Sample records for l conversion

  1. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    PubMed

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  2. [Hydroxylamine conversion by anammox enrichment].

    PubMed

    Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua

    2010-04-01

    Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway model presented by van de Graaf AA.

  3. Construction of genetically engineered Candida tropicalis for conversion of l-arabinose to l-ribulose.

    PubMed

    Yeo, In-Seok; Shim, Woo-Yong; Kim, Jung Hoe

    2018-05-20

    For the biological production of l-ribulose, conversion by enzymes or resting cells has been investigated. However, expensive or concentrated substrates, an additional purification step to remove borate and the requirement for cell cultivation and harvest steps before utilization of resting cells make the production process complex and unfavorable. Microbial fermentation may help overcome these limitations. In this study, we constructed a genetically engineered Candida tropicalis strain to produce l-ribulose by fermentation with a glucose/l-arabinose mixture. For the uptake of l-arabinose as a substrate and conversion of l-arabinose to l-ribulose, two heterologous genes coding for l-arabinose transporter and l-arabinose isomerase, were constitutively expressed in C. tropicalis under the GAPDH promoter. The Arabidopsis thaliana-originated l-arabinose transporter gene (STP2)-expressing strain exhibited a high l-arabinose uptake rate of 0.103 g/g cell/h and the expression of l-arabinose isomerase from Lactobacillus sakei 23 K showed 30% of conversion (9 g/L) from 30 g/L of l-arabinose. This genetically engineered strain can be used for l-ribulose production by fermentation using mixed sugars of glucose and l-arabinose. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Survival of Escherichia coli under lethal heat stress by L-form conversion.

    PubMed

    Markova, Nadya; Slavchev, Georgi; Michailova, Lilia; Jourdanova, Mimi

    2010-06-09

    Transition of bacteria to cell wall deficient L-forms in response to stress factors has been assumed as a potential mechanism for survival of microbes under unfavorable conditions. In this article, we provide evidence of paradoxal survival through L-form conversion of E. coli high cell density population after lethal treatments (boiling or autoclaving). Light and transmission electron microscopy demonstrated conversion from classical rod to polymorphic L-form shape morphology and atypical growths of E. coli. Microcrystal formations observed at this stage were interpreted as being closely linked to the processes of L-form conversion and probably involved in the general phenomenon of protection against lethal environment. Identity of the morphologically modified L-forms as E. coli was verified by species specific DNA-based test. Our study might contribute to a better understanding of the L-form phenomenon and its importance for bacterial survival, as well as provoke reexamination of the traditional view of killing strategies against bacteria.

  5. Survival of Escherichia coli under lethal heat stress by L-form conversion

    PubMed Central

    Markova, Nadya; Slavchev, Georgi; Michailova, Lilia; Jourdanova, Mimi

    2010-01-01

    Transition of bacteria to cell wall deficient L-forms in response to stress factors has been assumed as a potential mechanism for survival of microbes under unfavorable conditions. In this article, we provide evidence of paradoxal survival through L-form conversion of E. coli high cell density population after lethal treatments (boiling or autoclaving). Light and transmission electron microscopy demonstrated conversion from classical rod to polymorphic L-form shape morphology and atypical growths of E. coli. Microcrystal formations observed at this stage were interpreted as being closely linked to the processes of L-form conversion and probably involved in the general phenomenon of protection against lethal environment. Identity of the morphologically modified L-forms as E. coli was verified by species specific DNA-based test. Our study might contribute to a better understanding of the L-form phenomenon and its importance for bacterial survival, as well as provoke reexamination of the traditional view of killing strategies against bacteria. PMID:20582223

  6. Pilot Analysis of Late Conversion to Belatacept in Kidney Transplant Recipients for Biopsy-Proven Chronic Tacrolimus Toxicity

    PubMed Central

    Rosales, Ivy

    2018-01-01

    Background Calcineurin inhibitors are associated with chronic nephrotoxicity, manifesting as interstitial fibrosis/tubular atrophy (IF/TA) and arteriolar hyalinosis. Conversion from tacrolimus to belatacept may be one strategy to preserve renal function. Methods We conducted a retrospective review of renal transplant patients followed at our institution who were converted to belatacept and found to have chronic tacrolimus toxicity on biopsy. The primary outcome was eGFR at conversion as compared to eGFR at 3, 6, 12, and 24 months after conversion. We also assessed incidence of infection and rates of allograft survival at 1 year. Results The average time between transplant and conversion was 11.9 years. There was no decrease in eGFR at any postconversion time point as compared with preconversion. The mean eGFR at time of preconversion was 32.9 mL/min, as compared with 35.6 mL/min at 3 months (p = 0.09), 34.1 mL/min at 6 months (p = 0.63), 34.9 mL/min at 12 months (p = 0.57), and 39.6 mL/min at 24 months after conversion (p = 0.92). Four of 7 patients had increases in their eGFR after conversion. All grafts were functioning at 1 year after conversion. Conclusion While this study was limited by a small number of patients, belatacept conversion stabilized eGFR at all time points in patients with late allograft function due to chronic tacrolimus toxicity, with a trend towards increased eGFR at 3 months. PMID:29854421

  7. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E [Kennewick, WA

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  8. 77 FR 60981 - Kinder Morgan Interstate Gas Transmission L.L.C.; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Pony Express Pipeline Conversion Project and Request for Comments on Environmental Issues The staff of... (EA) that will discuss the environmental impacts of the Pony Express Pipeline Conversion Project involving conversion of facilities from natural gas to oil and construction and operation of new facilities...

  9. Preparation of Trivalent Chromium and Rare Earth Composite Conversion Coating on Aluminum Alloy Surface

    NASA Astrophysics Data System (ADS)

    Huang, Jianzhen

    2018-01-01

    In this paper, the surface conversion film on 6063 aluminum alloy was prepared by chemical plating process with chromium sulfate, lanthanum sulfate and sodium phosphate as film forming agent. The corrosion resistance and surface morphology of the conversion film were analyzed by pitting corrosion test of copper sulfate and SEM. The results show that when Cr2(SO4)3 is 10 g/L, La2(SO4)3 is 2 g/L, Na3PO4 is 8 g/L, pH value is 3, temperature is 40 °C, reaction time is 10 min, the corrosion resistance of the surface conversion film is the best. The conversion coating is light green, composed of Cr, La, P, Al, O and other elements.

  10. Assessing the impact of minimizing arginine conversion in fully defined SILAC culture medium in human embryonic stem cells.

    PubMed

    Scheerlinck, Ellen; Van Steendam, Katleen; Daled, Simon; Govaert, Elisabeth; Vossaert, Liesbeth; Meert, Paulien; Van Nieuwerburgh, Filip; Van Soom, Ann; Peelman, Luc; De Sutter, Petra; Heindryckx, Björn; Dhaenens, Maarten; Deforce, Dieter

    2016-10-01

    We present a fully defined culture system (adapted Essential8 TM [E8 TM ] medium in combination with vitronectin) for human embryonic stem cells that can be used for SILAC purposes. Although a complete incorporation of the labels was observed after 4 days in culture, over 90% of precursors showed at least 10% conversion. To reduce this arginine conversion, E8 TM medium was modified by adding (1) l-proline, (2) l-ornithine, (3) N ω -hydroxy-nor-l-arginine acetate, or by (4) lowering the arginine concentration. Reduction of arginine conversion was best obtained by adding 5 mM l-ornithine, followed by 3.5 mM l-proline and by lowering the arginine concentration in the medium to 99.5 μM. No major changes in pluripotency and cell amount could be observed for the adapted E8 TM media with ornithine and proline. However, our subsequent ion mobility assisted data-independent acquisition (high-definition MS) proteome analysis cautions for ongoing changes in the proteome when aiming at longer term suppression of arginine conversion. © 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Concentration-Dependent Antagonism and Culture Conversion in Pulmonary Tuberculosis

    PubMed Central

    Pasipanodya, Jotam G.; Denti, Paolo; Sirgel, Frederick; Lesosky, Maia; Gumbo, Tawanda; Meintjes, Graeme; McIlleron, Helen; Wilkinson, Robert J.

    2017-01-01

    Abstract Background. There is scant evidence to support target drug exposures for optimal tuberculosis outcomes. We therefore assessed whether pharmacokinetic/pharmacodynamic (PK/PD) parameters could predict 2-month culture conversion. Methods. One hundred patients with pulmonary tuberculosis (65% human immunodeficiency virus coinfected) were intensively sampled to determine rifampicin, isoniazid, and pyrazinamide plasma concentrations after 7–8 weeks of therapy, and PK parameters determined using nonlinear mixed-effects models. Detailed clinical data and sputum for culture were collected at baseline, 2 months, and 5–6 months. Minimum inhibitory concentrations (MICs) were determined on baseline isolates. Multivariate logistic regression and the assumption-free multivariate adaptive regression splines (MARS) were used to identify clinical and PK/PD predictors of 2-month culture conversion. Potential PK/PD predictors included 0- to 24-hour area under the curve (AUC0-24), maximum concentration (Cmax), AUC0-24/MIC, Cmax/MIC, and percentage of time that concentrations persisted above the MIC (%TMIC). Results. Twenty-six percent of patients had Cmax of rifampicin <8 mg/L, pyrazinamide <35 mg/L, and isoniazid <3 mg/L. No relationship was found between PK exposures and 2-month culture conversion using multivariate logistic regression after adjusting for MIC. However, MARS identified negative interactions between isoniazid Cmax and rifampicin Cmax/MIC ratio on 2-month culture conversion. If isoniazid Cmax was <4.6 mg/L and rifampicin Cmax/MIC <28, the isoniazid concentration had an antagonistic effect on culture conversion. For patients with isoniazid Cmax >4.6 mg/L, higher isoniazid exposures were associated with improved rates of culture conversion. Conclusions. PK/PD analyses using MARS identified isoniazid Cmax and rifampicin Cmax/MIC thresholds below which there is concentration-dependent antagonism that reduces 2-month sputum culture conversion. PMID:28205671

  12. Synthesis of L-Ascorbyl Flurbiprofenate by Lipase-Catalyzed Esterification and Transesterification Reactions

    PubMed Central

    Sun, Li-rui; Wang, Yan; Xia, Chun-gu

    2017-01-01

    The synthesis of L-ascorbyl flurbiprofenate was achieved by esterification and transesterification in nonaqueous organic medium with Novozym 435 lipase as biocatalyst. The conversion was greatly influenced by the kinds of organic solvents, speed of agitation, catalyst loading amount, reaction time, and molar ratio of acyl donor to L-ascorbic acid. A series of solvents were investigated, and tert-butanol was found to be the most suitable from the standpoint of the substrate solubility and the conversion for both the esterification and transesterification. When flurbiprofen was used as acyl donor, 61.0% of L-ascorbic acid was converted against 46.4% in the presence of flurbiprofen methyl ester. The optimal conversion of L-ascorbic acid was obtained when the initial molar ratio of acyl donor to ascorbic acid was 5 : 1. kinetics parameters were solved by Lineweaver-Burk equation under nonsubstrate inhibition condition. Since transesterification has lower conversion, from the standpoint of productivity and the amount of steps required, esterification is a better method compared to transesterification. PMID:28421196

  13. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.

    PubMed

    Liu, Lina; Chen, Sheng; Wu, Jing

    2017-10-01

    Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g -1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.

  14. Overview on the biotechnological production of L-DOPA.

    PubMed

    Min, Kyoungseon; Park, Kyungmoon; Park, Don-Hee; Yoo, Young Je

    2015-01-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine) has been widely used as a drug for Parkinson's disease caused by deficiency of the neurotransmitter dopamine. Since Monsanto developed the commercial process for L-DOPA synthesis for the first time, most of currently supplied L-DOPA has been produced by the asymmetric method, especially asymmetric hydrogenation. However, the asymmetric synthesis shows critical limitations such as a poor conversion rate and a low enantioselectivity. Accordingly, alternative biotechnological approaches have been researched for overcoming the shortcomings: microbial fermentation using microorganisms with tyrosinase, tyrosine phenol-lyase, or p-hydroxyphenylacetate 3-hydroxylase activity and enzymatic conversion by immobilized tyrosinase. Actually, Ajinomoto Co. Ltd commercialized Erwinia herbicola fermentation to produce L-DOPA from catechol. In addition, the electroenzymatic conversion system was recently introduced as a newly emerging scheme. In this review, we aim to not only overview the biotechnological L-DOPA production methods, but also to briefly compare and analyze their advantages and drawbacks. Furthermore, we suggest the future potential of biotechnological L-DOPA production as an industrial process.

  15. Production of 8,11-dihydroxy and 8-hydroxy unsaturated fatty acids from unsaturated fatty acids by recombinant Escherichia coli expressing 8,11-linoleate diol synthase from Penicillium chrysogenum.

    PubMed

    Kim, Min-Ji; Seo, Min-Ju; Shin, Kyung-Chul; Oh, Deok-Kun

    2017-03-01

    Hydroxy unsaturated fatty acids can be used as antimicrobial surfactants. 8,11-Linoleate diol synthase (8,11-LDS) catalyzes the conversion of unsaturated fatty acid to 8-hydroperoxy unsaturated fatty acid, and it is subsequently isomerized to 8,11-dihydroxy unsaturated fatty acid by the enzyme. The optimal reaction conditions of recombinant Escherichia coli expressing Penicillium chrysogenum 8,11-LDS for the production of 8,11-dihydroxy-9,12(Z,Z)-octadecadienoic acid (8,11-DiHODE), 8,11-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid (8,11-DiHOTrE), 8-hydroxy-9(Z)-hexadecenoic acid (8-HHME), and 8-hydroxy-9(Z)-octadecenoic acid (8-HOME) were pH 7.0, 25°C, 10 g/L linoleic acid, and 20 g/L cells; pH 6.0, 25°C, 6 g/L α-linolenic acid, and 60 g/L cells; pH 7.0, 25°C, 8 g/L palmitoleic acid, and 25 g/L cells; and pH 8.5, 30°C, 6 g/L oleic acid, and 25 g/L cells, respectively. Under these optimized conditions, the recombinant cells produced 6.0 g/L 8,11-DiHODE for 60 min, with a conversion of 60% (w/w) and a productivity of 6.0 g/L/h; 4.3 g/L 8,11-DiHOTrE for 60 min, with a conversion of 72% (w/w) and a productivity of 4.3 g/L/h; 4.3 g/L 8-HHME acid for 60 min, with a conversion of 54% (w/w) and a productivity of 4.3 g/L/h; and 0.9 g/L 8-HOME for 30 min, with a conversion of 15% (w/w) and a productivity of 1.8 g/L/h. To best of our knowledge, this is the first report on the biotechnological production of 8,11-DiHODE, 8,11-DiHOTrE, 8-HHME, and 8-HOME. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:390-396, 2017. © 2017 American Institute of Chemical Engineers.

  16. Fermentative production of l-galactonate by using recombinant Saccharomyces cerevisiae containing the endogenous galacturonate reductase gene from Cryptococcus diffluens.

    PubMed

    Matsubara, Takeo; Hamada, Shohei; Wakabayashi, Ayaka; Kishida, Masao

    2016-11-01

    The GAR1 gene, encoding d-galacturonate reductase in Cryptococcus diffluens, was isolated, and the GAR1-expression plasmid was constructed by insertion of GAR1 downstream of the yeast constitutive promoter in the yeast-integrating vector. Recombinant Saccharomyces cerevisiae expressing C. diffluensd-galacturonate reductase from a genome integrated copy of the gene was cultured for use the conversion of d-galacturonic acid to l-galactonic acid. The optimum conditions for l-galactonic acid production were determined in terms of the initial concentration of d-galacturonic acid, fermentation pH, and mixed sugars. The following conditions yielded high efficiency in the conversion of d-galacturonic acid to l-galactonic acid in large-scale cultures: 0.1% initial d-galacturonic acid concentration, pH 3.5, and glucose as additional sugar. The aerobic condition was necessary for the conversion of d-galacturonic acid. Subculture of that recombinant was not showing to decrease of the d-galacturonic acid conversion rate even though it was repeated in ten generations. Culturing in scale-up, the conversion rate of d-galacturonic acid to l-galactonic acid was increased. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. l-Arabinose Isomerase and d-Xylose Isomerase from Lactobacillus reuteri: Characterization, Coexpression in the Food Grade Host Lactobacillus plantarum, and Application in the Conversion of d-Galactose and d-Glucose

    PubMed Central

    2014-01-01

    The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the l-AI- and d-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum. The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified l-AI converted d-galactose to d-tagatose with a maximum conversion rate of 35%, and the d-XI isomerized d-glucose to d-fructose with a maximum conversion rate of 48% at 60 °C. PMID:24443973

  18. Improvement of L-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBNrC genes.

    PubMed

    Hou, Xiaohu; Ge, Xiangyang; Wu, Di; Qian, He; Zhang, Weiguo

    2012-01-01

    Brevibacterium flavum ATCC14067 was engineered for L: -valine production by overexpression of different ilv genes; the ilvEBN(r)C genes from B. flavum NV128 provided the best candidate for L: -valine production. In traditional fermentation, L: -valine production reached 30.08 ± 0.92 g/L at 31°C in 72 h with a low conversion efficiency of 0.129 g/g. To further improve the L: -valine production and conversion efficiency based on the optimum temperatures of L: -valine biosynthesis enzymes (above 35°C) and the thermotolerance of B. flavum, the fermentation temperature was increased to 34, 37, and 40°C. As a result, higher metabolic rate and L: -valine biosynthesis enzymes activity were obtained at high temperature, and the maximum L: -valine production, conversion efficiency, and specific L: -valine production rate reached 38.08 ± 1.32 g/L, 0.241 g/g, and 0.133 g g(-1) h(-1), respectively, at 37°C in 48 h fermentation. The strategy for enhancing L: -valine production by overexpression of key enzymes in thermotolerant strains may provide an alternative approach to enhance branched-chain amino acids production with other strains.

  19. 75 FR 14590 - Petal Gas Storage, L.L.C.; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... Conversion Gas Storage Project and Request for Comments on Environmental Issues March 19, 2010. The staff of... (EA) that will discuss the environmental impacts of the Cavern 12A Conversion Gas Storage Project...

  20. Gender disparity in BMD conversion: a comparison between Lunar and Hologic densitometers.

    PubMed

    Ganda, Kirtan; Nguyen, Tuan V; Pocock, Nicholas

    2014-01-01

    Female-derived inter-conversion and standardised BMD equations at the lumbar spine and hip have not been validated in men. This study of 110 male subjects scanned on Hologic and Lunar densitometers demonstrates that published equations may not applicable to men at the lumbar spine. Male inter-conversion equations have also been derived. Currently, available equations for inter-manufacturer conversion of bone mineral density (BMD) and calculation of standardised BMD (sBMD) are used in both males and females, despite being derived and validated only in women. Our aim was to test the validity of the published equations in men. One hundred ten men underwent lumbar spine (L2-4), femoral neck (FN) and total hip (TH) dual X-ray absorptiometry (DXA) using Hologic and Lunar scanners. Hologic BMD was converted to Lunar using published equations derived from women for L2-4 and FN. Actual Lunar BMD (A-Lunar) was compared to converted (Lunar equivalent) Hologic BMD values (H-Lunar). sBMD was calculated separately using Hologic (sBMD-H) and Lunar BMD (sBMD-L) at L2-4, FN and TH. Conversion equations in men for Hologic to Lunar BMD were derived using Deming regression analysis. There was a strong linear correlation between Lunar and Hologic BMD at all skeletal sites. A-Lunar BMD was however significantly higher than derived H-Lunar BMD (p < 0.001) at L2-L4 (mean difference, 0.07 g/cm(2)). There was no significant difference at the FN (mean difference, 0.01 g/cm(2)). sBMD-L at the spine was significantly higher than sBMD-H (mean difference, 0.06 g/cm(2), p < 0.001), whilst there was little difference at the FN and TH (mean difference, 0.01 g/cm(2)). Published conversion equations for Lunar BMD to Hologic BMD, and formulae for lumbar spine sBMD, derived in women may not be applicable to men.

  1. Direct production of L-tagatose from L-psicose by Enterobacter aerogenes 230S.

    PubMed

    Rao, Devendar; Gullapalli, Pushpakiran; Yoshihara, Akihide; Jenkinson, Sarah F; Morimoto, Kenji; Takata, Goro; Akimitsu, Kazuya; Tajima, Shigeyuki; Fleet, George W J; Izumori, Ken

    2008-11-01

    L-tagatose was produced directly from L-psicose by subjecting the same biomass suspension to microbial reduction followed by oxidation using a newly isolated bacteria Enterobacter aerogenes 230S. After various optimizations, it was observed that cells grown on xylitol have the best conversion potential. Moreover, E. aerogenes 230S converted L-psicose to L-tagatose at a faster rate in the presence of polyols such as glycerol, D-sorbitol, ribitol, L-arabitol, D-mannitol and xylitol. At 5% substrate concentration, the conversion ratio of L-psicose to L-tagatose was above 60% in the presence of glycerol. Identity of crystalline L-tagatose was confirmed by HPLC analysis, (13)C-NMR spectra, and optical rotation.

  2. Play Chronotopes: Laughter-Talk in Peer Group Conversation

    ERIC Educational Resources Information Center

    Liang, Mei-Ya

    2015-01-01

    Although research has investigated laughter in professional communication settings, fewer studies have explored laughter-talk in second language (L2) classrooms. This study examines L2 university students' use of laughter-talk in peer group conversation to understand the linguistics of affect and its interactional effects. The author draws upon…

  3. 36 CFR 59.3 - Conversion requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Conversion requirements. 59.3... RESPONSIBILITIES § 59.3 Conversion requirements. (a) Background and legal requirements. Section 6(f)(3) of the L... of at least equal fair market value. (b) Prerequisites for conversion approval. Requests from the...

  4. Kinetics of Scheelite Conversion in Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2018-02-01

    Complete conversion of scheelite in H2SO4 solution plays a key role in exploration of cleaner technology for producing ammonium paratungstate. In this work, the factors influencing scheelite conversion were investigated experimentally to model its kinetics. The results indicated that the conversion rate increases with increasing temperature and reducing particle size, but is almost independent of stirring speed. Moreover, although the conversion rate increases with increasing initial H2SO4 concentration (≤ 1.25 mol/L), it decreases rapidly at 1.5 mol/L H2SO4 after 10 min due to formation of a H2WO4 layer. The experimental data agree quite well with the shrinking core model under chemical reaction control in ≤ 1.25 mol/L H2SO4 solution, and the kinetic equation was established as: 1- ( 1- α )^{ 1 / 3} = 2 2 2 5 4 6. 6\\cdot C_{{{H}_{ 2} {SO}_{ 4} }}^{ 1. 2 2 6} \\cdot r_{ 0}^{ - 1} \\cdot e^{{ - 3 9 2 6 0/RT}} \\cdot t (t, min). This work could contribute to better understanding of scheelite conversion in H2SO4 solution and development of a new route for ammonium paratungstate production.

  5. Intensified synthesis of medium chain triglycerides using ultrasonic reactors at a capacity of 4L.

    PubMed

    Mohod, Ashish V; Gogate, Parag R

    2018-04-01

    Lipids are considered as one of the most crucial nutrients for humans and among the various classes, medium chain triglycerides (MCTs) are considered as the most important functional foods and nutraceuticals. The present work deals with the intensification of synthesis of MCTs at a large capacity of 4L based on the use of ultrasonic bath and ultrasonic longitudinal horn. The effect of operating parameters like molar ratio of the reactants, type of catalyst and catalyst loading as well as the temperature on the extent of conversion has been investigated. The effect of molar ratio of lauric acid and glycerol was investigated over the range of 1:2 to 1:8 whereas the effect of loading of sulfuric acid was studied over the range of 4 ml/L-10 ml/L and zinc chloride loading over the range of 1 g/L-4 g/L. The effect of temperature was also studied using the conventional approach where it has been observed that 90 °C is an optimum temperature giving the extent of conversion as 72%. Also, the use of homogeneous catalyst as sulphuric acid was found to be more effective as compared to the solid catalyst as zinc chloride. It was observed that the maximum extent of conversion as 77.5% was obtained at 8 ml/L of sulfuric acid and molar ratio of 1:6 using ultrasonic longitudinal horn with US bath giving lower conversion as compared to US longitudinal horn but higher than the conventional approach under same operating conditions. The present work clearly established the intensification benefits in terms of reduction in time and higher conversion using cavitational reactors. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production.

    PubMed

    Tanaka, Kosei; Natsume, Ayane; Ishikawa, Shu; Takenaka, Shinji; Yoshida, Ken-Ichi

    2017-04-21

    A stereoisomer of inositol, scyllo-inositol (SI), has been regarded as a promising therapeutic agent for Alzheimer's disease. However, this compound is relatively rare, whereas another stereoisomer of inositol, myo-inositol (MI) is abundant in nature. Bacillus subtilis 168 has the ability to metabolize inositol stereoisomers, including MI and SI. Previously, we reported a B. subtilis cell factory with modified inositol metabolism that converts MI into SI in the culture medium. The strain was constructed by deleting all genes related to inositol metabolism and overexpressing key enzymes, IolG and IolW. By using this strain, 10 g/l of MI initially included in the medium was completely converted into SI within 48 h of cultivation in a rich medium containing 2% (w/v) Bacto soytone. When the initial concentration of MI was increased to 50 g/l, conversion was limited to 15.1 g/l of SI. Therefore, overexpression systems of IolT and PntAB, the main transporter of MI in B. subtilis and the membrane-integral nicotinamide nucleotide transhydrogenase in Escherichia coli respectively, were additionally introduced into the B. subtilis cell factory, but the conversion efficiency hardly improved. We systematically determined the amount of Bacto soytone necessary for ultimate conversion, which was 4% (w/v). As a result, the conversion of SI reached to 27.6 g/l within 48 h of cultivation. The B. subtilis cell factory was improved to yield a SI production rate of 27.6 g/l/48 h by simultaneous overexpression of IolT and PntAB, and by addition of 4% (w/v) Bacto soytone in the conversion medium. The concentration of SI was increased even in the stationary phase perhaps due to nutrients in the Bacto soytone that contribute to the conversion process. Thus, MI conversion to SI may be further optimized via identification and control of these unknown nutrients.

  7. Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1

    PubMed Central

    Yang, Joan C.; Loewus, Frank A.

    1975-01-01

    l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288

  8. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. [Phaseolus vulgaris L. ; Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loewus, M.W.; Bedgar, D.L.; Saito, Kazumi

    An NADP-dependent dehydrogenase catalyzing the conversion of L-sorbosone to L-ascorbic acid has been isolated from Phaseolus vulgaris L. and Spinacia oleracea L. and partially purified. It is stable at {minus}20{degree}C for up to 8 months. Molecular masses, as determined by gel filtration, were 21 and 29 kilodaltons for bean and spinach enzymes, respectively. K{sub m} for sorbosone were 12 {plus minus} 2 and 18 {plus minus} 2 millimolar and for NADP{sup +}, 0.14 {plus minus} 0.05 and 1.2 {plus minus} 0.5 millimolar, for bean and spinach, respectively. Lycorine, a purported inhibitor of L-ascorbic acid biosynthesis, had no effect on themore » reaction.« less

  9. Calcineurin inhibitor withdrawal and conversion to mycophenolate mofetil and steroids in cardiac transplant recipients with chronic renal failure: a word of caution.

    PubMed

    Groetzner, Jan; Kaczmarek, Ingo; Schirmer, Johannes; Uberfuhr, Peter; Gulbins, Helmut; Daebritz, Sabine; Meiser, Bruno; Reichart, Bruno

    2008-01-01

    Chronic renal failure (CRF) is a common complication of calcineurin inhibitor (CNI)-based immunosuppression following cardiac transplantation (HTx). The aim of this prospective study was to evaluate the impact of an immunosuppressive conversion from CNIs to mycophenolate mofetil (MMF) and steroids in cardiac transplant recipients with CRF on renal and cardiac graft function. Since 1999, 12 HTx recipients (10 men; 58 +/- 3.6 yr of age; 8.7 +/- 4.2 yr after HTx) with CNI-based immunosuppression and a calculated creatinine clearance (CreaCl) <50 mL/min were included. Most patients (10/12) were on cyclosporine and two patients were on tacrolimus prior inclusion. MMF was started with 0.5 g/d and adjusted according to the target trough levels (2-4 ng/mL). Prednisone dosage was 0.4 mg/kg. Subsequently, CNIs were completely withdrawn. Acute rejection episodes were excluded one and three months after conversion by endomyocardial biopsy and by echocardiography every three months thereafter. After a mean follow-up of 20 +/- 16 months, CreaCl improved significantly: pre-conversion vs. post-conversion: 32.8 +/- 12.2 mg/dL vs. 42.8 +/- 21.14 mg/dL, p = 0.03. However, four acute rejection episodes occurred and patients were reconverted to CNIs. Additionally, six patients had a new onset of graft vessel disease (GVD) one yr after conversion. As a result of these adverse events, the study was stopped after inclusion of only 12 of the scheduled 30 patients. Conversion to MMF and steroids after HTx improves renal function, but increases the risk for recurrent rejection and GVD. Therefore, MMF and steroids should only be considered in patients with a markedly low risk for rejection.

  10. Enhanced productivity of gamma-amino butyric acid by cascade modifications of a whole-cell biocatalyst.

    PubMed

    Yang, Xinwei; Ke, Chongrong; Zhu, Jiangming; Wang, Yan; Zeng, Wenchao; Huang, Jianzhong

    2018-04-01

    We previously developed a gamma-amino butyric acid (GABA)-producing strain of Escherichia coli, leading to production of 614.15 g/L GABA at 45 °C from L-glutamic acid (L-Glu) with a productivity of 40.94 g/L/h by three successive whole-cell conversion cycles. However, the increase in pH caused by the accumulation of GABA resulted in inactivation of the biocatalyst and consequently led to relatively lower productivity. In this study, by overcoming the major problem associated with the increase in pH during the production process, a more efficient biocatalyst was obtained through cascade modifications of the previously reported E. coli strain. First, we introduced four amino acid mutations to the codon-optimized GadB protein from Lactococcus lactis to shift its decarboxylation activity toward a neutral pH, resulting in 306.65 g/L of GABA with 99.14 mol% conversion yield and 69.8% increase in GABA productivity. Second, we promoted transportation of L-Glu and GABA by removing the genomic region encoding the C-plug of GadC (a glutamate/GABA antiporter) to allow its transport path to remain open at a neutral pH, which improved the GABA productivity by 16.8% with 99.3 mol% conversion of 3 M L-Glu. Third, we enhanced the expression of soluble GadB by introducing the GroESL molecular chaperones, leading to 20.2% improvement in GABA productivity, with 307.40 g/L of GABA and a 61.48 g/L/h productivity obtained in one cycle. Finally, we inhibited the degradation of GABA by inactivation of gadA and gadB from the E. coli genome, which resulted in almost no GABA degradation after 40 h. After the cascade system modifications, the engineered recombinant E. coli strain achieved a 44.04 g/L/h productivity with a 99.6 mol% conversion of 3 M L-Glu in a 5-L bioreactor, about twofold increase in productivity compared to the starting strain. This increase represents the highest GABA productivity by whole-cell bioconversion using L-Glu as a substrate in one cycle observed to date, even better than the productivity obtained from the three successive conversion cycles.

  11. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-x(L)

    NASA Technical Reports Server (NTRS)

    Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy; Chatterjee, A. (Principal Investigator)

    2002-01-01

    Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in DSB repair in human cells. However, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We demonstrated previously that overexpression of BCL-2 or BCL-x(L) enhanced the frequency of X-ray-induced TK1 mutations, including loss of heterozygosity events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells and to determine whether ectopic expression of BCL-x(L) affects HDR. Using TK6-neo cells, we find that a single DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold, demonstrating efficient DSB repair by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3-4-fold more frequent in TK6 cells that stably overexpress the antiapoptotic protein BCL-X(L). Thus, HDR plays an important role in maintaining genomic integrity in human cells, and ectopic expression of BCL-x(L) enhances HDR of DSBs. This is the first study to highlight a function for BCL-x(L) in modulating DSB repair in human cells.

  12. [Production of sugar syrup containing rare sugar using dual-enzyme coupled reaction system].

    PubMed

    Han, Wenjia; Zhu, Yueming; Bai, Wei; Izumori, Ken; Zhang, Tongcun; Sun, Yuanxia

    2014-01-01

    Enzymatic conversion is very important to produce functional rare sugars, but the conversion rate of single enzymes is generally low. To increase the conversion rate, a dual-enzyme coupled reaction system was developed. Dual-enzyme coupled reaction system was constructed using D-psicose-3-epimerase (DPE) and L-rhamnose isomerase (L-RhI), and used to convert D-fructose to D-psicose and D-allose. The ratio of DPE and L-RhI was 1:10 (W/W), and the concentration of DPE was 0.05 mg/mL. The optimum temperature was 60 degrees C and pH was 9.0. When the concentration of D-fructose was 2%, the reaction reached its equilibrium after 10 h, and the yield of D-psicose and D-allose was 5.12 and 2.04 g/L, respectively. Using the dual-enzymes coupled system developed in the current study, we could obtain sugar syrup containing functional rare sugar from fructose-rich raw material, such as high fructose corn syrup.

  13. Effects of Lowering Dialysate Calcium Concentration on Mineral and Bone Disorders in Chronic Hemodialysis Patients: Conversion from 3.0 mEq/L to 2.75 mEq/L.

    PubMed

    Yamada, Shunsuke; Ueki, Kenji; Tokumoto, Masanori; Suehiro, Takaichi; Kimura, Hiroshi; Taniguchi, Masatomo; Fujimi, Satoru; Kitazono, Takanari; Tsuruya, Kazuhiko

    2016-02-01

    Selection of a lower dialysate calcium concentration (DCa) can reduce calcium burden and prevent vascular calcification in hemodialysis patients. However, decreased DCa can worsen mineral and bone disorders. This 1-year retrospective observational study evaluated 121 hemodialysis patients at Fukuoka Renal Clinic who underwent conversion of DCa from 3.0 mEq/L to 2.75 mEq/L. The primary outcomes were changes in serum levels of calcium, phosphate, and parathyroid hormone (PTH). The effects of baseline serum calcium and PTH levels on changes in biochemical parameters were also determined. One year after DCa conversion, mean serum calcium level decreased, while serum phosphate, alkaline phosphatase, and PTH concentrations increased. The rate of achievement of target PTH was higher in patients with lower serum PTH level at baseline, while patients with higher baseline serum PTH level tended to exceed the upper limit of the PTH target range. Patients with higher baseline serum calcium concentration showed a greater decrease in serum calcium level and a greater increase in serum PTH level at 1 year. Patients with a lower baseline serum PTH level can benefit from optimal PTH control following conversion of DCa from 3.0 mEq/L to 2.75 mEq/L. However, secondary hyperparathyroidism may be exacerbated in some patients with higher baseline serum calcium (Ca) and PTH levels. These results indicate that an individualized approach can maximize the benefits of Ca unloading after conversion to lower DCa. © 2015 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  14. Renal function improvement in liver transplant recipients after early everolimus conversion: A clinical practice cohort study in Spain.

    PubMed

    Bilbao, Itxarone; Salcedo, Magdalena; Gómez, Miguel Angel; Jimenez, Carlos; Castroagudín, Javier; Fabregat, Joan; Almohalla, Carolina; Herrero, Ignacio; Cuervas-Mons, Valentín; Otero, Alejandra; Rubín, Angel; Miras, Manuel; Rodrigo, Juan; Serrano, Trinidad; Crespo, Gonzalo; De la Mata, Manuel; Bustamante, Javier; Gonzalez-Dieguez, M Luisa; Moreno, Antonia; Narvaez, Isidoro; Guilera, Magda

    2015-08-01

    A national, multicenter, retrospective study was conducted to assess the results obtained for liver transplant recipients with conversion to everolimus in daily practice. The study included 477 recipients (481 transplantations). Indications for conversion to everolimus were renal dysfunction (32.6% of cases), hepatocellular carcinoma (HCC; 30.2%; prophylactic treatment for 68.9%), and de novo malignancy (29.7%). The median time from transplantation to conversion to everolimus was 68.7 months for de novo malignancy, 23.8 months for renal dysfunction, and 7.1 months for HCC and other indications. During the first year of treatment, mean everolimus trough levels were 5.4 (standard deviation [SD], 2.7) ng/mL and doses remained stable (1.5 mg/day) from the first month after conversion. An everolimus monotherapy regimen was followed by 28.5% of patients at 12 months. Patients with renal dysfunction showed a glomerular filtration rate (4-variable Modification of Diet in Renal Disease) increase of 10.9 mL (baseline mean, 45.8 [SD, 25.3] versus 57.6 [SD, 27.6] mL/minute/1.73 m(2) ) at 3 months after everolimus initiation (P < 0.001), and 6.8 mL at 12 months. Improvement in renal function was higher in patients with early conversion (<1 year). Adverse events were the primary reason for discontinuation in 11.2% of cases. The probability of survival at 3 years after conversion to everolimus was 83.0%, 71.1%, and 59.5% for the renal dysfunction, de novo malignancy, and HCC groups, respectively. Everolimus is a viable option for the treatment of renal dysfunction, and earlier conversion is associated with better recovery of renal function. Prospective studies are needed to confirm advantages in patients with malignancy. © 2015 American Association for the Study of Liver Diseases.

  15. γ-Dodecelactone production from safflower oil via 10-hydroxy-12(Z)-octadecenoic acid intermediate by whole cells of Candida boidinii and Stenotrophomonas nitritireducens.

    PubMed

    Jo, Ye-Seul; An, Jung-Ung; Oh, Deok-Kun

    2014-07-16

    Candida boidinii was selected as a γ-dodecelactone producer because of the highest production of γ-dodecelactone from 10-hydroxy-12(Z)-octadecenoic acid among the 11 yeast strains tested. Under the reaction conditions of pH 5.5 and 25 °C with 5 g/L 10-hydroxy-12(Z)-octadecenoic acid and 30 g/L cells, whole C. boidinii cells produced 2.1 g/L γ-dodecelactone from 5 g/L 10-hydroxy-12(Z)-octadecenoic acid after 6 h, with a conversion yield of 64% (mol/mol) and a volumetric productivity of 350 mg/L/h. The production of γ-dodecelactone from safflower oil was performed by lipase hydrolysis reaction and two-step whole-cell biotransformation using Stenotrophomonas nitritireducens and C. boidinii. γ-Dodecelactone at 1.88 g/L was produced from 7.5 g/L safflower oil via 5 g/L 10-hydroxy-12(Z)-octadecenoic acid intermediate by these reactions after 8 h of reaction time, with a volumetric productivity of 235 mg/L/h and a conversion yield of 25% (w/w). To the best of the authors' knowledge, this is the highest volumetric productivity and conversion yield reported to date for the production of γ-lactone from natural oils.

  16. Fluence-to-dose conversion coefficients for heavy ions calculated using the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Niita, Koji

    2010-04-21

    The fluence to organ-absorbed-dose and effective-dose conversion coefficients for heavy ions with atomic numbers up to 28 and energies from 1 MeV/nucleon to 100 GeV/nucleon were calculated using the PHITS code coupled to the ICRP/ICRU adult reference computational phantoms, following the instruction given in ICRP Publication 103 (2007 (Oxford: Pergamon)). The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. The calculation results indicate that the effective dose can generally give a conservative estimation of the effective dose equivalent for heavy-ion exposure, although it is occasionally too conservative especially for high-energy lighter-ion irradiations. It is also found from the calculation that the conversion coefficients for the Q(y)-based effective dose equivalents are generally smaller than the corresponding Q(L)-based values because of the conceptual difference between LET and y as well as the numerical incompatibility between the Q(L) and Q(y) relationships. The calculated data of these dose conversion coefficients are very useful for the dose estimation of astronauts due to cosmic-ray exposure.

  17. MULTI-TEMPORAL REMOTE SENSING ANALYTICAL APPROACHES FOR CHARACTERIZING LANDSCAPE CHANGE

    EPA Science Inventory



    Changes in landscape composition and function result from both acute land-cover conversions and chronic landscape changes. Land-cover conversions are typically mediated by human land-use activities (e.g. conversion from forest to agriculture), while more subtle chronic l...

  18. Thorium aspartate tetrahydrate precursor to ThO2: Comparison of hydrothermal and thermal conversions

    NASA Astrophysics Data System (ADS)

    Clavier, N.; Maynadié, J.; Mesbah, A.; Hidalgo, J.; Lauwerier, R.; Nkou Bouala, G. I.; Parrès-Maynadié, S.; Meyer, D.; Dacheux, N.; Podor, R.

    2017-04-01

    The synthesis of original crystalline thorium aspartate tetrahydrate, Th(C4NO4H6)4.4H2O, was performed using two different wet-chemistry routes, involving either L-asparagine or L-aspartic acid as complexing agent. Characterization of this compound through 13C NMR and PXRD led to confirm the terminal coordination mode of the aspartate group and to suggest a potential cubic lattice (Pn-3 space group). Vibrational spectroscopy data were also collected. The conversion of thorium aspartate tetrahydrate into thorium dioxide was further performed through classical high temperature heat treatment or under hydrothermal conditions. On the one hand, thermal treatment provided a pseudomorphic conversion which retained the starting morphology, and favored the increase of the average crystallite size, as well as the complete elimination of the residual carbon content. On the other, hydrothermal conversion could be used to tune the morphology of the final oxide, ThO2.nH2O microspheres being prepared when starting from L-asparagine.

  19. Switch From Epoetin Beta to Darbepoetin Alfa Treatment of Anemia in Taiwanese Hemodialysis Patients: Dose Equivalence by Hemoglobin Stratification.

    PubMed

    Liao, Shang-Chih; Hung, Cheng-Chieh; Lee, Chien-Te; Lee, Chih-Hsiung; Lee, Chin-Chan; Lin, Chun-Liang; Sun, Chiao-Yin; Cheng, Ben-Chung; Yang, Chih-Chao; Wu, Chien-Hsing; Chen, Jin-Bor

    2016-08-01

    This multicenter study was designed to assess the hemoglobin (Hb) stability and conversion ratio of the switch from epoetin beta to darbepoetin alfa in Taiwanese hemodialysis (HD) patients. A total of 135 HD patients were enrolled and randomized with intravenous darbepoetin alfa or epoetin beta. The study duration was 24 weeks. Equivalent doses and conversion ratios were assessed with respect to Hb stratification: low Hb (≥8.0 g/dL to ≤10.0 g/dL) and high Hb (>10.0 g/dL to ≤11.0 g/dL). The results showed stable Hb levels in the study period. At week 24, the conversion ratio was higher for high Hb than low Hb (296.4 IU/dose epoetin beta: 1 µg/dose darbepoetin alfa. vs. 277.2 IU/dose epoetin beta: 1 µg/dose darbepoetin alfa). In conclusion, the conversion ratio in the present study was higher than 1 µg: 200 IU for darbepoetin alfa: epoetin for treating anemia in Taiwanese HD patients. © 2016 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  20. [Conversion of 17 alpha-methyltestosterone to methandrostenolone by the bacterium Pimelobacter simplex VKPM Ac-1632 with the presence of cyclodextrins].

    PubMed

    Druzhinina, A V; Andriushina, V A; Stytsenko, T S; Voĭshvillo, N E

    2008-01-01

    Conditions of conversion of 17 alpha-methyltestosterone to methandrostenolone with the presence of modified beta-cyclodextrins (methylcyclodextrin, hydroxypropylcyclodextrin, and hydroxyethylcyclodextrin) in the steroid:cyclodextrin ratio 1:1 were studied. The experimental solutions of modified beta-cyclodextrins were prepared in deionized water with 5-7% methanol. Under the conditions found to be optimal, 1,2-dehydrogenation of 17 alpha-methyltestosterone was carried out with 2-4 g/l Pimelobacter simplex VKPM Ac-1632 biomass. At the substrate concentration 5-20 g/l, the reaction occurred for 1-15 h without any by-products. The maximum rate of methandrostenolone accumulation was observed with hydroxypropylcyclodextrin. The methylcyclodextrin solution can be reused for complete 17 alpha-methyltestosterone conversion at the concentration 5 g/l.

  1. A Single-Culture Bioprocess of Methanothermobacter thermautotrophicus to Upgrade Digester Biogas by CO2-to-CH4 Conversion with H2

    PubMed Central

    Martin, Matthew R.; Fornero, Jeffrey J.; Angenent, Largus T.

    2013-01-01

    We optimized and tested a postbioprocessing step with a single-culture archaeon to upgrade biogas (i.e., increase methane content) from anaerobic digesters via conversion of CO2 into CH4 by feeding H2 gas. We optimized a culture of the thermophilic methanogen Methanothermobacter thermautotrophicus using: (1) a synthetic H2/CO2 mixture; (2) the same mixture with pressurization; (3) a synthetic biogas with different CH4 contents and H2; and (4) an industrial, untreated biogas and H2. A laboratory culture with a robust growth (dry weight of 6.4–7.4 g/L; OD600 of 13.6–15.4), a volumetric methane production rate of 21 L/L culture-day, and a H2 conversion efficiency of 89% was moved to an industrial anaerobic digester facility, where it was restarted and fed untreated biogas with a methane content of ~70% at a rate such that CO2 was in excess of the stoichiometric requirements in relation to H2. Over an 8-day operating period, the dry weight of the culture initially decreased slightly before stabilizing at an elevated level of ~8 g/L to achieve a volumetric methane production rate of 21 L/L culture-day and a H2 conversion efficiency of 62%. While some microbial contamination of the culture was observed via microscopy, it did not affect the methane production rate of the culture. PMID:24194675

  2. An Instructor’s Guide for the Building and Sustaining Foreign Counterpart Organizations Curriculum

    DTIC Science & Technology

    2016-02-01

    best. K-1 AppendixL Problem-centered vs. Strengths-centered Conversation Script Part 1: Problem-centered Conversation OMOLO: Ah. Hello , Timothy B...Strengths-centered conversation OMOLO: Ah. Hello , Timothy Seawright. Please sit down. Seawright: Thank you, Director Omolo. It’s a pleasure to meet

  3. Budget impact analysis of insulin therapies and associated delivery systems.

    PubMed

    Lee, Lauren J; Smolen, Lee J; Klein, Timothy M; Foster, Shonda A; Whiteman, Doug; Jorgenson, James A; Hultgren, Steve

    2012-06-01

    A budget impact analysis of insulin therapies and associated delivery systems is presented. Based on inputted procurement totals, per-item costs (based on 2011 average wholesale price), insulin distribution system (floor stock or individual patient supply), waste, and treatment protocols for a specified time frame, the budget impact model approximated the number of patients treated with subcutaneous insulin, costs, utilization, waste, and injection mechanism (pen safety needle or syringe) costs. To calculate net changes, results of one-year 3-mL vial use were subtracted from one-year 10-mL vial or 3-mL pen use. Switching from a 10-mL vial to a 3-mL vial was associated with reductions in both costs and waste. The net reductions in costs and waste ranged from $15,482 and 120,000 IU, respectively, for floor-stock 10-mL vial to floor-stock 3-mL vial conversion to $871,548 and 6,750,000 IU, respectively, for individual patient supply 10-mL vial to floor-stock 3-mL vial conversion. Switching from floor-stock 10-mL vials to individual patient supply 3-mL vials increased costs and waste by $164,659 and 1,275,000 IU, respectively. Converting from individual patient supply 3-mL pens to individual patient supply 3-mL vials reduced costs by $117,236 but did not decrease waste. A budget impact analysis of the conversion of either 10-mL insulin vials or 3-mL insulin pens to 3-mL insulin vials found reductions in both cost and waste, except when converting from floor-stock 10-mL vials to individual patient supply 3-mL vials.

  4. High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis.

    PubMed

    Park, Si Jae; Oh, Young Hoon; Noh, Won; Kim, Hye Young; Shin, Jae Ho; Lee, Eun Gyo; Lee, Seungwoon; David, Yokimiko; Baylon, Mary Grace; Song, Bong Keun; Jegal, Jonggeon; Lee, Sang Yup; Lee, Seung Hwan

    2014-10-01

    L-Lysine is a potential feedstock for the production of bio-based precursors for engineering plastics. In this study, we developed a microbial process for high-level conversion of L-lysine into 5-aminovalerate (5AVA) that can be used as a monomer in nylon 6,5 synthesis. Recombinant Escherichia coli WL3110 strain expressing Pseudomonas putida delta-aminovaleramidase (DavA) and lysine 2-monooxygenase (DavB) was grown to high density in fed-batch culture and used as a whole cell catalyst. High-density E. coli WL3110 expressing DavAB, grown to an optical density at 600 nm (OD600 ) of 30, yielded 36.51 g/L 5AVA from 60 g/L L-lysine in 24 h. Doubling the cell density of E. coli WL3110 improved the conversion yield to 47.96 g/L 5AVA from 60 g/L of L-lysine in 24 h. 5AVA production was further improved by doubling the L-lysine concentration from 60 to 120 g/L. The highest 5AVA titer (90.59 g/L; molar yield 0.942) was obtained from 120 g/L L-lysine by E. coli WL3110 cells grown to OD600 of 60. Finally, nylon 6,5 was synthesized by bulk polymerization of ϵ-caprolactam and δ-valerolactam prepared from microbially synthesized 5AVA. The hybrid system demonstrated here has promising possibilities for application in the development of industrial bio-nylon production processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ka-band to L-band frequency down-conversion based on III-V-on-silicon photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Van Gasse, K.; Wang, Z.; Uvin, S.; De Deckere, B.; Mariën, J.; Thomassen, L.; Roelkens, G.

    2017-12-01

    In this work, we present the design, simulation and characterization of a frequency down-converter based on III-V-on-silicon photonic integrated circuit technology. We first demonstrate the concept using commercial discrete components, after which we demonstrate frequency conversion using an integrated mode-locked laser and integrated modulator. In our experiments, five channels in the Ka-band (27.5-30 GHz) with 500 MHz bandwidth are down-converted to the L-band (1.5 GHz). The breadboard demonstration shows a conversion efficiency of - 20 dB and a flat response over the 500 MHz bandwidth. The simulation of a fully integrated circuit indicates that a positive conversion gain can be obtained on a millimeter-sized photonic integrated circuit.

  6. Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongmei; Wei, Dunzhao; Zhu, Yunzhi

    We experimentally demonstrate the plasmon-assisted second-harmonic generation of an optical orbital angular momentum (OAM) beam. Because of the shape resonance, the plasmons in a periodic array of rectangular metal holes greatly enhance the nonlinear optical conversion of an OAM state. The OAM conservation (i.e., 2l{sub 1} = l{sub 2} with l{sub 1} and l{sub 2} being the OAM numbers of the fundamental and second-harmonic waves, respectively) holds well under our experimental configuration. Our results provide a potential way to realize nonlinear optical manipulation of an OAM mode in a nano-photonic device.

  7. Participation in the Journey to Life Conversation Map Improves Control of Hypertension, Diabetes, and Hypercholesterolemia.

    PubMed

    Crawford, Paul; Wiltz, Scott

    2015-01-01

    The Diabetes Conversation Map program includes 4 "board game-like" education tools. We describe how the Journey to Life Conversation Map Education Class improves diabetes performance measures of hemoglobin A1c (HbA1c), low-density lipoprotein (LDL), and blood pressure (BP). Retrospective case-control study in a military family medicine clinic from January 2007 to January 2010. We included 202 patients who completed ≥1 conversation map class and a comparison group of 209 patients who did not attend. Attendees started with HbA1c 8.25 (95% confidence interval [CI], 7.86-8.64) and decreased to 6.96 (95% CI, 6.69-7.23). Patients in the comparison group started at 8.57 (95% CI, 8.18-8.95) and decreased to 8.27 (95% CI, 8.01-8.54) (P < .001). Attendees began with LDL of 111 mg/dL (95% CI, 103-119) and decreased to 94 mg/dL (95% CI, 81-106). Patients in the comparison group started at 89 mg/dL (95% CI, 81-98) and increased to 98 mg/dL (95% CI, 85-110) (P < .007). Systolic BP decreased 5.4 mmHg among attendees versus 0.8 mmHg among those in the comparison group (P = .014), whereas diastolic BP was unchanged (P = .110). The Journey to Life Healthy Interactions Conversation Map Education Class for diabetes improves diabetes performance measures. © Copyright 2015 by the American Board of Family Medicine.

  8. Integration through relatedness in the conversational model: a case study.

    PubMed

    Haliburn, Joan

    2009-02-01

    The aim of this paper is to demonstrate the principles of the conversational model in two therapies with a patient, at 16 years of age and again 20 years later. Described is the first therapy of L, which commenced in hospital and continued twice weekly after discharge. L was an acutely disturbed 16-year-old female admitted for 4 months to the psychiatry ward, a dynamically oriented milieu of a University teaching hospital where I was training. This is followed by a brief description of L's second therapy. Supervision was through audiotape of sessions. At the conclusion of the first therapy, L was functioning well. Five years later, she married and had a child. She was referred to me again after she attempted suicide following an acute stressful event which resulted in hospitalization. She is more aware and reflective at present but continues to be vulnerable. Attention to certain aspects of the psychotherapeutic relationship is important as demonstrated in the conversational model.

  9. A Conversation Analysis-Informed Test of L2 Aural Pragmatic Comprehension

    ERIC Educational Resources Information Center

    Walters, F. Scott

    2009-01-01

    Speech act theory-based, second language pragmatics testing (SLPT) raises test-validation issues owing to a lack of correspondence with empirical conversational data. On the assumption that conversation analysis (CA) provides a more accurate account of language use, it is suggested that CA serve as a more empirically valid basis for SLPT…

  10. Biotransformation of artemisinin using cell suspension cultures of Catharanthus roseus (L.) G.Don and Lavandula officinalis L.

    PubMed

    Patel, Suman; Gaur, Rashmi; Verma, Priyanka; Bhakuni, Rajendra S; Mathur, Archana

    2010-08-01

    Artemisinin, an antimalarial compound, at 5 mg/40 ml, was transformed by cell suspension cultures of Catharanthus roseus (L.) G.Don and Lavandula officinalis L. into deoxyartemisinin with yields >78% (3.93 mg deoxyartemisinin from 5 mg artemisinin). Maximum conversion (78.6 and 78%) occurred after 6 and 7 days of adding artemisinin to 20 and 9 days old cultures of C. roseus and L. officinalis, respectively. The procedure was scaled up by and 500 mg artemisinin was transformed into 390 mg deoxyartemisinin. Addition of artemisinin at the beginning of the culture cycle resulted in >50% reduction in dry biomass production with no bioconversion. Conversion of artemisinin occurred intracellularly followed by leaching of the product into the medium.

  11. Conversion of D-hamamelose into 2-carboxy-D-arabinitol and 2-carboxy-D-arabinitol 1-phosphate in leaves of Phaseolus vulgaris L.

    PubMed

    Andralojc, P J; Keys, A J; Martindale, W; Dawson, G W; Parry, M A

    1996-10-25

    [1-14C]Hamamelose (2-hydroxymethyl-D-ribose) was synthesized by reaction of ribulose 5-phosphate with potassium [14C]cyanide, catalytic hydrogenation of the resulting cyanohydrin, and dephosphorylation of the product. Its identity was established by a chromatographic comparison with hamamelose isolated from the bark of witch hazel (Hamamelis virginiana L.). Following vacuum infiltration of the [1-14C]hamamelose into leaf discs from Phaseolus vulgaris L., 14C-labeled 2carboxy-D-arabinitol (CA) and 2-carboxy-D-arabinitol 1-phosphate (CA1P) were formed, in the dark. Conversion of hamamelose to both CA and CA1P in the leaf discs was inhibited by dithiothreitol and sodium fluoride, although at high concentrations of these inhibitors conversion into CA was still evident when conversion into CA1P was totally inhibited. Wheat (Triticum aestivum L.) leaves converted hamamelose into CA without formation of CA1P. Leaves from P. vulgaris contained 68 nmol.g-1 fresh weight of hamamelose in the light and 35 nmol.g-1 fresh weight in the dark. A pathway for the biosynthesis of CA1P from Calvin cycle intermediates is proposed which includes the sequence: hamamelose --> CA --> CA1P.

  12. Prion Protein Devoid of the Octapeptide Repeat Region Delays Bovine Spongiform Encephalopathy Pathogenesis in Mice.

    PubMed

    Hara, Hideyuki; Miyata, Hironori; Das, Nandita Rani; Chida, Junji; Yoshimochi, Tatenobu; Uchiyama, Keiji; Watanabe, Hitomi; Kondoh, Gen; Yokoyama, Takashi; Sakaguchi, Suehiro

    2018-01-01

    Conformational conversion of the cellular isoform of prion protein, PrP C , into the abnormally folded, amyloidogenic isoform, PrP Sc , is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals. We previously reported that the octapeptide repeat (OR) region could be dispensable for converting PrP C into PrP Sc after infection with RML prions. We demonstrated that mice transgenically expressing mouse PrP with deletion of the OR region on the PrP knockout background, designated Tg(PrPΔOR)/ Prnp 0 / 0 mice, did not show reduced susceptibility to RML scrapie prions, with abundant accumulation of PrP Sc ΔOR in their brains. We show here that Tg(PrPΔOR)/ Prnp 0 / 0 mice were highly resistant to BSE prions, developing the disease with markedly elongated incubation times after infection with BSE prions. The conversion of PrPΔOR into PrP Sc ΔOR was markedly delayed in their brains. These results suggest that the OR region may have a crucial role in the conversion of PrP C into PrP Sc after infection with BSE prions. However, Tg(PrPΔOR)/ Prnp 0 / 0 mice remained susceptible to RML and 22L scrapie prions, developing the disease without elongated incubation times after infection with RML and 22L prions. PrP Sc ΔOR accumulated only slightly less in the brains of RML- or 22L-infected Tg(PrPΔOR)/ Prnp 0 / 0 mice than PrP Sc in control wild-type mice. Taken together, these results indicate that the OR region of PrP C could play a differential role in the pathogenesis of BSE prions and RML or 22L scrapie prions. IMPORTANCE Structure-function relationship studies of PrP C conformational conversion into PrP Sc are worthwhile to understand the mechanism of the conversion of PrP C into PrP Sc We show here that, by inoculating Tg(PrPΔOR)/ Prnp 0 / 0 mice with the three different strains of RML, 22L, and BSE prions, the OR region could play a differential role in the conversion of PrP C into PrP Sc after infection with RML or 22L scrapie prions and BSE prions. PrPΔOR was efficiently converted into PrP Sc ΔOR after infection with RML and 22L prions. However, the conversion of PrPΔOR into PrP Sc ΔOR was markedly delayed after infection with BSE prions. Further investigation into the role of the OR region in the conversion of PrP C into PrP Sc after infection with BSE prions might be helpful for understanding the pathogenesis of BSE prions. Copyright © 2017 American Society for Microbiology.

  13. Extragalactic photon-ALP conversion at CTA energies

    DOE PAGES

    Kartavtsev, A.; Raffelt, G.; Vogel, H.

    2017-01-12

    Magnetic fields in extragalactic space between galaxy clusters may induce conversions between photons and axion-like particles (ALPs), thereby shielding the photons from absorption on the extragalactic background light. For TeV gamma rays, the oscillation length (l osc) of the photon-ALP system becomes inevitably of the same order as the coherence length of the magnetic field l and the length over which the field changes significantly (transition length l t) due to refraction on background photons. We derive exact statistical evolution equations for the mean and variance of the photon and ALP transfer functions in the non-adiabatic regime (l osc ~more » l >> l t). We also make analytical predictions for the transfer functions in the quasi-adiabatic regime (l osc

  14. Managed grassland alters soil N dynamics and N2O emissions in temperate steppe.

    PubMed

    Xu, Lijun; Xu, Xingliang; Tang, Xuejuan; Xin, Xiaoping; Ye, Liming; Yang, Guixia; Tang, Huajun; Lv, Shijie; Xu, Dawei; Zhang, Zhao

    2018-04-01

    Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen (N) dynamics and nitrous oxide (N 2 O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil (0-10cm), nitrate (NO 3 - ), ammonium (NH 4 + ), and microbial N were measured in plots in a temperate steppe (Leymus chinensis grassland) and two managed grasslands (Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M. sativa or B. inermis grasslands decreased concentrations of NO 3 - -N, but did not change NH 4 + -N. Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M. sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa (i.e., a legume grass) increased N 2 O emissions by 26.2%, while the conversion to the B. inermis (i.e., a non-legume grass) reduced N 2 O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO 3 - -N and NH 4 + -N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N 2 O emissions. Copyright © 2017. Published by Elsevier B.V.

  15. Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers.

    PubMed

    Zhao, Xuebing; Dong, Lei; Chen, Liang; Liu, Dehua

    2013-05-01

    Formiline pretreatment pertains to a biomass fractionation process. In the present work, Formiline-pretreated sugarcane bagasse was hydrolyzed with cellulases by batch and multi-step fed-batch processes at 20% solid loading. For wet pulp, after 144 h incubation with cellulase loading of 10 FPU/g dry solid, fed-batch process obtained ~150 g/L glucose and ~80% glucan conversion, while batch process obtained ~130 g/L glucose with corresponding ~70% glucan conversion. Solid loading could be further increased to 30% for the acetone-dried pulp. By fed-batch hydrolysis of the dried pulp in pH 4.8 buffer solution, glucose concentration could be 247.3±1.6 g/L with corresponding 86.1±0.6% glucan conversion. The enzymatic hydrolyzates could be well converted to ethanol by a subsequent fermentation using Saccharomices cerevisiae with ethanol titer of 60-70 g/L. Batch and fed-batch SSF indicated that Formiline-pretreated substrate showed excellent fermentability. The final ethanol concentration was 80 g/L with corresponding 82.7% of theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Engaging Terminally Ill Patients in End of Life Talk: How Experienced Palliative Medicine Doctors Navigate the Dilemma of Promoting Discussions about Dying.

    PubMed

    Pino, Marco; Parry, Ruth; Land, Victoria; Faull, Christina; Feathers, Luke; Seymour, Jane

    2016-01-01

    To examine how palliative medicine doctors engage patients in end-of-life (hereon, EoL) talk. To examine whether the practice of "eliciting and responding to cues", which has been widely advocated in the EoL care literature, promotes EoL talk. Conversation analysis of video- and audio-recorded consultations. Unselected terminally ill patients and their companions in consultation with experienced palliative medicine doctors. Outpatient clinic, day therapy clinic, and inpatient unit of a single English hospice. Doctors most commonly promoted EoL talk through open elaboration solicitations; these created opportunities for patients to introduce-then later further articulate-EoL considerations in such a way that doctors did not overtly ask about EoL matters. Importantly, the wording of elaboration solicitations avoided assuming that patients had EoL concerns. If a patient responded to open elaboration solicitations without introducing EoL considerations, doctors sometimes pursued EoL talk by switching to a less participatory and more presumptive type of solicitation, which suggested the patient might have EoL concerns. These more overt solicitations were used only later in consultations, which indicates that doctors give precedence to patients volunteering EoL considerations, and offer them opportunities to take the lead in initiating EoL talk. There is evidence that doctors treat elaboration of patients' talk as a resource for engaging them in EoL conversations. However, there are limitations associated with labelling that talk as "cues" as is common in EoL communication contexts. We examine these limitations and propose "possible EoL considerations" as a descriptively more accurate term. Through communicating-via open elaboration solicitations-in ways that create opportunities for patients to volunteer EoL considerations, doctors navigate a core dilemma in promoting EoL talk: giving patients opportunities to choose whether to engage in conversations about EoL whilst being sensitive to their communication needs, preferences and state of readiness for such dialogue.

  17. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-type bovine spongiform encephalopathy

    USDA-ARS?s Scientific Manuscript database

    Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from normal cellular prion protein to pathogenic misfolded conformation. This conversion has been used for in vitro assays including serial protein misfolding amplification...

  18. Optimization of the nitrification process of wastewater resulting from cassava starch production.

    PubMed

    Fleck, Leandro; Ferreira Tavares, Maria Hermínia; Eyng, Eduardo; Orssatto, Fabio

    2018-05-14

    The present study has the objective of optimizing operational conditions of an aerated reactor applied to the removal of ammoniacal nitrogen from wastewater resulting from the production of cassava starch. An aerated reactor with a usable volume of 4 L and aeration control by rotameter was used. The airflow and cycle time parameters were controlled and their effects on the removal of ammoniacal nitrogen and the conversion to nitrate were evaluated. The highest ammoniacal nitrogen removal, of 96.62%, occurred under conditions of 24 h and 0.15 L min -1 L reactor -1 . The highest nitrate conversion, of 24.81%, occurred under conditions of 40.92 h and 0.15 L min -1  L reactor -1 . The remaining value of ammoniacal nitrogen was converted primarily into nitrite, energy, hydrogen and water. The optimal operational values of the aerated reactor are 29.25 h and 0.22 L min -1  L reactor -1 . The mathematical models representative of the process satisfactorily describe ammoniacal nitrogen removal efficiency and nitrate conversion, presenting errors of 2.87% and 3.70%, respectively.

  19. Combustion and Conversion Efficiency of Nanoaluminum-Water Mixtures

    DTIC Science & Technology

    2008-12-01

    Sabourin b, Vigor Yang b, Richard A. Yetter b, Steven F. Son c, and Bryce C. Tappan d a The Pennsylvania State University—Altoona, Altoona, PA, USA...smpp/title~content=t713456315 Combustion and Conversion Efficiency of Nanoaluminum-Water Mixtures Grant A. Risha a; Justin L. Sabourin b; Vigor Yang b...Online Publication Date: 01 December 2008 To cite this Article Risha, Grant A., Sabourin , Justin L., Yang, Vigor, Yetter, Richard A., Son, Steven F. and

  20. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji

    2009-04-07

    The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w(R) and w(T), respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w(R) with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.

  1. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizoshiri, N.; Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto; Kishida, T.

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genesmore » and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.« less

  2. In vitro validation of a Pitot-based flow meter for the measurement of respiratory volume and flow in large animal anaesthesia.

    PubMed

    Moens, Yves P S; Gootjes, Peter; Ionita, Jean-Claude; Heinonen, Erkki; Schatzmann, Urs

    2009-05-01

    To remodel and validate commercially available monitors and their Pitot tube-based flow sensors for use in large animals, using in vitro techniques. Prospective, in vitro experiment. Both the original and the remodelled sensor were studied with a reference flow generator. Measurements were taken of the static flow-pressure relationship and linearity of the flow signal. Sensor airway resistance was calculated. Following recalibration of the host monitor, volumes ranging from 1 to 7 L were generated by a calibration syringe, and bias and precision of spirometric volume was determined. Where manual recalibration was not available, a conversion factor for volume measurement was determined. The influence of gas composition mixture and peak flow on the conversion factor was studied. Both the original and the remodelled sensor showed similar static flow-pressure relationships and linearity of the flow signal. Mean bias (%) of displayed values compared with the reference volume of 3, 5 and 7 L varied between -0.4% and +2.4%, and this was significantly smaller than that for 1 L (4.8% to +5.0%). Conversion factors for 3, 5 and 7 L were very similar (mean 6.00 +/- 0.2, range 5.91-6.06) and were not significantly influenced by the gas mixture used. Increasing peak flow caused a small decrease in the conversion factor. Volume measurement error and conversion factors for inspiration and expiration were close to identity. The combination of the host monitor with the remodelled flow sensor allowed accurate in vitro measurement of flows and volumes in a range expected during large animal anaesthesia. This combination has potential as a reliable spirometric monitor for use during large animal anaesthesia.

  3. Microbial production of xylitol from xylose and L-arabinose: conversion of L-arabitol to xylitol using bacterial oxidoreductases

    USDA-ARS?s Scientific Manuscript database

    Microbial production of xylitol, using hemicellulosic biomass such as agricultural residues, is becoming more attractive for reducing its manufacturing cost. L-arabitol is a particular problem to xylitol production from hemicellulosic hydrolyzates that contain both xylose and L-arabinose because it...

  4. High production of D-tagatose by the addition of boric acid.

    PubMed

    Lim, Byung-Chul; Kim, Hye-Jung; Oh, Deok-Kun

    2007-01-01

    An L-arabinose isomerase mutant enzyme from Geobacillus thermodenitrificans was used to catalyze the isomerization of D-galactose to D-tagatose with boric acid. Maximum production of D-tagatose occurred at pH 8.5-9.0, 60 degrees C, and 0.4 molar ratio of boric acid to D-galactose, and the production increased with increasing enzyme concentration. Under the optimum conditions, the enzyme (10.8 units/mL) converted 300 g/L D-galactose to 230 g/L D-tagatose for 20 h with a yield of 77% (w/w); the production and conversion yield with boric acid were 1.5-fold and 24% higher than without boric acid, respectively. In 24 h, the enzyme produced 370 g/L D-tagatose from 500 g/L D-galactose with boric acid, corresponding to a conversion yield of 74% (w/w) and a production rate of 15.4 g/L.h. The production and yield of D-tagatose obtained in this study are unprecedented.

  5. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves.

    PubMed

    Tamura, Takayoshi; Noda, Masafumi; Ozaki, Moeko; Maruyama, Masafumi; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2010-01-01

    In the present study, we successfully isolated a carrot leaf-derived lactic acid bacterium that produces gamma-aminobutyric acid (GABA) from monosodium L-glutamate (L-MSG) at a hyper conversion rate. The GABA-producing bacterium, identified as Enterococcus (E.) avium G-15, produced 115.7±6.4 g/l GABA at a conversion rate of 86.0±5.0% from the added L-MSG under the optimum culture condition by a continuous L-MSG feeding method using a jar-fermentor, suggesting that the bacterium displays a great potential ability for the commercial-level fermentation production of GABA. Using the reverse transcription polymerase chain reaction (RT-PCR) method, we analyzed the expression of genes for the GABA transporter and glutamate decarboxylase, designated gadT and gadG, respectively, which were cloned from the E. avium G-15 chromosome. Both genes were expressed even without the added L-MSG, but their expression was enhanced by the addition of L-MSG.

  6. Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide.

    PubMed

    Sun, Feiran; Sun, Zhenguo; Chen, Qiang; Murayama, Riichi; Nishino, Hideo

    2016-10-19

    To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.

  7. Fermentation of sugarcane bagasse and chicken manure to calcium carboxylates under thermophilic conditions.

    PubMed

    Fu, Zhihong; Holtzapple, Mark T

    2010-09-01

    Sugarcane bagasse and chicken manure were anaerobically fermented to carboxylic acids using a mixed culture of marine microorganisms at 55 degrees C. Using the MixAlco process--an example of consolidated bioprocessing--the resulting carboxylate salts can be converted to mixed alcohol fuels or gasoline. To enhance digestibility, sugarcane bagasse was lime pretreated with 0.1 g Ca(OH)(2)/g dry biomass at 100 degrees C for 2 h. Four-stage countercurrent fermentation of 80% sugarcane bagasse/20% chicken manure was performed at various volatile solids (VS) loading rates and liquid residence times. Calcium carbonate was used as a buffer during fermentation. The highest acid productivity of 0.79 g/(L day) occurred at a total acid concentration of 21.5 g/L. The highest conversion (0.59 g VS digested/g VS fed) and yield (0.18 g total acids/g VS fed) occurred at a total acid concentration of 15.5 g/L. The continuum particle distribution model (CPDM) predicted the experimental total acid concentrations and conversions at an average error of 10.14% and 12.68%, respectively. CPDM optimizations show that high conversion (>80%) and total acid concentration of 21.3 g/L are possible with 300 g substrate/(L liquid), 30 days liquid residence time, and 3 g/(L day) solid loading rate. Thermophilic fermentation has a higher acetate content (approximately 63 wt%) than mesophilic fermentation (approximately 39 wt%).

  8. Enzymatic conversion of D-galactose to D-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii.

    PubMed

    Jørgensen, F; Hansen, O C; Stougaard, P

    2004-06-01

    The ability to convert D-galactose into D-tagatose was compared among a number of bacterial L-arabinose isomerases ( araA). One of the most efficient enzymes, from the anaerobic thermophilic bacterium Thermoanaerobacter mathranii, was produced heterologously in Escherichia coli and characterised. Amino acid sequence comparisons indicated that this enzyme is only distantly related to the group of previously known araA sequences in which the sequence similarity is evident. The substrate specificity and the Michaelis-Menten constants of the enzyme determined with L-arabinose, D-galactose and D-fucose also indicated that this enzyme is an unusual, versatile L-arabinose isomerase which is able to isomerise structurally related sugars. The enzyme was immobilised and used for production of D-tagatose at 65 degrees C. Starting from a 30% solution of D-galactose, the yield of D-tagatose was 42% and no sugars other than D-tagatose and D-galactose were detected. Direct conversion of lactose to D-tagatose in a single reactor was demonstrated using a thermostable beta-galactosidase together with the thermostable L-arabinose isomerase. The two enzymes were also successfully combined with a commercially available glucose isomerase for conversion of lactose into a sweetening mixture comprising lactose, glucose, galactose, fructose and tagatose.

  9. Efficient approach for bioethanol production from red seaweed Gelidium amansii.

    PubMed

    Kim, Ho Myeong; Wi, Seung Gon; Jung, Sera; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Gelidium amansii (GA), a red seaweed species, is a popular source of food and chemicals due to its high galactose and glucose content. In this study, we investigated the potential of bioethanol production from autoclave-treated GA (ATGA). The proposed method involved autoclaving GA for 60min for hydrolysis to glucose. Separate hydrolysis and fermentation processing (SHF) achieved a maximum ethanol concentration of 3.33mg/mL, with a conversion yield of 74.7% after 6h (2% substrate loading, w/v). In contrast, simultaneous saccharification and fermentation (SSF) produced an ethanol concentration of 3.78mg/mL, with an ethanol conversion yield of 84.9% after 12h. We also recorded an ethanol concentration of 25.7mg/mL from SSF processing of 15% (w/v) dry matter from ATGA after 24h. These results indicate that autoclaving can improve the glucose and ethanol conversion yield of GA, and that SSF is superior to SHF for ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell

    DOE PAGES

    Lewis, Alex J.; Borole, Abhijeet P.

    2016-06-16

    We investigated the effect of flow rate and recycle on the conversion of a biomass-derived pyrolysis aqueous phase in amicrobial electrolysis cell (MEC) to demonstrate production of renewable hydrogen in biorefinery. A continuous MEC operation was investigated under one-pass and recycle conditions usingthe complex, biomass-derived, fermentable, mixed substrate feed at a constant concentration of 0.026 g/L,while testing flow rates ranging from 0.19 to 3.6 mL/min. This corresponds to an organic loading rate (OLR) of 0.54₋10 g/L-day. Mass transfer issues observed at low flow rates were alleviated using high flow rates.Increasing the flow rate to 3.6 mL/min (3.7 min HRT) duringmore » one-pass operation increased the hydrogen productivity 3-fold, but anode conversion efficiency (ACE) decreased from 57.9% to 9.9%. Recycle of the anode liquid helped to alleviate kinetic limitations and the ACE increased by 1.8-fold and the hydrogen productivity by 1.2-fold compared to the one-pass condition at the flow rate of 3.6 mL/min (10 g/L-d OLR). High COD removal was also achieved under recycle conditions, reaching 74.2 1.1%, with hydrogen production rate of 2.92 ± 0.51 L/L-day. This study demonstrates the advantages of combining faster flow rates with a recycle process to improve rate of hydrogen production from a switchgrass-derived stream in the biorefinery.« less

  11. A new member of the 4-methylideneimidazole-5-one–containing aminomutase family from the enediyne kedarcidin biosynthetic pathway

    PubMed Central

    Huang, Sheng-Xiong; Lohman, Jeremy R.; Huang, Tingting; Shen, Ben

    2013-01-01

    4-Methylideneimidazole-5-one (MIO)-containing aminomutases catalyze the conversion of l-α-amino acids to β-amino acids with either an (R) or an (S) configuration. l-Phenylalanine and l-tyrosine are the only two natural substrates identified to date. The enediyne chromophore of the chromoprotein antitumor antibiotic kedarcidin (KED) harbors an (R)-2-aza-3-chloro-β-tyrosine moiety reminiscent of the (S)-3-chloro-5-hydroxy-β-tyrosine moiety of the C-1027 enediyne chromophore, the biosynthesis of which uncovered the first known MIO-containing aminomutase, SgcC4. Comparative analysis of the KED and C-1027 biosynthetic gene clusters inspired the proposal for (R)-2-aza-3-chloro-β-tyrosine biosynthesis starting from 2-aza-l-tyrosine, featuring KedY4 as a putative MIO-containing aminomutase. Here we report the biochemical characterization of KedY4, confirming its proposed role in KED biosynthesis. KedY4 is an MIO-containing aminomutase that stereospecifically catalyzes the conversion of 2-aza-l-tyrosine to (R)-2-aza-β-tyrosine, exhibiting no detectable activity toward 2-aza-l-phenylalanine or l-tyrosine as an alternative substrate. In contrast, SgcC4, which stereospecifically catalyzes the conversion of l-tyrosine to (S)-β-tyrosine in C-1027 biosynthesis, exhibits minimal activity with 2-aza-l-tyrosine as an alternative substrate but generating (S)-2-aza-β-tyrosine, a product with the opposite stereochemistry of KedY4. This report of KedY4 broadens the scope of known substrates for the MIO-containing aminomutase family, and comparative studies of KedY4 and SgcC4 provide an outstanding opportunity to examine how MIO-containing aminomutases control substrate specificity and product enantioselectivity. PMID:23633564

  12. A new member of the 4-methylideneimidazole-5-one-containing aminomutase family from the enediyne kedarcidin biosynthetic pathway.

    PubMed

    Huang, Sheng-Xiong; Lohman, Jeremy R; Huang, Tingting; Shen, Ben

    2013-05-14

    4-Methylideneimidazole-5-one (MIO)-containing aminomutases catalyze the conversion of L-α-amino acids to β-amino acids with either an (R) or an (S) configuration. L-phenylalanine and L-tyrosine are the only two natural substrates identified to date. The enediyne chromophore of the chromoprotein antitumor antibiotic kedarcidin (KED) harbors an (R)-2-aza-3-chloro-β-tyrosine moiety reminiscent of the (S)-3-chloro-5-hydroxy-β-tyrosine moiety of the C-1027 enediyne chromophore, the biosynthesis of which uncovered the first known MIO-containing aminomutase, SgcC4. Comparative analysis of the KED and C-1027 biosynthetic gene clusters inspired the proposal for (R)-2-aza-3-chloro-β-tyrosine biosynthesis starting from 2-aza-L-tyrosine, featuring KedY4 as a putative MIO-containing aminomutase. Here we report the biochemical characterization of KedY4, confirming its proposed role in KED biosynthesis. KedY4 is an MIO-containing aminomutase that stereospecifically catalyzes the conversion of 2-aza-L-tyrosine to (R)-2-aza-β-tyrosine, exhibiting no detectable activity toward 2-aza-L-phenylalanine or L-tyrosine as an alternative substrate. In contrast, SgcC4, which stereospecifically catalyzes the conversion of L-tyrosine to (S)-β-tyrosine in C-1027 biosynthesis, exhibits minimal activity with 2-aza-L-tyrosine as an alternative substrate but generating (S)-2-aza-β-tyrosine, a product with the opposite stereochemistry of KedY4. This report of KedY4 broadens the scope of known substrates for the MIO-containing aminomutase family, and comparative studies of KedY4 and SgcC4 provide an outstanding opportunity to examine how MIO-containing aminomutases control substrate specificity and product enantioselectivity.

  13. Biotic conversion of sulphate to sulphide and abiotic conversion of sulphide to sulphur in a microbial fuel cell using cobalt oxide octahedrons as cathode catalyst.

    PubMed

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli; Kumar, Senthil

    2017-05-01

    Varying chemical oxygen demand (COD) and sulphate concentrations in substrate were used to determine reaction kinetics and mass balance of organic matter and sulphate transformation in a microbial fuel cell (MFC). MFC with anodic chamber volume of 1 L, fed with wastewater having COD of 500 mg/L and sulphate of 200 mg/L, could harvest power of 54.4 mW/m 2 , at a Coulombic efficiency of 14%, with respective COD and sulphate removals of 90 and 95%. Sulphide concentration, even up to 1500 mg/L, did not inhibit anodic biochemical reactions, due to instantaneous abiotic oxidation to sulphur, at high inlet sulphate. Experiments on abiotic oxidation of sulphide to sulphur revealed maximum oxidation taking place at an anodic potential of -200 mV. More than 99% sulphate removal could be achieved in a MFC with inlet COD/sulphate of 0.75, giving around 1.33 kg/m 3  day COD removal. Bioelectrochemical conversion of sulphate facilitating sulphur recovery in a MFC makes it an interesting pollution abatement technique.

  14. Enzymatic conversion of D-galactose to D-tagatose: cloning, overexpression and characterization of L-arabinose isomerase from Pediococcus pentosaceus PC-5.

    PubMed

    Men, Yan; Zhu, Yueming; Zhang, Lili; Kang, Zhenkui; Izumori, Ken; Sun, Yuanxia; Ma, Yanhe

    2014-01-01

    The gene encoding L-arabinose isomerase from food-grade strain Pediococcus pentosaceus PC-5 was cloned and overexpressed in Escherichia coli. The recombinant protein was purified and characterized. It was optimally active at 50 °C and pH 6.0. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its maximal activity evaluated at 0.6 mM Mn(2+) or 0.8 mM Co(2+). Interestingly, this enzyme was distinguished from other L-AIs, it could not use L-arabinose as its substrate. In addition, a three-dimensional structure of L-AI was built by homology modeling and L-arabinose and D-galactose were docked into the active site pocket of PPAI model to explain the interaction between L-AI and its substrate. The purified P. pentosaceus PC-5 L-AI converted D-galactose into D-tagatose with a high conversion rate of 52% after 24 h at 50 °C, suggesting its excellent potential in D-tagatose production. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.

  15. Renal cytochrome P450 omega-hydroxylase and epoxygenase activity are differentially modified by nitric oxide and sodium chloride.

    PubMed

    Oyekan, A O; Youseff, T; Fulton, D; Quilley, J; McGiff, J C

    1999-10-01

    Renal function is perturbed by inhibition of nitric oxide synthase (NOS). To probe the basis of this effect, we characterized the effects of nitric oxide (NO), a known suppressor of cytochrome P450 (CYP) enzymes, on metabolism of arachidonic acid (AA), the expression of omega-hydroxylase, and the efflux of 20-hydroxyeicosatetraenoic acid (20-HETE) from the isolated kidney. The capacity to convert [(14)C]AA to HETEs and epoxides (EETs) was greater in cortical microsomes than in medullary microsomes. Sodium nitroprusside (10-100 microM), an NO donor, inhibited renal microsomal conversion of [(14)C]AA to HETEs and EETs in a dose-dependent manner. 8-bromo cGMP (100 microM), the cell-permeable analogue of cGMP, did not affect conversion of [(14)C]AA. Inhibition of NOS with N(omega)-nitro-L-arginine-methyl ester (L-NAME) significantly increased conversion of [(14)C]AA to HETE and greatly increased the expression of omega-hydroxylase protein, but this treatment had only a modest effect on epoxygenase activity. L-NAME induced a 4-fold increase in renal efflux of 20-HETE, as did L-nitroarginine. Oral treatment with 2% sodium chloride (NaCl) for 7 days increased renal epoxygenase activity, both in the cortex and the medulla. In contrast, cortical omega-hydroxylase activity was reduced by treatment with 2% NaCl. Coadministration of L-NAME and 2% NaCl decreased conversion of [(14)C]AA to HETEs without affecting epoxygenase activity. Thus, inhibition of NOS increased omega-hydroxylase activity, CYP4A expression, and renal efflux of 20-HETE, whereas 2% NaCl stimulated epoxygenase activity.

  16. Engaging Terminally Ill Patients in End of Life Talk: How Experienced Palliative Medicine Doctors Navigate the Dilemma of Promoting Discussions about Dying

    PubMed Central

    Parry, Ruth; Land, Victoria; Faull, Christina; Feathers, Luke; Seymour, Jane

    2016-01-01

    Objective To examine how palliative medicine doctors engage patients in end-of-life (hereon, EoL) talk. To examine whether the practice of “eliciting and responding to cues”, which has been widely advocated in the EoL care literature, promotes EoL talk. Design Conversation analysis of video- and audio-recorded consultations. Participants Unselected terminally ill patients and their companions in consultation with experienced palliative medicine doctors. Setting Outpatient clinic, day therapy clinic, and inpatient unit of a single English hospice. Results Doctors most commonly promoted EoL talk through open elaboration solicitations; these created opportunities for patients to introduce–then later further articulate–EoL considerations in such a way that doctors did not overtly ask about EoL matters. Importantly, the wording of elaboration solicitations avoided assuming that patients had EoL concerns. If a patient responded to open elaboration solicitations without introducing EoL considerations, doctors sometimes pursued EoL talk by switching to a less participatory and more presumptive type of solicitation, which suggested the patient might have EoL concerns. These more overt solicitations were used only later in consultations, which indicates that doctors give precedence to patients volunteering EoL considerations, and offer them opportunities to take the lead in initiating EoL talk. There is evidence that doctors treat elaboration of patients’ talk as a resource for engaging them in EoL conversations. However, there are limitations associated with labelling that talk as “cues” as is common in EoL communication contexts. We examine these limitations and propose “possible EoL considerations” as a descriptively more accurate term. Conclusions Through communicating–via open elaboration solicitations–in ways that create opportunities for patients to volunteer EoL considerations, doctors navigate a core dilemma in promoting EoL talk: giving patients opportunities to choose whether to engage in conversations about EoL whilst being sensitive to their communication needs, preferences and state of readiness for such dialogue. PMID:27243630

  17. The Amount, Purpose, and Reasons for Using L1 in L2 Classrooms

    ERIC Educational Resources Information Center

    de la Campa, Juliane C.; Nassaji, Hossein

    2009-01-01

    This study examined the amount, the purposes, and the reasons why L1 is used in L2 classrooms. Data consist of video and audio recording of samples of two instructors' L2 classes over the course of a 12-week semester in two second-year German conversation university courses, instructor interviews, and stimulated recall sessions. Results revealed…

  18. How Age, Linguistic Status, and the Nature of the Auditory Scene Alter the Manner in Which Listening Comprehension Is Achieved in Multitalker Conversations.

    PubMed

    Avivi-Reich, Meital; Jakubczyk, Agnes; Daneman, Meredyth; Schneider, Bruce A

    2015-10-01

    We investigated how age and linguistic status affected listeners' ability to follow and comprehend 3-talker conversations, and the extent to which individual differences in language proficiency predict speech comprehension under difficult listening conditions. Younger and older L1s as well as young L2s listened to 3-talker conversations, with or without spatial separation between talkers, in either quiet or against moderate or high 12-talker babble background, and were asked to answer questions regarding their contents. After compensating for individual differences in speech recognition, no significant differences in conversation comprehension were found among the groups. As expected, conversation comprehension decreased as babble level increased. Individual differences in reading comprehension skill contributed positively to performance in younger EL1s and in young EL2s to a lesser degree but not in older EL1s. Vocabulary knowledge was significantly and positively related to performance only at the intermediate babble level. The results indicate that the manner in which spoken language comprehension is achieved is modulated by the listeners' age and linguistic status.

  19. Impact of switchgrass harvest time on biomass yield and conversion

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is a perennial grass native to much of North America being developed as a dedicated energy crop for conversion to biofuels. Breeding efforts are focused on producing high-yielding cultivars that can maintain high yield across multiple environments, including poor so...

  20. How age and linguistic competence alter the interplay of perceptual and cognitive factors when listening to conversations in a noisy environment

    PubMed Central

    Avivi-Reich, Meital; Daneman, Meredyth; Schneider, Bruce A.

    2013-01-01

    Multi-talker conversations challenge the perceptual and cognitive capabilities of older adults and those listening in their second language (L2). In older adults these difficulties could reflect declines in the auditory, cognitive, or linguistic processes supporting speech comprehension. The tendency of L2 listeners to invoke some of the semantic and syntactic processes from their first language (L1) may interfere with speech comprehension in L2. These challenges might also force them to reorganize the ways in which they perceive and process speech, thereby altering the balance between the contributions of bottom-up vs. top-down processes to speech comprehension. Younger and older L1s as well as young L2s listened to conversations played against a babble background, with or without spatial separation between the talkers and masker, when the spatial positions of the stimuli were specified either by loudspeaker placements (real location), or through use of the precedence effect (virtual location). After listening to a conversation, the participants were asked to answer questions regarding its content. Individual hearing differences were compensated for by creating the same degree of difficulty in identifying individual words in babble. Once compensation was applied, the number of questions correctly answered increased when a real or virtual spatial separation was introduced between babble and talkers. There was no evidence that performance differed between real and virtual locations. The contribution of vocabulary knowledge to dialog comprehension was found to be larger in the virtual conditions than in the real whereas the contribution of reading comprehension skill did not depend on the listening environment but rather differed as a function of age and language proficiency. The results indicate that the acoustic scene and the cognitive and linguistic competencies of listeners modulate how and when top-down resources are engaged in aid of speech comprehension. PMID:24578684

  1. How age and linguistic competence alter the interplay of perceptual and cognitive factors when listening to conversations in a noisy environment.

    PubMed

    Avivi-Reich, Meital; Daneman, Meredyth; Schneider, Bruce A

    2014-01-01

    Multi-talker conversations challenge the perceptual and cognitive capabilities of older adults and those listening in their second language (L2). In older adults these difficulties could reflect declines in the auditory, cognitive, or linguistic processes supporting speech comprehension. The tendency of L2 listeners to invoke some of the semantic and syntactic processes from their first language (L1) may interfere with speech comprehension in L2. These challenges might also force them to reorganize the ways in which they perceive and process speech, thereby altering the balance between the contributions of bottom-up vs. top-down processes to speech comprehension. Younger and older L1s as well as young L2s listened to conversations played against a babble background, with or without spatial separation between the talkers and masker, when the spatial positions of the stimuli were specified either by loudspeaker placements (real location), or through use of the precedence effect (virtual location). After listening to a conversation, the participants were asked to answer questions regarding its content. Individual hearing differences were compensated for by creating the same degree of difficulty in identifying individual words in babble. Once compensation was applied, the number of questions correctly answered increased when a real or virtual spatial separation was introduced between babble and talkers. There was no evidence that performance differed between real and virtual locations. The contribution of vocabulary knowledge to dialog comprehension was found to be larger in the virtual conditions than in the real whereas the contribution of reading comprehension skill did not depend on the listening environment but rather differed as a function of age and language proficiency. The results indicate that the acoustic scene and the cognitive and linguistic competencies of listeners modulate how and when top-down resources are engaged in aid of speech comprehension.

  2. Layer-by-Layer Enabled Nanomaterials for Chemical Sensing and Energy Conversion

    NASA Astrophysics Data System (ADS)

    Paterno, Leonardo G.; Soler, Maria A. G.

    2013-06-01

    The layer-by-layer (LbL) technique is a wet chemical method for the assembly of ultrathin films, with thicknesses up to 100 nm. This method is based on the successive transfer of molecular layers to a solid substrate that is dipped into cationic and anionic solutions in an alternating fashion. The adsorption is mainly driven by electrostatic interactions so that many molecular and nanomaterial systems can be engineered under this method. Moreover, it is inexpensive, can be easily performed, and does not demand sophisticated equipment or clean rooms. The most explored use of the LbL technique is to build up molecular devices for chemical sensing and energy conversion. Both applications require ultrathin films where specific elements must be organized with high control of thickness and spatial distribution, preferably in the nanolength and mesolength scales. In chemical sensors, the LbL technique is employed to assemble specific sensoactive materials such as conjugated polymers, enzymes, and immunological elements onto appropriated electrodes. Molecular recognition events are thus transduced by the assembled sensoactive layer. In energy-conversion devices, the LbL technique can be employed to fabricate different device's parts including electrodes, active layers, and auxiliary layers. In both applications, the devices' performance can be fully modulated and improved by simply varying film thickness and molecular architecture. The present review article highlights the main features of the LbL technique and provides a brief description of different (bio)chemical sensors, solar cells, and organic light-emitting diodes enabled by the LbL approach.

  3. Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass.

    PubMed

    Wong, Alain; Zhang, Hao; Kumar, Amit

    2016-10-01

    The conversion of lignocellulosic biomass to biofuel requires water. This study is focused on the production of hydrogenation-derived renewable diesel (HDRD) from lignocellulosic biomass. Although there has been considerable focus on the assessment of greenhouse gas (GHG) emissions, there is limited work on the assessment of the life cycle water footprint of HDRD production. This paper presents a life cycle water consumption study on lignocellulosic biomass to HDRD via pyrolysis and hydrothermal liquefaction (HTL) processes. The results of this study show that whole tree (i.e., tree chips) biomass has water requirements of 497.79 L/MJ HDRD and 376.16 L/MJ HDRD for production through fast pyrolysis and the HTL process, respectively. Forest residues (i.e., chips from branches and tops generated during logging operations) have water requirements of 338.58 L/MJ HDRD and 255.85 L/MJ HDRD for production through fast pyrolysis and the HTL process, respectively. Agricultural residues (i.e., straw from wheat, oats, and barley), which are more water efficient, have water requirements of 83.7 L/MJ HDRD and 59.1 L/MJ HDRD through fast pyrolysis and the HTL process, respectively. Differences in water use between feedstocks and conversion processes indicate that the choices of biomass feedstock and conversion pathway water efficiency are crucial factors affecting water use efficiency of HDRD production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Microcalorimetric, {sup 13}C NMR spectroscopic, and reaction kinetic studies of silica- and L-zeolite-supported platinum catalysts for n-hexane conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S.B.; Ouraipryvan, P.; Nair, H.A.

    Reaction kinetics measurement of n-hexane conversion over 4% Pt/SiO{sub 2} and 1% Pt/SiO{sub 2} and 1% Pt/K(Ba)-L catalysts were made at a pressure of 3 atm and temperatures from 698 to 750 K. The rates of benzene and methylcyclopentane formation decrease with time during reaction over Pt/SiO{sub 2}, while 1% Pt/K(Ba)-L does not deactivate significantly. Microcalorimetric measurements at 353 K show that the heat of carbon monoxide adsorption is the same on freshly reduced Pt/SiO{sub 2} and Pt/K(Ba)-L catalysts; however, carbonaceous species that accumulate on Pt/SiO{sub 2} during n-hexane conversion decrease the total number of adsorption sites and the numbermore » of sites that adsorb carbon monoxide strongly. The 1% Pt/K(Ba)-L catalyst retains the adsorptive properties of the freshly reduced catalyst. Nuclear magnetic resonance studies of {sup 13}CO adsorption show that cluster-sized platinum particles are more resistant to deactivation by self-poisoning reactions than larger platinum particles. The greater catalyst stability and higher steady-state activity of L-zeolite-supported platinum catalysts may be attributed to the ability of L-zeolite to stabilize cluster-sized particles under reaction conditions. Differences in dehydrocyclization activity between catalysts may be related to differences in the number of strong adsorption sites that are present under reaction conditions. 31 refs., 7 figs., 4 tabs.« less

  5. Production of phenylpyruvic acid from L-phenylalanine using an L-amino acid deaminase from Proteus mirabilis: comparison of enzymatic and whole-cell biotransformation approaches.

    PubMed

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng

    2015-10-01

    Phenylpyruvic acid (PPA) is an important organic acid that has a wide range of applications. In this study, the membrane-bound L-amino acid deaminase (L-AAD) gene from Proteus mirabilis KCTC 2566 was expressed in Escherichia coli BL21(DE3) and then the L-AAD was purified. After that, we used the purified enzyme and the recombinant E. coli whole-cell biocatalyst to produce PPA via a one-step biotransformation from L-phenylalanine. L-AAD was solubilized from the membrane and purified 52-fold with an overall yield of 13 %, which corresponded to a specific activity of 0.94 ± 0.01 μmol PPA min(-1)·mg(-1). Then, the biotransformation conditions for the pure enzyme and the whole-cell biocatalyst were optimized. The maximal production was 2.6 ± 0.1 g·L(-1) (specific activity of 1.02 ± 0.02 μmol PPA min(-1)·mg(-1) protein, 86.7 ± 5 % mass conversion rate, and 1.04 g·L(-1)·h(-1) productivity) and 3.3 ± 0.2 g L(-1) (specific activity of 0.013 ± 0.003 μmol PPA min(-1)·mg(-1) protein, 82.5 ± 4 % mass conversion rate, and 0.55 g·L(-1)·h(-1) productivity) for the pure enzyme and whole-cell biocatalyst, respectively. Comparative studies of the enzymatic and whole-cell biotransformation were performed in terms of specific activity, production, conversion, productivity, stability, need of external cofactors, and recycling. We have developed two eco-friendly and efficient approaches for PPA production. The strategy described herein may aid the biotransformational synthesis of other α-keto acids from their corresponding amino acids.

  6. Type and amount of organic amendments affect enhanced biogenic methane production from coal and microbial community structure

    USGS Publications Warehouse

    Davis, Katherine J.; Lu, Shipeng; Barnhart, Elliott P.; Parker, Albert E.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Slow rates of coal-to-methane conversion limit biogenic methane production from coalbeds. This study demonstrates that rates of coal-to-methane conversion can be increased by the addition of small amounts of organic amendments. Algae, cyanobacteria, yeast cells, and granulated yeast extract were tested at two concentrations (0.1 and 0.5 g/L), and similar increases in total methane produced and methane production rates were observed for all amendments at a given concentration. In 0.1 g/L amended systems, the amount of carbon converted to methane minus the amount produced in coal only systems exceeded the amount of carbon added in the form of amendment, suggesting enhanced coal-to-methane conversion through amendment addition. The amount of methane produced in the 0.5 g/L amended systems did not exceed the amount of carbon added. While the archaeal communities did not vary significantly, the bacterial populations appeared to be strongly influenced by the presence of coal when 0.1 g/L of amendment was added; at an amendment concentration of 0.5 g/L the bacterial community composition appeared to be affected most strongly by the amendment type. Overall, the results suggest that small amounts of amendment are not only sufficient but possibly advantageous if faster in situcoal-to-methane production is to be promoted.

  7. Getting Things Done in the L1 and L2: Bilingual Immigrant Women's Use of Communication Strategies in Entrepreneurial Contexts

    ERIC Educational Resources Information Center

    Collier, Shartriya

    2010-01-01

    The article examines the communication strategies of four bilingual, immigrant women entrepreneurs within the context of their businesses. The analysis revealed that L1 and L2 use is crucial to the business success of the participants. L1 conversations consisted of largely private speech and directives. The women positioned themselves as…

  8. Effect of probiotic culture water on growth, mortality, and feed conversion ratio of Vaname shrimp (Litopenaeus vannamei Boone)

    NASA Astrophysics Data System (ADS)

    Bachruddin, M.; Sholichah, M.; Istiqomah, S.; Supriyanto, A.

    2018-04-01

    This study was aimed to determine the effect of various dose of probiotics in the culture water to the growth and mortality of Vaname shrimp. This study consist of treatment control and treatment of various dose of probiotics. Control (0 mL/10 L water), P1 (1 mL/10 L water), P2 (2 mL/10 L water), P3 (3 mL/10 L water) and P4 (4 mL/10 L water) treatment, given to the Vaname shrimps with intervals once per week. This probiotic consist of Lactobacillus plantarum, Lactobacillus fermentum, Bacillus subtilis, Bacillus licheniformis, Bacillus megaterium, Nitrobacter sp., and Nitrosomonas sp. Dependent variables in this study are weight of shrimp, length of shrimp, mortality and feed conversion ratio. The results had different of various dose probiotics application in the water showed significance for each treatment on growth and mortality of Vaname shrimp. The best results were shown in treatment P2 (2 mL/10 water) with mean value of Vaname shrimp weight is 7.447 ± 1.193 g/shrimp, the length is 10,390 ± 0,469 cm/shrimp, mortality is 41%, and the value of FCR is 0.91.

  9. Validation of graft and standard liver size predictions in right liver living donor liver transplantation.

    PubMed

    Chan, See Ching; Lo, Chung Mau; Chok, Kenneth S H; Sharr, William W; Cheung, Tan To; Tsang, Simon H Y; Chan, Albert C Y; Fan, Sheung Tat

    2011-12-01

    To assess the accuracy of a formula derived from 159 living liver donors to estimate the liver size of a normal subject: standard liver weight (g) = 218 + body weight (kg) × 12.3 + 51 (if male). Standard liver volume (SLV) is attained by a conversion factor of 1.19 mL/g. The total liver volume (TLV) of each of the subsequent consecutive 126 living liver donors was determined using the right liver graft weight (RGW) on the back table, right/left liver volume ratio on computed tomography, and the conversion factor. The estimated right liver graft weight (ERGW) was determined by the right liver volume on computed tomography (CT) and the conversion factor. SLV and ERGW were compared with TLV and RGW, respectively, by paired sample t test. Donor characteristics of both series were similar. SLV and TLV were 1,099.6 ± 139.6 and 1,108.5 ± 175.2 mL, respectively, ( R 2  = 0.476) ( p  = 0.435). The difference between SLV and TLV was only -8.9 ± 128.2 mL (-1.0 ± 11.7%). ERGW and RGW were 601.5 ± 104.1 and 597.1 ± 102.2 g, respectively ( R 2  = 0.781) ( p  = 0.332). The conversion factor from liver weight to volume for this series was 1.20 mL/g. The difference between ERGW and RGW was 4.3 ± 49.8 g (0.3 ± 8.8%). ERGW was smaller than RGW for over 10% (range 0.21-40.66 g) in 18 of the 126 donors. None had the underestimation of RGW by over 20%. SLV and graft weight estimations were accurate using the formula and conversion factor.

  10. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm.

    PubMed

    Yokoyama, Chiaki; Takei, Mami; Kouzuma, Yoshiaki; Nagata, Shinji; Suzuki, Yoshihito

    2017-08-01

    In the course of our study of the biosynthetic pathway of auxin, a class of phytohormones, in insects, we proposed the biosynthetic pathway tryptophan (Trp)→indole-3-acetaldoxime (IAOx)→indole-3-acetadehyde (IAAld)→indole-3-acetic acid (IAA). In this study, we identified two branches in the metabolic pathways in the silkworm, possibly affecting the efficiency of IAA production: Trp→indole-3-pyruvic acid→indole-3-lactic acid and IAAld→indole-3-ethanol. We also determined the apparent conversion activities (2.05×10 -7 UmL -1 for Trp→IAA, 1.30×10 -5 UmL -1 for IAOx→IAA, and 3.91×10 -1 UmL -1 for IAAld→IAA), which explain why IAOx and IAAld are barely detectable as either endogenous compounds or metabolites of their precursors. The failure to detect IAAld, even in the presence of an inhibitor of the conversion IAAld→IAA, is explained by a switch in the conversion from IAAld→IAA to IAAld→IEtOH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase.

    PubMed

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes' ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion.

  12. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase

    PubMed Central

    Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity. PMID:27711193

  13. From L2 Interactional Competence to L2 Interactional Repertoires: Reconceptualising the Objects of L2 Learning

    ERIC Educational Resources Information Center

    Hall, Joan Kelly

    2018-01-01

    In this paper, I offer a reconsideration of "interactional competence" as an object of L2 learning. I argue that the field's uptake of the concept displays a misunderstanding of, or at least a lack of attention to, its related but distinct intellectual roots in linguistic anthropology and conversation analysis. This has resulted in…

  14. Front end for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess Brooks (Inventor)

    1999-01-01

    The front end in GPS receivers has the functions of amplifying, down-converting, filtering and sampling the received signals. In the preferred embodiment, only two operations, A/D conversion and a sum, bring the signal from RF to filtered quadrature baseband samples. After amplification and filtering at RF, the L1 and L2 signals are each sampled at RF at a high selected subharmonic rate. The subharmonic sample rates are approximately 900 MHz for L1 and 982 MHz for L2. With the selected subharmonic sampling, the A/D conversion effectively down-converts the signal from RF to quadrature components at baseband. The resulting sample streams for L1 and L2 are each reduced to a lower rate with a digital filter, which becomes a straight sum in the simplest embodiment. The frequency subsystem can be very simple, only requiring the generation of a single reference frequency (e.g. 20.46 MHz minus a small offset) and the simple multiplication of this reference up to the subharmonic sample rates for L1 and L2. The small offset in the reference frequency serves the dual purpose of providing an advantageous offset in the down-converted carrier frequency and in the final baseband sample rate.

  15. Characterization of a thermostable recombinant l-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 and its application for the production of l-fructose and l-rhamnulose.

    PubMed

    Chen, Ziwei; Xu, Wei; Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2018-04-01

    l-Hexoses are rare sugars that are important components and precursors in the synthesis of biological compounds and pharmaceutical drugs. l-Rhamnose isomerase (L-RI, EC 5.3.1.14) is an aldose-ketose isomerase that plays a significant role in the production of l-sugars. In this study, a thermostable, l-sugar-producing L-RI from the hyperthermophile Caldicellulosiruptor obsidiansis OB47 was characterized. The recombinant L-RI displayed maximal activity at pH 8.0 and 85 °C and was significantly activated by Co 2+ . It exhibited a relatively high thermostability, with measured half-lives of 24.75, 11.55, 4.15 and 3.30 h in the presence of Co 2+ at 70, 75, 80 and 85 °C, respectively. Specific activities of 277.6, 57.9, 13.7 and 9.6 U mg -1 were measured when l-rhamnose, l-mannose, d-allose and l-fructose were used as substrates, respectively. l-Rhamnulose was produced with conversion ratios of 44.0% and 38.6% from 25 and 50 g L -1 l-rhamnose, respectively. l-Fructose was also efficiently produced by the L-RI, with conversion ratios of 67.0% and 58.4% from 25 and 50 g L -1 l-mannose, respectively. The recombinant L-RI could effectively catalyze the formation of l-rhamnulose and l-fructose, suggesting that it was a promising candidate for industrial production of l-rhamnulose and l-fructose. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. D-Tagatose production in the presence of borate by resting Lactococcus lactis cells harboring Bifidobacterium longum L-arabinose isomerase.

    PubMed

    Salonen, Noora; Salonen, Kalle; Leisola, Matti; Nyyssölä, Antti

    2013-04-01

    Bifidobacterium longum NRRL B-41409 L-arabinose isomerase (L-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum L-AI were used for production of D-tagatose from D-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of D-galactose to D-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L⁻¹ substrate and at 37.5 °C after 5 days. The D-tagatose production rate of 185 g L⁻¹ day ⁻¹ was obtained at 300 g L⁻¹ galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial D-tagatose production rate was 290 g L⁻¹ day⁻¹ under these conditions.

  17. Facilitating an L2 Book Club: A Conversation-Analytic Study of Task Management

    ERIC Educational Resources Information Center

    Ro, Eunseok

    2018-01-01

    This study employs conversation analysis to examine a facilitator's interactional practices in the post-expansion phase of students' presentations in the context of a book club for second language learning. The analysis shows how the facilitator establishes intersubjectivity with regard to the ongoing task and manages students' task performance.…

  18. Pursuing Information: A Conversation Analytic Perspective on Communication Strategies

    ERIC Educational Resources Information Center

    Burch, Alfred R.

    2014-01-01

    Research on second language (L2) communication strategies over the past three decades has concerned itself broadly with defining their usage in terms of planning and compensation, as well as with the use of taxonomies for coding different types of strategies. Taking a Conversation Analytic (CA) perspective, this article examines the fine-grained…

  19. Beyond Repair: Conversation Analysis as an Approach to SLA

    ERIC Educational Resources Information Center

    Kasper, Gabriele

    2006-01-01

    As one of several approaches to SLA as social practice, Conversation Analysis (CA) has the capacity to examine in detail how opportunities for L2 learning arise in different interactional activities. Its particular strength, and one that distinguishes it from other social practice approaches, is its consistent focus on the orientations and…

  20. Conversation, Composition, Cultural Investigations: Max Frisch's "Fragebogen" in the L2 Classroom

    ERIC Educational Resources Information Center

    Villanueva, Daniel

    2005-01-01

    In this article, "Fragebogen" (1992) by Max Frisch is shown to contain appropriately challenging linguistic constructions for use in courses as a supplement to traditional anthologies in conversation/composition courses. Frisch's eleven questionnaires on topics ranging from "Heimat," marriage and private property to humor, money and death serve as…

  1. The Function of Gesture in Lexically Focused L2 Instructional Conversations

    ERIC Educational Resources Information Center

    Smotrova, Tetyana; Lantolf, James P.

    2013-01-01

    The purpose of the present study is to investigate the mediational function of the gesture-speech interface in the instructional conversation that emerged as teachers attempted to explain the meaning of English words to their students in two EFL classrooms in the Ukraine. Its analytical framework is provided by Vygotsky's sociocultural psychology…

  2. Enquete sur le langage de l'enfant francais: Transcriptions de conversations d'enfants de 9 ans (Investigation of the Language of French Children: Transcriptions of Conversations of 9-Year-Olds). Document No. 1.

    ERIC Educational Resources Information Center

    Leclercq, Janine, Comp.

    These transcriptions of children living in a suburb of Paris represent and illustrate linguistic behavior and interests of the average nine-year-old French child. Seventy-nine children in groups of three were recorded in 30-minute periods of free conversation and 10-minute periods of play. Analysis reveals more than 30 centers of interest which…

  3. Vitamin A mediates conversion of monocyte-derived macrophages into tissue resident macrophages during alternative activation

    PubMed Central

    Gundra, Uma Mahesh; Girgis, Natasha M; Gonzalez, Michael A; Tang, Mei San; Van Der Zande, Hendrik J P; Lin, Jian-Da; Ouimet, Mireille; Ma, Lily J; Poles, Jordan A; Vozhilla, Nikollaq; Fisher, Edward A; Moore, Kathryn J; Loke, P’ng

    2017-01-01

    Whether activated inflammatory macrophages can adopt features of tissue resident macrophages and what mechanisms mediate this phenotypic conversion remain unclear. Here we show that vitamin A was required for phenotypic conversion of interleukin 4 (IL-4)-activated monocyte-derived F4/80intCD206+PD-L2+MHCII+ macrophages into macrophages with a tissue-resident F4/80hiCD206−PD-L2−MHCII−UCP1+ phenotype in the peritoneal cavity of mice and during liver granuloma formation in mice infected with Schistosoma mansoni. Phenotypic conversion of F4/80intCD206+ macrophages into F4/80hiCD206− macrophages was associated with almost complete remodeling of the chromatin landscape, as well as alteration of the transcriptional profiles. Vitamin A deficient mice infected with S. mansoni had disrupted liver granuloma architecture and increased mortality, indicating that failure to convert from F4/80intCD206+ macrophages to F4/80hiCD206− macrophages may lead to dysregulated inflammation during helminth infection. PMID:28436955

  4. Phenomenology of neutron-antineutron conversion

    NASA Astrophysics Data System (ADS)

    Gardner, Susan; Yan, Xinshuai

    2018-03-01

    We consider the possibility of neutron-antineutron (n -n ¯ ) conversion, in which the change of a neutron into an antineutron is mediated by an external source, as can occur in a scattering process. We develop the connections between n -n ¯ conversion and n -n ¯ oscillation, in which a neutron spontaneously transforms into an antineutron, noting that if n -n ¯ oscillation occurs in a theory with baryon number minus lepton number (B-L) violation, then n -n ¯ conversion can occur also. We show how an experimental limit on n -n ¯ conversion could connect concretely to a limit on n -n ¯ oscillation, and vice versa, using effective field theory techniques and baryon matrix elements computed in the MIT bag model.

  5. Developing L2 Interactional Competence: Increasing Participation through Self-Selection in Post-Expansion Sequences

    ERIC Educational Resources Information Center

    Watanabe, Aya

    2017-01-01

    Using longitudinal conversation analysis as a methodological framework, this study documents the development of second language (L2) interactional competence by focusing on a recurrent interactional practice observed in an English as a foreign language (EFL) classroom. Through observing a novice L2 learner's developing methods of participation in…

  6. Embodied L2 Construction Learning

    ERIC Educational Resources Information Center

    Eskildsen, Søren W.; Wagner, Johannes

    2015-01-01

    This study uses conversation analysis (CA) to investigate the coupling of specific linguistic items with specific gestures in second language (L2) learning over time. In particular, we are interested in how gestures accompany learning of new vocabulary. CA-informed studies of gesture have previously shown the importance of embodiment in L2 use and…

  7. The Listener: No Longer the Silent Partner in Reduced Intelligibility

    ERIC Educational Resources Information Center

    Zielinski, Beth W.

    2008-01-01

    In this study I investigate the impact of different characteristics of the L2 speech signal on the intelligibility of L2 speakers of English to native listeners. Three native listeners were observed and questioned as they orthographically transcribed utterances taken from connected conversational speech produced by three L2 speakers from different…

  8. Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?

    PubMed

    Brianezzi, Leticia Ferreira de Freitas; Maenosono, Rafael Massunari; Bim, Odair; Zabeu, Giovanna Speranza; Palma-Dibb, Regina Guenka; Ishikiriama, Sérgio Kiyoshi

    2017-01-01

    This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC), water sorption (WS), and water solubility (WSB) of these bonding systems in an attempt to improve their physico-mechanical resistance. Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB)] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU)]. Square-shaped specimens were prepared and assigned into 4 groups (n=5): SB and SU (control groups - no laser irradiation) and SB-L and SU-L [SB and SU laser (L) - irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5) of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10) were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm), irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2). Laser irradiation immediately before photopolymerization increased the DC (%) of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3), only the dentin bonding system (DBS) was a significant factor (p<0.05): SB>SU. Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility.

  9. Synthesis and thermal characterization of xylan-graft-polyacrylonitrile.

    PubMed

    Ünlü, Cüneyt H; Öztekin, N Simge; Atıcı, Oya Galioğlu

    2012-10-01

    In this study emulsion polymerization of acrylonitrile using xylan from agricultural waste material (corn cob) and cerium ammonium nitrate was investigated in terms of catalyst acid. Stock ceric solutions were prepared using either nitric or perchloric acid as catalyst. Optimum conditions were determined using different parameters such as reaction time, temperature, and component concentrations. Nitric acid catalyzed reactions resulted in maximum conversion ratio (96%) at 50°C, 1 h where ceric ion, acrylonitrile, xylan, and catalyst concentrations were 21.7 mmol l(-1), 0.5 mol l(-1), 0.2% (w/v), and 0.1 mol l(-1), respectively. However, 83% conversion was obtained with perchloric acid catalysis at 27 °C, 1 h where concentrations were 5.4 mmol l(-1), 0.8 mol l(-1), 0.5% (w/v), and 0.2 mol l(-1), respectively. Copolymer synthesis using perchloric acid was realized at milder conditions than using nitric acid. Thermal analyses of obtained polymers were conducted to characterize copolymers. Results showed that calculated activation energy, maximum degradation temperature, and heat of thermal decomposition changed relying mainly on molecular weight. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

    PubMed

    Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2012-02-01

    The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.

  11. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst.

    PubMed

    Hwang, In Yeub; Hur, Dong Hoon; Lee, Jae Hoon; Park, Chang-Ho; Chang, In Seop; Lee, Jin Won; Lee, Eun Yeol

    2015-03-01

    Recently, methane has attracted much attention as an alternative carbon feedstock since it is the major component of abundant shale and natural gas. In this work, we produced methanol from methane using whole cells of Methylosinus trichosporium OB3b as the biocatalyst. M. trichosporium OB3b was cultured on NMS medium with a supply of 7:3 air/methane ratio at 30°C. The optimal concentrations of various methanol dehydrogenase inhibitors such as potassium phosphate and EDTA were determined to be 100 and 0.5 mM, respectively, for an efficient production of methanol. Sodium formate (40 mM) as a reducing power source was added to enhance the conversion efficiency. A productivity of 49.0 mg/l·h, titer of 0.393 g methanol/l, and conversion of 73.8% (mol methanol/mol methane) were obtained under the optimized batch condition.

  12. Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi.

    PubMed

    Tsakona, Sofia; Kopsahelis, Nikolaos; Chatzifragkou, Afroditi; Papanikolaou, Seraphim; Kookos, Ioannis K; Koutinas, Apostolis A

    2014-11-10

    Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90% (w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitrogen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. FEASIL Implementation under VAX VMS with Design Information.

    DTIC Science & Technology

    1986-11-01

    desirable to eventually port FEASIL to the HP 9000, the IBM PC, and several other com- puters. However, the flowcharting and VAX conversion efforts have...v W l EU l l~rl EDIIkEL (pg 12) DEL El’F TJ-’LE C rr~PACE 13 HPvrwrH IIUpdate the I Itpe DescrL c ðere tau,1es remaining nthe relatioil ? ye

  14. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations

    NASA Astrophysics Data System (ADS)

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-01

    Schiff base disulfide ligands (H2L1-6) were synthesized from the condensation of cystamine with salicylaldehyde(H2L1), 5-chlorosalicylaldehyde(H2L2), o-vanillin(H2L3), 2-hydroxyacetophenone(H2L4), 3-methyl-2-hydroxyacetophenone(H2L5), and 2-hydroxy-1-naphthaldehyde(H2L6). H2L1-6 reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L1-6]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR (1H and 13C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed.

  15. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations.

    PubMed

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-14

    Schiff base disulfide ligands (H2L(1-6)) were synthesized from the condensation of cystamine with salicylaldehyde(H2L(1)), 5-chlorosalicylaldehyde(H2L(2)), o-vanillin(H2L(3)), 2-hydroxyacetophenone(H2L(4)), 3-methyl-2-hydroxyacetophenone(H2L(5)), and 2-hydroxy-1-naphthaldehyde(H2L(6)). H2L(1-6) reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L(1-6)]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR ((1)H and (13)C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Perennial filter strips reduce nitrate levels in soil and shallow groundwater after grassland-to-cropland conversion.

    PubMed

    Zhou, Xiaobo; Helmers, Matthew J; Asbjornsen, Heidi; Kolka, Randy; Tomer, Mark D

    2010-01-01

    Many croplands planted to perennial grasses under the Conservation Reserve Program are being returned to crop production, and with potential consequences for water quality. The objective of this study was to quantify the impact of grassland-to-cropland conversion on nitrate-nitrogen (NO3-N) concentrations in soil and shallow groundwater and to assess the potential for perennial filter strips (PFS) to mitigate increases in NO3-N levels. The study, conducted at the Neal Smith National Wildlife Refuge (NSNWR) in central Iowa, consisted of a balanced incomplete block design with 12 watersheds and four watershed-scale treatments having different proportions and topographic positions of PFS planted in native prairie grasses: 100% rowcrop, 10% PFS (toeslope position), 10% PFS (distributed on toe and as contour strips), and 20 PFS (distributed on toe and as contour strips). All treatments were established in fall 2006 on watersheds that were under bromegrass (Bromus L.) cover for at least 10 yr. Nonperennial areas were maintained under a no-till 2-yr corn (Zea mays L.)--soybean [Glycine max. (L.) Merr.] rotation since spring 2007. Suction lysimeter and shallow groundwater wells located at upslope and toeslope positions were sampled monthly during the growing season to determine NO3-N concentration from 2005 to 2008. The results indicated significant increases in NO3-N concentration in soil and groundwater following grassland-to-cropland conversion. Nitrate-nitrogen levels in the vadose zone and groundwater under PFS were lower compared with 100% cropland, with the most significant differences occurring at the toeslope position. During the years following conversion, PFS mitigated increases in subsurface nitrate, but long-term monitoring is needed to observe and understand the full response to land-use conversion.

  17. Unravelling biocomplexity of electroactive biofilms for producing hydrogen from biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Alex J.; Campa, Maria F.; Hazen, Terry C.

    Nature recruits various types of microbes to transform its waste products into reusable building blocks. In order to develop engineered systems to enable humans to generate useful products from complex sources such as biomass, a better understanding of the synergy between microbial species is necessary. Here we investigate a bioelectrochemical system for conversion of a complex biomass-derived pyrolysis stream into hydrogen via microbial electrolysis. Interaction between the exoelectrogens and fermentative organisms is key in this process. Comparing bioelectroconversion of a switchgrass-derived bio-oil aqueous phase (BOAP) with a model exoelectrogenic substrate, acetic acid, we demonstrate that fermentative breakdown of BOAP tomore » acetate is the limiting step in the syntophic conversion process. The anode microbial community displayed simultaneous conversion of sugar derivatives, phenolic compounds, carboxylic acids, etc. present in BOAP, but at differing rates through division of labor and syntrophic exchange. Maximum removal for BOAP reached 43 mg COD/h vs. 59 mg COD/h for pure acetic acid. Furthermore, maximum hydrogen production for BOAP reached 11 L/L-d vs. 35 L/L-day for pure acetic acid. Coulombic efficiency for both substrates was >80%. Unpoising of the anode haulted exoelectrogenesis and allowed fermentative processes to proceed resulting in acetic acid accumulation at the rate of 8.4 mg/h. Coupled to the simultaneous conversion of compounds present within BOAP, these results support the division of labor and syntrophic interactions suggested here. The hydrogen productivity is the highest achieved to date for a biomass-derived stream. The exoelectrogenic rates achieved signify that commercial feasibility can be achieved if fermentative rates can be improved.« less

  18. Unravelling biocomplexity of electroactive biofilms for producing hydrogen from biomass

    DOE PAGES

    Lewis, Alex J.; Campa, Maria F.; Hazen, Terry C.; ...

    2017-07-11

    Nature recruits various types of microbes to transform its waste products into reusable building blocks. In order to develop engineered systems to enable humans to generate useful products from complex sources such as biomass, a better understanding of the synergy between microbial species is necessary. Here we investigate a bioelectrochemical system for conversion of a complex biomass-derived pyrolysis stream into hydrogen via microbial electrolysis. Interaction between the exoelectrogens and fermentative organisms is key in this process. Comparing bioelectroconversion of a switchgrass-derived bio-oil aqueous phase (BOAP) with a model exoelectrogenic substrate, acetic acid, we demonstrate that fermentative breakdown of BOAP tomore » acetate is the limiting step in the syntophic conversion process. The anode microbial community displayed simultaneous conversion of sugar derivatives, phenolic compounds, carboxylic acids, etc. present in BOAP, but at differing rates through division of labor and syntrophic exchange. Maximum removal for BOAP reached 43 mg COD/h vs. 59 mg COD/h for pure acetic acid. Furthermore, maximum hydrogen production for BOAP reached 11 L/L-d vs. 35 L/L-day for pure acetic acid. Coulombic efficiency for both substrates was >80%. Unpoising of the anode haulted exoelectrogenesis and allowed fermentative processes to proceed resulting in acetic acid accumulation at the rate of 8.4 mg/h. Coupled to the simultaneous conversion of compounds present within BOAP, these results support the division of labor and syntrophic interactions suggested here. The hydrogen productivity is the highest achieved to date for a biomass-derived stream. The exoelectrogenic rates achieved signify that commercial feasibility can be achieved if fermentative rates can be improved.« less

  19. Nonlinear frequency doubling characteristics of asymmetric vortices of tunable, broad orbital angular momentum spectrum

    NASA Astrophysics Data System (ADS)

    Alam, Sabir Ul; Rao, A. Srinivasa; Ghosh, Anirban; Vaity, Pravin; Samanta, G. K.

    2018-04-01

    We report on a simple experimental scheme to generate and control the orbital angular momentum (OAM) spectrum of the asymmetric vortex beams in a nonlinear frequency conversion process. Using a spiral phase plate (SPP) and adjusting the transverse shift of the SPP with respect to the incident Gaussian beam axis, we have transformed the symmetric (intensity distribution) optical vortex of order l into an asymmetric vortex beam of measured broad spectrum of OAM modes of orders l, l - 1, l - 2, …, 0 (Gaussian mode). While the position of the SPP determines the distribution of the OAM modes, we have also observed that the modal distribution of the vortex beam changes with the shift of the SPP of all orders and finally results in a Gaussian beam (l = 0). Using single-pass frequency doubling of the asymmetric vortices, we have transferred the pump OAM spectra, l, l - 1, l - 2, …, 0, into the broad spectra of higher order OAM modes, 2l, 2l - 1, 2l - 2, …, 0 at green wavelength, owing to OAM conservation in nonlinear processes. We also observed an increase in single-pass conversion efficiency with the increase in asymmetry of the pump vortices producing a higher power vortex beam of mixed OAM modes at a new wavelength than that of the pure OAM mode.

  20. Reconceptualising "Identity Slippage": Additional Language Learning and (L2) Identity Development

    ERIC Educational Resources Information Center

    Armour, William

    2009-01-01

    This paper reconsiders the theoretical concept of "identity slippage" by considering a detailed exegesis of three model conversations taught to learners of Japanese as an additional language. To inform my analysis of these conversations and how they contribute to identity slippage, I have used the work of the systemic-functional linguist Jay Lemke…

  1. A Conversation-Analytic Perspective on the Organization of Teacher-Led Clarification and Its Implications for L2 Teacher Training

    ERIC Educational Resources Information Center

    Atar, Cihat; Seedhouse, Paul

    2018-01-01

    This study analyses teacher-led clarification sequences in a university second language classroom setting from a conversation-analytic perspective. In the literature, there are many studies of clarification requests, but the focus is on individual categories and quantification. No previous study has examined clarification, as reconceptualised in…

  2. Comparative effects of constant versus fluctuating thermal regimens on yellow perch growth, feed conversion and survival

    USDA-ARS?s Scientific Manuscript database

    The effects of fluctuating or constant thermal regimens on growth, mortality, and feed conversion were determined for juvenile yellow perch (Perca flavescens). Yellow perch averaging 156mm total length and 43g body weight were held in replicate 288L circular tanks for 129 days under: 1) a diel therm...

  3. What's the Problem? L2 Learners' Use of the L1 during Consciousness-Raising, Form-Focused Tasks

    ERIC Educational Resources Information Center

    Scott, Virginia M.; de la Fuente, Maria Jose

    2008-01-01

    This qualitative study provides preliminary insight into the role of the first language (L1) when pairs of intermediate-level college learners of French and Spanish are engaged in consciousness-raising, form-focused grammar tasks. Using conversation analysis of audiotaped interactions and stimulated recall sessions, we explored the ways students…

  4. Response of Planted Eastern White Pine (Pinus strobus L.) to Mechanical Release, Competition, and Drought in the Southern Appalachians

    Treesearch

    Barton D. Clinton; Katherine J. Elliott; Wayne T. Swank

    1997-01-01

    Conversion of low-quality, natural mixed pine hardwood ecosystems, containing a mountain laurel (Kalmia latifolia L.) dominated understory, to more productive eastern white pine (Pinus strobus L.)/mixed-hardwood systems is a common prescription on relatively xeric southern Appalachian forest sites. We examined the effects of...

  5. Learners' Multimodal Displays of Willingness to Participate in Classroom Interaction in the L2 and CLIL Contexts

    ERIC Educational Resources Information Center

    Evnitskaya, Natalia; Berger, Evelyne

    2017-01-01

    Drawing on recent conversation-analytic and socio-interactionist research on students' participation in L1 and L2 classroom interaction in teacher-fronted activities, this paper makes a step further by presenting an exploratory study of students' displays of willingness to participate (WTP) in classroom interaction and pedagogical activities…

  6. Denitrifying sulfur conversion-associated EBPR: Effects of temperature and carbon source on anaerobic metabolism and performance.

    PubMed

    Guo, Gang; Wu, Di; Ekama, George A; Hao, Tianwei; Mackey, Hamish Robert; Chen, Guanghao

    2018-04-16

    The recently developed Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) process has demonstrated simultaneous removal of organics, nitrogen and phosphorus with minimal sludge production in the treatment of saline/brackish wastewater. Its performance, however, is sensitive to operating and environmental conditions. In this study, the effects of temperature (20, 25, 30 and 35 °C) and the ratio of influent acetate to propionate (100-0, 75-25, 50-50, 25-75 and 0-100%) on anaerobic metabolism were investigated, and their optimal values/controls for performance optimization were identified. A mature DS-EBPR sludge enriched with approximately 30% sulfate-reducing bacteria (SRB) and 33% sulfide-oxidizing bacteria (SOB) was used in this study. The anaerobic stoichiometry of this process was insensitive to temperature or changes in the carbon source. However, an increase in temperature from 20 to 35 °C accelerated the kinetic reactions of the functional bacteria (i.e. SRB and SOB) and raised the energy requirement for their anaerobic maintenance, while a moderate temperature (25-30 °C) resulted in better P removal (≥93%, 18.6 mg P/L removal from total 20 mg P/L in the influent) with a maximum sulfur conversion of approximately 16 mg S/L. These results indicate that the functional bacteria are likely to be mesophilic. When a mixed carbon source (75-25 and 50-50% acetate to propionate ratios) was supplied, DS-EBPR achieved a stable P removal (≥89%, 17.8 mg P/L for 400 mg COD/L in the influent) with sulfur conversions at around 23 mg S/L, suggesting the functional bacteria could effectively adapt to changes in acetate or propionate as the carbon source. The optimal temperatures or carbon source conditions maximized the functional bacteria competition against glycogen-accumulating organisms by favoring their activity and synergy. Therefore, the DS-EBPR process can be optimized by setting the temperature in the appropriate range (25-30 °C) and/or manipulating influent carbon sources. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Radical pathway in catecholase activity with zinc-based model complexes of compartmental ligands.

    PubMed

    Guha, Averi; Chattopadhyay, Tanmay; Paul, Nanda Dulal; Mukherjee, Madhuparna; Goswami, Somen; Mondal, Tapan Kumar; Zangrando, Ennio; Das, Debasis

    2012-08-20

    Four dinuclear and three mononuclear Zn(II) complexes of phenol-based compartmental ligands (HL(1)-HL(7)) have been synthesized with the aim to investigate the viability of a radical pathway in catecholase activity. The complexes have been characterized by routine physicochemical studies as well as X-ray single-crystal structure analysis: [Zn(2)(H(2)L(1))(OH)(H(2)O)(NO(3))](NO(3))(3) (1), [Zn(2)L(2)Cl(3)] (2), [Zn(2)L(3)Cl(3)] (3), [Zn(2)(L(4))(2)(CH(3)COO)(2)] (4), [Zn(HL(5))Cl(2)] (5), [Zn(HL(6))Cl(2)] (6), and [Zn(HL(7))Cl(2)] (7) [L(1)-L(3) and L(5)-L(7) = 2,6-bis(R-iminomethyl)-4-methylphenolato, where R= N-ethylpiperazine for L(1), R = 2-(N-ethyl)pyridine for L(2), R = N-ethylpyrrolidine for L(3), R = N-methylbenzene for L(5), R = 2-(N-methyl)thiophene for L(6), R = 2-(N-ethyl)thiophene for L(7), and L(4) = 2-formyl-4-methyl-6-N-methylbenzene-iminomethyl-phenolato]. Catecholase-like activity of the complexes has been investigated in methanol medium by UV-vis spectrophotometric study using 3,5-di-tert-butylcatechol as model substrate. All complexes are highly active in catalyzing the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ). Conversion of 3,5-DTBC to 3,5-DTBQ catalyzed by mononuclear complexes (5-7) is observed to proceed via formation of two enzyme-substrate adducts, ES1 and ES2, detected spectroscopically, a finding reported for the first time in any Zn(II) complex catalyzed oxidation of catechol. On the other hand, no such enzyme-substrate adduct has been identified, and 3,5-DTBC to 3,5-DTBQ conversion is observed to be catalyzed by the dinuclear complexes (1-4) very smoothly. EPR experiment suggests generation of radicals in the presence of 3,5-DTBC, and that finding has been strengthened by cyclic voltammetric study. Thus, it may be proposed that the radical pathway is probably responsible for conversion of 3,5-DTBC to 3,5-DTBQ promoted by complexes of redox-innocent Zn(II) ion. The ligand-centered radical generation has further been verified by density functional theory calculation.

  8. Controlled higher-order transverse mode conversion from a fiber laser by polarization manipulation

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Yi, Qian; Yang, Lingling; Zhao, Chujun; Wen, Shuangchun

    2018-02-01

    We report a vectorial fiber laser with controlled transverse mode conversion by intra-cavity polarization manipulation. By combining a q-plate and two quarter-wave plates (QWPs), we can generate a switchable polarization state output represented by the higher-order Poincaré sphere (l = +1, l = -1), and distinguish the fourfold degenerate LP11 mode. The four transverse vector modes can be obtained and switched in a flexible way, and the slope efficiency of the fiber laser can reach up to 39.4%. This compactness, high efficiency, and switchable operation potential will benefit a range of applications, such as materials processing, particle manipulation, etc.

  9. Immobilization of a mediator onto carbon cloth electrode and employment of the modified electrode to an electroenzymatic bioreactor.

    PubMed

    Jeong, Eun-Seon; Sathishkumar, Muthuswamy; Jayabalan, Rasu; Jeong, Su-Hyeon; Park, Song-Yie; Mun, Sung-Phil; Yun, Sei-Eok

    2012-10-01

    5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB) was selected as an electron transfer mediator and was covalently immobilized onto high porosity carbon cloth to employ as a working electrode in an electrochemical NAD(+)-regeneration process, which was coupled to an enzymatic reaction. The voltammetric behavior of DTNB attached to carbon cloth resembled that of DTNB in buffered aqueous solution, and the electrocatalytic anodic current grew continuously upon addition of NADH at different concentrations, indicating that DTNB is immobilized to carbon cloth effectively and the immobilized DTNB is active as a soluble one. The bioelectrocatalytic NAD+ regeneration was coupled to the conversion of L-glutamate into alpha-ketoglutarate by L-glutamate dehydrogenase within the same microreactor. The conversion at 3 mM monosodium glutamate was very rapid, up to 12 h, to result in 90%, and then slow up to 24 h, showing 94%, followed by slight decrease. Low conversion was shown when substrate concentration exceeding 4 mM was tested, suggesting that L-glutamate dehydrogenase is inhibited by alpha-ketoglutarate. However, our electrochemical NAD+ regeneration procedure looks advantageous over the enzymatic procedure using NADH oxidase, from the viewpoint of reaction time to completion.

  10. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to impaired capacity to clear adenosine monophosphate. AP supplementation improves serum clearance of adenosine monophosphate to adenosine. These findings represent a potential therapeutic mechanism for alkaline phosphatase infusion during cardiac surgery. New and Noteworthy We identify alkaline phosphatase (AP) as the primary soluble ectonucleotidase in infants undergoing cardiopulmonary bypass and show decreased capacity to clear AMP when AP activity decreases post-bypass. Supplementation of AP ex vivo improves this capacity and may represent the beneficial therapeutic mechanism of AP infusion seen in phase 2 studies. PMID:27384524

  11. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass.

    PubMed

    Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena

    2016-01-01

    Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to impaired capacity to clear adenosine monophosphate. AP supplementation improves serum clearance of adenosine monophosphate to adenosine. These findings represent a potential therapeutic mechanism for alkaline phosphatase infusion during cardiac surgery. We identify alkaline phosphatase (AP) as the primary soluble ectonucleotidase in infants undergoing cardiopulmonary bypass and show decreased capacity to clear AMP when AP activity decreases post-bypass. Supplementation of AP ex vivo improves this capacity and may represent the beneficial therapeutic mechanism of AP infusion seen in phase 2 studies.

  12. Daylight Redirecting Window Films

    DTIC Science & Technology

    2013-09-01

    58) • Energy Independence and Security Act of 2007 (P.L. 110-140) • National Defense Authorization Act for FY 2007 (P.L. 109-364) • National Defense...Authorization Act for FY 2008 (P.L. 110-181) • National Defense Authorization Act for FY 2009 (P.L. 10-417) • Executive Order 13423 • Executive...green-house gas equivalents based on national averages Green-house- gas-equivalent conversion factor for national level usage. Embedded

  13. Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production.

    PubMed

    Digman, Matthew F; Shinners, Kevin J; Casler, Michael D; Dien, Bruce S; Hatfield, Ronald D; Jung, Hans-Joachim G; Muck, Richard E; Weimer, Paul J

    2010-07-01

    Switchgrass (Panicum virgatum L.) and reed canarygrass (Phalaris arundinacea L.) were pretreated under ambient temperature and pressure with sulfuric acid and calcium hydroxide in separate experiments. Chemical loadings from 0 to 100g (kg DM)(-1) and durations of anaerobic storage from 0 to 180days were investigated by way of a central composite design at two moisture contents (40% or 60% w.b.). Pretreated and untreated samples were fermented to ethanol by Saccharomyces cerevisiae D5A in the presence of a commercially available cellulase (Celluclast 1.5L) and beta-glucosidase (Novozyme 188). Xylose levels were also measured following fermentation because xylose is not metabolized by S. cerevisiae. After sulfuric acid pretreatment and anaerobic storage, conversion of cell wall glucose to ethanol for reed canarygrass ranged from 22% to 83% whereas switchgrass conversions ranged from 16% to 46%. Pretreatment duration had a positive effect on conversion but was mitigated with increased chemical loadings. Conversions after calcium hydroxide pretreatment and anaerobic storage ranged from 21% to 55% and 18% to 54% for reed canarygrass and switchgrass, respectively. The efficacy of lime pretreatment was found to be highly dependent on moisture content. Moreover, pretreatment duration was only found to be significant for reed canarygrass. Although significant levels of acetate and lactate were observed in the biomass after storage, S. cerevisiae was not found to be inhibited at a 10% solids loading. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Kinetics and thermodynamics of the interchange of the morpheein forms of human porphobilinogen synthase.

    PubMed

    Selwood, Trevor; Tang, Lei; Lawrence, Sarah H; Anokhina, Yana; Jaffe, Eileen K

    2008-03-11

    A morpheein is a homo-oligomeric protein that can adopt different nonadditive quaternary assemblies (morpheein forms) with different functionalities. The human porphobilinogen synthase (PBGS) morpheein forms are a high activity octamer, a low activity hexamer, and two structurally distinct dimer conformations. Conversion between hexamer and octamer involves dissociation to dimers, conformational change at the dimer level, followed by association to the alternate assembly. The current work promotes an alternative and novel view of the physiologically relevant dimeric structures, which are derived from the crystal structures, but are distinct from the asymmetric units of their crystal forms. Using a well characterized heteromeric system (WT+F12L; Tang, L. et al. (2005) J. Biol. Chem. 280, 15786-15793), extensive study of the human PBGS morpheein reequilibration process now reveals that the intervening dimers do not dissociate to monomers. The morpheein equilibria of wild type (WT) human PBGS are found to respond to changes in pH, PBGS concentration, and substrate turnover. Notably, the WT enzyme is predominantly an octamer at neutral pH, but increasing pH results in substantial conversion to lower order oligomers. Most significantly, the free energy of activation for the conversion of WT+F12L human PBGS heterohexamers to hetero-octamers is determined to be the same as that for the catalytic conversion of substrate to product by the octamer, remarkably suggesting a common rate-limiting step for both processes, which is postulated to be the opening/closing of the active site lid.

  15. D-lactic acid production from cellooligosaccharides and beta-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Zhang, Qiao; Yoshida, Shogo; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2010-01-01

    In order to achieve direct fermentation of an optically pure D: -lactic acid from cellulosic materials, an endoglucanase from a Clostridium thermocellum (CelA)-secreting plasmid was introduced into an L: -lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum (ldhL1) bacterial strain. CelA expression and its degradation of beta-glucan was confirmed by western blot analysis and enzyme assay, respectively. Although the CelA-secreting ldhL1 assimilated cellooligosaccharides up to cellohexaose (although not cellotetraose), the main end product was acetic acid, not lactic acid, due to the conversion of lactic acid to acetic acid. Cultivation under anaerobic conditions partially suppressed this conversion resulting in the production of 1.27 g/l of D: -lactic acid with a high optical purity of 99.5% from a medium containing 2 g/l of cellohexaose. Subsequently, D: -lactic acid fermentation from barley beta-glucan was carried out with the addition of Aspergillus aculeatus beta-glucosidase produced by recombinant Aspergillus oryzae and 1.47 g/l of D: -lactic was produced with a high optical purity of 99.7%. This is the first report of direct lactic acid fermentation from beta-glucan and a cellooligosaccharide that is a more highly polymerized sugar than cellotriose.

  16. Conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans JI12.

    PubMed

    Ye, Lidan; Hudari, Mohammad Sufian Bin; Zhou, Xingding; Zhang, Dongxu; Li, Zhi; Wu, Jin Chuan

    2013-06-01

    Cost-effective conversion of lignocellulose hydrolysate to optically pure lactic acid is commercially attractive but very challenging. Bacillus coagulans JI12 was isolated from natural environment and used to produce L-lactic acid (optical purity > 99.5 %) from lignocellulose sugars and acid hydrolysate of oil palm empty fruit bunch (EFB) at 50 °C and pH 6.0 without sterilization of the medium. In fed-batch fermentation with 85 g/L initial xylose and 55 g/L xylose added after 7.5 h, 137.5 g/L lactic acid was produced with a yield of 98 % and a productivity of 4.4 g/L h. In batch fermentation of a sugar mixture containing 8.5 % xylose, 1 % glucose, and 1 % L-arabinose, the lactic acid yield and productivity reached 98 % and 4.8 g/L h, respectively. When EFB hydrolysate was used, 59.2 g/L of lactic acid was produced within 9.5 h at a yield of 97 % and a productivity of 6.2 g/L h, which are the highest among those ever reported from lignocellulose hydrolysates. These results indicate that B. coagulans JI12 is a promising strain for industrial production of L-lactic acid from lignocellulose hydrolysate.

  17. New gene cluster from the thermophile Bacillus fordii MH602 in the conversion of DL-5-substituted hydantoins to L-amino acids.

    PubMed

    Mei, Yan-Zhen; Wan, Yong-Min; He, Bing-Fang; Ying, Han-Jie; Ouyang, Ping-Kai

    2009-12-01

    The thermophile Bacillus fordii MH602 was screened for stereospecifically hydrolyzing DL-5-substituted hydantoins to L-alpha-amino acids. Since the reaction at higher temperature, the advantageous for enhancement of substrate solubility and for racemization of DL-5-substituted hydantoins during the conversion were achieved. The hydantoin metabolism gene cluster from thermophile was firstly reported in this paper. The genes involved in hydantoin utilization (hyu) were isolated on an 8.2 kb DNA fragment by Restriction Site-dependent PCR, and six ORFs were identified by DNA sequence analysis. The hyu gene cluster contained four genes with novel cluster organization characteristics: the hydantoinase gene hyuH, putative transport protein hyuP, hyperprotein hyuHP, and L-carbamoylase gene hyuC. The hyuH and hyuC genes were heterogeneously expressed in E. coli. The results indicated that hyuH and hyuC are involved in the conversion of DL-5-substituted hydantoins to an N-carbamyl intermediate that is subsequently converted to L-alpha-amino acids. Hydantoinase and carbamoylase from B. fordii MH602 comparing respectively with reported hydantoinase and carbamoylase showed the highest identities of 71% and 39%. The novel cluster organization characteristics and the difference of the key enzymes between thermopile B. fordii MH602 and other mesophiles were presumed to be related to the evolutionary origins of concerned metabolism.

  18. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell.

    PubMed

    Chookaew, Teera; Prasertsan, Poonsuk; Ren, Zhiyong Jason

    2014-03-25

    Crude glycerol is a main byproduct of the biodiesel industry, and the beneficial use of waste glycerol has been a major challenge. This study characterises the conversion of crude glycerol into bioenergy such as H2 and electricity using a two-stage process linking dark fermentation with a microbial fuel cell (MFC) or microbial electrolysis cell (MEC). The results showed that fermentation achieved a maximum H2 rate of 332 mL/L and a yield of 0.55 mol H2/mol glycerol, accompanied by 20% of organic removal. Fed with the raw fermentation products with an initial COD of 7610 mg/L, a two-chamber MFC produced 92 mW/m(2) in power density and removed 50% of COD. The Columbic efficiency was 14%. When fed with 50% diluted fermentation product, a similar power output (90m W/m(2)) and COD removal (49%) were obtained, but the CE doubled to 27%. Similar substrates were used to produce H2 in two-chamber MECs, and the diluted influent had a higher performance, with the highest yield at 106 mL H2/g COD and a CE of 24%. These results demonstrate that dark fermentation linked with MFC/MEC can be a feasible option for conversion of waste glycerol into bioenergy. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Highly concentrated, ring-shaped phase conversion laser-induced breakdown spectroscopy technology for liquid sample analysis.

    PubMed

    Lin, Qingyu; Wei, Zhimei; Guo, Hongli; Wang, Shuai; Guo, Guangmeng; Zhang, Zhi; Duan, Yixiang

    2017-06-10

    A highly concentrated, ring-shaped phase conversion (RSPC) method was developed for liquid sample analysis using the laser-induced breakdown spectroscopy (LIBS) technique. In this work, test samples were prepared by mixing the metal particles with polyvinyl alcohol (PVA) supporter in liquid phase. With heat, the PVA solution solidified inside a modified glass petri dish, forming a metal-enriched polymer ring film. Distinguished from other traditional liquid-to-solid conversing methods, the proposed new method takes advantage of enhanced homogeneity for the target elements inside the ring film. The modified glass petri dish was used to control the ring-shaped concentration. Due to the specially designed circular groove at the bottom of this dish, where the PVA solution and liquid sample mixture accumulated, the target elements were concentrated in this small ring, which is beneficial for enhancing and stabilizing the plasma signals compared to the direct liquid sample analysis using LIBS. The limits of detection for Ag, Cu, Cr, and Ba obtained with the RSPC-LIBS technology were 0.098  μg·mL -1 , 0.18  μg·mL -1 , 0.83  μg·mL -1 , and 0.046  μg·mL -1 , respectively, which provided greater improvement than the direct bulk liquid analysis using LIBS.

  20. D-Glucosone and L-sorbosone, putative intermediates of L-ascorbic acid biosynthesis in detached bean and spinach leaves. [Phaseolus vulgaris L. ; Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Kazumi; Nick, J.A.; Loewus, F.A.

    D-(6-{sup 14}C)Glucosone that had been prepared enzymically from D-(6-{sup 14}C)glucose was used to compare relative efficiencies of these two sugars for L-ascorbic acid (AA) biosynthesis in detached bean (Phaseolus vulgaris L., cv California small white) apices and 4-week-old spinach (Spinacia oleracea L., cv Giant Noble) leaves. At tracer concentration, {sup 14}C from glucosone was utilized by spinach leaves for AA biosynthesis much more effectively than glucose. Carbon-14 from (6-{sup 14}C)glucose underwent considerable redistribution during AA formation, whereas {sup 14}C from (6-{sup 14}C)glucosone remained almost totally in carbon 6 of AA. In other experiments with spinach leaves, L-(U-{sup 14}C)sorbosone was foundmore » to be equivalent to (6-{sup 14}C)glucose as a source of {sup 14}C for AA. In the presence of 0.1% D-glucosone, conversion of (6-{sup 14}C) glucose into labeled AA was greatly repressed. In a comparable experiment with L-sorbosone replacing D-glucosone, the effect was much less. The experiments described here give substance to the proposal that D-glucosone and L-sorbosone are putative intermediates in the conversion of D-glucose to AA in higher plants.« less

  1. The Consequences of Metric Conversion for Small Manufacturers. Volume I. Summary Report.

    DTIC Science & Technology

    1982-02-08

    RP4 Unlimited IS SUPPLEMENTARY NOTIES I0. KEY WORDS (CNOUS -e~o side NE DIlee... 0ed Idnŕh’ OF WOO~ 11011161) Metrication, Small business , costs...benefited from the conversion except to keep the business of their customers that convert to metric. Metric conversion for small manufacturers is neither... small manufacturprs as a routine aspect of doing business . UJNCLASS IFIED UCVUITY CLASIFICATION OF THIS PA66EVt" " tt*O COATES§i~ S1r’"-’q T I p E L E

  2. Heterologous expression and characterization of Bacillus coagulans L-arabinose isomerase.

    PubMed

    Zhou, Xingding; Wu, Jin Chuan

    2012-05-01

    Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure L: -lactic acid from both hexose and pentose sugars including L: -arabinose with high yield, titer and productivity under thermophilic conditions. The L: -arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn(2+) was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K (m), V (max) and k (cat)/K (m) for the conversion of L: -arabinose were 106 mM, 84 U/mg and 34.5 mM(-1)min(-1), respectively. The equilibrium ratio of L: -arabinose to L: -ribulose was 78:22 under optimal conditions. L: -ribulose (97 g/L) was obtained from 500 g/l of L: -arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L(-1) h(-1).

  3. Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?

    PubMed Central

    BRIANEZZI, Leticia Ferreira de Freitas; MAENOSONO, Rafael Massunari; BIM, Odair; ZABEU, Giovanna Speranza; PALMA-DIBB, Regina Guenka; ISHIKIRIAMA, Sérgio Kiyoshi

    2017-01-01

    Abstract Simplified dentin-bonding systems are clinically employed for most adhesive procedures, and they are prone to hydrolytic degradation. Objective This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC), water sorption (WS), and water solubility (WSB) of these bonding systems in an attempt to improve their physico-mechanical resistance. Material and Methods Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB)] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU)]. Square-shaped specimens were prepared and assigned into 4 groups (n=5): SB and SU (control groups – no laser irradiation) and SB-L and SU-L [SB and SU laser (L) – irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5) of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10) were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm), irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2). Results Laser irradiation immediately before photopolymerization increased the DC (%) of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3), only the dentin bonding system (DBS) was a significant factor (p<0.05): SB>SU. Conclusion Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility. PMID:28877276

  4. Effect of high hydrostatic pressure treatment on isoquercetin production from rutin by commercial α-L-rhamnosidase.

    PubMed

    Kim, Do-Yeon; Yeom, Soo-Jin; Park, Chang-Su; Kim, Yeong-Su

    2016-10-01

    To optimize conversion of rutin to isoquercetin by commercial α-L-rhamnosidase using high hydrostatic pressure (HHP). The de-rhamnosylation activity of α-L-rhamnosidase for isoquercetin production was maximal at pH 6.0 and 50 °C using HHP (150 MPa). The enzyme showed high specificity for rutin. The specific activity for rutin at HHP was 1.5-fold higher than that at atmospheric pressure. The enzyme completely hydrolysed 20 mM rutin in tartary buckwheat extract after 2 h at HHP, with a productivity of 10 mM h(-1). The productivity and conversion were 2.2- and 1.5-fold higher at HHP than at atmospheric pressure, respectively. This is the first report concerning the enzymatic hydrolysis of isoquercetin in tartary buckwheat at HHP.

  5. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase

    PubMed Central

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    Background It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. Materials and methods We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes’ ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. Results The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. Conclusion These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion. PMID:24333060

  6. When Partial Nephrectomy is Unsuccessful: Understanding the Reasons for Conversion from Robotic Partial to Radical Nephrectomy at a Tertiary Referral Center.

    PubMed

    Kara, Önder; Maurice, Matthew J; Mouracade, Pascal; Malkoç, Ercan; Dagenais, Julien; Nelson, Ryan J; Chavali, Jaya Sai S; Stein, Robert J; Fergany, Amr; Kaouk, Jihad H

    2017-07-01

    We sought to identify the preoperative factors associated with conversion from robotic partial nephrectomy to radical nephrectomy. We report the incidence of this event. Using our institutional review board approved database, we abstracted data on 1,023 robotic partial nephrectomies performed at our center between 2010 and 2015. Standard and converted cases were compared in terms of patients and tumor characteristics, and perioperative, functional and oncologic outcomes. Logistic regression analysis was done to identify predictors of radical conversion. The overall conversion rate was 3.1% (32 of 1,023 cases). The most common reasons for conversion were tumor involvement of hilar structures (8 cases or 25%), failure to achieve negative margins on frozen section (7 or 21.8%), suspicion of advanced disease (5 or 15.6%) and failure to progress (5 or 15.6%). Patients requiring conversion were older and had a higher Charlson score (both p <0.01), including an increased prevalence of chronic kidney disease (p = 0.02). Increasing tumor size (5 vs 3.1 cm, p <0.01) and R.E.N.A.L. (radius, exophytic/endophytic properties, nearness of tumor to collecting system or sinus, anterior/posterior, location relative to polar lines and hilar location) score (9 vs 8, p <0.01) were also associated with an increased risk of conversion. Worse baseline renal function (OR 0.98, 95% CI 0.96-0.99, p = 0.04), large tumor size (OR 1.44, 95% CI 1.22-1.7, p <0.01) and increasing R.E.N.A.L. score (p = 0.02) were independent predictors of conversion. Compared to converted cases, at latest followup standard robotic partial nephrectomy cases had similar short-term oncologic outcomes but better renal functional preservation (p <0.01). At a high volume center the rate of robotic partial nephrectomy conversion to radical nephrectomy was 3.1%, including 2.2% of preoperatively anticipated nephrectomy cases. Increasing tumor size and complexity, and poor preoperative renal function are the main predictors of conversion. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    PubMed

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Demonstration of Parallel Algal Processing: Production of Renewable Diesel Blendstock and a High-Value Chemical Intermediate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoshaug, Eric P; Mohagheghi, Ali; Nagle, Nicholas J

    Co-production of high-value chemicals such as succinic acid from algal sugars is a promising route to enabling conversion of algal lipids to a renewable diesel blendstock. Biomass from the green alga Scenedesmus acutus was acid pretreated and the resulting slurry separated into its solid and liquor components using charged polyamide induced flocculation and vacuum filtration. Over the course of a subsequent 756 hours continuous fermentation of the algal liquor with Actinobacillus succinogenes 130Z, we achieved maximum productivity, process conversion yield, and titer of 1.1 g L-1 h-1, 0.7 g g-1 total sugars, and 30.5 g L-1 respectively. Succinic acid wasmore » recovered from fermentation media with a yield of 60% at 98.4% purity while lipids were recovered from the flocculated cake at 83% yield with subsequent conversion through deoxygenation and hydroisomerization to a renewable diesel blendstock. This work is a first-of-its-kind demonstration of a novel integrated conversion process for algal biomass to produce fuel and chemical products of sufficient quality to be blend-ready feedstocks for further processing.« less

  9. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367.

    PubMed

    Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying; Kong, Jian

    2017-11-01

    Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δ pox mutant, while those of POX increased significantly in the Δ pdh mutant. More lactate but less acetate was produced in the Δ pdh mutant than in the wild-type and Δ pox mutant strains, and more H 2 O 2 (a product of the POX pathway) was produced in the Δ pdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we reported that both PDH and POX worked in the aerobic conversion of lactate to acetate in L. brevis ATCC 367, in dominant and secondary roles, respectively. Our findings will further develop the theory of aerobic metabolism by LAB. Copyright © 2017 American Society for Microbiology.

  10. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367

    PubMed Central

    Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying

    2017-01-01

    ABSTRACT Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δpox mutant, while those of POX increased significantly in the Δpdh mutant. More lactate but less acetate was produced in the Δpdh mutant than in the wild-type and Δpox mutant strains, and more H2O2 (a product of the POX pathway) was produced in the Δpdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we reported that both PDH and POX worked in the aerobic conversion of lactate to acetate in L. brevis ATCC 367, in dominant and secondary roles, respectively. Our findings will further develop the theory of aerobic metabolism by LAB. PMID:28842545

  11. Energy conversion analysis of microalgal lipid production under different culture modes.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xie, Guo-Jun; Ren, Nan-Qi

    2014-08-01

    Growth and lipid production performance of Scenedesmus sp. under different culture modes were investigated. Under heterotrophic aerobic mode, algal biomass concentration and total lipid content reached 3.42 g L(-1) and 43.0 wt.%, which were much higher than those in autotrophic aerobic mode (0.55 g L(-1)/20.2 wt.%). The applied light exposure of 7.0 Wm(-2) was beneficial to biomass and lipid accumulation. Mixotrophic aerobic mode produced the highest biomass concentration of 3.84 g L(-1). The biomass was rich in lipids (51.3 wt.%) and low in proteins (17.9 wt.%) and carbohydrates (10.3 wt.%). However, lower algal biomass concentration (2.93 g L(-1)) and total lipid content (36.1 wt.%) were obtained in mixotrophic anaerobic mode. Mixotrophic aerobic mode gave the maximum heat value conversion efficiency of 45.7%. These results indicate that mixotrophic aerobic cultivation was a promising culture mode for lipid production by Scenedesmus sp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Immobilization of flavin adenine dinucleotide (FAD) onto carbon cloth and its application as working electrode in an electroenzymatic bioreactor.

    PubMed

    Jayabalan, R; Sathishkumar, M; Jeong, E S; Mun, S P; Yun, S E

    2012-11-01

    A high porosity carbon cloth with immobilized FAD was employed as working electrode in electrochemical NADH-regeneration procedure. Carbon cloth was oxidized with hot acids to create surface carboxyl group and then coupled by adenine amino group of FAD with carbodiimide in the presence of N-hydroxysulfosuccinimide. The bioelectrocatalytic NADH-regeneration was coupled to the conversion of achiral substrate pyruvate into chiral product l-lactate by l-lactate dehydrogenase (l-LDH) within the same reactor. The conversion was completed at 96h in bioreactor with FAD-modified carbon cloth, resulting in about 6mM of l-lactate from 10mM of pyruvate. While with bare carbon cloth, the yield at 120h was around 5mM. Immobilized FAD on the surface of carbon cloth electrode facilitated it to carry electrons from electrode to electron transfer enzymes; thereby NADH-regeneration was accelerated to drive the enzymatic reaction efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Selective Production of 9R-Hydroxy-10E,12Z,15Z-Octadecatrienoic Acid from α-Linolenic Acid in Perilla Seed Oil Hydrolyzate by a Lipoxygenase from Nostoc Sp. SAG 25.82.

    PubMed

    Kim, Kyoung-Rok; An, Jung-Ung; Lee, Seon-Hwa; Oh, Deok-Kun

    2015-01-01

    Hydroxy fatty acids (HFAs) derived from omega-3 polyunsaturated fatty acids have been known as versatile bioactive molecules. However, its practical production from omega-3 or omega-3 rich oil has not been well established. In the present study, the stereo-selective enzymatic production of 9R-hydroxy-10E,12Z,15Z-octadecatrienoic acid (9R-HOTE) from α-linolenic acid (ALA) in perilla seed oil (PO) hydrolyzate was achieved using purified recombinant 9R-lipoxygenase (9R-LOX) from Nostoc sp. SAG 25.82. The specific activity of the enzyme followed the order linoleic acid (LA) > ALA > γ-linolenic acid (GLA). A total of 75% fatty acids (ALA and LA) were used as a substrate for 9R-LOX from commercial PO by hydrolysis of Candida rugosa lipase. The optimal reaction conditions for the production of 9R-HOTE from ALA using 9R-LOX were pH 8.5, 15°C, 5% (v/v) acetone, 0.2% (w/v) Tween 80, 40 g/L ALA, and 1 g/L enzyme. Under these conditions, 9R-LOX produced 37.6 g/L 9R-HOTE from 40 g/L ALA for 1 h, with a conversion yield of 94% and a productivity of 37.6 g/L/h; and the enzyme produced 34 g/L 9R-HOTE from 40 g/L ALA in PO hydrolyzate for 1 h, with a conversion yields of 85% and a productivity of 34 g/L/h. The enzyme also converted 9R-hydroxy-10E,12Z-octadecadienoic acid (9R-HODE) from 40 g/L LA for 1.0 h, with a conversion yield of 95% and a productivity of 38.4 g/L. This is the highest productivity of HFA from both ALA and ALA-rich vegetable oil using LOX ever reported. Therefore, our result suggests an efficient method for the production of 9R-HFAs from LA and ALA in vegetable oil using recombinant LOX in biotechnology.

  14. Selective Production of 9R-Hydroxy-10E,12Z,15Z-Octadecatrienoic Acid from α-Linolenic Acid in Perilla Seed Oil Hydrolyzate by a Lipoxygenase from Nostoc Sp. SAG 25.82

    PubMed Central

    Kim, Kyoung-Rok; An, Jung-Ung; Lee, Seon-Hwa; Oh, Deok-Kun

    2015-01-01

    Hydroxy fatty acids (HFAs) derived from omega-3 polyunsaturated fatty acids have been known as versatile bioactive molecules. However, its practical production from omega-3 or omega-3 rich oil has not been well established. In the present study, the stereo-selective enzymatic production of 9R-hydroxy-10E,12Z,15Z-octadecatrienoic acid (9R-HOTE) from α-linolenic acid (ALA) in perilla seed oil (PO) hydrolyzate was achieved using purified recombinant 9R-lipoxygenase (9R-LOX) from Nostoc sp. SAG 25.82. The specific activity of the enzyme followed the order linoleic acid (LA) > ALA > γ-linolenic acid (GLA). A total of 75% fatty acids (ALA and LA) were used as a substrate for 9R-LOX from commercial PO by hydrolysis of Candida rugosa lipase. The optimal reaction conditions for the production of 9R-HOTE from ALA using 9R-LOX were pH 8.5, 15°C, 5% (v/v) acetone, 0.2% (w/v) Tween 80, 40 g/L ALA, and 1 g/L enzyme. Under these conditions, 9R-LOX produced 37.6 g/L 9R-HOTE from 40 g/L ALA for 1 h, with a conversion yield of 94% and a productivity of 37.6 g/L/h; and the enzyme produced 34 g/L 9R-HOTE from 40 g/L ALA in PO hydrolyzate for 1 h, with a conversion yields of 85% and a productivity of 34 g/L/h. The enzyme also converted 9R-hydroxy-10E,12Z-octadecadienoic acid (9R-HODE) from 40 g/L LA for 1.0 h, with a conversion yield of 95% and a productivity of 38.4 g/L. This is the highest productivity of HFA from both ALA and ALA-rich vegetable oil using LOX ever reported. Therefore, our result suggests an efficient method for the production of 9R-HFAs from LA and ALA in vegetable oil using recombinant LOX in biotechnology. PMID:26379279

  15. Variation in the biochemical response to l-thyroxine therapy and relationship with peripheral thyroid hormone conversion efficiency

    PubMed Central

    Midgley, John E M; Larisch, Rolf; Dietrich, Johannes W; Hoermann, Rudolf

    2015-01-01

    Several influences modulate biochemical responses to a weight-adjusted levothyroxine (l-T4) replacement dose. We conducted a secondary analysis of the relationship of l-T4 dose to TSH and free T3 (FT3), using a prospective observational study examining the interacting equilibria between thyroid parameters. We studied 353 patients on steady-state l-T4 replacement for autoimmune thyroiditis or after surgery for malignant or benign thyroid disease. Peripheral deiodinase activity was calculated as a measure of T4–T3 conversion efficiency. In euthyroid subjects, the median l-T4 dose was 1.3 μg/kg per day (interquartile range (IQR) 0.94,1.60). The dose was independently associated with gender, age, aetiology and deiodinase activity (all P<0.001). Comparable FT3 levels required higher l-T4 doses in the carcinoma group (n=143), even after adjusting for different TSH levels. Euthyroid athyreotic thyroid carcinoma patients (n=50) received 1.57 μg/kg per day l-T4 (IQR 1.40, 1.69), compared to 1.19 μg/kg per day (0.85,1.47) in autoimmune thyroiditis (P<0.01, n=76) and 1.08 μg/kg per day (0.82, 1.44) in patients operated on for benign disease (P< 0.01, n=80). Stratifying patients by deiodinase activity categories of <23, 23–29 and >29 nmol/s revealed an increasing FT3–FT4 dissociation; the poorest converters showed the lowest FT3 levels in spite of the highest dose and circulating FT4 (P<0.001). An l-T4-related FT3–TSH disjoint was also apparent; some patients with fully suppressed TSH failed to raise FT3 above the median level. These findings imply that thyroid hormone conversion efficiency is an important modulator of the biochemical response to l-T4; FT3 measurement may be an additional treatment target; and l-T4 dose escalation may have limited success to raise FT3 appropriately in some cases. PMID:26335522

  16. The influence of ozone on the photocatalytic degradation of phenol using TiO2 photocatalyst supported by Bayah natural zeolite

    NASA Astrophysics Data System (ADS)

    Sulaiman, Fatah; Sari, Denni Kartika; Kustiningsih, Indar

    2017-05-01

    Effect of ozone on the photocatalytic degradation of phenol using TiO2 photocatalyst which supported Bayah Natural Zeolite has been investigated. Phenol (merk Pro analys) was used as waste solution. TiO2 photocatalyst was obtained from Titanium isopropoxide using sol gel method which supported by Bayah Natural Zeolite. The influence of temperature of calcination and catalyst loading have been conducted. The calcination temperature of photocatalyst was 450°C, 500°C, 550°C dan 600°C while the catalyst loading of 0,1g/L; 0,3 g/L; 0,6 g/L; 1 g/L dan 1,2 g/L. Analysis of phenol concentration was used Hach Spechtrophotometer. To determine the effect of ozone on photocatalytic degradation during process ozone was flowed into reactor. The result showed the optimum calcination temperature was obtained at 500°C. The optimum catalyst loading to degrade the phenolic compounds was equal to 1g/L. In these optimum condition the conversion of phenol degradation was 87% after 5 hours. By adding ozone during the degradation process, the conversion reached 100% after 2 hours.

  17. Late conversion from tacrolimus to a belatacept-based immuno-suppression regime in kidney transplant recipients improves renal function, acid-base derangement and mineral-bone metabolism.

    PubMed

    Schulte, Kevin; Vollmer, Clara; Klasen, Vera; Bräsen, Jan Hinrich; Püchel, Jodok; Borzikowsky, Christoph; Kunzendorf, Ulrich; Feldkamp, Thorsten

    2017-08-01

    Calcineurin inhibitor (CNI)-induced nephrotoxicity and chronic graft dysfunction with deteriorating glomerular filtration rate (GFR) are common problems of kidney transplant recipients. The aim of this study was to analyze the role of belatacept as a rescue therapy in these patients. In this retrospective, observational study we investigated 20 patients (10 females, 10 males) who were switched from a CNI (tacrolimus) to a belatacept-based immunosuppression because of CNI intolerance or marginal transplant function. Patient follow-up was 12 months. Patients were converted to belatacept in mean 28.8 months after transplantation. Reasons for conversion were CNI intolerance (14 patients) or marginal transplant function (6 patients). Mean estimated GFR (eGFR) before conversion was 22.2 ± 9.4 ml/min at baseline and improved significantly to 28.3 ± 10.1 ml/min at 4 weeks and to 32.1 ± 12.6 ml/min at 12 months after conversion. Serum bicarbonate significantly increased from 24.4 ± 3.2 mmol/l at baseline to 28.7 ± 2.6 mmol/l after 12 months. Conversion to belatacept decreased parathyroid hormone and phosphate concentrations significantly, whereas albumin levels significantly increased. In 6 cases an acute rejection preceded clinically relevant CNI toxicity; only two patients suffered from an acute rejection after conversion. Belatacept was well tolerated and there was no increase in infectious or malignant side effects. A late conversion from a tacrolimus-based immunosuppression to belatacept is safe, effective and significantly improves renal function in kidney transplant recipients. Additionally, the conversion to belatacept has a beneficial impact on acid-base balance, mineral-bone and protein metabolism, independently of eGFR.

  18. A multicenter experience with generic tacrolimus conversion.

    PubMed

    McDevitt-Potter, Lisa M; Sadaka, Basma; Tichy, Eric M; Rogers, Christin C; Gabardi, Steven

    2011-09-27

    The first generic tacrolimus product gained Food and Drug Administration approval in August 2009. This prospective, observational trial sought to determine the need for dose titrations and measure drug cost savings on conversion to generic tacrolimus. Transplant recipients on stable tacrolimus doses were converted from brand to generic tacrolimus on a mg:mg basis. Data were collected at the time of generic conversion (study arm) and at a time point exactly 6 months before conversion (control arm) for all subjects. Seventy conversions from four centers are reported. Subjects were a mean of 70 months after kidney (n=37), liver (n=28), or multiorgan (n=5) transplant. In the study arm, mean tacrolimus doses were 4.4 and 4.5 mg/d and mean tacrolimus trough concentrations were 5.8 and 5.9 ng/mL before and after conversion, respectively. In the control arm, mean tacrolimus doses were 4.6 and 4.6 mg/d and mean tacrolimus trough concentrations were 6.1 and 5.9 ng/mL before and after the control time point, respectively. Dose titrations occurred in five patients (7%) in the control arm and 15 patients (21%) in the study arm (P=0.028). Mean monthly drug costs were $645 for brand, $593 for generic, and $595 for generic after dose titrations. Mean monthly patient copays were $38 for brand and $15 for generic. These cumulative data show that dose requirements and trough levels are similar between brand and generic tacrolimus and that generic substitution allows for savings. However, postconversion monitoring is prudent as patients may require dose titration.

  19. Effects of vitamins A and D on the biosynthesis of L-ascorbic acid by rat-liver microsomes

    PubMed Central

    Ghosh, N. C.; Chatterjee, Ipsita; Chatterjee, G. C.

    1965-01-01

    1. The synthesis of l-ascorbic acid from either d-glucuronolactone or l-gulonolactone by liver microsomes of rats is decreased under conditions of hypervitaminosis A; under hypervitaminosis D the synthesis from d-glucuronolactone is increased and that from l-gulonolactone is not affected. 2. The microsomal conversion of l-gulonolactone into l-ascorbic acid is impaired in liver tissues of rats made deficient with respect to either vitamin A or vitamin D when compared with the controls maintained on stock diet. PMID:16749110

  20. The Aminolysis Reaction of Streptomyces S9 Aminopeptidase Promotes the Synthesis of Diverse Prolyl Dipeptides▿ †

    PubMed Central

    Arima, Jiro; Morimoto, Masazumi; Usuki, Hirokazu; Mori, Nobuhiro; Hatanaka, Tadashi

    2010-01-01

    Prolyl dipeptide synthesis by S9 aminopeptidase from Streptomyces thermocyaneoviolaceus (S9AP-St) has been demonstrated. In the synthesis, S9AP-St preferentially used l-Pro-OBzl as the acyl donor, yielding synthesized dipeptides having an l-Pro-Xaa structure. In addition, S9AP-St showed broad specificity toward the acyl acceptor. Furthermore, S9AP-St produced cyclo (l-Pro-l-His) with a conversion ratio of substrate to cyclo (l-Pro-l-His) higher than 40%. PMID:20418423

  1. Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration.

    PubMed

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Wang, Haiguang; Chen, Guanghao

    2016-05-15

    A sulfur conversion-associated Enhanced Biological Phosphorus (P) Removal (EBPR) system is being developed to cater for the increasing needs to treat saline/brackish wastewater resulting from seawater intrusion into groundwater and sewers and frequent use of sulfate coagulants during drinking water treatment, as well as to meet the demand for eutrophication control in warm climate regions. However, the major functional bacteria and metabolism in this emerging biological nutrient removal system are still poorly understood. This study was thus designed to explore the functional microbes and metabolism in this new EBPR system by manipulating the deterioration, failure and restoration of a lab-scale system. This was achieved by changing the mixed liquor suspended solids (MLSS) concentration to monitor and evaluate the relationships among sulfur conversion (including sulfate reduction and sulfate production), P removal, variation in microbial community structures, and stoichiometric parameters. The results show that the stable Denitrifying Sulfur conversion-associated EBPR (DS-EBPR) system was enriched by sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB). These bacteria synergistically participated in this new EBPR process, thereby inducing an appropriate level of sulfur conversion crucial for achieving a stable DS-EBPR performance, i.e. maintaining sulfur conversion intensity at 15-40 mg S/L, corresponding to an optimal sludge concentration of 6.5 g/L. This range of sulfur conversion favors microbial community competition and various energy flows from internal polymers (i.e. polysulfide or elemental sulfur (poly-S(2-)/S(0)) and poly-β-hydroxyalkanoates (PHA)) for P removal. If this range was exceeded, the system might deteriorate or even fail due to enrichment of glycogen-accumulating organisms (GAOs). Four methods of restoring the failed system were investigated: increasing the sludge concentration, lowering the salinity or doubling the COD loading, non of which restored SRB and SOB activities for DS-EBPR; only the final novel approach of adding 25 ± 5 mg S/L of external sulfide into the reactor at the beginning of the anoxic phase could efficiently restore the DS-EBPR system from failure. The present study represents a step towards understanding the DS-EBPR metabolism and provides an effective remedial measure for recovering a deteriorating or failed DS-EBPR system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation.

    PubMed

    Cheng, Jun; Ding, Lingkan; Xia, Ao; Lin, Richen; Li, Yuyou; Zhou, Junhu; Cen, Kefa

    2015-03-01

    The biological hydrogen production from amino acids obtained by protein degradation was comprehensively investigated to increase heating value conversion efficiency. The five amino acids (i.e., alanine, serine, aspartic acid, arginine, and leucine) produced limited hydrogen (0.2-16.2 mL/g) but abundant soluble metabolic products (40.1-84.0 mM) during dark-fermentation. The carbon conversion efficiencies of alanine (85.3%) and serine (94.1%) during dark-fermentation were significantly higher than those of other amino acids. Residual dark-fermentation solutions treated with zeolite for NH4(+) removal were inoculated with photosynthetic bacteria to further produce hydrogen during photo-fermentation. The hydrogen yields of alanine and serine through combined dark- and photo-fermentation were 418.6 and 270.2 mL/g, respectively. The heating value conversion efficiency of alanine to hydrogen was 25.1%, which was higher than that of serine (21.2%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    PubMed

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Functions of Arabic-English Code-Switching: Sociolinguistic Insights from a Study Abroad Program

    ERIC Educational Resources Information Center

    Al Masaeed, Khaled

    2013-01-01

    This sociolinguistic study examines the functions and motivations of code-switching, which is used here to mean the use of more than one language in the same conversation. The conversations studied here take place in a very particular context: one-on-one speaking sessions in a study abroad program in Morocco where English is the L1 and Arabic the…

  5. The Effects and Perceptions of Trained Peer Feedback in L2 Speaking: Impact on Revision and Speaking Quality

    ERIC Educational Resources Information Center

    Rodríguez-González, Eva; Castañeda, Martha E.

    2018-01-01

    The present study examined the impact of trained peer feedback on Spanish as a second language (L2) in terms of language performance, nature of feedback, and perceptions of peer feedback in speaking tasks. Participants in the study included 17 intermediate L2 Spanish learners enrolled in a conversation course that incorporated peer feedback…

  6. Researching Vocabulary Development: A Conversation Analytic Approach

    ERIC Educational Resources Information Center

    Reichert, Tetyana

    2016-01-01

    This paper contributes to the much debated yet still largely unanswered question of how second language (L2) learning is anchored and configured in and through social interaction. Using a sociointeractional approach to second language (L2) learning (e.g., Hellermann, 2008; Mondada & Pekarek Doehler, 2004; Pekarek Doehler, 2010), I examine…

  7. Teaching L2 Interactional Competence: Problems and Possibilities

    ERIC Educational Resources Information Center

    Waring, Hansun Zhang

    2018-01-01

    This contribution outlines the problems and possibilities of three issues with regard to the teaching of L2 interactional competence (IC): (1) specifying IC, (2) standardising IC, and (3) translating conversation analytic (CA) insights into classroom practices. In particular, I argue for a shift of discussion from the conceptually treacherous…

  8. Environmental assessment of an aircraft conversion, Montana Air National Guard, Great Falls, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, G.; Policastro, A.; Krummel, J.

    1986-08-01

    It is proposed that the 120th Fighter Interceptor Group of the Montana Air National Guard convert from 18 F-106 to 18 F-16 aircraft. Associated with this conversion are building modifications, land acquisition, and facility construction. The environmental assessment determined that the primary impacts of the conversion would be positive. Noise modeling using the NOISEMAP methodology showed that the maximum noise reduction, resulting from the conversion, at any ground receptor point is about 5 dB on the L/sub dn/ scale. The noise reductions vary with the distance of a receptor point from the runways - the greater the distance, the smallermore » the noise reduction. Conversion to the F-16 prior to completion of a ''hush house'' would result in a temporary increase in noise to the southeast of the airport over a commercial and industrial area. In addition, total air pollutant emissions from aircraft operations would be reduced as a consequence of the conversion. No significant adverse impacts are predicted as a result of the conversion from F-106s to F-16s.« less

  9. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    PubMed

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-05

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.

  10. Environmental impacts of conversion of cropland to biomass production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, T.H.; Brown, G.F.; Bingham, L.

    1996-12-31

    A study was initiated to determine the effects of conversion of row crop land to biomass production on runoff quality and quantity. Treatments were: (1) remain in row crop (no-till corn); (2) convert to short rotation woody crop (SRWC) production with sweetgum (Liquidambar styraciflua L.) planted in a 1.5 in by 3 in spacing maintaining complete weed control; (3) convert to SRWC with a tall fescue (Festuca eliator L.) cover crop planted in a 2.4 in strip centered between rows of trees to reduce erosion; and (4) convert to switchgrass (Panicum virgatum L.) as a biomass energy crop. Plots withinmore » a block similar in size (approximately 0.45 ha in block 1 and 0.20 ha in block 2), slope, soils, topographic position, recent land use history, etc. Although switchgrass plots eroded more early in the growing season, erosion was low once it became well established. Conversely, plots where trees were grown with no cover continued to erode throughout the growing season. These results indicate that growing short-rotation intensively cultured hardwoods with complete weed control will provide little erosion relief in agricultural fields, at least during the first growing season. Planting switchgrass for bioenergy production, however, does protect the soil. Nutrient runoff was related to fertilization.« less

  11. The Production of Biodiesel from Cottonseed Oil Using Rhizopus oryzae Whole Cell Biocatalysts

    NASA Astrophysics Data System (ADS)

    Athalye, Sneha Kishor

    Biodiesel is an environmentally friendly alternative to fossil fuels which have become increasingly expensive in recent times. An alternate approach to alkaline biodiesel production is needed as catalyst miscibility with the glycerol by-product, generation of large amounts of waste water, and saponification of the feedstock are major disadvantages associated with the process. Lipases are water soluble enzymes which act as catalysts in many lipid based reactions. Reuse of lipases can significantly reduce cost of enzymatic biodiesel production; however retention of lipolytic activity still remains a challenge. Use of microbial cells immobilized on various surfaces like sponge, foam and plastics as biocatalysts instead of extracted enzyme could help overcome this problem. A novel, rigid biomass support with high surface area made from recyclable polyethylene (Bioblok(TM)) was used in this study. Several fungal and bacterial species have been reported to possess appreciable levels of lipase activity. The biomass production and immobilization as well as lipase activity of three different species; Candida rugosa (ATCC #38772), Aspergillus oryzae (ATCC #58299), and Rhizopus oryzae (ATTC #34612) were tested. C. rugosa did not attach well to the support particles while A.oryzae had lower biomass accumulation of 6.1 g (dry cell wt)/L compared to 11.8 g (dry cell wt)/L for R.oryzae. Hence Rhizopus oryzae, fungal specie with cell surface bound lipase was selected for the current study. The study investigated the influence of media composition and growth time of the R.oryzae whole cell biocatalysts, immobilized on the BSPs, for FAME production from cottonseed oil. R.oryzae BSPs grown in basal media supplemented with 1% (w/v) of glucose or oil or both for 48 h, 72 h or 90 h were used in a 36 h transesterification reaction with cottonseed oil and methanol. BSPs grown in both glucose and oil supplemented medium for 72 h had the highest conversion of 22.4% (wt/wt) and a biomass accumulation of 15.6 g (dry cell wt)/L. A reduction in dynamic viscosity of the reaction mixture from 47.3 centipoise to 30.6 centipoise was observed. The impact of moisture addition to the reaction mixture and use of ethanol as acylating agent on R.oryzae BSP fatty acid alkyl ester production was also tested. The presence of 10 wt % moisture in the reaction system had a significant effect (p ≤ 0.05) on the transesterification reaction with ethanol unlike methanol. Fatty acid ethyl ester concentration tripled from 39.3 to 129.1 g/L when moisture was added during transesterification .When oil to acyl acceptor ratio was increased from 1:3 and 1:6 to determine effect of excess alcohol on conversion, an ester conversion of 128.1 g/L for methanol and 129.1 g/L for ethanol were observed. Use of excess amount of acylating agent had a significant adverse effect (p ≤ 0.05) on the overall FAAE production due to deactivation of lipases on contact with large amounts of insoluble alcohol in the oil phase of the reaction. The effect of short chain alcohols on the enzymatic transesterification of cottonseed oil using freeze dried Rhizopus oryzae biomass was examined with and without water addition using methanol, ethanol, 1-Propanol and 1-Butanol at various molar ratios. 1- Butanol in the absence of water resulted in a significantly higher (p . 0.1) conversion of cottonseed oil to 12.5 % fatty acid butyl esters (FABEs). Addition of 10 % water to the reaction mixture significantly reduced (p ≤ 0.1) conversion. No significant difference (p > 0.1) between the conversions was observed for time points after 24 h for a 72 h reaction. 1- Butanol in ratios higher than 3:1 to cottonseed oil had a significant impact (p ≤ 0.1) on conversion. Increasing the amount of biomass used during the reaction lead to significantly higher conversion (p ≤ 0.1). The highest conversion of 27.9 % was observed for the transesterification reaction between cottonseed oil and 1-Butanol, in a 1:6 molar ratio, in the absence of water, when 100 mg of freeze dried R.oryzae biomass was used. The present study concluded that R.oryzae biomass attached better to the Bioblok. material and had highest lipase activity when grown in presence of oil and glucose for 72h. Addition of water to the reaction system gave higher fatty acid alkyl ester conversion when whole immobilized R.oryzae BSPs were used but absence of water promoted conversion with freeze dried biomass.

  12. Conversion du methanol en ethanol par carbonylation suivie d'hydrogenolyse

    NASA Astrophysics Data System (ADS)

    Gaucher, Melissa

    Ce projet de maîtrise s'inscrit dans le cadre des nouvelles filières énergétiques renouvelables et s'effectue au sein de la Chaire de recherche industrielle sur l'éthanol cellulosique créée par trois partenaires industriels (Enerkem, CRB et Ethanol Greenfield) et le gouvernement du Québec en collaboration avec l'Université de Sherbrooke. La stratégie d'un des partenaires, Enerkem, est de convertir par gazéification des résidus de biomasse non homogène en Syngas, ce gaz est ensuite converti en méthanol puis en éthanol. L'objectif principal de ce projet est la conversion catalytique de l'acétate en alcool. Un catalyseur commercial, composé de cuivre et de chrome, a permis l'obtention des conversions de plus de 95 % et une sélectivité pour l'éthanol de plus de 50 % avec l'acétate de méthyle, de 99 % avec l'acétate d'éthyle et de 50 % avec l'acétate de butyle. Les conditions optimales trouvées impliquent une température de 215 °C, une pression de 350 psig, une vitesse spatiale de 1800 h -1 H2 STP et un ratio H2 : Acétate de 7. Un catalyseur alternatif, à base de cuivre et de zinc, a aussi été testé. L'objectif secondaire est la carbonylation du méthanol en acétate. Cette étape a été réalisée en phase gazeuse où des rendements très élevés, soit plus de 2000 kg d'acétate de méthyle par kg de métal précieux à l'heure (kg AM/ kg métal précieux/h), ont été obtenus. Les conditions d'opérations testées impliquent une température variant entre 200-240 °C, une pression entre 250-600 psig, des ratios McOH : CO de 1 à 2,5. Mots clés: Carbonylation, Éthanol, Hydrogénolyse, Catalyse hétérogène.

  13. Association of type 2 diabetes susceptibility genes (TCF7L2, SLC30A8, PCSK1 and PCSK2) and proinsulin conversion in a Chinese population.

    PubMed

    Zheng, Xiaoya; Ren, Wei; Zhang, Suhua; Liu, Jingjing; Li, Sufang; Li, Jinchao; Yang, Ping; He, Jun; Su, Shaochu; Li, Ping

    2012-01-01

    TCF7L2 and SLC30A8 have been found to be associated with type 2 diabetes mellitus (T2DM) as well as with impaired proinsulin processing recently, enzymes encoded by PCSK1 and PCSK2 are reported to play an important role in the process of proinsulin conversion. To investigate whether the single nucleotide polymorphisms (SNPs) of TCF7L2, SLC30A8, PCSK1 and PCSK2 were associated with T2DM as well as with proinsulin conversion in a Han Chinese population from Chongqing. A case-control study was performed in Han Chinese subjects with normal control (n=152) and T2DM (n=227), we genotyped rs7903146 and rs11196218 at TCF7L2, rs13266634 at SLC30A8, rs3811951 at PCSK1 and rs2021785 at PCSK2. Plasma levels of proinsulin were measured with an Enzyme Linked Immunosorbent Assay (ELISA). Genotype distribution and associations with T2DM and fasting levels of proinsulin and proinsulin/insulin ratios were analyzed. We confirmed the association of risk allele of rs2021785 at PCSK2 with type 2 diabetes also existed in Han Chinese population [OR=1.4489 with 95% CI (1.0285, 2.0412), P=0.0335]. Rs13266634 at SLC30A8 had a tendency to be associated with fasting plasma levels of proinsulin (P=0.0639 in additive model). We did not find the significant association between other SNPs and T2DM or fasting levels of proinsulin or proinsulin/insulin ratios. Our results provide evidence that the association of PCSK2 and T2DM was also existed in Han Chinese population in Chongqing. We were underpowered to detect the association between other SNPs and T2DM or proinsulin conversion.

  14. Identification and characterization of CYP79D16 and CYP71AN24 catalyzing the first and second steps in L-phenylalanine-derived cyanogenic glycoside biosynthesis in the Japanese apricot, Prunus mume Sieb. et Zucc.

    PubMed

    Yamaguchi, Takuya; Yamamoto, Kazunori; Asano, Yasuhisa

    2014-09-01

    Japanese apricot, Prunus mume Sieb. et Zucc., belonging to the Rosaceae family, produces as defensive agents the cyanogenic glycosides prunasin and amygdalin, which are presumably derived from L-phenylalanine. In this study, we identified and characterized cytochrome P450s catalyzing the conversion of L-phenylalanine into mandelonitrile via phenylacetaldoxime. Full-length cDNAs encoding CYP79D16, CYP79A68, CYP71AN24, CYP71AP13, CYP71AU50, and CYP736A117 were cloned from P. mume ‘Nanko’ using publicly available P. mume RNA-sequencing data, followed by 5′- and 3′-RACE. CYP79D16 was expressed in seedlings, whereas CYP71AN24 was expressed in seedlings and leaves. Enzyme activity of these cytochrome P450s expressed in Saccharomyces cerevisiae was evaluated by liquid and gas chromatography–mass spectrometry. CYP79D16, but not CYP79A68, catalyzed the conversion of L-phenylalanine into phenylacetaldoxime. CYP79D16 showed no activity toward other amino acids. CYP71AN24, but not CYP71AP13, CYP71AU50, and CYP736A117, catalyzed the conversion of phenylacetaldoxime into mandelonitrile. CYP71AN24 also showed lower conversions of various aromatic aldoximes and nitriles. The K m value and turnover rate of CYP71AN24 for phenylacetaldoxime were 3.9 µM and 46.3 min(−1), respectively. The K m value and turnover of CYP71AN24 may cause the efficient metabolism of phenylacetaldoxime, avoiding the release of the toxic intermediate to the cytosol. These results suggest that cyanogenic glycoside biosynthesis in P. mume is regulated in concert with catalysis by CYP79D16 in the parental and sequential reaction of CYP71AN24 in the seedling.

  15. Plasminogen stimulates propagation of protease-resistant prion protein in vitro.

    PubMed

    Mays, Charles E; Ryou, Chongsuk

    2010-12-01

    To clarify the role of plasminogen as a cofactor for prion propagation, we conducted functional assays using a cell-free prion protein (PrP) conversion assay termed protein misfolding cyclic amplification (PMCA) and prion-infected cell lines. Here, we report that plasminogen stimulates propagation of the protease-resistant scrapie PrP (PrP(Sc)). Compared to control PMCA conducted without plasminogen, addition of plasminogen in PMCA using wild-type brain material significantly increased PrP conversion, with an EC(50) = ∼56 nM. PrP conversion in PMCA was substantially less efficient with plasminogen-deficient brain material than with wild-type material. The activity stimulating PrP conversion was specific for plasminogen and conserved in its kringle domains. Such activity was abrogated by modification of plasminogen structure and interference of PrP-plasminogen interaction. Kinetic analysis of PrP(Sc) generation demonstrated that the presence of plasminogen in PMCA enhanced the PrP(Sc) production rate to ∼0.97 U/μl/h and reduced turnover time to ∼1 h compared to those (∼0.4 U/μl/h and ∼2.5 h) obtained without supplementation. Furthermore, as observed in PMCA, plasminogen and kringles promoted PrP(Sc) propagation in ScN2a and Elk 21(+) cells. Our results demonstrate that plasminogen functions in stimulating conversion processes and represents the first cellular protein cofactor that enhances the hypothetical mechanism of prion propagation.

  16. Gallbladder Nonvisualization in Cholecystectomy: A Factor for Conversion.

    PubMed

    Slack, Daniel R; Grisby, Shaunda; Dike, Uzoamaka Kimberly; Kohli, Harjeet

    2018-01-01

    Many risk factors have been identified in minimally invasive cholecystectomies that lead to higher complications and conversion rates. No study that we encountered looked at nonvisualization of the gallbladder (GB) during surgery as a risk factor. We hypothesized that nonvisualization was associated with an increased risk of complications and could be an early intraoperative identifier of a higher risk procedure. Recognizing this could allow surgeons to be aware of potential risks and to be more likely to convert to open for the safety of the patient. We looked at minimally invasive cholecystectomies performed at our institution from January 2015 through April 2016 and had the performing resident fill out a survey after the surgery. Outcomes were conversion rates, intraoperative complications, and blood loss and were analyzed via Pearson χ 2 test or Mann-Whitney U test. The primary outcome showed a conversion rate of 37% in nonvisualized GBs versus 0% in visualized ( P = .001). Secondary outcomes showed significant differences in GB perforations (74% vs 13%, P = .001), omental vessel bleeding (16% vs. 0%, P = .005), and EBL (46 mL vs 29 mL, P = .001). Intraoperative nonvisualization of the GB after adequate positioning caused significantly increased risk of intraoperative complications and conversion. This knowledge could be useful during intraoperative assessment, to decide whether a case should be continued as a minimally invasive procedure or converted early to help reduce risk to the patient. Further randomized controlled studies should be performed to further demonstrate the value of this assessment.

  17. Content Coding of Psychotherapy Transcripts Using Labeled Topic Models.

    PubMed

    Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic

    2017-03-01

    Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, nonstandardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the labeled latent Dirichlet allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of 0.79, and 0.70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scalable method for accurate automated coding of psychotherapy sessions that perform better than comparable discriminative methods at session-level coding and can also predict fine-grained codes.

  18. Content Coding of Psychotherapy Transcripts Using Labeled Topic Models

    PubMed Central

    Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic

    2016-01-01

    Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, non-standardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly-available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the Labeled Latent Dirichlet Allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic (ROC) curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of .79, and .70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scaleable method for accurate automated coding of psychotherapy sessions that performs better than comparable discriminative methods at session-level coding and can also predict fine-grained codes. PMID:26625437

  19. CaiT of Escherichia coli, a new transporter catalyzing L-carnitine/gamma -butyrobetaine exchange.

    PubMed

    Jung, Heinrich; Buchholz, Marion; Clausen, Jurgen; Nietschke, Monika; Revermann, Anne; Schmid, Roland; Jung, Kirsten

    2002-10-18

    l-Carnitine is essential for beta-oxidation of fatty acids in mitochondria. Bacterial metabolic pathways are used for the production of this medically important compound. Here, we report the first detailed functional characterization of the caiT gene product, a putative transport protein whose function is required for l-carnitine conversion in Escherichia coli. The caiT gene was overexpressed in E. coli, and the gene product was purified by affinity chromatography and reconstituted into proteoliposomes. Functional analyses with intact cells and proteoliposomes demonstrated that CaiT is able to catalyze the exchange of l-carnitine for gamma-butyrobetaine, the excreted end product of l-carnitine conversion in E. coli, and related betaines. Electrochemical ion gradients did not significantly stimulate l-carnitine uptake. Analysis of l-carnitine counterflow yielded an apparent external K(m) of 105 microm and a turnover number of 5.5 s(-1). Contrary to related proteins, CaiT activity was not modulated by osmotic stress. l-Carnitine binding to CaiT increased the protein fluorescence and caused a red shift in the emission maximum, an observation explained by ligand-induced conformational alterations. The fluorescence effect was specific for betaine structures, for which the distance between trimethylammonium and carboxyl groups proved to be crucial for affinity. Taken together, the results suggest that CaiT functions as an exchanger (antiporter) for l-carnitine and gamma-butyrobetaine according to the substrate/product antiport principle.

  20. Role of various indices derived from an oral glucose tolerance test in the prediction of conversion from prediabetes to type 2 diabetes.

    PubMed

    Kim, Ye An; Ku, Eu Jeong; Khang, Ah Reum; Hong, Eun Shil; Kim, Kyoung Min; Moon, Jae Hoon; Choi, Sung Hee; Park, Kyong Soo; Jang, Hak Chul; Lim, Soo

    2014-11-01

    The clinical implications of prediabetes for development of type 2 diabetes may differ for Asian ethnicity. We investigated various indices derived from a 2-h oral glucose tolerance test (OGTT) in people with prediabetes to predict their future risk of diabetes. We recruited 406 consecutive subjects with prediabetes from 2005 to 2006 and followed them up every 3-6 months for up to 9 years. Prediabetes was defined as isolated impaired fasting glucose (IFG), isolated impaired glucose tolerance (IGT), combined glucose intolerance (CGI), or isolated elevated HbA1c (5.7-6.4%, 39-46 mmol/mol) without IFG or IGT. The rate of diabetes conversion was compared between prediabetes categories. The association of glycemic indices with development of diabetes was also investigated. Eighty-one patients were diagnosed with diabetes during the 9-year follow-up (median 46.0 months). The rate of diabetes conversion was higher in subjects with CGI (31.9%), or isolated IGT (18.5%) than in those with isolated IFG (15.2%) or isolated elevated HbA1c (10.9%). Surrogate markers reflecting β-cell dysfunction were more closely associated with diabetes conversion than insulin resistance indices. Subjects with a 30-min postload glucose ≥ 165 mg/dL and a 30-min C-peptide < 5 ng/mL had 8.83 times greater risk (95% confidence interval 2.98-26.16) of developing diabetes than other prediabetic subjects. In Asians, at least Koreans, β-cell dysfunction seems to be the major determinant for diabetes conversion. A combination of high glucose and low C-peptide levels at 30 min after OGTT may be a good predictor for diabetes conversion in this population. Copyright © 2014. Published by Elsevier Ireland Ltd.

  1. METHOD OF PREPARING METAL HALIDES

    DOEpatents

    Hendrickson, A.V.

    1958-11-18

    The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.

  2. Conversion to everolimus in kidney transplant recipients with decreased renal function.

    PubMed

    Inza, A; Balda, S; Alvarez, E; Zárraga, S; Gaínza, F J; Lampreabe, I

    2009-01-01

    Whenever graft function is good and proteinuria is under control, many reports describe the efficacy and safety of the conversion to Everolimus (EVL) among stable kidney recepients, simultaneously withdrawing the calcineurin inhibitor (CNI). However, there are few publications that evaluate the role of EVL in patients with decreased renal function. We describe our experience with 22 stable renal transplant recipients whose serum creatinine concentrations were >2 mg/dL and proteinuria <1000 mg/24 h who underwent an abrupt switch from a CNI to EVL. Conversion was simple, well-tolerated, and safe using an initial dose of 1-3 mg/d that was sufficient to achieve the recommended levels of 3-8 ng/dL. The adverse events were expected; most of them were of medium intensity. Globally, over the 24 months follow-up, there was improved renal function despite the initial creatinine. The improvement was greater when the switch was performed during the first year after transplantation. Two patients lost their grafts after a dramatic evolution with development of nephrotic syndrome and increasing creatinine. In our experience, conversion to EVL is a safe alternative among patients with chronic allograft nephropathy or nephrotoxicity due to CNI, even in patients with significantly decreased renal function at the time of the switch.

  3. Optimization of lipase-catalyzed biodiesel by isopropanolysis in a continuous packed-bed reactor using response surface methodology.

    PubMed

    Chang, Cheng; Chen, Jiann-Hwa; Chang, Chieh-Ming J; Wu, Tsung-Ta; Shieh, Chwen-Jen

    2009-10-31

    Isopropanolysis reactions were performed using triglycerides with immobilized lipase in a solvent-free environment. This study modeled the degree of isopropanolysis of soybean oil in a continuous packed-bed reactor when Novozym 435 was used as the biocatalyst. Response surface methodology (RSM) and three-level-three-factor Box-Behnken design were employed to evaluate the effects of synthesis parameters, reaction temperature ( degrees C), flow rate (mL/min) and substrate molar ratio of isopropanol to soybean oil, on the percentage molar conversion of biodiesel by transesterification. The results show that flow rate and temperature have a significant effect on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions for synthesis were as follows: flow rate 0.1 mL/min, temperature 51.5 degrees C and substrate molar ratio 1:4.14. The predicted value was 76.62+/-1.52% and actual experimental value was 75.62+/-0.81% molar conversion. Moreover, continuous enzymatic process for seven days did not show any appreciable decrease in the percent of molar conversion (75%). This work demonstrates the applicability of lipase catalysis to prepare isopropyl esters by transesterification in solvent-free system with a continuous packed-bed reactor for industrial production.

  4. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid

    PubMed Central

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source. PMID:26640784

  5. Identification and characterization of a novel L-arabinose isomerase from Anoxybacillus flavithermus useful in D-tagatose production.

    PubMed

    Li, Yanjun; Zhu, Yueming; Liu, Anjun; Sun, Yuanxia

    2011-05-01

    D-Tagatose is a highly functional rare ketohexose and many attempts have been made to convert D-galactose into the valuable D-tagatose using L-arabinose isomerase (L-AI). In this study, a thermophilic strain possessing L-AI gene was isolated from hot spring sludge and identified as Anoxybacillus flavithermus based on its physio-biochemical characterization and phylogenetic analysis of its 16s rRNA gene. Furthermore, the gene encoding L-AI from A. flavithermus (AFAI) was cloned and expressed at a high level in E. coli BL21(DE3). L-AI had a molecular weight of 55,876 Da, an optimum pH of 10.5 and temperature of 95°C. The results showed that the conversion equilibrium shifted to more D-tagatose from D-galactose by raising the reaction temperatures and adding borate. A 60% conversion of D-galactose to D-tagatose was observed at an isomerization temperature of 95°C with borate. The catalytic efficiency (k (cat) /K (m)) for D-galactose with borate was 9.47 mM(-1) min(-1), twice as much as that without borate. Our results indicate that AFAI is a novel hyperthermophilic and alkaliphilic isomerase with a higher catalytic efficiency for D-galactose, suggesting its great potential for producing D-tagatose.

  6. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system.

    PubMed

    Nyberg, Marcus; Heidorn, Thorsten; Lindblad, Peter

    2015-12-10

    Nitrogenase based hydrogen production was examined in a ΔhupW strain of the filamentous heterocystous cyanobacterium Nostoc PCC 7120, i.e., cells lacking the last step in the maturation system of the large subunit of the uptake hydrogenase and as a consequence with a non-functional uptake hydrogenase. The cells were grown in a developed flat panel photobioreactor system with 3.0L culture volume either aerobically (air) or anaerobically (Ar or 80% N2/20% Ar) and illuminated with a mixture of red and white LED. Aerobic growth of the ΔhupW strain of Nostoc PCC 7120 at 44μmolar photons m(-2)s(-1) PAR gave the highest hydrogen production of 0.7mL H2 L(-1)h(-1), 0.53mmol H2 mg chlorophyll a(-1)h(-1), and a light energy conversion efficiency of 1.2%. Anaerobic growth using 100% argon showed a maximal hydrogen production of 1.7mLL(-1)h(-1), 0.85mmol per mg chlorophyll a(-1) h(-1), and a light energy conversion efficiency of 2.7%. Altering between argon/N2 (20/80) and 100% argon phases resulted in a maximal hydrogen production at hour 128 (100% argon phase) with 6.2mL H2L(-1)h(-1), 0.71mL H2 mg chlorophyll a(-1)h(-1), and a light energy efficiency conversion of 4.0%. The highest buildup of hydrogen gas observed was 6.89% H2 (100% argon phase) of the total photobioreactor system with a maximal production of 4.85mL H2 L(-1)h(-1). The present study clearly demonstrates the potential to use purpose design cyanobacteria in developed flat panel photobioreactor systems for the direct production of the solar fuel hydrogen. Further improvements in the strain used, environmental conditions employed, and growth, production and collection systems used, are needed before a sustainable and economical cyanobacterial based hydrogen production can be realized. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Conversation Analysis of Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Gonzalez-Lloret, Marta

    2011-01-01

    The potential of computer-mediated communication (CMC) for language learning resides mainly in the possibility that learners have to engage with other speakers of the language, including L1 speakers. The inclusion of CMC in the L2 classroom provides an opportunity for students to utilize authentic language in real interaction, rather than the more…

  8. Unlocking Families' Potential: A Conversation with Karen L. Mapp

    ERIC Educational Resources Information Center

    Thiers, Naomi

    2017-01-01

    Karen L. Mapp--former Deputy Superintendent for Family and Community Engagement for Boston's schools and noted researcher and author on how schools can partner with families--talks with "EL" editor Naomi Thiers on the need to approach engaging family caregivers in students' learning in a new way, starting with emphasizing active…

  9. Investigating Syntactical and Lexical Complexity in Gendered and Same-Sex Interactions

    ERIC Educational Resources Information Center

    Long, Robert W., III.

    2018-01-01

    For many sociolinguists, the issue of shyness and hesitation phenomenon has been problematic for Japanese L1 and L2 speakers, particularly in gendered interactions. Over the past decade, more Japanese are shunning conversations, relationships, and isolating themselves, which is accelerating the demographic crisis in Japan. Thus, this paper focuses…

  10. Authentic L2 Interactions as Material for a Pragmatic Awareness-Raising Activity

    ERIC Educational Resources Information Center

    Cheng, Tsui-Ping

    2016-01-01

    This study draws on conversation analysis to explore the pedagogical possibility of using audiovisual depictions of authentic disagreement sequences from L2 interactions as sources for an awareness-raising activity in an English as a Second Language (ESL) classroom. Video excerpts of disagreement sequences collected from two ESL classes were used…

  11. Negotiating Power in L2 Synchronous Online Peer Response Groups

    ERIC Educational Resources Information Center

    Tsai, Mei-Hsing

    2017-01-01

    Many synchronous computer-mediated communication (SCMC) studies have been conducted on the nature of online interaction across a range of pragmatic issues. However, the detailed analyses of resistance to advice have received less attention. Using the methodology of conversation analysis (CA), the present study focuses on L2 peer review activities…

  12. Isolation and characterization of unhydrolyzed oligosaccharides from switchgrass (Panicum virgatum, L.) xylan after exhaustive enzymatic treatment with commercial enzyme preparations

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum, L.) is a potential renewable source of carbohydrates for use in microbial conversion to biofuels. Xylan comprises approximately 30% of the switchgrass cell wall. To understand the limitations of commercial enzyme mixtures, alkali-extracted, isolated switchgrass xylan w...

  13. The Effect of Conversation Engagement on L2 Learning Opportunities

    ERIC Educational Resources Information Center

    Chen, Wenxue

    2017-01-01

    This article reviews patterns of interaction (i.e. learner role relationships) in peer communicative tasks, and uses data collected from different tasks to explain what happens in peer interaction and its impact on the learning opportunities interlocutors create for each other. It proposes that, with L2 peer interaction gaining popularity in…

  14. Stuttering Characteristics of German-English Bilingual Speakers

    ERIC Educational Resources Information Center

    Schafer, Martina; Robb, Michael P.

    2012-01-01

    The purpose of this study was to examine stuttering behavior in German-English bilingual people who stutter (PWS), with particular reference to the frequency of stuttering on content and function words. Fifteen bilingual PWS were sampled who spoke German as the first language (L1) and English as a second language (L2). Conversational speech was…

  15. Enzymatic synthesis of S-phenyl-L-cysteine from keratin hydrolysis industries wastewater with tryptophan synthase.

    PubMed

    Xu, Lisheng; Wang, Zhiyuan; Mao, Pingting; Liu, Junzhong; Zhang, Hongjuan; Liu, Qian; Jiao, Qing-Cai

    2013-04-01

    An economical method for production of S-phenyl-L-cysteine from keratin acid hydrolysis wastewater (KHW) containing L-serine was developed by recombinant tryptophan synthase. This study provides us with an alternative KHW utilization strategy to synthesize S-phenyl-L-cysteine. Tryptophan synthase could efficiently convert L-serine contained in KHW to S-phenyl-L-cysteine at pH 9.0, 40°C and Trion X-100 of 0.02%. In a scale up study, L-serine conversion rate reach 97.1% with a final S-phenyl-L-cysteine concentration of 38.6 g l(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Biodiesel production by direct transesterification of microalgal biomass with co-solvent.

    PubMed

    Zhang, Yan; Li, Ya; Zhang, Xu; Tan, Tianwei

    2015-11-01

    In this study, a direct transesterification process using 75% ethanol and co-solvent was studied to reduce the energy consumption of lipid extraction process and improve the conversion yield of the microalgae biodiesel. The addition of a certain amount of co-solvent (n-hexane is most preferable) was required for the direct transesterification of microalgae biomass. With the optimal reaction condition of n-hexane to 75% ethanol volume ratio 1:2, mixed solvent dosage 6.0mL, reaction temperature 90°C, reaction time 2.0h and catalyst volume 0.6mL, the direct transesterification process of microalgal biomass resulted in a high conversion yield up to 90.02±0.55wt.%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Gene modification of the acetate biosynthesis pathway in Escherichia coli and implementation of the cell recycling technology to increase L-tryptophan production

    PubMed Central

    Bai, Fang; Chen, Ning; Bai, Gang

    2017-01-01

    The implementation of a novel cell recycling technology based on a special disk centrifuge during microbial fermentation process can continuously separate the product and harmful intermediates, while maintaining the cell viability owing to the installed cooling system. Acetate accumulation is an often encountered problem in L-tryptophan fermentation by Escherichia coli. To extend our previous studies, the current study deleted the key genes underlying acetate biosynthesis to improve l-tryptophan production. The deletion of the phosphotransacetylase (pta)–acetate kinase (ackA) pathway in a gltB (encoding glutamate synthase) mutant of E. coli TRTHB, led to the highest production of l-tryptophan (47.18 g/L) and glucose conversion rate (17.83%), with a marked reduction in acetate accumulation (1.22 g/L). This strain, TRTHBPA, was then used to investigate the effects of the cell recycling process on L-tryptophan fermentation. Four different strategies were developed concerning two issues, the volume ratio of the concentrated cell solution and clear solution and the cell recycling period. With strategy I (concentrated cell solution: clear solution, 1: 1; cell recycling within 24–30 h), L-tryptophan production and the glucose conversion rate increased to 55.12 g/L and 19.75%, respectively, 17.55% and 10.77% higher than those without the cell recycling. In addition, the biomass increased by 13.52% and the fermentation period was shortened from 40 h to 32 h. These results indicated that the cell recycling technology significantly improved L-tryptophan production by E. coli. PMID:28622378

  18. Comment on `Magnitude conversion problem using general orthogonal regression' by H. R. Wason, Ranjit Das and M. L. Sharma, (Geophys. J. Int., 190, 1091-1096)

    NASA Astrophysics Data System (ADS)

    Gasperini, Paolo; Lolli, Barbara

    2014-01-01

    The argument proposed by Wason et al. that the conversion of magnitudes from a scale (e.g. Ms or mb) to another (e.g. Mw), using the coefficients computed by the general orthogonal regression method (Fuller) is biased if the observed values of the predictor (independent) variable are used in the equation as well as the methodology they suggest to estimate the supposedly true values of the predictor variable are wrong for a number of theoretical and empirical reasons. Hence, we advise against the use of such methodology for magnitude conversions.

  19. List of Standards to Accompany Manual of Documentation Practices Applicable to Defence-Aerospace Scientific and Technical Information (Liste des Normes a Placer en Annexe au Manuel Concernant les Techniques Documentaires Applicables a l’Information Scientifique et Technique de la Defense et du Secteur Aerospatial)

    DTIC Science & Technology

    1990-10-01

    CHARACTERS ISO 0233 1984 DOCUMENTATION - TRANSLITERATION OF ARABIC CHARACTERS INTO LATIN CHARACTERS ISO 0259 1954 DOCUMENTATION - TRANSLITERATION OF HEBREW...TRANSLITERATION OF ARABIC CHARACTERS IN LATIN CHARACTERS SF I 46-DUO 1N64 TRANSLITERATION - TRANSLITERATION OF HEBREW IN LATIN CHARACTERS . 46-010...LANGUAGE CODES (ANNIE: AUT.ORITY SYMSOLS DIN 31 634 CONVERSION OF THE GREEN ALUBABET DIN 31 635 CONVERSION OF THE ARABIC ALPHABET DIN 31 635 CONVERSION OF

  20. Mode conversion in metal-insulator-metal waveguide with a shifted cavity

    NASA Astrophysics Data System (ADS)

    Wang, Yueke; Yan, Xin

    2018-01-01

    We propose a method, which is utilized to achieve the plasmonic mode conversion in metal-insulator-metal (MIM) waveguide, theoretically. Our proposed structure is composed of bus waveguides and a shifted cavity. The shifted cavity can choose out a plasmonic mode (a- or s-mode) when it is in Fabry-Perot (FP) resonance. The length of the shifted cavity L is carefully chosen, and our structure can achieve the mode conversion between a- and s-mode in the communication region. Besides, our proposed structure can also achieve plasmonic mode-division multiplexing. All the numerical simulations are carried on by the finite element method to verify our design.

  1. Experimental demonstration of laser to x-ray conversion enhancements with low density gold targets

    DOE PAGES

    Shang, Wanli; Yang, Jiamin; Zhang, Wenhai; ...

    2016-02-12

    The enhancement of laser to x-ray conversion efficiencies using low density gold targets [W. L. Shang, J. M. Yang, and Y. S. Dong, Appl. Phys. Lett. 102, 094105 (2013)] is demonstrated. Laser to x-ray conversion efficiencies with 6.3% and 12% increases are achieved with target densities of 1 and 0.25 g/cm 3, when compared with that of a solid gold target (19.3 g/cm 3). Experimental data and numerical simulations are in good agreement. Lastly, the enhancement is caused by larger x-ray emission zone lengths formed in low density targets, which is in agreement with the simulation results.

  2. Experimental demonstration of laser to x-ray conversion enhancements with low density gold targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Wanli; Yang, Jiamin; Zhang, Wenhai

    The enhancement of laser to x-ray conversion efficiencies using low density gold targets [W. L. Shang, J. M. Yang, and Y. S. Dong, Appl. Phys. Lett. 102, 094105 (2013)] is demonstrated. Laser to x-ray conversion efficiencies with 6.3% and 12% increases are achieved with target densities of 1 and 0.25 g/cm 3, when compared with that of a solid gold target (19.3 g/cm 3). Experimental data and numerical simulations are in good agreement. Lastly, the enhancement is caused by larger x-ray emission zone lengths formed in low density targets, which is in agreement with the simulation results.

  3. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu. © 2014 American Institute of Chemical Engineers.

  4. [Postoperative visual loss due to conversion disorder after spine surgery: a case report].

    PubMed

    Bezerra, Dailson Mamede; Bezerra, Eglantine Mamede; Silva Junior, Antonio Jorge; Amorim, Marco Aurélio Soares; Miranda, Denismar Borges de

    Patients undergoing spinal surgeries may develop postoperative visual loss. We present a case of total bilateral visual loss in a patient who, despite having clinical and surgical risk factors for organic lesion, evolved with visual disturbance due to conversion disorder. A male patient, 39 years old, 71kg, 1.72 m, ASA I, admitted to undergo fusion and discectomy at L4-L5 and L5-S1. Venoclysis, cardioscopy, oximetry, NIBP; induction with remifentanil, propofol and rocuronium; intubation with ETT (8.0mm) followed by capnography and urinary catheterization for diuresis. Maintenance with full target-controlled intravenous anesthesia. During fixation and laminectomy, the patient developed severe bleeding and hypovolemic shock. After 30minutes, hemostasis and hemodynamic stability was achieved with infusion of norepinephrine, volume expansion, and blood products. In the ICU, the patient developed mental confusion, weakness in the limbs, and bilateral visual loss. It was not possible to identify clinical, laboratory or image findings of organic lesion. He evolved with episodes of anxiety, emotional lability, and language impairment; the hypothesis of conversion syndrome with visual component was raised after psychiatric evaluation. The patient had complete resolution of symptoms after visual education and introduction of low doses of antipsychotic, antidepressant, and benzodiazepine. Other symptoms also regressed, and the patient was discharged 12 days after surgery. After 60 days, the patient had no more symptoms. Conversion disorders may have different signs and symptoms of non-organic origin, including visual component. It is noteworthy that the occurrence of this type of visual dysfunction in the postoperative period of spinal surgery is a rare event and should be remembered as a differential diagnosis. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  5. Protein Repair l-Isoaspartyl Methyltransferase1 Is Involved in Both Seed Longevity and Germination Vigor in Arabidopsis[W

    PubMed Central

    Ogé, Laurent; Bourdais, Gildas; Bove, Jérôme; Collet, Boris; Godin, Béatrice; Granier, Fabienne; Boutin, Jean-Pierre; Job, Dominique; Jullien, Marc; Grappin, Philippe

    2008-01-01

    The formation of abnormal amino acid residues is a major source of spontaneous age-related protein damage in cells. The protein l-isoaspartyl methyltransferase (PIMT) combats protein misfolding resulting from l-isoaspartyl formation by catalyzing the conversion of abnormal l-isoaspartyl residues to their normal l-aspartyl forms. In this way, the PIMT repair enzyme system contributes to longevity and survival in bacterial and animal kingdoms. Despite the discovery of PIMT activity in plants two decades ago, the role of this enzyme during plant stress adaptation and in seed longevity remains undefined. In this work, we have isolated Arabidopsis thaliana lines exhibiting altered expression of PIMT1, one of the two genes encoding the PIMT enzyme in Arabidopsis. PIMT1 overaccumulation reduced the accumulation of l-isoaspartyl residues in seed proteins and increased both seed longevity and germination vigor. Conversely, reduced PIMT1 accumulation was associated with an increase in the accumulation of l-isoaspartyl residues in the proteome of freshly harvested dry mature seeds, thus leading to heightened sensitivity to aging treatments and loss of seed vigor under stressful germination conditions. These data implicate PIMT1 as a major endogenous factor that limits abnormal l-isoaspartyl accumulation in seed proteins, thereby improving seed traits such as longevity and vigor. The PIMT repair pathway likely works in concert with other anti-aging pathways to actively eliminate deleterious protein products, thus enabling successful seedling establishment and strengthening plant proliferation in natural environments. PMID:19011119

  6. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria.

    PubMed

    Xiao, Xiaopeng; Mazza, Lorenzo; Yu, Yongqiang; Cai, Minmin; Zheng, Longyu; Tomberlin, Jeffery K; Yu, Jeffrey; van Huis, Arnold; Yu, Ziniu; Fasulo, Salvatore; Zhang, Jibin

    2018-07-01

    A chicken manure management process was carried out through co-conversion of Hermetia illucens L. larvae (BSFL) with functional bacteria for producing larvae as feed stuff and organic fertilizer. Thirteen days co-conversion of 1000 kg of chicken manure inoculated with one million 6-day-old BSFL and 10 9  CFU Bacillus subtilis BSF-CL produced aging larvae, followed by eleven days of aerobic fermentation inoculated with the decomposing agent to maturity. 93.2 kg of fresh larvae were harvested from the B. subtilis BSF-CL-inoculated group, while the control group only harvested 80.4 kg of fresh larvae. Chicken manure reduction rate of the B. subtilis BSF-CL-inoculated group was 40.5%, while chicken manure reduction rate of the control group was 35.8%. The weight of BSFL increased by 15.9%, BSFL conversion rate increased by 12.7%, and chicken manure reduction rate increased by 13.4% compared to the control (no B. subtilis BSF-CL). The residue inoculated with decomposing agent had higher maturity (germination index >92%), compared with the no decomposing agent group (germination index ∼86%). The activity patterns of different enzymes further indicated that its production was more mature and stable than that of the no decomposing agent group. Physical and chemical production parameters showed that the residue inoculated with the decomposing agent was more suitable for organic fertilizer than the no decomposing agent group. Both, the co-conversion of chicken manure by BSFL with its synergistic bacteria and the aerobic fermentation with the decomposing agent required only 24 days. The results demonstrate that co-conversion process could shorten the processing time of chicken manure compared to traditional compost process. Gut bacteria could enhance manure conversion and manure reduction. We established efficient manure co-conversion process by black soldier fly and bacteria and harvest high value-added larvae mass and biofertilizer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The Impact of Laws on Metric Conversion: A Survey of Selected Large U.S. Corporations.

    DTIC Science & Technology

    1982-02-01

    resulting from increasing metric usage (Section 6-8). * Conduct researc [., including appropriate surveys; publish recults of such research; and recommend to...Products Case Study There has been very little conversion of the products manufactured and marketed by this firm. According to the firm representative...sizes for marketing reasons. The industry action resulted in this firm PAGE A-3 • F - L ’... . " ... . -, . . .-,--m :..: - - A THE NEWMAN & HERMANSON

  8. Competitive Sourcing in the Marine Corps: Friend or Foe?

    DTIC Science & Technology

    2006-02-07

    Report, March 2004 (Washington, D.C.), 82. 8. Mr. P. R. Stenner , “Military – Civilian Conversions,” 21 October 2004, https://www.manpower.usmc.mil...14 December 2005). 9. Stenner , 2. 10. United States Marine Corps, MARADMIN 058/05: Military- Civilian FY06 Conversions, 9 February 2005...Lieutenant General, USMC. DC I&L. “Excellence in Warfighting Support,” Marine Corps Gazette, August 2004, 30-31. Stenner , P. R. “Military – Civilian

  9. A novel method to quantify the emission and conversion of VOCs in the smoking of electronic cigarettes

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-11-01

    An analytical technique was developed for the quantitation of volatile organic compounds (VOC) in three different forms of electronic cigarette (EC): solution, vapor, and aerosol. Through the application of the mass change tracking (MCT) approach, the consumed amount of the solution was measured to track the conversion of targets between the different phases. The concentration of aerosol plus vapor (A&V) decreased exponentially (559 to 129 g m-3) with increasing puff velocity (0.05 to 1 L min-1). A strong correlation existed between sampling volume and consumed solution mass (R2 = 0.9972 ± 0.0021 (n = 4)). In the EC solution, acetic acid was considerably high (25.8 μg mL-1), along with trace quantities of some VOCs (methyl ethyl ketone, toluene, propionic acid, and i-butyric acid: 0.24 ± 0.15 μg mL-1 (n = 4)). In the aerosol samples, many VOCs (n-butyraldehyde, n-butyl acetate, benzene, xylene, styrene, n-valeric acid, and n-hexanoic acid) were newly produced (138 ± 250 μg m-3). In general, the solution-to-aerosol (S/A) conversion was significant: e.g., 1,540% for i-butyric acid. The emission rates of all targets computed based on their mass in aerosol/ consumed solution (ng mL-1) were from 30.1 (p-xylene) to 398 (methyl ethyl ketone), while those of carboxyls were much higher from 166 (acetic acid) to 5,850 (i-butyric acid).

  10. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.

    PubMed

    Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu

    2015-01-01

    Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading.

    PubMed

    Qiu, Jingwen; Ma, Lunjie; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Hu, Yaodong

    2017-08-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater

    NASA Astrophysics Data System (ADS)

    Ge, Zheng; Wu, Liao; Zhang, Fei; He, Zhen

    2015-11-01

    Development of microbial fuel cell (MFC) technology must address the challenges associated with energy extraction from large-scale MFC systems consisting of multiple modules. Herein, energy extraction is investigated with a 200-L MFC system (effective volume of 100 L for this study) treating actual municipal wastewater. A commercially available energy harvesting device (BQ 25504) is used successfully to convert 0.8-2.4 V from the MFCs to 5 V for charging ultracapacitors and running a DC motor. Four different types of serial connection containing different numbers of MFC modules are examined for energy extraction and conversion efficiency. The connection containing three rows of the MFCs has exhibited the best performance with the highest power output of ∼114 mW and the conversion efficiency of ∼80%. The weak performance of one-row MFCs negatively affects the overall performance of the connected MFCs in terms of both energy production and conversion. Those results indicate that an MFC system with balanced performance among individual modules will be critical to energy extraction. Future work will focus on application of the extracted energy to support MFC operation.

  13. Conversion of Biomass Hydrolysates and Other Substrates to Ethanol and Other Chemicals by Lactobacillus buchneri

    USDA-ARS?s Scientific Manuscript database

    A Lactobacillus buchneri strain NRRL B-30929 can convert xylose and glucose into ethanol and chemicals. In this paper, L. buchneri NRRL B-30929 was initially compared with the type strains L. buchneri NRRL 1837 and DSM 5987 for growth and fermentation using single substrate derived from plant mater...

  14. Grammar as a Joint Achievement: Co-Constructions in L2 Interactions

    ERIC Educational Resources Information Center

    Family, Neiloufar; Durus, Natalia; Ziegler, Gudrun

    2015-01-01

    In this study, we present and analyze co-constructions from L2 English data collected at the European School in Luxembourg. Co-constructions are morpho-syntactic structures split across two speakers, in which a second speaker completes a grammatical structure initiated by the first speaker in conversation. The corpus features multilingual 13-14…

  15. Learning and the Immediate Use(Fulness) of a New Vocabulary Item

    ERIC Educational Resources Information Center

    Hauser, Eric

    2017-01-01

    Within the framework of Conversation Analysis for Second Language Acquisition (CA-SLA), this study uses learning behavior tracking (LBT) (Markee, 2008) with longitudinal data to investigate word learning by one adult second language (L2) user of English. The adult is a first language (L1) user of Japanese with limited proficiency in English. Data…

  16. Social and Cognitive Factors in Making Teacher-Led Classroom Discourse Relevant for Second Language Development

    ERIC Educational Resources Information Center

    Toth, Paul D.

    2011-01-01

    This study compares descriptive quantitative and qualitative data from 2 beginning, university-level second-language (L2) Spanish classes to demonstrate the benefits of teacher-led discourse organized as collaborative, whole-class tasks. In class, the teacher solicited target L2 forms through conversational questions to individuals with recasted…

  17. Bursch, Ross and Smith talk in Zvezda during STS-110's visit to the ISS

    NASA Image and Video Library

    2002-04-09

    STS110-E-5122 (10 April 2002) --- Astronauts Daniel W. Bursch (left), Expedition Four flight engineer, Jerry L. Ross and Steven L. Smith, both STS-110 mission specialists, converse in the Zvezda Service Module on the International Space Station (ISS). The image was taken with a digital still camera.

  18. Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment.

    PubMed

    Kang, Hee-Kyoung; Kim, Doman

    2012-01-01

    Rice straw is a lignocellulosic biomass that constitutes a renewable organic substance and alternative source of energy; however, its structure confounds the liberation of monosaccharides. Pretreating rice straw using a TiO(2)/UV system facilitated its hydrolysis with Accellerase 1000(™), suggesting that hydroxyl radicals (OH·) from the TiO(2)/UV system could degrade lignin and carbohydrates. TiO(2)/UV pretreatment was an essential step for conversion of hemicellulose to xylose; optimal conditions for this conversion were a TiO(2) concentration of 0.1% (w/v) and an irradiation time of 2 h with a UV-C lamp at 254 nm. After enzymatic hydrolysis, the sugar yields from rice straw pretreated with these parameters were 59.8 ± 0.7% of the theoretical for glucose (339 ± 13 mg/g rice straw) and 50.3 ± 2.8% for xylose (64 ± 3 mg/g rice straw). The fermentation of enzymatic hydrolysates containing 10.5 g glucose/L and 3.2 g xylose/L with Pichia stipitis produced 3.9 g ethanol/L with a corresponding yield of 0.39 g/g rice straw. The maximum possible ethanol conversion rate is 76.47%. TiO(2)/UV pretreatment can be performed at room temperature and atmospheric pressure and demonstrates potential in large-scale production of fermentable sugars.

  19. Development of dye-sensitized solar cells based on naturally extracted dye from the maqui berry (Aristotelia chilensis)

    NASA Astrophysics Data System (ADS)

    Leyrer, Julio; Hunter, Renato; Rubilar, Monica; Pavez, Boris; Morales, Eduardo; Torres, Simonet

    2016-10-01

    The mini modules of dye-sensitized solar cells (DSSCs) were investigated for their conversion efficiency using anthocyanin-enriched extracts from maqui berry, which to date has never been tested in a DSSC. Anthocyanins are a group of red, purple, violet and blue water-soluble polyphenolic pigments widely found in berry fruits. Maqui berries are a particularly rich source. The aqueous extract concentrations of maqui fruit were tested at 750 and 1500 mg of anthocyanin/L. The immersion time to produce sensitized TiO2 film was 8 h. According to the experimental results, the conversion efficiency of the DSSC prepared with 750 mg of anthocyanin/L was 0.14%, with an open-circuit voltage (VOC) of 0.43 V, a short-circuit current density (JSC) of 0.38 mA/cm2, and a fill factor (FF) of 0.450. The conversion efficiency attained with 1500 mg of anthocyanin/L was 0.19%, with (VOC) of 0.45 V, (JSC) of 0.44 mA/cm2 and FF of 0.55. Therefore, a higher concentration brought about a higher photosensitized performance. The maqui extracts were successfully dye sensitized over a layer of TiO2 nanoparticles, providing useful information for further studies related to the use of natural pigments as sensitizers for solar cells.

  20. Conversion of rice husk into fermentable sugar by two stage hydrolysis

    NASA Astrophysics Data System (ADS)

    Salimi, M. N.; Lim, S. E.; Yusoff, A. H. M.; Jamlos, M. F.

    2017-10-01

    Rice husks, a complex lignocellulosic biomass which comprised of high cellulose content (38-50%), hemicellulose (23-32%) and lignin (15-25%) possesses the potential to pursue as low cost feedstock for production of ethanol. Dilute sulfuric acid at concentration of 1, 2, 3 (%, v/v) were used for pretreatments at varied hydrolysis time (15-60 min) and enzymatic saccharification at range of 45-60˚C and pH 4.5-6.0 were evaluated for conversion of rice husk’s cellulose and hemicellulose to fermentable sugars. The maximum yield of fermentable sugars from rice husks by dilute sulfuric acid (2%, 60 minutes) was 0.0751 g/l. Total fermentable sugar was identified using dinitrosalicylic acid (DNS) method and expressed in g/l. Enzymatic hydrolysis for conversion of cellulose to fermentable sugar has been studied by applying response surface methodology (RSM) and Analysis of Variance (ANOVA). Two independent variables namely initial pH and incubation temperature were considered using Central Composite Design (CCD). The determination coefficient, R2 obtained was 0.9848. This indicates that 98.48% capriciousness in the respond could be clarified by the ANOVA. Based on the data shown by Design Expert software, the optimum condition for total sugar production was at pH 6.0 and temperature 45˚C as it produced 0.5086 g/l of total sugar.

  1. Synthesis of adhesive peptides similar to those found in blue mussel (Mytilus edulis) using papain and tyrosinase.

    PubMed

    Numata, Keiji; Baker, Peter James

    2014-08-11

    The blue mussel (Mytilus edulis) foot protein 5 (Mefp-5) is an adhesive protein that is mainly composed of glycine, l-lysine, and 3,4-dihydroxy-l-phenylalanine (DOPA). Thousands of adhesive pads have been analyzed in previous studies, whereby it has been found that adhesion is largely achieved by the redox-chemistry of DOPA, and that l-lysine (approximately 20 mol %) affects the formation of molecular networks. While DOPA and lysine are essential for biomimetic adhesive design, the synthesis of copolymers containing DOPA is limited, in terms of yield, by the multiple reaction steps required. Here, we synthesized adhesive peptides containing DOPA and l-lysine via two enzymatic reactions, namely, chemoenzymatic synthesis of copolypeptides of l-tyrosine and l-lysine by Papaya peptidase I (papain), as well as the enzymatic conversion from l-tyrosine to DOPA by tyrosinase. The synthesis was characterized in terms of yield, degree of polymerization, and composition of the polypeptide. In addition, the conversion of tyrosine to DOPA by tyrosinase was evaluated quantitatively by nuclear magnetic resonance and amino acid analysis. The adhesive properties of the resulting peptides, consisting of DOPA, l-lysine, and l-tyrosine, were evaluated at various pH levels with different protonation/deprotonation states. Our results show that deprotonated DOPA is required for adhesive function, and the deprotonated primary amine group of lysine induces molecular networks by varying the elastic moduli of the adhesives. In this study, we demonstrate the benefit of combining multiple enzymatic reactions, including chemoenzymatic polymerization, in obtaining new types of peptide-based materials.

  2. Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate.

    PubMed

    Zhao, Lei; Cao, Guang-Li; Sheng, Tao; Ren, Hong-Yu; Wang, Ai-Jie; Zhang, Jian; Zhong, Ying-Juan; Ren, Nan-Qi

    2017-11-01

    Mycelia pellets were employed as biological carrier in a continuous stirred tank reactor to reduce biomass washout and enhance hydrogen production from cornstalk hydrolysate. Hydraulic retention time (HRT) and influent substrate concentration played critical roles on hydrogen production of the bioreactor. The maximum hydrogen production rate of 14.2mmol H 2 L -1 h -1 was obtained at optimized HRT of 6h and influent concentration of 20g/L, 2.6 times higher than the counterpart without mycelia pellets. With excellent immobilization ability, biomass accumulated in the reactor and reached 1.6g/L under the optimum conditions. Upon further energy conversion analysis, continuous hydrogen production with mycelia pellets gave the maximum energy conversion efficiency of 17.8%. These results indicate mycelia pellet is an ideal biological carrier to improve biomass retention capacity of the reactor and enhance hydrogen recovery efficiency from lignocellulosic biomass, and meanwhile provides a new direction for economic and efficient hydrogen production process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Preparation of gentiooligosaccharides using Trichoderma viride β-glucosidase.

    PubMed

    Wang, Fei; Wu, Jing; Chen, Sheng

    2018-05-15

    The recombinant plasmid pPIC9K-bgl1 containing β-glucosidase bgl1 from Trichoderma viride was constructed by overlapping PCR and integrated into Pichia pastoris KM71. In order to assist the formation of disulfide bonds and thus improve protein folding efficiency, protein disulfide isomerase pdi was co-expressed in the P. pastoris KM71/pPIC9K-bgl1/pPICZ-A-pdi strain, and fermentation in flasks resulted in enzyme activity of 143 U/ml. The enzyme activity of β-glucosidase reached 1402 U/ml following optimisation of fermentation conditions in a 3.6 l bioreactor. With 80% glucose as substrate, gentiooligosaccharides were synthesised by β-glucosidase-based reverse hydrolysis. A yield of 130 g/l was achieved with a conversion rate of 16.25%. With 20% glucose and 40% cellobiose as substrates, gentiooligosaccharides were synthesised by transglycosylation with a yield of 116 g/l and a conversion rate of 19.4%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Énergie photovoltaïque : matériaux utilisés et perspectives

    NASA Astrophysics Data System (ADS)

    Marfaing, Y.

    2002-04-01

    Les matériaux pour la conversion photovoltaïque sont des semi-conducteurs dont la largeur de bande interdite peut se situer dans l'intervalle 1 - 1,8 eV. Les principes physiques de l'effet photovoltaïque sont d'abord rappelés afin de mettre en évidence les relations nécessaires entre les caractéristiques optiques et électroniques du semi-conducteur et l'épaisseur de la structure de conversion ou cellule. Les matériaux actuellement utilisés ou étudiés sont ensuite passés en revue en commençant par le silicium cristallin massif puis en décrivant le vaste secteur des couches minces : silicium amorphe, composés polycristallins, silicium cristallisé en film mince. Les développements attendus dans chacune de ces filières sont présentés ainsi que les recherches en cours sur d'autres types de matériaux et de structures.

  5. Conversion of municipal solid wastes to carboxylic acids by thermophilic fermentation.

    PubMed

    Chan, Wen Ning; Holtzapple, Mark T

    2003-11-01

    The purpose of this research is to generate carboxylic acids from the biodegradable fraction of municipal solid wastes (MSW) and municipal sewage sludge (MSS) by using a thermophilic (55 degrees C), anaerobic, high-solid fermentation. With terrestrial inocula, the highest total carboxylic acid concentration achieved was 20.5 g/L, the highest conversion obtained was 69%, and the highest acetic acid selectivity was 86.4%. Marine inocula were also used to compare against terrestrial sources. Continuum particle distribution modeling (CPDM) was used to predict the final acid product concentrations and substrate conversions at a wide range of liquid residence times (LRT) and volatile solid loading rates (VSLR). "Maps" showing the product concentration and conversion for various LRT and VSLR were generated from CPDM. The predictions were compared to the experimental results. On average, the difference between the predicted and experimental values were 13% for acid concentration and 10% for conversion. CPDM "maps" show that marine inocula produce higher concentrations than terrestrial inocula.

  6. Biorefinery of instant noodle waste to biofuels.

    PubMed

    Yang, Xiaoguang; Lee, Sang Jun; Yoo, Hah Young; Choi, Han Suk; Park, Chulhwan; Kim, Seung Wook

    2014-05-01

    Instant noodle waste, one of the main residues of the modern food industry, was employed as feedstock to convert to valuable biofuels. After isolation of used oil from the instant noodle waste surface, the starch residue was converted to bioethanol by Saccharomyces cerevisiae K35 with simultaneous saccharification and fermentation (SSF). The maximum ethanol concentration and productivity was 61.1g/l and 1.7 g/lh, respectively. After the optimization of fermentation, ethanol conversion rate of 96.8% was achieved within 36 h. The extracted oil was utilized as feedstock for high quality biodiesel conversion with typical chemical catalysts (KOH and H2SO4). The optimum conversion conditions for these two catalysts were estimated; and the highest biodiesel conversion rates were achieved 98.5% and 97.8%, within 2 and 3h, respectively. The high conversion rates of both bioethanol and biodiesel demonstrate that novel substrate instant noodle waste can be an attractive biorefinery feedstock in the biofuels industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Efficient Conversion of Inulin to Inulooligosaccharides through Endoinulinase from Aspergillus niger.

    PubMed

    Xu, Yanbing; Zheng, Zhaojuan; Xu, Qianqian; Yong, Qiang; Ouyang, Jia

    2016-03-30

    Inulooligosaccharides (IOS) represent an important class of oligosaccharides at industrial scale. An efficient conversion of inulin to IOS through endoinulinase from Aspergillus niger is presented. A 1482 bp codon optimized gene fragment encoding endoinulinase from A. niger DSM 2466 was cloned into pPIC9K vector and was transformed into Pichia pastoris KM71. Maximum activity of the recombinant endoinulinase, 858 U/mL, was obtained at 120 h of the high cell density fermentation process. The optimal conditions for inulin hydrolysis using the recombinant endoinulinase were investigated. IOS were harvested with a high concentration of 365.1 g/L and high yield up to 91.3%. IOS with different degrees of polymerization (DP, mainly DP 3-6) were distributed in the final reaction products.

  8. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.

    PubMed

    Liu, Chunshuang; Zhao, Dongfeng; Ma, Wenjuan; Guo, Yadong; Wang, Aijie; Wang, Qilin; Lee, Duu-Jong

    2016-02-01

    Biological conversion of sulfide, acetate, and nitrate to, respectively, elemental sulfur (S(0)), carbon dioxide, and nitrogen-containing gas (such as N2) at NaCl concentration of 35-70 g/L was achieved in an expanded granular sludge bed (EGSB) reactor. A C/N ratio of 1:1 was noted to achieve high sulfide removal and S(0) conversion rate at high salinity. The extracellular polymeric substance (EPS) quantities were increased with NaCl concentration, being 11.4-mg/g volatile-suspended solids at 70 mg/L NaCl. The denitrifying sulfide removal (DSR) consortium incorporated Thauera sp. and Halomonas sp. as the heterotrophs and Azoarcus sp. being the autotrophs at high salinity condition. Halomonas sp. correlates with the enhanced DSR performance at high salinity.

  9. Gauged $B-L$ number and neutron–antineutron oscillation: long-range forces mediated by baryophotons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addazi, Andrea; Berezhiani, Zurab; Kamyshkov, Yuri

    Transformation of a neutron to an antineutron n→n~ has not yet been experimentally observed. In principle, it can occur with free neutrons in the vacuum or with neutrons bound inside the nuclei. In a nuclear medium the neutron and the antineutron have different potentials and for that reason n–n~ conversion in nuclei is heavily suppressed. This transformation can also be suppressed for free neutrons in the presence of an environmental vector field that distinguishes the neutron from the antineutron. We consider the case of a gauge field coupled to the $B-L$ charge of the particles ($B-L$ photon), and we showmore » that discovery of n–n~ oscillation in experiment will lead to few order of magnitudes stronger limits on its coupling constant than present limits from the tests of the equivalence principle. If n–n~ oscillation will be discovered via nuclear instability, but not in free neutron oscillations at a corresponding level, this would indicate the presence of such environmental fifth forces. In the latter case the $B-L$ potential can be measurable by varying the external magnetic field for achieving the resonance conditions for n–n~ conversion. As for neutron–mirror neutron oscillation, such potentials should have no effect once the fifth forces are associated to a common quantum number $(B - L) - (B' - L')$ shared by the ordinary and mirror particles.« less

  10. Optimization of fermentation conditions for 1,3-propanediol production by marine Klebsiella pneumonia HSL4 using response surface methodology

    NASA Astrophysics Data System (ADS)

    Li, Lili; Zhou, Sheng; Ji, Huasong; Gao, Ren; Qin, Qiwei

    2014-09-01

    The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was followed to determine and optimize fermentation conditions for the maximum production of 1,3-PDO using marine-derived Klebsiella pneumoniae HSL4. Four nutritional supplements together with three independent culture conditions were optimized as follows: 29.3 g/L glycerol, 8.0 g/L K2 HPO4, 7.6 g/L (NH4)2 SO4, 3.0 g/L KH2 PO4, pH 7.1, cultivation at 35°C for 12 h. Under the optimal conditions, a maximum 1,3-PDO concentration of 14.5 g/L, a productivity of 1.21 g/(L·h) and a conversion of glycerol of 0.49 g/g were obtained. In comparison with the control conditions, fermentation under the optimized conditions achieved an increase of 38.8% in 1,3-PDO concentration, 39.0% in productivity and 25.7% in glycerol conversion in flask. This enhancement trend was further confirmed when the fermentation was conducted in a 5-L fermentor. The optimized fermentation conditions could be an important basis for developing lowcost, large-scale methods for industrial production of 1,3-PDO in the future.

  11. Gauged $B-L$ number and neutron–antineutron oscillation: long-range forces mediated by baryophotons

    DOE PAGES

    Addazi, Andrea; Berezhiani, Zurab; Kamyshkov, Yuri

    2017-05-11

    Transformation of a neutron to an antineutron n→n~ has not yet been experimentally observed. In principle, it can occur with free neutrons in the vacuum or with neutrons bound inside the nuclei. In a nuclear medium the neutron and the antineutron have different potentials and for that reason n–n~ conversion in nuclei is heavily suppressed. This transformation can also be suppressed for free neutrons in the presence of an environmental vector field that distinguishes the neutron from the antineutron. We consider the case of a gauge field coupled to the $B-L$ charge of the particles ($B-L$ photon), and we showmore » that discovery of n–n~ oscillation in experiment will lead to few order of magnitudes stronger limits on its coupling constant than present limits from the tests of the equivalence principle. If n–n~ oscillation will be discovered via nuclear instability, but not in free neutron oscillations at a corresponding level, this would indicate the presence of such environmental fifth forces. In the latter case the $B-L$ potential can be measurable by varying the external magnetic field for achieving the resonance conditions for n–n~ conversion. As for neutron–mirror neutron oscillation, such potentials should have no effect once the fifth forces are associated to a common quantum number $(B - L) - (B' - L')$ shared by the ordinary and mirror particles.« less

  12. Synthesis of disaccharides using β-glucosidases from Aspergillus niger, A. awamori and Prunus dulcis.

    PubMed

    da Silva, Ayla Sant'Ana; Molina, Javier Freddy; Teixeira, Ricardo Sposina Sobral; Valdivieso Gelves, Luis G; Bon, Elba P S; Ferreira-Leitão, Viridiana S

    2017-11-01

    Glucose conversion into disaccharides was performed with β-glucosidases from Prunus dulcis (β-Pd), Aspergillus niger (β-An) and A. awamori (β-Aa), in reactions containing initial glucose of 700 and 900 g l -1 . The reactions' time courses were followed regarding glucose and product concentrations. In all cases, there was a predominant formation of gentiobiose over cellobiose and also of oligosaccharides with a higher molecular mass. For reactions containing 700 g glucose l -1 , the final substrate conversions were 33, 38, and 23.5% for β-An, β-Aa, and β-Pd, respectively. The use of β-An yielded 103 g gentiobiose l -1 (15.5% yield), which is the highest reported for a fungal β-glucosidase. The increase in glucose concentration to 900 g l -1 resulted in a significant increase in disaccharide synthesis by β-Pd, reaching 128 g gentiobiose l -1 (15% yield), while for β-An and β-Aa, there was a shift toward the synthesis of higher oligosaccharides. β-Pd and the fungal β-An and β-Aa β-glucosidases present quite dissimilar kinetics and selective properties regarding the synthesis of disaccharides; while β-Pd showed the highest productivity for gentiobiose synthesis, β-An presented the highest specificity.

  13. CO2 sequestration by mineral carbonation of steel slags under ambient temperature: parameters influence, and optimization.

    PubMed

    Ghacham, Alia Ben; Pasquier, Louis-César; Cecchi, Emmanuelle; Blais, Jean-François; Mercier, Guy

    2016-09-01

    This work focuses on the influence of different parameters on the efficiency of steel slag carbonation in slurry phase under ambient temperature. In the first part, a response surface methodology was used to identify the effect and the interactions of the gas pressure, liquid/solid (L/S) ratio, gas/liquid ratio (G/L), and reaction time on the CO2 removed/sample and to optimize the parameters. In the second part, the parameters' effect on the dissolution of CO2 and its conversion into carbonates were studied more in detail. The results show that the pressure and the G/L ratio have a positive effect on both the dissolution and the conversion of CO2. These results have been correlated with the higher CO2 mass introduced in the reactor. On the other hand, an important effect of the L/S ratio on the overall CO2 removal and more specifically on the carbonate precipitation has been identified. The best results were obtained L/S ratios of 4:1 and 10:1 with respectively 0.046 and 0.052 gCO2 carbonated/g sample. These yields were achieved after 10 min reaction, at ambient temperature, and 10.68 bar of total gas pressure following direct gas treatment.

  14. Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes.

    PubMed

    Xiong, Liang-Bin; Liu, Hao-Hao; Xu, Li-Qin; Sun, Wan-Ju; Wang, Feng-Qing; Wei, Dong-Zhi

    2017-05-22

    The strategy of modifying the sterol catabolism pathway in mycobacteria has been adopted to produce steroidal pharmaceutical intermediates, such as 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), which is used to synthesize various steroids in the industry. However, the productivity is not desirable due to some inherent problems, including the unsatisfactory uptake rate and the low metabolic efficiency of sterols. The compact cell envelope of mycobacteria is a main barrier for the uptake of sterols. In this study, a combined strategy of improving the cell envelope permeability as well as the intracellular sterol metabolism efficiency was investigated to increase the productivity of 4-HBC. MmpL3, encoding a transmembrane transporter of trehalose monomycolate, is an important gene influencing the assembly of mycobacterial cell envelope. The disruption of mmpL3 in Mycobacterium neoaurum ATCC 25795 significantly enhanced the cell permeability by 23.4% and the consumption capacity of sterols by 15.6%. Therefore, the inactivation of mmpL3 was performed in a 4-HBC-producing strain derived from the wild type M. neoaurum and the 4-HBC production in the engineered strain was increased by 24.7%. Subsequently, to enhance the metabolic efficiency of sterols, four key genes, choM1, choM2, cyp125, and fadA5, involved in the sterol conversion pathway were individually overexpressed in the engineered mmpL3-deficient strain. The production of 4-HBC displayed the increases of 18.5, 8.9, 14.5, and 12.1%, respectively. Then, the more efficient genes (choM1, cyp125, and fadA5) were co-overexpressed in the engineered mmpL3-deficient strain, and the productivity of 4-HBC was ultimately increased by 20.3% (0.0633 g/L/h, 7.59 g/L 4-HBC from 20 g/L phytosterol) compared with its original productivity (0.0526 g/L/h, 6.31 g/L 4-HBC from 20 g/L phytosterol) in an industrial resting cell bio-transformation system. Increasing cell permeability combined with the co-overexpression of the key genes (cyp125, choM1, and fadA5) involved in the conversion pathway of sterol to 4-HBC was effective to enhance the productivity of 4-HBC. The strategy might also be useful for the conversion of sterol to other steroidal intermediates by mycobacteria.

  15. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae.

    PubMed

    Liaud, Nadège; Rosso, Marie-Noëlle; Fabre, Nicolas; Crapart, Sylvaine; Herpoël-Gimbert, Isabelle; Sigoillot, Jean-Claude; Raouche, Sana; Levasseur, Anthony

    2015-05-03

    Lactic acid is the building block of poly-lactic acid (PLA), a biopolymer that could be set to replace petroleum-based plastics. To make lactic acid production cost-effective, the production process should be carried out at low pH, in low-nutrient media, and with a low-cost carbon source. Yeasts have been engineered to produce high levels of lactic acid at low pH from glucose but not from carbohydrate polymers (e.g. cellulose, hemicellulose, starch). Aspergilli are versatile microbial cell factories able to naturally produce large amounts of organic acids at low pH and to metabolize cheap abundant carbon sources such as plant biomass. However, they have never been used for lactic acid production. To investigate the feasibility of lactic acid production with Aspergillus, the NAD-dependent lactate dehydrogenase (LDH) responsible for lactic acid production by Rhizopus oryzae was produced in Aspergillus brasiliensis BRFM103. Among transformants, the best lactic acid producer, A. brasiliensis BRFM1877, integrated 6 ldhA gene copies, and intracellular LDH activity was 9.2 × 10(-2) U/mg. At a final pH of 1.6, lactic acid titer reached 13.1 g/L (conversion yield: 26%, w/w) at 138 h in glucose-ammonium medium. This extreme pH drop was subsequently prevented by switching nitrogen source from ammonium sulfate to Na-nitrate, leading to a final pH of 3 and a lactic acid titer of 17.7 g/L (conversion yield: 47%, w/w) at 90 h of culture. Final titer was further improved to 32.2 g/L of lactic acid (conversion yield: 44%, w/w) by adding 20 g/L glucose to the culture medium at 96 h. This strain was ultimately able to produce lactic acid from xylose, arabinose, starch and xylan. We obtained the first Aspergillus strains able to produce large amounts of lactic acid by inserting recombinant ldhA genes from R. oryzae into a wild-type A. brasiliensis strain. pH regulation failed to significantly increase lactic acid production, but switching nitrogen source and changing culture feed enabled a 1.8-fold increase in conversion yields. The strain produced lactic acid from plant biomass. Our findings make A. brasiliensis a strong contender microorganism for low-pH acid production from various complex substrates, especially hemicellulose.

  16. Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome.

    PubMed

    Matute-Blanch, Clara; Villar, Luisa M; Álvarez-Cermeño, José C; Rejdak, Konrad; Evdoshenko, Evgeniy; Makshakov, Gleb; Nazarov, Vladimir; Lapin, Sergey; Midaglia, Luciana; Vidal-Jordana, Angela; Drulovic, Jelena; García-Merino, Antonio; Sánchez-López, Antonio J; Havrdova, Eva; Saiz, Albert; Llufriu, Sara; Alvarez-Lafuente, Roberto; Schroeder, Ina; Zettl, Uwe K; Galimberti, Daniela; Ramió-Torrentà, Lluís; Robles, René; Quintana, Ester; Hegen, Harald; Deisenhammer, Florian; Río, Jordi; Tintoré, Mar; Sánchez, Alex; Montalban, Xavier; Comabella, Manuel

    2018-04-01

    The prognostic role of cerebrospinal fluid molecular biomarkers determined in early pathogenic stages of multiple sclerosis has yet to be defined. In the present study, we aimed to investigate the prognostic value of chitinase 3 like 1 (CHI3L1), neurofilament light chain, and oligoclonal bands for conversion to clinically isolated syndrome and to multiple sclerosis in 75 patients with radiologically isolated syndrome. Cerebrospinal fluid levels of CHI3L1 and neurofilament light chain were measured by enzyme-linked immunosorbent assay. Uni- and multivariable Cox regression models including as covariates age at diagnosis of radiologically isolated syndrome, number of brain lesions, sex and treatment were used to investigate associations between cerebrospinal fluid CHI3L1 and neurofilament light chain levels and time to conversion to clinically isolated syndrome and multiple sclerosis. Neurofilament light chain levels and oligoclonal bands were independent risk factors for the development of clinically isolated syndrome (hazard ratio = 1.02, P = 0.019, and hazard ratio = 14.7, P = 0.012, respectively) and multiple sclerosis (hazard ratio = 1.03, P = 0.003, and hazard ratio = 8.9, P = 0.046, respectively). The best cut-off to classify cerebrospinal fluid neurofilament light chain levels into high and low was 619 ng/l, and high neurofilament light chain levels were associated with a trend to shorter time to clinically isolated syndrome (P = 0.079) and significant shorter time to multiple sclerosis (P = 0.017). Similarly, patients with radiologically isolated syndrome presenting positive oligoclonal bands converted faster to clinically isolated syndrome and multiple sclerosis (P = 0.005 and P = 0.008, respectively). The effects of high neurofilament light chain levels shortening time to clinically isolated syndrome and multiple sclerosis were more pronounced in radiologically isolated syndrome patients with ≥37 years compared to younger patients. Cerebrospinal fluid CHI3L1 levels did not influence conversion to clinically isolated syndrome and multiple sclerosis in radiologically isolated syndrome patients. Overall, these findings suggest that cerebrospinal neurofilament light chain levels and oligoclonal bands are independent predictors of clinical conversion in patients with radiologically isolated syndrome. The association with a faster development of multiple sclerosis reinforces the importance of cerebrospinal fluid analysis in patients with radiologically isolated syndrome.

  17. Simultaneous and selective decarboxylation of L-serine and deamination of L-phenylalanine in an amino acid mixture--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Witte-van Dijk, Susan C M; Sanders, Johan P M

    2016-01-25

    Amino acids (AAs) obtained from the hydrolysis of biomass-derived proteins are interesting feedstocks for the chemical industry. They can be prepared from the byproduct of biofuel production and agricultural wastes. They are rich in functionalities needed in petrochemicals, providing the opportunity to save energy, reagents, and process steps. However, their separation is required before they can be applied for further applications. Electrodialysis (ED) is a promising separation method, but its efficiency needs to be improved when separating AAs with similar isoelectric points. Thus, specific conversions are required to form product with different charges. Here we studied the enzymatic conversions which can be used as a means to aid the ED separation of neutral AAs. A model mixture containing L-serine, L-phenylalanine and L-methionine was used. The reactions of L-serine decarboxylase and L-phenylalanine ammonia-lyase were employed to specifically convert serine and phenylalanine into ethanolamine and trans-cinnamic acid. At the isoelectric point of methionine (pH 5.74), the charge of ethanolamine and trans-cinnamic acid are +1 and -1, therefore facilitating potential separation into three different streams by electrodialysis. Here the enzyme kinetics, specificity, inhibition and the operational stabilities were studied, showing that both enzymes can be applied simultaneously to aid the ED separation of neutral AAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Reference values for Lactate Pro 2™ in fetal blood sampling during labor: a cross-sectional study.

    PubMed

    Birgisdottir, Brynhildur Tinna; Holzmann, Malin; Varli, Ingela Hulthén; Graner, Sofie; Saltvedt, Sissel; Nordström, Lennart

    2017-04-01

    Lactate Pro™ (LP1) is the only lactate meter evaluated for fetal scalp blood sampling (FBS) in intrapartum use. The reference values for this meter are: normal value <4.2 mmol/L, preacidemia 4.2-4.8 mmol/L, and acidemia >4.8 mmol/L. The production of this meter has been discontinued. An updated version, Lactate Pro 2TM (LP2), has been launched and is shown to be differently calibrated. The aims of the study were to retrieve a conversion equation to convert lactate values in FBS measured with LP2 to an estimated value if using LP1 and to define reference values for clinical management when using LP2. A cross-sectional study was conducted at a university hospital in Sweden. A total of 113 laboring women with fetal heart rate abnormalities on cardiotocography (CTG) had FBS carried out. Lactate concentration was measured bedside with both LP1 and LP2 from the same blood sample capillary. A linear regression model was constructed to retrieve a conversion equation to convert LP2 values to LP1 values. LP2 measured higher values than LP1 in all analyses. We found that 4.2 mmol/L with LP1 corresponded to 6.4 mmol/L with LP2. Likewise, 4.8 mmol/L with LP1 corresponded to 7.3 mmol/L with LP2. The correlation between the analyses was excellent (Spearman's rank correlation, r=0.97). We recommend the following guidelines when interpreting lactate concentration in FBS with LP2: <6.4 mmol/L to be interpreted as normal, 6.4-7.3 mmol/L as preacidemia indicating a follow-up FBS within 20-30 min, and >7.3 mmol/L as acidemia indicating intervention.

  19. Brush Talk at the Conversation Table: Interaction between L1 and L2 Speakers of Chinese

    ERIC Educational Resources Information Center

    Hwang, Menq-Ju

    2009-01-01

    Chinese characters are used in both Chinese and Japanese writing systems. When literate speakers of either language experience problems in finding or understanding words, they often resort to using Chinese characters or "kanji" (i.e., Chinese characters used in Japanese writing) in their talk, a practice known as "brush talk" ("bitan" in Chinese,…

  20. Doping Optimization for High Efficiency in Semiconductor Diode Lasers and Amplifiers

    DTIC Science & Technology

    2016-03-01

    resistance 20 mΩ Ith Threshold current 350 mA Using this partial Taylor expansion in (32), the solution for the doping magnitude is C ≈ √ (2/L) I qAV0...2014. [3] M. Kanskar, T. Earles , T. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “High power conversion efficiency Al-free diode lasers for pumping

  1. Comparison of Conversation, Freeplay, and Story Generation as Methods of Language Sample Elicitation.

    ERIC Educational Resources Information Center

    Southwood, Frenette; Russell, Ann F.

    2004-01-01

    The spontaneous language sample forms an important part of the language evaluation protocol (M. Dunn, J. Flax, M. Sliwinski, & D. Aram, 1996; J. L. Evans & H. K. Craig, 1992; L. E. Evans & J. Miller, 1999) because of the limitations of standardized language tests and their unavailability in certain languages, such as Afrikaans. This study examined…

  2. Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Ren, Nanqi

    2015-11-15

    Anaerobic sludge (AS) and microalgae were co-cultured to enhance the energy conversion and nutrients removal from starch wastewater. Mixed ratio, starch concentration and initial pH played critical roles on the hydrogen and lipid production of the co-culture system. The maximum hydrogen production of 1508.3 mL L(-1) and total lipid concentration of 0.36 g L(-1) were obtained under the optimized mixed ratio (algae:AS) of 30:1, starch concentration of 6 g L(-1) and initial pH of 8. The main soluble metabolites in dark fermentation were acetate and butyrate, most of which can be consumed in co-cultivation. When sweet potato starch wastewater was used as the substrate, the highest COD, TN and TP removal and energy conversion efficiencies reached 80.5%, 88.7%, 80.1% and 34.2%, which were 176%, 178%, 200% and 119% higher than that of the control group (dark fermentation), respectively. This research provided a novel approach and achieved efficient simultaneous energy recovery and nutrients removal from starch wastewater by the co-culture system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Redox self-sufficient whole cell biotransformation for amination of alcohols.

    PubMed

    Klatte, Stephanie; Wendisch, Volker F

    2014-10-15

    Whole cell biotransformation is an upcoming tool to replace common chemical routes for functionalization and modification of desired molecules. In the approach presented here the production of various non-natural (di)amines was realized using the designed whole cell biocatalyst Escherichia coli W3110/pTrc99A-ald-adh-ta with plasmid-borne overexpression of genes for an l-alanine dehydrogenase, an alcohol dehydrogenase and a transaminase. Cascading alcohol oxidation with l-alanine dependent transamination and l-alanine dehydrogenase allowed for redox self-sufficient conversion of alcohols to the corresponding amines. The supplementation of the corresponding (di)alcohol precursors as well as amino group donor l-alanine and ammonium chloride were sufficient for amination and redox cofactor recycling in a resting buffer system. The addition of the transaminase cofactor pyridoxal-phosphate and the alcohol dehydrogenase cofactor NAD(+) was not necessary to obtain complete conversion. Secondary and cyclic alcohols, for example, 2-hexanol and cyclohexanol were not aminated. However, efficient redox self-sufficient amination of aliphatic and aromatic (di)alcohols in vivo was achieved with 1-hexanol, 1,10-decanediol and benzylalcohol being aminated best. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Synthesis of cinnamyl alcohol from cinnamaldehyde with Bacillus stearothermophilus alcohol dehydrogenase as the isolated enzyme and in recombinant E. coli cells.

    PubMed

    Pennacchio, Angela; Rossi, Mosè; Raia, Carlo A

    2013-07-01

    The synthesis of the aroma chemical cinnamyl alcohol (CMO) by means of enzymatic reduction of cinnamaldehyde (CMA) was investigated using NADH-dependent alcohol dehydrogenase from Bacillus stearothermophilus both as an isolated enzyme, and in recombinant Escherichia coli whole cells. The influence of parameters such as reaction time and cofactor, substrate, co-substrate 2-propanol and biocatalyst concentrations on the bioreduction reaction was investigated and an efficient and sustainable one-phase system developed. The reduction of CMA (0.5 g/L, 3.8 mmol/L) by the isolated enzyme occurred in 3 h at 50 °C with 97% conversion, and yielded high purity CMO (≥98%) with a yield of 88% and a productivity of 50 g/genzyme. The reduction of 12.5 g/L (94 mmol/L) CMA by whole cells in 6 h, at 37 °C and no requirement of external cofactor occurred with 97% conversion, 82% yield of 98% pure alcohol and a productivity of 34 mg/gwet cell weight. The results demonstrate the microbial system as a practical and efficient method for larger-scale synthesis of CMO.

  5. Racemization at the Asp 58 residue in αA-crystallin from the lens of high myopic cataract patients.

    PubMed

    Zhu, Xiang-Jia; Zhang, Ke-Ke; He, Wen-Wen; Du, Yu; Hooi, Michelle; Lu, Yi

    2018-02-01

    Post-translational modifications in lens proteins are key causal factors in cataract. As the most abundant post-translational modification in the lens, racemization may be closely related to the pathogenesis of cataract. Racemization of αA-crystallin, a crucial structural and heat shock protein in the human lens, could significantly influence its structure and function. In previous studies, elevated racemization from l-Asp 58 to d-isoAsp58 in αA-crystallin has been found in age-related cataract (ARC) lenses compared to normal aged human lenses. However, the role of racemization in high myopic cataract (HMC), which is characterized by an early onset of nuclear cataract, remains unknown. In the current study, apparently different from ARC, significantly increased racemization from l-Asp 58 to d-Asp 58 in αA-crystallin was identified in HMC lenses. The average racemization rates for each Asp isoform were calculated in ARC and HMC group. In ARC patients, the conversion of l-Asp 58 to d-isoAsp 58, up to 31.89%, accounted for the main proportion in racemization, which was in accordance with the previous studies. However, in HMC lenses, the conversion of l-Asp 58 to d-Asp 58, as high as 35.44%, accounted for the largest proportion of racemization in αA-crystallin. The different trend in the conversion of αA-crystallin by racemization, especially the elevated level of d-Asp 58 in HMC lenses, might prompt early cataractogenesis and a possible explanation of distinct phenotypes of cataract in HMC. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Genomic organization and expression of the expanded SCG/L/R gene family of Leishmania major: internal clusters and telomeric localization of SCGs mediating species-specific LPG modifications.

    PubMed

    Dobson, Deborah E; Scholtes, Luella D; Myler, Peter J; Turco, Salvatore J; Beverley, Stephen M

    2006-04-01

    Stage-specific modifications to the abundant surface lipophosphoglycan (LPG) adhesin of Leishmania play critical roles in binding and release of the parasite during its infectious cycle in the sand fly, and control the ability of different fly species to transmit different parasite strains and species. In Leishmania major Friedlin V1, binding to a sand fly midgut lectin is mediated by side chain galactosyl (scGal) modifications of the LPG phosphoglycan (PG) repeats, while release occurs following arabinose-capping of scGals. Previously we identified a family of six SCG genes encoding PG scbeta-galactosyltransferases, and here we show that the extended SCG gene family (now termed SCG/L/R) encompasses 14 members in three subfamilies (SCG, SCGL and SCGR). Northern blot and RT-PCR analyses suggest that most of the SCG/L/R genes are expressed, with distinct patterns during the infectious cycle. The six SCGR subfamily genes are clustered and interspersed with the two SCA genes responsible for developmentally regulated arabinosylation of PG scGals; relationships amongst the SCGR revealed clear evidence of extensive gene conversion. In contrast, the seven SCG 'core' family members are localized adjacent to telomeres. These telomeres share varying amounts of sequence upstream and/or downstream of the SCG ORFs, again providing evidence of past gene conversions. Multiple SCG1-7 RNAs were expressed simultaneously within parasite populations. Potentially, telomeric localization of SCG genes may function primarily to facilitate gene conversion and the elaboration of functional evolutionary diversity in the degree of PG sc-galactosylation observed in other strains of L. major.

  7. Bibliography of Soviet Laser Developments, Number 83, May - June 1986.

    DTIC Science & Technology

    1987-09-01

    slozhenykh sistem, no. 5, 1986, 19-23. (RZFZA, 86/6L895). 92. Yelayev, V.F.; Mirza, S.M.; Sukhanov , V.B.; Troitskiy, V.O.; Soldatov, A.N.; Filonov, A.G...frequency doubling and stimulated Raman conversion. NIKFI. Trudy, no. 122, 1985, 64-69. (RZFZA, 86/6L745). 496. Andreyeva, O.V.; Sukhanov , V.I. (. Using the...1986, 732-737. 513. Korzinin, Yu.L.; Sukhanov , V.I. (). Space and frequency variant of the theory of three-dimensional holograms. Opticheskaya

  8. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOEpatents

    Barker, Charles E.; Eimerl, David; Velsko, Stephan P.; Roberts, David

    1993-01-01

    Temperature-insensitive, phase-matched harmomic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions.

  9. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOEpatents

    Barker, C.E.; Eimerl, D.; Velsko, S.P.; Roberts, D.

    1993-11-23

    Temperature-insensitive, phase-matched harmonic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions. 12 figures.

  10. 40 CFR Table A-7 to Subpart A of... - Data Elements That Are Inputs to Emission Equations and for Which the Reporting Deadline Is March...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mass balance equation. K 98.116(b) Only annual production by product from each EAF (No CEMS). K 98.116... contributed by methane. Y 98.256(f)(7) Only molar volume conversion factor. Y 98.256(f)(10) Only coke burn-off... methane in coking gas. Y 98.256(l)(5) Only molar volume conversion factor. Y 98.256(m)(3) Only total...

  11. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  12. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  13. Reaction Kinetics for the Biocatalytic Conversion of Phenazine-1-Carboxylic Acid to 2-Hydroxyphenazine

    PubMed Central

    Chen, Mingmin; Cao, Hongxia; Peng, Huasong; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2014-01-01

    The phenazine derivative 2-hydroxyphenazine (2-OH-PHZ) plays an important role in the biocontrol of plant diseases, and exhibits stronger bacteriostatic and fungistatic activity than phenazine-1-carboxylic acid (PCA) toward some pathogens. PhzO has been shown to be responsible for the conversion of PCA to 2-OH-PHZ, however the kinetics of the reaction have not been systematically studied. Further, the yield of 2-OH-PHZ in fermentation culture is quite low and enhancement in our understanding of the reaction kinetics may contribute to improvements in large-scale, high-yield production of 2-OH-PHZ for biological control and other applications. In this study we confirmed previous reports that free PCA is converted to 2-hydroxy-phenazine-1-carboxylic acid (2-OH-PCA) by the action of a single enzyme PhzO, and particularly demonstrate that this reaction is dependent on NADP(H) and Fe3+. Fe3+ enhanced the conversion from PCA to 2-OH-PHZ and 28°C was a optimum temperature for the conversion. However, PCA added in excess to the culture inhibited the production of 2-OH-PHZ. 2-OH-PCA was extracted and purified from the broth, and it was confirmed that the decarboxylation of 2-OH-PCA could occur without the involvement of any enzyme. A kinetic analysis of the conversion of 2-OH-PCA to 2-OH-PHZ in the absence of enzyme and under different temperatures and pHs in vitro, revealed that the conversion followed first-order reaction kinetics. In the fermentation, the concentration of 2-OH-PCA increased to about 90 mg/L within a red precipitate fraction, as compared to 37 mg/L within the supernatant. The results of this study elucidate the reaction kinetics involved in the biosynthesis of 2-OH-PHZ and provide insights into in vitro methods to enhance yields of 2-OH-PHZ. PMID:24905009

  14. Highly dispersed catalysts for coal liquefaction. Quarterly report No. 9, August 23, 1993--November 22, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirschon, A.S.; Wilson, R.B.

    We analyzed two sets of liquefaction experiments, one involved the liquefaction of Black Thunder Coal with the corresponding recycle vehicle, and the second set of liquefaction runs involved the liquefaction of Argonne North Dakota Lignite. We compared coal conversions of Black Thunder coal and recycle solvent using Fe(CO){sub 5} and carbon monoxide/hydrogen atmospheres and a MolyVanL molybdenum catalyst under a hydrogen atmosphere. We also continued our investigation of the effect of water on the conversions. We found that addition of water seemed to decrease the amount of oils; we determined the effect of water with the recycle solvent alone, (nomore » coal added) under similar conditions, and again produced a decrease in oil yields. FIMS analyses of the hexane and toluene soluble fractions seem to indicate that in the experiment when water was added, a considerable amount of light material remained behind in the toluene layer, suggesting that somehow the addition of water decreased the amount of extracted material, perhaps by increasing the amount of polarity of the product. When the conversion was conducted with the MolyVanL molybdenum catalyst a good quality product in terms of lower viscosity was produced; however, conversions to THF soluble material was not increased. We believe the molybdenum catalyst hydrogenated the recycle vehicle rather than effectively converted the coal. In order to eliminate the effect of solvent we have often conducted experiments in an inert solvent with Argonne coals. We conducted several coal conversions experiments using an Argonne North Dakota lignite. We compared several dispersed Fe catalysts and in addition, a nickel catalyst. We investigated nickel as a catalyst since we believe this metal may be more effective in decarboxylating low rank coals. Consistent with this premise we found that the nickel catalyst gave the highest conversions.« less

  15. Optimization of L-lactic Acid Production of Rhizopus Oryzae Mutant RLC41-6 by Ion Beam Implantation at Low-Energy

    NASA Astrophysics Data System (ADS)

    Zhou, Xiuhong; Ge, Chunmei; Yao, Jianming; Pan, Renrui; Yu, Zengliang

    2005-10-01

    In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae RF3608 was mutated by means of nitrogen ion beam implantation and the mutant strain RLC41-6 was isolated. Under optimal conditions the yield of L(+)-lactic acid produced in a shake-flask reached 133 g/L-137 g/L after 36 h cultivation, indicating that the conversion rate based on glucose was as high as 88%-91% and the productivity was 3.75 g/L.h. It was almost a 115% increase in lactic acid production compared with the original strain RF3608.

  16. Continuous D-tagatose production by immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor.

    PubMed

    Ryu, Se-Ah; Kim, Chang Sup; Kim, Hye-Jung; Baek, Dae Heoun; Oh, Deok-Kun

    2003-01-01

    D-Tagatose was continuously produced using thermostable L-arabinose isomerase immobilized in alginate with D-galactose solution in a packed-bed bioreactor. Bead size, L/D (length/diameter) of reactor, dilution rate, total loaded enzyme amount, and substrate concentration were found to be optimal at 0.8 mm, 520/7 mm, 0.375 h(-1), 5.65 units, and 300 g/L, respectively. Under these conditions, the bioreactor produced about 145 g/L tagatose with an average productivity of 54 g tagatose/L x h and an average conversion yield of 48% (w/w). Operational stability of the immobilized enzyme was demonstrated, with a tagatose production half-life of 24 days.

  17. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation

    PubMed Central

    2011-01-01

    Background Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. Results A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations. Conclusions The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates. PMID:21995488

  18. Characteristics of adapted hydrogenotrophic community during biomethanation.

    PubMed

    Rachbauer, Lydia; Beyer, Reinhard; Bochmann, Günther; Fuchs, Werner

    2017-10-01

    The results presented in this study were carried out as concomitant experiments during the start-up and operation of a biomethanation unit to evaluate the effect of process parameters on carbon conversion, product formation (methane and acetate) and community composition. For that, two different samples were withdrawn from a trickle-bed reactor with immobilized enrichment culture of hydrogenotrophic methanogens adapted from sewage sludge. One sample was taken from the recirculation liquid during start-up phase while the other was withdrawn directly from the carrier material in the reactor. Elevated acid levels especially during start-up were shown to affect the overall carbon conversion. This effect was also seen during the acid tolerance testing reported here. Final acid concentrations of 1.6±0.3g/L resulted in a reduced conversion ratio of only 46%. Without acid addition complete conversion of CO 2 in the headspace was achieved. However, maximum methane production of 0.55±0.02mmol after 4days of incubation was monitored at moderate initial acetate concentration of 0.4g/L. In both analyzed inoculation materials Methanobacterium species were by far the most dominant Archaea with 21.8% in the recirculation liquid during start-up and 84.8% in the enrichment culture immobilized on the carrier material. The microbial composition of the two analyzed samples is in accordance with the results obtained for the carbon conversion and product formation. With approximately 50% of Bacteroidetes and Firmicutes present during reactor start-up the acetic acid production significantly contributed to the overall carbon conversion. In contrast, methane was produced almost exclusively in trials representing continuous operation where acetogenic bacteria accounted only up to 17.5%. In summary, the acid accumulation monitored during reactor start-up of a biomethanation unit is most likely to result from the microbial composition present. Nevertheless, complete adaptation to hydrogenotrophic conditions was proven to alter the consortium and yield methane as main product alongside high carbon conversion of up to 70.5±1.8%. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Characterization of free and alginate-polylysine-alginate microencapsulated Erwinia herbicola for the conversion of ammonia, pyruvate, and phenol into L-tyrosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd-George, I.; Chang, T.M.S.

    1995-12-20

    The whole cell tyrosine phenol-lyase activity of Erwinia herbicola was microencapsulated. The authors studied the use of this for the conversion of ammonia and pyruvate along with phenol or catechol, respectively, into L-tyrosine or dihydroxyphenyl-L-alanine (L-dopa). The reactions are relevant to the development of new methods for the production of L-tyrosine and L-dopa. The growth of E. herbicola at temperatures from 22 C to 32 C is stable, since at these temperatures the cells grow up to the stationary phase and remain there for at least 10 h. At 37 C the cells grow rapidly, but they also enter themore » death phase rapidly. There is only limited growth of E. herbicola at 42 C. Whole cells of E. herbicola were encapsulated within alginate-polylysine-alginate microcapsules (916 {+-} 100 {micro}m, mean {+-} std. dev.). The TPL activity of the cells catalyzed the production of L-tyrosine or dihydroxyphenol-L-alanine (L-dopa) from ammonia, pyruvate, and phenol or catechol, respectively. In the production of tyrosine, an integrated equation based on an ordered ter-uni rapid equilibrium mechanism can be used to find the kinetic parameters of TPL. In an adequately stirred system, the apparent values of the kinetic parameters of whole cell TPL are equal whether the cells are free or encapsulated. The apparent K{sub M} of tyrosine varies with the amount of whole cells in the system, ranging from 0.2 to 0.3 mM. The apparent K{sub M} for phenol is 0.5 mM. The apparent K{sub M} values for pyruvate and ammonia are an order of magnitude greater for whole cells than they are for the cell free enzyme.« less

  20. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    PubMed

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-04

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  1. Mouse-hamster chimeric prion protein (PrP) devoid of N-terminal residues 23-88 restores susceptibility to 22L prions, but not to RML prions in PrP-knockout mice.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Yano, Masashi; Yamaguchi, Yoshitaka; Imamura, Morikazu; Muramatsu, Naomi; Das, Nandita Rani; Chida, Junji; Hara, Hideyuki; Sakaguchi, Suehiro

    2014-01-01

    Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp 0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp 0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp 0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice, compared with RML- and 22L-inoculated Prnp 0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc.

  2. Mouse-Hamster Chimeric Prion Protein (PrP) Devoid of N-Terminal Residues 23-88 Restores Susceptibility to 22L Prions, but Not to RML Prions in PrP-Knockout Mice

    PubMed Central

    Yano, Masashi; Yamaguchi, Yoshitaka; Imamura, Morikazu; Muramatsu, Naomi; Das, Nandita Rani; Chida, Junji; Hara, Hideyuki; Sakaguchi, Suehiro

    2014-01-01

    Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice, compared with RML- and 22L-inoculated Prnp0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc. PMID:25330286

  3. Enhanced synthesis of L-threo-3,4-dihydroxyphenylserine by high-density whole-cell biocatalyst of recombinant L-threonine aldolase from Streptomyces avelmitilis.

    PubMed

    Baik, Sang-Ho; Yoshioka, Hideki

    2009-03-01

    L-threo-3,4-Dihydroxyphenylserine (DOPS) is a chiral unnatural beta-hydroxy amino acid used for the treatment of Parkinson disease. We developed a continuous bioconversion system for DOPS production that uses whole-cell biocatalyst of recombinant Escherichia coli expressing L-threonine aldolase (L-TA) genes cloned from Streptomyces avelmitilis MA-4680. Maximum conversion rates were observed at 2 M glycine, 145 mM 3,4-dihydroxybenzaldehyde, 0.75% Triton-X, 5 g E. coli cells/l, pH 6.5 and 10 degrees C. In the optimized condition, overall productivity was 8 g/l, which represents 40 times the synthesis yield possible with no optimization of conditions.

  4. Frequency doubling crystals

    DOEpatents

    Wang, Francis; Velsko, Stephan P.

    1989-01-01

    A systematic approach to the production of frequency conversion crystals is described in which a chiral molecule has attached to it a "harmonic generating unit" which contributes to the noncentrosymmetry of the molecule. Certain preferred embodiments of such harmonic generating units include carboxylate, guanadyly and imidazolyl units. Certain preferred crystals include L-arginine fluoride, deuterated L-arginine fluoride, L-arginine chloride monohydrate, L-arginine acetate, dithallium tartrate, ammonium N-acetyl valine, N-acetyl tyrosine and N-acetyl hydroxyproline. Chemical modifications of the chiral molecule, such as deuteration, halogenation and controlled counterion substitution are available to adapt the dispersive properties of a crystal in a particular wavelength region.

  5. Bacterial conversion of phenylalanine and aromatic carboxylic acids into dihydrodiols.

    PubMed Central

    Wegst, W; Tittmann, U; Eberspächer, J; Lingens, F

    1981-01-01

    Strain E of chloridazon-degrading bacteria, when grown on L-phenylalanine accumulates cis-2,3-dihydro-2,3-dihydroxyphenylalanine. In experiments with resting cells and during growth the bacterium converts the aromatic carboxylic acids phenylacetate, phenylpropionate, phenylbutyrate and phenyl-lactate into the corresponding cis-2,3-dihydrodiol compounds. The amino acids L-phenylalanine, N-acetyl-L-phenylalanine and t-butyloxycarbonyl-L-phenylalanine were also transformed into dihydrodiols. All seven dihydrodiols, thus obtained, were characterized both by conventional analytical techniques and by the ability to serve as substrates for a cis-dihydrodiol dehydrogenase. PMID:7306016

  6. Conversion of CO2 into cyclic carbonates by a Co(ii) metal-organic framework and the improvement of catalytic activity via nanocrystallization.

    PubMed

    Ji, Xiao-He; Zhu, Ning-Ning; Ma, Jian-Gong; Cheng, Peng

    2018-02-06

    The Co(ii) metal-organic framework (MOF) {[Co(μ 3 -L)(H 2 O)]·0.5H 2 O} n (1, H 2 L = thiazolidine 2,4-dicarboxylic acid) with rich Lewis acid sites was used as a catalyst for the conversion of CO 2 and propylene oxide into propylene carbonate with a yield of up to 98% under 50 °C and 1 atm. 1 exhibited excellent reusability, which could be regenerated easily for at least five runs without a decrease in the yield. Importantly, we synthesized two types of nano-crystals (N1 and N2) of 1 with polyvinylpyrrolidone (PVP) and hexadecyltrimethylammonium bromide (CTAB) as surfactants, respectively, and investigated their catalytic properties in comparison with that of 1 in the powder phase. A significant enhancement in both catalytic efficiency and product yield was observed when 1 was nano-crystallized. This is the first investigation about the relationship between the morphology and the catalytic parameters of MOFs. The results showed a strategy for efficiently applying MOFs as catalysts towards CO 2 conversion, which could also be used in other MOF-catalyzed processes.

  7. Optimum dietary arginine:lysine ratio for broiler chickens is altered during heat stress in association with changes in intestinal uptake and dietary sodium chloride.

    PubMed

    Brake, J; Balnave, D; Dibner, J J

    1998-12-01

    1. The effects of varying the dietary arginine:lysine (Arg:Lys) ratio for broiler chickens at thermoneutral and high temperatures was studied in a series of 5 experiments which measured intestinal epithelial transport or evaluated growth and food efficiency with practical diets or diets supplemented with L-arginine free base. 2. The growth studies showed that increasing the Arg:Lys ratio at high temperatures produced consistent improvements in food conversion without any loss in growth. 3. Increasing dietary sodium chloride concentration reduced the Arg:Lys ratio necessary for optimum food conversion. 4. Food conversion responses were improved whether L-arginine free base was used as a dietary supplement in place of an inert filler or practical diets with differing ingredients were used to vary the Arg:Lys ratio. 5. In the presence of an equimolar concentration of lysine the uptake of arginine by the intestinal epithelium of heat-stressed broilers was reduced significantly compared with that of broilers at thermoneutral temperatures. 6. The results indicate that the ideal amino acid balance for broilers varies with ambient temperature.

  8. Preparation and Layer-by-Layer Solution Deposition of Cu(In,Ga)O2 Nanoparticles with Conversion to Cu(In,Ga)S2 Films

    PubMed Central

    Dressick, Walter J.; Soto, Carissa M.; Fontana, Jake; Baker, Colin C.; Myers, Jason D.; Frantz, Jesse A.; Kim, Woohong

    2014-01-01

    We present a method of Cu(In,Ga)S2 (CIGS) thin film formation via conversion of layer-by-layer (LbL) assembled Cu-In-Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1–2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization. PMID:24941104

  9. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    PubMed

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Gamma-Aminobutyric Acid Production Using Immobilized Glutamate Decarboxylase Followed by Downstream Processing with Cation Exchange Chromatography

    PubMed Central

    Lee, Seungwoon; Ahn, Jungoh; Kim, Yeon-Gu; Jung, Joon-Ki; Lee, Hongweon; Lee, Eun Gyo

    2013-01-01

    We have developed a gamma-aminobutyric acid (GABA) production technique using his-tag mediated immobilization of Escherichia coli-derived glutamate decarboxylase (GAD), an enzyme that catalyzes the conversion of glutamate to GABA. The GAD was obtained at 1.43 g/L from GAD-overexpressed E. coli fermentation and consisted of 59.7% monomer, 29.2% dimer and 2.3% tetramer with a 97.6% soluble form of the total GAD. The harvested GAD was immobilized to metal affinity gel with an immobilization yield of 92%. Based on an investigation of specific enzyme activity and reaction characteristics, glutamic acid (GA) was chosen over monosodium glutamate (MSG) as a substrate for immobilized GAD, resulting in conversion of 2.17 M GABA in a 1 L reactor within 100 min. The immobilized enzymes retained 58.1% of their initial activities after ten consecutive uses. By using cation exchange chromatography followed by enzymatic conversion, GABA was separated from the residual substrate and leached GAD. As a consequence, the glutamic acid was mostly removed with no detectable GAD, while 91.2% of GABA was yielded in the purification step. PMID:23322022

  11. Structural characterization (1->2)-beta-xylose-(1->3)-alpha-arabinose-containing oligosaccharide products of extracted switchgrass (Panicum virgatum, L.) xylan treatment with alpha-arabinofuranosidase and beta-endo-xylanase.

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum, L.) is a potential dedicated biomass crop for use in biocatalytic conversion systems to biofuels. Nearly 30% of switchgrass cell wall material is xylan. The complete depolymerization of xylan is desirable both as an additional carbon source for microbial fermentation a...

  12. Effect of pH on optimization of photofermentative hydrogen production by co-culture of Rhodobacter sphaeroides-NMBL-02 and Bacillus firmus-NMBL-03.

    PubMed

    Pandey, A; Dolly, S; Semwal, D; Pandey, A

    2017-07-31

    Rhodobacter sphaeroides NMBL-02, photosynthetic purple non sulfur (PNS) bacteria and associated Bacillus firmus NMBL-03 were isolated from water sample collected from 15-20 inches beneath the surface of ponds from Northern region of India in modified Sistrom's media (120 ml) containing 3 g/L malate and 1.2 g/L ammonium sulfate. The isolation was done in air tight serum bottles (120 ml) under tungsten bulb (1.8 kLux light intensity) at 30 oC ± 2 oC. The PNS and heterotrophic bacteria associated with the culture was purified by clonal selection method and characterized by 16S rDNA sequencing. The PNS isolate was identified as Rhodobacter sphaeroides NMBL-02 (ID: 1467407, Accession BANKIT: JN256030) and associated heterotroph as Bacillus firmus NMBL-03 (Gene Bank Accession no.: JN 256029). The effect of initial medium pH on optimization of hydrogen production was investigated in batch process. The maximum hydrogen potential and hydrogen production rate was 2310 ± 55 ml/L and 4.75 ml/L culture/h respectively using glutamate (1.7 mmol/L) as nitrogen source and malate (22.38 mmol/L) as carbon source with 76.39% malate conversion efficiency at initial medium pH 5.0. This co-culture has the ability to produce significant amount of hydrogen in the pH range of 5.0 to 10.0 with 76.39% to 35.71% malate conversion respectively.

  13. Alkaline decomposition of synthetic jarosite with arsenic

    PubMed Central

    2013-01-01

    The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb2+, Cr6+, As5+, Cd2+, Hg2+). For the present paper, AsO43- was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH-] > 8 × 10-3 mol L-1, the process showed a reaction order of 1.86, and an apparent activation energy of 60.3 kJ mol-1 was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH-] > 1.90 × 10-2 mol L-1, the reaction order was 1.15, and an apparent activation energy of 74.4 kJ mol-1 was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control. PMID:23566061

  14. Destruction of OPA from munitions demilitarization in supercritical water oxidation: kinetics of total organic carbon disappearance.

    PubMed

    Veriansyah, Bambang; Kim, Jae-Duck; Lee, Jong-Chol; Hong, Deasik

    2006-01-01

    The destruction of OPA from munitions demilitarization has been accomplished in supercritical water oxidation (SCWO) with oxygen as oxidant in an isothermal continuous-flow reactor. The experiments were conducted at a temperature of 689-887 K and a fixed pressure of 25 MPa, with a residence time that ranged from 7 s to 14 s. The destruction efficiency was measured by total organic carbon (TOC) conversion. At the reaction condition, the initial TOC concentrations of OPA were varied from 1.41 mmol/L to 19.57 mmol/L and the oxygen concentrations were varied from 15.03 mmol/L to 81.85 mmol/L. Experimental data showed that all the TOC conversions were >80% under the above experimental conditions. The kinetics of TOC disappearance, which is essential for the design, optimization, and control of reliable commercial SCWO reactor was developed by taking into account the dependence of the oxidant and TOC concentration on the reaction rate. A global TOC disappearance rates expression was regressed from the data of 38 experiments, to a 95% confidence level. The resulting activation energy was determined to be 44.01 +/- 1.52 kJ/mol, and the pre-exponential factor was (1.67 +/- 0.45) x 10(2) L(1.14) mmol(-0.14) s(-1). The reaction orders for the TOC and the oxidant were 0.98 +/- 0.01 and 0.16 +/- 0.02, respectively.

  15. Nuclear Data Evaluation for Mass Chain A=217:Odd-Proton Nuclei

    PubMed Central

    Nafee, Sherif S.; Shaheen, Salem A.; Al-Ramady, Amir M.

    2016-01-01

    Thallium (Tl81217), Bismuth (Bi83217), Astatine (At85217), Francium (Fr87217), Actinium (Ac89217) and Protactinium (Pa91217) are of odd-proton numbers among the mass chain A = 217. In the present work, the half-lives and gamma transitions for the six nuclei have been studied and adopted based on the recently published interactions or unevaluated nuclear data sets XUNDL. The Q (α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012 as well. Moreover, the total conversion electrons as well as the K-Shell to L-Shell, L-Shell to M-Shell and L-Shell to N-Shell Conversion Electron Ratios have been calculated using BrIcc code v2.3. An updated skeleton decay scheme for each of the above nuclei has been presented here. The decay hindrance factors (HF) calculated using the ALPHAD program, which is available from Brookhaven National Laboratory’s website, have been calculated for the α- decay data sets for 221Fr-, 221Ac- and 221Pa- α-decays. PMID:26761207

  16. Preparation and Corrosion Resistance of Trivalent Chromium-Zirconium Composite Coating

    NASA Astrophysics Data System (ADS)

    Huang, J. Z.

    2018-05-01

    Aluminum alloys are widely used in the various industries because of its superior advantages. However there will be a thin oxide layer on the surface of the pure aluminum to inhibit corrosion, when adding some other elements, the obtained aluminum alloy is easy to be corroded. Surface protection is an important means to improve the corrosion resistance of aluminum alloys. The formal research had already confirmed that the trivalent chromium conversion coating can significantly improve the corrosion resistance, and the usage of the zirconium solution can also protect the aluminum alloy from corrosion. In this study, we constructed the binary conversion coating with the Cr2(SO4)3 and the K2ZrF6. The optimum reaction conditions are as follows: 10g/L H3PO4, 2g/L K2ZrF6, 28g/L Cr2(SO4)3, pH=2.5∼3.5, temperature 40°C, and reaction time 10 min. Copper sulfate titration experiment confirmed that the corrosion resistance was significantly improved.

  17. Satyen K. Deb | NREL

    Science.gov Websites

    . Deb, P.R. Hageman, A.R. Bavhis, and L.J. Ailing (1996). "Interface-induced Conversion of Infrared . Lee, B.P. Nelson, A. Mascarenhas, and S.K. Deb (2000). "Light-Induced Long Range Hydrogen Motion

  18. Switch from epoetin to darbepoetin alfa in hemodialysis: dose equivalence and hemoglobin stability.

    PubMed

    Arrieta, Javier; Moina, Iñigo; Molina, José; Gallardo, Isabel; Muñiz, María Luisa; Robledo, Carmen; García, Oscar; Vidaur, Fernando; Muñoz, Rosa Inés; Iribar, Izaskun; Aguirre, Román; Maza, Antonio

    2014-01-01

    The objective of the study reported here was to describe dose equivalence and hemoglobin (Hb) stability in a cohort of unselected hemodialysis patients who were switched simultaneously from epoetin alfa to darbepoetin alfa. This was a multicenter, observational, retrospective study in patients aged ≥18 years who switched from intravenous (IV) epoetin alfa to IV darbepoetin alfa in October 2007 (Month 0) and continued on hemodialysis for at least 24 months. The dose was adjusted to maintain Hb within 1.0 g/dL of baseline. We included 125 patients (59.7% male, mean [standard deviation (SD)] age 70.4 [13.4] years). No significant changes were observed in Hb levels (mean [SD] 11.9 [1.3] g/dL, 12.0 [1.5], 12.0 [1.5], and 12.0 [1.7] at Months -12, 0, 12 and 24, respectively, P=0.409). After conversion, the erythropoiesis-stimulating agent (ESA) dose decreased significantly (P<0.0001), with an annual mean of 174.7 (88.7) international units (IU)/kg/week for epoetin versus 95.7 (43.4) (first year) and 91.4 (42.7) IU/kg/week (second year) for darbepoetin (65% and 64% reduction, respectively). The ESA resistance index decreased from 15.1 (8.5) IU/kg/week/g/dL with epoetin to 8.1 (3.9) (first year) and 7.9 (4.0) (second year) with darbepoetin (P<0.0001). The conversion rate was 354:1 in patients requiring high (>200 IU/kg/week) doses of epoetin and 291:1 in patients requiring low doses. In patients on hemodialysis receiving ESAs, conversion from epoetin alfa to darbepoetin alfa was associated with an approximate and persistent reduction of 65% of the required dose. To maintain Hb stability, a conversion rate of 300:1 seems to be appropriate for most patients receiving low doses of epoetin alfa (≤200 IU/kg/week), while 350:1 would be better for patients receiving higher doses.

  19. Glycemic control and hypoglycemia in Veterans Health Administration patients converted from glyburide to glipizide.

    PubMed

    Skoff, Rachel A; Waterbury, Nancee V; Shaw, Robert F; Egge, Jason A; Cantrell, Matthew

    2011-11-01

    In 2009, the Veterans Health Administration (VHA) released a national bulletin regarding the risk of hypoglycemia associated with the use of glyburide in elderly patients with renal dysfunction. Providers were encouraged to avoid glyburide and use glipizide in patients with a calculated creatinine clearance (CrCl) of less than 50 mL per minute. Since this initiative, many veterans were converted by their providers from glyburide to glipizide regardless of renal impairment. To (a) identify whether hemoglobin A1c remained equivalent in patients converted from glyburide to glipizide, (b) evaluate the prevalence of hypoglycemia during treatment with glyburide or glipizide, (c) compare change in glycemic control for renally impaired versus nonimpaired patients, and (d) analyze dosage conversion ratios selected by providers and measures of patient follow-up after conversion including time until A1c measurement and number of glipizide dose titrations. This was a single-center, retrospective analysis of veterans converted from glyburide to glipizide from January 1, 2008, through May 31, 2010, who had documented A1c values concurrent with glyburide and glipizide use. A 2-sided equivalence analysis was used for the primary outcome. Equivalence was defined as a change in mean A1c of ± 0.2. Hypoglycemia was defined as blood glucose of less than 70 mg per dL, symptoms of hypoglycemia, or hypoglycemia that led to a fall, loss of consciousness, emergency room visit, hospitalization, or death. The pre- to post-conversion change in rates of hypoglycemia was tested for significance using a McNemar's test. In the 141 (99.3% male, 53.9% CrCl less than 50 mL per minute, mean age = 74.0 years) patients meeting inclusion criteria between 2008-2010, the average change in A1c (+ 0.34) was nonequivalent after conversion from glyburide to glipizide (7.08% vs. 7.42%, respectively). Hypoglycemia occurred more frequently during treatment with glyburide than glipizide (31.2% vs. 12.8%, respectively, P less than 0.001). Mean dose conversion ratios were consistent with VHA recommendations (1 mg per day glyburide = 1.26- 1.55 mg per day glipizide). Conversion from glyburide to glipizide was associated with an increase in A1c, but the incidence of hypoglycemia was reduced. Results of this study are consistent with the recommendation of the American Diabetes Association and European Association for the Study of Diabetes to use second-generation sulfonylureas other than glyburide. Patients converted to glipizide should be monitored closely to adjust therapy as appropriate to maintain glycemic control.

  20. Stereoconversion of amino acids and peptides in uryl-pendant binol schiff bases.

    PubMed

    Park, Hyunjung; Nandhakumar, Raju; Hong, Jooyeon; Ham, Sihyun; Chin, Jik; Kim, Kwan Mook

    2008-01-01

    (S)-2-Hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde (1) forms Schiff bases with a wide range of nonderivatized amino acids, including unnatural ones. Multiple hydrogen bonds, including resonance-assisted ones, fix the whole orientation of the imine and provoke structural rigidity around the imine C==N bond. Due to the structural difference and the increase in acidity of the alpha proton of the amino acid, the imine formed with an L-amino acid (1-l-aa) is converted into the imine of the D-amino acid (1-D-aa), with a D/L ratio of more than 10 for most amino acids at equilibrium. N-terminal amino acids in dipeptides are also predominantly epimerized to the D form upon imine formation with 1. Density functional theory calculations show that 1-D-Ala is more stable than 1-L-Ala by 1.64 kcal mol(-1), a value that is in qualitative agreement with the experimental result. Deuterium exchange of the alpha proton of alanine in the imine form was studied by (1)H NMR spectroscopy and the results support a stepwise mechanism in the L-into-D conversion rather than a concerted one; that is, deprotonation and protonation take place in a sequential manner. The deprotonation rate of L-Ala is approximately 16 times faster than that of D-Ala. The protonation step, however, appears to favor L-amino acid production, which prevents a much higher predominance of the D form in the imine. Receptor 1 and the predominantly D-form amino acid can be recovered from the imine by simple extraction under acidic conditions. Hence, 1 is a useful auxiliary to produce D-amino acids of industrial interest by the conversion of naturally occurring L-amino acids or relatively easily obtainable racemic amino acids.

  1. Quantifying Blood Loss and Transfusion Risk After Primary vs Conversion Total Hip Arthroplasty.

    PubMed

    Newman, Jared M; Webb, Matthew R; Klika, Alison K; Murray, Trevor G; Barsoum, Wael K; Higuera, Carlos A

    2017-06-01

    Primary total hip arthroplasty (THA) and conversion THA may result in substantial blood loss, sometimes necessitating transfusion. Despite the complexities of the latter, both are grouped in the same category for quality assessment and reimbursement. This study's purpose was to compare both blood loss and transfusion risk in primary and conversion THA and identify their associated predictors. A total of 1616 patients who underwent primary and conversion THA at a single hospital from 2009-2013 were reviewed (primary THA = 1575; conversion THA = 41). Demographics, comorbidities, and perioperative data were collected from electronic records. Blood loss was calculated using a validated method. Transfusion triggers were based on standardized criteria. Separate multivariable regression models for blood loss and transfusion were performed. Conversion THA patients were younger (P = .002), had lower age-adjusted Charlson scores (P = .006), longer surgeries (P < .001), higher blood loss (P < .001), and more transfusions (P < .001). Primary and conversion THA groups were different in terms of surgical approach (P < .001), anesthesia type (P = .002), and venous thromboembolism prophylaxis (P = .01). Compared to primary THA, conversion THA had an average 478.9 mL higher blood loss (P = .003) and increased adjusted odds ratio of 3.2 (P = .019) for transfusion. Conversion THA leads to higher blood loss and transfusion compared with primary THA. These differences were quantified in the present study and showed consistent results between the 2 metrics. The differences between these procedures should be addressed during quality assurance because conversion THA is associated with higher resource utilization, which is important in the allocation of resources and tiered reimbursement strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Neurofilament light chain level is a weak risk factor for the development of MS

    PubMed Central

    Arrambide, Georgina; Eixarch, Herena; Villar, Luisa M.; Alvarez-Cermeño, José C.; Picón, Carmen; Kuhle, Jens; Disanto, Giulio; Kappos, Ludwig; Sastre-Garriga, Jaume; Pareto, Deborah; Simon, Eva; Comabella, Manuel; Río, Jordi; Nos, Carlos; Tur, Carmen; Castilló, Joaquín; Vidal-Jordana, Angela; Galán, Ingrid; Arévalo, Maria J.; Auger, Cristina; Rovira, Alex; Montalban, Xavier

    2016-01-01

    Objective: To determine the prognostic value of selected biomarkers in clinically isolated syndromes (CIS) for conversion to multiple sclerosis (MS) and disability accrual. Methods: Data were acquired from 2 CIS cohorts. The screening phase evaluated patients developing clinically definite MS (CIS-CDMS) and patients who remained as CIS during a 2-year minimum follow-up (CIS-CIS). We determined levels of neurofascin, semaphorin 3A, fetuin A, glial fibrillary acidic protein, and neurofilament light (NfL) and heavy chains in CSF (estimated mean [95% confidence interval; CI]). We evaluated associations between biomarker levels, conversion, disability, and magnetic resonance parameters. In the replication phase, we determined NfL levels (n = 155) using a 900 ng/L cutoff. Primary endpoints in uni- and multivariate analyses were CDMS and 2010 McDonald MS. Results: The only biomarker showing significant differences in the screening was NfL (CIS-CDMS 1,553.1 [1,208.7–1,897.5] ng/L and CIS-CIS 499.0 [168.8–829.2] ng/L, p < 0.0001). The strongest associations were with brain parenchymal fraction change (rs = −0.892) and percentage brain volume change (rs = −0.842) at 5 years. NfL did not correlate with disability. In the replication phase, more NfL-positive patients, according to the cutoff, evolved to MS. Every 100-ng/L increase in NfL predicted CDMS (hazard ratio [HR] = 1.009, 95% CI 1.005–1.014) and McDonald MS (HR = 1.009, 95% CI 1.005–1.013), remaining significant for CDMS in the multivariate analysis (adjusted HR = 1.005, 95% CI 1.000–1.011). This risk was lower than the presence of oligoclonal bands or T2 lesions. Conclusions: NfL is a weak independent risk factor for MS. Its role as an axonal damage biomarker may be more relevant as suggested by its association with medium-term brain volume changes. PMID:27521440

  3. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor.

    PubMed

    Zahed, Omid; Jouzani, Gholamreza Salehi; Abbasalizadeh, Saeed; Khodaiyan, Faramarz; Tabatabaei, Meisam

    2016-05-01

    The present study was set to develop a robust and economic biorefinery process for continuous co-production of ethanol and xylitol from rice straw in a membrane bioreactor. Acid pretreatment, enzymatic hydrolysis, detoxification, yeast strains selection, single and co-culture batch fermentation, and finally continuous co-fermentation were optimized. The combination of diluted acid pretreatment (3.5 %) and enzymatic conversion (1:10 enzyme (63 floating-point unit (FPU)/mL)/biomass ratio) resulted in the maximum sugar yield (81 % conversion). By concentrating the hydrolysates, sugars level increased by threefold while that of furfural reduced by 50 % (0.56 to 0.28 g/L). Combined application of active carbon and resin led to complete removal of furfural, hydroxyl methyl furfural, and acetic acid. The strains Saccharomyces cerevisiae NCIM 3090 with 66.4 g/L ethanol production and Candida tropicalis NCIM 3119 with 9.9 g/L xylitol production were selected. The maximum concentrations of ethanol and xylitol in the single cultures were recorded at 31.5 g/L (0.42 g/g yield) and 26.5 g/L (0.58 g/g yield), respectively. In the batch co-culture system, the ethanol and xylitol productions were 33.4 g/L (0.44 g/g yield) and 25.1 g/L (0.55 g/g yield), respectively. The maximum ethanol and xylitol volumetric productivity values in the batch co-culture system were 65 and 58 % after 25 and 60 h, but were improved in the continuous co-culture mode and reached 80 % (55 g/L) and 68 % (31 g/L) at the dilution rate of 0.03 L per hour, respectively. Hence, the continuous co-production strategy developed in this study could be recommended for producing value-added products from this hugely generated lignocellulosic waste.

  4. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    NASA Astrophysics Data System (ADS)

    Py, J.; Groetz, J.-E.; Hubinois, J.-C.; Cardona, D.

    2015-04-01

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1-20 g L-1 is given.

  5. A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase.

    PubMed

    Patel, Manisha J; Akhani, Rekha C; Patel, Arti T; Dedania, Samir R; Patel, Darshan H

    2017-02-01

    l-ribose and d-tagatose are biochemically synthesized using sugar isomerases. The l-arabinose isomerase gene from Shigella flexneri (Sf-AI) was cloned and expressed in Escherichia coli BL-21. Sf-AI was applied for the bioproduction of d-tagatose from d-galactose. l-ribose synthesis was performed by two step isomerization using Sf-AI and d-lyxose/ribose isomerase from Cohnella laevoribosii. The overall 22.3% and 25% conversion rate were observed for d-tagatose and l-ribose production from d-galactose and l-arabinose respectively. In the present manuscript, synthesis of rare sugars from naturally available sugars is discussed along with the biochemical characterization of Sf-AI and its efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Reflexivity in the Interstices: A Tale of Reflexivity at Work in, during, and behind the Scenes

    ERIC Educational Resources Information Center

    Wickens, Corrine M.; Cohen, James A.; Walther, Carol S.

    2017-01-01

    This article is a story of how the authors came to make sense of the significance of those words in relation to gender, race/ethnicity, and citizenship in writing a manuscript about L[subscript 1]L[subscript 2] acquisition. It is a tale about how Reflexivity wove itself into the conversations, into the writing, into the in-between spaces, the…

  7. Discovery and Development of Therapeutic Drugs Against Lethal Human RNA Viruses: A Multidisciplinary Assault.

    DTIC Science & Technology

    1992-03-17

    D. F. Kefauver, G. R. Pettit, G. Groszek, M . Hollingshead, J. J. Kirsi, W. M . Shannon, E. M . Schubert, J. DaRe, B. Ugarkar, M . A. Ussery, and M . J... M . R. Boyd, J. E. Leet, C. Dufresne, D. L. Doubek, J. M . Schmidt, R. L. Cerny, J. N. A. Hooper, and K. C. Rutzler, "Isolation and Structure of the...L. Herald, N. A. Sharkey, and P. M . Blumberg, "Synthetic Conversion of Bryostatin 2 to Bryostatin 1 and Related Bryopyrans," Can. J. Chem., 69, 856

  8. Trehalose accumulation from corn starch by Saccharomycopsis fibuligera A11 during 2-l fermentation and trehalose purification.

    PubMed

    Chi, Zhe; Wang, Ji-Ming; Chi, Zhen-Ming; Ye, Fang

    2010-01-01

    In this study, corn starch was used as the substrate for cell growth and trehalose accumulation by Saccharomycopsis fibuligera A11. Effect of different aeration rates, agitation speeds, and concentrations of corn starch on direct conversion of corn starch to trehalose by S. fibuligera A11 were examined using a Biostat B2 2-l fermentor. We found that the optimal conditions for direct conversion of corn starch to trehalose by this yeast strain were that agitation speed was 200 rpm, aeration rate was 4.0 l/min, concentration of corn starch was 2.0% (w/v), initial pH was 5.5, fermentation temperature was 30 degrees C. Under these conditions, over 22.9 g of trehalose per 100 g of cell dry weight was accumulated in the yeast cells, cell mass was 15.2 g/l of the fermentation medium, 0.12% (w/v) of reducing sugar, and 0.21% (w/v) of total sugar were left in the fermented medium within 48 h of the fermentation. It was found that trehalose in the yeast cells could be efficiently extracted by the hot distilled water (80 degrees C). After isolation and purification, the crystal trehalose was obtained from the extract of the cells.

  9. Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer

    PubMed Central

    Dang, Xiangnan; Gu, Li; Qi, Jifa; Correa, Santiago; Zhang, Geran; Belcher, Angela M.; Hammond, Paula T.

    2016-01-01

    Fluorescence imaging in the second near-infrared window (NIR-II, 1,000–1,700 nm) features deep tissue penetration, reduced tissue scattering, and diminishing tissue autofluorescence. Here, NIR-II fluorescent probes, including down-conversion nanoparticles, quantum dots, single-walled carbon nanotubes, and organic dyes, are constructed into biocompatible nanoparticles using the layer-by-layer (LbL) platform due to its modular and versatile nature. The LbL platform has previously been demonstrated to enable incorporation of diagnostic agents, drugs, and nucleic acids such as siRNA while providing enhanced blood plasma half-life and tumor targeting. This work carries out head-to-head comparisons of currently available NIR-II probes with identical LbL coatings with regard to their biodistribution, pharmacokinetics, and toxicities. Overall, rare-earth-based down-conversion nanoparticles demonstrate optimal biological and optical performance and are evaluated as a diagnostic probe for high-grade serous ovarian cancer, typically diagnosed at late stage. Successful detection of orthotopic ovarian tumors is achieved by in vivo NIR-II imaging and confirmed by ex vivo microscopic imaging. Collectively, these results indicate that LbL-based NIR-II probes can serve as a promising theranostic platform to effectively and noninvasively monitor the progression and treatment of serous ovarian cancer. PMID:27114520

  10. Composition of Lignin-to-Liquid Solvolysis Oils from Lignin Extracted in a Semi-Continuous Organosolv Process

    PubMed Central

    Løhre, Camilla; Vik Halleraker, Hilde; Barth, Tanja

    2017-01-01

    The interest and on-going research on utilisation of lignin as feedstock for production of renewable and sustainable aromatics is expanding and shows great potential. This study investigates the applicability of semi-continuously organosolv extracted lignin in Lignin-to-Liquid (LtL) solvolysis, using formic acid as hydrogen donor and water as solvent under high temperature–high pressure (HTHP) conditions. The high purity of the organosolv lignin provides high conversion yields at up to 94% based on lignin mass input. The formic acid input is a dominating parameter in lignin conversion. Carbon balance calculations of LtL-solvolysis experiments also indicate that formic acid can give a net carbon contribution to the bio-oils, in addition to its property as hydrogenation agent. Compound specific quantification of the ten most abundant components in the LtL-oils describe up to 10% of the bio-oil composition, and reaction temperature is shown to be the dominating parameter for the structures present. The structural and quantitative results from this study identify components of considerable value in the LtL-oil, and support the position of this oil as a potentially important source of building blocks for the chemical and pharmaceutical industry. PMID:28124994

  11. Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems.

    PubMed

    Brinques, Graziela Brusch; do Carmo Peralba, Maria; Ayub, Marco Antônio Záchia

    2010-02-01

    Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett-Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l(-1) (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l(-1) (dw), with conversion rates of 0.10 g of cell g(-1) lactose and 1.08 g lactic acid g(-1) lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.

  12. Optimization of cultural conditions for conversion of glycerol to ethanol by Enterobacter aerogenes S012

    PubMed Central

    2013-01-01

    The aim of this research is to optimize the cultural conditions for the conversion of glycerol to ethanol by Enterobacter aerogenes S012. Taguchi method was used to screen the cultural conditions based on their signal to noise ratio (SN). Temperature (°C), agitation speed (rpm) and time (h) were found to have the highest influence on both glycerol utilization and ethanol production by the organism while pH had the lowest. Full factorial design, statistical analysis, and regression model equation were used to optimize the selected cultural parameters for maximum ethanol production. The result showed that fermentation at 38°C and 200 rpm for 48 h would be ideal for the bacteria to produce maximum amount of ethanol from glycerol. At these optimum conditions, ethanol production, yield and productivity were 25.4 g/l, 0.53 g/l/h, and 1.12 mol/mol-glycerol, repectively. Ethanol production increased to 26.5 g/l while yield and productivity decreased to 1.04 mol/mol-glycerol and 0.37 g/l/h, respectively, after 72 h. Analysis of the fermentation products was performed using HPLC, while anaerobic condition was created by purging the fermentation vessel with nitrogen gas. PMID:23388539

  13. 7 CFR 1.131 - Scope and applicability of this subpart.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Promotion Act of 1990, section 1999L [7 U.S.C. 6411]. Forest Resources Conversation and Shortage Relief Act... suspension or revocation of accreditation of veterinarians (9 CFR parts 160, 161); (3) Proceedings for...

  14. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre

    This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less

  15. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass

    DOE PAGES

    Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre; ...

    2016-01-19

    This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less

  16. Optimized formation of detergent micelles of beta-carotene and retinal production using recombinant human beta,beta-carotene 15,15'-monooxygenase.

    PubMed

    Kim, Nam-Hee; Kim, Yeong-Su; Kim, Hye-Jung; Oh, Deok-Kun

    2008-01-01

    The formation of beta-carotene detergent micelles and their conversion into retinal by recombinant human beta,beta-carotene 15,15'-monooxygenase was optimized under aqueous conditions. Toluene was the most hydrophobic among the organic solvents tested; thus, it was used to dissolve beta-carotene, which is a hydrophobic compound. Tween 80 was selected as the detergent because it supported the highest level of retinal production among all of the detergents tested. The maximum production of retinal was achieved in detergent micelles containing 200 mg/L of beta-carotene and 2.4% (w/v) Tween 80. Under these conditions, the recombinant enzyme produced 97 mg/L of retinal after 16 h with a conversion yield of 48.5% (w/w). The amount of retinal produced, which is the highest ever reported, is a result of the ability of our system to dissolve large amounts of beta-carotene.

  17. [Study on preparation of sagittatoside B with epimedin B converted from cellulase].

    PubMed

    Xu, Feng-Juan; Sun, E; Zhang, Zhen-Hai; Cui, Li; Jia, Xiao-Bin

    2014-01-01

    To prepare sagittatoside B with epimedin B Hydrolyzed from cellulase. With the conversion ratio as the index, the effects of pH value, temperature, reaction time, dosage of enzyme and concentration of substrates on the conversion ratio were detected. L9 (3(4)) orthogonal design was adopted to optimize the preparation process. Hydrolyzed products were identified by MS, 1H-NMR, and 13C-NMR. The results showed that the optimum reaction conditions for the enzymatic hydrolysis were that the temperature was 50 degrees C, the reaction medium was pH 5.6 acetic acid-sodium acetate buffer solution, the concentration of substrates was 20 g x L(-1), the mass ratio between enzyme and substrate was 3: 5, and the relative molecular mass of the reaction product was 646.23. NMR data proved that the product was sagittatoside B. The process is simple and reliable under mild reaction conditions, thus suitable for industrial production.

  18. Études des propriétés électro-optiques d'une série de diphtalocyanines de terres rares

    NASA Astrophysics Data System (ADS)

    Videlot, C.; Fichou, D.; Garnier, F.

    1998-06-01

    In this work, we describe the study of photovoltaic cells for a series of rare earth diphthalocyanines. This p type organic compounds have been used in Schottky and pn configurations. Current-voltage curves and action spectra show different replies in energy's conversion according to the rare earth of the diphthalocyanine. Dans ce travail, nous décrivons l'étude de cellules photovoltaïques pour une série de diphtalocyanines de terres rares. Ces composés organiques de type p ont été étudiés dans des configurations Schottky et hétérojonction pn. Les courbes de courant-tension et les spectres d'action montrent des réponses différentes dans la conversion de l'énergie suivant la terre rare de la diphtalocyanine.

  19. Technology Evaluation for Paintable Computing and Paintable Displays RF Nixel Seedling

    DTIC Science & Technology

    2006-04-15

    0.32 mm2• 111-V LED’s may be fabricated on Si wafers using SiGe virtual substrates. The MIT Media Lab selected technologies for a 17" diagonal, 640 x...energy conversion, though betavoltaic devices, tends to have a very low efficiency, about 1%. [15] With 1% conversion efficiency on the lOmW released...200 J.!Cilyear of 63Ni, assuming that this was this person’s only exposure to man-made radiation. A prototype betavoltaic cell has been constructed

  20. Real-world dose-relativity, tablet burden, and cost comparison of conversion between sevelamer hydrochloride/carbonate and lanthanum carbonate monotherapies.

    PubMed

    Keith, Michael S; Sibbel, Scott; Copley, J Brian; Wilson, Rosamund J; Brunelli, Steven M

    2014-10-01

    Sevelamer hydrochloride/carbonate (SH/C) and lanthanum carbonate (LC) are noncalcium-based phosphate binders used for the management of hyperphosphatemia in patients with end-stage renal disease (ESRD). The objectives of this study were to examine the dose-relativity, tablet burden, and cost difference of bidirectional conversion between SH/C and LC monotherapy in a large cohort of real-world patients with ESRD. This retrospective cohort study included three 30-day preconversion periods (days -90 to -61, -60 to -31, and -30 to -1) followed by three 30-day postconversion periods (days 1 to 30, 31 to 60, and 61 to 90); day 0 was the index date of conversion. The full analysis population (FAP) comprised two cohorts: SH/C to LC (S-L) converters and LC to SH/C (L-S) converters. The SH/C:LC dose-relativity ratio was assessed in the dose-relativity subset, defined as patients whose serum phosphate levels fell within a caliper range of ± 0.5 mg/dL in the final preconversion (days -30 to -1) and postconversion (days 61 to 90) periods. Tablet burden and phosphate binder costs were assessed in the FAP. Phosphate binder costs were based on average wholesale prices. The FAP contained a total of 303 patients, comprising the S-L (128 patients) and L-S (175 patients) converter cohorts. The dose-relativity subset contained 159 patients, 72 from the S-L cohort and 87 from the L-S cohort. The overall mean SH/C:LC dose-relativity ratio was 2.27 (95% CI, 2.04 to 2.52). In SH/C dose strata >800 to 2400, >2400 to 4800, >4800 to 7200, and >7200 mg/d, overall mean dose-relativity ratios were 0.79 (95% CI, 0.57 to 1.10), 1.45 (95% CI, 1.20 to 1.75), 2.05 (95% CI, 1.75 to 2.39), and 3.24 (95% CI, 2.89 to 3.66), respectively. The overall mean tablet burden was 6.6 tablets per day lower with LC monotherapy than with SH/C monotherapy (95% CI, -7.1 to -6.0; P < 0.0001). The overall mean binder cost/patient per month was $1080.40 for SH/C compared with $1006.20 for LC, corresponding to a mean binder cost saving for LC of $74.20/patient per month (95% CI, -141.80 to -6.63; P = 0.032). SH/C >7800 mg/d was the inflection point at which conversion to LC resulted in mean cost savings. Patients requiring SH/C >7800 mg/d comprised 50% of the FAP. Converting patients with ESRD and hyperphosphatemia from SH/C to LC monotherapy offers potential drug cost savings and a significant reduction in the daily tablet burden, without compromising the effective management of serum phosphate levels. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Efficiency of broadband terahertz rectennas based on self-switching nanodiodes

    NASA Astrophysics Data System (ADS)

    Briones, Edgar; Cortes-Mestizo, Irving E.; Briones, Joel; Droopad, Ravindranath; Espinosa-Vega, Leticia I.; Vilchis, Heber; Mendez-Garcia, Victor H.

    2017-04-01

    The authors investigate the efficiency of a series of broadband rectennas designed to harvest the free-propagating electromagnetic energy at terahertz frequencies. We analyze by simulations the case of self-complementary square- and Archimedean-spiral antennas coupled to L-shaped self-switching diodes (L-SSDs). First, the geometry (i.e., the width and length of the channel) of the L-SSD was optimized to obtain a remarkable diode-like I-V response. Subsequently, the optimized L-SSD geometry was coupled to both types of spiral antennas and their characteristic impedance was studied. Finally, the energy conversion efficiency was evaluated for both rectenna architectures.

  2. Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass.

    PubMed

    Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H

    2010-05-01

    The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.

  3. Word Naming in the L1 and L2: A Dynamic Perspective on Automatization and the Degree of Semantic Involvement in Naming.

    PubMed

    Plat, Rika; Lowie, Wander; de Bot, Kees

    2017-01-01

    Reaction time data have long been collected in order to gain insight into the underlying mechanisms involved in language processing. Means analyses often attempt to break down what factors relate to what portion of the total reaction time. From a dynamic systems theory perspective or an interaction dominant view of language processing, it is impossible to isolate discrete factors contributing to language processing, since these continually and interactively play a role. Non-linear analyses offer the tools to investigate the underlying process of language use in time, without having to isolate discrete factors. Patterns of variability in reaction time data may disclose the relative contribution of automatic (grapheme-to-phoneme conversion) processing and attention-demanding (semantic) processing. The presence of a fractal structure in the variability of a reaction time series indicates automaticity in the mental structures contributing to a task. A decorrelated pattern of variability will indicate a higher degree of attention-demanding processing. A focus on variability patterns allows us to examine the relative contribution of automatic and attention-demanding processing when a speaker is using the mother tongue (L1) or a second language (L2). A word naming task conducted in the L1 (Dutch) and L2 (English) shows L1 word processing to rely more on automatic spelling-to-sound conversion than L2 word processing. A word naming task with a semantic categorization subtask showed more reliance on attention-demanding semantic processing when using the L2. A comparison to L1 English data shows this was not only due to the amount of language use or language dominance, but also to the difference in orthographic depth between Dutch and English. An important implication of this finding is that when the same task is used to test and compare different languages, one cannot straightforwardly assume the same cognitive sub processes are involved to an equal degree using the same task in different languages.

  4. PRELIMINARY DRILLING IN THE POWDER RIVER BASIN, CONVERSE, CAMPBELL, AND JOHNSON COUNTRIES, WYOMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geslin, H.E.; Bromley, C.P.

    1957-06-01

    On July 16, 1953, a diamond core-drilling program was begun in the pumpkin Buttes area to secure geologic information. Drilling was terminated March 11, 1964, after 12 holes had been completed for a total of 5,813 feet. An investigational rotary noncore-drilling project was conducted from June l4, to September 17, 1954, in the southern part of the Powder River Basin, Campbell, Johnson, and Converse Counties, Wyoming. Drilling was done in the Pumpkin Buttes area and the Converse County area. A total of 52,267 feet was drilled and the average depth of hole was 75.3 feet. Forty-one anomalous areas in themore » Powder River Basin were drilled; of these, three in Converse County were found to contain possible commercial ore bodies. All of the drilling was done in the Wasatch formation of Eocene age except one locality, which was in the Fort Union formation of Paleocene age. (auth)« less

  5. Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Martín Valverde, Lorena; Molina Grima, Emilio

    2016-03-01

    Biodiesel (fatty acid methyl esters, FAMEs) was produced from saponifiable lipids (SLs) extracted from wet Nannochloropsis gaditana biomass using methanolysis catalyzed by Rhizopus oryzae intracellular lipase. SLs were firstly extracted with ethanol to obtain 31 wt% pure SLs. But this low SL purity also gave a low biodiesel conversion (58%). This conversion increased up to 80% using SLs purified by crystallization in acetone (95 wt% purity). Polar lipids play an important role in decreasing the reaction velocity - using SLs extracted with hexane, which have lower polar lipid content (37.4% versus 49.0% using ethanol), we obtained higher reaction velocities and less FAME conversion decrease when the same lipase batch was reused. 83% of SLs were transformed to biodiesel using a 70 wt% lipase/SL ratio, 11:1 methanol/SL molar ratio, 10 mL t-butanol/g SLs after 72 h. The FAME conversion decreased to 71% after catalyzing three reactions with the same lipase batch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study.

    PubMed

    Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen

    2011-01-01

    An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  7. From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus.

    PubMed

    Geiger, Barbara; Nguyen, Hoang-Minh; Wenig, Stefanie; Nguyen, Hoang Anh; Lorenz, Cindy; Kittl, Roman; Mathiesen, Geir; Eijsink, Vincent G H; Haltrich, Dietmar; Nguyen, Thu-Ha

    2016-12-15

    β-Galactosidase from Streptococcus thermophilus was overexpressed in a food-grade organism, Lactobacillus plantarum WCFS1. Laboratory cultivations yielded 11,000 U of β-galactosidase activity per liter of culture corresponding to approximately 170 mg of enzyme. Crude cell-free enzyme extracts obtained by cell disruption and subsequent removal of cell debris showed high stability and were used for conversion of lactose in whey permeate. The enzyme showed high transgalactosylation activity. When using an initial concentration of whey permeate corresponding to 205 g L -1 lactose, the maximum yield of galacto-oligosaccharides (GOS) obtained at 50°C reached approximately 50% of total sugar at 90% lactose conversion, meaning that efficient valorization of the whey lactose was obtained. GOS are of great interest for both human and animal nutrition; thus, efficient conversion of lactose in whey into GOS using an enzymatic approach will not only decrease the environmental impact of whey disposal, but also create additional value.

  8. The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae.

    PubMed

    Bracher, Jasmine M; Verhoeven, Maarten D; Wisselink, H Wouter; Crimi, Barbara; Nijland, Jeroen G; Driessen, Arnold J M; Klaassen, Paul; van Maris, Antonius J A; Daran, Jean-Marc G; Pronk, Jack T

    2018-01-01

    l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae strains. Chemostat-based transcriptome analysis yielded 16 putative sugar transporter genes in the filamentous fungus Penicillium chrysogenum whose transcript levels were at least threefold higher in l-arabinose-limited cultures than in d-glucose-limited and ethanol-limited cultures. Of five genes, that encoded putative transport proteins and showed an over 30-fold higher transcript level in l-arabinose-grown cultures compared to d-glucose-grown cultures, only one (Pc20g01790) restored growth on l-arabinose upon expression in an engineered l-arabinose-fermenting S. cerevisiae strain in which the endogenous l-arabinose transporter, GAL2 , had been deleted. Sugar transport assays indicated that this fungal transporter, designated as Pc AraT, is a high-affinity ( K m  = 0.13 mM), high-specificity l-arabinose-proton symporter that does not transport d-xylose or d-glucose. An l-arabinose-metabolizing S. cerevisiae strain in which GAL2 was replaced by PcaraT showed 450-fold lower residual substrate concentrations in l-arabinose-limited chemostat cultures than a congenic strain in which l-arabinose import depended on Gal2 (4.2 × 10 -3 and 1.8 g L -1 , respectively). Inhibition of l-arabinose transport by the most abundant sugars in hydrolysates, d-glucose and d-xylose was far less pronounced than observed with Gal2. Expression of Pc AraT in a hexose-phosphorylation-deficient, l-arabinose-metabolizing S. cerevisiae strain enabled growth in media supplemented with both 20 g L -1 l-arabinose and 20 g L -1 d-glucose, which completely inhibited growth of a congenic strain in the same condition that depended on l-arabinose transport via Gal2. Its high affinity and specificity for l-arabinose, combined with limited sensitivity to inhibition by d-glucose and d-xylose, make Pc AraT a valuable transporter for application in metabolic engineering strategies aimed at engineering S. cerevisiae strains for efficient conversion of lignocellulosic hydrolysates.

  9. Transmethylation of homocysteine to methionine: efficiency in the rat and chick.

    PubMed

    Baker, D H; Czarnecki, G L

    1985-10-01

    Experiments were conducted with young chicks and rats to quantify the efficacy of L-homocysteine as a methionine precursor. Linear growth responses were obtained to both L-methionine and L-homocysteine when added to a methionine-deficient intact-protein diet containing a plethora of cystine. Slope-ratio multiple regression methodology indicated L-homocysteine to be 64.5% as efficacious as L-methionine in rats and 62.5% as efficacious in chicks. Plasma-free methionine also increased linearly as graded levels of either L-methionine or L-homocysteine were added to the diet of rats. At higher dosages of L-homocysteine, betaine, but not choline, showed some efficacy in enhancing the conversion of homocysteine to methionine. In the linear response surface of the growth curve, however, supplemental betaine was without effect on L-homocysteine bioefficacy, as was also the case for supplemental sarcosine and N5-methyltetrahydrofolic acid.

  10. 78 FR 758 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164393, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...., for competitive oil and gas lease WYW164393 for land in Converse County, Wyoming. The petition was... law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver, Chief, Fluid...

  11. STS-71 astronauts before egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Robert L. Gibson (left), STS-71 mission commander, converses with two crew mates prior to emergency egress training in the Systems Integration Facility at JSC. Astronaut Bonnie J. Dunbar and Gregory J. Harbaugh are attired in training versions o

  12. Parent/Teacher Talk.

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Elementary and Early Childhood Education, Urbana, IL.

    This document summarizes the practical advice for improving parent/teacher communication through written messages and telephone conversations provided in two documents written by Michael L. Henniger of Central Washington University: (1) "Building Parent/Teacher Relations through Written Communication" (ED 211 216); (2) "The…

  13. Application of Taguchi Design and Response Surface Methodology for Improving Conversion of Isoeugenol into Vanillin by Resting Cells of Psychrobacter sp. CSW4.

    PubMed

    Ashengroph, Morahem; Nahvi, Iraj; Amini, Jahanshir

    2013-01-01

    For all industrial processes, modelling, optimisation and control are the keys to enhance productivity and ensure product quality. In the current study, the optimization of process parameters for improving the conversion of isoeugenol to vanillin by Psychrobacter sp. CSW4 was investigated by means of Taguchi approach and Box-Behnken statistical design under resting cell conditions. Taguchi design was employed for screening the significant variables in the bioconversion medium. Sequentially, Box-Behnken design experiments under Response Surface Methodology (RSM) was used for further optimization. Four factors (isoeugenol, NaCl, biomass and tween 80 initial concentrations), which have significant effects on vanillin yield, were selected from ten variables by Taguchi experimental design. With the regression coefficient analysis in the Box-Behnken design, a relationship between vanillin production and four significant variables was obtained, and the optimum levels of the four variables were as follows: initial isoeugenol concentration 6.5 g/L, initial tween 80 concentration 0.89 g/L, initial NaCl concentration 113.2 g/L and initial biomass concentration 6.27 g/L. Under these optimized conditions, the maximum predicted concentration of vanillin was 2.25 g/L. These optimized values of the factors were validated in a triplicate shaking flask study and an average of 2.19 g/L for vanillin, which corresponded to a molar yield 36.3%, after a 24 h bioconversion was obtained. The present work is the first one reporting the application of Taguchi design and Response surface methodology for optimizing bioconversion of isoeugenol into vanillin under resting cell conditions.

  14. Photocatalytic Treatment of a Synthetic Wastewater

    NASA Astrophysics Data System (ADS)

    Yerkinova, Azat; Balbayeva, Gaukhar; Inglezakis, Vassilis J.; Poulopoulos, Stavros G.

    2018-01-01

    This work aimed at investigating the photocatalytic treatment of a synthetic wastewater using UV light (254 nm, 6 W), TiO2 catalyst and H2O2 in a batch recycle annular photoreactor. The total volume of the solution was 250 mL while the irradiated volume in the annular photoreactor with 55.8 mL. Each experiment lasted 120 min and samples were sent for Total Carbon and HPLC analysis. The stock wastewater had initial total carbon 1118 mg L-1. The effect of the presence of phenol in the wastewater on total carbon (TC) removal was also studied. It was shown that the photocatalytic treatment was effective only when initial TC was decreased to 32 mg L-1, whereas the optimum TiO2 concentration was 0.5 g L-1, leading to a TC removal up to 56%. For the same initial carbon load, the optimum H2O2 concentration was found to be 67 mg L-1 resulting in 55% TC removal. Combining, however, TiO2 and H2O2 did not lead to better performance, as 51% TC removal was observed. In contrast, when initial carbon in the wastewater was partially substituted by phenol, the combination of catalyst and hydrogen peroxide was beneficial. Specifically, when 10 ppm of phenol were added keeping the same initial TC concentration, UV/TiO2 treatment resulted in 46% TC removal and 98% phenol conversion, whereas using additionally H2O2 led to 100% phenol conversion after 45 minutes and 81% TC removal.

  15. Enhanced fermentable sugar production from kitchen waste using various pretreatments.

    PubMed

    Hafid, Halimatun Saadiah; Rahman, Nor'Aini Abdul; Md Shah, Umi Kalsom; Baharudin, Azhari Samsu

    2015-06-01

    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Conversion of Solid Waste to Fuels

    DTIC Science & Technology

    1976-01-01

    pyrolysis (cracking) of crude oil to gasolines. 14 Nelson. W. L., Petroleum Refinery Engineering, 4th Edition, New York, McGraw-Hill, p. 628, 1958. 17 I ...Approved for public release; distribution unlimited. ^ ij) I Naval Weapons Center CHINA LAKE, CALIFORNIA 93555 *ps*8iw*iliBHi w- yl» -—»- BEST...Commander G. L. Hollingsworth Technical Direrto, FOREWORD I ins report describes ; i solid waste research project conducted during the period KY73

  17. Industrial Processes to Reduce Generation of Hazardous Waste at DoD Facilities. Phase 2 Report. Evaluation of 18 Case Studies.

    DTIC Science & Technology

    1985-07-15

    oxidize 13 .. . . . . . .- .. . ..-.-........ ~ -. trivalent chromium to hexavalent chromium and to selectively precipitate cation impurities from the...plating facilities. Chromium must be reduced to its trivalent state before it can be removed by precipitation as a hydroxide. Reduction is normally...conversion of hexavalent to trivalent chromium prior to precipitation. Trivalent solutions are typically less concentrated (22 g/L versus 150 g/L for

  18. Efficient electrochemical CO2 conversion powered by renewable energy.

    PubMed

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.

  19. Development of life cycle water footprints for the production of fuels and chemicals from algae biomass.

    PubMed

    Nogueira Junior, Edson; Kumar, Mayank; Pankratz, Stan; Oyedun, Adetoyese Olajire; Kumar, Amit

    2018-09-01

    This study develops life cycle water footprints for the production of fuels and chemicals via thermochemical conversion of algae biomass. This study is based on two methods of feedstock production - ponds and photobioreactors (PBRs) - and four conversion pathways - fast pyrolysis, hydrothermal liquefaction (HTL), conventional gasification, and hydrothermal gasification (HTG). The results show the high fresh water requirement for algae production and the necessity to recycle harvested water or use alternative water sources. To produce 1 kg of algae through ponds, 1564 L of water are required. When PBRs are used, only 372 L water are required; however, the energy requirements for PBRs are about 30 times higher than for ponds. From a final product perspective, the pathway based on the gasification of algae biomass was the thermochemical conversion method that required the highest amount of water per MJ produced (mainly due to its low hydrogen yield), followed by fast pyrolysis and HTL. On the other hand, HTG has the lowest water footprint, mainly because the large amount of electricity generated as part of the process compensates for the electricity used by the system. Performance in all pathways can be improved through recycling channels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility.

    PubMed

    Varga, Eniko; Schmidt, Anette S; Réczey, Kati; Thomsen, Anne Belinda

    2003-01-01

    Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195 degrees C, 15 min, 12 bar O2, 2 g/L of Na2CO3) increased the enzymatic conversion of corn stover four times, compared to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50 degrees C using 25 filter paper units (FPU)/g of drymatter (DM) biomass, the achieved conversion of cellulose to glucose was about 85%. Decreasing the hydrolysis temperature to 40 degrees C increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting the efficiency of hydrolysis, an important economical aspect.

  1. Connect Global Positioning System RF Module

    NASA Technical Reports Server (NTRS)

    Franklin, Garth W.; Young, Lawrence E.; Ciminera, Michael A.; Tien, Jeffrey Y.; Gorelik, Jacob; Okihiro, Brian Bachman; Koelewyn, Cynthia L.

    2012-01-01

    The CoNNeCT Global Positioning System RF Module (GPSM) slice is part of the JPL CoNNeCT Software Defined Radio (SDR). CoNNeCT is the Communications, Navigation, and Net working reconfigurable Testbed project that is part of NASA's Space Communication and Nav igation (SCaN) Program. The CoNNeCT project is an experimental dem onstration that will lead to the advancement of SDRs and provide a path for new space communication and navigation systems for future NASA exploration missions. The JPL CoNNeCT SDR will be flying on the International Space Station (ISS) in 2012 in support of the SCaN CoNNeCT program. The GPSM is a radio-frequency sampler module (see Figure 1) that directly sub-harmonically samples the filtered GPS L-band signals at L1 (1575.42 MHz), L2 (1227.6 MHz), and L5 (1176.45 MHz). The JPL SDR receives GPS signals through a Dorne & Margolin antenna mounted onto a choke ring. The GPS signal is filtered against interference, amplified, split, and fed into three channels: L1, L2, and L5. In each of the L-band channels, there is a chain of bandpass filters and amplifiers, and the signal is fed through each of these channels to where the GPSM performs a one-bit analog-to-digital conversion (see Figure 2). The GPSM uses a sub-harmonic, single-bit L1, L2, and L5 sampler that samples at a clock rate of 38.656 MHz. The new capability is the down-conversion and sampling of the L5 signal when previous hardware did not provide this capability. The first GPS IIF Satellite was launched in 2010, providing the new L5 signal. With the JPL SDR flying on the ISS, it will be possible to demonstrate navigation solutions with 10-meter 3-D accuracy at 10-second intervals using a field-program mable gate array (FPGA)-based feedback loop running at 50 Hz. The GPS data bits will be decoded and used in the SDR. The GPSM will also allow other waveforms that are installed in the SDR to demonstrate various GNSS tracking techniques.

  2. Same admission laparoscopic cholecystectomy for acute cholecystitis: is the "golden 72 hours" rule still relevant?

    PubMed

    Tan, Jarrod K H; Goh, Joel C I; Lim, Janice W L; Shridhar, Iyer G; Madhavan, Krishnakumar; Kow, Alfred W C

    2017-01-01

    Studies have shown that same admission laparoscopic cholecystectomy (SALC) is superior to delayed laparoscopic cholecystectomy for acute cholecystitis (AC). While some proposed a"golden 72-hour" for SALC, the optimal timing remains controversial. The aim of the study was to compare the outcomes of SALC in AC patients with different time intervals from symptom onset. A retrospective analysis of 311 patients who underwent SALC for AC from June 2010-June 2015 was performed. Patients were divided into three groups based on the time interval between symptom onset and surgery: <4 days (E-SALC), 4-7 days (M-SALC), >7 (L-SALC). The mean duration of symptoms was 2(1-3), 5(4-7) and 9 (8-13) days for E-SALC, M-SALC and L-SALC, respectively (p < 0.001). Conversion rates were higher in the L-SALC group [E-SALC, 8.2% vs M-SALC, 9.6% vs L-SALC, 21.4%] (p = 0.048). The total length of stay was longer in patients with longer symptom duration [E-SALC, 4 (2-33) vs M-SALC, 2 (2-23) vs L-SALC, 7 (2-49)] (p < 0.001). Patients with AC presenting beyond 7 days of symptoms have higher conversion rates and longer length of stay associated with SALC. However, patients with less than a week of symptoms should be offered SALC. Copyright © 2016 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  3. Precultivation of Bacillus coagulans DSM2314 in the presence of furfural decreases inhibitory effects of lignocellulosic by-products during L(+)-lactic acid fermentation.

    PubMed

    van der Pol, Edwin; Springer, Jan; Vriesendorp, Bastienne; Weusthuis, Ruud; Eggink, Gerrit

    2016-12-01

    By-products resulting from thermo-chemical pretreatment of lignocellulose can inhibit fermentation of lignocellulosic sugars to lactic acid. Furfural is such a by-product, which is formed during acid pretreatment of lignocellulose. pH-controlled fermentations with 1 L starting volume, containing YP medium and a mixture of lignocellulosic by-products, were inoculated with precultures of Bacillus coagulans DSM2314 to which 1 g/L furfural was added. The addition of furfural to precultures resulted in an increase in L(+)-lactic acid productivity by a factor 2 to 1.39 g/L/h, an increase in lactic acid production from 54 to 71 g and an increase in conversion yields of sugar to lactic acid from 68 to 88 % W/W in subsequent fermentations. The improved performance was not caused by furfural consumption or conversion, indicating that the cells acquired a higher tolerance towards this by-product. The improvement coincided with a significant elongation of B. coagulans cells. Via RNA-Seq analysis, an upregulation of pathways involved in the synthesis of cell wall components such as bacillosamine, peptidoglycan and spermidine was observed in elongated cells. Furthermore, the gene SigB and genes promoted by SigB, such as NhaX and YsnF, were upregulated in the presence of furfural. These genes are involved in stress responses in bacilli.

  4. Defining SNAP by cross-sectional and longitudinal definitions of neurodegeneration.

    PubMed

    Wisse, L E M; Das, S R; Davatzikos, C; Dickerson, B C; Xie, S X; Yushkevich, P A; Wolk, D A

    2018-01-01

    Suspected non-Alzheimer's pathophysiology (SNAP) is a biomarker driven designation that represents a heterogeneous group in terms of etiology and prognosis. SNAP has only been identified by cross-sectional neurodegeneration measures, whereas longitudinal measures might better reflect "active" neurodegeneration and might be more tightly linked to prognosis. We compare neurodegeneration defined by cross-sectional 'hippocampal volume' only (SNAP/L-) versus both cross-sectional and longitudinal 'hippocampal atrophy rate' (SNAP/L+) and investigate how these definitions impact prevalence and the clinical and biomarker profile of SNAP in Mild Cognitive Impairment (MCI). 276 MCI patients from ADNI-GO/2 were designated amyloid "positive" (A+) or "negative" (A-) based on their florbetapir scan and neurodegeneration 'positive' or 'negative' based on cross-sectional hippocampal volume and longitudinal hippocampal atrophy rate. 74.1% of all SNAP participants defined by the cross-sectional definition of neurodegeneration also met the longitudinal definition of neurodegeneration, whereas 25.9% did not. SNAP/L+ displayed larger white matter hyperintensity volume, a higher conversion rate to dementia over 5 years and a steeper decline on cognitive tasks compared to SNAP/L- and the A- CN group. SNAP/L- had more abnormal values on neuroimaging markers and worse performance on cognitive tasks than the A- CN group, but did not show a difference in dementia conversion rate or longitudinal cognition. Using a longitudinal definition of neurodegeneration in addition to a cross-sectional one identifies SNAP participants with significant cognitive decline and a worse clinical prognosis for which cerebrovascular disease may be an important driver.

  5. Structural, vibrational and thermal studies of a new nonlinear optical material: L-asparagine-L-tartaric acid.

    PubMed

    Moovendaran, K; Srinivasan, Bikshandarkoil R; Kalyana Sundar, J; Martin Britto Dhas, S A; Natarajan, S

    2012-06-15

    Crystals of a new nonlinear optical (NLO) material, viz., L-asparagine-L-tartaric acid (LALT) (1) were grown by slow evaporation of an aqueous solution containing equimolar concentrations of L-asparagine and L-tartaric acid. The structure of the title compound which crystallizes in the non-centrosymmetric monoclinic space group P2(1) consists of a molecule of L-asparagine and a molecule of free l-tartaric acid both of which are interlinked by three varieties of H-bonding interactions namely O-H···O, N-H···O and C-H···O. The UV-Vis-NIR spectrum of 1 reveals its transparent nature while the vibrational spectra confirm the presence of the functional groups in 1. The thermal stability and second harmonic generation (SHG) conversion efficiency of 1 were investigated. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Asymmetric light transmission based on coupling between photonic crystal waveguides and L1/L3 cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Jinqiannan; Chai, Hongyu; Yu, Zhongyuan; Cheng, Xiang; Ye, Han; Liu, Yumin

    2017-09-01

    A compact design of all-optical diode with mode conversion function based on a two-dimensional photonic crystal waveguide and an L1 or L3 cavity is theoretically investigated. The proposed photonic crystal structures comprise a triangular arrangement of air holes embedded in a silicon substrate. Asymmetric light propagation is achieved via the spatial mode match/mismatch in the coupling region. The simulations show that at each cavity's resonance frequency, the transmission efficiency of the structure with the L1 and L3 cavities reach 79% and 73%, while the corresponding unidirectionalities are 46 and 37 dB, respectively. The functional frequency can be controlled by simply adjusting the radii of specific air holes in the L1 and L3 cavities. The proposed structure can be used as a frequency filter, a beam splitter and has potential applications in all-optical integrated circuits.

  7. Mechanism of N6-threonylcarbamoyladenonsine (t(6)A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP.

    PubMed

    Lauhon, Charles T

    2012-11-06

    Genetic and biochemical studies have recently implicated four proteins required in bacteria for the biosynthesis of the universal tRNA modified base N6-threonylcarbamoyl adenosine (t(6)A). In this work, t(6)A biosynthesis in Bacillus subtilis has been reconstituted in vitro and found to indeed require the four proteins YwlC (TsaC), YdiB (TsaE), YdiC (TsaB) and YdiE (TsaD). YwlC was found to catalyze the conversion of L-threonine, bicarbonate/CO(2) and ATP to give the intermediate L-threonylcarbamoyl-AMP (TC-AMP) and pyrophosphate as products. TC-AMP was isolated by HPLC and characterized by mass spectrometry and (1)H NMR. NMR analysis showed that TC-AMP decomposes to give AMP and a nearly equimolar mixture of L-threonine and 5-methyl-2-oxazolidinone-4-carboxylate as final products. Under physiological conditions (pH 7.5, 37 °C, 2 mM MgCl(2)), the half-life of TC-AMP was measured to be 3.5 min. Both YwlC (in the presence of pyrophosphatase) and its Escherichia coli homologue YrdC catalyze the formation of TC-AMP while producing only a small molar fraction of AMP. This suggests that CO(2) and not an activated form of bicarbonate is the true substrate for these enzymes. In the presence of pyrophosphate, both enzymes catalyze clean conversion of TC-AMP back to ATP. Purified TC-AMP is efficiently processed to t(6)A by the YdiBCE proteins in the presence of tRNA substrates. This reaction is ATP independent in vitro, despite the known ATPase activity of YdiB. The estimated rate of conversion of TC-AMP by YdiBCE to t(6)A is somewhat lower than the initial rate from L-threonine, bicarbonate and ATP, which together with the stability data, is consistent with previous studies that suggest channeling of this intermediate.

  8. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence

    NASA Technical Reports Server (NTRS)

    Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.

  9. Influence of egg shell embryonic incubation temperature and broiler breeder flock age on posthatch growth performance and carcass characteristics.

    PubMed

    Hulet, R; Gladys, G; Hill, D; Meijerhof, R; El-Shiekh, T

    2007-02-01

    A study was conducted to examine the posthatch growth performance of high-yielding broilers when eggs were incubated at 3 different embryo temperatures from 2 flocks of breeders at different ages (different egg size). Two thousand, four hundred eggs from 2 broiler breeder flocks (29 and 57 wk of age) of the same high-yielding strain (Cobb x Cobb) were incubated in the same incubator for 16 d at 37.5 degrees C. Following candling, the eggs from the 2 flocks were transferred into 3 hatcher cabinets at starting temperatures of 36.5 degrees C (low, L), 37.6 degrees C (middle, M), and 38.7 degrees C (high, H) and adjusted to achieve a shell temperature of 37.5 degrees C (L), 38.6 degrees C (M), and 39.7 degrees C (H) using an infrared thermometer. All chicks were taken off at 21 d of incubation, randomized into floor pens, and reared for 44 d. Body weights, feed intake, and feed conversion were determined at 21, 35, and 44 d of age. Body weight of birds from the H treatment was significantly less at 21, 35, and 44 d compared with the M birds. Birds in the L group weighed significantly less at 35 and 44 d compared with the M birds. Progeny from the older breeder flock had significantly greater BW at 1, 21, and 35 d of age, but had only numerically greater BW at 44 d when compared with birds from the younger flock. Feed conversion for the H birds was significantly higher from 0 to 21 d of age compared with the M and L birds. Broilers from the 29-wk-old breeder flock had lower cumulative feed conversion values than the birds from the 57-wk-old flock. No significant differences in mortality were observed. Posthatch performance appears to be affected by hatcher environment as determined by embryo shell temperature.

  10. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.

    PubMed

    Kay, Jennifer E; Jewett, Michael C

    2015-11-01

    Cell-free metabolic engineering (CFME) is emerging as a powerful approach for the production of target molecules and pathway debugging. Unfortunately, high cofactor costs, limited cofactor and energy regeneration, and low volumetric productivities hamper the widespread use and practical implementation of CFME technology. To address these challenges, we have developed a cell-free system that harnesses ensembles of catalytic proteins prepared from crude lysates, or extracts, of cells to fuel highly active heterologous metabolic conversions. As a model pathway, we selected conversion of glucose to 2,3-butanediol (2,3-BD), a medium level commodity chemical with many industrial applications. Specifically, we engineered a single strain of Escherichia coli to express three pathway enzymes necessary to make meso-2,3-BD (m2,3-BD). We then demonstrated that lysates from this strain, with addition of glucose and catalytic amounts of cofactors NAD+ and ATP, can produce m2,3-BD. Endogenous glycolytic enzymes convert glucose to pyruvate, the starting intermediate for m2,3-BD synthesis. Strikingly, with no strain optimization, we observed a maximal synthesis rate of m2,3-BD of 11.3 ± 0.1 g/L/h with a theoretical yield of 71% (0.36 g m2,3-BD/g glucose) in batch reactions. Titers reached 82 ± 8 g/L m2,3-BD in a 30 h fed-batch reaction. Our results highlight the ability for high-level co-factor regeneration in cell-free lysates. Further, they suggest exciting opportunities to use lysate-based systems to rapidly prototype metabolic pathways and carry out molecular transformations when bioconversion yields (g product/L), productivities (g product/L/h), or cellular toxicity limit commercial feasibility of whole-cell fermentation. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Renal, efficacy and safety outcomes following late conversion of kidney transplant patients from calcineurin inhibitor therapy to everolimus: the randomized APOLLO study.

    PubMed

    Budde, Klemens; Rath, Thomas; Sommerer, Claudia; Haller, Hermann; Reinke, Petra; Witzke, Oliver; Suwelack, Barbara; Baeumer, Daniel; May, Christoph; Porstner, Martina; Arns, Wolfgang

    2015-01-01

    The primary objective of this trial was to demonstrate, based on the estimated glomerular filtration rate (eGFR), superior renal function at month 12 after conversion of maintenance kidney transplant patients from calcineurin inhibitor (CNI) therapy to everolimus, compared to continuing a standard CNI regimen. APOLLO was an open-label, 12-month, prospective, multicenter study in which 93 maintenance kidney transplant patients were randomized to convert from CNI to everolimus (n = 46) or remain on standard CNI-based immunosuppression (n = 47). The primary efficacy variable was eGFR (Nankivell formula) 12 months after randomization. The study was terminated prematurely due to slow recruitment and was thus underpowered. Mean time post-transplant was 83.5 months with everolimus and 70.1 months with CNI. Adjusted values for eGFR (Nankivell) at month 12 were 61.6 (95% CI 58.1, 65.1) mL/ min/1.73 m² with everolimus and 58.8 (95% CI 55.2, 62.3) mL/min/1.73 m² with CNI, a difference of 2.8 (95% CI -1.0, 6.7) mL/ min/1.73 m² (p = 0.145) i.e., the primary objective was not met. Using the modification of diet in renal disease (MDRD) formula, adjusted eGFR at month 12 was significantly higher with everolimus (p = 0.030). In the subpopulation who remained on the study drug (n = 52), the difference in the adjusted change from randomization was 6.6 (95% CI 1.5, 11.6) mL/min/1.73 m² (p = 0.013) in favor of everolimus. There was no biopsyproven acute rejection and no graft losses. Adverse events led to discontinuation of everolimus and CNI in 32.6% and 10.6% of patients, respectively. Conversion from CNI to everolimus to preserve renal function can be considered several years after kidney transplantation and does not compromise immunosuppressive efficacy.

  12. 75 FR 56135 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW149955, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... Khody Land & Minerals Company for competitive oil and gas lease WYW149955 for land in Converse County... lease terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L...

  13. 76 FR 41821 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW140216, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... LLC for competitive oil and gas lease WYW140216 for land in Converse and Campbell Counties, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver, Chief...

  14. 75 FR 56136 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW149954, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... Khody Land & Minerals Company for competitive oil and gas lease WYW149954 for land in Converse County... lease terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L...

  15. 78 FR 759 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW172987, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...., for competitive oil and gas lease WYW172987 for lands in Converse and Natrona County, Wyoming. The... under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver, Chief, Fluid...

  16. 7 CFR 1.131 - Scope and applicability of this subpart.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Promotion Act of 1990, section 1999L [7 U.S.C. 6411]. Forest Resources Conversation and Shortage Relief Act... veterinarians (9 CFR parts 160, 161); (3) Proceedings for debarment of counsel under § 1.141(d) of this subpart...

  17. 7 CFR 1.131 - Scope and applicability of this subpart.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Promotion Act of 1990, section 1999L [7 U.S.C. 6411]. Forest Resources Conversation and Shortage Relief Act... veterinarians (9 CFR parts 160, 161); (3) Proceedings for debarment of counsel under § 1.141(d) of this subpart...

  18. 7 CFR 1.131 - Scope and applicability of this subpart.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Promotion Act of 1990, section 1999L [7 U.S.C. 6411]. Forest Resources Conversation and Shortage Relief Act... veterinarians (9 CFR parts 160, 161); (3) Proceedings for debarment of counsel under § 1.141(d) of this subpart...

  19. 7 CFR 1.131 - Scope and applicability of this subpart.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Promotion Act of 1990, section 1999L [7 U.S.C. 6411]. Forest Resources Conversation and Shortage Relief Act... veterinarians (9 CFR parts 160, 161); (3) Proceedings for debarment of counsel under § 1.141(d) of this subpart...

  20. The Microbial Conversion of D-Sorbitol to L-Sorbose: An Interdisciplinary Experiment Illustrating an Industrial Process.

    ERIC Educational Resources Information Center

    Volker, Eugene J.; Schultz, Clyde

    1978-01-01

    Describes an experiment that has been introduced in the organic chemistry laboratory program at Shepherd College, Shepherdstown, West Virginia. It illustrates microbial reaction and its role in the synthesis of vitamin C. (HM)

  1. Impact of long-term salinity exposure in anaerobic membrane bioreactors treating phenolic wastewater: Performance robustness and endured microbial community.

    PubMed

    Muñoz Sierra, Julian D; Oosterkamp, Margreet J; Wang, Wei; Spanjers, Henri; van Lier, Jules B

    2018-05-07

    Industrial wastewaters are becoming increasingly associated with extreme conditions such as the presence of refractory compounds and high salinity that adversely affect biomass retention or reduce biological activity. Hence, this study evaluated the impact of long-term salinity increase to 20 gNa + .L -1 on the bioconversion performance and microbial community composition in anaerobic membrane bioreactors treating phenolic wastewater. Phenol removal efficiency of up to 99.9% was achieved at 14 gNa + .L -1 . Phenol conversion rates of 5.1 mgPh.gVSS -1 .d -1 , 4.7 mgPh.gVSS -1 .d -1 , and 11.7 mgPh.gVSS -1 .d -1 were obtained at 16 gNa + .L -1 ,18 gNa + .L -1 and 20 gNa + .L -1 , respectively. The AnMBR's performance was not affected by short-term step-wise salinity fluctuations of 2 gNa + .L -1 in the last phase of the experiment. It was also demonstrated in batch tests that the COD removal and methane production rate were higher at a K + :Na + ratio of 0.05, indicating the importance of potassium to maintain the methanogenic activity. The salinity increase adversely affected the transmembrane pressure likely due to a particle size decrease from 185 μm at 14 gNa + .L -1 to 16 μm at 20 gNa + .L -1 . Microbial community was dominated by bacteria belonging to the Clostridium genus and archaea by Methanobacterium and Methanosaeta genus. Syntrophic phenol degraders, such as Pelotomaculum genus were found to be increased when the maximum phenol conversion rate was attained at 20 gNa + .L -1 . Overall, the observed robustness of the AnMBR performance indicated an endured microbial community to salinity changes in the range of the sodium concentrations applied. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Medium-Term Renal Function in a Large Cohort of Stable Kidney Transplant Recipients Converted From Twice-Daily to Once-Daily Tacrolimus.

    PubMed

    Guirado, Lluís; Burgos, Dolores; Cantarell, Carme; Fernández, Ana; Franco, Antonio; Gentil, Miguel Ángel; Mazuecos, Auxiliadora; Torregrosa, Josep Vicenç; Huertas, Ernesto Gómez; Ruiz, Juan Carlos; Plumed, Jaime Sánchez; Paul, Javier; Lauzurica, Ricardo; Zárraga, Sofía; Osuna, Antonio; Jiménez, Carlos; Alonso, Ángel; Rodríguez, Alberto; Bardají, Beatriz; Hernández, Domingo

    2015-08-01

    There is some evidence pointing toward better renal function in kidney transplant recipients (KTR) treated with once-daily tacrolimus (QD-TAC) vs. twice-daily tacrolimus (BID-TAC). This is an extension study of a 1-year, single arm prospective study of stable KTR who were converted from BID-TAC to QD-TAC (4.9 ± 4.0 years after transplantation) in Spanish routine clinical practice. Patient and graft survival, renal function, acute rejection episodes, and other analytic parameters were assessed at 24 and 36 months after conversion. A total of 1798 KTR were included in the extension study. Tacrolimus doses at 36 months were significantly lower compared to those at time of conversion (-0.2 mg/day; P = 0.023). Blood levels were lower than baseline during all the study (P < 0.001). Graft and patient survival at 3 years after conversion were 93.9% and 95.1%, respectively. Compared with baseline, the mean estimated glomerular filtration rate (eGFR) remained very stable at all timepoints (56.7 ± 19.8 vs 58.1 ± 24.6 mL/min per 1.73 m(2) at month 36; P = 0.623). Even when patients reinitiating dialysis were counted as eGFR = 0, the mean eGFR was very stable. In fact, a small but significant increase was observed at 36 months versus baseline (+0.1 mL/min per 1.73 m(2); P = 0.025). An increase in proteinuria was observed at 36 months versus baseline (+0.11 g/24 h; P < 0.001). Acute rejection rates were low during the study. Conversion from BID-TAC to QD-TAC in a large cohort of stable KTR was safe and associated with a very stable renal function after 3 years. Comparative studies are warranted to assess the feasibility of such conversion.

  3. Medium-Term Renal Function in a Large Cohort of Stable Kidney Transplant Recipients Converted From Twice-Daily to Once-Daily Tacrolimus

    PubMed Central

    Guirado, Lluís; Burgos, Dolores; Cantarell, Carme; Fernández, Ana; Franco, Antonio; Gentil, Miguel Ángel; Mazuecos, Auxiliadora; Torregrosa, Josep Vicenç; Huertas, Ernesto Gómez; Ruiz, Juan Carlos; Plumed, Jaime Sánchez; Paul, Javier; Lauzurica, Ricardo; Zárraga, Sofía; Osuna, Antonio; Jiménez, Carlos; Alonso, Ángel; Rodríguez, Alberto; Bardají, Beatriz; Hernández, Domingo

    2015-01-01

    Background There is some evidence pointing toward better renal function in kidney transplant recipients (KTR) treated with once-daily tacrolimus (QD-TAC) vs. twice-daily tacrolimus (BID-TAC). Methods This is an extension study of a 1-year, single arm prospective study of stable KTR who were converted from BID-TAC to QD-TAC (4.9 ± 4.0 years after transplantation) in Spanish routine clinical practice. Patient and graft survival, renal function, acute rejection episodes, and other analytic parameters were assessed at 24 and 36 months after conversion. Results A total of 1798 KTR were included in the extension study. Tacrolimus doses at 36 months were significantly lower compared to those at time of conversion (−0.2 mg/day; P = 0.023). Blood levels were lower than baseline during all the study (P < 0.001). Graft and patient survival at 3 years after conversion were 93.9% and 95.1%, respectively. Compared with baseline, the mean estimated glomerular filtration rate (eGFR) remained very stable at all timepoints (56.7 ± 19.8 vs 58.1 ± 24.6 mL/min per 1.73 m2 at month 36; P = 0.623). Even when patients reinitiating dialysis were counted as eGFR = 0, the mean eGFR was very stable. In fact, a small but significant increase was observed at 36 months versus baseline (+0.1 mL/min per 1.73 m2; P = 0.025). An increase in proteinuria was observed at 36 months versus baseline (+0.11 g/24 h; P < 0.001). Acute rejection rates were low during the study. Conclusions Conversion from BID-TAC to QD-TAC in a large cohort of stable KTR was safe and associated with a very stable renal function after 3 years. Comparative studies are warranted to assess the feasibility of such conversion. PMID:27500226

  4. Simultaneous saccharification and bioethanol production from corn cobs: Process optimization and kinetic studies.

    PubMed

    Sewsynker-Sukai, Yeshona; Gueguim Kana, E B

    2018-08-01

    This study investigates the simultaneous saccharification and fermentation (SSF) process for bioethanol production from corn cobs with prehydrolysis (PSSF) and without prehydrolysis (OSSF). Two response surface models were developed with high coefficients of determination (>0.90). Process optimization gave high bioethanol concentrations and bioethanol conversions for the PSSF (36.92 ± 1.34 g/L and 62.36 ± 2.27%) and OSSF (35.04 ± 0.170 g/L and 58.13 ± 0.283%) models respectively. Additionally, the logistic and modified Gompertz models were used to study the kinetics of microbial cell growth and ethanol formation under microaerophilic and anaerobic conditions. Cell growth in the OSSF microaerophilic process gave the highest maximum specific growth rate (µ max ) of 0.274 h -1 . The PSSF microaerophilic bioprocess gave the highest potential maximum bioethanol concentration (P m ) (42.24 g/L). This study demonstrated that microaerophilic rather than anaerobic culture conditions enhanced cell growth and bioethanol production, and that additional prehydrolysis steps do not significantly impact on the bioethanol concentration and conversion in SSF process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Enhancement in current density and energy conversion efficiency of 3-dimensional MFC anodes using pre-enriched consortium and continuous supply of electron donors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A

    2011-01-01

    Using a pre-enriched microbial consortium as the inoculum and continuous supply of carbon source, improvement in performance of a three-dimensional, flow-through MFC anode utilizing ferricyanide cathode was investigated. The power density increased from 170 W/m3 (1800 mW/m2) to 580 W/m3 (6130 mW/m2), when the carbon loading increased from 2.5 g/l-day to 50 g/l-day. The coulombic efficiency (CE) decreased from 90% to 23% with increasing carbon loading. The CEs are among the highest reported for glucose and lactate as the substrate with the maximum current density reaching 15.1 A/m2. This suggests establishment of a very high performance exoelectrogenic microbial consortium atmore » the anode. A maximum energy conversion efficiency of 54% was observed at a loading of 2.5 g/l-day. Biological characterization of the consortium showed presence of Burkholderiales and Rhodocyclales as the dominant members. Imaging of the biofilms revealed thinner biofilms compared to the inoculum MFC, but a 1.9-fold higher power density.« less

  6. Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: An efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095.

    PubMed

    Kaewbai-Ngam, Auratai; Incharoensakdi, Aran; Monshupanee, Tanakarn

    2016-07-01

    The cellular PHB content was determined in 137 strains of cyanobacteria representing 88 species in 26 genera under six photoautotrophic nutrient conditions. One hundred and thirty-four strains were PHB producers. The PHB contents of these 134 strains were subtle under normal growth condition, but were significantly increased in 63 strains under nitrogen deprivation (-N), a higher frequency than with phosphate and/or potassium and all-nutrient deprivation. A high PHB accumulation was not associated with any particular evolutionary groups, but was strain specific. The filamentous Calothrix scytonemicola TISTR 8095 produced 356.5±63.4mg/L PHB under -N from a biomass of 1396.6±66.1mg/L, giving a PHB content of 25.4±3.5% (w/w dry weight). This PHB productivity is equivalent to the CO2 consumption of 729.2±129.8mg/L. The maximum energy conversion from solar energy to PHB obtained by C. scytonemicola TISTR 8095 was 1.42±0.30%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Rhamnolipids as platform molecules for production of potential anti-zoospore agrochemicals.

    PubMed

    Miao, Shida; Dashtbozorg, Soroosh Soltani; Callow, Nicholas V; Ju, Lu-Kwang

    2015-04-08

    Rhamnolipid biosurfactants have potential applications in the control of zoosporic plant pathogens. However, rhamnolipids have not been closely investigated for the anti-zoospore mechanism or for developing new anti-zoospore chemicals. In this study, RhL-1 and RhL-3 groups of rhamnolipids were used to generate the corresponding RhL-2 and RhL-4 groups and the free diacids. Conversion of RhL-3 to RhL-1 was also accomplished in vitro with cellobiase as the catalyst. The anti-zoospore effects of RhL-1-RhL-4 and the diacids were investigated with zoospores of Phytophthora sojae. For RhL-1-RhL-4, approximately 20, 30, 40, and 40 mg/L, respectively, were found to be the lowest concentrations required to stop movement of all zoospores, which indicates that the anti-zoospore effect remains strong even after RhL-1 and RhL-3 are hydrolyzed into RhL-2 and RhL-4. The free diacids required a significantly higher critical concentration of about 125 mg/L. Rhamnose can be obtained as a co-product.

  8. Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization.

    PubMed

    Wagner, Shawn

    2014-06-01

    To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.

  9. Molecular Barriers to Zoonotic Transmission of Prions

    PubMed Central

    Barria, Marcelo A.; Balachandran, Aru; Morita, Masanori; Kitamoto, Tetsuyuki; Barron, Rona; Manson, Jean; Knight, Richard; Ironside, James W.

    2014-01-01

    The risks posed to human health by individual animal prion diseases cannot be determined a priori and are difficult to address empirically. The fundamental event in prion disease pathogenesis is thought to be the seeded conversion of normal prion protein to its pathologic isoform. We used a rapid molecular conversion assay (protein misfolding cyclic amplification) to test whether brain homogenates from specimens of classical bovine spongiform encephalopathy (BSE), atypical BSE (H-type BSE and L-type BSE), classical scrapie, atypical scrapie, and chronic wasting disease can convert normal human prion protein to the abnormal disease-associated form. None of the tested prion isolates from diseased animals were as efficient as classical BSE in converting human prion protein. However, in the case of chronic wasting disease, there was no absolute barrier to conversion of the human prion protein. PMID:24377702

  10. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2--kinetics and application to biomass hydrolysates.

    PubMed

    Gairola, Krishan; Smirnova, Irina

    2012-11-01

    This work explores hydrothermal d-xylose and hemicellulose to furfural conversion coupled with simultaneous furfural extraction by SC-CO(2) and the underlying reaction pathway. A maximum furfural yield of 68% was attained from d-xylose at 230°C and 12MPa. Additionally missing kinetic data for l-arabinose to furfural conversion was provided, showing close similarity to d-xylose. Furfural yields from straw and brewery waste hydrolysates were significantly lower than those obtained from model compounds, indicating side reactions with other hydrolysate components. Simultaneous furfural extraction by SC-CO(2) significantly increased extraction yield in all cases. The results indicate that furfural reacts with intermediates of pentose dehydration. The proposed processing route can be well integrated into existing lignocellulose biorefinery concepts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Computational structural analysis of an anti-l-amino acid antibody and inversion of its stereoselectivity

    PubMed Central

    Ranieri, Daniel I.; Hofstetter, Heike; Hofstetter, Oliver

    2009-01-01

    The binding site of a monoclonal anti-l-amino acid antibody was modeled using the program SWISS-MODEL. Docking experiments with the enantiomers of phenylalanine revealed that the antibody interacts with l-phenylalanine via hydrogen bonds and hydrophobic contacts, whereas the d-enantiomer is rejected due to steric hindrance. Comparison of the sequences of this antibody and an anti-d-amino acid antibody indicates that both immunoglobulins derived from the same germline progenitor. Substitution of four amino acids residues, three in the framework and one in the complementarity determining regions, allowed in silico conversion of the anti-l-amino acid antibody into an antibody that stereoselectively binds d-phenylalanine. PMID:19472280

  12. White Light Sagnac Interferometer for Snapshot Multispectral Imaging (Preprint)

    DTIC Science & Technology

    2009-01-01

    normalized difference vegetation index ( NDVI ) provided in Fig. 12 (b). The NDVI is calculated by ( ) ( ) ( )( ) ( ) , ,2 , ,3 , , ,2 , ,3 I l n I l n NDVI ... NDVI . Conversely, if the leaf has little to no chlorophyll, order 3 will have nearly equal reflected energy compared to order 2, yielding a low NDVI ...This is observed in the NDVI image, where the upper left portion of the scene (quadrant 2) contains the unhealthy leaf, while the lower right region

  13. Hydroxylation of 1,8-cineole by Mucor ramannianus and Aspergillus niger.

    PubMed

    Ramos, Aline de Souza; Ribeiro, Joyce Benzaquem; Teixeira, Bruna Gomes; Ferreira, José Luiz Pinto; Silva, Jefferson Rocha de A; Ferreira, Alexandre do Amaral; de Souza, Rodrigo Octavio Mendonça Alves; Amaral, Ana Claudia F

    2015-03-01

    The monoterpenoid 1,8-cineole is obtained from the leaves of Eucalyptus globulus and it has important biological activities. It is a cheap natural substrate because it is a by-product of the Eucalyptus cultivation for wood and pulp production. In this study, it was evaluated the potential of three filamentous fungi in the biotransformation of 1,8-cineole. The study was divided in two steps: first, reactions were carried out with 1,8-cineole at 1 g/L for 24 h; afterwards, reactions were carried out with substrate at 5 g/L for 5 days. The substrate was hydroxylated into 2-exo-hydroxy-1,8-cineole and 3-exo-hydroxy-1,8-cineole by fungi Mucor ramannianus and Aspergillus niger with high stereoselectivity. Trichoderma harzianum was also tested but no transformation was detected. M. ramannianus led to higher than 99% of conversion within 24 h with a starting high substrate concentration (1 g/L). When substrate was added at 5 g/L, only M. ramannianus was able to catalyze the reaction, but the conversion level was 21.7% after 5 days. Both products have defined stereochemistry and could be used as chiral synthons. Furthermore, biological activity has been described for 3-exo-hydroxy-1,8-cineol. To the best of our knowledge, this is the first report on the use of M. ramannianus in this reaction.

  14. Rapid determination of eight bioactive alkaloids in Portulaca oleracea L. by the optimal microwave extraction combined with positive-negative conversion multiple reaction monitor (+/-MRM) technology.

    PubMed

    Liang, Xiao; Tian, Jinlong; Li, Lingzhi; Gao, Jun; Zhang, Qingyi; Gao, Pinyi; Song, Shaojiang

    2014-03-01

    A rapid and reliable microwave extraction and the triple quadrupole-linear ion trap mass spectrometry method was developed and validated for the determination of eight alkaloids in Portulaca oleracea L. The optimal microwave extraction (MWE) condition was performed at 60 °C for 12 min with ethanol-water (70:30, v/v) as the extracting solvent, and the solvent to solid ratio was 30:1. The alkaloids were first detected simultaneously by electrospray ionization tandem mass spectrometry under positive-negative conversion multiple reaction monitor ((+/-)MRM) technique. With investigating three different columns, samples were separated in only 8 min on a Waters ACQUITY UPLC HSS T3 (50 × 2.1 mm(2), 1.8 μm) column using acetonitrile and formic acid-water solution as a mobile phase with a flow rate at 0.2 mL/min. All calibration curves showed good linearity (r>0.999) within the test ranges. The method developed was validated with acceptable sensitivity, intra- and inter-day precision, reproducibility, and extraction recoveries. It was successfully applied to the determination of eight alkaloids in Portulaca oleracea L. from different sources and different harvest periods. The method also provide a reference for extraction and determination of alkaloids in other complex systems. © 2013 Elsevier B.V. All rights reserved.

  15. Downy Brome: evidence for soil engineering

    USDA-ARS?s Scientific Manuscript database

    Bromus tectorum L. (downy brome, cheatgrass) is an invasive Eurasian grass largely responsible for landscape level conversion of sagebrush/bunchgrass communities to annual grass dominance. We tested the hypothesis that B. tectorum alters or “engineers” the soil to favor its growth. The hypothesis wa...

  16. Mimicking a New 2-Phenylethanol Production Pathway from Proteus mirabilis JN458 in Escherichia coli.

    PubMed

    Liu, Jinbin; Jiang, Jing; Bai, Yajun; Fan, Tai-Ping; Zhao, Ye; Zheng, Xiaohui; Cai, Yujie

    2018-04-04

    Bacteria rarely produce natural 2-phenylethanol. We verified a new pathway from Proteus mirabilis JN458 to produce 2-phenylethanol using Escherichia coli to coexpress l-amino acid deaminase, α-keto acid decarboxylase, and alcohol dehydrogenase from P. mirabilis. Based on this pathway, a glucose dehydrogenase coenzyme regeneration system was constructed. The optimal conditions of biotransformation by the recombinant strain E-pAEAKaG were at 40 °C and pH 7.0. Finally, the recombinant strain E-pAEAKaG produced 3.21 ± 0.10 g/L 2-phenylethanol in M9 medium containing 10 g/L l-phenylalanine after a 16 h transformation. Furthermore, when the concentration of l-phenylalanine was 4 g/L (24 mM), the production of 2-phenylethanol reached 2.88 ± 0.18 g/L and displayed a higher conversion rate of 97.38 mol %.

  17. Tannic acid and chromic chloride-induced binding of protein to red cells: a preliminary study of possible binding sites and reaction mechanisms.

    PubMed

    Hunt, A F; Reed, M I

    1990-07-01

    The binding mechanisms and binding sites involved in the tannic acid and chromic chloride-induced binding of protein to red cells were investigated using the binding of IgA paraprotein to red cells as model systems. Inhibition studies of these model systems using amino acid homopolymers and compounds (common as red cell membrane constituents) suggest that the mechanisms involved are similar to those proposed for the conversion of hide or skin collagen to leather, as in commercial tanning. These studies also suggest that tannic acid-induced binding of IgA paraprotein to red cells involves the amino acid residues of L-arginine, L-lysine, L-histidine, and L-proline analogous to tanning with phenolic plant extracts. The amino acid residues of L-aspartate, L-glutamate and L-asparagine are involved in a similar manner in chronic chloride-induced binding of protein to red cells.

  18. Who is at risk of death from nephrectomy? An analysis of thirty-day mortality after 21 380 nephrectomies in 3 years of the British Association of Urological Surgeons (BAUS) National Nephrectomy Audit.

    PubMed

    Fernando, Archie; Fowler, Sarah; Van Hemelrijck, Mieke; O'Brien, Tim

    2017-09-01

    To ascertain contemporary overall and differential thirty-day mortality (TDM) rates after all types of nephrectomy in the UK, and to identify potential new risk factors for death. We conducted a retrospective analysis of the 110 deaths that occurred within 30 days of surgery out of the total of 21 380 nephrectomies performed, and calculated the odds ratio (OR) and 95% confidence interval (CI) for TDM based on peri-operative characteristics. The overall TDM rate was 110/21380 (0.5%). The TDM rates after radical, partial, simple nephrectomy and nephro-ureterectomy were 0.6% (63/11057), 0.1% (4/3931), 0.4% (11/2819) and 0.9% (28/3091), respectively. TDM increased with age, stage, estimated blood loss (EBL), operating time and performance status. EBL of 1-2 L was associated with a greater risk of TDM than EBL of 2-5 L (OR 1.38; 95% CI 1.03-2.24). Conversion from minimally invasive surgery was associated with higher risk than non-conversion (OR 2.53; 95% CI 1.14-4.51. Curative surgery was safer than cytoreductive surgery (OR 0.31; 95% CI 0.18-0.54). There was an association between surgical volume and TDM. This study provides contemporary insights into the true risks of all types of nephrectomy. The TDM rate after nephrectomy in the UK appears acceptably low at 0.5%. Established risk factors were confirmed and the following novel risk factors were identified: modest EBL (1-2 L) and conversion from minimally invasive surgery. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  19. High-Dose Vitamin D3 during Tuberculosis Treatment in Mongolia. A Randomized Controlled Trial.

    PubMed

    Ganmaa, Davaasambuu; Munkhzul, Baatar; Fawzi, Wafaie; Spiegelman, Donna; Willett, Walter C; Bayasgalan, Purev; Baasansuren, Erkhembayar; Buyankhishig, Burneebaatar; Oyun-Erdene, Sereeter; Jolliffe, David A; Xenakis, Theodoros; Bromage, Sabri; Bloom, Barry R; Martineau, Adrian R

    2017-09-01

    Existing trials of adjunctive vitamin D in the treatment of pulmonary tuberculosis (PTB) are variously limited by small sample sizes, inadequate dosing regimens, and high baseline vitamin D status among participants. Comprehensive analyses of the effects of genetic variation in the vitamin D pathway on response to vitamin D supplementation are lacking. To determine the effect of high-dose vitamin D 3 on response to antimicrobial therapy for PTB and to evaluate the influence of single-nucleotide polymorphisms (SNPs) in vitamin D pathway genes on response to adjunctive vitamin D 3 . We conducted a clinical trial in 390 adults with PTB in Ulaanbaatar, Mongolia, who were randomized to receive four biweekly doses of 3.5 mg (140,000 IU) vitamin D 3 (n = 190) or placebo (n = 200) during intensive-phase antituberculosis treatment. The intervention elevated 8-week serum 25-hydroxyvitamin D concentrations (154.5 nmol/L vs. 15.2 nmol/L in active vs. placebo arms, respectively; 95% confidence interval for difference, 125.9-154.7 nmol/L; P < 0.001) but did not influence time to sputum culture conversion overall (adjusted hazard ratio, 1.09; 95% confidence interval, 0.86-1.36; P = 0.48). Adjunctive vitamin D 3 accelerated sputum culture conversion in patients with one or more minor alleles for SNPs in genes encoding the vitamin D receptor (rs4334089, rs11568820) and 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1: rs4646536) (adjusted hazard ratio ≥ 1.47; P for interaction ≤ 0.02). Vitamin D 3 did not influence time to sputum culture conversion in the study population overall. Effects of the intervention were modified by SNPs in VDR and CYP27B1. Clinical trial registered with www.clinicaltrials.gov (NCT01657656).

  20. Water quality and hydrology of Silver Lake, Oceana County, Michigan, with emphasis on lake response to nutrient loading

    USGS Publications Warehouse

    Brennan, Angela K.; Hoard, Christopher J.; Duris, Joseph W.; Ogdahl, Mary E.; Steinman, Alan D.

    2016-01-29

    Simulations also were run using the BATHTUB model to evaluate the number of days Silver Lake could experience algal blooms (algal blooms are defined as modeled chlorophyll a in excess of 10 micrograms per liter [µg/L]) as a result of an increase/decrease in phosphorus and nitrogen loading from groundwater, Hunter Creek, and (or) a combination of sources. If the phosphorus and nitrogen loading from Hunter Creek is decreased (and all other sources are not altered), Silver Lake will continue to experience algal blooms, but less frequently than what is currently experienced. The same scenario holds true if the nutrient loading from groundwater is decreased. Another scenario was simulated using a combination of sources, which includes increases and decreases in phosphorus and nitrogen loading from sources that are the most likely to be managed, and includes groundwater (as a result of conversion of household septic to sewers), Hunter Creek (conversion of household septic to sewers), and lawn runoff. Results of the BATHTUB model indicated that a 50-percent reduction of phosphorus and nitrogen from these sources would result in a considerable decrease in algal bloom frequency (from 231 to 132 days) and severity, and a 75-percent reduction would greatly reduce algal bloom occurrence on Silver Lake (from 231 to 57 days). BATHTUB model scenarios based on septic load model: A scenario also was conducted using the BATHTUB model to simulate the conversion of septic to sewer and included a low, high, and medium (likely) scenario of nutrient loading to Silver Lake. Simulations of the BATHTUB model indicated that, under the likely scenario, the conversion of all onsite septic treatment to sewers would result in an overall change in lake trophic status from eutrophic to mesotrophic, thereby reducing the frequency of algal blooms and algal bloom intensity on Silver Lake (chlorophyll a >10 µg/L, from 231 to 184 days per year, or chlorophyll a >20 µg/L, from 80 to 49 days per year).

  1. Conversion in laparoscopic colorectal cancer surgery: impact on short- and long-term outcome.

    PubMed

    Scheidbach, Hubert; Garlipp, Benjamin; Oberländer, Henrik; Adolf, Daniela; Köckerling, Ferdinand; Lippert, Hans

    2011-12-01

    Despite the well-documented safety and effectiveness of laparoscopic colorectal surgery in curative intention, the role of conversion and its impact on short- and long-term outcome after resection of a carcinoma are unclear and continue to give rise to controversial discussion. Within the framework of a prospective, multicenter observational study (Laparoscopic Colorectal Surgery Study Group), into which a total of 5,863 patients from 69 hospitals were recruited over a period of 10 years, a subgroup of all patients who had undergone curative resection was analyzed with regard to the effects of conversion. Of the 1409 patients who had undergone curative resection for colorectal carcinoma, conversion had to be performed in 80 (5.7%) cases for the most diverse reasons. The duration of surgery (median: 183 vs. 241 minutes; P<.001) was significantly longer in the conversion group. Perioperatively, significant disadvantages were noted in converted patients in terms of intraoperative blood loss (median: 243 vs. 573 mL, P<.001), need for perioperative blood transfusion (10.8% vs. 33.8%; P<.001), and resumption of bowel movement (median: after 3 vs. 4 days; P<.001). With regard to postoperative morbidity, significant disadvantages were observed in converted patients, in particular in terms of specific surgical complications, including a higher rate of anastomotic insufficiency (5.0% vs. 13.8%; P=.003) and a higher reoperation rate (4.9% vs. 15.0%; P=.001). In the long term, conversion was associated with lower overall survival, but not with poorer disease-free survival. Significantly higher postoperative morbidity was observed in patients after conversion, in particular in terms of specific surgical complications. In addition, conversion is associated with overall lower survival but not with poorer disease-free survival.

  2. Clinical Validation of Simultaneous Analysis of Tacrolimus, Cyclosporine A, and Creatinine in Dried Blood Spots in Kidney Transplant Patients.

    PubMed

    Veenhof, Herman; Koster, Remco A; Alffenaar, Jan-Willem C; Berger, Stefan P; Bakker, Stephan J L; Touw, Daan J

    2017-07-01

    Monitoring of creatinine and immunosuppressive drug concentrations, such as tacrolimus (TaC) and cyclosporin A (CsA), is important in the outpatient follow-up of kidney transplant recipients. Monitoring by dried blood spot (DBS) provides patients the opportunity to sample a drop of blood from a fingerprick at home, which can be sent to the laboratory by mail. We performed a clinical validation in which we compared measurements from whole-blood samples obtained by venapuncture with measurements from DBS samples simultaneously obtained by fingerprick. After exclusion of 10 DBS for poor quality, and 2 for other reasons, 199, 104, and 58 samples from a total of 172 patients were available for validation of creatinine, TaC and CsA, respectively. Validation was performed by means of Passing & Bablok regression, and bias was assessed by Bland-Altman analysis. For creatinine, we found y = 0.73x - 1.55 (95% confidence interval [95% CI] slope, 0.71-0.76), giving the conversion formula: (creatinine plasma concentration in μmol/L) = (creatinine concentration in DBS in μmol/L)/0.73, with a nonclinically relevant bias of -2.1 μmol/L (95% CI, -3.7 to -0.5 μmol/L). For TaC, we found y = 1.00x - 0.23 (95% CI slope, 0.91-1.08), with a nonclinically relevant bias of -0.28 μg/L (95% CI, -0.45 to -0.12 μg/L). For CsA, we found y = 0.99x - 1.86 (95% CI slope, 0.91-1.08) and no significant bias. Therefore, for neither TaC nor CsA, a conversion formula is required. DBS sampling for the simultaneous analysis of immunosuppressants and creatinine can replace conventional venous sampling in daily routine.

  3. Improving in vivo conversion of oleuropein into hydroxytyrosol by oral granules containing probiotic Lactobacillus plantarum 299v and an Olea europaea standardized extract.

    PubMed

    Aponte, Maria; Ungaro, Francesca; d'Angelo, Ivana; De Caro, Carmen; Russo, Roberto; Blaiotta, Giuseppe; Dal Piaz, Fabrizio; Calignano, Antonio; Miro, Agnese

    2018-05-30

    This study reports novel food-grade granules for co-delivery of L. plantarum 299v and a standardized extract of Olea europaea leaves (Phenolea®) as oral carrier of probiotics and hydroxytyrosol. Different granule formulations containing either L. plantarum 299v (Lac), or the olive leave extract (Phe) or their combination (Lac-Phe) have been successfully produced through wet granulation employing excipients generally regarded as safe as granulating/binding agents. L. plantarum cells withstood the manufacturing process and were stable upon storage at 4 °C for more than 6 months. In vitro dissolution studies in simulated gastro-intestinal fluids showed the capability of the granules to rapidly dissolve and deliver both olive leave phenols and living L. plantarum cells. In simulated digestion conditions, Lac and Lac-Phe granules protected L. plantarum against the harsh environment of the gastro-intestinal tract. Co-administration of Lac and Phe oral granules to healthy mice provided for higher amounts of hydroxytyrosol in urines as compared to Phe granules alone, suggesting that L. plantarum 299v boosted in vivo conversion of oleuropein to hydroxytyrosol. On the other hand, PCR-assisted profiling of the Lactobacillus population in faeces obtained from mice treated with Lac or Lac plus Phe confirmed that the probiotic arrived alive to colon and was there able to exert a sort of perturbing effect on the climax colonic microflora. Overall, these results pave the way towards the development of a nutraceutical useful for combined delivery of bioactive hydroxytyrosol and probiotics to colon site. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Communication in conversation in stroke patients.

    PubMed

    Rousseaux, Marc; Daveluy, Walter; Kozlowski, Odile

    2010-07-01

    In stroke patients, it has been suggested that communication disorders could result from lexical and syntactic disorders in left hemisphere lesions and from pragmatics problems in right lesions. However, we have little information on patient behaviour in dyadic communication, especially in conversation. Here, we analyzed the various processes participating in communication difficulties at the rehabilitation phase (1-6 months) post-stroke, in order to define the main mechanisms of verbal and non-verbal communication (VC, NVC) disorders and their relationship with aphasic disorders. Sixty-three patients were recruited, who belonged to six groups, with left or right cortico-sub-cortical (L-CSC, R-CSC) or sub-cortical (L-SC, R-SC), frontal (Fro) or posterior fossa (PF) lesions. They were compared with an equivalent control group (gender, age, education level). We used the Lille Communication Test, which comprises three parts: participation to communication (greeting, attention, engagement), verbal communication (verbal comprehension, speech outflow, intelligibility, word production, syntax, verbal pragmatics and verbal feedback) and non-verbal communication (understanding gestures, affective expressivity, producing gestures, pragmatics and feedback). We also used the Functional Communication Profile and the Boston Diagnostic Aphasia Examination (BDAE). Decrease in participation was found in L-CSC, R-CSC and Fro patients. Verbal communication was essentially disrupted in L-SCS and L-SC groups, including by verbal pragmatic disorders, and to a lesser degree in frontal patients. Nonverbal communication was mainly affected in R-CSC patients, especially by pragmatic difficulties. L-CSC patients showed an increase in gesture production, compensating for aphasia. In conclusion, communication disorders were relatively complex and could not be summarised by syntactical and lexical difficulties in left stroke and pragmatic problems in right stroke. The former also showed severe verbal pragmatic difficulties. Frontal stroke also resulted in evident verbal and non-verbal disorders.

  5. Ovarian response to recombinant human follicle-stimulating hormone in luteinizing hormone-depleted women: examination of the two cell, two gonadotropin theory.

    PubMed

    Ben-Chetrit, A; Gotlieb, L; Wong, P Y; Casper, R F

    1996-04-01

    To evaluate the relative contribution of FSH to ovarian estrogen production. Nonrandomized, prospective study. University of Toronto teaching hospital reproductive biology unit. Five women who had been treated with depot GnRH agonist with hormonal add-back for 4 to 48 months and who were confirmed to be gonadotropin depleted by both bioassay and RIA. Subjects received 75 IU SC recombinant human FSH daily for 7 days followed by 150 IU daily for 7 days and 225 IU daily for the third week. Serum steroid determination and vaginal sonography for follicle size and endometrial thickness were performed serially and follicular fluid hormone levels were measured in two subjects. Bioactive LH and FSH activity were less than the detection limit of the assay (0.1 mIU/mL; conversion factor to SI units, 1.00 for LH and FSH) before recombinant FSH treatment in all five women. In all subjects, at least one preovulatory follicle developed by the end of two to three weeks. Endometrial thickness increased to between 7 and 9 mm in four women. Mean serum E2 in the five subjects increased from 17 pg/mL (range: 5 to 33 pg/mL; conversion factor to SI unit, 3.671) at baseline to 230 pg/mL (range: 37 to 489 pg/mL) at the end of the study. Follicular fluid E2 concentrations ranged from 44,296 to 69,367 pg/mL in the four follicles aspirated. Our results indicate that LH is not necessary for ovarian E2 production. We speculate that the granulosa cells, in the absence of detectable LH bioactivity, can use circulating adrenal androgens or constitutive or FSH-stimulated thecal androgens, to produce intrafollicular E2.

  6. Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis.

    PubMed

    Binh, Tran Thi Thanh; Ju, Wan-Taek; Jung, Woo-Jin; Park, Ro-Dong

    2014-01-01

    An isolate from kimchi, identified as Lactobacillus brevis, accumulated γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter, in the culture medium. Optimal culture conditions for growth of L. brevis and production of GABA were 6 % (w/v) l-glutamic acid, 4 % (w/v) maltose, 2 % (w/v) yeast extract, 1 % (w/v) NaCl, 1 % (w/v) CaCl2, 2 g Tween 80/l, and 0.02 mM pyridoxal 5′-phosphate at initial pH 5.25 and 37 °C. GABA reached 44.4 g/l after 72 h cultivation with a conversion rate 99.7 %, based on the amount (6 %) of l-glutamic acid added. GABA was purified using ion exchange column chromatography with 70 % recovery and 97 % purity.

  7. Comparative genome analysis of the candidate functional starter culture strains Lactobacillus fermentum 222 and Lactobacillus plantarum 80 for controlled cocoa bean fermentation processes.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Weckx, Stefan

    2015-10-12

    Lactobacillus fermentum 222 and Lactobacillus plantarum 80, isolates from a spontaneous Ghanaian cocoa bean fermentation process, proved to be interesting functional starter culture strains for cocoa bean fermentations. Lactobacillus fermentum 222 is a thermotolerant strain, able to dominate the fermentation process, thereby converting citrate and producing mannitol. Lactobacillus plantarum 80 is an acid-tolerant and facultative heterofermentative strain that is competitive during cocoa bean fermentation processes. In this study, whole-genome sequencing and comparative genome analysis was used to investigate the mechanisms of these strains to dominate the cocoa bean fermentation process. Through functional annotation and analysis of the high-coverage contigs obtained through 454 pyrosequencing, plantaricin production was predicted for L. plantarum 80. For L. fermentum 222, genes encoding a complete arginine deiminase pathway were attributed. Further, in-depth functional analysis revealed the capacities of these strains associated with carbohydrate and amino acid metabolism, such as the ability to use alternative external electron acceptors, the presence of an extended pyruvate metabolism, and the occurrence of several amino acid conversion pathways. A comparative genome sequence analysis using publicly available genome sequences of strains of the species L. plantarum and L. fermentum revealed unique features of both strains studied. Indeed, L. fermentum 222 possessed genes encoding additional citrate transporters and enzymes involved in amino acid conversions, whereas L. plantarum 80 is the only member of this species that harboured a gene cluster involved in uptake and consumption of fructose and/or sorbose. In-depth genome sequence analysis of the candidate functional starter culture strains L. fermentum 222 and L. plantarum 80 revealed their metabolic capacities, niche adaptations and functionalities that enable them to dominate the cocoa bean fermentation process. Further, these results offered insights into the cocoa bean fermentation ecosystem as a whole and will facilitate the selection of appropriate starter culture strains for controlled cocoa bean fermentation processes.

  8. Thermal stability of L-ascorbic acid and ascorbic acid oxidase in broccoli (Brassica oleracea var. italica).

    PubMed

    Munyaka, Ann Wambui; Makule, Edna Edward; Oey, Indrawati; Van Loey, Ann; Hendrickx, Marc

    2010-05-01

    The thermal stability of vitamin C (including l-ascorbic acid [l-AA] and dehydroascorbic acid [DHAA]) in crushed broccoli was evaluated in the temperature range of 30 to 90 degrees C whereas that of ascorbic acid oxidase (AAO) was evaluated in the temperature range of 20 to 95 degrees C. Thermal treatments (for 15 min) of crushed broccoli at 30 to 60 degrees C resulted in conversion of l-AA to DHAA whereas treatments at 70 to 90 degrees C retained vitamin C as l-AA. These observations indicated that enzymes (for example, AAO) could play a major role in the initial phase (that is, oxidation of l-AA to DHAA) of vitamin C degradation in broccoli. Consequently, a study to evaluate the temperature-time conditions that could result in AAO inactivation in broccoli was carried out. In this study, higher AAO activity was observed in broccoli florets than stalks. During thermal treatments for 10 min, AAO in broccoli florets and stalks was stable until around 50 degrees C. A 10-min thermal treatment at 80 degrees C almost completely inactivated AAO in broccoli. AAO inactivation followed 1st order kinetics in the temperature range of 55 to 65 degrees C. Based on this study, a thermal treatment above 70 degrees C is recommended for crushed vegetable products to prevent oxidation of l-AA to DHAA, the onset of vitamin C degradation. The results reported in this study are applicable for both domestic and industrial processing of vegetables into products such as juices, soups, and purees. In this report, we have demonstrated that processing crushed broccoli in a temperature range of 30 to 60 degrees C could result in the conversion of l-ascorbic acid to dehydroascorbic (DHAA), a very important reaction in regard to vitamin C degradation because DHAA could be easily converted to other compounds that do not have the biological activity of vitamin C.

  9. Drafting Instructors Look at Metrics, Computers, and Change

    ERIC Educational Resources Information Center

    Smith, Howard

    1974-01-01

    Four drafting teachers give their opinions on how to teach metric measurement and conversion and other matters. They are Jeffry T. Lufting, James E. Kelso, L. Dayle Yeager, and Michael B. Atkins. Computer graphics, modular structures, communicative drafting, and microfilm reproduction are also discussed. (MS)

  10. Parents' Workplace Experiences and Family Communication Patterns.

    ERIC Educational Resources Information Center

    Ritchie, L. David

    1997-01-01

    Gathers data from 178 parents of adolescents to elucidate observed relationships between social class and family communication patterns. Finds parents generalize from their own experiences--particularly in the workplace--consistent with M.L. Kohn's theory of learning generalization. Finds conversation orientation to be positively associated and…

  11. Effect of seeding rate on organic production

    USDA-ARS?s Scientific Manuscript database

    Increased demand for organic rice (Oryza sativa L.) has incentivized producer conversion from conventional to organically-managed rice production in the U.S. Little is known on the impacts of seeding rate on organic rice production. A completely randomized factorial design with four replications was...

  12. Spectroscopic Studies of Melanin.

    DTIC Science & Technology

    1986-01-01

    operation of the laser optics; Mr. Thomas Haw; Dr. James Gallas; Ms. Christine L. Noah- Cooper for stimulating and useful conversations; and Lottie B...168B. 14. Kozikowski SD, Wolfram LJ, Alfano RR. Fluorescence spectroscopy of eumelanins. IEEE J Quant Electron 1984;OE20:1379-1382. 15. Slawinski J

  13. PULVERIZED COAL COMBUSTION: POLLUTANT FORMATION AND CONTROL, 1970-1980

    EPA Science Inventory

    The report documents the support role of EPA's Air and Energy Engineering Research Laboratory in the major research effort directed by EPA in the l970s to understand pollutant formation during pulverized coal combustion (PCC). Understanding the conversion of fuel nitrogen to nit...

  14. L'expression orale apres treize ans d'immersion francaise (Oral Expression After Thirteen Years of French Immersion).

    ERIC Educational Resources Information Center

    Pellerin, Micheline; Hammerly, Hector

    1986-01-01

    Conversations with six twelfth graders who had been in French immersion since kindergarten found a high rate of incorrect sentences, suggesting a faulty interlanguage fossilized at grade six and a need for immersion program revision. (MSE)

  15. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.

    PubMed

    Buaban, Benchaporn; Inoue, Hiroyuki; Yano, Shinichi; Tanapongpipat, Sutipa; Ruanglek, Vasimon; Champreda, Verawat; Pichyangkura, Rath; Rengpipat, Sirirat; Eurwilaichitr, Lily

    2010-07-01

    Sugarcane bagasse is one of the most promising agricultural by-products for conversion to biofuels. Here, ethanol fermentation from bagasse has been achieved using an integrated process combining mechanical pretreatment by ball milling, with enzymatic hydrolysis and fermentation. Ball milling for 2 h was sufficient for nearly complete cellulose structural transformation to an accessible amorphous form. The pretreated cellulosic residues were hydrolyzed by a crude enzyme preparation from Penicillium chrysogenum BCC4504 containing cellulase activity combined with Aspergillus flavus BCC7179 preparation containing complementary beta-glucosidase activity. Saccharification yields of 84.0% and 70.4% for glucose and xylose, respectively, were obtained after hydrolysis at 45 degrees C, pH 5 for 72 h, which were slightly higher than those obtained with a commercial enzyme mixture containing Acremonium cellulase and Optimash BG. A high conversion yield of undetoxified pretreated bagasse (5%, w/v) hydrolysate to ethanol was attained by separate hydrolysis and fermentation processes using Pichia stipitis BCC15191, at pH 5.5, 30 degrees C for 24 h resulting in an ethanol concentration of 8.4 g/l, corresponding to a conversion yield of 0.29 g ethanol/g available fermentable sugars. Comparable ethanol conversion efficiency was obtained by a simultaneous saccharification and fermentation process which led to production of 8.0 g/l ethanol after 72 h fermentation under the same conditions. This study thus demonstrated the potential use of a simple integrated process with minimal environmental impact with the use of promising alternative on-site enzymes and yeast for the production of ethanol from this potent lignocellulosic biomass. 2009. Published by Elsevier B.V.

  16. An integrated biorefinery concept for conversion of sugar beet pulp into value-added chemicals and pharmaceutical intermediates.

    PubMed

    Cárdenas-Fernández, Max; Bawn, Maria; Hamley-Bennett, Charlotte; Bharat, Penumathsa K V; Subrizi, Fabiana; Suhaili, Nurashikin; Ward, David P; Bourdin, Sarah; Dalby, Paul A; Hailes, Helen C; Hewitson, Peter; Ignatova, Svetlana; Kontoravdi, Cleo; Leak, David J; Shah, Nilay; Sheppard, Tom D; Ward, John M; Lye, Gary J

    2017-09-21

    Over 8 million tonnes of sugar beet are grown annually in the UK. Sugar beet pulp (SBP) is the main by-product of sugar beet processing which is currently dried and sold as a low value animal feed. SBP is a rich source of carbohydrates, mainly in the form of cellulose and pectin, including d-glucose (Glu), l-arabinose (Ara) and d-galacturonic acid (GalAc). This work describes the technical feasibility of an integrated biorefinery concept for the fractionation of SBP and conversion of these monosaccharides into value-added products. SBP fractionation is initially carried out by steam explosion under mild conditions to yield soluble pectin and insoluble cellulose fractions. The cellulose is readily hydrolysed by cellulases to release Glu that can then be fermented by a commercial yeast strain to produce bioethanol at a high yield. The pectin fraction can be either fully hydrolysed, using physico-chemical methods, or selectively hydrolysed, using cloned arabinases and galacturonases, to yield Ara-rich and GalAc-rich streams. These monomers can be separated using either Centrifugal Partition Chromatography (CPC) or ultrafiltration into streams suitable for subsequent enzymatic upgrading. Building on our previous experience with transketolase (TK) and transaminase (TAm) enzymes, the conversion of Ara and GalAc into higher value products was explored. In particular the conversion of Ara into l-gluco-heptulose (GluHep), that has potential therapeutic applications in hypoglycaemia and cancer, using a mutant TK is described. Preliminary studies with TAm also suggest GluHep can be selectively aminated to the corresponding chiral aminopolyol. The current work is addressing the upgrading of the remaining SBP monomer, GalAc, and the modelling of the biorefinery concept to enable economic and Life Cycle Analysis (LCA).

  17. Susceptibility and Immune Defence Mechanisms of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) against Entomopathogenic Fungal Infections

    PubMed Central

    Hussain, Abid; Rizwan-ul-Haq, Muhammad; Al-Ayedh, Hassan; AlJabr, Ahmed Mohammed

    2016-01-01

    Insects infected with entomopathogenic fungi, experience physiological changes that influence their growth and immune defence. The potential of nine isolates of entomopathogenic fungi was evaluated after determining percent germination and relative conidial hydrophobicity. However, nutritional indices were evaluated after immersing eighth-instar Rhynchophorus ferrugineus larvae into each isolate suspension (1 × 107 conidia/mL). The results showed that isolates B6884 and M9374 had 44.51% and 39.02% higher conidial hydrophobicity compared with isolate I03011 (least virulent). The results of nutritional index assays revealed a significant reduction in growth indices after infection with different isolates. Compared with control, B6884 and M9374 greatly decreased larval growth by reducing the efficacy of conversion of ingested food (36%–47%) and Efficacy of conversion of digested food (50%–63%). Furthermore, only isolate B6884 induced 100% mortality within 12 days. Compared with control, isolate I03011, possessing the lowest conidial hydrophobicity, only reduced 0.29% of the efficacy of conversion of ingested food (ECI) and 0.48% of the efficacy of conversion of digested food (ECD). Similarly, transcriptomic analysis of genes related to the Red palm weevil (RPW) immune response, including pathogen recognition receptors (C-type lectin and endo-beta-1,4-glucanse), signal modulator (Serine protease-like protein), signal transductors (Calmodulin-like protein and EF-hand domain containing protein) and effectors (C-type lysozyme, Cathepsin L., Defensin-like protein, Serine carboxypeptidase, and Thaumatin-like protein), was significantly increased in larval samples infected with B6884 and M9374. These results suggest that for an isolate to be virulent, conidial hydrophobicity and germination should also be considered during pathogen selection, as these factors could significantly impact host growth and immune defence mechanisms. PMID:27618036

  18. Bisphenol A 3,4-quinone induces the conversion of xanthine dehydrogenase into oxidase in vitro.

    PubMed

    Sakuma, Satoru; Nakanishi, Masahiko; Morinaga, Kazuhiro; Fujitake, Mihoyo; Wada, Shun-ichi; Fujimoto, Yohko

    2010-01-01

    In the present study, we assessed the influence of bisphenol A (BPA) and bisphenol A 3,4-quinone (BPAQ) on the conversion of xanthine dehydrogenase (XD) into xanthine oxidase (XO) in the rat liver in vitro. BPA up to 100 micromol/L did not affect the XO and XD activities in the partially purified cytosolic fraction from rat liver, whereas BPAQ (2-10 micromol/L) dose-dependently enhanced the XO activity concomitant with a decrease in the XD activity, implying that BPAQ, but not BPA, can convert XD into the reactive oxygen species (ROS) producing the form XO. Furthermore, it was found that BPAQ could increase the generation of ROS and oxidize the guanine moiety of deoxyguanosine in the DNA of primary rat hepatocyte cultures. These results suggest that BPAQ has the potential to convert XD into XO in the liver, which in turn may lead to ROS generation and oxidative DNA damage in this region. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. In Vivo Conversion of 5-Oxoproline to Glutamate by Higher Plants 1

    PubMed Central

    Mazelis, Mendel; Pratt, Helen M.

    1976-01-01

    l-(U-14C)-5-oxoproline (pyrollidone carboxylic acid or pyroglutamic acid) was infiltrated into detached leaves of a number of species and incubated for 1 to 6 hours. In every case, conversion to labeled glutamate and glutamine was observed. The amount converted varied from 1 to 64% of the total label fed depending on the species. The ratio of glutamate-14C to glutamine-14C ranged from 5 in Vicia faba to 1 in sugar beet. This ratio could be affected by preinfiltrating various compounds before allowing the uptake of the 5-oxoproline. When l-methionine-dl-sulfoximine was prefed to sugar beet leaves, the glutamate-glutamine ratio increased from 1 to 10. Prior treatment of V. faba leaves with azaserine resulted in essentially only labeled glutamine being recovered. Preinfiltration with NaF or ATP gave similar results in that the glutamate-glutamine ratio was greatly decreased. The results are consistent with glutamate being produced from the 5-oxoproline and then being converted to glutamine. PMID:16659431

  20. Characteristics and corrosion studies of vanadate conversion coating formed on Mg-14 wt%Li-1 wt%Al-0.1 wt%Ce alloy

    NASA Astrophysics Data System (ADS)

    Ma, Yibin; Li, Ning; Li, Deyu; Zhang, Milin; Huang, Xiaomei

    2012-11-01

    Mg-14Li-1Al-0.1Ce alloy is immersed in NH4VO3 + K3(Fe(CN)6) solutions with different NH4VO3 and/or K3(Fe(CN)6) concentrations, and different immersion time. The surface morphology and composition of the vanadate coating are then characterized by scanning electron microscopy with energy dispersion spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), and the corrosion behavior of the conversion coating is studied by polarization technique and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the vanadate film with better corrosion resistance forms on Mg-Li-Al-Ce surface after the sample is immersed in 30 g L-1 NH4VO3 + 3.75 g L-1 K3(Fe(CN)6) solution at 80 °C for 10 min. The coating consists of V2O5, Li2O and Mg(OH)2.

  1. n-Hexane conversion over supported Pt catalysts: Reply to Zoltan Paal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S.B.; Dumesic, J.A.

    In the accompanying letter to the Journal of Catalysis, Paal has questioned the findings and conclusions of the author`s recently published paper. It is important to stress that many of these conclusions are based on the combined interpretation of the data from the author`s recently published paper with results form spectroscopic and microcalorimetric studies of various supported platinum catalysts. In short, the authors have shown that highly dispersed, cluster-sized platinum particles supported in L-zeolite have the same heats of H{sub 2} and CO adsorption as larger platinum particles supported on silica; however, Pt/L-zeolite catalysts are more resistant to self-poisoning reactions,more » exhibit higher turnover frequencies, and show enhanced formation of benzene and methylcyclopentane (MCP) compared to larger particles of Pt supported on silica during n-hexane conversion at total pressures of 3 atm and hydrogen pressures near 276 kPa. 13 refs., 1 tab.« less

  2. Effect of substrate and cation requirement on anaerobic volatile fatty acid conversion rates at elevated biogas pressure.

    PubMed

    Lindeboom, Ralph E F; Ferrer, Ivet; Weijma, Jan; van Lier, Jules B

    2013-12-01

    This work studied the anaerobic conversion of neutralized volatile fatty acids (VFA) into biogas under Autogenerative High Pressure Digestion (AHPD) conditions. The effects of the operating conditions on the biogas quality, and the substrate utilisation rates were evaluated using 3 AHPD reactors (0.6 L); feeding a concentration of acetate and VFA (1-10 g COD/L) corresponding to an expected pressure increase of 1-20 bar. The biogas composition improved with pressure up to 4.5 bar (>93% CH4), and stabilized at 10 and 20 bar. Both, acetotrophic and hydrogenotrophic methanogenic activity was observed. Substrate utilisation rates of 0.2, 0.1 and 0.1 g CODCH4/g VSS/d for acetate, propionate and butyrate were found to decrease by up to 50% with increasing final pressure. Most likely increased Na(+)-requirement to achieve CO2 sequestration at higher pressure rather than end-product inhibition was responsible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Synthesis and characterization of carbon cryogel microspheres from lignin-furfural mixtures for biodiesel production.

    PubMed

    Zainol, Muzakkir Mohammad; Amin, Nor Aishah Saidina; Asmadi, Mohd

    2015-08-01

    The aim of this work was to study the potential of biofuel and biomass processing industry side-products as acid catalyst. The synthesis of carbon cryogel from lignin-furfural mixture, prepared via sol-gel polycondensation at 90°C for 0.5h, has been investigated for biodiesel production. The effect of lignin to furfural (L/F) ratios, lignin to water (L/W) ratios and acid concentration on carbon cryogel synthesis was studied. The carbon cryogels were characterized and tested for oleic acid conversion. The thermally stable amorphous spherical carbon cryogel has a large total surface area with high acidity. Experimental results revealed the optimum FAME yield and oleic acid conversion of 91.3wt.% and 98.1wt.%, respectively were attained at 65°C for 5h with 5wt.% catalyst loading and 20:1 methanol to oleic acid molar ratio. Therefore, carbon cryogel is highly potential for heterogeneous esterification of free fatty acid to biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Phonetic convergence in spontaneous conversations as a function of interlocutor language distance

    PubMed Central

    Kim, Midam; Horton, William S.; Bradlow, Ann R.

    2013-01-01

    This study explores phonetic convergence during conversations between pairs of talkers with varying language distance. Specifically, we examined conversations within two native English talkers and within two native Korean talkers who had either the same or different regional dialects, and between native and nonnative talkers of English. To measure phonetic convergence, an independent group of listeners judged the similarity of utterance samples from each talker through an XAB perception test, in which X was a sample of one talker’s speech and A and B were samples from the other talker at either early or late portions of the conversation. The results showed greater convergence for same-dialect pairs than for either the different-dialect pairs or the different-L1 pairs. These results generally support the hypothesis that there is a relationship between phonetic convergence and interlocutor language distance. We interpret this pattern as suggesting that phonetic convergence between talker pairs that vary in the degree of their initial language alignment may be dynamically mediated by two parallel mechanisms: the need for intelligibility and the extra demands of nonnative speech production and perception. PMID:23637712

  5. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Conversion Disorder; an Unusual Etiology of Unilateral Foot Drop.

    PubMed

    Ayaz, Saeed Bin; Matee, Sumeera; Malik, Riffat; Ahmad, Khalil

    2015-06-01

    Foot drop is generally a consequence of common peroneal or sciatic nerve injury or L5 radiculopathy but rarely, it can be a manifestation of conversion disorder. A 24-year-old male presented with a foot drop on left side that developed overnight. He had difficulty walking with a trunk tilt towards right side and numbness in left leg up to mid-thigh. The initial diagnosis by the general practitioner was common peroneal nerve injury, which was not supported by the subsequent detailed examination in the physiatry department. Routine laboratory investigations, computed tomographic scan of brain and electrophysiological evaluation were normal. In a multidisciplinary team evaluation involving a psychiatrist, he was diagnosed to be suffering from conversion disorder and was advised gait retraining, cognitive and behavioral therapy and tablet venlafaxine. By sixth day of treatment, the patient was able to walk independently with a normal gait pattern and reported complete recovery of his symptoms. In the absence of an identifiable organic cause of foot drop in a patient, conversion disorder may be considered necessitating early intervention by a psychiatrist.

  7. Enhancement of L(+)-Lactic Acid Production of Immobilized Rhizopus Oryzae Implanted by Ion Beams

    NASA Astrophysics Data System (ADS)

    Fan, Yonghong; Yang, Yingge; Zheng, Zhiming; Li, Wen; Wang, Peng; Yao, Liming; Yu, Zengliang

    2008-02-01

    Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 × 1015 ions/cm2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38°C and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.

  8. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

    PubMed

    Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N

    2009-06-17

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.

  9. Production of L-lactic Acid from Biomass Wastes Using Scallop Crude Enzymes and Novel Lactic Acid Bacterium

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Mitsunori; Nakamura, Kanami; Nakasaki, Kiyohiko

    In the present study, biomass waste raw materials including paper mill sludge, bamboo, sea lettuce, and shochu residue (from a distiller) and crude enzymes derived from inedible and discarded scallop parts were used to produce L-lactic acid for the raw material of biodegradable plastic poly-lactic acid. The activities of cellulase and amylase in the crude enzymes were 22 and 170units/L, respectively, and L-lactic acid was produced from every of the above mentioned biomass wastes, by the method of liquid-state simultaneous saccharification and fermentation (SSF) . The L-lactic acid concentrations produced from sea lettuce and shochu residue, which contain high concentration of starch were 3.6 and 9.3g/L, respectively, and corresponded to greater than 25% of the conversion of glucans contained in these biomass wastes. Furthermore, using the solid state SSF method, concentrations as high as 13g/L of L-lactic acid were obtained from sea lettuce and 26g/L were obtained from shochu residue.

  10. Production of L-allose and D-talose from L-psicose and D-tagatose by L-ribose isomerase.

    PubMed

    Terami, Yuji; Uechi, Keiko; Nomura, Saki; Okamoto, Naoki; Morimoto, Kenji; Takata, Goro

    2015-01-01

    L-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert L-psicose and D-tagatose to L-allose and D-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce L-allose and D-talose. Conversion reaction was performed with the reaction mixture containing 10% L-psicose or D-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of L-allose and D-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert L-psicose to L-allose without remarkable decrease in the enzyme activity over 7 times use and D-tagatose to D-talose over 37 times use. After separation and concentration, the mixture solution of L-allose and D-talose was concentrated up to 70% and crystallized by keeping at 4 °C. L-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% L-allose and 7.30% D-talose that were obtained from L-psicose and D-tagatose, respectively.

  11. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities.

    PubMed

    Novy, Vera; Brunner, Bernd; Nidetzky, Bernd

    2018-04-11

    Saccharomyces cerevisiae, engineered for L-lactic acid production from glucose and xylose, is a promising production host for lignocellulose-to-lactic acid processes. However, the two principal engineering strategies-pyruvate-to-lactic acid conversion with and without disruption of the competing pyruvate-to-ethanol pathway-have not yet resulted in strains that combine high lactic acid yields (Y LA ) and productivities (Q LA ) on both sugar substrates. Limitations seemingly arise from a dependency on the carbon source and the aeration conditions, but the underlying effects are poorly understood. We have recently presented two xylose-to-lactic acid converting strains, IBB14LA1 and IBB14LA1_5, which have the L-lactic acid dehydrogenase from Plasmodium falciparum (pfLDH) integrated at the pdc1 (pyruvate decarboxylase) locus. IBB14LA1_5 additionally has its pdc5 gene knocked out. In this study, the influence of carbon source and oxygen on Y LA and Q LA in IBB14LA1 and IBB14LA1_5 was investigated. In anaerobic fermentation IBB14LA1 showed a higher Y LA on xylose (0.27 g g Xyl -1 ) than on glucose (0.18 g g Glc -1 ). The ethanol yields (Y EtOH , 0.15 g g Xyl -1 and 0.32 g g Glc -1 ) followed an opposite trend. In IBB14LA1_5, the effect of the carbon source on Y LA was less pronounced (~ 0.80 g g Xyl -1 , and 0.67 g g Glc -1 ). Supply of oxygen accelerated glucose conversions significantly in IBB14LA1 (Q LA from 0.38 to 0.81 g L -1  h -1 ) and IBB14LA1_5 (Q LA from 0.05 to 1.77 g L -1  h -1 ) at constant Y LA (IBB14LA1 ~ 0.18 g g Glc -1 ; IBB14LA1_5 ~ 0.68 g g Glc -1 ). In aerobic xylose conversions, however, lactic acid production ceased completely in IBB14LA1 and decreased drastically in IBB14LA1_5 (Y LA aerobic ≤ 0.25 g g Xyl -1 and anaerobic ~ 0.80 g g Xyl -1 ) at similar Q LA (~ 0.04 g L -1  h -1 ). Switching from aerobic to microaerophilic conditions (pO 2  ~ 2%) prevented lactic acid metabolization, observed for fully aerobic conditions, and increased Q LA and Y LA up to 0.11 g L -1  h -1 and 0.38 g g Xyl -1 , respectively. The pfLDH and PDC activities in IBB14LA1 were measured and shown to change drastically dependent on carbon source and oxygen. Evidence from conversion time courses together with results of activity measurements for pfLDH and PDC show that in IBB14LA1 the distribution of fluxes at the pyruvate branching point is carbon source and oxygen dependent. Comparison of the performance of strain IBB14LA1 and IBB14LA1_5 in conversions under different aeration conditions (aerobic, anaerobic, and microaerophilic) further suggest that xylose, unlike glucose, does not repress the respiratory response in both strains. This study proposes new genetic engineering targets for rendering genetically engineering S. cerevisiae better suited for lactic acid biorefineries.

  12. The MOSDEF Survey: Metallicity Dependence of PAH Emission at High Redshift and Implications for 24 μm Inferred IR Luminosities and Star Formation Rates at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Shivaei, Irene; Reddy, Naveen A.; Shapley, Alice E.; Siana, Brian; Kriek, Mariska; Mobasher, Bahram; Coil, Alison L.; Freeman, William R.; Sanders, Ryan L.; Price, Sedona H.; Azadi, Mojegan; Zick, Tom

    2017-03-01

    We present results on the variation of 7.7 μm polycyclic aromatic hydrocarbon (PAH) emission in galaxies spanning a wide range in metallicity at z ˜ 2. For this analysis, we use rest-frame optical spectra of 476 galaxies at 1.37 ≤ z ≤ 2.61 from the MOSFIRE Deep Evolution Field (MOSDEF) survey to infer metallicities and ionization states. Spitzer/MIPS 24 μm and Herschel/PACS 100 and 160 μm observations are used to derive rest-frame 7.7 μm luminosities ({L}7.7) and total IR luminosities ({L}{IR}), respectively. We find significant trends between the ratio of {L}7.7 to {L}{IR} (and to dust-corrected star formation rate [SFR]) and both metallicity and [O III]/[O II] ({{{O}}}32) emission line ratio. The latter is an empirical proxy for the ionization parameter. These trends indicate a paucity of PAH emission in low-metallicity environments with harder and more intense radiation fields. Additionally, {L}7.7/{L}{IR} is significantly lower in the youngest quartile of our sample (ages of ≲500 Myr) compared to older galaxies, which may be a result of the delayed production of PAHs by AGB stars. The relative strength of {L}7.7 to {L}{IR} is also lower by a factor of ˜2 for galaxies with masses {M}* < {10}10 {M}⊙ , compared to the more massive ones. We demonstrate that commonly used conversions of {L}7.7 (or 24 μm flux density, f 24) to {L}{IR} underestimate the IR luminosity by more than a factor of 2 at {M}* ˜ {10}9.6{--10.0} {M}⊙ . We adopt a mass-dependent conversion of {L}7.7 to {L}{IR} with {L}7.7/{L}{IR} = 0.09 and 0.22 for {M}* ≤slant {10}10 and > {10}10 {M}⊙ , respectively. Based on the new scaling, the SFR-M * relation has a shallower slope than previously derived. Our results also suggest a higher IR luminosity density at z ˜ 2 than previously measured, corresponding to a ˜30% increase in the SFR density.

  13. Dissecting structural and electronic effects in inducible nitric oxide synthase.

    PubMed

    Hannibal, Luciana; Page, Richard C; Haque, Mohammad Mahfuzul; Bolisetty, Karthik; Yu, Zhihao; Misra, Saurav; Stuehr, Dennis J

    2015-04-01

    Nitric oxide synthases (NOSs) are haem-thiolate enzymes that catalyse the conversion of L-arginine (L-Arg) into NO and citrulline. Inducible NOS (iNOS) is responsible for delivery of NO in response to stressors during inflammation. The catalytic performance of iNOS is proposed to rely mainly on the haem midpoint potential and the ability of the substrate L-Arg to provide a hydrogen bond for oxygen activation (O-O scission). We present a study of native iNOS compared with iNOS-mesohaem, and investigate the formation of a low-spin ferric haem-aquo or -hydroxo species (P) in iNOS mutant W188H substituted with mesohaem. iNOS-mesohaem and W188H-mesohaem were stable and dimeric, and presented substrate-binding affinities comparable to those of their native counterparts. Single turnover reactions catalysed by iNOSoxy with L-Arg (first reaction step) or N-hydroxy-L-arginine (second reaction step) showed that mesohaem substitution triggered higher rates of Fe(II)O₂ conversion and altered other key kinetic parameters. We elucidated the first crystal structure of a NOS substituted with mesohaem and found essentially identical features compared with the structure of iNOS carrying native haem. This facilitated the dissection of structural and electronic effects. Mesohaem substitution substantially reduced the build-up of species P in W188H iNOS during catalysis, thus increasing its proficiency towards NO synthesis. The marked structural similarities of iNOSoxy containing native haem or mesohaem indicate that the kinetic behaviour observed in mesohaem-substituted iNOS is most heavily influenced by electronic effects rather than structural alterations.

  14. Enantiomeric and Diastereomeric Self-Assembled Multivalent (SAMul) Nanostructures - Understanding the Effects of Chirality on Binding to Polyanionic Heparin and DNA.

    PubMed

    Thornalley, Kiri; Laurini, Erik; Pricl, Sabrina; Smith, David K

    2018-05-15

    A family of four self-assembling lipopeptides containing Ala-Lys peptides attached to a C16 aliphatic chain was synthesised. These compounds form two enantiomeric pairs that bear a diastereomeric relationship to one another (C16-L-Ala-L-Lys/C16-D-Ala-D-Lys) and (C16-D-Ala-L-Lys/C16-L-Ala-D-Lys). These diastereomeric pairs have very different critical micelle concentrations (CMCs), with LL/DD < DL/LD suggesting more effective assembly of the former. The self-assembled multivalent (SAMul) systems bind biological polyanions as result of the cationic lysine groups on their surfaces. Polyanion binding was investigated using dye displacement assays and isothermal calorimetry (ITC). On heparin binding, there was no significant enantioselectivity, but there was a binding preference for the diastereomeric assemblies with lower CMCs. Conversely, on binding DNA, there was a significant enantioselective preference for systems displaying D-lysine ligands, with a further slight preference for attachment to L-alanine, with the CMC being irrelevant. Binding to adaptive, ill-defined heparin has a large favourable entropic term, suggesting it depends primarily on the cationic SAMul nanostructure maximising surface contact with heparin, which can adapt, displacing solvent and other ions. Conversely, binding to well-defined, shape-persistent DNA has a larger favourable enthalpic term, and combined with the enantioselectivity, this allows us to suggest that its SAMul binding is based on optimised individual electrostatic interactions at the molecular level, with a preference for binding to D-lysine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes

    NASA Astrophysics Data System (ADS)

    Lu, Na; Sun, Danfeng; Zhang, Chuke; Jiang, Nan; Shang, Kefeng; Bao, Xiaoding; Li, Jie; Wu, Yan

    2018-03-01

    Carbon dioxide conversion at atmosphere pressure and low temperature has been studied in a cylindrical dielectric barrier discharge (DBD) reactor. Pure CO2 feed flows to the discharge zone and typical filamentary discharges were obtained in each half-cycle of the applied voltage. The gas temperature increased with discharge time and discharge power, which was found to affect the CO2 decomposition deeply. As the DBD reactor was cooled to ambient temperature, both the conversion of CO2 and the CO yield were enhanced. Especially the energy efficiencies changed slightly with the increase of discharge power and were much higher in cooling condition comparing to those without cooling. At a discharge power of 40 W, the energy efficiency under cooling condition was approximately six times more than that without cooling. Gas flow rate was observed to affect CO2 conversion and 0.1 L min-1 was obtained as optimum gas flow rate under cooling condition. In addition, the CO2 conversion rate in plasma/g-C3N4 catalyst hybrid system was twice times as that in plasma-alone system. In case of cooling, the existence of g-C3N4 catalyst contributed to a 47% increase of CO2 conversion compared to the sole plasma process. The maximum energy-efficiency with g-C3N4 was 0.26 mmol kJ-1 at 20 W, which increased by 157% compared to that without g-C3N4. The synergistic effect of DBD plasma with g-C3N4 on pure CO2 conversion was verified.

  16. Estimating Optimal Transformations for Multiple Regression and Correlation.

    DTIC Science & Technology

    1982-07-01

    algorithm; we minimize (2.4) e2 (,,, ...,) = E[e(Y) - 1I (X 2 j=l j 2holding EO =1, E6 = E0, =.-. =Ecp = 0, through a series of single function minimizations...X, x = INU = lIVe . Then (5.16) THEOREM. If 6*, p* is an optimal transformation for regression, then = ue*o Conversely, if e satisfies Xe = U6, Nll1...Stanford University, Tech. Report ORIONOO6. Gasser, T. and Rosenblatt, M. (eds.) (1979). Smoothing Techniques for Curve Estimation, in Lecture Notes in

  17. Soviet Introduction of New Technology: A Depiction of the Process

    DTIC Science & Technology

    1975-01-01

    serious problem , however, is the appropriate rate of conver- sion to use between foreign- exchange rubles (in which foreign trade data are presented) and...purchasing-power rates between domestic rubles and foreign- exchange rubles, see A. Woroniak, "Le probleme de la conversion du rouble en dollar...Institute. b. Reports that present the results of research related to a t;ingle phase or factor of a research problem or are a draft RM or Fina.l leport. l0

  18. Lipase of Aspergillus niger NCIM 1207: A Potential Biocatalyst for Synthesis of Isoamyl Acetate.

    PubMed

    Mhetras, Nutan; Patil, Sonal; Gokhale, Digambar

    2010-10-01

    Commercial lipase preparations and mycelium bound lipase from Aspergillus niger NCIM 1207 were used for esterification of acetic acid with isoamyl alcohol to obtain isoamyl acetate. The esterification reaction was carried out at 30°C in n-hexane with shaking at 120 rpm. Initial reaction rates, conversion efficiency and isoamyl acetate concentration obtained using Novozyme 435 were the highest. Mycelium bound lipase of A. niger NCIM 1207 produced maximal isoamyl acetate formation at an alcohol/acid ratio of 1.6. Acetic acid at higher concentrations than required for the critical alcohol/acid ratio lower than 1.3 and higher than 1.6 resulted in decreased yields of isoamyl acetate probably owing to lowering of micro-aqueous environmental pH around the enzyme leading to inhibition of enzyme activity. Mycelium bound A. niger lipase produced 80 g/l of isoamyl acetate within 96 h even though extremely less amount of enzyme activity was used for esterification. The presence of sodium sulphate during esterification reaction at higher substrate concentration resulted in increased conversion efficiency when we used mycelium bound enzyme preparations of A. niger NCIM 1207. This could be due to removal of excess water released during esterification reaction by sodium sulphate. High ester concentration (286.5 g/l) and conversion (73.5%) were obtained within 24 h using Novozyme 435 under these conditions.

  19. Assessment of the Soil Organic Carbon Sink in a Project for the Conversion of Farmland to Forestland: A Case Study in Zichang County, Shaanxi, China

    PubMed Central

    Mu, Lan; Liang, Yinli; Han, Ruilian

    2014-01-01

    The conversion of farmland to forestland not only changes the ecological environment but also enriches the soil with organic matter and affects the global carbon cycle. This paper reviews the influence of land use changes on the soil organic carbon sink to determine whether the Chinese “Grain-for-Green” (conversion of farmland to forestland) project increased the rate of SOC content during its implementation between 1999 and 2010 in the hilly and gully areas of the Loess Plateau in north-central China. The carbon sink was quantified, and the effects of the main species were assessed. The carbon sink increased from 2.26×106 kg in 1999 to 8.32×106 kg in 2010 with the sustainable growth of the converted areas. The black locust (Robinia pseudoacacia L.) and alfalfa (Medicago sativa L.) soil increased SOC content in the top soil (0–100 cm) in the initial 7-yr period, while the sequestration occurred later (>7 yr) in the 100–120 cm layer after the “Grain-for-Green” project was implemented. The carbon sink function measured for the afforested land provides evidence that the Grain-for-Green project has successfully excavated the carbon sink potential of the Shaanxi province and served as an important milestone for establishing an effective organic carbon management program. PMID:24736591

  20. Differences in Left and Right Laparoscopic Adrenalectomy

    PubMed Central

    Rieder, Jocelyn M.; Nisbet, Alan A.; Wuerstle, Melanie C.; Tran, Viet Q.; Kwon, Eric O.

    2010-01-01

    Background and Objectives: The classic belief is that right-sided laparoscopic adrenalectomy is technically more difficult to perform than left-sided. The purpose of this study was to determine whether objective outcomes are different for the right- versus left- sided operation. Methods: A retrospective review of 163 laparoscopic adrenalectomies was performed to compare outcomes. Variables extracted included age, demographics, body mass index (BMI), laterality, indication, operative time, estimated blood loss (EBL), gland size, complications, open conversion rates, and length of stay. Results: Of the adrenalectomies performed, 109 were on the left and 54 on the right. Age, BMI, and indication were similar for each group. The mean EBL on the left side was 113mL (range, 2 to 3000) and 84mL (range, 10 to 700) for the right (P=0.85). The mean operative time on the left side was 187 minutes (range, 62 to 475) and on the right was 156 minutes (range, 50 to 365) (P=0.02). There was no difference in complication or conversion rate. Conclusions: There was no difference in complication or conversion rates between each side, and we observed a trend toward lower blood loss for the right side. Although we report generally similar outcomes, the mean operative time for a right-sided laparoscopic adrenalectomy was significantly less (31 minutes) than the left side. PMID:21333190

  1. Autodisplay of active sorbitol dehydrogenase (SDH) yields a whole cell biocatalyst for the synthesis of rare sugars.

    PubMed

    Jose, Joachim; von Schwichow, Steffen

    2004-04-02

    Whole cell biocatalysts are attractive technological tools for the regio- and enantioselective synthesis of products, especially from substrates with several identical reactive groups. In the present study, a whole cell biocatalyst for the synthesis of rare sugars from polyalcohols was constructed. For this purpose, sorbitol dehydrogenase (SDH) from Rhodobacter sphaeroides, a member of the short-chain dehydrogenase/reductase (SDR) family, was expressed on the surface of Escherichia coli using Autodisplay. Autodisplay is an efficient surface display system for Gram-negative bacteria and is based on the autotransporter secretion pathway. Transport of SDH to the outer membrane was monitored by SDS-PAGE and Western blotting of different cell fractions. The surface exposure of the enzyme could be verified by immunofluorescence microscopy and fluorescence activated cell sorting (FACS). The activity of whole cells displaying SDH at the surface was determined in an optical test. Specific activities were found to be 12 mU per 3.3 x 10(8) cells for the conversion of D-glucitol (sorbitol) to D-fructose, 7 mU for the conversion D-galactitol to D-tagatose, and 17 mU for the conversion of L-arabitol to L-ribulose. The whole cell biocatalyst obtained by surface display of SDH could also produce D-glucitol from D-fructose (29 mU per 3.3 x 10(8) cells).

  2. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide.

    PubMed

    Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji

    2015-11-16

    The effect of oxide coating on the activity of a copper-zinc oxide-based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO₂ conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.

  3. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide

    PubMed Central

    Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji

    2015-01-01

    The effect of oxide coating on the activity of a copper-zinc oxide–based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO2 conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides. PMID:28793674

  4. Effects of antirheumatic gold compounds on the conversion of xanthine dehydrogenase to oxidase in rabbit liver cytosol in vitro.

    PubMed

    Sakuma, Satoru; Gotoh, Kyohko; Sadatoku, Namiko; Fujita, Tadashi; Fujimoto, Yohko

    2004-07-23

    Effects of auranofin (AUR), aurothioglucose (AuTG) and aurothiomalate (AuTM) on the conversion of xanthine dehydrogenase (XD) to oxidase (XO) in the cytosolic fraction from rabbit liver were examined. AUR had no effect on the conversion of XD to XO at concentrations up to 50 microM, whereas at concentrations ranging from 10 to 25 microM, AuTG and AuTM induced the conversion of XD to XO. The constituents of AuTG and AuTM, aurous ion (Au+), but not mercaptosuccinic acid and 1-thio-beta-D-glucose, converted XD to XO in a similar degree to AuTG and AuTM. This means that Au (I) moiety has an important role in the AuTG- and AuTM-induced conversion of XD to XO. Furthermore, N-acetyl-L-cysteine (NAC) and British anti-Lewisite (BAL) reconverted AuTG and AuTM-induced XO to XD, implying that clinical activity of NAC and BAL against toxic reactions of AuTG and AuTM is partially due to the XO reconversion. These results suggest that AuTG and AuTM have the potential to convert XD to its reactive oxygen species-generating form, XO, and that this effect may be correlated with cytotoxic actions of these drugs.

  5. Optimization of lipase-catalyzed synthesis of ginsenoside Rb1 esters using response surface methodology.

    PubMed

    Hu, Jiang-Ning; Lee, Jeung-Hee; Zhu, Xue-Mei; Shin, Jung-Ah; Adhikari, Prakash; Kim, Jae-Kyung; Lee, Ki-Teak

    2008-11-26

    In the lipase (Novozyme 435)-catalyzed synthesis of ginsenoside Rb1 esters, different acyl donors were found to affect not only the degree of conversion but also the regioselectivity. The reaction of acyl donors with short carbon chain was more effective, showing higher conversion than those with long carbon chain. Among the three solvent systems, the reaction in tert-amyl alcohol showed the highest conversion rate, while the reaction in the mixed solvent of t-BuOH and pyridine (1:1) had the lowest conversion rate. To allow the increase of GRb1 lipophilicity, we decided to further study the optimal condition of synthesis of GRb1 with vinyl decanoate with 10 carbon chain fatty acids in tert-amyl alcohol. Response surface methodology (RSM) was employed to optimize the synthesis condition. From the ridge analysis with maximum responses, the maximum GRb1 conversion was predicted to be 61.51% in a combination of factors (40.2 h, 52.95 degrees C, substrate mole ratio 275.57, and enzyme amount 39.81 mg/mL). Further, the adequacy of the predicted model was examined by additional independent experiments at the predicted maximum synthesis conditions. Results showed that the RSM was effective to optimize a combination of factors for lipase-catalyzed synthesis of ginsenoside Rb1 with vinyl decanoate.

  6. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN(3)) using hexane as co-solvent: Biodiesel production and process optimization.

    PubMed

    Barekati-Goudarzi, Mohamad; Boldor, Dorin; Nde, Divine B

    2016-02-01

    In-situ transesterification (simultaneous extraction and transesterification) of Chinese tallow tree seeds into methyl esters using a batch microwave system was investigated in this study. A high degree of oil extraction and efficient conversion of oil to biodiesel were found in the proposed range. The process was further optimized in terms of product yields and conversion rates using Doehlert optimization methodology. Based on the experimental results and statistical analysis, the optimal production yield conditions for this process were determined as: catalyst concentration of 1.74wt.%, solvent ratio about 3 (v/w), reaction time of 20min and temperature of 58.1°C. H(+)NMR was used to calculate reaction conversion. All methyl esters produced using this method met ASTM biodiesel quality specifications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Application of Fenton oxidation to cosmetic wastewaters treatment.

    PubMed

    Bautista, P; Mohedano, A F; Gilarranz, M A; Casas, J A; Rodriguez, J J

    2007-05-08

    The removal of organic matter (TOC and COD) from a cosmetic wastewater by Fenton oxidation treatment has been evaluated. The operating conditions (temperature as well as ferrous ion and hydrogen peroxide dosage) have been optimized. Working at an initial pH equal to 3.0, a Fe(2+) concentration of 200 mg/L and a H(2)O(2) concentration to COD initial weight ratio corresponding to the theoretical stoichiometric value (2.12), a TOC conversion higher than 45% at 25 degrees C and 60% at 50 degrees C was achieved. Application of the Fenton oxidation process allows to reach the COD regional limit for industrial wastewaters discharges to the municipal sewer system. A simple kinetic analysis based on TOC was carried out. A second-order equation describes well the overall kinetics of the process within a wide TOC conversion range covering up to the 80-90% of the maximum achievable conversion.

  8. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    PubMed

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging.

    PubMed

    Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can

    2016-05-04

    Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon-chemical-electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l(-1). Our work may guide future designs for highly efficient solar rechargeable devices.

  10. Word Naming in the L1 and L2: A Dynamic Perspective on Automatization and the Degree of Semantic Involvement in Naming

    PubMed Central

    Plat, Rika; Lowie, Wander; de Bot, Kees

    2018-01-01

    Reaction time data have long been collected in order to gain insight into the underlying mechanisms involved in language processing. Means analyses often attempt to break down what factors relate to what portion of the total reaction time. From a dynamic systems theory perspective or an interaction dominant view of language processing, it is impossible to isolate discrete factors contributing to language processing, since these continually and interactively play a role. Non-linear analyses offer the tools to investigate the underlying process of language use in time, without having to isolate discrete factors. Patterns of variability in reaction time data may disclose the relative contribution of automatic (grapheme-to-phoneme conversion) processing and attention-demanding (semantic) processing. The presence of a fractal structure in the variability of a reaction time series indicates automaticity in the mental structures contributing to a task. A decorrelated pattern of variability will indicate a higher degree of attention-demanding processing. A focus on variability patterns allows us to examine the relative contribution of automatic and attention-demanding processing when a speaker is using the mother tongue (L1) or a second language (L2). A word naming task conducted in the L1 (Dutch) and L2 (English) shows L1 word processing to rely more on automatic spelling-to-sound conversion than L2 word processing. A word naming task with a semantic categorization subtask showed more reliance on attention-demanding semantic processing when using the L2. A comparison to L1 English data shows this was not only due to the amount of language use or language dominance, but also to the difference in orthographic depth between Dutch and English. An important implication of this finding is that when the same task is used to test and compare different languages, one cannot straightforwardly assume the same cognitive sub processes are involved to an equal degree using the same task in different languages. PMID:29403404

  11. Efficient electrochemical CO 2 conversion powered by renewable energy

    DOE PAGES

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; ...

    2015-06-29

    Here, the catalytic conversion of CO 2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO 2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO 2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au 25 nanoclusters as renewably powered CO 2 conversion electrocatalysts with CO 2 → CO reaction rates between 400 and 800 L of CO 2 per gram of catalytic metal per hour and product selectivities betweenmore » 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO 2 per gram of catalytic metal per hour. We also present data showing CO 2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10 6 mol CO 2 molcatalyst–1 during a multiday (36 hours total hours) CO 2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10 6 and 4 × 10 6 molCO 2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO 2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO 2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO 2 conversion systems will produce a net increase in CO 2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO 2 conversion systems.« less

  12. Selective methane chlorination to methyl chloride by zeolite Y-based catalysts

    NASA Astrophysics Data System (ADS)

    Joo, Hyeonho; Kim, Daeho; Lim, Kwang Soo; Choi, Yong Nam; Na, Kyungsu

    2018-03-01

    The CH4 chlorination over Y zeolites was investigated to produce CH3Cl in a high yield. Three different catalytic systems based on Y zeolite were tested for enhancement of CH4 conversion and CH3Cl selectivity: (i) HY zeolites in H+-form having various Si/Al ratios, (ii) Pt/HY zeolites supporting Pt metal nanoparticles, (iii) Pt/NaY zeolites in Na+-form supporting Pt metal nanoparticles. The reaction was carried out using the gas mixture of CH4 and Cl2 with the respective flow rates of 15 and 10 mL min-1 at 300-350 °C using a fixed-bed reactor under a continuous gas flow condition (gas hourly space velocity = 3000 mL g-1 h-1). Above the reaction temperature of 300 °C, the CH4 chlorination is spontaneous even in the absence of catalyst, achieving 23.6% of CH4 conversion with 73.4% of CH3Cl selectivity. Under sufficient supplement of thermal energy, Cl2 molecules can be dissociated to two chlorine radicals, which triggered the C-H bond activation of CH4 molecule and thereby various chlorinated methane products (i.e., CH3Cl, CH2Cl2, CHCl3, CCl4) could be produced. When the catalysts were used under the same reaction condition, enhancement in the CH4 conversion was observed. The Pt-free HY zeolite series with varied Si/Al ratios gave around 27% of CH4 conversion, but there was a slight decrease in CH3Cl selectivity with about 64%. Despite the difference in acidity of HY zeolites having different Si/Al ratios, no prominent effect of the Si/Al ratios on the catalytic performance was observed. This suggests that the catalytic contribution of HY zeolites under the present reaction condition is not strong enough to overcome the spontaneous CH4 chlorination. When the Pt/HY zeolite catalysts were used, the CH4 conversion reached further up to 30% but the CH3Cl selectivity decreased to 60%. Such an enhancement of CH4 conversion could be attributed to the strong catalytic activity of HY and Pt/HY zeolite catalysts. However, both catalysts induced the radical cleavage of Cl2 more favorably, which ultimately decreased the CH3Cl selectivity. Such trade-off relationship between CH4 conversion and CH3Cl selectivity can be slightly broken by using Pt/NaY zeolite catalyst that is known to possess Frustrated Lewis Pairs (FLP) that are very useful for ionic cleavage of H2 to H+ and H-. Similarly, in the present work, Pt/NaY(FLP) catalysts enhanced the CH4 conversion while keeping the CH3Cl selectivity as compared to the Pt/HY zeolite catalysts.

  13. Effects of feeding reduced crude protein diets on growth performance, nitrogen excretion, and plasma uric acid concentration of broiler chicks during the starter period.

    PubMed

    Kriseldi, R; Tillman, P B; Jiang, Z; Dozier, W A

    2018-05-01

    An experiment (2 trials) was conducted to determine the effects of feeding reduced crude protein (CP) diets to Ross × Ross 708 male broilers while maintaining adequate essential amino acid (AA) concentrations on growth performance, nitrogen excretion, and plasma uric acid (UA) concentration during the starter period. In trial 1, 11 dietary treatments were fed from 1 to 18 d of age containing 1.20% digestible Lys. Diet 1 (23.2% CP) was formulated with DL-Met, L-Lys, and L-Thr to contain 1.70 total Gly + Ser to digestible Lys ratio whereas diets 2 (23.4% CP) to 11 were formulated with additional Gly to contain 1.90 total Gly + Ser to digestible Lys ratio. Free AA were added sequentially in the order of limitation (L-Val, L-Ile, L-Arg, L-Trp, L-His, L-Phe, and L-Leu) from diets 3 to 10 to decrease CP content from 22.6 to 18.8%, respectively. In diet 11, L-Gln was added to increase the CP content to 23.4%. Feed conversion of broilers fed diet 2 was lower (P < 0.05) than those consuming diets 6 to 11 from 1 to 17 d of age. Nitrogen excretion (mg/b/d) decreased (P < 0.001) by 14.1% when broilers were fed diet 4 compared with birds fed diet 2 from 15 to 16 d of age. Broilers fed diet 4 had lower (P = 0.011) plasma UA concentration than birds fed diet 2 at 18 d of age. In trial 2, 8 dietary treatments containing 1.25% digestible Lys and 1.70 total Gly + Ser to digestible Lys ratio were fed from 1 to 21 d of age. Diet 1 (24.0% CP) was supplemented with DL-Met, L-Lys, and L-Thr. Free AA (L-Val, Gly, L-Ile, L-Arg, L-Trp, L-His, and L-Phe) were sequentially supplemented in the order of limitation to decrease CP content in diets 2 to 8 from 23.8 to 20.3%. Broilers fed diet 1 had higher (P < 0.05) body weight gain and lower (P < 0.05) feed conversion when compared with diet 7 or 8. Plasma UA concentration of broiler provided diets 4 to 8 was lower (P < 0.05) compared with diet 1 at 21 d of age. Placing a minimum on dietary CP percentage may not be necessary when proper AA ratios are implemented in diet formulation.

  14. Improving seeding success on cheatgrass-infested rangelands in Northern Nevada

    USDA-ARS?s Scientific Manuscript database

    Invasion of alien plant species influences all phases of wildland research in the Great Basin. The accidental introduction and subsequent invasion of cheatgrass (Bromus tectorum L.) onto millions of hectares of Great Basin rangelands has led to the conversion of former big sagebrush (Artemisia tride...

  15. Life cycle analysis of switchgrass converted via pyrolysis, gasification, and fermentation

    USDA-ARS?s Scientific Manuscript database

    The US is promoting and developing low carbon fuel sources. Perennial bioenergy crops such as switchgrass (Panicum virgatum L.) are one viable source for low carbon transportation fuels. The objective is to determine the net greenhouse gas (GHG) emissions from different conversion methods (pyrolysi...

  16. Issues and Developments in English and Applied Linguistics (IDEAL), 1994.

    ERIC Educational Resources Information Center

    Dickerson, Wayne B., Ed.; Kachru, Yamuna, Ed.

    1994-01-01

    Seven papers on topics of English-as-a-Second-Language (ESL) instruction, language research, and applied linguistics are presented: "ESL Students and Common L2 Conversation-Making Expressions" (Eli Hinkel); "Thematic Options in Reporting Previous Research" (Sarah Thomas, Thomas Hawes); "Connected Speech Modifications in…

  17. Encapsulation of Bacterial Spores in Nanoorganized Polyelectrolyte Shells (Postprint)

    DTIC Science & Technology

    2009-05-27

    Nanoorganized polyelectrolyte shells have already found applica- tions in drug microencapsulation as a result of the tunable properties of the...polyelectrolyte shell.19 The same LbL technology allowed the introduction of enzymatic activity onto yeast cell shells in order to promote the conversion of

  18. MODE OF FISSION OF BENZENE NUCLEUS IN THE MICRO-ORGANISMS AND REGULATION OF CELL GROWTH AND DIVISION BY BENZENE DERIVATIVES.

    DTIC Science & Technology

    as an amino donor in this microbial system. The conversion D-tryptophan to L-tryptophan in a cell-free system can be demonstrated when an electron acceptor, such as phenazine methosulfate, is present. (Author)

  19. Monitoring the enzymatic conversion of urea to ammonium by conventional or microchip capillary electrophoresis with contactless conductivity detection.

    PubMed

    Schuchert-Shi, Aiping; Hauser, Peter C

    2008-05-15

    Capillary electrophoresis with contactless conductivity detection was used to directly quantify the ammonium produced in the enzymatic conversion of urea with urease. This allowed the characterization of the reaction without having to use more elaborate indirect optical methods for quantification. The maximum rate of reaction, V(max), was determined as 5.1 mmol x mL(-1) x min(-1), and the Michaelis-Menten constant, K(m), was determined as 16 mM. Furthermore, the method was successfully applied to the determination of urea in clinical samples of human blood by using a conventional capillary and a microchip device.

  20. Regulation of Synaptic Structure by the Ubiquitin C-terminal Hydrolase UCH-L1

    PubMed Central

    Cartier, Anna E.; Djakovic, Stevan N.; Salehi, Afshin; Wilson, Scott M.; Masliah, Eliezer; Patrick, Gentry N.

    2009-01-01

    UCH-L1 is a de-ubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We have found that UCH-L1 activity is rapidly up-regulated by NMDA receptor activation which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of pre and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1 inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner. PMID:19535597

  1. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis.

    PubMed

    Choi, Hwa-Young; Ryu, Hee-Kyoung; Park, Kyung-Min; Lee, Eun Gyo; Lee, Hongweon; Kim, Seon-Won; Choi, Eui-Sung

    2012-06-01

    Lactic acid fermentation of Jerusalem artichoke tuber was performed with strains of Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis prior to fermentation. Some strains of L. paracasei, notably KCTC13090 and KCTC13169, could ferment hot-water extract of Jerusalem artichoke tuber more efficiently compared with other Lactobacillus spp. such as L. casei type strain KCTC3109. The L. paracasei strains could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke. Inulin-fermenting L. paracasei strains produced c.a. six times more lactic acid compared with L. casei KCTC3109. Direct lactic fermentation of Jerusalem artichoke tuber extract at 111.6g/L of sugar content with a supplement of 5 g/L of yeast extract by L. paracasei KCTC13169 in a 5L jar fermentor produced 92.5 ce:hsp sp="0.25"/>g/L of lactic acid with 16.8 g/L fructose equivalent remained unutilized in 72 h. The conversion efficiency of inulin-type sugars to lactic acid was 98% of the theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    PubMed

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter. Copyright © 2013. Published by Elsevier Ltd.

  3. Ammonium conversion and its feedback effect on methane oxidation of Methylosinus sporium.

    PubMed

    He, Ruo; Chen, Min; Ma, Ruo-Chan; Su, Yao; Zhang, Xuan

    2017-04-01

    Ammonium (NH 4 + ) is not only nitrogen source that can support methanotrophic growth, but also it can inhibit methane (CH 4 ) oxidation by competing with CH 4 for the active site of methane monooxygenase. NH 4 + conversion and its feedback effect on the growth and activity of methanotrophs were evaluated with Methylosinus sporium used as a model methanotroph. Nitrogen sources could affect the CH 4 -derived carbon distribution, which varied with incubation time and nitrogen concentrations. More CH 4 -derived carbon was incorporated into biomass in the media with NH 4 + -N, compared to nitrate-nitrogen (NO 3 - -N), as sole nitrogen source at the nitrogen concentrations of 10-18 mmol L -1 . Although ammonia (NH 3 ) oxidation activity of methanotrophs was considerably lower, only accounting for 0.01-0.06% of CH 4 oxidation activity in the experimental cultures, NH 4 + conversion could lead to the pH decrease and toxic intermediates accumulation in the their habits. Compared with NH 4 + , nitrite (NO 2 - ) accumulation in the NH 4 + conversion of methanotroph had stronger inhibition on its activity, especially the joint inhibition of NO 2 - accumulation and the pH decrease during the NH 4 + -N conversion. These results suggested that more attention should be paid to the feedback effects of NH 4 + conversion by methanotrophs to understand effects of NH 4 + on CH 4 oxidation in the environments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. The Role of Hand-Assisted Laparoscopic Technique in the Age of Single-Incision Laparoscopy: An Effective Alternative to Avoid Open Conversion in Colorectal Surgery.

    PubMed

    Jung, Kyung Uk; Yun, Seong Hyeon; Cho, Yong Beom; Kim, Hee Cheol; Lee, Woo Yong; Chun, Ho-Kyung

    2018-04-01

    Continuous efforts to reduce the numbers and size of incisions led to the emergence of a new technique, single-incision laparoscopic surgery (SILS). It has been rapidly accepted as the preferred surgical approach in the colorectal area. In the age of SILS, what is the role of hand-assisted laparoscopic surgery (HALS)? We introduce the way to take advantage of it, as an effective alternative to avoid open conversion. This is a retrospective review of prospectively collected data of SILS colectomies performed by a single surgeon in Samsung Medical Center between August 2009 and December 2012. Out of 631 cases of SILS colectomy, 47 cases needed some changes from the initial approach. Among these, five cases were converted to HALS. Four of them were completed successfully without the need for open conversion. One patient with rectosigmoid colon cancer invading bladder was finally opened to avoid vesical trigone injury. The mean operation time of the 4 patients was 265.0 minutes. The mean estimated blood loss was 587.5 mL. The postoperative complication rate associated with the operation was 25%. Conversion from SILS to HALS in colorectal surgery was feasible and effective. It seemed to add minimal morbidity while preserving advantages of minimally invasive surgery. It could be considered an alternative to open conversion in cases of SILS, especially when the conversion to conventional laparoscopy does not seem to be helpful.

  5. Determination of biogas generation potential as a renewable energy source from supermarket wastes.

    PubMed

    Alkanok, Gizem; Demirel, Burak; Onay, Turgut T

    2014-01-01

    Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH4/g VS(added) was obtained from anaerobic digestion of wastes (FVFW+DPW+MW+SW) at 10% TS, with 66.4% of methane (CH4) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH4/g VS(added), respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH4/g VS(added) was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Isolation and Characterization of PHA-Producing Bacteria from Propylene Oxide Saponification Wastewater Residual Sludge.

    PubMed

    Li, Ruirui; Gu, Pengfei; Fan, Xiangyu; Shen, Junyu; Wu, Yulian; Huang, Lixuan; Li, Qiang

    2018-03-21

    A polyhydroxyalkanoate (PHA)-producing strain was isolated from propylene oxide (PO) saponification wastewater activated sludge and was identified as Brevundimonas vesicularis UJN1 through 16S rDNA sequencing and Biolog microbiological identification. Single-factor and response surface methodology experiments were used to optimize the culture medium and conditions. The optimal C/N ratio was 100/1.04, and the optimal carbon and nitrogen sources were sucrose (10 g/L) and NH 4 Cl (0.104 g/L) respectively. The optimal culture conditions consisted of initial pH of 6.7 and an incubation temperature of 33.4 °C for 48 h, with 15% inoculum and 100 mL medium at an agitation rate of 180 rpm. The PHA concentration reached 34.1% of the cell dry weight and increased three times compared with that before optimization. The only report of PHA-producing bacteria by Brevundimonas vesicularis showed that the conversion rate of PHAs using glucose as the optimal carbon source was 1.67%. In our research, the conversion rate of PHAs with sucrose as the optimal carbon source was 3.05%, and PHA production using sucrose as the carbon source was much cheaper than that using glucose as the carbon source.

  7. Internal conversion coefficients of high multipole transitions: Experiment and theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerl, J.; Vijay Sai, K.; Sainath, M.

    A compilation of the available experimental internal conversion coefficients (ICCs), {alpha}{sub T}, {alpha}{sub K}, {alpha}{sub L}, and ratios K/L and K/LM of high multipole (L > 2) transitions for a number of elements in the range 21 {<=} Z {<=} 94 is presented. Our listing of experimental data includes 194 data sets on 110 E3 transitions, 10 data sets on 6 E4 transitions, 11 data sets on 7 E5 transitions, 38 data sets on 21 M3 transitions, and 132 data sets on 68 M4 transitions. Data with less than 10% experimental uncertainty have been selected for comparison with the theoreticalmore » values of Hager and Seltzer [R.S. Hager, E.C. Seltzer, Nucl. Data Tables A 4 (1968) 1], Rosel et al. [F. Roesel, H.M. Fries, K. Alder, H.C. Pauli, At. Data Nucl. Data Tables 21 (1978) 91], and BRICC. The relative percentage deviations (%{delta}) have been calculated for each of the above theories and the averages (%{delta}-bar) are estimated. The Band et al. [I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor Jr., P.O. Tikkanen, S. Raman, At. Data Nucl. Data Tables 81 (2002) 1] tables, using the BRICC interpolation code, are seen to give theoretical ICCs closest to experimental values.« less

  8. Simultaneous production of bioethanol and value-added d-psicose from Jerusalem artichoke (Helianthus tuberosus L.) tubers.

    PubMed

    Song, Younho; Oh, Chihoon; Bae, Hyeun-Jong

    2017-11-01

    In this study, the production of bioethanol and value added d-psicose from Jerusalem artichoke (JA) was attempted by an enzymatic method. An enzyme mixture used for hydrolysis of 100mgmL -1 JA. The resulting concentrations of released d-fructose and d-glucose were measured at approximately 56mgmL -1 and 15mgmL -1 , respectively. The d-psicose was epimerized from the JA hydrolyzate, and the conversion rate was calculated to be 32.1%. The residual fructose was further converted into ethanol at 18.0gL -1 and the yield was approximately 72%. Bioethanol and d-psicose were separated by pervaporation. This is the first study to report simultaneous d-psicose production and bioethanol fermentation from JA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction.

    PubMed

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A; García, Juan

    2013-01-15

    Active nickel catalysts (7 wt%) supported over Mg-Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min(-1) and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min(-1), respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T(r)=0.098 g(Ni) min mL(-1). After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T(r)=0.098 g(Ni) min mL(-1), attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Efficient enzymatic production of hydroxy fatty acids by linoleic acid Δ9 hydratase from Lactobacillus plantarum AKU 1009a.

    PubMed

    Takeuchi, M; Kishino, S; Park, S-B; Hirata, A; Kitamura, N; Saika, A; Ogawa, J

    2016-05-01

    This study aims to produce hydroxy fatty acids efficiently. Escherichia coli overexpressing linoleic acid Δ9 hydratase from Lactobacillus plantarum AKU 1009a was employed to produce hydroxy fatty acids with industrial potential. We found that 280 g l(-1) of linoleic acid (1 mol l(-1)) was converted into (S)-10-hydoxy-cis-12-octadecenoic acid (HYA) with a high conversion rate of 98% (mol/mol) and more than 99·9% enantiomeric excess (e.e.) by recombinant E. coli cells in the presence of FAD and NADH. In the same way, many kinds of C18 unsaturated fatty acids with Δ9 carbon double bond (280 g l(-1)) were converted into corresponding 10-hydroxy fatty acids with the conversion rates over 95% (mol/mol). We also produced HYA at a high rate of accumulation (289 g l(-1) ) with a high yield (97 mol%) in a reaction mixture that contained glucose instead of NADH. We developed a process for producing several types of hydroxy fatty acids with high accumulation rates and high yields. Hydroxy fatty acids are important materials for the chemical, food, cosmetic and pharmaceutical industries, and thus they have recently attracted much interest in a variety of research fields. However, the mass production of hydroxy fatty acids has been limited. This method of hydroxy fatty acids production will facilitate the widespread application of hydroxy fatty acids in various industries. © 2016 The Society for Applied Microbiology.

  11. Breath analyzer screening of emergency department patients suspected of alcohol intoxication.

    PubMed

    Sebbane, Mustapha; Claret, Pierre-Géraud; Jreige, Riad; Dumont, Richard; Lefebvre, Sophie; Rubenovitch, Josh; Mercier, Grégoire; Eledjam, Jean-Jacques; de la Coussaye, Jean-Emmanuel

    2012-10-01

    Acute alcohol intoxication is a frequent cause of emergency department (ED) visits. Evaluating a patient's alcohol intoxication is commonly based on both a physical examination and determination of blood alcohol concentration (BAC). To demonstrate the feasibility and usefulness of using a last-generation infrared breath analyzer as a non-invasive and rapid screening tool for alcohol intoxication in the ED. Adult patients suspected of acute alcohol intoxication were prospectively enrolled over 10 days. Breath alcohol concentrations (BrAC) were measured using a handheld infrared breath analyzer. BAC was determined simultaneously by automated enzymatic analysis of a venous blood sample. The relationship between BAC and BrAC values was examined by both linear regression and Bland-Altman analysis. The study included 54 patients (mean age 40±14 years, sex ratio M/F of 3/1). Breath and blood alcohol concentrations ranged from 0 to 1.44 mg/L and from 0 to 4.40 g/L (0-440 mg/dL), respectively. The mean individual BAC/BrAC ratio was 2615±387, 95% confidence interval 2509-2714, which is 30% higher than the legal ratio in France (2000). The correlation between both measurements was excellent: r=0.95 (0.92-0.97). Linear regression revealed BAC=0.026+1.29 (BrAC×2000) and BAC=0.026+0.99 (BrAC×2615). Mean BAC-BrAC differences and limits of agreement were 0.49 g/L [-0.35, 1.34] (or 49 mg/dL [-35, 134] and 0.01 g/L [-0.68, 0.71] (or 1 mg/dL [-68, 71]), for the 2000 and 2615 ratios, respectively. The calculated conversion coefficient provided a satisfactory determination of blood alcohol concentration. Breath alcohol testing, using appropriate BAC/BrAC conversion, different from the legal BAC/BrAC, could be a reliable alternative for routine screening and management of alcohol intoxication in the ED. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Nitrogen Oxide Atom-Transfer Redox Chemistry; Mechanism of NO(g) to Nitrite Conversion Utilizing µ-oxo Heme-FeIII−O−CuII(L) Constructs

    PubMed Central

    Hematian, Shabnam; Kenkel, Isabell; Shubina, Tatyana E.; Dürr, Maximilian; Liu, Jeffrey J.; Siegler, Maxime A.; Ivanovic-Burmazovic, Ivana; Karlin, Kenneth D.

    2015-01-01

    While nitric oxide (NO, nitrogen monoxide) is a critically important signaling agent, its cellular concentrations must be tightly controlled, generally through its oxidative conversion to nitrite (NO2−) where it is held in reserve to be reconverted as needed. In part, this reaction is mediated by the binuclear heme a3/CuB active site of cytochrome c oxidase. In this report, the oxidation of NO(g) to nitrite is shown to occur efficiently in new synthetic µ-oxo heme-FeIII−O−CuII(L) constructs (L being a tridentate or tetradentate pyridyl/alkylamino ligand), and spectroscopic and kinetic investigations provide detailed mechanistic insights. Two new X-ray structures of µ-oxo complexes have been determined and compared to literature analogs. All µ-oxo complexes react with 2 mol equiv NO(g) to give 1:1 mixtures of discrete [(L)CuII(NO2−)]+ plus ferrous heme-nitrosyl compounds; when the first NO(g) equiv reduces the heme center and itself is oxidized to nitrite, the second equiv of NO(g) traps the ferrous heme thus formed. For one µ-oxo heme-FeIII−O−CuII(L) compound, the reaction with NO(g) reveals an intermediate species (“intermediate”), formally a bis-NO adduct, [(NO)(porphyrinate)FeII-(NO2−)−CuII(L)]+ (λmax = 433 nm), confirmed by cryo-spray ionization mass spectrometry and EPR spectroscopy, along with the observation that cooling a 1:1 mixture of [(L)CuII(NO2−)]+ and heme-FeII(NO) to −125 °C leads to association and generation of the key 433 nm UV–vis feature. Kinetic-thermodynamic parameters obtained from low-temperature stopped-flow measurements are in excellent agreement with DFT calculations carried out which describe the sequential addition of NO(g) to the µ-oxo complex. PMID:25974136

  13. Catalytic thermal cracking of postconsumer waste plastics to fuels. 2. Pilot-scale thermochemical conversion

    USDA-ARS?s Scientific Manuscript database

    Synthetic gasoline and diesel fuels were prepared via catalytic and noncatalytic pyrolysis of waste polyethylene and polypropylene plastics followed by distillation of plastic crude oils. Reaction conditions optimized using a 2 L batch reactor were applied to pilot-scale production of plastic crude ...

  14. Interactive Alignment of Multisyllabic Stress Patterns in a Second Language Classroom

    ERIC Educational Resources Information Center

    Trofimovich, Pavel; McDonough, Kim; Foote, Jennifer A.

    2014-01-01

    The current study explored the occurrence of stress pattern alignment during peer interaction in a second language (L2) classroom. Interactive alignment is a sociocognitive phenomenon in which interlocutors reuse each other's expressions, structures, and pronunciation patterns during conversation. Students (N = 41) enrolled in a…

  15. The BRL-CAD Package: An Overview

    DTIC Science & Technology

    2013-04-01

    many different display devices to be supported. The types of primatives supported include: arbitrary boxes of up to eight verticies, ellipsoids...file size. Many algorithms simply run until all of the data is gone, and some don’t even care about scan lines at aiL 5.2. Format Conversion Several

  16. Optical Signal Processing for ASW

    DTIC Science & Technology

    1963-05-01

    considered here. In the initial 1. Weissbein, L. , and O’Brien, S. J., "Attenuation of Thermal Radiation with Phototropic Colorants, " Contract DA-129-QM...COORDINATE Fig. A-1 Energy Diagram of Phototropic Mechanisms Included in Category ii can assume that the A--B conversion of a single local system

  17. Tricothecenes Mycotoxin Studies

    DTIC Science & Technology

    1983-09-01

    selective conditions for croduction of allylic alcohol 6, enone 4, and aldehyde 7 in fair to good yield. in addition, oxidation of 6 with pyridinium ... chlorochromate in C32Cl 2 affords enone 4 in high yield. -L Thus, two different routes to enone 4 are-now available. Studies on the conversion of 4 to

  18. Developmental Differences in Speech Act Recognition: A Pragmatic Awareness Study

    ERIC Educational Resources Information Center

    Garcia, Paula

    2004-01-01

    With the growing acknowledgement of the importance of pragmatic competence in second language (L2) learning, language researchers have identified the comprehension of speech acts as they occur in natural conversation as essential to communicative competence (e.g. Bardovi-Harlig, 2001; Thomas, 1983). Nonconventional indirect speech acts are formed…

  19. Negation in Near-Native French: Variation and Sociolinguistic Competence

    ERIC Educational Resources Information Center

    Donaldson, Bryan

    2017-01-01

    This study investigated how adult second language (L2) speakers of French with near-native proficiency realize verbal negation, a well-known sociolinguistic variable in contemporary spoken French. Data included 10 spontaneous informal conversations between near-native speakers of French and native speakers (NSs) closely acquainted with them.…

  20. Radiation Effects Research and Device Evaluation

    DTIC Science & Technology

    2012-04-04

    disadvantages over classic inorganic -based cells in that their photo-conversion efficiency is low (less than 8% presently), their specific power... fullerene solar cells,” Appl. Phys. Lett., 86, pp. 123509-1-3, 2005. 4. H.P. Hjalmarson, R.L. Pease, S.C. Witczak, M.R. Shaneyfelt, J.R. Schwank, A.H

  1. Interactional Feedback in Naturalistic Interaction between L2 English Learners

    ERIC Educational Resources Information Center

    Ranaweera, Mahishi

    2015-01-01

    Theoretical and empirical data support that the feedback given in small group activities promote second language acquisition. There are many studies that have examined the impact of interaction on second language acquisition in controlled language situations. This study examines the small group activity "conversation partner" in order to…

  2. Switchgrass harvest time management can impact biomass yield and nutrient content

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is a dedicated energy crop native to much of North America. While high-biomass yield is of significant importance for the development of switchgrass as a bioenergy crop, nutrient content in the biomass as it relates to biofuel conversion efficiency is also critical...

  3. Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for Selective Alkyl Ester ω-Oxyfunctionalization in Escherichia coli

    PubMed Central

    Eggink, Gerrit; Weusthuis, Ruud A.

    2016-01-01

    ABSTRACT The enzyme system AlkBGT from Pseudomonas putida GPo1 can efficiently ω-functionalize fatty acid methyl esters. Outer membrane protein AlkL boosts this ω-functionalization. In this report, it is shown that whole cells of Escherichia coli expressing the AlkBGT system can also ω-oxidize ethyl nonanoate (NAEE). Coexpression of AlkBGT and AlkL resulted in 1.7-fold-higher ω-oxidation activity on NAEE. With this strain, initial activity on NAEE was 70 U/g (dry weight) of cells (gcdw), 67% of the initial activity on methyl nonanoate. In time-lapse conversions with 5 mM NAEE the main product was 9-hydroxy NAEE (3.6 mM), but also 9-oxo NAEE (0.1 mM) and 9-carboxy NAEE (0.6 mM) were formed. AlkBGT also ω-oxidized ethyl, propyl, and butyl esters of fatty acids ranging from C6 to C10. Increasing the length of the alkyl chain improved the ω-oxidation activity of AlkBGT on esters of C6 and C7 fatty acids. From these esters, application of butyl hexanoate resulted in the highest ω-oxidation activity, 82 U/gcdw. Coexpression of AlkL only had a positive effect on ω-functionalization of substrates with a total length of C11 or longer. These findings indicate that AlkBGT(L) can be applied as a biocatalyst for ω-functionalization of ethyl, propyl, and butyl esters of medium-chain fatty acids. IMPORTANCE Fatty acid esters are promising renewable starting materials for the production of ω-hydroxy fatty acid esters (ω-HFAEs). ω-HFAEs can be used to produce sustainable polymers. Chemical conversion of the fatty acid esters to ω-HFAEs is challenging, as it generates by-products and needs harsh reaction conditions. Biocatalytic production is a promising alternative. In this study, biocatalytic conversion of fatty acid esters toward ω-HFAEs was investigated using whole cells. This was achieved with recombinant Escherichia coli cells that produce the AlkBGT enzymes. These enzymes can produce ω-HFAEs from a wide variety of fatty acid esters. Medium-chain-length acids (C6 to C10) esterified with ethanol, propanol, or butanol were applied. This is a promising production platform for polymer building blocks that uses renewable substrates and mild reaction conditions. PMID:27084021

  4. Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases

    PubMed Central

    2013-01-01

    Background Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and also convert the glucose monomers to ethanol. Results The Aspergillus tubingensis T8.4 α-amylase (amyA) and glucoamylase (glaA) genes were cloned and expressed in the laboratory strain Saccharomyces cerevisiae Y294 and the semi-industrial strain, S. cerevisiae Mnuα1. The recombinant AmyA and GlaA displayed protein sizes of 110–150 kDa and 90 kDa, respectively, suggesting significant glycosylation in S. cerevisiae. The Mnuα1[AmyA-GlaA] and Y294[AmyA-GlaA] strains were able to utilise 20 g l-1 raw corn starch as sole carbohydrate source, with ethanol titers of 9.03 and 6.67 g l-1 (0.038 and 0.028 g l-1 h-1), respectively, after 10 days. With a substrate load of 200 g l-1 raw corn starch, Mnuα1[AmyA-GlaA] yielded 70.07 g l-1 ethanol (0.58 g l-1 h-1) after 120 h of fermentation, whereas Y294[AmyA-GlaA] was less efficient at 43.33 g l-1 ethanol (0.36 g l-1 h-1). Conclusions In a semi-industrial amylolytic S. cerevisiae strain expressing the A. tubingensis α-amylase and glucoamylase genes, 200 g l-1 raw starch was completely hydrolysed (saccharified) in 120 hours with 74% converted to released sugars plus fermentation products and the remainder presumably to biomass. The single-step conversion of raw starch represents significant progress towards the realisation of CBP without the need for any heat pretreatment. Furthermore, the amylases were produced and secreted by the host strain, thus circumventing the need for exogenous amylases. PMID:24286270

  5. Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases.

    PubMed

    Viktor, Marko J; Rose, Shaunita H; van Zyl, Willem H; Viljoen-Bloom, Marinda

    2013-11-29

    Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and also convert the glucose monomers to ethanol. The Aspergillus tubingensis T8.4 α-amylase (amyA) and glucoamylase (glaA) genes were cloned and expressed in the laboratory strain Saccharomyces cerevisiae Y294 and the semi-industrial strain, S. cerevisiae Mnuα1. The recombinant AmyA and GlaA displayed protein sizes of 110-150 kDa and 90 kDa, respectively, suggesting significant glycosylation in S. cerevisiae. The Mnuα1[AmyA-GlaA] and Y294[AmyA-GlaA] strains were able to utilise 20 g l-1 raw corn starch as sole carbohydrate source, with ethanol titers of 9.03 and 6.67 g l-1 (0.038 and 0.028 g l-1 h-1), respectively, after 10 days. With a substrate load of 200 g l-1 raw corn starch, Mnuα1[AmyA-GlaA] yielded 70.07 g l-1 ethanol (0.58 g l-1 h-1) after 120 h of fermentation, whereas Y294[AmyA-GlaA] was less efficient at 43.33 g l-1 ethanol (0.36 g l-1 h-1). In a semi-industrial amylolytic S. cerevisiae strain expressing the A. tubingensis α-amylase and glucoamylase genes, 200 g l-1 raw starch was completely hydrolysed (saccharified) in 120 hours with 74% converted to released sugars plus fermentation products and the remainder presumably to biomass. The single-step conversion of raw starch represents significant progress towards the realisation of CBP without the need for any heat pretreatment. Furthermore, the amylases were produced and secreted by the host strain, thus circumventing the need for exogenous amylases.

  6. Effects of Conversion to a Bicarbonate/Lactate-Buffered, Neutral-pH, Low-GDP PD Regimen in Prevalent PD: A 2-Year Randomized Clinical Trial.

    PubMed

    Farhat, Karima; Douma, Caroline E; Ferrantelli, E; Ter Wee, Pieter M; Beelen, Robert H J; van Ittersum, Frans J

    2017-01-01

    ♦ BACKGROUND: The use of pH-neutral peritoneal dialysis (PD) fluids low in glucose degradation products (GDP) may better preserve the peritoneal membrane and have fewer systemic effects. The effects of conversion from conventional to neutral-pH, low-GDP PD fluids in prevalent patients are unclear. Few studies on the role of neutral-pH, low-GDP PD have studied residual renal function, ultrafiltration, peritonitis incidence and technique failure, transport characteristics, and local and systemic markers of inflammation in prevalent PD patients. ♦ METHODS: In a multi-center open-label randomized clinical trial (RCT), we randomly assigned 40 of 78 stable continuous ambulatory PD (CAPD) and automated PD (APD) patients to treatment with bicarbonate/lactate, neutral-pH, low-GDP PD fluid (Physioneal; Baxter Healthcare Corporation, Deerfield, IL, USA) and compared them with 38 patients continuing their current standard lactate-buffered PD fluid (PDF) (Dianeal; Baxter Healthcare Corporation, Deerfield, IL, USA) during 2 years. Primary outcome was residual renal function (RRF) and ultrafiltration (UF) during peritoneal equilibration test (PET); peritonitis incidence was a secondary outcome. Furthermore, clinical parameters as well as several biomarkers in effluents and serum were measured. ♦ RESULTS: During follow-up, RRF did not differ between the groups. In the Physioneal group ultrafiltration (UF) during PET remained more or less stable (-20 mL [confidence interval (CI): -163.5 - 123.5 mL]; p = 0.7 over 24 months), whereas it declined in the Dianeal group (-243 mL [CI: -376.6 to -109.4 mL]; p < 0.0001 over 24 months), resulting in a difference of 233.7 mL [95% CI 41.0 - 425.5 mL]; p = 0.017 between the groups at 24 months. The peritonitis rate was lower in the Physioneal group: adjusted odds ratio (OR) 0.38 (0.15 - 0.97) p = 0.043. No differences were observed between the 2 groups in peritoneal adequacy or transport characteristics nor effluent markers of local inflammation (cancer antigen [CA]125, hyaluronan [HA], vascular endothelial growth factor [VEGF], macrophage chemo-attractant protein [MCP]-1, HA and transforming growth factor [TGF]β-1). ♦ CONCLUSION: In prevalent PD patients, our study did not find a difference in RRF after conversion from conventional to neutral-pH, low-GDP PD fluids, although there is a possibility that the study was underpowered to detect a difference. Decline in UF during standardized PET was lower after 2 years in the Physioneal group. Copyright © 2017 International Society for Peritoneal Dialysis.

  7. Nationwide conversion to generic tacrolimus in pediatric kidney transplant recipients.

    PubMed

    Naicker, Derisha; Reed, Peter W; Ronaldson, Jane; Kara, Tonya; Wong, William; Prestidge, Chanel

    2017-11-01

    Bioequivalence between Tacrolimus Prograf® and generic tacrolimus formulations has been demonstrated in adult populations, however clinical experience and safety data regarding generic tacrolimus in pediatric transplant recipients is limited. This study aimed to evaluate conversion from Tacrolimus Prograf® to Sandoz® in pediatric renal transplant recipients nationwide. The primary outcome was a change in mean trough tacrolimus concentration. Additionally, changes in tacrolimus intra-patient coefficient of variation (CoV), allograft function, requirement for dose adjustments, and episodes of biopsy-proven rejection were evaluated. Retrospective cohort study in 37 pediatric renal transplant recipients who switched to Tacrolimus Sandoz®. Each patient had three pre-conversion tacrolimus trough and creatinine concentrations within the 4 months prior and three post-conversion concentrations on day 3, 10, and the next subsequent level. Mean pre- and post-conversion tacrolimus trough concentrations and glomerular filtration rate (eGFR) were calculated. Tacrolimus concentration, CoV, and creatinine differences were compared by paired t test. Thirty-seven patients (41% females, age 3-18 years) were included. Average intra-patient difference in trough tacrolimus concentration was 0.05μg/l (95% CI -0.37 to 0.47). Average intra-patient difference in eGFR was -1.20 ml/min/1.73 2 (95% CI -3.53 to 1.13). Three patients had acute rejection during 12 months post-conversion compared to none during 12 months pre-conversion. Pediatric renal transplant recipients can be converted from Tacrolimus Prograf® to Sandoz® with negligible change in trough concentration, dose adjustments, or immediate allograft function. Of concern was the number of acute rejection episodes, however non-adherence contributed to at least one episode and this difference was determined clinically and statistically not significant.

  8. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production.

    PubMed

    Kumar, Deepak; Murthy, Ganti S

    2011-09-05

    While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.

  10. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production

    PubMed Central

    2011-01-01

    Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies. PMID:21892958

  11. Testing the performance of a fragment of the COI gene to identify western Palaearctic stag beetle species (Coleoptera, Lucanidae).

    PubMed

    Cox, Karen; Thomaes, Arno; Antonini, Gloria; Zilioli, Michele; De Gelas, Koen; Harvey, Deborah; Solano, Emanuela; Audisio, Paolo; McKeown, Niall; Shaw, Paul; Minetti, Robert; Bartolozzi, Luca; Mergeay, Joachim

    2013-12-30

    Lucanidae) remains challenging, mainly due to the sexual dimorphism and the strong allometry in males. Such conjecture confounds taxonomic based conservation efforts that are urgently needed due to numerous threats to stag beetle biodiversity. Molecular tools could help solve the problem of identification of the different recognized taxa in the "Lucanus cervus complex" and in some related Palaearctic species. We investigated the potential use of a 670 bp region at the 3' end of the mitochondrial cytochrome c oxidase subunit I gene (COI) for barcoding purposes (different from the standard COI barcoding region). Well resolved species and subspecies were L. tetraodon, L. cervusakbesianus, L. c. laticornis, as well as the two eastern Asian outgroup taxa L. formosanus and L. hermani. Conversely, certain taxa could not be distinguished from each other based on K2P-distances and tree topologies: L. c. fabiani / L. (P.) barbarossa, L. c. judaicus / an unknown Lucanus species, L. c. cervus / L. c. turcicus / L. c. pentaphyllus / L. (P.) macrophyllus / L. ibericus. The relative roles of phenotypic plasticity, recurrent hybridisation and incomplete lineage sorting underlying taxonomic and phylogenetic discordances are discussed.

  12. Enhancement of l-lactic acid production via synergism in open co-fermentation of Sophora flavescens residues and food waste.

    PubMed

    Zheng, Jin; Gao, Ming; Wang, Qunhui; Wang, Juan; Sun, Xiaohong; Chang, Qiang; Tashiro, Yukihiro

    2017-02-01

    In this study, Sophora flavescens residues (SFR) were used for l-lactic acid production and were mixed with food waste (FW) to assess the effects of different compositions of SFR and FW. Positive synergistic effects of mixed substrates were achieved with co-fermentation. Co-fermentation increased the proportion of l-lactic acid by decreasing the co-products of ethanol and other organic acids. A maximum l-lactic acid concentration of 48.4g/L and l-lactic acid conversion rate of 0.904g/g total sugar were obtained through co-fermentation of SFR and FW at the optimal ratio of 1:1.5. These results were approximately 6-fold those obtained during mono-fermentation of SFR. Co-fermentation of SFR and FW provides a suitable C/N ratio and pH for effective open fermentative production of l-lactic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Optimization of enzymatic hydrolysis for ethanol production by simultaneous saccharification and fermentation of wastepaper.

    PubMed

    Sangkharak, Kanokphorn

    2011-11-01

    The present study investigated the development of high sugar production by optimization of an enzymatic hydrolysis process using both conventional and statistical methods, as well as the production of ethanol by the selected wastepaper source. Among four sources of pretreated wastepaper including office paper, newspaper, handbills and cardboard, office paper gave the highest values of cellulose (87.12%) and holocelluloses (89.07%). The effects of the amount of wastepaper, the pretreatment method and the type of enzyme on reducing sugar production from office paper were studied using conventional methods. The highest reducing sugar production (1851.28 µg L(-1); 37.03% conversion of glucose) was obtained from the optimal condition containing 40 mg of office paper, pretreated with stream explosion and hydrolysed with the combination of cellulase from Aspergillus niger and Trichoderma viride at the fixed loading rate of 20 FPU g(-1) sample. The effects of interaction of wastepaper amount and enzyme concentration as well as incubation time were studied by a statistical method using central composite design. The optimal medium composition consisted of 43.97 µg L(-1), 28.14 FPU g(-1) sample and 53.73 h of wastepaper, enzyme concentration and incubation time, respectively, and gave the highest amount of sugar production (2184.22 µg L(-1)) and percentage conversion of glucose (43.68%). The ethanol production from pretreated office paper using Saccharomyces cerevisiae in a simultaneous saccharification and fermentation process was 21.02 g L(-1) after 36 h of cultivation, corresponding to an ethanol volumetric production rate of 0.58 g ethanol L(-1) h(-1).

  14. Advanced modelling, monitoring, and process control of bioconversion systems

    NASA Astrophysics Data System (ADS)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate fermentation with diauxic growth. Model predictive control (MPC), an advanced process control strategy, is capable of utilizing nonlinear models and sensor feedback to provide optimal input while ensuring critical process constraints are met. Using the microorganism Saccharomyces cerevisiae, a commonly used microorganism for biofuel production, and work performed with M. thermoacetica, a nonlinear MPC was implemented on a continuous membrane cell-recycle bioreactor (MCRB) for the conversion of glucose to ethanol. The dilution rate was used to control the ethanol productivity of the system will maintaining total substrate conversion above the constraint of 98%. PLS multivariate models for glucose (RMSEP 1.5 g L-1) and ethanol (RMSEP 0.4 g L-1) were robust in predicting concentrations and a mechanistic kinetic model built accurately predicted continuous fermentation behavior. A setpoint trajectory, ranging from 2 - 4.5 g L-1 h-1 for productivity was closely tracked by the fermentation system using Raman measurements and an extended Kalman filter to estimate biomass concentrations. Overall, this work was able to demonstrate an effective approach for real-time monitoring and control of a complex fermentation system.

  15. Renewable Energy Production from DoD Installation Solid Wastes By Anaerobic Digestion

    DTIC Science & Technology

    2016-08-06

    favorable environmental conditions including a mesophilic (37 oC) or thermophilic (55 oC) temperature , the absence of oxygen , and a pH between 6.5...a high temperature process that uses oxygen -starved combustion to convert dry organic matter to a syngas. Syngas is a low BTU fuel that can be used...production rates are at the 36.7 °C digester temperature . Parameter Units 7gCOD/L-d 12gCOD/L-d Effective SRT days 18.5 10.8 COD Conversion Efficiency % 67

  16. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    DTIC Science & Technology

    2016-06-01

    favorable environmental conditions including a mesophilic (37 oC) or thermophilic (55 oC) temperature , the absence of oxygen , and a pH between 6.5...a high temperature process that uses oxygen -starved combustion to convert dry organic matter to a syngas. Syngas is a low BTU fuel that can be used...production rates are at the 36.7 °C digester temperature . Parameter Units 7gCOD/L-d 12gCOD/L-d Effective SRT days 18.5 10.8 COD Conversion Efficiency % 67

  17. Differential Sensitivities of Pulmonary and Coronary Arteries to Hemoglobin-Based Oxygen Carriers and Nitrovasodilators: Study in a Bovine Ex Vivo Model of Vascular Strips

    DTIC Science & Technology

    2010-01-01

    dependent manner, with a relatively high average IC50 of8.5 J.lM (Table 1 ). For bovine pulmonary artery, the JC50 for sodium nitrite was more than 1... dependent on nitrovasodilator concentration, suggesting SNP and sodium nitrite -induced autocatalytic conversion of oxyhemoglobin to methemoglobin at...Gladwin, M.T., Kim-Shapiro, D.R., 2008. The functional nitrite reductase activity of the heme -globins. Blood 112, 2636-2647. Hart, j.L, Ledvina, M.A

  18. Depth Perception in Visual Simulation.

    DTIC Science & Technology

    1980-08-01

    effect. Journal of Experimental Psychology, 1953, 45, 205-217. Wallach, H., O’Connell, D. N., & Neisser , U . The memory effect of visual perception of...Wallach and O’Connell labelled this the Kinetic Depth Effect. Wallach, O’Connell, and Neisser (1953) found that once depth had been established...right of fixation in the left eye. The converse is true for objects located 10 uL 0 L-I. M4 ’I! .- 4J Cd > 9 )( C.) U )d 0 0 4- -0 4 C4 J )0 -I,--4 0

  19. LEOS 1993 - Summer Topical Meeting Digest Held in Santa Barbara, California on July 19-30, 1993

    DTIC Science & Technology

    1993-01-01

    M1.3 l0.2Oam - 11.-OOm (Invited) A BT View of Nonlinear Effects In Long-Haul Systems J V Wright BT Laboratories, Martlesham Heath Ipswich, SuffokIP5...Gbit/s FM/AM Conversion System Experiment Bo Foged J0rgensen, Rune J. S. Pedersen and Carsten Gudmann Joergensen Center for Broadband Telecommunications...C. C. Neil , Applied Physics Letters, Vol 28, p. 192, 1976. 2. N. F. Hartman, L. E. Corey, "A New Time Delay Concept Using Integrated Optic Techniques

  20. Initial reactions involved in the dissimilation of mandelate by Rhodotorula graminis.

    PubMed Central

    Durham, D R

    1984-01-01

    Rhodotorula graminis utilized DL-mandelate, L(+)-mandelate, and D(-)-mandelate as sole sources of carbon and energy. Growth on these aromatic substrates resulted in the induction of an NAD-dependent D(-)-mandelate dehydrogenase and a dye-linked L(+)-mandelate dehydrogenase, each catalyzing the stereospecific conversion of its respective enantiomer of mandelate to benzoylformate. Benzoylformate was oxidized to benzaldehyde, which was dehydrogenated to benzoate by an NAD-dependent benzaldehyde dehydrogenase. Benzoate was further metabolized through p-hydroxybenzoate and the protocatechuate branch of the beta-ketoadipate pathway. PMID:6389497

  1. Turning Cellulose Waste Into Electricity: Hydrogen Conversion by a Hydrogenase Electrode

    PubMed Central

    Abramov, Sergey M.; Sadraddinova, Elmira R.; Shestakov, Andrey I.; Voronin, Oleg G.; Karyakin, Arkadiy A.; Zorin, Nikolay A.; Netrusov, Alexander I.

    2013-01-01

    Hydrogen-producing thermophilic cellulolytic microorganisms were isolated from cow faeces. Rates of cellulose hydrolysis and hydrogen formation were 0.2 mM L-1 h-1 and 1 mM L-1 h-1, respectively. An enzymatic fuel cell (EFC) with a hydrogenase anode was used to oxidise hydrogen produced in a microbial bioreactor. The hydrogenase electrode was exposed for 38 days (912 h) to a thermophilic fermentation medium. The hydrogenase activity remaining after continuous operation under load was 73% of the initial value. PMID:24312437

  2. [Research on the preparative method of Arctigenin].

    PubMed

    Zhang, Li-Ying; Yang, Yi-Shun; Zhang, Tong; Ding, Yue; Cai, Zhen-Zhen; Tao, Jian-Sheng

    2012-03-01

    To research on the preparation of Arctigenin in vitro. Took enzyme concentration, time course and substrate concentration as investigation factors, used Box-Behnken design-response surface methodology to optimize the enzyme hydrolysis path of Arctigenin. The best operational path for Arctigenin was as follows: the temperature was 50 degrees C, pH was 4.8, enzyme concentration was 0.44 U/mL, time course was 46.81 min, substrate concentration was 0.29 mg/mL, the conversion rate was 90.94%. This research can be regarded as a referencein preparing Arctigenin in vitro.

  3. Production of L- and D-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation.

    PubMed

    Nguyen, Cuong Mai; Kim, Jin-Seog; Nguyen, Thanh Ngoc; Kim, Seul Ki; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Kim, Jin-Cheol

    2013-10-01

    Simultaneous saccharification and cofermentation (SSCF) of Curcuma longa waste biomass obtained after turmeric extraction to L- and D-lactic acid by Lactobacillus coryniformis and Lactobacillus paracasei, respectively, was investigated. This is a rich, starchy, agro-industrial waste with potential for use in industrial applications. After optimizing the fermentation of the biomass by adjusting nitrogen sources, enzyme compositions, nitrogen concentrations, and raw material concentrations, the SSCF process was conducted in a 7-l jar fermentor at 140 g dried material/L. The maximum lactic acid concentration, average productivity, reducing sugar conversion and lactic acid yield were 97.13 g/L, 2.7 g/L/h, 95.99% and 69.38 g/100 g dried material for L-lactic acid production, respectively and 91.61 g/L, 2.08 g/L/h, 90.53% and 65.43 g/100 g dried material for D-lactic acid production, respectively. The simple and efficient process described in this study could be utilized by C. longa residue-based lactic acid industries without requiring the alteration of plant equipment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Stimulation of hepatic glutathione formation by administration of L-2-oxothiazolidine-4-carboxylate, a 5-oxo-L-prolinase substrate.

    PubMed Central

    Williamson, J M; Meister, A

    1981-01-01

    5-Oxo-L-prolinase, the enzyme that catalyzes the conversion of 5-oxo-L-proline to L-glutamate coupled to the cleavage of ATP to ADP and Pi, also acts on L-2-oxothiazolidine-4-carboxylate (an analog of 5-oxoproline in which the 4-methylene moiety is replaced by sulfur) and ATP to yield cysteine and ADP. The enzyme, which exhibits an affinity for the analog similar to that for the natural substrate, is inhibited by the analog in vitro and in vivo. L-2-oxothiazolidine-4-carboxylate thus serves as a potent inhibitor of the gamma-glutamyl cycle at the step of 5-oxoprolinase. Administration of L-2-oxothiazolidine-4-carboxylate to mice that had been depleted of hepatic glutathione led to restoration of normal hepatic glutathione levels. Since L-2-oxothiazolidine-4-carboxylate is an excellent substrate of the enzyme, it may serve as an intracellular delivery system for cysteine and thus has potential as a therapeutic agent for conditions in which there is depletion of hepatic glutathione. PMID:6940159

  5. Nitrogen recycling during phenylpropanoid metabolism in sweet potato tubers

    NASA Technical Reports Server (NTRS)

    Singh, S.; Lewis, N. G.; Towers, G. H.

    1998-01-01

    In the first step of the phenylpropanoid metabolic pathway, L-phenylalanine (L-Phe) is deaminated to form E-cinnamate, in a conversion catalyzed by phenylalanine ammonia-lyase (PAL; EC 4.3.1.5). The metabolic fate of the ammonium ion (NH4+) produced in this reaction was investigated in sweet potato (Ipomoea batatas) tuber discs. [15N]-Labeled substrates including L-Phe, in the presence or absence of specific enzyme inhibitors, were administered to sweet potato discs in light under aseptic conditions. 15N-Nuclear magnetic resonance spectroscopic analyses revealed that the 15NH4+ liberated during the PAL reaction is first incorporated into the amide nitrogen of L-glutamine (L-Gln) and then into L-glutamate (L-Glu). These results extend our previous observations in pine and potato that PAL-generated NH4+ is assimilated by the glutamine synthetase (GS; EC 6.3.1.2)/glutamate synthase (GOGAT; EC 1.4.1.13) pathway, with the NH4+ so formed ultimately being recycled back to L-Phe via L-Glu as aminoreceptor and donor.

  6. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids.

    PubMed

    Bowen, Christopher H; Bonin, Jeff; Kogler, Anna; Barba-Ostria, Carlos; Zhang, Fuzhong

    2016-03-18

    In search of sustainable approaches to plastics production, many efforts have been made to engineer microbial conversions of renewable feedstock to short-chain (C2-C8) bifunctional polymer precursors (e.g., succinic acid, cadaverine, 1,4-butanediol). Less attention has been given to medium-chain (C12-C14) monomers such as ω-hydroxy fatty acids (ω-OHFAs) and α,ω-dicarboxylic acids (α,ω-DCAs), which are precursors to high performance polyesters and polyamides. Here we engineer a complete microbial conversion of glucose to C12 and C14 ω-OHFAs and α,ω-DCAs, with precise control of product chain length. Using an expanded bioinformatics approach, we screen a wide range of enzymes across phyla to identify combinations that yield complete conversion of intermediates to product α,ω-DCAs. Finally, through optimization of culture conditions, we enhance production titer of C12 α,ω-DCA to nearly 600 mg/L. Our results indicate potential for this microbial factory to enable commercially relevant, renewable production of C12 α,ω-DCA-a valuable precursor to the high-performance plastic, nylon-6,12.

  7. Denitrifying sulfide removal process on high-salinity wastewaters.

    PubMed

    Liu, Chunshuang; Zhao, Chaocheng; Wang, Aijie; Guo, Yadong; Lee, Duu-Jong

    2015-08-01

    Denitrifying sulfide removal (DSR) process comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide, and acetate into nitrogen gas, elemental sulfur (S(0)), and carbon dioxide, respectively. Sulfide- and nitrate-laden wastewaters at 2-35 g/L NaCl were treated by DSR process. A C/N ratio of 3:1 was proposed to maintain high S(0) conversion rate. The granular sludge with a compact structure and smooth outer surface was formed. The microbial communities of DSR consortium via high-throughput sequencing method suggested that salinity shifts the predominating heterotrophic denitrifiers at <10 g/L NaCl to autotrophic denitrifiers at >10 g/L NaCl.

  8. Intelligent Adaptive Interfaces: Summary Report on Design, Development, and Evaluation of Intelligent Adaptive Interfaces for the Control of Multiple UAVs from an Airborne Platform

    DTIC Science & Technology

    2006-12-01

    gestion de la masse d’informations nécessaires pour appuyer la prise de décision efficace. De l’avis des opérateurs d’engins télépilotés...opérateurs d’engins télépilotés risque de croître exponentiellement, de sorte que de fortes contraintes seront imposées au personnel exécutant les missions...commande réelle des engins télépilotés que la gestion des données, y compris la conversion de ces données en information et l’acheminement

  9. Synthesis and characterization of Allium cepa L. as photosensitizer of dye-sensitized solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutikno, E-mail: smadnasri@yahoo.com; Afrian, Noverdi; Supriadi,

    The synthesis and characterization of Allium cepa L. used as natural pigment for natural dye sensitizer of solar cell has successfully done and anthocyanin is extracted. Anthocynin is color pigment of plant which has characteristic absorption spectrum of photon and excites electrons up to pigment molecules. As the anthocyanin absorbed light increases the excited electrons increase as well. The generated current also increases and it leads to the efficiency increase. The energy conversion efficiency of the cells sensitized with dye of Allium cepa L. was 3,045 x 10{sup −4}%. A simple technique was taken to fabricate dye sensitizer solar cellmore » is spincoating.« less

  10. A Quantitative Real-Time PCR-Based Strategy for Molecular Evaluation of Nicotine Conversion in Burley Tobacco.

    PubMed

    Sun, Bo; Xue, Sheng-Ling; Zhang, Fen; Luo, Zhao-Peng; Wu, Ming-Zhu; Chen, Qing; Tang, Hao-Ru; Lin, Fu-Cheng; Yang, Jun

    2015-11-17

    Nornicotine production in Nicotiana tabacum is undesirable because it is the precursor of the carcinogen N'-nitrosonornicotine. In some individual burley tobacco plants, a large proportion of the nicotine can be converted to nornicotine, and this process of nicotine conversion is mediated primarily by enzymatic N-demethylation of nicotine which is controlled mainly by CYP82E4. Here we report a novel strategy based on quantitative real-time polymerase chain reaction (qPCR) method, which analyzed the ratio of nicotine conversion through examining the transcript level of CYP82E4 in burley leaves and do not need ethylene induction before detected. The assay was linear in a range from 1 × 10¹ to 1 × 10⁵ copies/mL of serially diluted standards, and also showed high specificity and reproducibility (93%-99%). To assess its applicability, 55 plants of burley cultivar Ky8959 at leaf maturing stage were analyzed, and the results were in accordance with those from gas chromatograph-mass spectrometry (GC-MS) method. Moreover, a linear correlation existed between conversion level and CYP82E4 transcript abundance. Taken together, the quantitative real-time PCR assay is standardized, rapid and reproducible for estimation of nicotine conversion level in vivo, which is expected to shed new light on monitoring of burley tobacco converter.

  11. Reduction and conversion of 2,4,6-trinitrotoluene (TNT) by sulfide under simulated anaerobic conditions.

    PubMed

    Qiao, Hua; Wang, He-ling; Feng, Hua-jun; Yao, Jun; Shen, Dong-sheng; Tang, Zhi-jian

    2010-07-15

    To account for the fast disappearance of TNT in anaerobic fermentative liquid, we investigated TNT (TNT(0)=50 mg/L) reduction by Na(2)S at 30+/-1 degrees C in two types of buffer systems, a phosphate buffer (PB, system A) and a CH(3)COOH-NaHCO(3) buffer (system B). The effects of pH, sulfide concentration and buffer system on the conversion and reaction rate of TNT were investigated. The effect of different variables on the conversion of TNT decreased in the following order: Na(2)S concentration>pH>buffer system. A kinetics study showed that TNT reduction by Na(2)S occurred in two stages separated by a change point. The observed rate constants of the first stage K(obs-1) were 1 order of magnitude lower than those of the second stage. The TNT conversion rate increased and the time to reach the change point became shorter with increasing Na(2)S concentration and pH. A 5-fold increase in Na(2)S concentration above the theoretical stoichiometric concentration was optimum. Observed rate constants of the first stage K(obs-1) were proportional to the hydrosulfide ion concentration and the conversion rate of TNT was greater and faster in buffer system B than in system A. 2010 Elsevier B.V. All rights reserved.

  12. Serial testing for latent tuberculosis using QuantiFERON-TB Gold In-Tube: A Markov model.

    PubMed

    Moses, Mark W; Zwerling, Alice; Cattamanchi, Adithya; Denkinger, Claudia M; Banaei, Niaz; Kik, Sandra V; Metcalfe, John; Pai, Madhukar; Dowdy, David

    2016-07-29

    Healthcare workers (HCWs) in low-incidence settings are often serially tested for latent TB infection (LTBI) with the QuantiFERON-TB Gold In-Tube (QFT) assay, which exhibits frequent conversions and reversions. The clinical impact of such variability on serial testing remains unknown. We used a microsimulation Markov model that accounts for major sources of variability to project diagnostic outcomes in a simulated North American HCW cohort. Serial testing using a single QFT with the recommended conversion cutoff (IFN-g > 0.35 IU/mL) resulted in 24.6% (95% uncertainty range, UR: 23.8-25.5) of the entire population testing false-positive over ten years. Raising the cutoff to >1.0 IU/mL or confirming initial positive results with a (presumed independent) second test reduced this false-positive percentage to 2.3% (95%UR: 2.0-2.6%) or 4.1% (95%UR: 3.7-4.5%), but also reduced the proportion of true incident infections detected within the first year of infection from 76.5% (95%UR: 66.3-84.6%) to 54.8% (95%UR: 44.6-64.5%) or 61.5% (95%UR: 51.6-70.9%), respectively. Serial QFT testing of HCWs in North America may result in tremendous over-diagnosis and over-treatment of LTBI, with nearly thirty false-positives for every true infection diagnosed. Using higher cutoffs for conversion or confirmatory tests (for initial positives) can mitigate these effects, but will also diagnose fewer true infections.

  13. Effect of short LED lamp exposure on wear resistance, residual monomer and degree of conversion for Filtek Z250 and Tetric EvoCeram composites.

    PubMed

    Kopperud, Hilde M; Johnsen, Gaute F; Lamolle, Sébastien; Kleven, Inger S; Wellendorf, Hanne; Haugen, Håvard J

    2013-08-01

    The latest LED dental curing devices claim sufficient curing of restorative materials with short curing times. This study evaluates mechanical and chemical properties as a function of curing time of two commercial composite filling materials cured with three different LED lamps. The composites were Filtek Z250 (3M ESPE) and Tetric EvoCeram (Ivoclar Vivadent) and the LED curing devices were bluephase 16i (Ivoclar Vivadent), L.E.Demetron II (Kerr) and Mini L.E.D. (Satelec). Control samples were cured with a QTH-lamp (VCL 400, Kerr). The wear resistance after simulated tooth brushing, degree of conversion, curing depth, and amounts of residual monomers were measured after different curing times. The results of this study show that short curing time with high-intensity LEDs may influence the bulk properties of the materials, resulting in lower curing depth and increased residual monomer content. The measured surface properties of the materials, degree of conversion and wear resistance, were not affected by short curing times to the same extent. This study demonstrates that reduced exposure time with high intensity LEDs can result in composite restorations with inferior curing depth and increased leaching of monomers. Dentists are recommended to use sufficient curing times even with high intensity LEDs to ensure adequate curing and minimize the risk of monomer leaching. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Species composition and relative abundance of sand flies of the genus Lutzomyia (Diptera: Psychodidae) at an endemic focus of visceral leishmaniasis in Colombia.

    PubMed

    Ferro, C; Morrison, A C; Torres, M; Pardo, R; Wilson, M L; Tesh, R B

    1995-07-01

    Ecological studies on the sand fly Lutzomyia longipalpis (Lutz & Neiva) were conducted during 1990-1993 at a small rural community in Colombia where American visceral leishmaniasis is endemic. Weekly sand fly collections were made from pigpens, houses, and natural resting sites, using hand-held aspirators, sticky (oiled) paper traps, and opossum-baited Disney traps. In total, 263,094 sand flies were collected; L. longipalpis predominated (86.1%), followed by L. trinidadensis (11.0%), L. cayennensis (2.7%), and 8 other Lutzomyia species. The species composition and sex ratio of these sand flies varied among sites and by collection method. L. longipalpis were captured most efficiently by direct aspiration from animal bait. Conversely, sticky paper traps, especially inside houses and at rock resting sites, collected a greater diversity of species, but a lower relative abundance of L. longipalpis.

  15. Zirconocene-iridium hydrido complexes: arene carbon-hydrogen bond activation and formation of a planar square Zr2Ir2 complex.

    PubMed

    Oishi, Masataka; Suzuki, Hiroharu

    2009-03-16

    New early-late heterobimetallic hydrides (L(2)ZrCl)(Cp*Ir)(mu-H)(3) (1; L = Cp derivative, Cp* = eta(5)-C(5)Me(5)) were synthesized from zirconocene derivatives (L(2)ZrCl(2)) and LiCp*IrH(3) via a salt elimination reaction and structurally characterized by NMR and X-ray analyses. Upon treatment of 1 with an alkyllithium reagent, hydride abstraction complex 4 underwent thermolytic ligand elimination at the Zr-Ir system to yield a novel planar square complex (L(2)Zr)(2)(Cp*Ir)(2)(mu(3)-H)(4) (2). When a labeling study of the reaction was conducted, it was found that the conversion of 1 to 2 involves rapid aromatic and benzylic C-H activation by a coordinatively unsaturated dinuclear complex (L(2)Zr)(Cp*Ir)(H)(2) (3).

  16. Effects of Land-Use Conversion from Double Rice Cropping to Vegetables on Methane and Nitrous Oxide Fluxes in Southern China

    PubMed Central

    Yuan, Ye; Dai, Xiaoqin; Wang, Huimin; Xu, Ming; Fu, Xiaoli; Yang, Fengting

    2016-01-01

    Compared with CO2, methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases in terms of their global warming potentials. Previous studies have indicated that land-use conversion has a significant impact on greenhouse gas emissions. However, little is known regarding the impact of converting rice (Oryza sativa L.) to vegetable fields, an increasing trend in land-use change in southern China, on CH4 and N2O fluxes. The effects of converting double rice cropping to vegetables on CH4 and N2O fluxes were examined using a static chamber method in southern China from July 2012 to July 2013. The results indicate that CH4 fluxes could reach 31.6 mg C m−2 h−1 under rice before land conversion. The cumulative CH4 emissions for fertilized and unfertilized rice were 348.9 and 321.0 kg C ha−1 yr−1, respectively. After the land conversion, the cumulative CH4 emissions were −0.4 and 1.4 kg C ha−1 yr−1 for the fertilized and unfertilized vegetable fields, respectively. Similarly, the cumulative N2O fluxes under rice were 1.27 and 0.56 kg N ha−1 yr−1 for the fertilized and unfertilized treatments before the land conversion and 19.2 and 8.5 kg N ha−1 yr−1, respectively, after the land conversion. By combining the global warming potentials (GWPs) of both gases, the overall land-use conversion effect was minor (P = 0.36) with fertilization, but the conversion reduced GWP by 63% when rice and vegetables were not fertilized. Increase in CH4 emissions increased GWP under rice compared with vegetables with non-fertilization, but increased N2O emissions compensated for similar GWPs with fertilization under rice and vegetables. PMID:27195497

  17. Effects of Land-Use Conversion from Double Rice Cropping to Vegetables on Methane and Nitrous Oxide Fluxes in Southern China.

    PubMed

    Yuan, Ye; Dai, Xiaoqin; Wang, Huimin; Xu, Ming; Fu, Xiaoli; Yang, Fengting

    2016-01-01

    Compared with CO2, methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases in terms of their global warming potentials. Previous studies have indicated that land-use conversion has a significant impact on greenhouse gas emissions. However, little is known regarding the impact of converting rice (Oryza sativa L.) to vegetable fields, an increasing trend in land-use change in southern China, on CH4 and N2O fluxes. The effects of converting double rice cropping to vegetables on CH4 and N2O fluxes were examined using a static chamber method in southern China from July 2012 to July 2013. The results indicate that CH4 fluxes could reach 31.6 mg C m-2 h-1 under rice before land conversion. The cumulative CH4 emissions for fertilized and unfertilized rice were 348.9 and 321.0 kg C ha-1 yr-1, respectively. After the land conversion, the cumulative CH4 emissions were -0.4 and 1.4 kg C ha-1 yr-1 for the fertilized and unfertilized vegetable fields, respectively. Similarly, the cumulative N2O fluxes under rice were 1.27 and 0.56 kg N ha-1 yr-1 for the fertilized and unfertilized treatments before the land conversion and 19.2 and 8.5 kg N ha-1 yr-1, respectively, after the land conversion. By combining the global warming potentials (GWPs) of both gases, the overall land-use conversion effect was minor (P = 0.36) with fertilization, but the conversion reduced GWP by 63% when rice and vegetables were not fertilized. Increase in CH4 emissions increased GWP under rice compared with vegetables with non-fertilization, but increased N2O emissions compensated for similar GWPs with fertilization under rice and vegetables.

  18. Experimental research of technology activating catalysts for SCR DeNOx in boiler

    NASA Astrophysics Data System (ADS)

    Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin

    2018-01-01

    In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.

  19. Chaotic Conversation: A Foray into the Complex World of Communication.

    ERIC Educational Resources Information Center

    Bonilla, Carlos A., Ed.; Lauderdale, Katherine, Ed.; Roberson, Jerry L., Ed.

    This book presents articles regarding communication in a variety of contexts. Articles are: (1) "Musings on Language and Communication" (C. A. Bonilla); (2) "How Do Infants Learn to Speak?" (K. Lauderdale and J. L. Roberson); (3) "Language, Learning, and the Brain, Any Questions?" (K. Lauderdale, B. J. Somera Mace; T.…

  20. Second Language Acquisition as Situated Practice: Task Accomplishment in the French Second Language Classroom

    ERIC Educational Resources Information Center

    Mondada, Lorenza; Doehler, Simona Pekarek

    2004-01-01

    This article provides an empirically based perspective on the contribution of conversation analysis (CA) and sociocultural theory to our understanding of learners' second language (L2) practices within what we call a strong socio-interactionist perspective. It explores the interactive (re)configuration of tasks in French second language…

  1. Female, Nonnative Perspectives on Second Language Conversation: Connecting Participation with Intercultural Sensitivity

    ERIC Educational Resources Information Center

    Edstrom, Anne M.

    2005-01-01

    Although proficiency is a primary goal, the objectives of second language (L2) teaching are also to enhance learners' understanding of the nature of language and culture (National Standards, 1999). This study, based on interviews with 13 American women living in Venezuela, explores nonnatives' perspectives on factors that influence their…

  2. Fertilizer recommendations for switchgrass: Quantifying economic effects on quality and yield

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is a native, perennial warm season grass that is suited for biomass production for conversion to renewable fuels as well as feed production on marginal soils. Yield responses to macro nutrients of N, P and K, have shown N to be the major driver for capturing yield p...

  3. Mediated Vocabulary in Native Speaker-Learner Interactions during an Oral Portfolio Activity

    ERIC Educational Resources Information Center

    Tocaimaza-Hatch, C. Cecilia

    2016-01-01

    This project investigated vocabulary learning from a sociocultural perspective--in particular, the way in which lexical knowledge was mediated in Spanish second language (L2) learners' and native speakers' (NSs') interactions. Nine students who were enrolled in an advanced conversation course completed an oral portfolio assignment consisting of…

  4. Critical Exchange: Avoiding Schooling Taboos--A Reply to Rasmussen

    ERIC Educational Resources Information Center

    Stern, Julian

    2017-01-01

    This paper is a reply to Mary L. Rasumussen's paper, "Critical Exchange: Religion and Schooling: What Should Their Relationship Be?" In this paper, Julian Stern makes three claims: (1) the need for a messy conversation; (2) the need to include "whole" people in schools; and (3) the need to consider existentially significant…

  5. Transcripts of Regional Hearings, Seattle, Washington: Annex L to Adjusting to the Drawdown Report of the Defense Conversion Commission

    DTIC Science & Technology

    1992-09-24

    California, and MagLev , Inc., in 2 Pittsburgh, Pennsylvania. 3 Also, panel recommendations from the New York Defense Spending and 4 Impact Report...enhancement and job development. Examples of these consortiums include Calstart in Los Angeles, Ca. and Maglev , Inc. in Pittsburgh, Pa. - Panel

  6. An International Conversation about Mentored Undergraduate Research and Inquiry and Academic Development

    ERIC Educational Resources Information Center

    Larson, Susan; Partridge, Lee; Walkington, Helen; Wuetherick, Brad; Moore, Jessie L.

    2018-01-01

    Recognising that regional differences in mentored undergraduate research and inquiry (URI) practices shape how academic developers might adapt international practices and resources to their local contexts, guest editor Jessie L. Moore invited four scholars to discuss the key terms, concepts, and initiatives for mentored URI in their countries.…

  7. Response of sorghum stalk pathogens to brown midrib plants and soluble phenolic extracts from near isogenic lines

    USDA-ARS?s Scientific Manuscript database

    Sorghum [Sorghum bicolor (L.) Moench] has drawn attention as potential feedstock for lignocellulosic biofuels production, and reducing lignin is one way to increase conversion efficiency. Little research has been previously conducted to assess the response of reduced lignin sorghum lines to the Fusa...

  8. 78 FR 10616 - Combined Notice of Filings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... that the Commission has received the following Natural Gas Pipeline Rate and Refund Report filings... forma--EP2DART Conversion to be effective 12/31/ 9998. Filed Date: 2/6/13. Accession Number: 20130206... Transmission System, L.P. Description: 02/06/13 Negotiated Rates--JP Morgan Ventures Corp (HUB)--6025-89 to be...

  9. Impact of harvest time and cultivar on conversion of switchgrass to bio-oils via fast pyrolysis

    USDA-ARS?s Scientific Manuscript database

    The study of the effects of harvest time on switchgrass (Panicum virgatum L.) biomass and bioenergy production reported herein is the final part complementing two prior studies reporting on the harvest of six switchgrass cultivars grown at three northern United States locations over three years, har...

  10. A Client-Centered Review of Rogers with Gloria

    ERIC Educational Resources Information Center

    Moon, Kathryn A.

    2007-01-01

    Carl Rogers's nondirective theory and his response style with Gloria (E. L. Shostrom, 1965) are discussed in reply to S. A. Wickman and C. Campbell's (2003) "An Analysis of How Carl Rogers Enacted Client-Centered Conversation With Gloria." Client-centered studies of C. Rogers's transcripts give context for reformulating S. A. Wickman and C.…

  11. Academic Literacy and Plagiarism: Conversations with International Graduate Students and Disciplinary Professors

    ERIC Educational Resources Information Center

    Abasi, Ali R.; Graves, Barbara

    2008-01-01

    In this study we examine how university plagiarism policies interact with international graduate students' academic writing in English as they develop identities as authors and students. The study is informed by the sociocultural theoretical perspective [Vygotsky, L. (1978). "Mind in society: The development of higher mental processes." Cambridge,…

  12. Hydrodésazotation de la pyridine sous pression atmosphérique catalysée par des oxynitrures de Ni, Mo, et des oxynitrures mixtes MoNi, MoPNi, AlNi et AlPNi

    NASA Astrophysics Data System (ADS)

    Elkamel, K.; Elidrissi, M.; Yacoubi, A.; Nadiri, A.; Abouarnadasse, S.

    1998-11-01

    Hydrodenitrogenation of pyridine has been realised, under atmospheric pressure, in the presence of oxynitride catalysts of molybdenum, nickel and their solid solutions as well as on mixed catalysts MoNi, MoPNi, AlNi and AlPNi. In all cases, the main reaction products are n-pentane and N-pentylpiperidine, at any conversion. Kinetic results suggest that the conversion of pyridine, on nickel oxynitride, proceeds through successive steps with hydrogenation as rate-limiting. Molybdenum oxynitride and Mo-Ni-N solid solutions tested in the temperature range 500 circC-450 circC, showed a good structural and catalytic stability, but a low catalytic activity. On the other hand, nickel oxynitride catalyst yielded higher activity at much lower temperatures (190 circC-250 circC). X-rays analysis indicates that the used catalyst was entirely reduced to metallic nickel, which is the active phase. Under the same experimental conditions, mixed catalysts are relatively less active but more selective than nickel oxynitride into n-pentane formation. La réaction d'hydrodésazotation de la pyridine a été réalisée, sous pression atmosphérique, en présence de catalyseurs oxynitrures de molybdène, de nickel et leurs solutions solides ainsi que sur les catalyseurs mixtes MoNi, MoPNi, AlNi et AlPNi. Dans tous les cas, les principaux produits de réaction observés sont le n-pentane et la N- pentylpipéridine, quel que soit le taux de conversion. Les résultats cinétiques obtenus en régime intégral, en présence de l'oxynitrure de nickel, suggèrent un schéma réactionnel successif où l'hydrogénation de la pyridine serait l'étape limitante. L'oxynitrure de molybdène et les solutions solides Mo-Ni-N, testés à des températures supérieures ou égales à 500 circC, ont montré une bonne stabilité catalytique et structurale mais une faible activité catalytique. En revanche, l'oxynitrure de nickel présente une activité catalytique plus importante à des températures de réaction beaucoup plus basses (190 circC 250 circC). Cependant, l'analyse aux rayons X du catalyseur usagé, indique qu'il est entièrement réduit à l'état métallique; ceci laisse supposer que le nickel métallique est la phase active. Dans les mêmes conditions expérimentales, les catalyseurs mixtes sont relativement moins actifs que l'oxynitrure de nickel, mais plus sélectifs vis-à-vis de la formation du n-pentane.

  13. Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor.

    PubMed

    Vallet, Ana; Besson, Michèle; Ovejero, Gabriel; García, Juan

    2012-08-15

    Catalytic wet air oxidation (CWAO) of a Basic Yellow 11 (BY11) aqueous solution, chosen as a model of a hardly biodegradable non-azo dye was carried out in a continuous-flow trickle-bed reactor, using nickel supported over hydrotalcite precursor calcined at 550°C. An increase in the reaction temperature (120-180°C), and a decrease in dye concentration (1000-3000 ppm) or liquid flow rate (0.1-0.7 mL min(-1)) enhanced the CWAO performance in a 30 and 19% for the variation of the temperature and concentration respectively. After a small leaching observed within the first hours, the catalyst proved to be very stable during the 65-day reaction. The CWAO process was found to be very efficient, achieving BY11 conversion up to 95% and TOC conversion up to 85% at 0.1 mL min(-1) and 180°C under 5 MPa air. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Design and Properties of an Immobilization Enzyme System for Inulin Conversion.

    PubMed

    Hang, Hua; Wang, Changbao; Cheng, Yiqun; Li, Ning; Song, Liuli

    2018-02-01

    A commercial inulinase could convert inulin into fructose, which was optimized to be entrapped in the calcium alginate-gelatin beads with the immobilization yield of 86% for free inulinase activities. The optimum pH values and temperatures were 4.5 and 40 °C for the free enzyme and 5.0-5.5 and 45-50 °C for the immobilized enzyme. The kinetic parameters of V max and K m were 5.24 μmol/min and 57.6 mg/mL for the free inulinase and 4.32 μmol/min and 65.8 mg/mL for the immobilized inulinase, respectively. The immobilized enzyme retained 80% of its initial activities at 45 °C for 4 days, which could exhibit better thermal stability. The reuse of immobilized inulinase throughout the continuous batch operations was explored, which had better reusability of the immobilized biocatalyst. At the same time, the stability of immobilized enzyme in the continuous packed-bed bioreactor was estimated, which showed the better results and had its potential scale-up fructose production for inulin conversion.

  15. Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM.

    PubMed

    Zheng, Zhaojuan; Ma, Cuiqing; Gao, Chao; Li, Fengsong; Qin, Jiayang; Zhang, Haiwei; Wang, Kai; Xu, Ping

    2011-04-20

    Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l(-1)) and high productivity (2.3 g l(-1) h(-1)) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering.

  16. Refractometric total protein concentrations in icteric serum from dogs.

    PubMed

    Gupta, Aradhana; Stockham, Steven L

    2014-01-01

    To determine whether high serum bilirubin concentrations interfere with the measurement of serum total protein concentration by refractometry and to assess potential biases among refractometer measurements. Evaluation study. Sera from 2 healthy Greyhounds. Bilirubin was dissolved in 0.1M NaOH, and the resulting solution was mixed with sera from 2 dogs from which food had been withheld to achieve various bilirubin concentrations up to 40 mg/dL. Refractometric total protein concentrations were estimated with 3 clinical refractometers. A biochemical analyzer was used to measure biuret assay-based total protein and bilirubin concentrations with spectrophotometric assays. No interference with refractometric measurement of total protein concentrations was detected with bilirubin concentrations up to 41.5 mg/dL. Biases in refractometric total protein concentrations were detected and were related to the conversion of refractive index values to total protein concentrations. Hyperbilirubinemia did not interfere with the refractometric estimation of serum total protein concentration. The agreement among total protein concentrations estimated by 3 refractometers was dependent on the method of conversion of refractive index to total protein concentration and was independent of hyperbilirubinemia.

  17. Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition.

    PubMed

    Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Fang, Ning; Yuan, Ye; Ren, Nan-qi; Lee, Duu-jong

    2012-07-01

    Biological treatment of sulfate-laden wastewater consists of two separate reactors to reduce sulfate to sulfide by sulfate-reducing bacteria (SRB) and to oxidize sulfide to sulfur (S(0)) by sulfide oxidation bacteria (SOB). To have SRB+SOB in a single reactor faced difficulty of low S(0) conversion. This study for the first time revealed that dissolved oxygen (DO) level can be used to manipulate SRB+SOB reactions in a single reactor. This work demonstrated successful operation of an integrated SRB+SOB reactor under micro-aerobic condition. At DO = 0.10-0.12 mg l(-1), since the activities of SOB were enhanced by limited oxygen, the removal efficiency for sulfate reached 81.5% and the recovery of S(0) peaked at 71.8%, higher than those reported in literature. At increased DO, chemical oxidation of sulfide with molecular oxygen competed with SOB so conversion of S(0) started to decline. At DO>0.30 mg l(-1) activities of SRB were inhibited, leading to failure of the SRB+SOB reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A biotransformation process for the production of cucurbitacin B from its glycoside using a selected Streptomyces sp.

    PubMed

    Mei, Jianfeng; Li, Sha; Jin, Hang; Tang, Lan; Yi, Yu; Wang, Hong; Ying, Guoqing

    2016-09-01

    Cucurbitacin B (CuB) and its glycoside, cucurbitacin B 2-o-β-D-glucoside (CuBg), abundantly occur in the pedicels of Cucumis melo. Compared with CuB, CuBg is not efficiently extracted from the pedicels. Furthermore, the anticancer activity of CuBg is lower than that of the aglycone. A process for CuBg biotransformation to CuB was developed for the first time. A strain of Streptomyces species that converts CuBg into CuB was isolated from an enrichment culture of C. melo pedicels. After optimization of conditions for enzyme production and biotransformation, a maximum conversion rate of 92.6 % was obtained at a CuBg concentration of 0.25 g/L. When biotransformation was performed on C. melo pedicel extracts, the CuB concentration in the extracts increased from 1.50 to 3.27 g/L. The conversion rate was almost 100 %. The developed process may be an effective biotransformation method for industrial production CuB from C. melo pedicels for pharmaceuticals.

  19. Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater.

    PubMed

    Colleran, E; Pender, S; Philpott, U; O'Flaherty, V; Leahy, B

    1998-01-01

    This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD:sulphate ratio of 3-4:1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation. Laboratory-scale hybrid reactor treatment at 55 degrees C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6:1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.

  20. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn.

    PubMed

    Etzbach, Lara; Pfeiffer, Anne; Weber, Fabian; Schieber, Andreas

    2018-04-15

    Carotenoid profiles of goldenberry (Physalis peruviana L.) fruits differing in ripening states and in different fruit fractions (peel, pulp, and calyx of ripe fruits) were investigated by HPLC-DAD-APCI-MS n . Out of the 53 carotenoids detected, 42 were tentatively identified. The carotenoid profile of unripe fruits is dominated by (all-E)-lutein (51%), whereas in ripe fruits, (all-E)-β-carotene (55%) and several carotenoid fatty acid esters, especially lutein esters esterified with myristic and palmitic acid as monoesters or diesters, were found. In overripe fruits, carotenoid conversion products and a higher proportion of carotenoid monoesters to diesters compared to ripe fruits were observed. Overripe fruits showed a significant decrease in total carotenoids of about 31% due to degradation. The observed conversion and degradation processes included epoxidation, isomerization, and deesterification. The peel of ripe goldenberries showed a 2.8 times higher total carotenoid content of 332.00 µg/g dw compared to the pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top