinct faunal changes are reported like the disappearance of Praemurica species right at the base of the LDE and the continuous replacement of M. praeangulata with M. angulata across the LDE.
NASA Astrophysics Data System (ADS)
Foerster, V. E.; Asrat, A.; Bronk Ramsey, C.; Chapot, M. S.; Cohen, A. S.; Dean, J. R.; Deocampo, D.; Deino, A. L.; Guenter, C.; Junginger, A.; Lamb, H. F.; Leng, M. J.; Roberts, H. M.; Schaebitz, F.; Trauth, M. H.
2017-12-01
As a contribution towards an enhanced understanding of human-climate interactions, the Hominin Sites and Paleolakes Drilling Project (HSPDP) has cored six predominantly lacustrine archives of climate change spanning much of the last 3.5 Ma in eastern Africa. All six sites in Ethiopia and Kenya are adjacent to key paleoanthropological sites encompassing diverse milestones in human evolution, dispersal, and technological innovation. The 280 m-long Chew Bahir sediment core, recovered from a tectonically-bound basin in the southern Ethiopian rift in late 2014, covers the past 550 ka of environmental history, an interval marked by intense climatic changes and includes the transition to the Middle Stone Age and the origin and dispersal of modern Homo sapiens. We present the outcome of lithologic and stratigraphic investigations, first interpretations of high resolution MSCL and XRF scanning data, and initial results of detailed multi-indicator analysis of the Chew Bahir cores. These analyses are based on more than 14,000 discrete samples, including grain size analyses and X-ray diffraction. An initial chronology, based on Ar/Ar and OSL dating, allows temporal calibration of our reconstruction of dry-wet cycles. Both geochemical and sedimentological data show that the Chew Bahir deposits are sensitive recorders of climate change on millennial to centennial timescales. Initial statistical analyses identify phases marked by abrupt climatic changes, whereas several long-term wet-dry oscillations reveal variations mostly in the precession ( 15-25 kyr), but also in the obliquity ( 40 kyr) and eccentricity frequency bands ( 90-120 kyr). The Chew Bahir record will help decode climate variation on several different time scales, as a consequence of orbitally-driven high-latitude glacial-interglacial shifts and variations in greenhouse gases, Indian and Atlantic Ocean sea-surface temperatures, as well as local solar irradiance. This 550 ka record of environmental change in eastern Africa will ultimately be used to test hypotheses regarding the impact of climate variability on human evolution, dispersal and technological innovation.
Jehle, Sofie; Bornemann, André; Deprez, Arne; Speijer, Robert P.
2015-01-01
The marine ecosystem has been severely disturbed by several transient paleoenvironmental events (<200 kyr duration) during the early Paleogene, of which the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) was the most prominent. Over the last decade a number of similar events of Paleocene and Eocene age have been discovered. However, relatively little attention has been paid to pre-PETM events, such as the “Latest Danian Event” ("LDE", ~62.18 Ma), specifically from an open ocean perspective. Here we present new foraminiferal isotope (δ13C, δ18O) and faunal data from Ocean Drilling Program (ODP) Site 1210 at Shatsky Rise (Pacific Ocean) in order to reconstruct the prevailing paleoceanographic conditions. The studied five-meter-thick succession covers ~900 kyr and includes the 200-kyr-lasting LDE. All groups surface dwelling, subsurface dwelling and benthic foraminifera show a negative δ13C excursion of >0.6‰, similar in magnitude to the one previously reported from neighboring Site 1209 for benthic foraminifera. δ18O-inferred warming by 1.6 to 2.8°C (0.4–0.7‰ δ18O measured on benthic and planktic foraminiferal tests) of the entire water column accompanies the negative δ13C excursion. A well stratified upper ocean directly before and during the LDE is proposed based on the stable isotope gradients between surface and subsurface dwellers. The gradient is less well developed, but still enhanced after the event. Isotope data are supplemented by comprehensive planktic foraminiferal faunal analyses revealing a dominance of Morozovella species together with Parasubbotina species. Subsurface-dwelling Parasubbotina shows high abundances during the LDE tracing changes in the strength of the isotope gradients and, thus, may indicate optimal living conditions within a well stratified surface ocean for this taxon. In addition, distinct faunal changes are reported like the disappearance of Praemurica species right at the base of the LDE and the continuous replacement of M. praeangulata with M. angulata across the LDE. PMID:26606656
Schoenenberger, A W; Erne, P; Ammann, S; Perrig, M; Bürgi, U; Stuck, A E
2008-01-01
Approximate entropy (ApEn) of blood pressure (BP) can be easily measured based on software analysing 24-h ambulatory BP monitoring (ABPM), but the clinical value of this measure is unknown. In a prospective study we investigated whether ApEn of BP predicts, in addition to average and variability of BP, the risk of hypertensive crisis. In 57 patients with known hypertension we measured ApEn, average and variability of systolic and diastolic BP based on 24-h ABPM. Eight of these fifty-seven patients developed hypertensive crisis during follow-up (mean follow-up duration 726 days). In bivariate regression analysis, ApEn of systolic BP (P<0.01), average of systolic BP (P=0.02) and average of diastolic BP (P=0.03) were significant predictors of hypertensive crisis. The incidence rate ratio of hypertensive crisis was 14.0 (95% confidence interval (CI) 1.8, 631.5; P<0.01) for high ApEn of systolic BP as compared to low values. In multivariable regression analysis, ApEn of systolic (P=0.01) and average of diastolic BP (P<0.01) were independent predictors of hypertensive crisis. A combination of these two measures had a positive predictive value of 75%, and a negative predictive value of 91%, respectively. ApEn, combined with other measures of 24-h ABPM, is a potentially powerful predictor of hypertensive crisis. If confirmed in independent samples, these findings have major clinical implications since measures predicting the risk of hypertensive crisis define patients requiring intensive follow-up and intensified therapy.
The complete mitochondrial genome structure of snow leopard Panthera uncia.
Wei, Lei; Wu, Xiaobing; Jiang, Zhigang
2009-05-01
The complete mitochondrial genome (mtDNA) of snow leopard Panthera uncia was obtained by using the polymerase chain reaction (PCR) technique based on the PCR fragments of 30 primers we designed. The entire mtDNA sequence was 16 773 base pairs (bp) in length, and the base composition was: A-5,357 bp (31.9%); C-4,444 bp (26.5%); G-2,428 bp (14.5%); T-4,544 bp (27.1%). The structural characteristics [0] of the P. uncia mitochondrial genome were highly similar to these of Felis catus, Acinonyx jubatus, Neofelis nebulosa and other mammals. However, we found several distinctive features of the mitochondrial genome of Panthera unica. First, the termination codon of COIII was TAA, which differed from those of F. catus, A. jubatus and N. nebulosa. Second, tRNA(Ser) ((AGY)), which lacked the ''DHU'' arm, could not be folded into the typical cloverleaf-shaped structure. Third, in the control region, a long repetitive sequence in RS-2 (32 bp) region was found with 2 repeats while one short repetitive segment (9 bp) was found with 15 repeats in the RS-3 region. We performed phylogenetic analysis based on a 3 816 bp concatenated sequence of 12S rRNA, 16S rRNA, ND2, ND4, ND5, Cyt b and ATP8 for P. uncia and other related species, the result indicated that P. uncia and P. leo were the sister species, which was different from the previous findings.
Culver, S.J.; Farrell, K.M.; Mallinson, D.J.; Horton, B.P.; Willard, D.A.; Thieler, E.R.; Riggs, S.R.; Snyder, S.W.; Wehmiller, J.F.; Bernhardt, C.E.; Hillier, C.
2008-01-01
Micropaleontological data provide a strong actualistic basis for detailed interpretations of Quaternary paleoenvironmental change. The 90??m-thick Quaternary record of the Albemarle Embayment in the mid-Atlantic coastal plain of the USA provides an excellent opportunity to use such an approach in a region where the details of Quaternary environmental change are poorly known. The foraminiferal record in nine cores from the northern Outer Banks, east of Albemarle Sound, North Carolina, indicates the deposition of subhorizontal, mostly open-marine early to late Pleistocene units unconformably upon a basement of late Pliocene reduced-oxygen, fine-grained, shelf-basin deposits. Pollen data record several warm-cool fluctuations within the early to mid-Pleistocene deposits. Diatom data indicate that some fresh and brackish-water units occur within the generally open-marine Pleistocene succession. A channel cut by the paleo-Roanoke River during the last glacial sea-level lowstand occurs in the northern part of the study area. Pollen indicates that the basal fluvial valley fill accumulated in cooler than modern climate conditions in the latest Pleistocene. Overlying silts and muds accumulated under cool climatic, estuarine conditions according to diatom and pollen data. Radiocarbon ages from the estuarine deposits indicate that the bulk of these sediments accumulated during the latest Pleistocene. The estuarine channel-fill deposits are overlain by Holocene open-marine sands deposited as the rising sea transgressed into the estuary approximately 8.5 to 9.0??kyr BP. Within the barrier island drill cores of this study, fully marine sedimentation occurred throughout the Holocene. However, immediately west of the present barrier island, mid- to late Holocene estuarine deposits underlie the modern Albemarle Sound. The islands that currently form a continuous barrier across the mouth of Albemarle Sound have a complex history of Holocene construction and destruction and large portions of them may be less than 3??kyr old. The barrier island sands overlie open-marine sands of Colington Shoal in the north and to the south overlie fluvial and marine sand filling paleo-Roanoke tributary valleys. The Pleistocene sediments underlying the northern Outer Banks study area are mainly of open inner to mid-shelf origin. If, as is likely, sea level continues to rise, a return to such environmental conditions is likely in the near future. ?? 2008 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gogorza, C. S.; Irurzun, M. A.; Chaparro, M. A.; Lirio, J. M.; Nunez, H.; Sinito, A. M.
2007-05-01
Four cores labeled Lmor1, Lmor2, Lmor3, Lmor98-1, Lmor98-2 from the bottom sediments of Lake Moreno (south-western Argentina) have been used to estimate regional geomagnetic paleointensity. Lake Moreno is on the east side of the Andean Cordillera Patagónica; it is located in the Llao Llao area, San Carlos de Bariloche, Argentina (41° S, 71° 30'W). The following measurements were performed: Natural Remanent Magnetization (NRM), magnetic susceptibility at low and high frequency (specific, X and volumetric, k), Isothermal Remanent Magnetization (IRM) reaching the Saturation Isothermal Remanent Magnetization (SIRM), Back Field, Anhysteric Remanent Magnetization with a direct field of 0.1mT and an alternating field between 2.5 and 100mT (ARM100mT). Associated parameters were calculated: S-ratio, Remanent Coercitive Field (BCR, anhysteric volumetric susceptibility (kanh), SIRM/k, ARM100mT/k, and SIRM/ ARM100mT. The rock magnetic studies indicate that the magnetic mineralogy of the clay-rich sediments is dominated by pseudo- single domain magnetite in a narrow range of grain size (between 1 and 4μm) and concentration (between 0.05 and 0.1%), thereby meeting established criteria for relative paleointensity studies. The remanent magnetization at 20mT (NRM20mT) has been normalized using the anhysteric remanent magnetization at 20mT (ARM20mT), the saturation of the isothermal remanent magnetization at 20mT (SIRM20mT) and k. A comparison of these results with relative paleointensity records obtained in previous works, Lake Escondido (Gogorza et al., 2004) and Lake El Trébol (Gogorza et al., 2006) allows obtaining detailed information about the disagreement observed in the period 12-20 kyr between both records. References Gogorza, C.S.G., J.M. Lirio, H. Nunez, M.A.E. Chaparro, H.R. Bertorello, A.M. Sinito. Paleointensity studies on Holocene-Pleistocene sediments from Lake Escondido, Argentina, Phys. Earth and Planet. Inter. 145: 219-238, 2004. Gogorza, C.S.G., M.A. Irurzun, M.A.E. Chaparro, J.M. Lirio, H. Nunez, P.G. Bercoff, A.M. Sinito. Relative paleointensity of the geomagnetic field over the last 21,000 years BP from sediment cores, Lake El Trébol (Patagonia, Argentina). Earth Planet Space. 58: 1323-1332, 2006.
Holocene Paleosecular Variation From Dated Lava Flows on East Maui (Hawaii)
NASA Astrophysics Data System (ADS)
Herrero-Bervera, E.; Valet, J.
2006-12-01
A quasi-static inclination anomaly and low secular variation seem to dominate the historical and the long-term time averaged field in central Pacific. The period covering the past 10 kyr is crucial to study the field variability and to fill the gap between historical field measurements and long-term paleomagnetic records. We have conducted a paleomagnetic study of 13 sites of basaltic lava flows from the Maui island with 14C ages between 10.3 and 0.015 Ka. Two other sites dated at 45 Ka and 730 Ka were also sampled. Eight to ten samples from each site were demagnetized using thermal treatment and companion specimens from the same samples were demagnetized by alternating fields (af). Thermomagnetic and hysteresis measurements indicated that magnetite (575 degrees C) in fine grains was the dominant magnetic carrier, although in many cases we observed also a low-temperature phase which is likely carried by titanomagnetite with low titanium content. The existence of relatively high coercivities associated with these two mineralogical phases generated overlapping components which could not be properly isolated using af demagnetization. Successful results were obtained after thermal demagnetization for 13 sites with a mean inclination of 34.2 degrees +/-9 degrees. The mean inclination (Inc = 36.3 degrees) of the eleven sites younger than 10.5 Ka is very close to the value (37 degrees) of the geocentric axial dipole (GAD) at the site latitude, but the angular dispersion of 6.7 degrees for the VGPs about the spin axis is significantly lower than the predictions of the models of paleosecular variation at this latitude. The inclination variations for the past 10 Kyr are in excellent agreement with the very detailed dataset which has previously been obtained from the Big Island of Hawaii. The mean inclination is slightly lower than expected but this is likely caused by the lack of records between 5 and 7 ka B.P. Thus, there is no striking evidence for a magnetic anomaly under Hawaii during this period and the recently published records obtained for the past millions of years neither show any conclusive evidence in favor of a long-term persistent anomaly. However all studies report a very low dispersion of the VGPs which reflects low secular variation and likely low non-dipole field during the Holocene.
NASA Astrophysics Data System (ADS)
Johnson, K. R.; Griffiths, M. L.; Borsato, A.; Frisia, S.; Bhattacharya, T.; Tierney, J. E.; LeGrande, A. N.; Henderson, G. M.
2017-12-01
Despite significant advances in our understanding of Asian monsoon variability on orbital to millennial timescales, we still know very little about the range and mechanisms of variability in the Southeast Asian monsoon region. To address this need, we have developed a decadally-resolved and replicated speleothem δ18O and δ13C record from Tham Doun Mai Cave in Northern Laos. The record spans the period from 37.7 kyr BP to the present and the age model is constrained by 35 U-Th dates. The orbital and millennial scale δ18O variability is remarkably similar to other Asian speleothem records, with the lowest values observed during the early Holocene summer insolation maxima and clear δ18O increases observed during Heinrich Stadials (HS) 1-3, the Younger Dryas, and the 8.2 kyr event. The strong similarity with Chinese speleothem δ18O records suggests that variations in upstream rainout over the Indian Ocean, Bay of Bengal, and Indian Monsoon region are the dominant control on orbital and millennial scale precipitation δ18O variability across Southeast and East Asia. In contrast to δ18O, TM speleothem δ13C is reflective of local hydroclimate. The δ13C record shows large positive excursions during HS 1-3, suggesting dry conditions during these events. Positive δ13C values during the early Holocene indicate dry conditions in SE Asia were synchronous with increased upstream rainout. This interpretation is further supported by crystal fabric and greyscale analyses, which reflect internal porosity changes likely related to infiltration variability. Compact columnar, translucent calcite is associated with decreased infiltration, and typifies HS events and the early Holocene. The positive δ13C excursions during these periods may then be enhanced by the prolonged degassing associated with slower drip rates. Time-slice simulations conducted with the isotope-enabled GISS Model E further support a dry early Holocene in this region. Model analyses suggest dry conditions in SE Asia during insolation maxima may arise from decreased low-level moisture convergence over the Indo-China Peninsula as precipitation over India and East Asia increases, effectively drawing away moisture from our study site. Nevertheless, the impacts of upstream rainout lead to regionally coherent δ18O decreases across the broad Asian monsoon region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina-Molina, Jose-Manuel; INSERM, U896, Montpellier, F-34298; Universite Montpellier1, Montpellier, F-34298
Benzophenone (BP) derivatives, BP1 (2,4-dihydroxybenzophenone), BP2 (2,2',4,4'-tetrahydroxybenzophenone), BP3 (2-hydroxy-4-methoxybenzophenone), and THB (2,4,4'-trihydroxybenzophenone) are UV-absorbing chemicals widely used in pharmaceutical, cosmetics, and industrial applications, such as topical sunscreens in lotions and hair sprays to protect skin and hair from UV irradiation. Studies on their endocrine disrupting properties have mostly focused on their interaction with human estrogen receptor alpha (hER{alpha}), and there has been no comprehensive analysis of their potency in a system allowing comparison between hER{alpha} and hER{beta} activities. The objective of this study was to provide a comprehensive ER activation profile of BP derivatives using ER from human and fishmore » origin in a battery of in vitro tests, i.e., competitive binding, reporter gene based assays, vitellogenin (Vtg) induction in isolated rainbow trout hepatocytes, and proliferation based assays. The ability to induce human androgen receptor (hAR)-mediated reporter gene expression was also examined. All BP derivatives tested except BP3 were full hER{alpha} and hER{beta} agonists (BP2 > THB > BP1) and displayed a stronger activation of hER{beta} compared with hER{alpha}, the opposite effect to that of estradiol (E{sub 2}). Unlike E{sub 2}, BPs were more active in rainbow trout ER{alpha} (rtER{alpha}) than in hER{alpha} assay. All four BP derivatives showed anti-androgenic activity (THB > BP2 > BP1 > BP3). Overall, the observed anti-androgenic potencies of BP derivatives, together with their proposed greater effect on ER{beta} versus ER{alpha} activation, support further investigation of their role as endocrine disrupters in humans and wildlife.« less
Monahan, Mark; Jowett, Sue; Lovibond, Kate; Gill, Paramjit; Godwin, Marshall; Greenfield, Sheila; Hanley, Janet; Hobbs, F D Richard; Martin, Una; Mant, Jonathan; McKinstry, Brian; Williams, Bryan; Sheppard, James P; McManus, Richard J
2018-02-01
Clinical guidelines in the United States and United Kingdom recommend that individuals with suspected hypertension should have ambulatory blood pressure (BP) monitoring to confirm the diagnosis. This approach reduces misdiagnosis because of white coat hypertension but will not identify people with masked hypertension who may benefit from treatment. The Predicting Out-of-Office Blood Pressure (PROOF-BP) algorithm predicts masked and white coat hypertension based on patient characteristics and clinic BP, improving the accuracy of diagnosis while limiting subsequent ambulatory BP monitoring. This study assessed the cost-effectiveness of using this tool in diagnosing hypertension in primary care. A Markov cost-utility cohort model was developed to compare diagnostic strategies: the PROOF-BP approach, including those with clinic BP ≥130/80 mm Hg who receive ambulatory BP monitoring as guided by the algorithm, compared with current standard diagnostic strategies including those with clinic BP ≥140/90 mm Hg combined with further monitoring (ambulatory BP monitoring as reference, clinic, and home monitoring also assessed). The model adopted a lifetime horizon with a 3-month time cycle, taking a UK Health Service/Personal Social Services perspective. The PROOF-BP algorithm was cost-effective in screening all patients with clinic BP ≥130/80 mm Hg compared with current strategies that only screen those with clinic BP ≥140/90 mm Hg, provided healthcare providers were willing to pay up to £20 000 ($26 000)/quality-adjusted life year gained. Deterministic and probabilistic sensitivity analyses supported the base-case findings. The PROOF-BP algorithm seems to be cost-effective compared with the conventional BP diagnostic options in primary care. Its use in clinical practice is likely to lead to reduced cardiovascular disease, death, and disability. © 2017 American Heart Association, Inc.
Li, Yan; Thijs, Lutgarde; Boggia, José; Asayama, Kei; Hansen, Tine W; Kikuya, Masahiro; Björklund-Bodegård, Kristina; Ohkubo, Takayoshi; Jeppesen, Jørgen; Torp-Pedersen, Christian; Dolan, Eamon; Kuznetsova, Tatiana; Stolarz-Skrzypek, Katarzyna; Tikhonoff, Valérie; Malyutina, Sofia; Casiglia, Edoardo; Nikitin, Yuri; Lind, Lars; Sandoya, Edgardo; Kawecka-Jaszcz, Kalina; Filipovsky, Jan; Imai, Yutaka; Ibsen, Hans; O'Brien, Eoin; Wang, Jiguang; Staessen, Jan A
2014-05-01
Experts proposed blood pressure (BP) load derived from 24-hour ambulatory BP recordings as a more accurate predictor of outcome than level, in particular in normotensive people. We analyzed 8711 subjects (mean age, 54.8 years; 47.0% women) randomly recruited from 10 populations. We expressed BP load as percentage (%) of systolic/diastolic readings ≥135/≥85 mm Hg and ≥120/≥70 mm Hg during day and night, respectively, or as the area under the BP curve (mm Hg×h) using the same ceiling values. During a period of 10.7 years (median), 1284 participants died and 1109 experienced a fatal or nonfatal cardiovascular end point. In multivariable-adjusted models, the risk of cardiovascular complications gradually increased across deciles of BP level and load (P<0.001), but BP load did not substantially refine risk prediction based on 24-hour systolic or diastolic BP level (generalized R(2) statistic ≤0.294%; net reclassification improvement ≤0.28%; integrated discrimination improvement ≤0.001%). Systolic/diastolic BP load of 40.0/42.3% or 91.8/73.6 mm Hg×h conferred a 10-year risk of a composite cardiovascular end point similar to a 24-hour systolic/diastolic BP of 130/80 mm Hg. In analyses dichotomized according to these thresholds, increased BP load did not refine risk prediction in the whole study population (R(2)≤0.051) or in untreated participants with 24-hour ambulatory normotension (R(2)≤0.034). In conclusion, BP load does not improve risk stratification based on 24-hour BP level. This also applies to subjects with normal 24-hour BP for whom BP load was proposed to be particularly useful in risk stratification.
Electric Power Engineering Cost Predicting Model Based on the PCA-GA-BP
NASA Astrophysics Data System (ADS)
Wen, Lei; Yu, Jiake; Zhao, Xin
2017-10-01
In this paper a hybrid prediction algorithm: PCA-GA-BP model is proposed. PCA algorithm is established to reduce the correlation between indicators of original data and decrease difficulty of BP neural network in complex dimensional calculation. The BP neural network is established to estimate the cost of power transmission project. The results show that PCA-GA-BP algorithm can improve result of prediction of electric power engineering cost.
Variability of Indonesian Throughflow and Borneo Runoff During the Last 14 kyr
NASA Astrophysics Data System (ADS)
Hendrizan, Marfasran; Kuhnt, Wolfgang; Holbourn, Ann
2017-10-01
We present a high-resolution ( 20 to 100 years temporal resolution) reconstruction of hydrological changes in the Makassar Strait over the last 14 kyr from Core SO217-18517 retrieved off the Mahakam Delta (1°32.198'S, 117°33.756'E; 698 m water depth) during the SO217 Makassar-Java Cruise. Sea surface temperatures, based on Mg/Ca of Globigerinoides ruber and alkenone UK'37, and seawater δ18O reconstructions, based on G. ruber δ18O and Mg/Ca, in combination with sortable silt grain size measurements and X-ray fluorescence (XRF) core scanner derived elemental data provide evidence for increased precipitation during the Bølling-Allerød (BA) and early Holocene and for warmer and more saline surface waters and a decrease in the intensity of the Indonesian Throughflow (ITF) during the Younger Dryas (YD). XRF derived Log (Zr/Rb) records, sortable silt data and increased sedimentation rates indicate decreased winnowing, interpreted as a slowdown of the ITF thermocline flow during the YD. We attribute this decline in ITF intensity to slowdown of the Atlantic meridional overturning circulation during the YD. We suggest that changes in Makassar Strait surface hydrology during this interval of Northern Hemisphere cooling and Southern Hemisphere warming were related to a southward displacement of the Intertropical Convergence Zone.
Typing single polymorphic nucleotides in mitochondrial DNA as a way to access Middle Pleistocene DNA
Valdiosera, Cristina; García, Nuria; Dalén, Love; Smith, Colin; Kahlke, Ralf-Dietrich; Lidén, Kerstin; Angerbjörn, Anders; Arsuaga, Juan Luis; Götherström, Anders
2006-01-01
In this study, we have used a technique designed to target short fragments containing informative mitochondrial substitutions to extend the temporal limits of DNA recovery and study the molecular phylogeny of Ursus deningeri. We present a cladistic analysis using DNA recovered from 400 kyr old U. deningeri remains, which demonstrates U. deningeri's relation to Ursus spelaeus. This study extends the limits of recovery from skeletal remains by almost 300 kyr. Plant material from permafrost environments has yielded DNA of this age in earlier studies, and our data suggest that DNA in teeth from cave environments may be equally well preserved. PMID:17148299
Orbital evolution of some Centaurs
NASA Astrophysics Data System (ADS)
Kovalenko, Nataliya; Babenko, Yuri; Churyumov, Klim
2002-11-01
In this work we investigated the dynamical evolution of Centaurs objects 2060 (Chiron), 5145 (Pholus), 7066 (Nessus), 8405 (Asbolus), 10199 (Chariklo), 10370 (Hylonome), and Scattered-Disk object 15874. We have carried out orbital integration of test particles with initial orbits similar to those of these objects. Calculations were produced for +/-600kyr-10Myr starting at epoch and using the implicit single sequence Everhart methods. 12 variational orbits for each of selected Centaurs also have been numerically integrated for +/-200 kyr toward the past and the future. The most probable paths were traced up to +/-1 Myr. The character of orbital elements changes and peculiarities of close approaches to giant planets are discussed.
Ben-Dor, Miki; Gopher, Avi; Hershkovitz, Israel; Barkai, Ran
2011-01-01
The worldwide association of H. erectus with elephants is well documented and so is the preference of humans for fat as a source of energy. We show that rather than a matter of preference, H. erectus in the Levant was dependent on both elephants and fat for his survival. The disappearance of elephants from the Levant some 400 kyr ago coincides with the appearance of a new and innovative local cultural complex – the Levantine Acheulo-Yabrudian and, as is evident from teeth recently found in the Acheulo-Yabrudian 400-200 kyr site of Qesem Cave, the replacement of H. erectus by a new hominin. We employ a bio-energetic model to present a hypothesis that the disappearance of the elephants, which created a need to hunt an increased number of smaller and faster animals while maintaining an adequate fat content in the diet, was the evolutionary drive behind the emergence of the lighter, more agile, and cognitively capable hominins. Qesem Cave thus provides a rare opportunity to study the mechanisms that underlie the emergence of our post-erectus ancestors, the fat hunters. PMID:22174868
NASA Astrophysics Data System (ADS)
Dergachev, V. A.; Dmitriev, P. B.
2017-12-01
An inhomogeneous time series of measurements of the percentage content of biogenic silica in the samples of joint cores BDP-96-1 and BDP-96-2 from the bottom of Lake Baikal drilled at a depth of 321 m under water has been analyzed. The composite depth of cores is 77 m, which covers the Pleistocene Epoch to 1.8 Ma. The time series was reduced to a regular form with a time step of 1 kyr, which allowed 16 distinct quasi-periodic components with periods from 19 to 251 kyr to be revealed in this series at a significance level of their amplitudes exceeding 4σ. For this, the combined spectral periodogram (a modification of the spectral analysis method) was used. Some of the revealed quasi-harmonics are related to the characteristic cyclical oscillations of the Earth's orbital parameters. Special focus was payed to the temporal change in the parameters of the revealed quasi-harmonic components over the Pleistocene Epoch, which was studied by constructing the spectral density of the analyzed data in the running window of 201 and 701 kyr.
Volcanic synchronization of Dome Fuji and Dome C Antarctic deep ice cores over the past 216 kyr
NASA Astrophysics Data System (ADS)
Fujita, S.; Parrenin, F.; Severi, M.; Motoyama, H.; Wolff, E. W.
2015-10-01
Two deep ice cores, Dome Fuji (DF) and EPICA Dome C (EDC), drilled at remote dome summits in Antarctica, were volcanically synchronized to improve our understanding of their chronologies. Within the past 216 kyr, 1401 volcanic tie points have been identified. DFO2006 is the chronology for the DF core that strictly follows O2 / N2 age constraints with interpolation using an ice flow model. AICC2012 is the chronology for five cores, including the EDC core, and is characterized by glaciological approaches combining ice flow modelling with various age markers. A precise comparison between the two chronologies was performed. The age differences between them are within 2 kyr, except at Marine Isotope Stage (MIS) 5. DFO2006 gives ages older than AICC2012, with peak values of 4.5 and 3.1 kyr at MIS 5d and MIS 5b, respectively. Accordingly, the ratios of duration (AICC2012 / DFO2006) range between 1.4 at MIS 5e and 0.7 at MIS 5a. When making a comparison with accurately dated speleothem records, the age of DFO2006 agrees well at MIS 5d, while the age of AICC2012 agrees well at MIS 5b, supporting their accuracy at these stages. In addition, we found that glaciological approaches tend to give chronologies with younger ages and with longer durations than age markers suggest at MIS 5d-6. Therefore, we hypothesize that the causes of the DFO2006-AICC2012 age differences at MIS 5 are (i) overestimation in surface mass balance at around MIS 5d-6 in the glaciological approach and (ii) an error in one of the O2 / N2 age constraints by ~ 3 kyr at MIS 5b. Overall, we improved our knowledge of the timing and duration of climatic stages at MIS 5. This new understanding will be incorporated into the production of the next common age scale. Additionally, we found that the deuterium signals of ice, δDice, at DF tends to lead the one at EDC, with the DF lead being more pronounced during cold periods. The lead of DF is by +710 years (maximum) at MIS 5d, -230 years (minimum) at MIS 7a and +60 to +126 years on average.
NASA Astrophysics Data System (ADS)
Hartman, Julian D.; Sangiorgi, Francesca; Peterse, Francien; Barcena, Maria A.; Albertazzi, Sonia; Asioli, Alessandra; Giglio, Federico; Langone, Leonardo; Tateo, Fabio; Trincardi, Fabio
2016-04-01
The Marine Isotope sub-Stage 5e (~ 125 - 119 kyrs BP), the last interglacial period before the present, is believed to have been globally warmer (~ 2°C) than today. Studying this time interval might therefore provide insights into near future climate state given the ongoing climate change and global temperature increase. Of particular interest are the expected changes in polar ice cover. One important aspect of the cryosphere is sea-ice, which influences albedo, deep and surface water currents, and phytoplankton production, and thus affects the global climate system. To investigate whether changes in sea-ice cover occurred in the Southern Ocean close to Antarctica during Marine Isotope sub-Stage 5e dinoflagellate and diatom assemblages have been analyzed in core AS05-10, drilled in the continental slope off the Drygalski basin (Ross Sea) at a water depth of 2377 m. The core was drilled within the frame of the PNRA 2009/A2.01 project, an Italian project with a multidisciplinary approach, and covers the interval from Present to Marine Isotope Stage (MIS) 7. The core stratigraphy is based on diatom bioevents and on the climate cyclicity provided by the variations of the diatom assemblages. For this study we focused on the interval from MIS7 to MIS5. A strong reduction of sea-ice-loving diatom taxa with respect to open water-loving diatom taxa is observed during MIS5. In general the production of phytoplankton increases at the base of MIS5 and then slowly decreases. Dinoflagellate cysts, particularly heterotrophic species, are abundant during MIS5e only. The sea surface temperature reconstruction based on the TEX86L, a proxy based on lipid biomarkers produced by Thaumarcheota, shows a 4°C temperature increase from MIS6 to MIS5e. A slightly smaller temperature increase is observed at the onset of MIS7, but this stage is barren of heterotrophic dinoflagellates. All proxies together seem to indicate that the retreat of the summer sea-ice in the Ross Sea during MIS5e was likely greater than that during MIS7.
Lin, Yuh-Feng; Sheng, Li-Huei; Wu, Mei-Yi; Zheng, Cai-Mei; Chang, Tian-Jong; Li, Yu-Chuan; Huang, Yu-Hui; Lu, Hsi-Peng
2014-12-01
No evidence exists from randomized trials to support using cloud-based manometers integrated with available physician order entry systems for tracking patient blood pressure (BP) to assist in the control of renal function deterioration. We investigated how integrating cloud-based manometers with physician order entry systems benefits our outpatient chronic kidney disease patients compared with typical BP tracking systems. We randomly assigned 36 chronic kidney disease patients to use cloud-based manometers integrated with physician order entry systems or typical BP recording sheets, and followed the patients for 6 months. The composite outcome was that the patients saw improvement both in BP and renal function. We compared the systolic and diastolic BP (SBP and DBP), and renal function of our patients at 0 months, 3 months, and 6 months after using the integrated manometers and typical BP monitoring sheets. Nighttime SBP and DBP were significantly lower in the study group compared with the control group. Serum creatinine level in the study group improved significantly compared with the control group after the end of Month 6 (2.83 ± 2.0 vs. 4.38 ± 3.0, p = 0.018). Proteinuria improved nonsignificantly in Month 6 in the study group compared with the control group (1.05 ± 0.9 vs. 1.90 ± 1.3, p = 0.09). Both SBP and DBP during the nighttime hours improved significantly in the study group compared with the baseline. In pre-end-stage renal disease patients, regularly monitoring BP by integrating cloud-based manometers appears to result in a significant decrease in creatinine and improvement in nighttime BP control. Estimated glomerular filtration rate and proteinuria were found to be improved nonsignificantly, and thus, larger population and longer follow-up studies may be needed.
NASA Astrophysics Data System (ADS)
Reimi, Maria A.; Marcantonio, Franco
2016-11-01
Accurate paleo-latitudinal reconstructions of the Intertropical Convergence Zone (ITCZ) are necessary for understanding tropical hydroclimate and atmospheric circulation. Paleoclimate models and records suggest that as global temperatures increase, the ITCZ should migrate towards the warmer hemisphere. Many uncertainties remain regarding the magnitude of this migration, and few studies have focused on the Central Equatorial Pacific (CEP). Here, we use eolian dust records recovered from three locations in the CEP to address changes in dust provenance across the paleo ITCZ since the last glacial maximum (LGM). Radiogenic isotope compositions of Nd and Pb show that dust delivered to the CEP was sourced mainly from two regions: East Asia and South America. From these data we deduced that since Marine Oxygen Isotope Stage 2 (MIS2) the ITCZ has migrated north to its modern position, being displaced by as much as 7°, to as little as 2.5°. We find that the ITCZ migrated further north during the early Holocene (∼9 kyr), reaching its position furthest north during the mid-Holocene warm interval (∼7 kyr), based on an increase in South American dust at the northernmost sites.
Denudation rates and tectonic geomorphology of the Spanish Betic Cordillera
NASA Astrophysics Data System (ADS)
Bellin, N.; Vanacker, V.; Kubik, P. W.
2014-03-01
The tectonic control on landscape morphology and long-term denudation is largely documented for settings with high uplift rates. Relatively little is known about the rates of geomorphic response in areas of low tectonic uplift. Here, we evaluate spatial variations in denudation of the Spanish Betic Cordillera based on cosmogenic 10Be-derived denudation rates. Denudation rates are compared to published data on rock uplift and exhumation of the Betic Cordillera to evaluate steady-state topography. The spatial patterns of catchment-wide denudation rates (n=20) are then analysed together with topographic metrics of hillslope and channel morphology. Catchments draining the Betic ranges have relatively low denudation rates (64±54 mm kyr), but also show large variation as they range from 14 to 246 mm kyr-1. Catchment-wide denudation is linearly proportional to the mean hillslope gradient and local relief. Despite large spatial variation in denudation, the magnitude and spatial pattern of denudation rates are generally consistent with longer-term local uplift rates derived from elevated marine deposits, fission-track measurements and vertical fault slip rates. This might be indicative of a steady-state topography where rock uplift is balanced by denudation.
Palaeoecology of a 3-kyr biosedimentary record of a coral reef-supporting carbonate shelf
NASA Astrophysics Data System (ADS)
Almeida, Carine M.; Barbosa, Catia Fernandes; Cordeiro, Renato C.; Seoane, José Carlos S.; Fermino, Gerson M.; Silva, Patricia O.; Turcq, Bruno J.
2013-11-01
This study assesses the 3-kyr paleoecology and sedimentary evolution of the Abrolhos carbonate shelf, Bahia, Brazil, using a two-meter-long core collected in a carbonate muddy sediment. The paleoecology was based on the distribution of benthic foraminifer functional groups associated with grain size, total organic carbon (TOC), total nitrogen (TN), C/N and δ13C. The results identified three biosedimentary units showing that symbiont-bearing foraminifers (Peneroplis and Archaias) decrease in abundance. However, other small taxa (Miliolinella and Cornuspira) and stress-tolerant genera (Bolivina, Elphidium and Ammonia) increase in abundance toward the core top. Grain size decreases toward the top of the core, suggesting a weakening of hydrodynamic winnowing toward recent time. The TOC and TN concentrations increase, and the C/N ratios decrease, suggesting an increase of marine productivity from nearby goblet-shaped structures called "chapeirões". Changes in the benthic foraminifer community can be linked to the sedimentological and organic matter input, which are the result of climatic and oceanographic variations at different spatial and time scales, thus illustrating reduced potential to support symbiont-bearing foraminifer communities to the end of the Holocene.
Removal of 2-ClBP from soil-water system using activated carbon supported nanoscale zerovalent iron.
Zhang, Wei; Yu, Tian; Han, Xiaolin; Ying, Weichi
2016-09-01
We explored the feasibility and removal mechanism of removing 2-chlorobiphenyl (2-ClBP) from soil-water system using granular activated carbon (GAC) impregnated with nanoscale zerovalent iron (reactive activated carbon or RAC). The RAC samples were successfully synthesized by the liquid precipitation method. The mesoporous GAC based RAC with low iron content (1.32%) exhibited higher 2-ClBP removal efficiency (54.6%) in the water phase. The result of Langmuir-Hinshelwood kinetic model implied that the different molecular structures between 2-ClBP and trichloroethylene (TCE) resulted in more difference in dechlorination reaction rates on RAC than adsorption capacities. Compared to removing 2-ClBP in the water phase, RAC removed the 2-ClBP more slowly in the soil phase due to the significant external mass transfer resistance. However, in the soil phase, a better removal capacity of RAC was observed than its base GAC because the chemical dechlorination played a more important role in total removal process for 2-ClBP. This important result verified the effectiveness of RAC for removing 2-ClBP in the soil phase. Although reducing the total RAC removal rate of 2-ClBP, soil organic matter (SOM), especially the soft carbon, also served as an electron transfer medium to promote the dechlorination of 2-ClBP in the long term. Copyright © 2016. Published by Elsevier B.V.
Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control
NASA Astrophysics Data System (ADS)
Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming
2018-01-01
In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.
Tanabe, Kazuhiro; Matsuo, Koji; Miyazawa, Masaki; Hayashi, Masaru; Ikeda, Masae; Shida, Masako; Hirasawa, Takeshi; Sho, Ryuichiro; Mikami, Mikio
2018-05-01
Serum levels of fully sialylated C4-binding protein (FS-C4BP) are remarkably elevated in patients with epithelial ovarian cancer (EOC) and can be used as a marker to distinguish ovarian clear cell carcinoma from endometrioma. This study aimed to develop a stable, robust and reliable liquid chromatography-hybrid mass spectrometry (UPLC-MS/MS) based diagnostic method that would generalize FS-C4BP as a clinical EOC biomarker. Glycopeptides derived from 20 μL of trypsin-digested serum glycoprotein were analyzed via UPLC equipped with an electrospray ionization time-of-flight mass spectrometer. This UPLC-MS/MS-based diagnostic method was optimized for FS-C4BP and validated using sera from 119 patients with EOC and 127 women without cancer. A1958 (C4BP peptide with two fully sialylated biantennary glycans) was selected as a marker of FS-C4BP because its level in serum was highest among FS-C4BP family members. Preparation and UPLC-MS/MS were optimized for A1958, and performance and robustness were significantly improved relative to our previous method. An area under the curve analysis of the FS-C4BP index receiver operating characteristic curve revealed that the ratio between A1958 and A1813 (C4BP peptide with two partially sialylated biantennary glycans) reached 85%. A combination of the FS-C4BP index and carbohydrate antigen-125 levels further enhanced the sensitivity and specificity. © 2017 The Authors. Biomedical Chromatography published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Fu, Liyue; Song, Aiguo
2018-02-01
In order to improve the measurement precision of 6-axis force/torque sensor for robot, BP decoupling algorithm optimized by GA (GA-BP algorithm) is proposed in this paper. The weights and thresholds of a BP neural network with 6-10-6 topology are optimized by GA to develop decouple a six-axis force/torque sensor. By comparison with other traditional decoupling algorithm, calculating the pseudo-inverse matrix of calibration and classical BP algorithm, the decoupling results validate the good decoupling performance of GA-BP algorithm and the coupling errors are reduced.
Green, Beverly B; Cook, Andrea J; Ralston, James D; Fishman, Paul A; Catz, Sheryl L; Carlson, James; Carrell, David; Tyll, Lynda; Larson, Eric B; Thompson, Robert S
2008-06-25
Treating hypertension decreases mortality and disability from cardiovascular disease, but most hypertension remains inadequately controlled. To determine if a new model of care that uses patient Web services, home blood pressure (BP) monitoring, and pharmacist-assisted care improves BP control. A 3-group randomized controlled trial, the Electronic Communications and Home Blood Pressure Monitoring study was based on the Chronic Care Model. The trial was conducted at an integrated group practice in Washington state, enrolling 778 participants aged 25 to 75 years with uncontrolled essential hypertension and Internet access. Care was delivered over a secure patient Web site from June 2005 to December 2007. Participants were randomly assigned to usual care, home BP monitoring and secure patient Web site training only, or home BP monitoring and secure patient Web site training plus pharmacist care management delivered through Web communications. Percentage of patients with controlled BP (<140/90 mm Hg) and changes in systolic and diastolic BP at 12 months. Of 778 patients, 730 (94%) completed the 1-year follow-up visit. Patients assigned to the home BP monitoring and Web training only group had a nonsignificant increase in the percentage of patients with controlled BP (<140/90 mm Hg) compared with usual care (36% [95% confidence interval {CI}, 30%-42%] vs 31% [95% CI, 25%-37%]; P = .21). Adding Web-based pharmacist care to home BP monitoring and Web training significantly increased the percentage of patients with controlled BP (56%; 95% CI, 49%-62%) compared with usual care (P < .001) and home BP monitoring and Web training only (P < .001). Systolic BP was decreased stepwise from usual care to home BP monitoring and Web training only to home BP monitoring and Web training plus pharmacist care. Diastolic BP was decreased only in the pharmacist care group compared with both the usual care and home BP monitoring and Web training only groups. Compared with usual care, the patients who had baseline systolic BP of 160 mm Hg or higher and received home BP monitoring and Web training plus pharmacist care had a greater net reduction in systolic BP (-13.2 mm Hg [95% CI, -19.2 to -7.1]; P < .001) and diastolic BP (-4.6 mm Hg [95% CI, -8.0 to -1.2]; P < .001), and improved BP control (relative risk, 3.32 [95% CI, 1.86 to 5.94]; P<.001). Pharmacist care management delivered through secure patient Web communications improved BP control in patients with hypertension. Trial Registration clinicaltrials.gov Identifier: NCT00158639.
Davis, Esa M; Appel, Lawrence J; Wang, Xuelei; Greene, Tom; Astor, Brad C; Rahman, Mahboob; Toto, Robert; Lipkowitz, Michael S; Pogue, Velvie A; Wright, Jackson T
2011-06-01
Blood pressure (BP) guidelines that set target BP levels often rely on analyses of achieved BP from hypertension treatment trials. The objective of this article was to compare the results of analyses of achieved BP to intention-to-treat analyses on renal disease progression. Participants (n=1094) in the African-American Study of Kidney Disease and Hypertension Trial were randomly assigned to either usual BP goal defined by a mean arterial pressure goal of 102 to 107 mm Hg or lower BP goal defined by a mean arterial pressure goal of ≤92 mm Hg. Median follow-up was 3.7 years. Primary outcomes were rate of decline in measured glomerular filtration rate and a composite of a decrease in glomerular filtration rate by >50% or >25 mL/min per 1.73 m(2), requirement for dialysis, transplantation, or death. Intention-to-treat analyses showed no evidence of a BP effect on either the rate of decline in glomerular filtration rate or the clinical composite outcome. In contrast, the achieved BP analyses showed that each 10-mm Hg increment in mean follow-up achieved mean arterial pressure was associated with a 0.35 mL/min per 1.73 m(2) (95% CI: 0.08 to 0.62 mL/min per 1.73 m(2); P=0.01) faster mean glomerular filtration rate decline and a 17% (95% CI: 5% to 32%; P=0.006) increased risk of the clinical composite outcome. Analyses based on achieved BP lead to markedly different inferences than traditional intention-to-treat analyses, attributed in part to confounding of achieved BP with comorbidities, disease severity, and adherence. Clinicians and policy makers should exercise caution when making treatment recommendations based on analyses relating outcomes to achieved BP.
Duross, Christopher; Personius, Stephen; Olig, Susan S; Crone, Anthony J.; Hylland, Michael D.; Lund, William R; Schwartz, David P.
2017-01-01
The Wasatch fault (WFZ)—Utah’s longest and most active normal fault—forms a prominent eastern boundary to the Basin and Range Province in northern Utah. To provide paleoseismic data for a Wasatch Front regional earthquake forecast, we synthesized paleoseismic data to define the timing and displacements of late Holocene surface-faulting earthquakes on the central five segments of the WFZ. Our analysis yields revised histories of large (M ~7) surface-faulting earthquakes on the segments, as well as estimates of earthquake recurrence and vertical slip rate. We constrain the timing of four to six earthquakes on each of the central segments, which together yields a history of at least 24 surface-faulting earthquakes since ~6 ka. Using earthquake data for each segment, inter-event recurrence intervals range from about 0.6 to 2.5 kyr, and have a mean of 1.2 kyr. Mean recurrence, based on closed seismic intervals, is ~1.1–1.3 kyr per segment, and when combined with mean vertical displacements per segment of 1.7–2.6 m, yield mean vertical slip rates of 1.3–2.0 mm/yr per segment. These data refine the late Holocene behavior of the central WFZ; however, a significant source of uncertainty is whether structural complexities that define the segments of the WFZ act as hard barriers to ruptures propagating along the fault. Thus, we evaluate fault rupture models including both single-segment and multi-segment ruptures, and define 3–17-km-wide spatial uncertainties in the segment boundaries. These alternative rupture models and segment-boundary zones honor the WFZ paleoseismic data, take into account the spatial and temporal limitations of paleoseismic data, and allow for complex ruptures such as partial-segment and spillover ruptures. Our data and analyses improve our understanding of the complexities in normal-faulting earthquake behavior and provide geological inputs for regional earthquake-probability and seismic hazard assessments.
Lacruz, Maria Elena; Kluttig, Alexander; Kuss, Oliver; Tiller, Daniel; Medenwald, Daniel; Nuding, Sebastian; Greiser, Karin Halina; Frantz, Stefan; Haerting, Johannes
2017-01-18
Precise blood pressure (BP) measurements are central for the diagnosis of hypertension in clinical and epidemiological studies. The purpose of this study was to quantify the variability in BP associated with arm side, body position, and successive measurements in the setting of a population-based observational study. Additionally, we aimed to evaluate the influence of different measurement conditions on prevalence of hypertension. The sample included 967 men and 812 women aged 45 to 83 years at baseline. BP was measured according to a standardized protocol with oscillometric devices including three sitting measurements at left arm, one simultaneous supine measurement at both arms, and four supine measurements at the arm with the higher BP. Hypertension was defined as systolic BP (SBP) ≥140 mmHg and/or diastolic BP (DBP) ≥90 mmHg. Variability in SBP and DBP were analysed with sex-stratified linear covariance pattern models. We found that overall, no mean BP differences were measured according to arm-side, but substantial higher DBP and for men also higher SBP was observed in sitting than in supine position and there was a clear BP decline by consecutive measurement. Accordingly, the prevalence of hypertension depends strongly on the number and scheme of BP measurements taken to calculate the index values. Thus, BP measurements should only be compared between studies applying equal measurement conditions and index calculation. Moreover, the first BP measurement should not be used to define hypertension since it overestimates BP. The mean of second and third measurement offers the advantage of better reproducibility over single measurements.
Yan, Shancheng; Wang, Bojun; Wang, Zhulan; Hu, Dong; Xu, Xin; Wang, Junzhuan; Shi, Yi
2016-06-15
Solutions with large-scale dispersions of 2D black phosphorus (BP), often referred to as phosphorene, are obtained through solvent exfoliation. But, rapid phosphorene synthesis remains a challenge. Furthermore, although the chemical sensing capability of BP-based sensors has been theoretically predicted, its experimental verification remains lacking. In this study, we demonstrate the use of supercritical carbon dioxide-assisted rapid synthesis (5h) of few-layer BP. In addition, we construct a non-enzymatic hydrogen peroxide (H2O2) sensor based on few-layer BP for the first time to utilize BP degradation under ambient conditions. The proposed H2O2 sensor exhibits a considerably lower detection limit of 1 × 10(-7) M compared with the general detection limit of 1 × 10(-7) M-5 × 10(-5)M via electrochemical methods. Overall, the results of this study will not only expand the coverage of BP research but will also identify the important sensing characteristics of BP. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Jie; Liu, Yi; Tao, Yongli; Xie, Xuewei; Gu, Hongqiu; Pan, Yuesong; Zhao, Xingquan; Wang, Yongjun; Yan, Aoshuang; Wang, Yilong
2016-01-01
The relationship between poststroke blood pressure (BP) and clinical outcomes in ischemic stroke (IS) is still controversial. However, there is no large BP database for IS or transient ischemic attack (TIA) in China. This study aims to describe the rationale, study design, and baseline characteristics of a nationwide BP database in IS or TIA patients in China. The BOSS (blood pressure and clinical outcome in TIA or ischemic stroke) study was a hospital-based, prospective cohort study aiming to assess BP parameters and clinical outcome in IS/TIA patients. BP parameters were based on office BP, ambulatory BP, and home BP. Clinical outcomes included stroke recurrence, combined vascular events, and disability. Electronic case-report forms were used to record baseline and follow-up data. The patients were followed up for clinical outcomes at 3 months through face-to-face interview and at 12 months by telephone. Between October 2012 and February 2014, the BOSS registry recruited 2,608 patients from 61 hospitals, with a mean age of 62.5 years, 32.4% of whom were female, 88.9% with an entry diagnosis of IS, and 86% diagnosed with hypertension. The rates of patients lost-to-follow-up were 3.1% at 3 months and 5.1% at 1 year; 93% of patients completed ambulatory BP monitoring during hospitalization and 94.7% finished a 3-month BP diary. The BOSS registry will provide important evidence about BP management in the acute phase and secondary prevention for IS/TIA patients.
Lee, Peisan; Liu, Ju-Chi; Hsieh, Ming-Hsiung; Hao, Wen-Rui; Tseng, Yuan-Teng; Liu, Shuen-Hsin; Lin, Yung-Kuo; Sung, Li-Chin; Huang, Jen-Hung; Yang, Hung-Yu; Ye, Jong-Shiuan; Zheng, He-Shun; Hsu, Min-Huei; Syed-Abdul, Shabbir; Lu, Richard; Nguyen, Phung-Anh; Iqbal, Usman; Huang, Chih-Wei; Jian, Wen-Shan; Li, Yu-Chuan Jack
2016-08-01
Less than 50% of patients with hypertensive disease manage to maintain their blood pressure (BP) within normal levels. The aim of this study is to evaluate whether cloud BP system integrated with computerized physician order entry (CPOE) can improve BP management as compared with traditional care. A randomized controlled trial done on a random sample of 382 adults recruited from 786 patients who had been diagnosed with hypertension and receiving treatment for hypertension in two district hospitals in the north of Taiwan. Physicians had access to cloud BP data from CPOE. Neither patients nor physicians were blinded to group assignment. The study was conducted over a period of seven months. At baseline, the enrollees were 50% male with a mean (SD) age of 58.18 (10.83) years. The mean sitting BP of both arms was no different. The proportion of patients with BP control at two, four and six months was significantly greater in the intervention group than in the control group. The average capture rates of blood pressure in the intervention group were also significantly higher than the control group in all three check-points. Cloud-based BP system integrated with CPOE at the point of care achieved better BP control compared to traditional care. This system does not require any technical skills and is therefore suitable for every age group. The praise and assurance to the patients from the physicians after reviewing the Cloud BP records positively reinforced both BP measuring and medication adherence behaviors. Copyright © 2016. Published by Elsevier Ireland Ltd.
Di, Li-Jun; Byun, Jung S; Wong, Madeline M; Wakano, Clay; Taylor, Tara; Bilke, Sven; Baek, Songjoon; Hunter, Kent; Yang, Howard; Lee, Maxwell; Zvosec, Cecilia; Khramtsova, Galina; Cheng, Fan; Perou, Charles M; Miller, C Ryan; Raab, Rachel; Olopade, Olufunmilayo I; Gardner, Kevin
2013-01-01
The C-terminal binding protein (CtBP) is a NADH-dependent transcriptional repressor that links carbohydrate metabolism to epigenetic regulation by recruiting diverse histone-modifying complexes to chromatin. Here global profiling of CtBP in breast cancer cells reveals that it drives epithelial-to-mesenchymal transition, stem cell pathways and genome instability. CtBP expression induces mesenchymal and stem cell-like features, whereas CtBP depletion or caloric restriction reverses gene repression and increases DNA repair. Multiple members of the CtBP-targeted gene network are selectively downregulated in aggressive breast cancer subtypes. Differential expression of CtBP-targeted genes predicts poor clinical outcome in breast cancer patients, and elevated levels of CtBP in patient tumours predict shorter median survival. Finally, both CtBP promoter targeting and gene repression can be reversed by small molecule inhibition. These findings define broad roles for CtBP in breast cancer biology and suggest novel chromatin-based strategies for pharmacologic and metabolic intervention in cancer.
NASA Astrophysics Data System (ADS)
Ramstein, Gilles; Khodri, Myriam; Donnadieu, Yannick; Fluteau, Frédéric; Goddéris, Yves
2005-02-01
We investigate in the paper the impact of the hydrologic cycle on climate at different periods. The aim is to illustrate how the changes in moisture transport, precipitation pattern, and weathering may alter, at regional or global scales, the CO 2 and climate equilibriums. We choose three climate periods to pinpoint intricate relationships between water cycle and climate. The illustrations are the following. ( i) The onset of ice-sheet build-up, 115 kyr BP. We show that the increased thermal meridian gradient of SST allows large moisture advection over the North American continent and provides appropriate conditions for perennial snow on the Canadian Archipelago. ( ii) The onset of Indian Monsoon at the end of the Tertiary. We demonstrate that superimposed to the Tibetan Plateau, the shrinkage of the Tethys, since Oligocene, plays a major role to explain changes in the geographical pattern of the southeastern Asian Monsoon. ( iii) The onset of Global Glaciation (750 Ma). We show that the break-up of Rodinia occurring at low latitudes is an important feature to explain how the important precipitation increase leads to weathering and carbon burial, which contribute to decrease atmospheric CO 2 enough to produce a snows ball Earth. All these periods have been simulated with a hierarchy of models appropriate to quantify the water cycle impact on climate. To cite this article: G. Ramstein et al., C. R. Geoscience 337 (2005).
NASA Astrophysics Data System (ADS)
Zheng, Yunfei; Crawford, Gary W.; Jiang, Leping; Chen, Xugao
2016-06-01
Plant remains dating to between 9000 and 8400 BP from a probable ditch structure at the Huxi site include the oldest rice (Oryza sativa) spikelet bases and associated plant remains recovered in China. The remains document an early stage of rice domestication and the ecological setting in which early cultivation was taking place. The rice spikelet bases from Huxi include wild (shattering), intermediate, and domesticated (non-shattering) forms. The relative frequency of intermediate and non-shattering spikelet bases indicates that selection for, at the very least, non-shattering rice was underway at Huxi. The rice also has characteristics of japonica rice (Oryza sativa subsp. japonica), helping to clarify the emergence of a significant lineage of the crop. Seeds, phytoliths and their context provide evidence of increasing anthropogenesis and cultivation during the occupation. Rice spikelet bases from Kuahuqiao (8000-7700 BP), Tianluoshan (7000-6500 BP), Majiabang (6300-6000 BP), and Liangzhu (5300-4300 BP) sites indicate that rice underwent continuing selection for reduced shattering and japonica rice characteristics, confirming a prolonged domestication process for rice.
Wei, Fen; Jia, Xiu-Jie; Yu, Su-Qin; Gu, Ye; Wang, Li; Guo, Xiao-Mei; Wang, Min; Zhu, Feng; Cheng, Xiang; Wei, Yu-Miao; Zhou, Zi-Hua; Fu, Micheal; Liao, Yu-Hua
2011-03-01
Anti-angiotensin II receptor subtype 1 (AT1 receptor) autoantibodies have previously been shown in sera of hypertensive patients. This study assessed whether anti-AT1-receptor autoantibody in serum is correlated with the efficacy of an AT1-receptor blocker (ARB; candesartan)-based regimen in hypertensive patients after 8 weeks of treatment. The Study of Optimal Treatment in Hypertensive Patients with Anti-AT1-Receptor Autoantibodies is a multicentre, randomised, blinded endpoint, open-label, parallel-group comparison clinical trial conducted in five centres in Wuhan, China. Treatment is designed as stepwise added-on therapy to reduce blood pressure (BP) < 140/90 mm Hg. 512 patients with moderate to severe primary hypertension were randomly assigned to an 8-week treatment with either ARB (candesartan)-based regimen (n=257) or ACE inhibitor (imidapril)-based regimen (n=255). Systolic and diastolic BP was reduced significantly in both treatment groups. The candesartan-based regimen achieved a significantly greater systolic BP reduction than imdapril (30.8 ± 10.3 vs 28.8 ± 10.3 mm Hg, p = 0.023). In those anti-AT1 receptor autoantibody-positive hypertensive patients, the mean systolic BP at baseline was higher than in the anti-AT1 receptor autoantibody-negative group (160.5 ± 16.5 vs 156.2 ± 17.7 mm Hg; p = 0.006). The mean BP reduction was greater in the candesartan-based regimen than the imidapril-based regimen (-35.4 ± 9.8/16.9 ± 6.9 vs -29.4 ± 9.8/14.2 ± 6.9 mm Hg; p = 0.000 and 0.002, respectively), and more patients on imidapril required add-on medications to achieve BP control (94% vs 86%; p=0.03). No correlation was observed between the titre of anti-AT1 receptor autoantibody and the efficacy of candesartan-based therapy. In those anti-AT1 receptor autoantibody-negative patients similar BP lowering was reached in the candesartan and the imidapril-based regimens. An ARB-based regimen is more effective in BP lowering than an ACE inhibitor-based regimen in the presence of anti-AT1 receptor autoantibodies. Trial registration number This trial has been registered at http://www.register.clinicaltrials.gov/ (identifier: NCT00360763).
Prevalence of pseudoresistant hypertension due to inaccurate blood pressure measurement
Bhatt, Hemal; Siddiqui, Mohammed; Judd, Eric; Oparil, Suzanne; Calhoun, David
2016-01-01
Background The prevalence of pseudoresistant hypertension (HTN) due to inaccurate BP measurement remains unknown. Methods Triage BP measurements and measurements obtained at the same clinic visit by trained physicians were compared in consecutive adult patients referred for uncontrolled resistant HTN (RHTN). Triage BP measurements were taken by the clinic staff during normal intake procedures. BP measurements were obtained by trained physicians using the BpTRU device. The prevalence of uncontrolled RHTN and differences in BP measurements were compared. Results Of 130 patients with uncontrolled RHTN, 33.1% (n=43) were falsely identified as having uncontrolled RHTN based on triage BP measurements. The median (IQR) of differences in systolic BP between pseudoresistant and true resistant groups were 23 (17 – 33) mm Hg and 13 (6 – 21) mm Hg, respectively (P=0.0001). The median (IQR) of differences in diastolic BP between the two groups were 12 (7 – 18) mm Hg and 8 (4 – 11) mm Hg, respectively (P=0.001). Conclusion Triage BP technique overestimated the prevalence of uncontrolled RHTN in approximately 33% of the patients emphasizing the importance of obtaining accurate BP measurements. PMID:27129931
Kengne, Andre Pascal; Libend, Christelle Nong; Dzudie, Anastase; Menanga, Alain; Dehayem, Mesmin Yefou; Kingue, Samuel; Sobngwi, Eugene
2014-01-01
Ambulatory blood pressure (BP) measurements (ABPM) predict health outcomes better than office BP, and are recommended for assessing BP control, particularly in high-risk patients. We assessed the performance of office BP in predicting optimal ambulatory BP control in sub-Saharan Africans with type 2 diabetes (T2DM). Participants were a random sample of 51 T2DM patients (25 men) drug-treated for hypertension, receiving care in a referral diabetes clinic in Yaounde, Cameroon. A quality control group included 46 non-diabetic individuals with hypertension. Targets for BP control were systolic (and diastolic) BP. Mean age of diabetic participants was 60 years (standard deviation: 10) and median duration of diabetes was 6 years (min-max: 0-29). Correlation coefficients between each office-based variable and the 24-h ABPM equivalent (diabetic vs. non-diabetic participants) were 0.571 and 0.601 for systolic (SBP), 0.520 and 0.539 for diastolic (DBP), 0.631 and 0.549 for pulse pressure (PP), and 0.522 and 0.583 for mean arterial pressure (MAP). The c-statistic for the prediction of optimal ambulatory control from office-BP in diabetic participants was 0.717 for SBP, 0.494 for DBP, 0.712 for PP, 0.582 for MAP, and 0.721 for either SBP + DBP or PP + MAP. Equivalents in diabetes-free participants were 0.805, 0.763, 0.695, 0.801 and 0.813. Office DBP was ineffective in discriminating optimal ambulatory BP control in diabetic patients, and did not improve predictions based on office SBP alone. Targeting ABPM to those T2DM patients who are already at optimal office-based SBP would likely be more cost effective in this setting.
NASA Astrophysics Data System (ADS)
Cattaneo, Antonio; Babonneau, Nathalie; Ratzov, Gueorgui; Yelles, Karim; Bracène, Rabah; Bachir, Roza Si; Déverchere, Jacques
2016-04-01
The Algerian margin is at the slow convergence (~3mm/yr) of the African and European plates and it is affected by seismic activity linked to the presence of faults located in the coastal region and/or offshore. The historical seismicity record includes earthquakes located all along the margin from the west (1954 Orléansville M6.7; 1980 El Asnam M7.3), to the central area offshore Algiers (2003 Boumerdès M6.9, and also earthquakes of 1847, 1716 et 1365 AD), to the eastern area (two events offshore Djidjelli in 1856). Thanks to recent work on the signature of earthquakes in the deep offshore domain inferred from the analysis of successions of alternating turbidites and hemipelagites, the record of earthquakes could be extended back in time over most of the Holocene, at least in two analysed sectors offshore Kramis and Algiers. Offshore Kramis, thirteen coastal paleoquakes over the last 8 ka support clusters of 3 to 6 events with mean recurrence intervals of ˜300-600 years, separated by two periods of quiescence of ˜1.7 ka without major events on any fault. They imply alternation of broad phases of strain loading and shorter phases of strain release along the fault network (Ratzov et al., 2015). Offshore Algiers, thirty-six events are identified along the Algiers margin segment over the last 9 kyr and are tentatively interpreted as seismically triggered, including the historical events of 2003, 1716 and 1365 AD. The recurrence interval of events varies from 50 to 900 years with three quiescence periods of 800, 1400 and 500 years (7-6.2 ka BP, 5.4-4 ka BP, and 1.5-1 ka BP), supporting an irregular earthquake cyclicity. Overall, the marine paleosesimicity record of the two study areas appears rather different. In particular, slope failures offshore Algiers could occur more frequently because of the proximity of lower magnitude earthquakes, explaining the high occurrence of turbiditic events, while the recurring interval of stronger earthquakes could be more easily comparable in the two margin sectors. Other possible explanations include: i) difference in the tectonic behavior of distinct margin sectors; (ii) temporal and spatial variability in sedimentary processes, possibly due to changes in sediment availability; (iii) different distance of the seismic sources from the areas of sediment destabilisation on the continental slope. Ref. Ratzov et al. (2015) Geology 43,4,331-334.
Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean
Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan
2016-01-01
Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate. PMID:26869235
Zaninelli, Augusto; Parati, Gianfranco; Cricelli, Claudio; Bignamini, Angelo A; Modesti, Pietro A; Pamparana, Franco; Bilo, Grzegorz; Mancia, Giuseppe; Gensini, Gian F
2010-05-01
Guidelines recommend that blood pressure (BP) should be lowered in hypertensive patients to prevent cardiovascular accidents. Management of antihypertensive treatment by general practitioners is usually based on office measurements, which may not allow an assessment of BP control over 24 h, which requires ambulatory BP monitoring (ABPM) to be implemented. This is rarely done in general practice, and limited information is available on the consistency between the evaluations of the response to treatment provided by office measurement and by ABPM in this setting. To assess concordance between office BP measurements and ABPM-based estimates of hypertension control in a general practice setting. Prospective, comparative between techniques. General practice. Seventy-eight general practices, representative of all Italian regions, participated in this study by recruiting sequential hypertensive adults on stabilized treatment, who were subdivided into even groups with office BP, respectively, controlled or noncontrolled by treatment. In each individual, ABPM was applied by the general practitioner after appropriate training, and 24-h ABP values were defined as controlled or not according to current guidelines. Concordance between office and ABPM evaluation of BP control was assessed with kappa statistics. Positive and negative predictive values of office measurement versus ABPM were estimated. Between July 2005 and November 2006, 190 general practitioners recruited 2059 hypertensive patients based on office BP measurements; in 1728 patients, a 24-h ABPM was performed, yielding 1524 recordings considered as valid for further analysis. The agreement between the assessment of BP control by office measurement and by ABPM was poor (kappa = 0.120), with office measurements showing a satisfactory positive predictive value (0.842) and a poor negative predictive value (0.278); the situation was worse in patients with three or more among the following features: male sex, age of at least 65 years, alcohol consumption, diabetes, and obesity (negative predictive value = 0.149). In general practice, the agreement between assessment of BP control by treatment provided by office and ambulatory BP measurements is better in patients of 'uncontrolled' office BP than in 'controlled' office BP patients. This emphasizes the need for the larger use of out-of-office BP monitoring in a general practice setting, in particular, in patients considered as 'controlled' during consultation.
NASA Astrophysics Data System (ADS)
Zhang, Bei; Jing, Qun; Yang, Zhihua; Wang, Ying; Su, Xin; Pan, Shilie; Zhang, Jun
2013-07-01
LiK2BP2O8 and Li3K2BP4O14 are synthesized by high-temperature solution method with the same elements, while contain different fundamental building units. Li3K2BP4O14 is a novel P-O-P linking structure which gives a rare example of violation of Pauling's fourth rule. The electronic structures of LiK2BP2O8 and Li3K2BP4O14 are investigated by density functional calculations. Direct gaps of 5.038 eV (LiK2BP2O8) and 5.487 eV (Li3K2BP4O14) are obtained. By analyzing the density of states (DOS) of LiK2BP2O8 and Li3K2BP4O14, the P-O-P linking in fundamental building units of Li3K2BP4O14 crystal is proved theoretically. Based on the electronic properties, the linear optical information is captured.
A New Cuffless Device for Measuring Blood Pressure: A Real-Life Validation Study.
Schoot, Tessa S; Weenk, Mariska; van de Belt, Tom H; Engelen, Lucien J L P G; van Goor, Harry; Bredie, Sebastian J H
2016-05-05
Cuffless blood pressure (BP) monitoring devices, based on pulse transit time, are being developed as an easy-to-use, more convenient, fast, and relatively cheap alternative to conventional BP measuring devices based on cuff occlusion. Thereby they may provide a great alternative to BP self-measurement. The objective of our study was to evaluate the performance of the first release of the Checkme Health Monitor (Viatom Technology), a cuffless BP monitor, in a real-life setting. Furthermore, we wanted to investigate whether the posture of the volunteer and the position of the device relative to the heart level would influence its outcomes. Study volunteers fell into 3 BP ranges: high (>160 mmHg), normal (130-160 mmHg), and low (<130 mmHg). All requirements for test environment, observer qualification, volunteer recruitment, and BP measurements were met according to the European Society of Hypertension International Protocol (ESH-IP) for the validation of BP measurement devices. After calibrating the Checkme device, we measured systolic BP with Checkme and a validated, oscillometric reference BP monitor (RM). Measurements were performed in randomized order both in supine and in sitting position, and with Checkme at and above heart level. We recruited 52 volunteers, of whom we excluded 15 (12 due to calibration failure with Checkme, 3 due to a variety of reasons). The remaining 37 volunteers were divided into low (n=14), medium (n=13), and high (n=10) BP ranges. There were 18 men and 19 women, with a mean age of 54.1 (SD 14.5) years, and mean recruitment systolic BP of 141.7 (SD 24.7) mmHg. BP results obtained by RM and Checkme correlated well. In the supine position, the difference between the RM and Checkme was >5 mmHg in 17 of 37 volunteers (46%), of whom 9 of 37 (24%) had a difference >10 mmHg and 5 of 37 (14%) had a difference >15 mmHg. BP obtained with Checkme correlated well with RM BP, particularly in the position (supine) in which the device was calibrated. These preliminary results are promising for conducting further research on cuffless BP measurement in the clinical and outpatient settings.
Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei
2015-01-01
Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.). PMID:26514090
Myasoedova, Elena; Crowson, Cynthia S.; Green, Abigail B.; Matteson, Eric L.; Gabriel, Sherine E.
2014-01-01
Objectives To examine long-term visit-to-visit blood pressure (BP) variability in rheumatoid arthritis (RA) vs non-RA subjects and to assess its impact on cardiovascular events and mortality in RA. Methods Clinic BP measures were collected in a population-based incident cohort of RA patients (1987 ACR criteria met between 1/1/1995 and 1/1/2008) and non-RA subjects. BP variability was defined as within-subject standard deviation (SD) in systolic and diastolic BP. Results Study included 442 RA patients (mean age 55.5 years, 70% females) and 424 non-RA subjects (mean age 55.7 years, 69% females). RA patients had higher visit-to-visit variability in systolic BP (13.8±4.7 mm Hg), than non-RA subjects (13.0±5.2 mm Hg, p=0.004). Systolic BP variability declined after the index date in RA (p<0.001), but not in the non-RA cohort (p=0.73), adjusting for age, sex and calendar year of RA. During the mean follow-up of 7.1 years, 33 cardiovascular events and 57 deaths occurred in RA cohort. Visit-to-visit systolic BP variability was associated with increased risk of cardiovascular events (hazard ratio [HR] per 1 mm Hg increase in BP variability 1.12, 95% confidence interval [CI] 1.01-1.25); diastolic BP variability was associated with all-cause mortality in RA (HR 1.14, 95%CI 1.03-1.27), adjusting for systolic and diastolic BP, body mass index, smoking, diabetes, dyslipidemia, use of antihypertensives. Conclusion Patients with RA had higher visit-to-visit systolic BP variability vs non-RA subjects. There was a significant decline in systolic BP variability after RA incidence. Higher visit-to-visit BP variability was associated with adverse cardiovascular outcomes and all-cause mortality in RA. PMID:24986852
2018-01-01
Black phosphorus (bP) has been recently investigated for next generation nanoelectronic multifunctional devices. However, the intrinsic instability of exfoliated bP (the bP nanoflakes) toward both moisture and air has so far overshadowed its practical implementation. In order to contribute to fill this gap, we report here the preparation of new hybrid polymer-based materials where bP nanoflakes (bPn) exhibit a significantly improved stability. The new materials have been prepared by different synthetic paths including: (i) the mixing of conventionally liquid-phase exfoliated bP (in dimethyl sulfoxide, DMSO) with poly(methyl methacrylate) (PMMA) solution; (ii) the direct exfoliation of bP in a polymeric solution; (iii) the in situ radical polymerization after exfoliating bP in the liquid monomer (methyl methacrylate, MMA). This last methodology concerns the preparation of stable suspensions of bPn–MMA by sonication-assisted liquid-phase exfoliation (LPE) of bP in the presence of MMA followed by radical polymerization. The hybrids characteristics have been compared in order to evaluate the bP dispersion and the effectiveness of the bPn interfacial interactions with polymer chains aimed at their long-term environmental stabilization. The passivation of the bPn is particularly effective when the hybrid material is prepared by in situ polymerization. By using this synthetic methodology, the nanoflakes, even if with a gradient of dispersion (size of aggregates), preserve their chemical structure from oxidation (as proved by both Raman and 31P-solid state NMR studies) and are particularly stable to air and UV light exposure. The feasibility of this approach, capable of efficiently exfoliating bP while protecting the bPn, has been then verified by using different vinyl monomers (styrene and N-vinylpyrrolidone), thus obtaining hybrids where the nanoflakes are embedded in polymer matrices with a variety of intriguing thermal, mechanical, and solubility characteristics.
Nozue, Miho; Shimazu, Taichi; Sasazuki, Shizuka; Charvat, Hadrien; Mori, Nagisa; Mutoh, Michihiro; Sawada, Norie; Iwasaki, Motoki; Yamaji, Taiki; Inoue, Manami; Kokubo, Yoshihiro; Yamagishi, Kazumasa; Iso, Hiroyasu; Tsugane, Shoichiro
2017-09-01
Background: Randomized controlled studies have investigated the short-term effect of soy product intake on blood pressure (BP) in normotensive people. To our knowledge, no prospective studies exist on the effect of habitual intake of fermented soy products, separate from total soy products, on BP in the general population. Objective: We examined the association between the habitual intake of soy products, including fermented soy products, and the development of high BP during a 5-y period among participants in a population-based prospective cohort study in Japan. Methods: The study included normotensive participants aged 40-69 y at baseline (926 men and 3239 women) who completed 2 questionnaires and whose BP was measured at the baseline survey between 1993 and 1994 and the 5-y follow-up in the Japan Public Health Center-Based Prospective Study Cohort II. The intake of soy products was assessed with a food-frequency questionnaire. High BP was defined as systolic blood pressure ≥130 mm Hg, diastolic blood pressure ≥85 mm Hg, or antihypertensive medication use. ORs and 95% CIs of high BP by frequency of soy products (miso, natto, and tofu) consumption, intake of total and fermented soy products, and intake of isoflavones from total and fermented soy products were estimated with the use of multiple logistic regression analysis. Results: Multivariable-adjusted ORs of high BP for the highest compared with the lowest tertile of total and fermented soy product intake were 1.03 (95% CI: 0.84, 1.25; P -trend = 0.786) and 0.72 (95% CI: 0.56, 0.92; P -trend = 0.009), respectively. The frequency of nonfermented soy product (tofu) intake was not associated with the development of high BP ( P -trend = 0.597). Conclusions: The intake of fermented soy products, but not total or nonfermented soy products, was inversely associated with developing high BP in men and women with normal BP. © 2017 American Society for Nutrition.
The evolution of the Antarctic ice sheet at the Eocene-Oligocene Transition.
NASA Astrophysics Data System (ADS)
Ladant, Jean-Baptiste; Donnadieu, Yannick; Dumas, Christophe
2017-04-01
An increasing number of studies suggest that the Middle to Late Eocene has witnessed the waxing and waning of relatively small ephemeral ice sheets. These alternating episodes culminated in the Eocene-Oligocene transition (34 - 33.5 Ma) during which a sudden and massive glaciation occurred over Antarctica. Data studies have demonstrated that this glacial event is constituted of two 50 kyr-long steps, the first of modest (10 - 30 m of equivalent sea level) and the second of major (50 - 90 m esl) glacial amplitude, and separated by 200 kyrs. Since a decade, modeling studies have put forward the primary role of CO2 in the initiation of this glaciation, in doing so marginalizing the original "gateway hypothesis". Here, we investigate the impacts of CO2 and orbital parameters on the evolution of the ice sheet during the 500 kyrs of the EO transition using a tri-dimensional interpolation method. The latter allows precise orbital variations, CO2 evolution and ice sheet feedbacks (including the albedo) to be accounted for. Our results show that orbital variations are instrumental in initiating the first step of the EO glaciation but that the primary driver of the major second step is the atmospheric pCO2 crossing a modelled glacial threshold of 900 ppm. Although model-dependant, this higher glacial threshold makes a stronger case for ephemeral Middle-Late Eocene ice sheets. In addition, sensitivity tests demonstrate that the small first step only exists if the absolute pCO2 value remains within 100 ppm higher than the glacial threshold during the first 250 kyrs of the transition. Thereby, the pCO2 sufficiently counterbalances the strong insolation minima occurring at 33.9 and 33.8 Ma but is low enough to allow the ice sheet to nucleate. Nevertheless, questions remain as to what may cause this pCO2 drop.
NASA Astrophysics Data System (ADS)
Yu, Zhaojie; Wan, Shiming; Colin, Christophe; Yan, Hong; Bonneau, Lucile; Liu, Zhifei; Song, Lina; Sun, Hanjie; Xu, Zhaokai; Jiang, Xuejun; Li, Anchun; Li, Tiegang
2016-07-01
Clay mineralogical analysis and scanning electron microscope (SEM) analysis were performed on deep-sea sediments cored on the Benham Rise (core MD06-3050) in order to reconstruct long-term evolution of East Asian Summer Monsoon (EASM) rainfall in the period since 2.36 Ma. Clay mineralogical variations are due to changes in the ratios of smectite, which derive from weathering of volcanic rocks in Luzon Island during intervals of intensive monsoon rainfall, and illite- and chlorite-rich dusts, which are transported from East Asia by winds associated with the East Asian Winter Monsoon (EAWM). Since Luzon is the main source of smectite to the Benham Rise, long-term consistent variations in the smectite/(illite + chlorite) ratio in core MD06-3050 as well as ODP site 1146 in the Northern South China Sea suggest that minor contributions of eolian dust played a role in the variability of this mineralogical ratio and indicate strengthening EASM precipitation in SE Asia during time intervals from 2360 to 1900 kyr, 1200 to 600 kyr, and after 200 kyr. The EASM rainfall record displays a 30 kyr periodicity suggesting the influence of El Niño-Southern Oscillation (ENSO). These intervals of rainfall intensification on Luzon Island are coeval with a reduction in precipitation over central China and an increase in zonal SST gradient in the equatorial Pacific Ocean, implying a reinforcement of La Niña-like conditions. In contrast, periods of reduced rainfall on Luzon Island are associated with higher precipitation in central China and a weakening zonal SST gradient in the equatorial Pacific Ocean, thereby suggesting the development of dominant El Niño-like conditions. Our study, therefore, highlights for the first time a long-term temporal and spatial co-evolution of monsoonal precipitation in East Asia and of the tropical Pacific ENSO system over the past 2.36 Ma.
NASA Astrophysics Data System (ADS)
Bragina, L. G.; Beniamovsky, V. N.; Kopaevich, L. F.
2016-01-01
Data on the distribution of radiolarians and planktonic and benthic foraminifers are obtained for the first time from the Alan-Kyr Section (Coniacian-Campanian), in the central regions of the Crimean Mountains. Radiolarian biostrata, previously established from Ak-Kaya Mountain (central regions of the Crimean Mountains) were traced: Alievium praegallowayi-Crucella plana (upper Coniacian-lower Santonian), Alievium gallowayi-Crucella espartoensis (upper Santonian without the topmost part), and Dictyocephalus (Dictyocryphalus) (?) legumen-Spongosaturninus parvulus (upper part of the upper Santonian). Radiolarians from the Santonian-Campanian boundary beds of the Crimean Mountains are studied for the first time, and Prunobrachium sp. ex gr. crassum-Diacanthocapsa acanthica Beds (uppermost Santonian-lower Campanian) are recognized. Bolivinoides strigillatus Beds (upper Santonian) and Stensioeina pommerana-Anomalinoides (?) insignis Beds (upper part of the upper Santonian-lower part of the lower Campanian) are recognized. Eouvigerina aspera denticulocarinata Beds (middle and upper parts of the lower Campanian) and Angulogavelinella gracilis Beds (upper part of the upper Campanian are recognized on the basis of benthic foraminifers. These beds correspond to the synchronous biostrata of the East European Platform and Mangyshlak. Marginotruncana coronata- Concavatotruncana concavata Beds (Coniacian-upper Santonian), Globotruncanita elevata Beds (terminal Santonian), and Globotruncana arca Beds (lower Campanian) are recognized on the basis of planktonic foraminifers. Radiolarian and planktonic and benthic foraminiferal data agree with one another. The position of the Santonian-Campanian boundary in the Alan-Kyr Section, which is located stratigraphically above the levels of the latest occurrence of Concavatotruncana concavata and representatives of the genus Marginotruncana, is refined, i.e., at the level of the first appearance of Globotruncana arca. A gap in the Middle Campanian-lower part of the upper Campanian is established on the basis of planktonic and benthic foraminifers. The Santonian-Campanian beds of the Alan-Kyr Section, on the basis of planktonic foraminifers and radiolarians, positively correlate with synchronous beds of the Crimean-Caucasian region, and beyond. Benthic foraminifers suggest a connection with the basins of the East European Platform.
Prevalence of back pain in the community. A COPCORD-based study in the Mexican population.
Peláez-Ballestas, Ingris; Flores-Camacho, Roxanna; Rodriguez-Amado, Jacqueline; Sanin, Luz Helena; Valerio, Jorge Esquivel; Navarro-Zarza, Eduardo; Flores, Diana; Rivas, Lourdes L; Casasola-Vargas, Julio; Burgos-Vargas, Ruben
2011-01-01
Back pain (BP) is frequent in the community; its prevalence in México is 6%. Our objective was to determine the prevalence of BP in Mexican communities and determine its most important characteristics. A cross-sectional study of individuals aged > 18 years was conducted in Mexico City and in urban communities in the state of Nuevo León. Sampling in Mexico City was based on community census and in Nuevo León, on stratified, balanced, and random sampling. Procedures included a door-to-door survey, using the Community Oriented Program for the Control of Rheumatic Diseases, to identify individuals with BP > 1 on a visual analog scale in the last 7 days. General practitioners/rheumatology fellows confirmed and characterized BP symptoms. In all, 8159 individuals (mean age 43.7 yrs, two-thirds female) were surveyed and 1219 had BP. The prevalence of nontraumatic BP in the last 7 days was 8.0% (95% CI 7.5-8.7). The mean age of these individuals was 42.7 years, and 61.9% were female. Thirty-seven percent had inflammatory BP [prevalence of 3.0% (95% CI 2.7-3.4)]. Compared with the state of Nuevo Léon, the characteristics and consequences of BP in Mexico City were more severe. In logistic regression analysis, living in Mexico City, having a paid job, any kind of musculoskeletal pain, high pain intensity, and obesity among other variables were associated with BP. The prevalence of nontraumatic BP in the last 7 days in urban communities in México is 8.0%. However, clinical features and consequences differed among the communities studied, suggesting a role for local factors in BP.
2014-01-01
BACKGROUND Elevated blood pressure (BP), a heritable risk factor for many age-related disorders, is commonly investigated in population and genetic studies, but antihypertensive use can confound study results. Routine methods to adjust for antihypertensives may not sufficiently account for newer treatment protocols (i.e., combination or multiple drug therapy) found in contemporary cohorts. METHODS We refined an existing method to impute unmedicated BP in individuals on antihypertensives by incorporating new treatment trends. We assessed BP and antihypertensive use in male twins (n = 1,237) from the Vietnam Era Twin Study of Aging: 36% reported antihypertensive use; 52% of those treated were on multiple drugs. RESULTS Estimated heritability was 0.43 (95% confidence interval (CI) = 0.20–0.50) and 0.44 (95% CI = 0.22–0.61) for measured systolic BP (SBP) and diastolic BP (DBP), respectively. We imputed BP for antihypertensives by 3 approaches: (i) addition of a fixed value of 10/5mm Hg to measured SBP/DBP; (ii) incremented addition of mm Hg to BP based on number of medications; and (iii) a refined approach adding mm Hg based on antihypertensive drug class and ethnicity. The imputations did not significantly affect estimated heritability of BP. However, use of our most refined imputation method and other methods resulted in significantly increased phenotypic correlations between BP and body mass index, a trait known to be correlated with BP. CONCLUSIONS This study highlights the potential usefulness of applying a representative adjustment for medication use, such as by considering drug class, ethnicity, and the combination of drugs when assessing the relationship between BP and risk factors. PMID:24532572
Fernández-Llama, Patricia; Pareja, Júlia; Yun, Sergi; Vázquez, Susana; Oliveras, Anna; Armario, Pedro; Blanch, Pedro; Calero, Francesca; Sierra, Cristina; de la Sierra, Alejandro
2017-01-01
Central blood pressure (BP) has been suggested to be a better estimator of hypertension-associated risks. We aimed to evaluate the association of 24-hour central BP, in comparison with 24-hour peripheral BP, with the presence of renal organ damage in hypertensive patients. Brachial and central (calculated by an oscillometric system through brachial pulse wave analysis) office BP and ambulatory BP monitoring (ABPM) data and aortic pulse wave velocity (PWV) were measured in 208 hypertensive patients. Renal organ damage was evaluated by means of the albumin to creatinine ratio and the estimated glomerular filtration rate. Fifty-four patients (25.9%) were affected by renal organ damage, displaying either microalbuminuria (urinary albumin excretion ≥30 mg/g creatinine) or an estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2. Compared to those without renal abnormalities, hypertensive patients with kidney damage had higher values of office brachial systolic BP (SBP) and pulse pressure (PP), and 24-h, daytime, and nighttime central and brachial SBP and PP. They also had a blunted nocturnal decrease in both central and brachial BP, and higher values of aortic PWV. After adjustment for age, gender, and antihypertensive treatment, only ABPM-derived BP estimates (both central and brachial) showed significant associations with the presence of renal damage. Odds ratios for central BP estimates were not significantly higher than those obtained for brachial BP. Compared with peripheral ABPM, cuff-based oscillometric central ABPM does not show a closer association with presence of renal organ damage in hypertensive patients. More studies, however, need to be done to better identify the role of central BP in clinical practice. © 2017 The Author(s). Published by S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Parker, A. O.; Schmidt, M. W.; Slowey, N. C.; Jobe, Z. R.; Marcantonio, F.
2014-12-01
Abrupt droughts in West Africa impart significant socio-economic impacts on the developing countries of this region, and yet a comprehensive understanding of the causes and duration of such droughts remains elusive. Much of the summertime rainfall associated with the West African Monsoon (WAM) falls within the Niger River basin and eventually drains into the eastern Gulf of Guinea, contributing to the low sea-surface salinity of this region. Of the limited number of studies that reconstruct Gulf of Guinea salinity through the deglacial, the most comprehensive of those is located ~ 400 km east of the Niger delta and may not be solely influenced by WAM runoff. Here, we present XRF and foraminiferal trace metal data from two new cores located less than 100 km from the Western Niger Delta. Radiocarbon dating of cores Grand 21 (4.72oN, 4.48oE) and Fan 17 (4.81oN, 4.41oE) produced near linear sedimentation rates of 20 cm/kyr and 15 cm/kyr respectively. Elemental sediment compositions from XRF core scanning reveal an abrupt 50% increase in SiO2 between 17-15 ka during Heinrich Event 1. This increase, coeval with increases of CaCO3 (+12%) content and Ba/Ti ratios suggests a large increase in primary productivity during H1. Values then decrease at the onset of the Bolling-Allerod (~14.6 kyr) until a similar, albeit smaller increase is recorded during the Younger Dryas beginning at 12.7 kyr. In contrast, FeO2 and TiO2 are thought to be a proxies of Niger River discharge strength and suggest a more gradual change in riverine discharge across the deglacial that is most likely driven by precession. These proxies suggest Niger River runoff was low from the LGM through Heinrich 1, gradually increasing around 13 ka. FeO2 and TiO2 values then peak between 11.5-7.5 kyr, consistent with the African Humid Period, before gradually decreasing through the mid-late Holocene. This deglacial pattern of riverine input is markedly different from previous reconstructions of WAM variability and does not appear to explain the large increases in primary production during H1 or the YD. To further investigate Niger River runoff and water column hydrography change in the Niger Delta across the deglacial, we will also present data from three planktonic foraminifera: Globigerinoides ruber, Neogloboquadrina dutertrei and Globorotalia crassaformis.
NASA Astrophysics Data System (ADS)
Asmala, E.; Autio, R.; Kaartokallio, H.; Pitkänen, L.; Stedmon, C. A.; Thomas, D. N.
2013-06-01
The microbial degradation of dissolved organic carbon and nitrogen (DOC, DON) was studied in three boreal estuaries with contrasting land use patterns (Kiiminkijoki - natural forest and peatland; Kyrönjoki - agricultural; Karjaanjoki - mixed/urban). Bioassays conducted for 12-18 days were used in 3 seasons at in situ temperatures. Besides the bulk parameters, a suite of dissolved organic matter (DOM) quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM and the molecular weight of DOM. Bioavailable DOC and DON pools varied significantly between the estuaries, from 7.9% in Kiiminkijoki to 10.6% in Karjaanjoki and from 5.5% in Kiiminkijoki to 21.9% in Kyrönjoki, respectively. DOM originating from catchment dominated by natural forests and peatlands had the lowest DOC and DON degradation rates, as well as the lowest proportions of biodegradable DOC and DON. A greater proportion of agricultural land in the catchment increased the bioavailability of DON, but not the bioavailability of DOC. Also DOM quality varied significantly between the estuaries, and DOM originating from the agricultural Kyrönjoki catchment sustained higher DOC and DON degradation rates and higher bacterial growth efficiency (BGE) compared to those of the natural forest and peat dominated Kiiminkijoki catchment. The quality of DOM, indicated by differences in CDOM, fluorescent DOM and molecular weight, varied between estuaries with differing land use and was concluded to be major driver of BGE of these systems and thereafter to the microbial CO2 fluxes from the estuaries. The differences in BGE resulted in a 5-fold differences in the calculated daily bacterial CO2-emissions between the study estuaries due to bacterial activity, ranging from 40 kg C d-1 in Karjaanjoki estuary to 200 kg C d-1 in Kyrönjoki estuary. Two of the study systems (Karjaanjoki, mixed land use; Kyrönjoki, intensive agriculture) in which the DOM pool had lower DOC : DON ratio, smaller molecular weight and higher CDOM absorption spectral slope values resulted in higher proportion of the initial DOC and DON being transferred to microbial growth and therefore to the pelagic food web. The pristine, peatland and forest-dominated Kiiminkijoki catchment had the lowest BGE, and therefore proportionally highest CO2 fluxes. The slope coefficient S275-295 was a good proxy of molecular weight across estuaries and seasons, and also for different diagenetic stages of DOM during biological degradation.
NASA Astrophysics Data System (ADS)
Molnár, Kata; Harangi, Szabolcs; Lukács, Réka; Dunkl, István; Schmitt, Axel K.; Kiss, Balázs; Garamhegyi, Tamás; Seghedi, Ioan
2018-04-01
Combined zircon U-Th-Pb and (U-Th)/He dating was applied to refine the eruption chronology of the last 2 Myr for the andesitic and dacitic Pilişca volcano and Ciomadul Volcanic Dome Complex (CVDC), the youngest volcanic area of the Carpathian-Pannonian region, located in the southernmost Harghita, eastern-central Europe. The proposed eruption ages, which are supported also by the youngest zircon crystallization ages, are much younger than the previously determined K/Ar ages. By dating every known eruption center in the CVDC, repose times between eruptive events were also accurately determined. Eruption of the andesite at Murgul Mare (1865 ± 87 ka) and dacite of the Pilişca volcanic complex (1640 ± 37 ka) terminated an earlier pulse of volcanic activity within the southernmost Harghita region, west of the Olt valley. This was followed by the onset of the volcanism in the CVDC, which occurred after several 100s kyr of eruptive quiescence. At ca. 1 Ma a significant change in the composition of erupted magma occurred from medium-K calc-alkaline compositions to high-K dacitic (Baba-Laposa dome at 942 ± 65 ka) and shoshonitic magmas (Malnaş and Bixad domes; 964 ± 46 ka and 907 ± 66 ka, respectively). Noteworthy, eruptions of magmas with distinct chemical compositions occurred within a restricted area, a few km from one another. These oldest lava domes of the CVDC form a NNE-SSW striking tectonic lineament along the Olt valley. Following a brief (ca. 100 kyr) hiatus, extrusion of high-K andesitic magma continued at Dealul Mare (842 ± 53 ka). After another ca. 200 kyr period of quiescence two high-K dacitic lava domes extruded (Puturosul: 642 ± 44 ka and Balvanyos: 583 ± 30 ka). The Turnul Apor lava extrusion occurred after a ca. 200 kyr repose time (at 344 ± 33 ka), whereas formation of the Haramul Mic lava dome (154 ± 16 ka) represents the onset of the development of the prominent Ciomadul volcano. The accurate determination of eruption dates shows that the volcanic eruptions were often separated by prolonged (ca. 100 to 200 kyr) quiescence periods. Demonstration of recurrence of volcanism even after such long dormancy has to be considered in assessing volcanic hazards, particularly in seemingly inactive volcanic areas, where no Holocene eruptions occurred. The term of 'volcanoes with Potentially Active Magma Storage' illustrates the potential of volcanic rejuvenation for such long-dormant volcanoes with the existence of melt-bearing crustal magma body.
Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia
2014-01-01
For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy. PMID:25133210
NASA Astrophysics Data System (ADS)
Thibault, Nicolas; Jarvis, Ian; Voigt, Silke; Gale, Andy; Attree, Kevin; Jenkyns, Hugh
2016-04-01
New high-resolution records of bulk carbonate carbon isotopes have been generated for the Upper Coniacian to Lower Campanian interval of the reference sections at Seaford Head (southern England) and Bottaccione (Gubbio, central Italy). These records allow for a new and unambiguous stratigraphic correlation of the base and top of the Santonian between the Boreal and Tethyan realms. Orbital forcing of stable carbon and oxygen isotopes can be highlighted in the Seaford Head dataset, and a floating astronomical time scale is presented for the Santonian of the section, which spans five 405 kyr cycles (Sa1 to Sa5). Macro-, micro- and nannofossil biostratigraphy of the Seaford section is integrated along with magnetostratigraphy, carbon-isotope chemostratigraphy and cyclostratigraphy. Correlation of the Seaford Head astronomical time scale to that of the Niobrara Formation (U.S. Western Interior Basin) allows for anchoring these records to the La2011 astronomical solution at the Santonian-Campanian (Sa/Ca) boundary, which has been recently dated to 84.19±0.38 Ma. Five different astronomical tuning options are examined. The astronomical calibration generates a c. 200 kyr mismatch of the Coniacian-Santonian boundary age between the Boreal Realm in Europe and the Western Interior, likely due either to slight diachronism of the first occurrence of the inoceramid Cladoceramus undulatoplicatus between the two regions, or to remaining uncertainties of radiometric dating and the cyclostratigraphic records.
Wong, Ken; Smalarz, Amy; Wu, Ning; Boulanger, Luke; Wogen, Jenifer
2011-01-01
Care management processes (CMP) may be implemented in health systems to improve chronic disease quality of care. The objective of this study was to assess the relationship between the presence of hypertension-specific CMP and blood pressure (BP) control among hypertensive patients within selected physician organizations in the USA-modified version of the Physician Practice Connection Readiness Survey (PPC-RS), developed by The National Committee for Quality Assurance (NCQA), was administered to chief medical officers at 28 US-based physician organizations in 2010. Hypertension-specific survey items were added to the PPC-RS and focused on medication fill compliance, chronic disease management, and patient self-management. Demographic and clinical cross-sectional data from a random sample of 300 hypertensive patients age 18 years or older were collected at each site. Physician site and patient characteristics were reported. Regression models were used to assess the relationship between hypertension-specific physician practices and patient BP control. Eligible patients had at least a 1-year history of care with the physician organization and had an encounter within the past year of data collection. Of the 28 participating sites, most had electronic medical records that handle total functionality (71.4%) and had more than 50 staff members (78.6%). Across all sites, approximately 61% of patients had controlled BP. Regression analyses found that practices that used physician education as an effort to improve medication fill compliance demonstrated improvement in BP control (changes in systolic BP: beta coefficient = -1.366, P = .034; changes in diastolic BP: beta coefficient = -0.859, P = .056). The use of a systematic process to screen or assess patients for hypertension as a risk factor was also found to be associated with improvements in BP control (changes in diastolic BP: beta coefficient = -0.860, P = .006). In addition, physician practices that maintained a list of hypertensive patients along with the patients' associated clinical data demonstrated better BP control (currently controlled BP: beta coefficient = 0.282, P = .034; currently uncontrolled BP: beta coefficient = -0.292, P = .023). However, use of the following practices had a negative correlation with BP control: case management (changes in systolic BP: beta coefficient 1.649, P = .022; changes in diastolic BP: beta coefficient = 0.910, P = .078), follow-up for missed appointments (changes in systolic BP: beta coefficient = 0.937, P = .041; changes in diastolic BP: beta coefficient = 0.165, P = .627), adopted written evidence-based standards of care to treat hypertension (changes in systolic BP: beta coefficient = 0.985, P = .032; changes in diastolic BP: beta coefficient = 0.346, P = .305), and checklists for tests and interventions (changes in systolic BP: beta coefficient = 1.586, P = .004; changes in diastolic BP: beta coefficient = 0.938, P = .019). Findings from this multisite study provide evidence that the presence of some hypertension-specific CMP in physician organizations may be associated with better BP outcomes among hypertensive patients. In particular, patients may benefit from physician efforts to improve medication fill compliance as well as organizational monitoring of hypertensive patients and their clinical data. Further research is warranted to better assess the relationship between CMP and treatment of chronic diseases such as hypertension over time. Copyright © 2011 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kong, G. S.; Kim, S. P.; Choi, H. S.
2012-04-01
Four long mud-dominated sediment cores (35m-long YSDP 103, 32m-long SSDP 102, 72m-long SSDP103 and 52m-long SSDP 105) were recovered in the continental shelves of Korea and were examined through the analysis of AMS 14C dating, lithology, organic geochemistry and stable isotopes to reconstruct the paleoenvironmental histories during the late Quaternary. These drill cores acquired from the thick Holocene mud deposits allow us to obtain high-resolution paleoenvironmental records concerning the intrusion of open-ocean warm currents triggered by the last deglacial sea-level rise. Various organic geochemical results (TOC, C/N, C/S, HI, δ13Corg) of core YSDP 103, taken from the southeastern Yellow Sea, showed that terrigenous organic matters were significantly dominant in the southeastern Yellow Sea between 16,600 and 4,300 cal. yr BP probably due to the influence of freshwater derived from an adjacent river and then the dominance of organic matter origin changed to marine type affected by surface primary productivity after 4,300 cal. yr BP. These results may indicate that the marine environment of the southeastern Yellow Sea changed from brackish to a modern-type shelf environment since 4,300 cal. yr BP, implying the intrusion of the open-ocean current. The δ18O values of benthic foraminifer Cibicides lobatulus, however, showed that variation changed from high-amplitude to low-amplitude fluctuations at around 3,500 cal. yr. The time discrepancy of 800 years between organic geochemical proxies and stable isotope proxies is interpreted to reflect that a modern-type shelf environment was not fully developed in the southeastern Yellow Sea until 3,500 cal. yr BP, even though the open-ocean current (Yellow Sea Warm Current) began to flow into the Yellow Sea at 4,300 cal. Yr. BP. The results of core SSDP 102 collected in the Korean Strait reveal that the area experienced 4 stages of environmental change during the last 13,900 cal. yr BP. Occurrence of well-rounded, oxidized rock fragments at the core bottom indicates that the area was under a fluvial environment before 13,900 cal. yr BP. Between 13,900 and 7,000 cal. yr BP, the dominances of terrigenous organic matters and coarse fractions reflect that the area was changed into the estuarine (deltaic) environment which was directly affected by the Nakdong River. Between 7,000 and 6,100 cal. yr BP, the occurrence of a sand layer with remarkably high coarse fraction and low TOC contents reflects that the temporary erosion occurred in this area probably due to the deceleration of sea-level rising rate. Since 6,100 cal. yr BP, the prevailing occurrences of marine organic matters and the fine-grained sediments indicate that the study area was changed into a modern-type shelf environment under the influence of the open-ocean current (Tsushima Current). The organic chemical result of core SSDP103 extracted in the central South Sea of Korea close to the Seomjin River mouth, indicates that the area was under a brackish coastal environment like tidal flat and estuarine at the early stage of deposition, which is supported by high occurrence of oyster shell fragments and terrigeneous organic matter. Even though there is some difficulty of age control due to older ages at depth of 33.8m, various geochemical proxies showed that the area began to change into a modern-type marine environment by far before 5.21cal. kyr, supported by increasing TOC, C/N and δ13Corg. Based on the results of core SSDP 105 collected from the southeastern coast of Korea, the occurrence of large, well-rounded gravel at depths of 34.3 - 32 m reflects that the southeastern coast of Korea was under a shallow coastal environment before 17,500 cal. yr. During the transgressive stage of sea-level between 17,500 and 8,100 cal. yr, this area was more under a coastal environment of erosion rather than the deposition of the fine-grained sediments as indicated by the dominance of coarse fractions. Since 8,100 cal. yr when sea-level rose nearly to the present level, the southeastern coast area began to change into a modern-type shelf environment influenced by the intrusion of the Tsushima Current, which is supported by significantly high TOC contents, high CaCO3 contents, and predominance of marine-type organic matters. In summary, long mud-dominated Holocene cores provided the opportunity to elucidate the onset of inflow of the open-ocean warm current during Holocene marine transgression in the marginal seas around the Korean Peninsula. The results of four long cores suggest that the timings of intrusion of warm currents are different from each other due to the influence of brackish coastal currents and river discharge rather than increased water depth. Also, a relative abundance of marine-type organic matter characteristic of oxygen and carbon isotopes showed differences even after establishing a modern-type marine environment, implying that properties of their environments are altered according to the changes of strength between river discharge and open-ocean current at their location.
Origin of orbital periods in the sedimentary relative paleointensity records
NASA Astrophysics Data System (ADS)
Xuan, Chuang; Channell, James E. T.
2008-08-01
Orbital cycles with 100 kyr and/or 41 kyr periods, detected in some sedimentary normalized remanence (relative paleointensity) records by power spectral analysis or wavelet analysis, have been attributed either to orbital forcing of the geodynamo, or to lithologic contamination. In this study, local wavelet power spectra (LWPS) with significance tests have been calculated for seven relative paleointensity (RPI) records from different regions of the world. The results indicate that orbital periods (100 kyr and/or 41 kyr) are significant in some RPI records during certain time intervals, and are not significant in others. Time intervals where orbital periods are significant are not consistent among the RPI records, implying that orbital periods in these RPI records may not have a common origin such as orbital forcing on the geodynamo. Cross-wavelet power spectra (|XWT|) and squared wavelet coherence (WTC) between RPI records and orbital parameters further indicate that common power exists at orbital periods but is not significantly coherent, and exhibits variable phase relationships, implying that orbital periods in RPI records are not caused directly by orbital forcing. Similar analyses for RPI records and benthic oxygen isotope records from the same sites show significant coherence and constant in-phase relationships during time intervals where orbital periods were significant in the RPI records, indicating that orbital periods in the RPI records are most likely due to climatic 'contamination'. Although common power exists at orbital periods for RPI records and their normalizers with significant coherence during certain time intervals, phase relationships imply that 'contamination' (at orbital periods) is not directly due to the normalizers. Orbital periods are also significant in the NRM intensity records, and 'contamination' in RPI records can be attributed to incomplete normalization of the NRM records. Further tests indicate that 'contamination' is apparently not directly related to physical properties such as density or carbonate content, or to the grain size proxy κARM/ κ. However, WTC between RPI records and the grain size proxy ARM/IRM implies that ARM/IRM does reflect the 'contamination' in some RPI records. It appears that orbital periods were introduced into the NRM records (and have not been normalized when calculating RPI records) through magnetite grain size variations reflected in the ARM/IRM grain size proxy. The orbital power in ARM/IRM for some North Atlantic sites is probably derived from bottom-current velocity variations that are orbitally modulated and are related to the vigor of thermohaline circulation and the production of North Atlantic Deep Water (NADW). In the case of ODP Site 983, the orbital power in RPI appears to exhibit a shift from 41-kyr to 100-kyr period at the mid-Pleistocene climate transition (˜750 ka), reinforcing the climatic origin of these orbital periods. RPI records from the Atlantic and Pacific oceans, and RPI records with orbital periods eliminated by band-pass filters, are highly comparable with each other in the time domain, and are coherent and in-phase in time-frequency space, especially at non-orbital periods, indicating that 'contamination', although present (at orbital periods) is not debilitating to these RPI records as a global signal that is primarily of geomagnetic origin.
Variations in the Holocene North Atlantic Bottom Current Strength in the Charlie Gibbs Fracture Zone
NASA Astrophysics Data System (ADS)
Kissel, C.; Van Toer, A.; Cortijo, E.; Turon, J.
2011-12-01
The changes in the strength of the North Atlantic bottom current during the Holocene period is presented via the study of cores located at the western termination of the northern deep channel of the Charlie-Gibbs fracture zone. This natural roughly E-W corridor is bathed by the Iceland-Scotland overflow water (ISOW) when it passes westward out of the Iceland Basin into the western North Atlantic basin. At present, it is also described as the place where southern sourced silicate-rich Lower Deep Water (LDW) derived from the Antarctic Bottom Waters (AABW) are passing westward, mixing with the ISOW. We conducted a deep-water multiproxy analysis on two nearby cores, coupling magnetic properties, anisotropy, sortable silt and benthic foraminifera isotopes. The first core had been taken by the R. V. Charcot in 1977 and the second one is a CASQ core taken during the IMAGES-AMOCINT MD168- cruise in the framework of the 06-EuroMARC-FP-008 Project on board the R.V. Marion Dufresne (French Polar Institute, IPEV) in 2008. The radiocarbon ages indicate an average sedimentation rate of about 50 cm/kyr through middle and late Holocene allowing a data resolution ranging from 40 to 100 years depending on the proxy. In each core, we observe long-term and short-term changes in the strength of the bottom currents. On the long term, a decrease in the amount of magnetic particles (normalized by the carbonate content) is first from 10 kyr to 8.6 kyr and then between 6 and 2 kyrs before reaching a steady state. Following Kissel et al. (2009), this indicates a decrease in the ISOW strength. The mean sortable silt shows exactly the same pattern indicating that not only the intensity of the ISOW but the whole deep water mass bathing the sites has decreased. On the short term, a first very prominent event centered at about 8.4 kyr (cal. ages) is marked by a pronounced minima in magnetic content and the smaller mean sortable silt sizes. This is typical for an abrupt reduction in deep flow speed. Although not exactly at the same age, we note that the pattern in the same as the one observed by Ellison et al. (2006) further north along the Gardar drift with a gradual decrease in the mean sortable silt size followed by a two steps rather fast increase. At the same time, the benthic delta13C values which could be obtained from the few Cib. wuellerstorfi present in the sediment reach significantly negative values (-0.5%) providing evidence of a significant change to a major downwelling limb of the Atlantic meridional overturning circulation. This event is in phase with the meltwater outbursts from the final drainage of the proglacial lakes associated with the decaying Laurentide Ice Sheet margin. In addition, all through the Holocene, a series of short-term events of lower bottom flow speed always illustrated by minima in magnetic concentration and mean size of the sortable silt are observed with a periodicity of 900 years between 6 and 2 kyr.
NASA Astrophysics Data System (ADS)
Jarvis, Ian; Gröcke, Darren; Laurin, Jiří; Selby, David; Roest-Ellis, Sascha; Miles, Andrew; Lignum, John; Gale, Andrew; Kennedy, Jim
2016-04-01
Carbon stable-isotope stratigraphy of marine carbonates (δ13Ccarb) provides remarkable insights into past variation in the global carbon cycle, and has become firmly established as a powerful global correlation tool. Continuous δ13Ccarb time series are becoming increasingly available for much of the geological record, including the Upper Cretaceous. However, our knowledge of stratigraphic variation in the carbon isotopic composition of sedimentary organic matter (δ13Corg) is much poorer, and is generally restricted to organic-rich sedimentary successions and/or key boundary intervals. Close coupling exists between the global isotopic composition of the reduced and oxidised carbon reservoirs on geological time scales, but the stratigraphic resolution of most long-term δ13Corg Mesozoic records is inadequate to identify leads and lags in the responses of the two reservoirs to carbon cycle perturbations. Cenomanian times (100.5-93.9 Ma) represent perhaps the best documented episode of eustatic rise in sea level in Earth history and the beginning of the Late Mesozoic thermal maximum, driving global expansion of epicontinental seas and the onset of widespread pelagic and hemipelagic carbonate deposition. Significant changes occurred in global stable-isotope records, including two prominent perturbations of the carbon cycle - the Mid-Cenomanian Event I (MCEI; ~96.5-96.2 Ma) and Oceanic Anoxic Event 2 (OAE2; ~94.5-93.8 Ma). OAE2, one of two truly global Cretaceous OAEs, was marked by the widespread deposition of black shales, and a global positive carbon stable-isotope excursion of 2.0 - 2.5‰ δ13Ccarb, and up to 7‰ in the sulphur-bound phytane biomarker. MCEI, by contrast, shows a <1‰ δ13Ccarb excursion and no associated black shales in most areas. Here, we present detailed paired δ13Ccarb and δ13Corg stable-isotope records for the entire Cenomanian Stage, based on an Upper Albian - Lower Turonian composite reference section from the Vocontian Basin of SE France. We compare the δ13Ccarb profile to new results from the English Chalk reference section at Folkestone, and correlate the carbon-isotope events between England, France, Germany and Italy. Comparison of the Vergons δ13Ccarb vs. δ13Corg profiles demonstrates similar medium-term stratigraphic variation, but significant differences in both short- and long-term trends. Potential causes of the similarities and differences are examined, and it is concluded that major deviations of the paired isotope trends offer insights into long-term atmospheric pCO2 variation. The osmium 187Os/188Os isotope stratigraphy of the MCEI and OAE2 intervals provides evidence of varying volcanic CO2 input, in-part driving climate change. Spectral analyses of the δ13Corg time series reveals a strong ~100 kyr short eccentricity signal throughout the Cenomanian, with well-expressed ~40 kyr obliquity and ~20 kyr precession cycles in some intervals. A 400 kyr long eccentricity cycle is recorded in sedimentation rate changes and amplitude modulation of the 100 kyr cycle. The relative spacing of events, and comparison with the latest orbital solution La2011, further suggest that MCE I and OAE2 coincided with nodes in the ~2.2-Myr eccentricity modulation.
NASA Astrophysics Data System (ADS)
Ferretti, Patrizia; Crowhurst, Simon; Naafs, David; Barbante, Carlo
2015-04-01
Since the seminal work by Hays, Imbrie and Shackleton (1976), a plethora of studies mostly based on marine sediments collected during DSDP-ODP-IODP Expeditions has demonstrated a correlation between orbital variations and climatic change. However, information on how changes in orbital boundary conditions affected the frequency and amplitude of millennial-scale climate variability is still fragmentary. Here we examine the record of climatic conditions from MIS 23 to 17 (c. 920-670 ka) using high-resolution stable isotope records from benthic and planktonic foraminifera from a sedimentary sequence in the North Atlantic (Integrated Ocean Drilling Program Expedition 306, Site U1313) in order to evaluate the climate system's response in the millennial band to known orbitally induced insolation changes. Special emphasis is placed on Marine Isotope Stage (MIS) 19, an interglacial centred at around 785 ka during which the insolation appears comparable to the current orbital geometry: MIS 19 is characterised by a minimum of the 400-kyr eccentricity cycle, subdued amplitude of precessional changes, and small amplitude variations in insolation making this marine isotopic stage a potential astronomical analogue for the Holocene and its future evolution, if this remains governed by natural forcing (Loutre and Berger 2000). Benthic and planktonic foraminiferal oxygen isotope values indicate relatively stable conditions during the peak warmth of MIS 19, but sea-surface and deep-water reconstructions start diverging during the transition towards the glacial MIS 18, when large, cold excursions disrupt the surface waters whereas low amplitude millennial scale fluctuations persist in the deep waters as recorded by the oxygen isotope signal (Ferretti et al., 2015). The glacial inception occurred at ˜779 ka, in agreement with an increased abundance of tetra-unsaturated alkenones, reflecting the influence of icebergs and associated meltwater pulses and high-latitude waters at the study site. Using a variety of time series analysis techniques, we evaluate the evolution of millennial climate variability in response to changing orbital boundary conditions during the early-middle Pleistocene. Suborbital variability in both surface- and deep-water records is mainly concentrated at a period of ˜11 kyr and, additionally, at ˜5.8 and ˜3.9 kyr in the deep ocean; these periods are equal to harmonics of precession band oscillations. The fact that the response at the 11 kyr period increased over the same interval during which the amplitude of the response to the precessional cycle increased supports the notion that most of the variance in the 11 kyr band in the sedimentary record is nonlinearly transferred from precession band oscillations. Considering that these periodicities are important features in the equatorial and intertropical insolation, these observations are in line with the view that the low-latitude regions play an important role in the response of the climate system to the astronomical forcing. We conclude that the effect of the orbitally induced insolation is of fundamental importance in regulating the timing and amplitude of millennial scale climate variability. Ferretti P., Crowhurst S.J., Naafs B.D.A., Barbante C., 2015. Quaternary Science Reviews 108, 95-110. Hays J.D., Imbrie J., Shackleton N.J., 1976. Science 194, 1121-1132. Loutre M.F., Berger A., 2000. Climatic Change 46, 61-90.
Oscillometric Blood Pressure Estimation: Past, Present, and Future.
Forouzanfar, Mohamad; Dajani, Hilmi R; Groza, Voicu Z; Bolic, Miodrag; Rajan, Sreeraman; Batkin, Izmail
2015-01-01
The use of automated blood pressure (BP) monitoring is growing as it does not require much expertise and can be performed by patients several times a day at home. Oscillometry is one of the most common measurement methods used in automated BP monitors. A review of the literature shows that a large variety of oscillometric algorithms have been developed for accurate estimation of BP but these algorithms are scattered in many different publications or patents. Moreover, considering that oscillometric devices dominate the home BP monitoring market, little effort has been made to survey the underlying algorithms that are used to estimate BP. In this review, a comprehensive survey of the existing oscillometric BP estimation algorithms is presented. The survey covers a broad spectrum of algorithms including the conventional maximum amplitude and derivative oscillometry as well as the recently proposed learning algorithms, model-based algorithms, and algorithms that are based on analysis of pulse morphology and pulse transit time. The aim is to classify the diverse underlying algorithms, describe each algorithm briefly, and discuss their advantages and disadvantages. This paper will also review the artifact removal techniques in oscillometry and the current standards for the automated BP monitors.