Sample records for l-1 yeast extract

  1. Effect of yeast extract addition to a mineral salts medium containing hydrolyzed plant xylan on fungal pullulan production.

    PubMed

    Kennedy Ii, Daniel E; West, Thomas P

    2018-05-16

    The ability of the fungus Aureobasidium pullulans ATCC 42023 to produce pullulan from yeast extract-supplemented xylan hydrolysates of the prairie grass prairie cordgrass was examined relative to polysaccharide and cell biomass production, yield, and pullulan content of the polysaccharide. A pullulan concentration of 11.2 g L-1 and yield of 0.79 g g-1 was produced by ATCC 42023 when grown for 168 h at 30°C on the phosphate-buffered hydrolysate supplemented with yeast extract. The highest biomass level being 8.8 g L-1 was produced by ATCC 42023 after 168 h on a yeast extract-supplemented, hydrolysate-containing complete medium lacking sodium chloride. The highest pullulan content of the polysaccharide produced by ATCC 42023 after 168 h on the hydrolysate medium supplemented with yeast extract and ammonium sulfate was 70%. The findings indicate that a polysaccharide with a high pullulan content can be produced at a relatively high yield by the fungus grown on a yeast extract-supplemented xylan hydrolysate, suggesting that pullulan could be produced using a biomass-based process.

  2. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract is the food ingredient resulting from concentration of the solubles of mechanically ruptured cells of a selected strain of yeast, Saccharomyces...

  3. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  4. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  5. L-arabinose fermenting yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  6. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  7. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  8. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout extract, as described in this section, may... produced by partial hydrolysis of yeast extract (derived from Saccharomyces cereviseae, Saccharomyces...

  9. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  10. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  11. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  12. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  13. Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol.

    PubMed

    Teixeira, K I R; Araújo, P V; Sinisterra, R D; Cortés, M E

    2012-04-01

    Chlorhexidine (Cx) augmented with beta-cyclodextrin (β-cd) inclusion compounds, termed Cx:β-cd complexes, have been developed for use as antiseptic agents. The aim of this study was to examine the interactions of Cx:β-cd complexes, prepared at different molecular ratios, with sterol and yeast membranes. The Minimal Inhibitory Concentration (MIC) against the yeast Candida albicans (C.a.) was determined for each complex; the MICs were found to range from 0.5 to 2 μg/mL. To confirm the MIC data, quantitative analysis of viable cells was performed using trypan blue staining. Mechanistic characterization of the interactions that the Cx:β-cd complexes have with the yeast membrane and assessment of membrane morphology following exposure to Cx:β-cd complexes were performed using Sterol Quantification Method analysis (SQM) and scanning electron microscopy (SEM). SQM revealed that sterol extraction increased with increasing β-cd concentrations (1.71 ×10(3); 1.4 ×10(3); 3.45 ×10(3), and 3.74 ×10(3) CFU for 1:1, 1:2, 1:3, and 1:4, respectively), likely as a consequence of membrane ergosterol solubilization. SEM images demonstrated that cell membrane damage is a visible and significant mechanism that contributes to the antimicrobial effects of Cx:β-cd complexes. Cell disorganization increased significantly as the proportion of β-cyclodextrin present in the complex increased. Morphology of cells exposed to complexes with 1:3 and 1:4 molar ratios of Cx:β-cd were observed to have large aggregates mixed with yeast remains, representing more membrane disruption than that observed in cells treated with Cx alone. In conclusion, nanoaggregates of Cx:β-cd complexes block yeast growth via ergosterol extraction, permeabilizing the membrane by creating cluster-like structures within the cell membrane, possibly due to high amounts of hydrogen bonding.

  14. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    PubMed

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-08-30

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution.

  15. Elicitation effect of Saccharomyces cerevisiae yeast extract on main health-promoting compounds and antioxidant and anti-inflammatory potential of butter lettuce (Lactuca sativa L.).

    PubMed

    Złotek, Urszula; Świeca, Michał

    2016-05-01

    This paper presents a study on changes in the main phytochemical levels and antioxidant and anti-inflammatory activity of lettuce caused by different doses and times of application of yeast extracts. Elicitation with yeast extract caused an increase in the total phenolic compounds and chlorophyll content, which varied according to the dose and time of spraying, but it did not have a positive impact on vitamin C, flavonoid and carotenoid content in lettuce. The best effect was achieved by double spraying with 1% yeast extract and by single spraying with 0.1% yeast extract. The increase in phytochemical content was positively correlated with the antioxidant and anti-inflammatory activity of the studied lettuce leaves. Chicoric acid seems to be the major contributor to these antioxidant activities. Yeast extract may be used as a natural, environmentally friendly and safe elicitor for improving the health-promoting qualities of lettuce. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Production and Its Anti-hyperglycemic Effects of γ-Aminobutyric Acid from the Wild Yeast Strain Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1.

    PubMed

    Han, Sang-Min; Lee, Jong-Soo

    2017-09-01

    This study was done to produce γ-aminobutyric acid (GABA) from wild yeast as well as investigate its anti-hyperglycemic effects. Among ten GABA-producing yeast strains, Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1 produced high GABA concentration of 134.4 µg/mL and 179.2 µg/mL, respectively. P. silvicola UL6-1 showed a maximum GABA yield of 136.5 µg/mL and 200.8 µg/mL from S. carnicolor 402-JB-1 when they were cultured for 30 hr at 30℃ in yeast extract-peptone-dextrose medium. The cell-free extract from P. silvicola UL6-1 and S. carnicolor 402-JB-1 showed very high anti-hyperglycemic α-glucosidase inhibitory activity of 72.3% and 69.9%, respectively. Additionally, their cell-free extract-containing GABA showed the anti-hyperglycemic effect in streptozotocin-induced diabetic Sprague-Dawley rats.

  17. Spent brewer's yeast extract as an ingredient in cooked hams.

    PubMed

    Pancrazio, Gaston; Cunha, Sara C; de Pinho, Paula Guedes; Loureiro, Mónica; Meireles, Sónia; Ferreira, Isabel M P L V O; Pinho, Olívia

    2016-11-01

    This work describes the effect of the incorporation of 1% spent yeast extract into cooked hams. Physical/chemical/sensorial characteristics and changes during 12 and 90days storage were evaluated on control and treated cooked hams processed for 1.5, 2.0, 2.5 or 3h. Spent yeast extract addition increased hardness, chewiness, ash, protein and free amino acid content. Similar volatile profiles were obtained, although there were some quantitative differences. No advantages were observed for increased cooking time. No significant differences were observed for physical and sensorial parameters of cooked hams with spent yeast extract at 12 and 90days post production, but His, aldehydes and esters increased at the end of storage. This behaviour was similar to that observed for control hams. The higher hardness of cooked ham with 1% yeast extract was due to the stronger gel formed during cooking and was maintained during storage. This additive acts as gel stabilizer for cooked ham production and could potentially improve other processing characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Production and Its Anti-hyperglycemic Effects of γ-Aminobutyric Acid from the Wild Yeast Strain Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1

    PubMed Central

    Han, Sang-Min

    2017-01-01

    This study was done to produce γ-aminobutyric acid (GABA) from wild yeast as well as investigate its anti-hyperglycemic effects. Among ten GABA-producing yeast strains, Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1 produced high GABA concentration of 134.4 µg/mL and 179.2 µg/mL, respectively. P. silvicola UL6-1 showed a maximum GABA yield of 136.5 µg/mL and 200.8 µg/mL from S. carnicolor 402-JB-1 when they were cultured for 30 hr at 30℃ in yeast extract-peptone-dextrose medium. The cell-free extract from P. silvicola UL6-1 and S. carnicolor 402-JB-1 showed very high anti-hyperglycemic α-glucosidase inhibitory activity of 72.3% and 69.9%, respectively. Additionally, their cell-free extract-containing GABA showed the anti-hyperglycemic effect in streptozotocin-induced diabetic Sprague-Dawley rats. PMID:29138625

  19. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    PubMed

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.

  20. Effect of jasmonic acid and yeast extract elicitation on low-molecular antioxidants and antioxidant activity of marjoram (Origanum majorana L.).

    PubMed

    Złotek, Urszula

    2017-01-01

    Elicitation, which is a way of inducing plant secondary metabolism, may be an effective method for improving the quality of plant food. The aim of this study was to determine how the application of jasmonic acid (as an abiotic elicitor) and yeast extract (as a biotic elicitor) influences the production of some bioactive compounds in marjoram and the antioxidant activity of this herb. Elicitation with 0.01 µM and 1 µM jasmonic acid as well as 0.1% and 1% yeast extracts was used for improving the health-benefiting quality of marjoram. The study focused on the effects of eliciting the level of some phytochemicals and the antioxidant activity of marjoram. There were no significant differences in total phenolic content between the elicited and control plants. In turn, the elicitation with 0.1% and 1% yeast extracts caused 1.8- and 2.5-fold increases in the ascorbic acid content in marjoram leaves, respectively. Both biotic and abiotic elicitation resulted in elevation of chlorophyll content, but only the abiotic elicitor (jasmonic acid) caused a significant increase (by over 50%) in the carotenoid content of marjoram leaves. The antiradical activity of marjoram was increased by the abiotic and biotic elicitation, whereas only the abiotic elicitation resulted in improving the reducing power of this herb. In conclusion, biotic and abiotic elicitation could be an effective strategy for improving the level of some phytochemicals, as well as the antioxidant activity of marjoram. A particularly valuable finding obtained in this study is that natural elicitors e.g. yeast extract can be equally effective in elevating the content of some bioactive compounds in herbs e.g. marjoram as an abiotic one.

  1. Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L.

    PubMed

    Akroum, S

    2017-03-01

    Human and animal mycoses become more frequent and more resistant to traditional treatments. In this work, we tested the in vitro antifungal activity of acetonic extracts of Punica granatum L., Quercus suber L. and Vicia faba L. against seven pathogen fungi and the in vivo antifungal activity against Candida albicans and Trichophyton mentagrophytes. The phytochemical screening was also carried out and showed that the extracts contained mainly proanthocyanidins. Other polyphenols were also present but in low quantity. The acetone extract of V. faba L. gave a good in vitro inhibition of yeasts and was the most active for treating candidiasis in mice. It decreased the percentage of mortality with only 20μg. But the in vivo antifungal activity of this extract on T. mentagrophytes was low. It only showed a small diminution of crusting and erythema after the administration of 100μg. On the contrary, the acetone extracts of P. granatum L. had a poor activity against yeasts and a better one against moulds. It gave the best in vivo antifungal activity against T. mentagrophytes by healing animals with 40μg. The extract of P. granatum L. gave also an interesting in vivo antifungal activity against T. mentagrophytes with an active dose of 80μg. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    PubMed

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo

    2016-06-01

    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil.

  3. Extraction of genomic DNA from yeasts for PCR-based applications.

    PubMed

    Lõoke, Marko; Kristjuhan, Kersti; Kristjuhan, Arnold

    2011-05-01

    We have developed a quick and low-cost genomic DNA extraction protocol from yeast cells for PCR-based applications. This method does not require any enzymes, hazardous chemicals, or extreme temperatures, and is especially powerful for simultaneous analysis of a large number of samples. DNA can be efficiently extracted from different yeast species (Kluyveromyces lactis, Hansenula polymorpha, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris, and Saccharomyces cerevisiae). The protocol involves lysis of yeast colonies or cells from liquid culture in a lithium acetate (LiOAc)-SDS solution and subsequent precipitation of DNA with ethanol. Approximately 100 nanograms of total genomic DNA can be extracted from 1 × 10(7) cells. DNA extracted by this method is suitable for a variety of PCR-based applications (including colony PCR, real-time qPCR, and DNA sequencing) for amplification of DNA fragments of ≤ 3500 bp.

  4. Chiral speciation and determination of selenomethionine enantiomers in selenized yeast by ligand-exchange micellar electrokinetic capillary chromatography after solid phase extraction.

    PubMed

    Duan, Jiankun; He, Man; Hu, Bin

    2012-12-14

    A new phenylalanine derivative (L-N-(2-hydroxy-propyl)-phenylalanine, L-HP-Phe) was synthesized and its chelate with Cu(II) (Cu(II)-(L-HP-Phe)(2)) was used as the chiral selector for the ligand-exchange (LE) chiral separation of D,L-selenomethionine (SeMet) in selenized yeast samples by micelle electrokinetic capillary chromatography (MEKC). In order to improve the sensitivity of MEKC-UV, two-step preconcentration strategy was employed, off-line solid phase extraction (SPE) and on-line large volume sample stacking (LVSS). D,L-SeMet was first retained on the Cu(II) loaded mesoporous TiO(2), then eluted by 0.1 mL of 5 mol L(-1) ammonia, and finally introduced for MEKC-UV analysis by LVSS injection after evaporation of NH(3). With the enrichment factors of 1400 and 1378, the LODs of 0.44 and 0.60 ng mL(-1) for L-SeMet and D-SeMet was obtained, respectively. The developed method was applied to the analysis of D,L-SeMet in a certified reference material of SELM-1 and a commercial nutrition yeast, and the results showed that most of SeMet in the SELM-1 selenized yeast was l isomer and the recovery for L and D isomers in the spiked commercial nutrition yeast was 96.3% and 103%, respectively. This method is featured with low running cost, high sensitivity and selectivity, and exhibits application potential in chiral analysis of seleno amino acids in real world samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A Novel Hybrid Yeast-Human Network Analysis Reveals an Essential Role for FNBP1L in Antibacterial Autophagy1

    PubMed Central

    Huett, Alan; Ng, Aylwin; Cao, Zhifang; Kuballa, Petric; Komatsu, Masaaki; Daly, Mark J.; Podolsky, Daniel K.; Xavier, Ramnik J.

    2009-01-01

    Autophagy is a conserved cellular process required for the removal of defective organelles, protein aggregates, and intracellular pathogens. We used a network analysis strategy to identify novel human autophagy components based upon the yeast interactome centered on the core yeast autophagy proteins. This revealed the potential involvement of 14 novel mammalian genes in autophagy, several of which have known or predicted roles in membrane organization or dynamics. We selected one of these membrane interactors, FNBP1L (formin binding protein 1-like), an F-BAR-containing protein (also termed Toca-1), for further study based upon a predicted interaction with ATG3. We confirmed the FNBP1L/ATG3 interaction biochemically and mapped the FNBP1L domains responsible. Using a functional RNA interference approach, we determined that FNBP1L is essential for autophagy of the intracellular pathogen Salmonella enterica serovar Typhimurium and show that the autophagy process serves to restrict the growth of intracellular bacteria. However, FNBP1L appears dispensable for other forms of autophagy induced by serum starvation or rapamycin. We present a model where FNBP1L is essential for autophagy of intracellular pathogens and identify FNBP1L as a differentially used molecule in specific autophagic contexts. By using network biology to derive functional biological information, we demonstrate the utility of integrated genomics to novel molecule discovery in autophagy. PMID:19342671

  6. Influence of Tannin Extract and Yeast Extract on Color Preservation and Anthocyanin Content of Mulberry Wine.

    PubMed

    You, Yilin; Li, Na; Han, Xue; Guo, Jielong; Liu, Guojie; Huang, Weidong; Zhan, Jicheng

    2018-04-01

    The color of mulberry wine is extremely unstable in processing and aging. This paper investigates the effects of tannin extract and yeast extract on the color and color-preserving characteristics of mulberry wine made from the Dashi cultivar. The results showed that the maximum absorption wavelength in both tannin extract and yeast extract groups changed generating the red shift effect. The color of the tannin extract maintained a good gloss in the first 4 months, while the yeast extract group showed remarkable color preservation for the first 3 months. The total anthocyanin and cyanidin-3-rutinoside contents in both experiment groups were significantly higher than that of the control group, thus proving that tannin extract and yeast extract both exert a remarkably positive effect on preserving the color of mulberry wine during its aging. Moreover, sensory analysis indicated that the quality of mulberry wine treated with tannin extract was significantly higher than that of the control. The distinct color of mulberry wine is one of the foremost qualities that imprints on consumers' senses, but it is extremely unstable in processing and aging. However, the color protection of mulberry wine was not studied previously. In this study, we found that tannin extract and yeast extract both exert a remarkably positive effect on preserving the color of mulberry wine during aging. The study is of great significance as a guide to improving the color stability of mulberry wine, thereby also improving and promoting the development of the mulberry deep processing industry. © 2018 Institute of Food Technologists®.

  7. Antimicrobial activity of Gentiana lutea L. extracts.

    PubMed

    Savikin, Katarina; Menković, Nebojsa; Zdunić, Gordana; Stević, Tatjana; Radanović, Dragoja; Janković, Teodora

    2009-01-01

    Methanolic extracts of flowers and leaves of Gentiana lutea L., together with the isolated compounds mangiferin, isogentisin and gentiopicrin, were used to investigate the antimicrobial activity of the plant. A variety of Gram-positive and Gram-negative bacteria as well as the yeast Candida albicans has been included in this study. Both extracts and isolated compounds showed antimicrobial activity with MIC values ranging from 0.12-0.31 mg/ml. Our study indicated that the synergistic activity of the pure compounds may be responsible for the good antimicrobial effect of the extracts. Quantification of the secondary metabolites was performed using HPLC.

  8. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.

    PubMed

    Masuda, Masaki; Freguia, Stefano; Wang, Yung-Fu; Tsujimura, Seiya; Kano, Kenji

    2010-06-01

    Cyclic voltammograms of yeast extract-containing medium exhibit a clear redox peak around -0.4V vs. Ag|AgCl. Fermentative bacterium Lactococcus lactis was hereby shown to exploit this redox compound for extracellular electron transfer towards a graphite anode using glucose as an electron donor. High performance liquid chromatography revealed that this may be a flavin-type compound. The ability of L. lactis to exploit exogenous flavins for anodic glucose oxidation was confirmed by tests where flavin-type compounds were supplied to the bacterium in well defined media. Based on its mid-point potential, riboflavin can be regarded as a near-optimal mediator for microbially catalyzed anodic electron transfer. Riboflavin derivative flavin mononucleotide (FMN) was also exploited by L. lactis as a redox shuttle, unlike flavin adenine dinucleotide (FAD), possibly due to the absence of a specific transporter for the latter. The use of yeast extract in microbial fuel cell media is herein discouraged based on the related unwanted artificial addition of redox mediators which may distort experimental results. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration.

    PubMed

    Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús

    2016-12-01

    Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect

  10. Volatile sulphur compounds and pathways of L-methionine catabolism in Williopsis yeasts.

    PubMed

    Tan, Amelia W J; Lee, Pin-Rou; Seow, Yi-Xin; Ong, Peter K C; Liu, Shao-Quan

    2012-08-01

    Volatile sulphur compounds (VSCs) are important to the food industry due to their high potency and presence in many foods. This study assessed for the first time VSC production and pathways of L: -methionine catabolism in yeasts from the genus Williopsis with a view to understanding VSC formation and their potential flavour impact. Five strains of Williopsis saturnus (var. saturnus, var. subsufficiens, var. suavolens, var. sargentensis and var. mrakii) were screened for VSC production in a synthetic medium supplemented with L: -methionine. A diverse range of VSCs were produced including dimethyl disulphide, dimethyl trisulphide, 3-(methylthio)-1-propanal (methional), 3-(methylthio)-1-propanol (methionol), 3-(methylthio)-1-propene, 3-(methylthio)-1-propyl acetate, 3-(methylthio)-1-propanoic acid (methionic acid) and ethyl 3-(methylthio)-1-propanoate, though the production of these VSCs varied between yeast strains. W. saturnus var. saturnus NCYC22 was selected for further studies due to its relatively high VSC production. VSC production was characterised step-wise with yeast strain NCYC22 in coconut cream at different L: -methionine concentrations (0.00-0.20%) and under various inorganic sulphate (0.00-0.20%) and nitrogen (ammonia) supplementation (0.00-0.20%), respectively. Optimal VSC production was obtained with 0.1% of L: -methionine, while supplementation of sulphate had no significant effect. Nitrogen supplementation showed a dramatic inhibitory effect on VSC production. Based on the production of VSCs, the study suggests that the Ehrlich pathway of L: -methionine catabolism is operative in W. saturnus yeasts and can be manipulated by adjusting certain nutrient parameters to control VSC production.

  11. The implementation of high fermentative 2,3-butanediol production from xylose by simultaneous additions of yeast extract, Na2EDTA, and acetic acid.

    PubMed

    Wang, Xiao-Xiong; Hu, Hong-Ying; Liu, De-Hua; Song, Yuan-Quan

    2016-01-25

    The effective use of xylose may significantly enhance the feasibility of using lignocellulosic hydrolysate to produce 2,3-butanediol (2,3-BD). Previous difficulties in 2,3-BD production include that the high-concentration xylose cannot be converted completely and the fermentation rate is slow. This study investigated the effects of yeast extract, ethylenediaminetetraacetic acid disodium salt (Na2EDTA), and acetic acid on 2,3-BD production from xylose. The central composite design approach was used to optimize the concentrations of these components. It was found that simultaneous addition of yeast extract, Na2EDTA, and acetic acid could significantly improve 2,3-BD production. The optimal concentrations of yeast extract, Na2EDTA, and acetic acid were 35.2, 1.2, and 4.5 g/L, respectively. The 2,3-BD concentration in the optimized medium reached 39.7 g/L after 48 hours of shake flask fermentation, the highest value ever reported in such a short period. The xylose utilization ratio and the 2,3-BD concentration increased to 99.0% and 42.7 g/L, respectively, after 48 hours of stirred batch fermentation. Furthermore, the 2,3-BD yield was 0.475 g/g, 95.0% of the theoretical maximum value. As the major components of lignocellulosic hydrolysate are glucose, xylose, and acetic acid, the results of this study indicate the possibility of directly using the hydrolysate to effectively produce 2,3-BD. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast Extract...

  13. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast Extract...

  14. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast Extract...

  15. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast Extract...

  16. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation.

    PubMed

    Kerr, Edward D; Schulz, Benjamin L

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers' yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers' yeast. No fermentation occurred in any condition without addition of extra brewer's yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers' yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers' yeast had been added. We estimate that the real-world cost of home brewed "Vegemite Beer" would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  17. l-Pyroglutamate Spontaneously Formed from l-Glutamate Inhibits Growth of the Hyperthermophilic Archaeon Sulfolobus solfataricus

    PubMed Central

    Park, Chan B.; Lee, Sun Bok; Ryu, Dewey D. Y.

    2001-01-01

    Identification of physiological and environmental factors that limit efficient growth of hyperthermophiles is important for practical application of these organisms to the production of useful enzymes or metabolites. During fed-batch cultivation of Sulfolobus solfataricus in medium containing l-glutamate, we observed formation of l-pyroglutamic acid (PGA). PGA formed spontaneously from l-glutamate under culture conditions (78°C and pH 3.0), and the PGA formation rate was much higher at an acidic or alkaline pH than at neutral pH. It was also found that PGA is a potent inhibitor of S. solfataricus growth. The cell growth rate was reduced by one-half by the presence of 5.1 mM PGA, and no growth was observed in the presence of 15.5 mM PGA. On the other hand, the inhibitory effect of PGA on cell growth was alleviated by addition of l-glutamate or l-aspartate to the medium. PGA was also produced from the l-glutamate in yeast extract; the PGA content increased to 8.5% (wt/wt) after 80 h of incubation of a yeast extract solution at 78°C and pH 3.0. In medium supplemented with yeast extract, cell growth was optimal in the presence of 3.0 g of yeast extract per liter, and higher yeast extract concentrations resulted in reduced cell yields. The extents of cell growth inhibition at yeast extract concentrations above the optimal concentration were correlated with the PGA concentration in the culture broth. Although other structural analogues of l-glutamate, such as l-methionine sulfoxide, glutaric acid, succinic acid, and l-glutamic acid γ-methyl ester, also inhibited the growth of S. solfataricus, the greatest cell growth inhibition was observed with PGA. We also observed that unlike other glutamate analogues, N-acetyl-l-glutamate enhanced the growth of S. solfataricus. This compound was stable under cell culture conditions, and replacement of l-glutamate with N-acetyl-l-glutamate in the medium resulted in increased cell density. PMID:11472943

  18. Screening of intact yeasts and cell extracts to reduce Scrapie prions during biotransformation of food waste.

    PubMed

    Huyben, David; Boqvist, Sofia; Passoth, Volkmar; Renström, Lena; Allard Bengtsson, Ulrika; Andréoletti, Olivier; Kiessling, Anders; Lundh, Torbjörn; Vågsholm, Ivar

    2018-02-08

    Yeasts can be used to convert organic food wastes to protein-rich animal feed in order to recapture nutrients. However, the reuse of animal-derived waste poses a risk for the transmission of infectious prions that can cause neurodegeneration and fatality in humans and animals. The aim of this study was to investigate the ability of yeasts to reduce prion activity during the biotransformation of waste substrates-thereby becoming a biosafety hurdle in such a circular food system. During pre-screening, 30 yeast isolates were spiked with Classical Scrapie prions and incubated for 72 h in casein substrate, as a waste substitute. Based on reduced Scrapie seeding activity, waste biotransformation and protease activities, intact cells and cell extracts of 10 yeasts were further tested. Prion analysis showed that five yeast species reduced Scrapie seeding activity by approximately 1 log10 or 90%. Cryptococcus laurentii showed the most potential to reduce prion activity since both intact and extracted cells reduced Scrapie by 1 log10 and achieved the highest protease activity. These results show that select forms of yeast can act as a prion hurdle during the biotransformation of waste. However, the limited ability of yeasts to reduce prion activity warrants caution as a sole barrier to transmission as higher log reductions are needed before using waste-cultured yeast in circular food systems.

  19. XRN1 Is a Species-Specific Virus Restriction Factor in Yeasts

    PubMed Central

    Rowley, Paul A.; Ho, Brandon; Bushong, Sarah; Johnson, Arlen; Sawyer, Sara L.

    2016-01-01

    In eukaryotes, the degradation of cellular mRNAs is accomplished by Xrn1 and the cytoplasmic exosome. Because viral RNAs often lack canonical caps or poly-A tails, they can also be vulnerable to degradation by these host exonucleases. Yeast lack sophisticated mechanisms of innate and adaptive immunity, but do use RNA degradation as an antiviral defense mechanism. We find a highly refined, species-specific relationship between Xrn1p and the “L-A” totiviruses of different Saccharomyces yeast species. We show that the gene XRN1 has evolved rapidly under positive natural selection in Saccharomyces yeast, resulting in high levels of Xrn1p protein sequence divergence from one yeast species to the next. We also show that these sequence differences translate to differential interactions with the L-A virus, where Xrn1p from S. cerevisiae is most efficient at controlling the L-A virus that chronically infects S. cerevisiae, and Xrn1p from S. kudriavzevii is most efficient at controlling the L-A-like virus that we have discovered within S. kudriavzevii. All Xrn1p orthologs are equivalent in their interaction with another virus-like parasite, the Ty1 retrotransposon. Thus, Xrn1p appears to co-evolve with totiviruses to maintain its potent antiviral activity and limit viral propagation in Saccharomyces yeasts. We demonstrate that Xrn1p physically interacts with the Gag protein encoded by the L-A virus, suggesting a host-virus interaction that is more complicated than just Xrn1p-mediated nucleolytic digestion of viral RNAs. PMID:27711183

  20. Inaccurate DNA Synthesis in Cell Extracts of Yeast Producing Active Human DNA Polymerase Iota

    PubMed Central

    Makarova, Alena V.; Grabow, Corinn; Gening, Leonid V.; Tarantul, Vyacheslav Z.; Tahirov, Tahir H.; Bessho, Tadayoshi; Pavlov, Youri I.

    2011-01-01

    Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn2+ ions, can bypass some DNA lesions and misincorporates “G” opposite template “T” more frequently than incorporates the correct “A.” We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of “G” versus “A” method of Gening, abbreviated as “misGvA”). We provide unambiguous proof of the “misGvA” approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The “misGvA” activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts. PMID:21304950

  1. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    PubMed

    Makarova, Alena V; Grabow, Corinn; Gening, Leonid V; Tarantul, Vyacheslav Z; Tahirov, Tahir H; Bessho, Tadayoshi; Pavlov, Youri I

    2011-01-31

    Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA"). We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  2. Use of the Yeast Pichia pastoris as an Expression Host for Secretion of Enterocin L50, a Leaderless Two-Peptide (L50A and L50B) Bacteriocin from Enterococcus faecium L50▿

    PubMed Central

    Basanta, Antonio; Gómez-Sala, Beatriz; Sánchez, Jorge; Diep, Dzung B.; Herranz, Carmen; Hernández, Pablo E.; Cintas, Luis M.

    2010-01-01

    In this work, we report the expression and secretion of the leaderless two-peptide (EntL50A and EntL50B) bacteriocin enterocin L50 from Enterococcus faecium L50 by the methylotrophic yeast Pichia pastoris X-33. The bacteriocin structural genes entL50A and entL50B were fused to the Saccharomyces cerevisiae gene region encoding the mating pheromone α-factor 1 secretion signal (MFα1s) and cloned, separately and together (entL50AB), into the P. pastoris expression and secretion vector pPICZαA, which contains the methanol-inducible alcohol oxidase promoter (PAOX1) to express the fusion genes. After transfer into the yeast, the recombinant plasmids were integrated into the genome, resulting in three bacteriocinogenic yeast strains able to produce and secrete the individual bacteriocin peptides EntL50A and EntL50B separately and together. The secretion was efficiently directed by MFα1s through the Sec system, and the precursor peptides were found to be correctly processed to form mature and active bacteriocin peptides. The present work describes for the first time the heterologous expression and secretion of a two-peptide non-pediocin-like bacteriocin by a yeast. PMID:20348300

  3. [Inhibitory effects of butyl alcohol extract of Baitouweng decoction on yeast-to-hyphae transition of Candida albicans isolates from VVC in alkaline pH environment].

    PubMed

    Zhang, Meng-xiang; Xia, Dan; Shi, Gao-xiang; Shao, Jing; Wang, Tian-ming; Tang, Chuan-chao; Wang, Chang-zhong

    2015-02-01

    To investigate the effects of butyl alcohol extract of Baitouweng decoction ( BAEB) on yeast-to-hyphae transition of Candida albicans isolates from vulvovaginal candidiasis (VVC) in alkaline pH. Serial 2-fold dilution assay was used to determine the minimal inhibitory concentrations (MICs) of Baitouweng decoction extracts against C. albicans isolates from VVC, XTT assay was applied to determine the metabolic activity of C. albicans hypha treated by BAEB for 6 h. The morphological change of C. albicans treated by BAEB was inspected at different pH by inverted microscope, fluorescence microscope, scanning electron microscopy (SEM). Solid agar plate and semi-solid agar were utilized to evaluate colony morphology and invasive growth of C. albicans, respectively. Quantitative Real-time PCR (qRT-PCR) was adopted to observe the expressions of hyphae-specific genes including HWP1, ALS3, CSH1, SUN41 and CaPDE2. The MIC of BAEB against C. albicans is less than that of other extracts; hyphae grow best at pH 8. 0; 512 mg · L(-1) and 1,024 mg · L(-1) BAEB could inhibit formation of hyphae and influence colony morphology. When treated by 512 mg · L(-1) and 1,024 mg · L(-1) BAEB, the colonies became smooth; while by 0 and 256 mg · L(-1) BAEB, the colonies became wrinkled. In semi-solid agar, the length of hyphae decreased steadily as the concentration of BAEB lowered. The expression of HWP1, ALS3, CSHl, SUN41 were downregulated by 5.12, 4.26, 3.2 and 2.74 folds, and CaPDE2 was upregulated by 2.38 fold. BAEB could inhibit yeast-to-hyphae transition of C. albicans isolates from VVC in alkaline pH.

  4. A Simple and Rapid Protocol for Producing Yeast Extract from Saccharomyces cerevisiae Suitable for Preparing Bacterial Culture Media

    PubMed Central

    Zarei, Omid; Dastmalchi, Siavoush; Hamzeh-Mivehroud, Maryam

    2016-01-01

    Yeasts, especially Saccharomyces cerevisiae, are one of the oldest organisms with broad spectrum of applications, owing to their unique genetics and physiology. Yeast extract, i.e. the product of yeast cells, is extensively used as nutritional resource in bacterial culture media. The aim of this study was to develop a simple, rapid and cost benefit process to produce the yeast extract. In this procedure mechanical methods such as high temperature and pressure were utilized to produce the yeast extract. The growth of the bacteria feed with the produced yeast extract was monitored in order to assess the quality of the product. The results showed that the quality of the produced yeast extract was very promising concluded from the growth pattern of bacterial cells in media prepared from this product and was comparable with that of the three commercial yeast extracts in terms of bacterial growth properties. One of the main advantages of the current method was that no chemicals and enzymes were used, leading to the reduced production cost. The method is very simple and cost effective, and can be performed in a reasonable time making it suitable for being adopted by research laboratories. Furthermore, it can be scaled up to produce large quantities for industrial applications. PMID:28243289

  5. Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility.

    PubMed

    Wiedmeier, R D; Arambel, M J; Walters, J L

    1987-10-01

    Four nonpregnant and nonlactating Holstein cows fitted with ruminal fistulas were assigned to each of four diets in a 4 X 4 Latin square design. Dietary treatments were 1) basal diet containing 50% concentrate; 2) basal diet plus 90 g/d yeast culture; 3) basal diet plus 2.63 g/d Aspergillus oryzae fermentation extract; 4) basal diet plus 90 g/d of A. oryzae fermentation extract and yeast culture. Cows were fed diets at a rate of 86 g DM/kg BW.75 for 14 d adaptation followed by an 8-d collection period. Digestibility of dry matter was increased by A. oryzae and A. oryzae and yeast culture combination treatments. Digestibility of CP was increased regardless of fungal culture addition. Hemicellulose digestibility, percent ruminal cellulolytic organisms, and acetate to propionate ratio were increased by the addition of fungal supplements.

  6. Toxicology of the aqueous extract from the flowers of Butea monosperma Lam. and it's metabolomics in yeast cells.

    PubMed

    Khan, Washim; Gupta, Shreesh; Ahmad, Sayeed

    2017-10-01

    Due to lack of scientific evidence for the safety of Butea monosperma (Fabaceae), our study aimed to carry out its toxicological profile and to identify its metabolic pattern in yeast cell. The effect of aqueous extract of B. monosperma flower on glucose uptake in yeast cell was evaluated through optimizing pH, temperature, incubation time, substrate concentration and kinetic parameters. Further, the metabolic pattern of extract as such and in yeast cell were analyzed by gas chromatography-mass spectrometry. Mice were administered aqueous extract up to 6000 and 4000 mg/kg for acute oral and intraperitoneal toxicity, respectively, while up to 4500 mg/kg for sub-acute oral toxicity (30 days). Elongation in the lag and log phase was observed in yeast cells supplemented with extract as compared to control. A maximum of 184.9% glucose uptake was observed whereas kinetic parameters (K m and V max ) were 1.38 and 41.91 mol/s, respectively. Out of 75 metabolites found in the extract, 14 and 18 metabolites were utilized by yeast cell after 15 and 30 min of incubation, respectively. The LD 50 of extract administered through intraperitoneal route was estimated to be 3500 mg/kg. The extract did not elicit any significant difference (P ≥ 0.05) in weight gain, food consumption, water intake, hematological, biochemical parameters and histological changes as compared to the normal control. Results ascertained the safety of B. monosperma flower extract which can be explored as potential candidates for the development of anti-diabetic phytopharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Influence of hen age on the response of turkey poults to cold stress, Escherichia coli challenge, and treatment with a yeast extract antibiotic alternative.

    PubMed

    Huff, G R; Huff, W E; Rath, N C; Solis de Los Santos, F; Farnell, M B; Donoghue, A M

    2007-04-01

    Two battery experiments were conducted to evaluate a commercial yeast extract feed supplement, Alphamune, in a cold stress-Escherichia coli challenge of 1-wk-old turkeys. Experiment 1 used 1-d-old male poults that were the progeny of 33-wk-old hens in their second week of lay. Experiment 2 used male poults of the same genetic line from 40-wk-old hens in their eighth week of lay. Poults were fed a standard unmedicated turkey starter diet or the same diet with either a low level (504 g/t) or a high level (1,008 g/t) of yeast extract. Challenged birds were exposed to intermittent cold stress during wk 1 to 3 and to a respiratory E. coli challenge at 1 wk of age. In both experiments, BW at wk 1 was increased by feeding yeast extract. In experiment 1, challenged, control-fed birds had decreased BW at wk 3 and feed conversion was protected by both levels of yeast extract supplementation. In experiment 2, challenge had no effect on control-fed birds; however, yeast extract decreased the BW of challenged birds. In experiment 1, total leukocyte numbers were decreased by challenge of control-fed birds only, and there was no effect of challenge on the heterophil/lymphocyte ratio. In experiment 2, total leukocyte numbers were decreased and the heterophil/lymphocyte ratio was increased in challenged, control-fed birds. Percentage mortality was not affected by challenge in experiment 1; however, in experiment 2, mortality was increased by challenge of control-fed birds and those fed the lower level of yeast extract. These results suggest that hen age should be considered when designing studies to evaluate antibiotic alternatives and in making decisions for incorporating such alternatives into production.

  8. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance.

    PubMed

    Weckesser, S; Engel, K; Simon-Haarhaus, B; Wittmer, A; Pelz, K; Schempp, C M

    2007-08-01

    There is cumulative resistance against antibiotics of many bacteria. Therefore, the development of new antiseptics and antimicrobial agents for the treatment of skin infections is of increasing interest. We have screened six plant extracts and isolated compounds for antimicrobial effects on bacteria and yeasts with dermatological relevance. The following plant extracts have been tested: Gentiana lutea, Harpagophytum procumbens, Boswellia serrata (dry extracts), Usnea barbata, Rosmarinus officinalis and Salvia officinalis (supercritical carbon dioxide [CO2] extracts). Additionally, the following characteristic plant substances were tested: usnic acid, carnosol, carnosic acid, ursolic acid, oleanolic acid, harpagoside, boswellic acid and gentiopicroside. The extracts and compounds were tested against 29 aerobic and anaerobic bacteria and yeasts in the agar dilution test. U. barbata-extract and usnic acid were the most active compounds, especially in anaerobic bacteria. Usnea CO2-extract effectively inhibited the growth of several Gram-positive bacteria like Staphylococcus aureus (including methicillin-resistant strains - MRSA), Propionibacterium acnes and Corynebacterium species. Growth of the dimorphic yeast Malassezia furfur was also inhibited by Usnea-extract. Besides the Usnea-extract, Rosmarinus-, Salvia-, Boswellia- and Harpagophytum-extracts proved to be effective against a panel of bacteria. It is concluded that due to their antimicrobial effects some of the plant extracts may be used for the topical treatment of skin disorders like acne vulgaris and seborrhoic eczema.

  9. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    PubMed Central

    Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  10. Structure-based molecular design for thermostabilization of N-acetyltransferase Mpr1 involved in a novel pathway of L-arginine synthesis in yeast.

    PubMed

    Nasuno, Ryo; Hirase, Saeka; Norifune, Saki; Watanabe, Daisuke; Takagi, Hiroshi

    2016-02-01

    Previously, N-Acetyltransferase Mpr1 was suggested to be involved in a novel pathway of L-arginine biosynthesis in yeast. Our recent crystallographic analysis demonstrated that the overall structure of Mpr1 is a typical folding among proteins in the Gcn5-related N-acetyltransferase superfamily, and also provided clues to the design of mutations for improvement of the enzymatic functions. Here, we constructed new stable variants, Asn203Lys- and Asn203Arg-Mpr1, which exhibited 2.4-fold and 2.2-fold longer activity half-lives than wild-type Mpr1, respectively, by structure-based molecular design. The replacement of Asn203 with a basic amino acid was suggested to stabilize α-helix 2, which is important for the Mpr1 structure, probably by neutralizing its dipole. In addition, the combination of two amino acid substitutions at positions 65 and 203 in Mpr1, Phe65Leu, which was previously isolated by the screening from PCR random mutagenesis library of MPR1, and Asn203Lys or Asn203Arg, led to further stabilization of Mpr1. Our growth assay suggests that overexpression of the stable Mpr1 variants increase L-arginine synthesis in yeast cells. Our finding is the first report on the rational engineering of Mpr1 for thermostabilization and could be useful in the construction of new yeast strains with higher L-arginine synthetic activity and also improved fermentation ability. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  11. The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization.

    PubMed

    Qi, Aisha; Yeo, Leslie; Friend, James; Ho, Jenny

    2010-02-21

    Paper has been proposed as an inexpensive and versatile carrier for microfluidics devices with abilities well beyond simple capillary action for pregnancy tests and the like. Unlike standard microfluidics devices, extracting a fluid from the paper is a challenge and a drawback to its broader use. Here, we extract fluid from narrow paper strips using surface acoustic wave (SAW) irradiation that subsequently atomizes the extracted fluid into a monodisperse aerosol for use in mass spectroscopy, medical diagnostics, and drug delivery applications. Two protein molecules, ovalbumin and bovine serum albumin (BSA), have been preserved in paper and then extracted using atomized mist through SAW excitation; protein electrophoresis shows there is less than 1% degradation of either protein molecule in this process. Finally, a solution of live yeast cells was infused into paper, which was subsequently dried for preservation then remoistened to extract the cells via SAW atomization, yielding live cells at the completion of the process. The successful preservation and extraction of fluids, proteins and yeast cells significantly expands the usefulness of paper in microfluidics.

  12. Comparison of the effects of seleno-l-methionine, seleno-dl-methionine, and selenized yeast on reproduction of mallards

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    1996-01-01

    The toxicities of seleno-L-methionine, seleno-DL-methionine, and selenized yeast were compared. Ten pairs of mallards were fed a control diet and 15 pairs were fed diets containing 10 ppm selenium as seleno-DL-methionine, seleno-L-methionine, or selenized yeast. Hatching of fertile eggs was significantly lower for females fed 10 ppm selenium as seleno-DL-methionine (7.6%) and seleno-L-methionine (6.4%) than for controls (41.3%). Survival of ducklings was lower when their parents had been fed 10 ppm selenium as seleno-L-methionine (20.0%) than for controls (98.4%). The number of 6-day-old ducklings produced per female was significantly lower for mallards fed 10 ppm selenium as seleno-DL-methionine (0.47) or selenized yeast (2.67) than for controls (6.10), and was significantly lower for mallards fed seleno-L-methionine (0.13) than for mallards fed selenized yeast. The eighth eggs of females fed the DL or L forms of selenomethionine contained means of 9.2 and 8.9 ppm selenium, wet weight; these means were higher than the mean (6.6 ppm) for females fed selenized yeast. Among embryos that died at 7 days of age or older, the percentage of embryos that were deformed was 1.3% for controls, 24.6% for seleno-DL-methionine, 28.2% for seleno-L-methionine, and 11.0% for selenized yeast. The results suggested that seleno-DL-methionine and seleno-L-methionine were of similar toxicity and were both more toxic than selenium from selenized yeast.

  13. Effects of distillation system and yeast strain on the aroma profile of Albariño (Vitis vinifera L.) grape pomace spirits.

    PubMed

    Arrieta-Garay, Y; Blanco, P; López-Vázquez, C; Rodríguez-Bencomo, J J; Pérez-Correa, J R; López, F; Orriols, I

    2014-10-29

    Orujo is a traditional alcoholic beverage produced in Galicia (northwest Spain) from distillation of grape pomace, a byproduct of the winemaking industry. In this study, the effect of the distillation system (copper charentais alembic versus packed column) and the yeast strain (native yeast L1 versus commercial yeast L2) on the chemical and sensory characteristics of orujo obtained from Albariño (Vitis vinifera L.) grape pomace has been analyzed. Principal component analysis, with two components explaining 74% of the variance, is able to clearly differentiate the distillates according to distillation system and yeast strain. Principal component 1, mainly defined by C6-C12 esters, isoamyl octanoate, and methanol, differentiates L1 from L2 distillates. In turn, principal component 2, mainly defined by linear alcohols, linalool, and 1-hexenol, differentiates alembic from packed column distillates. In addition, an aroma descriptive test reveals that the distillate obtained with a packed column from a pomace fermented with L1 presented the highest positive general impression, which is associated with the highest fruity and smallest solvent aroma scores. Moreover, chemical analysis shows that use of a packed column increases average ethanol recovery by 12%, increases the concentration of C6-C12 esters by 25%, and reduces the concentration of higher alcohols by 21%. In turn, L2 yeast obtained lower scores in the alembic distillates aroma profile. In addition, with L1, 9% higher ethanol yields were achieved, and L2 distillates contained 34%-40% more methanol than L1 distillates.

  14. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees.

    PubMed

    Rowe, Jeffrey D; Harbertson, James F; Osborne, James P; Freitag, Michael; Lim, Juyun; Bakalinsky, Alan T

    2010-02-24

    Total protein and protein-associated mannan concentrations were measured, and individual proteins were identified during extraction into model wines over 9 months of aging on the yeast lees following completion of fermentations by seven wine strains of Saccharomyces cerevisiae. In aged wines, protein-associated mannan increased about 6-fold (+/-66%), while total protein only increased 2-fold (+/-20%), which resulted in a significantly greater protein-associated mannan/total protein ratio for three strains. A total of 219 proteins were identified among all wine samples taken over the entire time course. Of the 17 "long-lived" proteins detected in all 9 month samples, 13 were cell wall mannoproteins, and four were glycolytic enzymes. Most cytosolic proteins were not detected after 6 months. Native mannosylated yeast invertase was assayed for binding to wine tannin and was found to have a 10-fold lower affinity than nonglycosylated bovine serum albumin. Enrichment of mannoproteins in the aged model wines implies greater solution stability than other yeast proteins and the possibility that their contributions to wine quality may persist long after bottling.

  15. Antifungal Properties of Crude Extracts, Fractions, and Purified Compounds from Bark of Curatella americana L. (Dilleniaceae) against Candida Species

    PubMed Central

    Mendes de Toledo, Cleyton Eduardo; Santos, Patrícia Regina; Palazzo de Mello, João Carlos; Dias Filho, Benedito Prado; Ueda-Nakamura, Tânia

    2015-01-01

    The ethnomedicinal plant Curatella americana L. (Dilleniaceae) is a common shrub in the Brazilian cerrado, in which crude extract showed antifungal activity in a preliminary study. In this work, the antifungal and cytotoxic properties of the crude extract, fractions, and isolated compounds from C. americana were evaluated against the standard yeast strains Candida albicans, C. tropicalis, and C. parapsilosis, clinical isolates, and fluconazole-resistant strains. The combinatory effects between subfractions and isolated compounds and effects on cell morphology, virulence factors, and exogenous ergosterol were also evaluated. The MIC obtained against the Candida species including fluconazole-resistant strain ranged from 15.3 to 31.3 µg/mL for crude extract, 3.9 to 15.6 µg/mL for ethyl acetate fraction, and 7.8 to 31.3 µg/mL for subfractions. The isolated compounds identified as 4′-O-methyl-catechin, epicatechin-3-O-gallate, and 4′-O-methyl-catechin-3-O-gallate showed lower antifungal activity than the crude extract and fractions (MIC ranging from 31.3 to 125.0 µg/mL). The addition of exogenous ergosterol to yeast culture did not interfere in the antifungal activity of the extract and its fractions. Synergistic antifungal activity was observed between subfractions and isolated compounds. The effects on virulence factors and the different mechanisms of action compared to fluconazole and nystatin suggest that this ethnomedicinal plant may be an effective alternative treatment for candidiasis. PMID:26347790

  16. [Effects of 33% grapefruit extract on the growth of the yeast--like fungi, dermatopytes and moulds].

    PubMed

    Krajewska-Kułak, E; Lukaszuk, C; Niczyporuk, W

    2001-01-01

    Grapefruit seed extract was discovered by Jacob Harich an american immunologist in 1980. Assessment of the influence of grapefruit extract on the yeast-like fungi strains--Candida albicans growth. Material used in this investigation was ATCC test Candida albicans strains no 10231, 200 of Candida albicans strains, 5 of Candida sp. strains isolated from patients with candidiasis symptoms from different ontocenosis and 12 of dermatophytes and moulds isolated from patients. The susceptibility of the Candida was determined by serial dilution method. It seems that 33% grapefruit extract exert a potent antifungal activity against the yeast like fungi strains and had low activity against dermatophytes and moulds. Further studies in vitro and in vivo on greater number of the yeast-like fungi strains and other fungi species are needed.

  17. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts

    PubMed Central

    Čolnik, Maja; Primožič, Mateja; Knez, Željko; Leitgeb, Maja

    2016-01-01

    The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV–Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions. PMID:27148527

  18. Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris

    PubMed Central

    Bazan, Silvia Boschi; de Alencar Muniz Chaves, Agtha; Aires, Karina Araújo; Cianciarullo, Aurora Marques; Garcea, Robert L.; Ho, Paulo Lee

    2013-01-01

    Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs). Here, we describe the expression, purification and characterization of recombinant HPV16 L1 produced by a methylotrophic yeast. A codon-optimized HPV16 L1 gene was cloned into a non-integrative expression vector under the regulation of a methanol-inducible promoter and used to transform competent Pichia pastoris cells. Purification of L1 protein from yeast extracts was performed using heparin–sepharose chromatography, followed by a disassembly/reassembly step. VLPs could be assembled from the purified L1 protein, as demonstrated by electron microscopy. The display of conformational epitopes on the VLPs surface was confirmed by hemagglutination and hemagglutination inhibition assays and by immuno-electron microscopy. This study has implications for the development of an alternative platform for the production of a papillomavirus vaccine that could be provided by public health programs, especially in resource-poor areas, where there is a great demand for low-cost vaccines. PMID:19756360

  19. Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.

    PubMed

    Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne

    2011-11-01

    An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Chemical compositions and antibacterial activity of extracts obtained from the inflorescences of Cirsium canum (L.) all.

    PubMed

    Kozyra, Małgorzata; Biernasiuk, Anna; Malm, Anna; Chowaniec, Marcin

    2015-01-01

    The aim of this study was to investigate phenolic acids and flavonoids in methanolic, dichloromethane, acetone and ethyl acetate extracts and fractions from inflorescences of Cirsium canum (L.). RP-HPLC analysis enabled identification of the following: chlorogenic acid, caffeic acid, p-coumaric acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, syringic acid, trans-cinnamic acid, luteolin-7-glucoside, apigenin-7-glucoside, kaempferol-3-glucoside, linarin, apigenin, rutoside, luteolin and kaempferol. The antimicrobial activity of tested extracts was determined in vitro against reference microorganisms, including bacteria or fungi, belonging to yeasts. Our data showed that the tested extracts had no influence on the growth of the reference strains of Gram-negative bacteria and yeasts belonging to Candida spp. Among them, the fractions possessed the highest activity against Gram-positive bacteria, especially Streptococcus aureus and Streptococcus pneumoniae belonging to pathogens and Streptococcus epidermidis, Bacilluscereus and Bacillus subtilis belonging to opportunistic microorganisms.

  1. Recovery of Fuel-Precursor Lipids from Oleaginous Yeast

    DOE PAGES

    Kruger, Jacob S.; Cleveland, Nicholas S.; Yeap, Rou Yi; ...

    2018-01-24

    Bio-derived lipids offer a potentially promising intermediate to displace petroleum-derived diesel. One of the key challenges for the production of lipids via microbial cell mass is that these products are stored intracellularly and must be extracted and recovered efficiently and economically. Thus, improved methods of cell lysis and lipid extraction are needed. In this study, we examine lipid extraction from wet oleaginous yeast in combination with seven different cell lysis approaches encompassing both physical and chemical techniques (high-pressure homogenization, microwave and conventional thermal treatments, bead beating, acid, base, and enzymatic treatments) to facilitate lipid extraction from a model oleaginous yeastmore » strain, Lipomyces starkeyi. Of the seven techniques investigated, acid treatment led to the highest lipid recovery yields. Further exploration of acid treatment and integration with an economic model revealed that treatment at 170 degrees C for 60 min at 1 wt% H 2SO 4 and 8 wt% yeast solids represents a viable option for both lipid recovery yield and process economics, enabling experimental lipid recovery yields of 88.5-93.0% to be achieved at a corresponding estimated minimum fuel selling price (MFSP) of $5.13-$5.61/gallon of gasoline equivalent (GGE). The same acid treatment conditions applied to two other strains of oleaginous yeast (Cutaneotrichosporon curvatus and Rhodotorula toruloides) resulted in similar lipid recovery yields. In pretreatment experiments scaled up to 300 mL, slightly lower temperatures or shorter pretreatment times, along with higher yeast solids loading, resulted in higher lipid yields than the conditions identified from the small-scale runs. Two replicate runs carried out at 170 degrees C for 30 min using 1 wt% H2SO4 and 19 wt% yeast solids achieved an average lipid recovery of 96.1% at a corresponding estimated MFSP of $4.89/GGE. In all cases, the lipids are primarily triglycerides and free fatty acids

  2. Recovery of Fuel-Precursor Lipids from Oleaginous Yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Jacob S.; Cleveland, Nicholas S.; Yeap, Rou Yi

    Bio-derived lipids offer a potentially promising intermediate to displace petroleum-derived diesel. One of the key challenges for the production of lipids via microbial cell mass is that these products are stored intracellularly and must be extracted and recovered efficiently and economically. Thus, improved methods of cell lysis and lipid extraction are needed. In this study, we examine lipid extraction from wet oleaginous yeast in combination with seven different cell lysis approaches encompassing both physical and chemical techniques (high-pressure homogenization, microwave and conventional thermal treatments, bead beating, acid, base, and enzymatic treatments) to facilitate lipid extraction from a model oleaginous yeastmore » strain, Lipomyces starkeyi. Of the seven techniques investigated, acid treatment led to the highest lipid recovery yields. Further exploration of acid treatment and integration with an economic model revealed that treatment at 170 degrees C for 60 min at 1 wt% H 2SO 4 and 8 wt% yeast solids represents a viable option for both lipid recovery yield and process economics, enabling experimental lipid recovery yields of 88.5-93.0% to be achieved at a corresponding estimated minimum fuel selling price (MFSP) of $5.13-$5.61/gallon of gasoline equivalent (GGE). The same acid treatment conditions applied to two other strains of oleaginous yeast (Cutaneotrichosporon curvatus and Rhodotorula toruloides) resulted in similar lipid recovery yields. In pretreatment experiments scaled up to 300 mL, slightly lower temperatures or shorter pretreatment times, along with higher yeast solids loading, resulted in higher lipid yields than the conditions identified from the small-scale runs. Two replicate runs carried out at 170 degrees C for 30 min using 1 wt% H2SO4 and 19 wt% yeast solids achieved an average lipid recovery of 96.1% at a corresponding estimated MFSP of $4.89/GGE. In all cases, the lipids are primarily triglycerides and free fatty acids

  3. S-adenosylmethionine decarboxylase from baker's yeast.

    PubMed Central

    Pösö, H; Sinervirta, R; Jänne, J

    1975-01-01

    1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate. PMID:1108876

  4. Immunogenicity and protective efficacy of yeast extracts containing rotavirus-like particles: a potential veterinary vaccine.

    PubMed

    Rodríguez-Limas, William A; Pastor, Ana Ruth; Esquivel-Soto, Ernesto; Esquivel-Guadarrama, Fernando; Ramírez, Octavio T; Palomares, Laura A

    2014-05-19

    Rotavirus is the most common cause of severe diarrhea in many animal species of economic interest. A simple, safe and cost-effective vaccine is required for the control and prevention of rotavirus in animals. In this study, we evaluated the use of Saccharomyces cerevisiae extracts containing rotavirus-like particles (RLP) as a vaccine candidate in an adult mice model. Two doses of 1mg of yeast extract containing rotavirus proteins (between 0.3 and 3 μg) resulted in an immunological response capable of reducing the replication of rotavirus after infection. Viral shedding in all mice groups diminished in comparison with the control group when challenged with 100 50% diarrhea doses (DD50) of murine rotavirus strain EDIM. Interestingly, when immunizing intranasally protection against rotavirus infection was observed even when no increase in rotavirus-specific antibody titers was evident, suggesting that cellular responses were responsible of protection. Our results indicate that raw yeast extracts containing rotavirus proteins and RLP are a simple, cost-effective alternative for veterinary vaccines against rotavirus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals.

    PubMed

    Fritz, R R; Hodgins, D S; Abell, C W

    1976-08-10

    Yeast phenylalanine ammonia-lyase (EC 4.3.1.5) catalyzes the deamination of L-phenylalanine to form trans-cinnamic acid and tyrosine to trans-coumaric acid. Maximal enzyme activity in Rhodotorula glutinis (2 units/g, wet weight, of yeast) was induced in late-log phase (12 to 14 hours) of growth in a culture medium containing 1.0% malt extract, 0.1% yeast extract, and 0.1% L-phenylalanine. A highly purified enzyme was obtained by fractionation with ammonium sulfate and sodium citrate followed by chromatography on DEAE-cellulose and Sephadex G-200. The active preparation yielded a major component on three different polyacrylamide gel electrophoretic systems. Antisera to phenylalanine ammonia-lyase was raised in rabbits and detected by double immunodiffusion. The antigen-antibody complex was enzymatically active in vitro. The biological half-life of the enzyme was approximately 21 hours in several mammalian species (mice without and with BW10232 adenocarcinoma and B16 melanoma, rats, and monkeys) after a single injection; however, upon repeated administration, phenylalanine ammonia-lyase had a much shorter biological half-life. The onset of rapid clearance occurred earlier in tumor-bearing than in nontumor-bearing mice indicating a direct or indirect influence by the tumor on the biological half-life of phenylalanine ammonia-lyase.

  6. Αntioxidant activity of Cynara scolymus L. and Cynara cardunculus L. extracts obtained by different extraction techniques.

    PubMed

    Kollia, Eleni; Markaki, Panagiota; Zoumpoulakis, Panagiotis; Proestos, Charalampos

    2017-05-01

    Extracts of different parts (heads, bracts and stems) of Cynara cardunculus L. (cardoon) and Cynara scolymus L. (globe artichoke), obtained by two different extraction techniques (Ultrasound-Assisted Extraction (UAE) and classical extraction (CE)) were examined and compared for their total phenolic content (TPC) and their antioxidant activity. Moreover, infusions of the plant's parts were also analysed and compared to aforementioned samples. Results showed that cardoon's heads extract (obtained by Ultrasound-Assisted Extraction) displayed the highest TPC values (1.57 mg Gallic Acid Equivalents (GAE) g -1 fresh weight (fw)), the highest DPPH • scavenging activity (IC50; 0.91 mg ml -1 ) and the highest ABTS •+ radical scavenging capacity (2.08 mg Trolox Equivalents (TE) g -1 fw) compared to infusions and other extracts studied. Moreover, Ultrasound-Assisted Extraction technique proved to be more appropriate and effective for the extraction of antiradical and phenolic compounds.

  7. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    PubMed

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  8. Evaluation of Antioxidant and DNA Damage Protection Activity of the Hydroalcoholic Extract of Desmostachya bipinnata L. Stapf

    PubMed Central

    Bhimathati, Solomon Sunder Raj

    2014-01-01

    Desmostachya bipinnata Stapf (Poaceae/Gramineae) is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract of Desmostachya bipinnata both in vitro and in vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50 value of 264.18 ± 3.47 μg/mL in H2O2 scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton's reagent) at a concentration of 50 μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea) in spot assay. Moreover, the presence of extract exhibited significant antioxidant activity in vivo by protecting yeast cells against oxidative stressing agent (H2O2). Altogether, the results of current study revealed that Desmostachya bipinnata is a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases. PMID:24574873

  9. Evaluation of antioxidant and DNA damage protection activity of the hydroalcoholic extract of Desmostachya bipinnata L. Stapf.

    PubMed

    Golla, Upendarrao; Bhimathati, Solomon Sunder Raj

    2014-01-01

    Desmostachya bipinnata Stapf (Poaceae/Gramineae) is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract of Desmostachya bipinnata both in vitro and in vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50 value of 264.18±3.47  μg/mL in H2O2 scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton's reagent) at a concentration of 50  μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea) in spot assay. Moreover, the presence of extract exhibited significant antioxidant activity in vivo by protecting yeast cells against oxidative stressing agent (H2O2). Altogether, the results of current study revealed that Desmostachya bipinnata is a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases.

  10. Toxicity of seleno-l-methionine, seleno-dl-methionine, high selenium wheat, and selenized yeast to mallard ducklings

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; LeCaptain, L.J.

    1996-01-01

    The toxicity of four chemical forms of selenium (seleno-L-methionine, seleno-DL-methionine, selenized yeast, and high selenium wheat) was compared in day-old mallard ducklings (Anas platyrhynchos). In the first experiment, in which the basal diet was 75% wheat, survival after 2 weeks was lower for ducklings fed 30 ?g/g selenium as seleno-L-methionine (36%) than for ducklings fed 30 ?g/g selenium as seleno-DL-methionine (100%) or 30 ?g/g selenium from high selenium yeast (88%). In a second experiment, in which the basal diet was a commercial duck feed, survival after 2 weeks was 100% in ducklings fed 30 ?g/g selenium as seleno-DL-methionine, seleno-L-methionine, or selenized yeast. The greater toxicity of the L form of selenomethionine was probably related to the palatability or nutritional nature of the wheat-based diet used in experiment 1, but the exact reason for the difference between the DL and L forms is unknown. Biologically incorporated selenium, derived from high selenium wheat was no more toxic than selenium derived from the two purified forms of selenomethionine, and the selenium in selenized yeast was not as toxic as that in the two forms of selenomethionine.

  11. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes

    PubMed Central

    Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I.

    2016-01-01

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  12. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    PubMed Central

    Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Hussin, Aminuddin bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  13. Growth inhibitory response and ultrastructural modification of oral-associated candidal reference strains (ATCC) by Piper betle L. extract.

    PubMed

    Nordin, Mohd-Al-Faisal; Wan Harun, Wan Himratul-Aznita; Abdul Razak, Fathilah; Musa, Md Yusoff

    2014-03-01

    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments: (i) in the absence of P. betle extract; and in the presence of P. betle extract at respective concentrations of (ii) 1 mg⋅mL(-1); (iii) 3 mg⋅mL(-1); and (iv) 6 mg⋅mL(-1). The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (µ). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the µ-values of the treated cells were significantly different than those of the untreated cells (P<0.05), indicating the fungistatic properties of the P. betle extract. The candidal population was also reduced from an average of 13.44×10(6) to 1.78×10(6) viable cell counts (CFU)⋅mL(-1). SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity.

  14. Extraction of the number of peroxisomes in yeast cells by automated image analysis.

    PubMed

    Niemistö, Antti; Selinummi, Jyrki; Saleem, Ramsey; Shmulevich, Ilya; Aitchison, John; Yli-Harja, Olli

    2006-01-01

    An automated image analysis method for extracting the number of peroxisomes in yeast cells is presented. Two images of the cell population are required for the method: a bright field microscope image from which the yeast cells are detected and the respective fluorescent image from which the number of peroxisomes in each cell is found. The segmentation of the cells is based on clustering the local mean-variance space. The watershed transformation is thereafter employed to separate cells that are clustered together. The peroxisomes are detected by thresholding the fluorescent image. The method is tested with several images of a budding yeast Saccharomyces cerevisiae population, and the results are compared with manually obtained results.

  15. The effect of yeast extract addition on quality of fermented sausages at low NaCl content.

    PubMed

    Campagnol, Paulo Cezar Bastianello; dos Santos, Bibiana Alves; Wagner, Roger; Terra, Nelcindo Nascimento; Pollonio, Marise Aparecida Rodrigues

    2011-03-01

    Fermented sausages with 25% or 50% of their NaCl replaced by KCl and supplemented with 1% or 2% concentrations of yeast extract were produced. The sausage production process was monitored with physical, chemical and microbiological analyses. After production, the sausage samples were submitted to a consumer study and their volatile compounds were extracted by solid-phase microextraction and analyzed by GC-MS. The replacement of NaCl by KCl did not significantly influence the physical, chemical or microbiological characteristics. The sensory quality of the fermented sausages with a 50% replacement was poor compared with the full-salt control samples. The use of yeast extract at a 2% concentration increased volatile compounds that arose from amino acids and carbohydrate catabolism. These compounds contributed to the suppression of the sensory-quality defects caused by the KCl introduction, thus enabling the production of safe fermented sausages that have acceptable sensory qualities with half as much sodium content. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  16. Characteristics of metal-tolerant plant growth-promoting yeast (Cryptococcus sp. NSE1) and its influence on Cd hyperaccumulator Sedum plumbizincicola.

    PubMed

    Liu, Wuxing; Wang, Beibei; Wang, Qingling; Hou, Jinyu; Wu, Longhua; Wood, Jennifer L; Luo, Yongming; Franks, Ashley E

    2016-09-01

    Plant growth-promoting yeasts are often over looked as a mechanism to improve phytoremediation of heavy metals. In this study, Cryptococcus sp. NSE1, a Cd-tolerant yeast with plant growth capabilities, was isolated from the rhizosphere of the heavy metal hyperaccumulator Sedum plumbizincicola. The yeast exhibited strong tolerance to a range of heavy metals including Cd, Cu, and Zn on plate assays. The adsorption rate Cd, Cu, Zn by NSE1 was 26.1, 13.2, and 25.2 %, respectively. Irregular spines were formed on the surface of NSE1 when grown in MSM medium supplemented with 200 mg L(-1) Cd. NSE1 was capable of utilizing 1-aminocyclopropane-1-carboxylate (ACC) as a sole nitrogen source and was capable of solubilization of inorganic phosphate at rates of 195.2 mg L(-1). Field experiments demonstrated that NSE1 increased phytoremediation by increasing the biomass of Cd hyperaccumulator S. plumbizincicola (46 %, p < 0.05) during phytoremediation. Overall, Cd accumulation by S. plumbizincicola was increased from 19.6 to 31.1 mg m(-2) though no difference in the concentration of Cd in the shoot biomass was observed between NSE1 and control. A Cd accumulation ratio of 38.0 % for NSE1 and 17.2 % for control was observed. The HCl-extractable Cd and CaCl2-extractable Cd concentration in the soil of the NSE1 treatment were reduced by 39.2 and 29.5 %, respectively. Community-level physiology profiling, assessed using Biolog Eco plates, indicated functional changes to the rhizosphere community inoculated with NSE1 by average well color development (AWCD) and measurement of richness (diversity). Values of Shannon-Weiner index, Simpson index, and McIntosh index showed a slight but no significant increases. These results indicate that inoculation of NSE1 could increase the shoot biomass of S. plumbizincicola, enhance the Cd accumulation in S. plumbizincicola, and decrease the available heavy metal content in soils significantly without overall significant changes to the

  17. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins

    PubMed Central

    Bayliak, Maria M.; Burdyliuk, Nadia I.; Izers’ka, Lilia I.; Lushchak, Volodymyr I.

    2014-01-01

    Concentration-dependent effects of aqueous extract from R. rosea root on long-term survival and stress resistance of budding yeast Saccharomyces cerevisiae were studied. At low concentrations, R. rosea aqueous extract extended yeast chronological lifespan, enhanced oxidative stress resistance of stationary-phase cells and resistance to number stressors in exponentially growing cultures. At high concentrations, R. rosea extract sensitized yeast cells to stresses and shortened yeast lifespan. These biphasic concentration-responses describe a common hormetic phenomenon characterized by a low-dose stimulation and a high-dose inhibition. Yeast pretreatment with low doses of R. rosea extract enhanced yeast survival and prevented protein oxidation under H2O2-induced oxidative stress. Positive effect of R. rosea extract on yeast survival under heat shock exposure was not accompanied with changes in antioxidant enzyme activities and levels of oxidized proteins. The deficiency in transcriptional regulators, Msn2/Msn4 and Yap1, abolished the positive effect of low doses of R. rosea extract on yeast viability under stress challenges. Potential involvement of Msn2/Msn4 and Yap1 regulatory proteins in realization of R. rosea beneficial effects is discussed. PMID:24659935

  18. Specific phenolic compounds and sensory properties of a new dealcoholized red wine with pomegranate (Punica granatum L.) extract.

    PubMed

    Tárrega, Maria Amparo; Varela, Paula; Fromentin, Emilie; Feuillère, Nicolas; Issaly, Nicolas; Roller, Marc; Sanz-Buenhombre, Marisa; Villanueva, Sonia; Moro, Carlos; Guadarrama, Alberto; Fiszman, Susana

    2014-09-01

    The pomegranate (Punica granatum L.) fruit has a long history of human consumption and possesses notable antioxidant and cardiovascular properties. This work evaluated the feasibility to provide a new functional beverage based on a dealcoholized red wine matrix supplemented by a pomegranate extract. The potential bioactive compounds in the pomegranate extract, punicalagin A and B and ellagic acid, were analyzed during the downstream process in order to evaluate the functional dose in the final beverage. The addition of pomegranate extract to the dealcoholized red wine resulted in a product with more intense yeast odor, acidity, yeast flavor, and astringency and with a less intense berry flavor. Consumer acceptance of the product was also investigated and the results revealed the existence of a niche of consumers willing to consume dealcoholized wine enriched with pomegranate extract. After tasting, 50% and 40% of those consumers initially interested by this product concept declared to be interested to purchase the control sample and the functional beverage, respectively. The daily consumption of two servings of 250 mL of this new pomegranate-enriched dealcoholized wine provides 82 mg of total ellagitannins, corresponding to the sum of punicalagin A and B and ellagic acid. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts.

    PubMed

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].

  20. L-Histidine Inhibits Biofilm Formation and FLO11-Associated Phenotypes in Saccharomyces cerevisiae Flor Yeasts

    PubMed Central

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of FLO11 which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling FLO11 alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce FLO11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to FLO11 expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air–liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the FLO11 gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts. PMID:25369456

  1. Efficient production of ε-poly-L-lysine by Streptomyces ahygroscopicus using one-stage pH control fed-batch fermentation coupled with nutrient feeding.

    PubMed

    Liu, Sheng-Rong; Wu, Qing-Ping; Zhang, Ju-Mei; Mo, Shu-Ping

    2015-03-01

    ε-Poly-L-lysine (ε-PL) is a homopolymer of L-lysine molecules connected between the ε amino and alpha carboxyl groups. This polymer is currently used as a natural preservative in food. Insufficient biomass is a major problem in ε-PL fermentation. Here, to improve cell growth and ε-PL productivity, various nitrogen-rich nutrients were supplemented into flask cultures after 16 h cultivation, marking the onset of ε-PL biosynthesis. Yeast extract, soybean powder, corn powder, and beef extract significantly improved cell growth. In terms of ε-PL productivity, yeast extract at 0.5% (w/v) gave the maximum yield (2.24 g/l), 115.4% higher than the control (1.04 g/l), followed by soybean powder (1.86 g/l) at 1% (w/v) and corn powder (1.72 g/l) at 1% (w/v). However, supplementation with beef extract inhibited ε-PL production. The optimal time for supplementation for all nutrients examined was at 16 h cultivation. The kinetics of yeast-extract-supplemented cultures showed enhanced cell growth and production duration. Thus, the most commonly used two-stage pH control fed-batch fermentation method was modified by omitting the pH 5.0-controlled period, and coupling the procedure with nutrient feeding in the pH 3.9-controlled phase. Using this process, by continuously feeding 0.5 g/h of yeast extract, soybean powder, or corn powder into cultures in a 30 L fermenter, the final ε-PL titer reached 28.2 g/l, 23.7 g/l, and 21.4 g/l, respectively, 91.8%, 61.2%, and 45.6% higher than that of the control (14.7 g/l). This describes a promising option for the mass production of ε-PL.

  2. Inhibition of human calcineurin and yeast calcineurin-dependent gene expression by Jasminum humile leaf and root extracts.

    PubMed

    Prescott, Thomas A K; Ariño, Joaquín; Kite, Geoffrey C; Simmonds, Monique S J

    2012-03-27

    The leaves of Jasminum humile are used to treat skin disorders in a way which resembles the use of modern topical anti-inflammatory drugs. Ethanolic extracts of the roots and leaves were shown to inhibit calcineurin which is a regulator of inflammatory gene expression. A novel yeast calcineurin reporter gene assay suitable for a 96 well plate format was developed to test for inhibition of calcineurin-dependent gene expression. Calmodulin/calcineurin phosphatase assays were then used to further elucidate the mode of action of the extracts. Jasminum humile root and leaf extract exhibited calcineurin inhibition activity that was shown to be mediated through a direct interaction with calcineurin enzyme. The activity is sufficient to block calcineurin-dependent gene expression in a yeast model. The activity of the plant supports its traditional use in the treatment of inflammatory skin disorders. The specially adapted yeast reporter assay was found to be a highly effective way of detecting calcineurin inhibitors in plant extracts. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Alcohol production from Jerusalem artichoke using yeasts with inulinase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guiraud, J.P.; Daurelles, J.; Galzy, P.

    1981-07-01

    The purpose of this article is to show that yeasts with inulinase activity can be used to produce ethanol from the Jerusalem artichoke (Helianthus tuberosus L.). The results show that a fermentable extract can be easily obtained from the Jerusalem artichoke even under cold conditions. Yeasts with inulinase activity can be used to produce ethanol with good profitability. 19 refs.

  4. A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation.

    PubMed

    Liu, Z Lewis; Weber, Scott A; Cotta, Michael A; Li, Shi-Zhong

    2012-01-01

    This study reports a new yeast strain of Clavispora NRRL Y-50464 that is able to utilize cellobiose as sole source of carbon and produce sufficient native β-glucosidase enzyme activity for cellulosic ethanol production using SSF. In addition, this yeast is tolerant to the major inhibitors derived from lignocellulosic biomass pre-treatment such as 2-furaldehyde (furfural) and 5-(hydroxymethyl)-2-furaldehyde (HMF), and converted furfural into furan methanol in less than 12h and HMF into furan-2,5-dimethanol within 24h in the presence of 15 mM each of furfural and HMF. Using xylose-extracted corncob residue as cellulosic feedstock, an ethanol production of 23 g/l was obtained using 25% solids loading at 37 °C by SSF without addition of exogenous β-glucosidase. Development of this yeast aids renewable biofuels development efforts for economic consolidated SSF bio-processing. Published by Elsevier Ltd.

  5. A novel method to prepare L-Arabinose from xylose mother liquor by yeast-mediated biopurification

    PubMed Central

    2011-01-01

    Background L-arabinose is an important intermediate for anti-virus drug synthesis and has also been used in food additives for diets-controlling in recent years. Commercial production of L-arabinose is a complex progress consisting of acid hydrolysis of gum arabic, followed by multiple procedures of purification, thus making high production cost. Therefore, there is a biotechnological and commercial interest in the development of new cost-effective and high-performance methods for obtaining high purity grade L-arabinose. Results An alternative, economical method for purifying L-arabinose from xylose mother liquor was developed in this study. After screening 306 yeast strains, a strain of Pichia anomala Y161 was selected as it could effectively metabolize other sugars but not L-arabinose. Fermentation in a medium containing xylose mother liquor permitted enrichment of L-arabinose by a significant depletion of other sugars. Biochemical analysis of this yeast strain confirmed that its poor capacity for utilizing L-arabinose was due to low activities of the enzymes required for the metabolism of this sugar. Response surface methodology was employed for optimization the fermentation conditions in shake flask cultures. The optimum conditions were: 75 h fermentation time, at 32.5°C, in a medium containing 21% (v/v) xylose mother liquor. Under these conditions, the highest purity of L-arabinose reached was 86.1% of total sugar, facilitating recovery of white crystalline L-arabinose from the fermentation medium by simple methods. Conclusion Yeast-mediated biopurification provides a dynamic method to prepare high purity of L-arabinose from the feedstock solution xylose mother liqour, with cost-effective and high-performance properties. PMID:21649890

  6. L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction.

    PubMed

    Zheng, Wenming; Lin, Zhouchen; Wang, Haixian

    2014-04-01

    A novel discriminant analysis criterion is derived in this paper under the theoretical framework of Bayes optimality. In contrast to the conventional Fisher's discriminant criterion, the major novelty of the proposed one is the use of L1 norm rather than L2 norm, which makes it less sensitive to the outliers. With the L1-norm discriminant criterion, we propose a new linear discriminant analysis (L1-LDA) method for linear feature extraction problem. To solve the L1-LDA optimization problem, we propose an efficient iterative algorithm, in which a novel surrogate convex function is introduced such that the optimization problem in each iteration is to simply solve a convex programming problem and a close-form solution is guaranteed to this problem. Moreover, we also generalize the L1-LDA method to deal with the nonlinear robust feature extraction problems via the use of kernel trick, and hereafter proposed the L1-norm kernel discriminant analysis (L1-KDA) method. Extensive experiments on simulated and real data sets are conducted to evaluate the effectiveness of the proposed method in comparing with the state-of-the-art methods.

  7. Isolation and Identification of the Indigenous Yeast Population during Spontaneous Fermentation of Isabella (Vitis labrusca L.) Grape Must.

    PubMed

    Raymond Eder, María L; Reynoso, Cristina; Lauret, Santiago C; Rosa, Alberto L

    2017-01-01

    Grape must harbors a complex community of yeast species responsible for spontaneous alcoholic fermentation. Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, less is known about the diversity and behavior of yeast communities present on fermenting grape must from other species of Vitis . In this work, we used a culture-dependent method to study the identity and dynamics of the indigenous yeast population present during the spontaneous fermentation of Isabella ( Vitis labrusca L.) grape must. Alcoholic fermentation was conducted using standard enological practices, and the associated non- Saccharomyces and S. cerevisiae yeast community was analyzed using selective growth media and 5.8-ITS DNA sequencing. Candida californica, Candida hellenica, Starmerella bacillaris (synonym Candida zemplinina ), Hanseniaspora uvarum , and Hanseniaspora vineae were the main non- Saccharomyces species identified on Isabella fermenting must. Issatchenkia hanoiensis , a yeast species rarely found on Vitis vinifera L. grapes, was also recognized on Isabella grape must. Candida azymoides, Candida californica and Pichia cecembensis , identified in this work on Isabella fermenting must, have not previously been found on Vitis vinifera L. grape must. Interestingly, C. azymoides, I. hanoiensis and P. cecembensis have recently been isolated from the surface of Vitis labrusca L. grapes from vineyards in the Azores archipelago, suggesting that specific Vitis -yeast species associations are formed independently of geographic origin. We suggest that C. azymoides, C. californica , and P. cecembensis are yeast species preferentially associated with Vitis labrusca L. grapes. Specific biological interactions between grapevines and yeast species may underlie the assembly of differential Vitis -microbial communities.

  8. Isolation and Identification of the Indigenous Yeast Population during Spontaneous Fermentation of Isabella (Vitis labrusca L.) Grape Must

    PubMed Central

    Raymond Eder, María L.; Reynoso, Cristina; Lauret, Santiago C.; Rosa, Alberto L.

    2017-01-01

    Grape must harbors a complex community of yeast species responsible for spontaneous alcoholic fermentation. Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, less is known about the diversity and behavior of yeast communities present on fermenting grape must from other species of Vitis. In this work, we used a culture-dependent method to study the identity and dynamics of the indigenous yeast population present during the spontaneous fermentation of Isabella (Vitis labrusca L.) grape must. Alcoholic fermentation was conducted using standard enological practices, and the associated non-Saccharomyces and S. cerevisiae yeast community was analyzed using selective growth media and 5.8-ITS DNA sequencing. Candida californica, Candida hellenica, Starmerella bacillaris (synonym Candida zemplinina), Hanseniaspora uvarum, and Hanseniaspora vineae were the main non-Saccharomyces species identified on Isabella fermenting must. Issatchenkia hanoiensis, a yeast species rarely found on Vitis vinifera L. grapes, was also recognized on Isabella grape must. Candida azymoides, Candida californica and Pichia cecembensis, identified in this work on Isabella fermenting must, have not previously been found on Vitis vinifera L. grape must. Interestingly, C. azymoides, I. hanoiensis and P. cecembensis have recently been isolated from the surface of Vitis labrusca L. grapes from vineyards in the Azores archipelago, suggesting that specific Vitis-yeast species associations are formed independently of geographic origin. We suggest that C. azymoides, C. californica, and P. cecembensis are yeast species preferentially associated with Vitis labrusca L. grapes. Specific biological interactions between grapevines and yeast species may underlie the assembly of differential Vitis-microbial communities. PMID:28424672

  9. Food-Associated Lactobacillus plantarum and Yeasts Inhibit the Genotoxic Effect of 4-Nitroquinoline-1-Oxide

    PubMed Central

    Prete, Roberta; Tofalo, Rosanna; Federici, Ermanno; Ciarrocchi, Aurora; Cenci, Giovanni; Corsetti, Aldo

    2017-01-01

    Lactic acid bacteria and yeasts, representing the prevailing microbiota associated with different foods generally consumed without any cooking, were identified and characterized in vitro for some functional properties, such as acid-bile tolerance and antigenotoxic activity. In particular, 22 Lactobacillus plantarum strains and 14 yeasts were studied. The gastro-intestinal tract tolerance of all the strains was determined by exposing washed cell suspensions at 37°C to a simulated gastric juice (pH 2.0), containing pepsin (0.3% w/v) and to a simulated small intestinal juice (pH 8.0), containing pancreatin (1 mg mL-1) and bile extract (0.5%), thus monitoring changes in total viable count. In general, following a strain-dependent behavior, all the tested strains persisted alive after combined acid-bile challenge. Moreover, many strains showed high in vitro inhibitory activity against a model genotoxin, 4-nitroquinoline-1-oxide (4-NQO), as determined by the short-term method, SOS-Chromotest. Interestingly, the supernatants from bacteria- or yeasts-genotoxin co-incubations exhibited a suppression on SOS-induction produced by 4-NQO on the tester strain Escherichia coli PQ37 (sfiA::lacZ) exceeding, in general, the value of 75%. The results highlight that food associated microorganisms may reach the gut in viable form and prevent genotoxin DNA damage in situ. Our experiments can contribute to elucidate the functional role of food-associated microorganisms general recognized as safe ingested with foods as a part of the diet. PMID:29234315

  10. Interrogation of ethnomedicinal plants for synthetic lethality effects in combination with deficiency in the DNA repair endonuclease RAD1 using a yeast cell-based assay.

    PubMed

    Aung, Hsu Mon; Huangteerakul, Chananya; Panvongsa, Wittaya; Jensen, Amornrat N; Chairoungdua, Arthit; Sukrong, Suchada; Jensen, Laran T

    2018-09-15

    Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF). Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Unveiling the potential of novel yeast protein extracts in white wines clarification and stabilization

    PubMed Central

    Fernandes, Joana P.; Neto, Rodrigo; Centeno, Filipe; De Fátima Teixeira, Maria; Gomes, Ana Catarina

    2015-01-01

    Fining agents derived from animal and mineral sources are widely used to clarify and stabilize white wines. Nevertheless, health and environmental problems are being raised, concerning the allergenic and environmental impact of some of those fining products. In this study, our aim is to validate the potential of yeast protein extracts, obtained from an alternative and safe source, naturally present in wine: oenological yeasts. Three untreated white wines were used in this work in order to evaluate the impact of these novel yeast protein extracts (YPE) in terms of the wine clarification and stabilization improvement. Two separated fining trials were thus conducted at laboratory scale and the yeast alternatives were compared with reference fining agents, obtained from mineral, animal and vegetable origins. Our results indicate that YPE were capable to promote (i) brilliance/color improvement, (ii) turbidity reduction (76–89% comparing with the untreated wines), and (iii) production of compact and homogeneous lees (44% smaller volume than obtained with bentonite). Additionally, after submitting wines to natural and forced oxidations, YPE treatments revealed (iv) different forms of colloidal stabilization, by presenting comparable or superior effects when particularly compared to casein. Altogether, this study reveals that YPE represent a promising alternative for white wine fining, since they are resultant from a natural and more sustainable origin, at present not regarded as potential allergenic according to Regulation (EC) No. 1169/2011. PMID:25853122

  12. Isolation and characterization of awamori yeast mutants with L-leucine accumulation that overproduce isoamyl alcohol.

    PubMed

    Takagi, Hiroshi; Hashida, Keisuke; Watanabe, Daisuke; Nasuno, Ryo; Ohashi, Masataka; Iha, Tomoya; Nezuo, Maiko; Tsukahara, Masatoshi

    2015-02-01

    Awamori shochu is a traditional distilled alcoholic beverage made from steamed rice in Okinawa, Japan. Although it has a unique aroma that is distinguishable from that of other types of shochu, no studies have been reported on the breeding of awamori yeasts. In yeast, isoamyl alcohol (i-AmOH), known as the key flavor of bread, is mainly produced from α-ketoisocaproate in the pathway of L-leucine biosynthesis, which is regulated by end-product inhibition of α-isopropylmalate synthase (IPMS). Here, we isolated mutants resistant to the L-leucine analog 5,5,5-trifluoro-DL-leucine (TFL) derived from diploid awamori yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular L-leucine, and among them, one mutant overproduced i-AmOH in awamori brewing. This mutant carried an allele of the LEU4 gene encoding the Ser542Phe/Ala551Val variant IPMS, which is less sensitive to feedback inhibition by L-leucine. Interestingly, we found that either of the constituent mutations (LEU4(S542F) and LEU4(A551V)) resulted in the TFL tolerance of yeast cells and desensitization to L-leucine feedback inhibition of IPMS, leading to intracellular L-leucine accumulation. Homology modeling also suggested that L-leucine binding was drastically inhibited in the Ser542Phe, Ala551Val, and Ser542Phe/Ala551Val variants due to steric hindrance in the cavity of IPMS. As we expected, awamori yeast cells expressing LEU4(S542F), LEU4(A551V), and LEU4(S542F/A551V) showed a prominent increase in extracellular i-AmOH production, compared with that of cells carrying the vector only. The approach described here could be a practical method for the breeding of novel awamori yeasts to expand the diversity of awamori taste and flavor. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Long-Term n-Caproic Acid Production from Yeast-Fermentation Beer in an Anaerobic Bioreactor with Continuous Product Extraction.

    PubMed

    Ge, Shijian; Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2015-07-07

    Multifunctional reactor microbiomes can elongate short-chain carboxylic acids (SCCAs) to medium-chain carboxylic acids (MCCAs), such as n-caproic acid. However, it is unclear whether this microbiome biotechnology platform is stable enough during long operating periods to consistently produce MCCAs. During a period of 550 days, we improved the operating conditions of an anaerobic bioreactor for the conversion of complex yeast-fermentation beer from the corn kernel-to-ethanol industry into primarily n-caproic acid. We incorporated and improved in-line, membrane liquid-liquid extraction to prevent inhibition due to undissociated MCCAs at a pH of 5.5 and circumvented the addition of methanogenic inhibitors. The microbiome accomplished several functions, including hydrolysis and acidogenesis of complex organic compounds and sugars into SCCAs, subsequent chain elongation with undistilled ethanol in beer, and hydrogenotrophic methanogenesis. The methane yield was 2.40 ± 0.52% based on COD and was limited by the availability of carbon dioxide. We achieved an average n-caproate production rate of 3.38 ± 0.42 g L(-1) d(-1) (7.52 ± 0.94 g COD L(-1) d(-1)) with an n-caproate yield of 70.3 ± 8.81% and an n-caproate/ethanol ratio of 1.19 ± 0.15 based on COD for a period of ∼55 days. The maximum production rate was achieved by increasing the organic loading rates in tandem with elevating the capacity of the extraction system and a change in the complex feedstock batch.

  14. Evaluation of Extraction and Degradation Methods to Obtain Chickpeasaponin B1 from Chickpea (Cicer arietinum L.).

    PubMed

    Cheng, Kun; Gao, Hua; Wang, Rong-Rong; Liu, Yang; Hou, Yu-Xue; Liu, Xiao-Hong; Liu, Kun; Wang, Wei

    2017-02-21

    The objective of this research is to implement extraction and degradation methods for the obtainment of 3- O -[α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranosyl] soyasapogenol B (chickpeasaponin B1) from chickpea. The effects of microwave-assisted extraction (MAE) processing parameters-such as ethanol concentration, solvent/solid ratio, extraction temperature, microwave irradiation power, and irradiation time-were evaluated. Using 1g of material with 8 mL of 70% aqueous ethanol and an extraction time of 10 min at 70 °C under irradiation power 400W provided optimal extraction conditions. Compared with the conventional extraction techniques, including heat reflux extraction (HRE), Soxhlet extraction (SE), and ultrasonic extraction (UE), MAE produced higher extraction efficiency under a lower extraction time. DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4 H -pyran-4-one) saponin can be degraded to structurally stable saponin B by the loss of its DDMP group. The influence of pH and the concentration of potassium hydroxide on transformation efficiency of the target compound was investigated. A solution of 0.25 M potassium hydroxide in 75% aqueous ethanol was suitable for converting the corresponding DDMP saponins of chickpeasaponin B1. The implementation by the combining MAE technique and alkaline hydrolysis method for preparing chickpeasaponin B1 provides a convenient technology for future applications.

  15. L-Asparaginase Synthesis by Erwinia aroideae

    PubMed Central

    Liu, F. S.; Zajic, J. E.

    1972-01-01

    Maximum L-asparaginase activity was obtained when 1.0% lactose and 1.5% yeast extract were supplied as carbon and nitrogen sources, respectively. Glucose inhibited the enzyme formation. The diauxie phenomenon was observed with Erwinia aroideae NRRL B-138 grown in a medium containing glucose and lactose. PMID:5021978

  16. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    NASA Technical Reports Server (NTRS)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  17. An N-terminal fragment of yeast ribosomal protein L3 inhibits the cytotoxicity of pokeweed antiviral protein in Saccharomyces cerevisiae.

    PubMed

    Di, Rong; Tumer, Nilgun E

    2014-04-11

    We have previously shown that ribosomal protein L3 is required for pokeweed antiviral protein (PAP), a type I ribosome inactivating protein, to bind to ribosomes and depurinate the α-sarcin/ricin loop (SRL) in yeast. Co-expression of the N-terminal 99 amino acids of yeast L3 (L3Δ99) with PAP in transgenic tobacco plants completely abolished the toxicity of PAP. In this study, we investigated the interaction between PAP and L3Δ99 in Saccharomyces cerevisiae. Yeast cells co-transformed with PAP and L3Δ99 showed markedly reduced growth inhibition and reduced rRNA depurination by PAP, compared to cells transformed with PAP alone. Co-transformation of yeast with PAP and L3Δ21 corresponding to the highly conserved N-terminal 21 amino acids of L3Δ99, reduced the cytotoxicity of PAP. PAP mRNA and protein levels were elevated and L3Δ99 or L3Δ21 mRNA and protein levels were reduced in yeast co-transformed with PAP and L3Δ99 or with PAP and L3Δ21, respectively. PAP interacted with L3Δ21 in yeast cells in vivo and by Biacore analysis in vitro, suggesting that the interaction between L3Δ21 and PAP may inhibit PAP-mediated depurination of the SRL, leading to a reduction in the cytotoxicity of PAP.

  18. Taggiasca extra virgin olive oil colonization by yeasts during the extraction process.

    PubMed

    Ciafardini, G; Cioccia, G; Zullo, B A

    2017-04-01

    The opalescent appearance of the newly produced olive oil is due to the presence of solid particles and microdrops of vegetation water in which the microorganisms from the olives' carposphere are trapped. Present research has demonstrated that the microbiota of the fresh extracted olive oil, produced in the mills, is mainly composed of yeasts and to a lesser extent of molds. The close link between the composition of the microbiota of the olives' carposphere undergoing to processing, and that of the microbiota of the newly produced olive oil, concerns only the yeasts and molds, given that the bacterial component is by and large destroyed mainly in the kneaded paste during the malaxation process. Six physiologically homogenous yeast groups were highlighted in the wash water, kneaded paste and newly produced olive oil from the Taggiasca variety which had been collected in mills located in the Liguria region. The more predominant yeasts of each group belonged to a single species called respectively: Kluyveromyces marxianus, Candida oleophila, Candida diddensiae, Candida norvegica, Wickerhamomyces anomalus and Debaryomyces hansenii. Apart from K. marxianus, which was found only in the wash water, all the other species were found in the wash water and in the kneaded paste as well as in the newly produced olive oil, while in the six-month stored olive oil, was found only one physiologically homogeneous group of yeast represented by the W. anomalus specie. These findings in according to our previous studies carried out on other types of mono varietal olive oils, confirms that the habitat of the Taggiascas' extra virgin olive oil, had a strong selective pressure on the yeast biota, allowing only to a few member of yeast species, contaminating the fresh product, to survive and reproduce in it during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.

    PubMed

    Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond

    2004-12-01

    A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.

  20. Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach.

    PubMed

    Yellapu, Sravan Kumar; Bezawada, Jyothi; Kaur, Rajwinder; Kuttiraja, Mathiazhakan; Tyagi, Rajeshwar D

    2016-10-01

    The lipid extraction from the microbial biomass is a tedious and high cost dependent process. In the present study, detergent assisted lipids extraction from the culture of the yeast Yarrowia lipolytica SKY-7 was carried out. Response surface methodology (RSM) was used to investigate the effect of three principle parameters (N-LS concentration, time and temperature) on microbial lipid extraction efficiency % (w/w). The results obtained by statistical analysis showed that the quadratic model fits in all cases. Maximum lipid recovery of 95.3±0.3% w/w was obtained at the optimum level of process variables [N-LS concentration 24.42mg (equal to 48mgN-LS/g dry biomass), treatment time 8.8min and reaction temperature 30.2°C]. Whereas the conventional chloroform and methanol extraction to achieve total lipid recovery required 12h at 60°C. The study confirmed that oleaginous yeast biomass treatment with N-lauroyl sarcosine would be a promising approach for industrial scale microbial lipid recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Acceleration of yoghurt fermentation time by yeast extract and partial characterisation of the active components.

    PubMed

    Smith, Esti-Andrine; Myburgh, Jacobus; Osthoff, Gernot; de Wit, Maryna

    2014-11-01

    Water soluble autolysate of yeast, usually utilised for microbial growth support, was used as additive in yoghurt fermentation. The yeast extract (YE) resulted in a decrease of fermentation time by 21% to reach a pH of 4·6. However, the YE resulted in unacceptable flavour and taste. By size exclusion chromatography, a fraction of the YE was obtained that could account for the observed 21% decrease in fermentation time. The fraction contained molecules of low molecular weight, consisting of minerals, free amino acids and peptides. The acceleration of the yoghurt fermentation was ascribed to the short peptides in the fraction. It is proposed that the application of this extract in industrial yoghurt manufacture would result in savings for both the industry and the consumer.

  2. Averrhoa carambola L. peel extract suppresses adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Rashid, Asyifah Mohamed; Lu, Kaihui; Yip, Yew Mun; Zhang, Dawei

    2016-02-01

    Obesity is associated with an increased risk of many chronic diseases. Recently, a growing body of evidence has shown that phytochemicals may inhibit adipogenesis and obesity. In this study, we report for the first time, the ability of Averrhoa carambola L. peel extract commonly known as star fruit (SFP) to effectively suppress adipocyte differentiation in 3T3-L1 preadipocytes and therefore, address it as a potential candidate to treat obesity and its related diseases. (-)-Epicatechin was identified as a bioactive compound likely responsible for this suppression. As the genetic expression studies revealed that the adipogenic activity of SFP extract was due to the simultaneous downregulation of the C/EBPα and PPARγ as well as the upregulation of PPARα receptor genes, a detailed computational docking study was also elucidated to reveal the likely binding mode of (-)-epicatechin to the receptor of interest, accounting for the likely mechanism that results in the overall suppression of adipocyte differentiation.

  3. Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.

    PubMed

    Schnierda, T; Bauer, F F; Divol, B; van Rensburg, E; Görgens, J F

    2014-05-01

    The impact of different nitrogen and carbon sources on biomass production of the non-Saccharomyces wine yeast species Lachancea thermotolerans, Metschnikowia pulcherrima and Issatchenkia orientalis was assessed. Using a molasses-based medium, yeast extract and corn steep liquor as well as ammonium sulphate and di-ammonium phosphate (DAP) as nitrogen sources were compared in shake-flask cultures. A medium with 20 g l⁻¹ sugar (diluted molasses) and 500 mg l⁻¹ total yeast assimilable nitrogen, from yeast extract, gave the highest biomass concentrations and yields. Invertase pretreatment was required for cultures of M. pulcherrima and I. orientalis, and respective biomass yields of 0.7 and 0.8 g g⁻¹ were achieved in aerobic bioreactor cultures. The absence of ethanol production suggested Crabtree-negative behaviour by these yeasts, whereas Crabtree-positive behaviour by L. thermotolerans resulted in ethanol and biomass concentrations of 5.5 and 11.1 g l⁻¹, respectively. Recent studies demonstrate that non-Saccharomyces yeasts confer positive attributes to the final composition of wine. However, optimal process conditions for their biomass production have not been described, thereby limiting commercial application. In this study, industrial media and methods of yeast cultivation were investigated to develop protocols for biomass production of non-Saccharomyces yeast starter cultures for the wine industry. © 2014 The Society for Applied Microbiology.

  4. Seventy day safety assessment of an orally ingested, l-glutamine-containing oat and yeast supplement for horses.

    PubMed

    Lindinger, Michael I; Anderson, Scott C

    2014-10-01

    We describe a safety assessment of an oral supplement designed to nutritionally support the gastrointestinal system of horses. The supplement comprised a mixture of essential (l-threonine) and conditionally essential (l-glutamine) amino acids, polar lipids, oat bran rich in beta glucans and yeast extract. Young (1-2years) horses of both sexes were allocated to control (n=7) and treatment groups (n=7) and studied for 9weeks. Horses in the treatment group received the supplement daily for 8weeks. After 8weeks of supplementation, horses were studied for one additional week. Outcome measures included body mass, weight gain, results of clinical examination, hematology and plasma chemistry. There were no adverse events associated with supplementation and horses in both groups showed normal weight gain, clinical signs, hematology and chemistry. l-Glutamine, which is not yet listed as GRAS, was considered with respect to its potential for nutritional support and safety when ingested orally. It is concluded that this oral supplement, when ingested by horses at twice the recommended daily level, was safe and does not pose a health risk when used in accordance with good feeding practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Processing Preference Toward Object-Extracted Relative Clauses in Mandarin Chinese by L1 and L2 Speakers: An Eye-Tracking Study

    PubMed Central

    Sung, Yao-Ting; Tu, Jung-Yueh; Cha, Jih-Ho; Wu, Ming-Da

    2016-01-01

    The current study employed an eye-movement technique with an attempt to explore the reading patterns for the two types of Chinese relative clauses, subject-extracted relative clauses (SRCs) and object-extracted relative clauses (ORCs), by native speakers (L1), and Japanese learners (L2) of Chinese. The data were analyzed in terms of gaze duration, regression path duration, and regression rate on the two critical regions, head noun, and embedded verb. The results indicated that both the L1 and L2 participants spent less time on the head nouns in ORCs than in SRCs. Also, the L2 participants spent less time on the embedded verbs in ORCs than in SRCs and their regression rate for embedded verbs was generally lower in ORCs than in SRC. The findings showed that the participants experienced less processing difficulty in ORCs than SRCs. These results suggest an ORC preference in L1 and L2 speakers of Chinese, which provides evidence in support of linear distance hypothesis and implies that the syntactic nature of Chinese is at play in the RC processing. PMID:26834677

  6. Antioxidant activities of methanol extract of Sambucus ebulus L. flower.

    PubMed

    Ebrahimzadeh, M A; Nabavi, S F; Nabavi, S M

    2009-03-01

    In this study antioxidant activity of methanol extract of Sambucus ebulus L. flower was investigated employing various in vitro assay systems, i.e., DPPH and nitric oxide radical scavenging, hydrogen peroxide scavenging, reducing power, iron ion chelating power and linoleic acid. IC50 for DPPH radical-scavenging activity was 228 +/- 12 microg mL(-1). The extract showed very high activity in the reducing power assay that was comparable with positive control, vitamin C. The extract showed good nitric oxide-scavenging activity (IC50 = 309 +/- 14 microg mL(-1). It was found that antioxidant activity was dose dependent i.e., activity was increased with the increase of their concentrations. The extract showed very weak activity in iron ion chelating (IC50 = 1.3 +/- 0.07 mg mL(-1)). It is showed very good activity in scavenging of hydrogen'peroxide. IC50 for scavenging of extract was 59.5 +/- 3.3 mcirog mL(-1). The extracts exhibited no activity in linoleic acid model. The total phenolic content of flower was 56.3 +/- 2.81 mg gallic acid equivalent g(-1) of extract powder and total flavonoid content was 14.5 +/- 0.72 mg quercetin equivalent g(-1) of extract powder by reference to standard curve.

  7. Malolactic bioconversion using a Oenococcus oeni strain for cider production: effect of yeast extract supplementation.

    PubMed

    Herrero, Mónica; García, Luis A; Díaz, Mario

    2003-12-01

    Yeast extract addition to reconstituted apple juice had a positive impact on the development of the malolactic starter culture used to ensure malolactic fermentation in cider, using active but non-proliferating cells. In this work, the reuse of fermentation lees from cider is proposed as an alternative to the use of commercial yeast extract products. Malolactic enzymatic assays, both in whole cells and cell-free extracts, were carried out to determine the best time to harvest cells for use as an inoculum in cider. Cells harvested at the late exponential phase, the physiological stage of growth corresponding to the maximum values of specific malolactic activity, achieved a good rate of malic acid degradation in controlled cider fermentation. Under the laboratory conditions used, malic acid degradation rates in the fermentation media turned out to be near 2.0 and 2.5 times lower, compared with the rates obtained in whole-cell enzymatic assays, as useful data applicable to industrial cider production.

  8. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha.

    PubMed

    Kata, Iwona; Semkiv, Marta V; Ruchala, Justyna; Dmytruk, Kostyantyn V; Sibirny, Andriy A

    2016-08-01

    Conversion of byproduct from biodiesel production glycerol to high-value compounds is of great importance. Ethanol is considered a promising product of glycerol bioconversion. The methylotrophic thermotolerant yeast Ogataea (Hansenula) polymorpha is of great interest for this purpose as the glycerol byproduct contains methanol and heavy metals as contaminants, and this yeast utilizes methanol and is relatively resistant to heavy metals. Besides, O. polymorpha shows robust growth on glycerol and produces ethanol from various carbon sources. The thermotolerance of this yeast is an additional advantage, allowing increased fermentation temperature to 45-48 °C, leading to increased rate of the fermentation process and a fall in the cost of distillation. The wild-type strain of O. polymorpha produces insignificant amounts of ethanol from glycerol (0.8 g/l). Overexpression of PDC1 coding for pyruvate decarboxylase enhanced ethanol production up to 3.1 g/l, whereas simultaneous overexpression of PDC1 and ADH1 (coding for alcohol dehydrogenase) led to further increase in ethanol production from glycerol. Moreover, the increased temperature of fermentation up to 45 °C stimulated the production of ethanol from glycerol used as the only carbon source up to 5.0 g/l, which exceeds the data obtained by methylotrophic yeast strains reported so far. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Relationships and Evolution of Double-Stranded RNA Totiviruses of Yeasts Inferred from Analysis of L-A-2 and L-BC Variants in Wine Yeast Strain Populations

    PubMed Central

    Rodríguez-Cousiño, Nieves

    2016-01-01

    ABSTRACT Saccharomyces cerevisiae killer strains secrete a protein toxin active on nonkiller strains of the same (or other) yeast species. Different killer toxins, K1, K2, K28, and Klus, have been described. Each toxin is encoded by a medium-size (1.5- to 2.3-kb) M double-stranded RNA (dsRNA) located in the cytoplasm. M dsRNAs require L-A helper virus for maintenance. L-A belongs to the Totiviridae family, and its dsRNA genome of 4.6 kb codes for the major capsid protein Gag and a minor Gag-Pol protein, which form the virions that separately encapsidate L-A or the M satellites. Different L-A variants exist in nature; on average, 24% of their nucleotides are different. Previously, we reported that L-A-lus was specifically associated with Mlus, suggesting coevolution, and proposed a role of the toxin-encoding M dsRNAs in the appearance of new L-A variants. Here we confirm this by analyzing the helper virus in K2 killer wine strains, which we named L-A-2. L-A-2 is required for M2 maintenance, and neither L-A nor L-A-lus shows helper activity for M2 in the same genetic background. This requirement is overcome when coat proteins are provided in large amounts by a vector or in ski mutants. The genome of another totivirus, L-BC, frequently accompanying L-A in the same cells shows a lower degree of variation than does L-A (about 10% of nucleotides are different). Although L-BC has no helper activity for M dsRNAs, distinct L-BC variants are associated with a particular killer strain. The so-called L-BC-lus (in Klus strains) and L-BC-2 (in K2 strains) are analyzed. IMPORTANCE Killer strains of S. cerevisiae secrete protein toxins that kill nonkiller yeasts. The “killer phenomenon” depends on two dsRNA viruses: L-A and M. M encodes the toxin, and L-A, the helper virus, provides the capsids for both viruses. Different killer toxins exist: K1, K2, K28, and Klus, encoded on different M viruses. Our data indicate that each M dsRNA depends on a specific helper virus; these

  10. Vaccinium corymbosum L. (blueberry) extracts exhibit protective action against cadmium toxicity in Saccharomyces cerevisiae cells.

    PubMed

    Oprea, Eliza; Ruta, Lavinia L; Nicolau, Ioana; Popa, Claudia V; Neagoe, Aurora D; Farcasanu, Ileana C

    2014-01-01

    Blueberries (Vaccinium corymbosum L.) are a rich source of antioxidants and their consumption is believed to contribute to food-related protection against oxidative stress. In the present study, the chemoprotective action of blueberry extracts against cadmium toxicity was investigated using a cadmium-hypersensitive strain of Saccharomyces cerevisiae. Four varieties of blueberries were used in the study, and it was found that the extracts with high content of total anthocyanidins exhibited significant protective effect against the toxicity of cadmium and H2O2. Both the blueberry extracts and pure cyanidin exhibited protective effects against cadmium in a dose-dependent manner, but without significantly interfering with the cadmium accumulation by the yeast cells. The results imply that the blueberry extracts might be a potentially valuable food supplement for individuals exposed to high cadmium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Enzymatic extraction of pectin from artichoke (Cynara scolymus L.) by-products using Celluclast®1.5L.

    PubMed

    Sabater, Carlos; Corzo, Nieves; Olano, Agustín; Montilla, Antonia

    2018-06-15

    The aim of this study was to optimise pectin extraction from artichoke by-products with Celluclast ® 1.5L using an experimental design analysed by response-surface methodology (RSM). The variables optimised were artichoke by-product powder concentration (2-7%, X 1 ), enzyme dose (2.2-13.3 U g -1 , X 2 ) and extraction time (6-24 h, X 3 ). The variables studied were galacturonic acid (GalA) (R 2 93.9) and pectic neutral sugars (R 2 92.8) content and pectin yield (R 2 88.6). In the optimum extraction conditions (X 1  = 6.5%; X 2  = 10.1 U g -1 ; X 3  = 27.2 h), pectin yield was 176 mgg -1 dry matter (DM). Considering 27.2 h of treatment as the +α value given by the design, the extraction time was increased up to 48 h obtaining a yield of 221 mg g -1 DM. The enzymatic method optimised allows obtaining artichoke pectin with good yield, high GalA (720 mg g -1 DM) and arabinose (127.6mgg -1 DM) contents and degree of methylation of 19.5%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. An Online Respiratory Quotient-Feedback Strategy of Feeding Yeast Extract for Efficient Arachidonic Acid Production by Mortierella alpina

    PubMed Central

    Li, Xiangyu; Yu, Chao; Yao, Jianming; Wang, Zhiming; Lu, Shuhuan

    2018-01-01

    Mortierella alpina (M. alpina) is well known for arachidonic acid (ARA) production. However, low efficiency and unstableness are long existed problems for industrial production of ARA by M. alpina due to the lack of online regulations. The aim of the present work is to develop an online-regulation strategy for efficient and stable ARA production in industry. The strategy was developed in 50 L fermenters and then applied in a 200 m3 fermenter. Results indicated that yeast extract (YE) highly increased cell growth in shake flask, it was then used in bioreactor fermentation by various feeding strategies. Feeding YE to control respiratory quotient (RQ) at 1.1 during 0–48 h and at 1.5 during 48–160 h, dry cell weight, and ARA titer reached 53.1 and 11.49 g/L in 50 L fermenter, which were increased by 79.4 and 36.9% as compared to that without YE feeding, respectively. Then, the online RQ-feedback strategy was applied in 200 m3 bioreactor fermentation and an average ARA titer of 16.82 g/L was obtained from 12 batches, which was 41.0% higher than the control batches. This is the first report on successful application of online RQ-feedback control of YE in ARA production, especially in an industrial scale of 200 m3 fermentation. It could be applied to other industrial production of microbial oil by oleaginous microorganisms. PMID:29404320

  13. Application of proanthocyanidins from peanut skins as a natural yeast inhibitory agent.

    PubMed

    Sarnoski, Paul J; Boyer, Renee R; O'Keefe, Sean F

    2012-04-01

    Proanthocyanidins were extracted from peanut skins and investigated for their antimicrobial activity against Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Zygosaccharomyces bisporus in traditional growth media (Sabouraud Dextrose and Maltose broth) and a simulated apple juice beverage. Peanut skins extracts (PSE) were prepared through a multisolvent extraction procedure. The PSE extended the lag phase growth of the 3 yeasts studied at a concentration of 1 mg/mL and at 10 mg/mL yeast growth was totally inhibited for 120 h. PSE was fractionated by normal phase high performance liquid chromatography and the active components/fractions were determined. Compounds present in the fractions were identified by liquid chromatography-mass spectrometry to determine the compounds responsible for inhibition. Fractions consisting mostly of A-type proanthocyanidin dimers, trimers, and tetramers showed the highest percent inhibition toward the yeasts tested in this study. Both optical density (OD) and standard enumeration plating methods were performed in this study. The OD method led to an overestimation of the inhibitory effects of PSE, the 2 methods agreed in respect to treatment effects but not the severity of the inhibition. There is a growing consumer demand for "fresh like" products containing reduced amounts of chemical preservatives without compromising food safety and quality. Therefore, the goal of this study was to determine if an extract of peanut skins containing flavonoid rich compounds could function as a natural antimicrobial in a model beverage system. Proteins were removed through the process of producing the peanut skin extract, thus it is unlikely to contain peanut allergens. The antimicrobial compounds mentioned in this study were successfully integrated into a model beverage system, and were found to have antimicrobial effect. However, the incorporation of these compounds would likely lead to negative sensory attributes at the concentration needed

  14. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hydrolysate from Saccharomyces cerevisiae on all food commodities when applied/used for the management of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from...

  15. Identification of superior lipid producing Lipomyces and Myxozyma yeasts

    USDA-ARS?s Scientific Manuscript database

    Oleaginous yeasts are of interest for production of single cell oils from sugars. Here 17 members of the Lipomyces and Myxozyma clade were screened for lipid production when cultured on glucose. The highest ranking yeasts included L. tetrasporus (21 g/l), L. kononenkoae (19.6 g/l), and L. lipofer (1...

  16. Improvement of growth, fermentative efficiency and ethanol tolerance of Kloeckera africana during the fermentation of Agave tequilana juice by addition of yeast extract.

    PubMed

    Díaz-Montaño, Dulce M; Favela-Torres, Ernesto; Córdova, Jesus

    2010-01-30

    The aim of this work was to improve the productivity and yield of tequila fermentation and to propose the use of a recently isolated non-Saccharomyces yeast in order to obtain a greater diversity of flavour and aroma of the beverage. For that, the effects of the addition of different nitrogen (N) sources to Agave tequilana juice on the growth, fermentative capacity and ethanol tolerance of Kloeckera africana and Saccharomyces cerevisiae were studied and compared. Kloeckera africana K1 and S. cerevisiae S1 were cultured in A. tequilana juice supplemented with ammonium sulfate, diammonium phosphate or yeast extract. Kloeckera africana did not assimilate inorganic N sources, while S. cerevisiae utilised any N source. Yeast extract stimulated the growth, fermentative capacity and alcohol tolerance of K. africana, giving kinetic parameter values similar to those calculated for S. cerevisiae. This study revealed the importance of supplementing A. tequilana juice with a convenient N source to achieve fast and complete conversion of sugars in ethanol, particularly in the case of K. africana. This yeast exhibited similar growth and fermentative capacity to S. cerevisiae. The utilisation of K. africana in the tequila industry is promising because of its variety of synthesised aromatic compounds, which would enrich the attributes of this beverage. (c) 2009 Society of Chemical Industry.

  17. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii.

    PubMed

    Di Rienzi, Sara C; Lindstrom, Kimberly C; Lancaster, Ragina; Rolczynski, Lisa; Raghuraman, M K; Brewer, Bonita J

    2011-02-01

    Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution. 2010 John Wiley & Sons, Ltd.

  18. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii

    PubMed Central

    Di Rienzi, Sara C.; Lindstrom, Kimberly C.; Lancaster, Ragina; Rolczynski, Lisa; Raghuraman, M. K.; Brewer, Bonita J.

    2011-01-01

    Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution. PMID:21246627

  19. Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice.

    PubMed

    Díaz-Nava, L E; Montes-Garcia, N; Domínguez, J M; Aguilar-Uscanga, M G

    2017-07-01

    The importance of non-Saccharomyces yeast species in fermentation processes is widely acknowledged. Within this group, Pichia kudriavzevii ITV-S42 yeast strain shows particularly desirable characteristics for ethanol production. Despite this fact, a thorough study of the metabolic and kinetic characteristics of this strain is currently unavailable. The aim of this work is to study the nutritional requirements of Pichia kudriavzevii ITV-S42 strain and the effect of different carbon sources on the growth and ethanol production. Results showed that glucose and fructose were both assimilated and fermented, achieving biomass and ethanol yields of 0.37 and 0.32 gg -1 , respectively. Glycerol was assimilated but not fermented; achieving a biomass yield of 0.88 gg -1 . Xylose and sucrose were not metabolized by the yeast strain. Finally, the use of a culture medium enriched with salts and yeast extract favored glucose consumption both for growth and ethanol production, improving ethanol tolerance reported for this genre (35 g L -1 ) to 90 g L -1 maximum ethanol concentration (over 100%). Furthermore Pichia kudriavzevii ITV-S42 maintained its fermentative capacity up to 200 g L -1 initial glucose, demonstrating that this yeast is osmotolerant.

  20. Effects of different yeast cell wall supplements added to maize- or wheat-based diets for broiler chickens.

    PubMed

    Morales-López, R; Auclair, E; Van Immerseel, F; Ducatelle, R; García, F; Brufau, J

    2010-06-01

    1. Three experiments were carried out to study the effects of two experimental yeast cell wall (YCW) supplements, one from the yeast extract industry and the other from the brewery industry, added to maize or wheat based-diets, on performance and intestinal parameters of broiler chickens (Ross 308). 2. In the first and second experiments, a completely randomised block design with 4 experimental treatments was used: T-1) Negative control, no additives T-2) Positive control, avilamycin group (10 mg/kg feed), T-3) Yeast extract-YCW (500 mg/kg), and T-4) Brewery-YCW (500 mg/kg feed). There were 6 replicates of 20 (experiment 1) and 22 (experiment 2) chicks per treatment. 3. In experiment 1 (wheat based diets), yeast extract-YCW increased BW and daily feed intake (42 d). The effects were comparable to those of avilamycin. In experiment 2 (maize based diet), avilamycin, yeast extract-YCW and brewery-YCW treatments improved the feed conversion ratio with respect to the negative control group (0 to 14 d). 4. At 24 d, in both experiments, the ileal nutrient digestibility and ileal bacterial counts were not affected by any experimental treatment. In maize diets, lower intestinal viscosity was obtained with avilamycin, yeast extract-YCW and brewery-YCW than with the negative control. In wheat diets, yeast extract-YCW and brewery-YCW reduced intestinal viscosity. 5. A third experiment was conducted to study the effect of yeast extract-YCW on animal performance, intestinal mucosa morphology and intestinal viscosity. A 2 x 2 factorial arrangement of treatments was used; one factor was the dietary yeast extract-YCW supplementation (0 or 500 mg/kg feed) and the other the cereal in the diet (maize or wheat). 6. At 43 d, the heaviest BW was in chickens fed on yeast extract-YCW compared to those given the negative control. At 22 d, yeast extract-YCW increased villus height, mucus thickness and number of goblet cells with respect to negative control. 7. Results of these experiments

  1. L-carnosine enhanced reproductive potential of the Saccharomyces cerevisiae yeast growing on medium containing glucose as a source of carbon.

    PubMed

    Kwolek-Mirek, Magdalena; Molon, Mateusz; Kaszycki, Pawel; Zadrag-Tecza, Renata

    2016-08-01

    Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine, which occurs in vertebrates, including humans. It has a number of favorable properties including buffering, chelating, antioxidant, anti-glycation and anti-aging activities. In our study we used the Saccharomyces cerevisiae yeast as a model organism to examine the impact of L-carnosine on the cell lifespan. We demonstrated that L-carnosine slowed down the growth and decreased the metabolic activity of cells as well as prolonged their generation time. On the other hand, it allowed for enhancement of the yeast reproductive potential and extended its reproductive lifespan. These changes may be a result of the reduced mitochondrial membrane potential and decreased ATP content in the yeast cells. However, due to reduction of the post-reproductive lifespan, L-carnosine did not have an influence on the total lifespan of yeast. In conclusion, L-carnosine does not extend the total lifespan of S. cerevisiae but rather it increases the yeast's reproductive capacity by increasing the number of daughter cells produced.

  2. Directed evolution for improved secretion of cancer-testis antigen NY-ESO-1 from yeast.

    PubMed

    Piatesi, Andrea; Howland, Shanshan W; Rakestraw, James A; Renner, Christoph; Robson, Neil; Cebon, Jonathan; Maraskovsky, Eugene; Ritter, Gerd; Old, Lloyd; Wittrup, K Dane

    2006-08-01

    NY-ESO-1 is a highly immunogenic tumor antigen and a promising vaccine candidate in cancer immunotherapy. Access to purified protein both for vaccine formulations and for monitoring antigen-specific immune responses is vital to vaccine development. Currently available recombinant Escherichia coli-derived NY-ESO-1 is isolated from inclusion bodies as a complex protein mixture and efforts to improve the purity of this antigen are required, especially for later-stage clinical trials. Using yeast cell surface display and fluorescence activated cell sorting techniques, we have engineered an NY-ESO-1 variant (NY-ESO-L5; C(75)A C(76)A C(78)A L(153)H) with a 100x improved display level on yeast compared to the wild-type protein. This mutant can be effectively produced as an Aga2p-fusion and purified in soluble form directly from the yeast cell wall. In the process, we have identified the epitope recognized by anti-NY-ESO-1 mAb E978 (79-87, GARGPESRL). The availability of an alternative expression host for this important antigen will help avoid artifactual false positive tests of patient immune response due to reaction against expression-host-specific contaminants.

  3. Producing aglycons of ginsenosides in bakers' yeast

    PubMed Central

    Dai, Zhubo; Wang, Beibei; Liu, Yi; Shi, Mingyu; Wang, Dong; Zhang, Xianan; Liu, Tao; Huang, Luqi; Zhang, Xueli

    2014-01-01

    Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal plant that exhibits diverse pharmacological activities. Protopanaxadiol, protopanaxatriol and oleanolic acid are three basic aglycons of ginsenosides. Producing aglycons of ginsenosides in Saccharomyces cerevisiae was realized in this work and provides an alternative route compared to traditional extraction methods. Synthetic pathways of these three aglycons were constructed in S. cerevisiae by introducing β-amyrin synthase, oleanolic acid synthase, dammarenediol-II synthase, protopanaxadiol synthase, protopanaxatriol synthase and NADPH-cytochrome P450 reductase from different plants. In addition, a truncated 3-hydroxy-3-methylglutaryl-CoA reductase, squalene synthase and 2,3-oxidosqualene synthase genes were overexpressed to increase the precursor supply for improving aglycon production. Strain GY-1 was obtained, which produced 17.2 mg/L protopanaxadiol, 15.9 mg/L protopanaxatriol and 21.4 mg/L oleanolic acid. The yeast strains engineered in this work can serve as the basis for creating an alternative way for producing ginsenosides in place of extractions from plant sources. PMID:24424342

  4. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction.

    PubMed

    Chenni, Mohammed; El Abed, Douniazad; Rakotomanomana, Njara; Fernandez, Xavier; Chemat, Farid

    2016-01-19

    Solvent-free microwave extraction (SFME) and conventional hydro-distillation (HD) were used for the extraction of essential oils (EOs) from Egyptian sweet basil (Ocimum basilicum L.) leaves. The two resulting EOs were compared with regards to their chemical composition, antioxidant, and antimicrobial activities. The EO analyzed by GC and GC-MS, presented 65 compounds constituting 99.3% and 99.0% of the total oils obtained by SFME and HD, respectively. The main components of both oils were linalool (43.5% SFME; 48.4% HD), followed by methyl chavicol (13.3% SFME; 14.3% HD) and 1,8-cineole (6.8% SFME; 7.3% HD). Their antioxidant activity were studied with the 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical scavenging method. The heating conditions effect was evaluated by the determination of the Total Polar Materials (TPM) content. The antimicrobial activity was investigated against five microorganisms: two Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and one yeast, Candida albicans. Both EOs showed high antimicrobial, but weak antioxidant, activities. The results indicated that the SFME method may be a better alternative for the extraction of EO from O. basilicum since it could be considered as providing a richer source of natural antioxidants, as well as strong antimicrobial agents for food preservation.

  5. Boosting accumulation of neutral lipids in Rhodosporidium kratochvilovae HIMPA1 grown on hemp (Cannabis sativa Linn) seed aqueous extract as feedstock for biodiesel production.

    PubMed

    Patel, Alok; Pravez, Mohammad; Deeba, Farha; Pruthi, Vikas; Singh, Rajesh P; Pruthi, Parul A

    2014-08-01

    Hemp seeds aqueous extract (HSAE) was used as cheap renewable feedstocks to grow novel oleaginous yeast Rhodosporidium kratochvilovae HIMPA1 isolated from Himalayan permafrost soil. The yeast showed boosted triglyceride (TAG) accumulation in the lipid droplets (LDs) which were transesterified to biodiesel. The sonicated HSAE prepared lacked toxic inhibitors and showed enhanced total lipid content and lipid yield 55.56%, 8.39±0.57g/l in comparison to 41.92%, 6.2±0.8g/l from industrially used glucose synthetic medium, respectively. Supersized LDs (5.95±1.02μm) accumulated maximum TAG in sonicated HSAE grown cells were visualized by fluorescent BODIPY (505/515nm) stain. GC-MS analysis revealed unique longer carbon chain FAME profile containing Arachidic acid (C20:0) 5%, Behenic acid (C22:0) 9.7%, Heptacosanoic acid (C27:0) 14.98%, for the first time in this yeast when grown on industrially competent sonicated HSAE, showing more similarity to algal oils. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  6. A transmission electron microscopy study of the diversity of Candida albicans cells induced by Euphorbia hirta L. leaf extract in vitro

    PubMed Central

    Basma, Abu Arra; Zuraini, Zakaria; Sasidharan, Sreenivasan

    2011-01-01

    Objective To determine the major changes in the microstructure of Candida albicans (C. albicans) after treatment with Euphorbia hirta (E. hirta) L. leaf extract. Methods Transmission electron microscopy was used to study the ultrastructural changes caused by E. hirta extract on C. albicans cells at various exposure time. Results It was found that the main abnormalities were the alterations in morphology, lysis and complete collapse of the yeast cells after 36 h of exposure to the extract. Whereas the control cultures showed a typical morphology of Candida with a uniform central density, typically structured nucleus, and a cytoplasm with several elements of endomembrane system and enveloped by a regular, intact cell wall. Conclusions The significant antifungal activity shown by this methanol extract of E. hirta L. suggests its potential against infections caused by C. albicans. The extract may be developed as an anticandidal agent. PMID:23569719

  7. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    NASA Astrophysics Data System (ADS)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  8. A human papillomavirus type 16 vaccine by oral delivery of L1 protein.

    PubMed

    Sasagawa, Toshiyuki; Tani, Mayuko; Basha, Walid; Rose, Robert C; Tohda, Hideki; Giga-Hama, Yuko; Azar, Khadijeh K; Yasuda, Hideyo; Sakai, Akemi; Inoue, Masaki

    2005-06-01

    To establish an edible HPV16 vaccine, we constructed a recombinant HPV16 L1-expressing Schizosaccharomyces pombe yeast strain (HPV16L1 yeast). A preliminary study revealed that freeze-dried yeast cells could be delivered safely, and were digested in the mouse intestine. The freeze-dried HPV16 L1 yeast was administered orally as an edible vaccine, with or without the mucosal adjuvant heat-labile toxin LT (R192G), to 18 female BALB/c mice. After the third immunization, none of the mice that received the edible HPV16 vaccine showed specific antibody responses, whereas all of the positive controls that were administered intranasally with 5 microg of HPV16-virus-like particles (VLP) had serum IgG, and genital IgA and IgG that reacted with HPV16-VLP in enzyme-linked immunosorbent assays (ELISAs). When a suboptimal dose (1 microg) of HPV16-VLP was administered to all the mice, including the negative control mice, 50% of the mice that were pre-immunized with the edible HPV16 vaccine showed positive serum IgG responses, while none of the negative controls showed any response. Vaginal IgG and IgA antibodies were also elicited in 33 and 39%, respectively, of the mice that were given with the edible HPV16 vaccine and the intranasal boost. All of the antibodies reacted more strongly to intact HPV16-VLP than to denatured HPV16-L1 protein suggesting that the edible vaccine primes for antibody responses against conformation-dependent epitopes. The inclusion of adjuvant in the vaccine formulation marginally increased the genital IgA response (P=0.06). HPV16-L1 protein in the yeast might induce tolerance in the vaccinated animals that could be recovered by intranasal boosting with a suboptimal dose of HPV-VLP. This freeze-dried yeast system may be useful as an oral delivery of HPV 16 L1 protein.

  9. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1.

    PubMed

    Bovo, Fernanda; Franco, Larissa Tuanny; Rosim, Roice Eliana; Barbalho, Ricardo; de Oliveira, Carlos Augusto Fernandes

    2015-06-01

    This study aimed to verify the in vitro ability of beer fermentation residue (BFR) containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1) from a citrate-phosphate buffer solution (CPBS). BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p < 0.05) of AFB1 binding at both pH values were achieved with products containing hydrolyzed yeast cells or yeast cell walls rather than intact cells. The AFB1 binding percentages of BFR were 55.0 ± 5.0% at pH 3.0 and 49.2 ± 4.5% at pH 6.0, which was not significantly different (p > 0.05) from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins.

  10. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1

    PubMed Central

    Bovo, Fernanda; Franco, Larissa Tuanny; Rosim, Roice Eliana; Barbalho, Ricardo; de Oliveira, Carlos Augusto Fernandes

    2015-01-01

    This study aimed to verify the in vitro ability of beer fermentation residue (BFR) containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1) from a citrate-phosphate buffer solution (CPBS). BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p < 0.05) of AFB1 binding at both pH values were achieved with products containing hydrolyzed yeast cells or yeast cell walls rather than intact cells. The AFB1 binding percentages of BFR were 55.0 ± 5.0% at pH 3.0 and 49.2 ± 4.5% at pH 6.0, which was not significantly different (p > 0.05) from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins. PMID:26273277

  11. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

    PubMed

    López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús

    2012-05-01

    In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Coffee extract inhibits adipogenesis in 3T3-L1 preadipocyes by interrupting insulin signaling through the downregulation of IRS1

    PubMed Central

    Maki, Chihiro; Funakoshi-Tago, Megumi; Aoyagi, Ryohei; Ueda, Fumihito; Kimura, Masaki; Kobata, Kenji; Tago, Kenji; Tamura, Hiroomi

    2017-01-01

    Although epidemiological data have indicated that a strong negative association exists between coffee consumption and the prevalence of obesity-associated diseases, the molecular mechanisms by which coffee intake prevents obesity-associated diseases has not yet been elucidated. In this study, we found that coffee intake significantly suppressed high-fat diet (HFD)-induced metabolic alternations such as increases in body weight and the accumulation of adipose tissue, and up-regulation of glucose, free fatty acid, total cholesterol and insulin levels in the blood. We also found that coffee extract significantly inhibited adipogenesis in 3T3-L1 preadipocytes. In the early phase of adipogenesis, 3T3-L1 cells treated with coffee extract displayed the retardation of cell cycle entry into the G2/M phase called as mitotic clonal expansion (MCE). Coffee extract also inhibited the activation of CCAAT/enhancer-binding protein β (C/EBPβ) by preventing its phosphorylation by ERK. Furthermore, the coffee extract suppressed the adipogenesis-related events such as MCE and C/EBPβ activation through the down-regulation of insulin receptor substrate 1 (IRS1). The stability of the IRS1 protein was markedly decreased by the treatment with coffee extract due to proteasomal degradation. These results have revealed an anti-adipogenic function for coffee intake and identified IRS1 as a novel target for coffee extract in adipogenesis. PMID:28282409

  13. Coffee extract inhibits adipogenesis in 3T3-L1 preadipocyes by interrupting insulin signaling through the downregulation of IRS1.

    PubMed

    Maki, Chihiro; Funakoshi-Tago, Megumi; Aoyagi, Ryohei; Ueda, Fumihito; Kimura, Masaki; Kobata, Kenji; Tago, Kenji; Tamura, Hiroomi

    2017-01-01

    Although epidemiological data have indicated that a strong negative association exists between coffee consumption and the prevalence of obesity-associated diseases, the molecular mechanisms by which coffee intake prevents obesity-associated diseases has not yet been elucidated. In this study, we found that coffee intake significantly suppressed high-fat diet (HFD)-induced metabolic alternations such as increases in body weight and the accumulation of adipose tissue, and up-regulation of glucose, free fatty acid, total cholesterol and insulin levels in the blood. We also found that coffee extract significantly inhibited adipogenesis in 3T3-L1 preadipocytes. In the early phase of adipogenesis, 3T3-L1 cells treated with coffee extract displayed the retardation of cell cycle entry into the G2/M phase called as mitotic clonal expansion (MCE). Coffee extract also inhibited the activation of CCAAT/enhancer-binding protein β (C/EBPβ) by preventing its phosphorylation by ERK. Furthermore, the coffee extract suppressed the adipogenesis-related events such as MCE and C/EBPβ activation through the down-regulation of insulin receptor substrate 1 (IRS1). The stability of the IRS1 protein was markedly decreased by the treatment with coffee extract due to proteasomal degradation. These results have revealed an anti-adipogenic function for coffee intake and identified IRS1 as a novel target for coffee extract in adipogenesis.

  14. Improvement in extracellular protease production by the marine antarctic yeast Rhodotorula mucilaginosa L7.

    PubMed

    Chaud, Luciana C S; Lario, Luciana D; Bonugli-Santos, Rafaella C; Sette, Lara D; Pessoa Junior, Adalberto; Felipe, Maria das Graças de A

    2016-12-25

    Microorganisms from extreme and restrictive eco systems, such as the Antarctic continent, are of great interest due to their ability to synthesize products of commercial value. Among these, enzymes from psychrotolerant and psychrophilic microorganisms offer potential economical benefits due to their high activity at low and moderate temperatures. The cold adapted yeast Rhodotorula mucilaginosa L7 was selected out of 97 yeasts isolated from Antarctica as having the highest extracellular proteolytic activity in preliminary tests. The present study was aimed at evaluating the effects of nutrient composition (peptone, rice bran extract, ammonium sulfate, sodium chloride) and physicochemical parameters (temperature and pH) on its proteolytic activity. A 2 6-2 fractional factorial design experiment followed by a central composite design (CCD 2 3 ) was performed to optimize the culture conditions and improve the extracellular proteolytic activity. The results indicated that the presence of peptone in the medium was the most influential factor in protease production. Enzymatic activity was enhanced by the interaction between low glucose and peptone concentrations. The optimization of culture conditions with the aid of mathematical modeling enabled a c. 45% increase in proteolytic activity and at the same time reduced the amount of glucose and peptone required for the culture. Thus culture conditions established in this work may be employed in the biotechnological production of this protease. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Polyphenolic content, antiradical activity, stability and microbiological quality of elderberry (Sambucus nigra L.) extracts.

    PubMed

    Pliszka, Barbara

    2017-01-01

    The pharmaceutical and food industries expect detailed knowledge on the physicochemical properties of elderberry fruit extracts, their stability and microbiological quality, as well as the polyphenol content in elderberry cultivars. The characteristics of the extracts might be additionally modified by citric acid, which improves the stability of anthocyanins and protects processed fruits and syrups from pathogenic microorganisms. The choice of the method with citric acid was a consequence of the physicochemical charac teristics of elderberry pigments, which are not stable under the effect of light in alcoholic solutions. The aim of study was to analyze the properties of elderberry fruit extracts regarding polyphenol content and antiradical activity, as well as their stability and microbiological quality. The plant material consisted of fruit from four cultivars (Alleso, Korsor, Sampo, Samyl) of black elderberry (Sambucus nigra L.). The following were determined in fruit extracts: polyphe- nolic content (HPLC), antiradical activity (ABTS and DPPH) and stability and microbiological quality. The HPLC analysis of polyphenols demonstrated that the extracts from fruits collected from cv. Samyl had the highest 3-sambubioside cyanidin content and those from cv. Korsor contained the highest quantity of 3-glucoside cyanidin. The extracts from cv. Sampo fruit had a dominant 3-sambubioside-5-gluco- side cyanidin and 3,5-diglucoside cyanidin content. The highest quercetin (5.92 mg 100 mg-1 of extract) and caffeic acid (1.21 mg 100 mg-1 of extract) content was found in fruit extracts from cv. Alleso. The cultivars Samyl and Korsor had a higher level of anthocyanins and higher antiradical activity (ABTS) in fruit extracts than cv. Alleso and Sampo. The antiradical activity (DPPH) of fruit extracts from elderberry cultivars as- sessed in this research was similar. The degradation index for all fruit extracts was similar (DI = 1.035). The microbiological species detected in

  16. Solving L-L Extraction Problems with Excel Spreadsheet

    ERIC Educational Resources Information Center

    Teppaitoon, Wittaya

    2016-01-01

    This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…

  17. Aqueous Extract of Annona macroprophyllata: A Potential α-Glucosidase Inhibitor

    PubMed Central

    Brindis, F.; González-Trujano, M. E.; González-Andrade, M.; Aguirre-Hernández, E.; Villalobos-Molina, R.

    2013-01-01

    Annona genus contains plants used in folk medicine for the treatment of diabetes. In the present study, an aqueous extract prepared from Annona macroprophyllata (Annonaceae, also known as A. diversifolia) leaves was evaluated on both the activity of yeast α-glucosidase (an in vitro assay) and sucrose tolerance in Wistar rats. The results have shown that the aqueous extract from A. macroprophyllata inhibits the yeast α-glucosidase with an IC50 = 1.18 mg/mL, in a competitive manner with a K i = 0.97 mg/mL, a similar value to that of acarbose (K i = 0.79 mg/mL). The inhibitory activity of A. macroprophyllata was reinforced by its antihyperglycemic effect, at doses of 100, 300, and 500 mg/kg in rats. Chromatographic analysis identified the flavonoids rutin and isoquercitrin in the most polar fractions of A. macroprophyllata crude extract, suggesting that these flavonoids are part of the active constituents in the plant. Our results support the use of A. macroprophyllata in Mexican folk medicine to control postprandial glycemia in people with diabetes mellitus, involving active constituents of flavonoid nature. PMID:24298552

  18. The primary structure of rat liver ribosomal protein L37. Homology with yeast and bacterial ribosomal proteins.

    PubMed

    Lin, A; McNally, J; Wool, I G

    1983-09-10

    The covalent structure of the rat liver 60 S ribosomal subunit protein L37 was determined. Twenty-four tryptic peptides were purified and the sequence of each was established; they accounted for all 111 residues of L37. The sequence of the first 30 residues of L37, obtained previously by automated Edman degradation of the intact protein, provided the alignment of the first 9 tryptic peptides. Three peptides (CN1, CN2, and CN3) were produced by cleavage of protein L37 with cyanogen bromide. The sequence of CN1 (65 residues) was established from the sequence of secondary peptides resulting from cleavage with trypsin and chymotrypsin. The sequence of CN1 in turn served to order tryptic peptides 1 through 14. The sequence of CN2 (15 residues) was determined entirely by a micromanual procedure and allowed the alignment of tryptic peptides 14 through 18. The sequence of the NH2-terminal 28 amino acids of CN3 (31 residues) was determined; in addition the complete sequences of the secondary tryptic and chymotryptic peptides were done. The sequence of CN3 provided the order of tryptic peptides 18 through 24. Thus the sequence of the three cyanogen bromide peptides also accounted for the 111 residues of protein L37. The carboxyl-terminal amino acids were identified after carboxypeptidase A treatment. There is a disulfide bridge between half-cystinyl residues at positions 40 and 69. Rat liver ribosomal protein L37 is homologous with yeast YP55 and with Escherichia coli L34. Moreover, there is a segment of 17 residues in rat L37 that occurs, albeit with modifications, in yeast YP55 and in E. coli S4, L20, and L34.

  19. Dextransucrase production using cashew apple juice as substrate: effect of phosphate and yeast extract addition.

    PubMed

    Chagas, Clarice M A; Honorato, Talita L; Pinto, Gustavo A S; Maia, Geraldo A; Rodrigues, Sueli

    2007-05-01

    Cashew apples are considered agriculture excess in the Brazilian Northeast because cashew trees are cultivated primarily with the aim of cashew nut production. In this work, the use of cashew apple juice as a substrate for Leuconostoc mesenteroides cultivation was investigated. The effect of yeast extract and phosphate addition was evaluated using factorial planning tools. Both phosphate and yeast extract addition were significant factors for biomass growth, but had no significant effect on maximum enzyme activity. The enzyme activities found in cashew apple juice assays were at least 3.5 times higher than the activity found in the synthetic medium. Assays with pH control (pH = 6.5) were also carried out. The pH-controlled fermentation enhanced biomass growth, but decreased the enzyme activity. Crude enzyme free of cells produced using cashew apple juice was stable for 16 h at 30 degrees C at a pH of 5.0.

  20. Antiadopogenic effects of rice hull smoke extract in 3T3-L1 cells

    USDA-ARS?s Scientific Manuscript database

    The present study investigates the inhibitory effects of a rice hull smoke extract (RHSE) against adipogenesis in 3T3-L1 pre-adipocyte cells. At concentrations of 0.1% and 0.5% RHSE, MDI-induced cells were shown to reduce their cellular lipid content by about 72% and 88%, respectively, compared to ...

  1. High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain.

    PubMed

    Coelho, Luciana Fontes; Beitel, Susan Michelz; Sass, Daiane Cristina; Neto, Paulo Marcelo Avila; Contiero, Jonas

    2018-04-01

    Bacillus coagulans arr4 is a thermotolerant microorganism with great biotechnological potential for l-(+)-lactic acid production from granulated sugar and yeast extract. The highest l-(+)-lactic acid production was obtained with Ca(OH) 2 . The maximum production of l-(+)-lactic acid (206.81 g/L) was observed in exponential feeding using granulated sugar solution (900 g/L) and yeast extract (1%) at 50 °C, pH 6.5, and initial granulated sugar concentration of 100 g/L at 39 h. 5.3 g/L h productivity and 97% yield were observed, and no sugar remained. Comparing the simple batch with exponential fed-batch fermentation, the l(+) lactic acid production was improved in 133.22% and dry cell weight was improved in 83.29%, using granulated sugar and yeast extract. This study presents the highest productivity of lactic acid ever observed in the literature, on the fermentation of thermotolerant Bacillus sp. as well as an innovative and high-efficiency purification technology, using low-cost substances as Celite and charcoal. The recovery of lactic acid was 86%, with 100% protein removal, and the fermentation medium (brown color) became a colorless solution.

  2. Antioxidant and mercury chelating activity of Psidium guajava var. pomifera L. leaves hydroalcoholic extract.

    PubMed

    Pinho, Antonio Ivanildo; Oliveira, Cláudia Sirlene; Lovato, Fabricio Luís; Waczuk, Emily Pansera; Piccoli, Bruna Candia; Boligon, Aline Augusti; Leite, Nadghia Figueredo; Coutinho, Henrique Douglas Melo; Posser, Thais; Da Rocha, João Batista Teixeira; Franco, Jeferson Luis

    2017-01-01

    Mercury (Hg) is widely distributed in the environment and is known to produce several adverse effects in organisms. The aim of the present study was to examine the in vitro antioxidant activity and Hg chelating ability of the hydroalcoholic extract of Psidium guajava leaves (HEPG). In addition, the potential protective effects of HEPG against Hg(II) were evaluated using a yeast model (Saccharomyces cerevisiae). HEPG was found to exert significant antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenger and inhibition of lipid peroxidation induced by Fe(II) assays in a concentration-dependent manner. The extract also exhibited significant Hg(II) chelating activity. In yeast, Hg(II) induced a significant decrease in cell viability. In contrast, HEPG partially prevented the fall in cell viability induced by Hg(II). In conclusion, HEPG exhibited protective effects against Hg(II)-mediated toxicity, which may be related to both antioxidant and Hg(II)-chelating activities.

  3. Extraction of nucleic acids from yeast cells and plant tissues using ethanol as medium for sample preservation and cell disruption.

    PubMed

    Linke, Bettina; Schröder, Kersten; Arter, Juliane; Gasperazzo, Tatiana; Woehlecke, Holger; Ehwald, Rudolf

    2010-09-01

    Here we report that dehydrated ethanol is an excellent medium for both in situ preservation of nucleic acids and cell disruption of plant and yeast cells. Cell disruption was strongly facilitated by prior dehydration of the ethanol using dehydrated zeolite. Following removal of ethanol, nucleic acids were extracted from the homogenate pellet using denaturing buffers. The method provided DNA and RNA of high yield and integrity. Whereas cell wall disruption was essential for extraction of DNA and large RNA molecules, smaller molecules such as tRNAs could be selectively extracted from undisrupted, ethanol-treated yeast cells. Our results demonstrate the utility of absolute ethanol for sample fixation, cell membrane and cell wall disruption, as well as preservation of nucleic acids during sample storage.

  4. Astaxanthinogenesis in the yeast Phaffia rhodozyma - optimization of low-cost culture media and yeast cell-wall lysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontana, J.D.; Baron, M.; Guimaraes, M.F.

    Astaxanthin is a diketo-dihydroxy-carotenoid produced by Phaffia rhodozyma, a basidiomicetous yeast. A low-cost fermentation medium consisting of raw sugarcane juice and urea was developed to exploit the active sucrolytic/urelolytic enzyme apparatus inherent to the yeast. As compared to the beneficial effect of 0.1 g% urea, a ready nitrogen source, mild phosphoric pre inversion of juice sucrose to glucose and fructose, promptly fermentable carbon sources, resulted in smaller benefits. Corn steep liquor (CSL) was found to be a valuable supplement for both yeast biomass yield (9.2 g dry cells/L) and astaxanthin production (1.3 mg/g cells). Distillery effluent (vinace), despite only amore » slightly positive effect on yeast growth, allowed for the highest pigment productivity (1.9 mg/g cells). Trace amounts of Ni{sup 2} (1 mg/L, as a cofactor for urease) resulted in controversial effects, namely, biomass decrease and astaxanthin increase, with no effect on the release (and uptake) of ammonium ion from urea. 13 refs., 6 figs.« less

  5. Evaluation of antimicrobial and anti-inflammatory activities of seed extracts from six Nigella species.

    PubMed

    Landa, Premysl; Marsik, Petr; Havlik, Jaroslav; Kloucek, Pavel; Vanek, Tomas; Kokoska, Ladislav

    2009-04-01

    Seed extracts from six species of the genus Nigella (Family Ranunculaceae)-Nigella arvensis, Nigella damascena, Nigella hispanica, Nigella nigellastrum, Nigella orientalis, and Nigella sativa-obtained by successive extraction with n-hexane, chloroform, and methanol, were tested for their antimicrobial activity against 10 strains of pathogenic bacteria and yeast using the microdilution method as well as for anti-inflammatory properties by in vitro cyclooxygenase (COX)-1 and COX-2 assay. Chemical characterization of active extracts was carried out including free and fixed fatty acid analysis. Comparison of antimicrobial activity showed that N. arvensis chloroform extract was the most potent among all species tested, inhibiting Gram-positive bacterial and yeast strains with minimum inhibitory concentration (MIC) values ranging from 0.25 to 1 mg/mL. With the exception of selective inhibitory action of n-hexane extract of N. orientalis on growth of Bacteroides fragilis (MIC = 0.5 mg/mL), we observed no antimicrobial activity for other Nigella species. Anti-inflammatory screening revealed that N. sativa, N. orientalis, N. hispanica, N. arvensis n-hexane, and N. hispanica chloroform extracts had strong inhibitory activity (more than 80%) on COX-1 and N. orientalis, N. arvensis, and N. hispanica n-hexane extracts were most effective against COX-2, when the concentration of extracts was 100 microg/mL in both COX assays. In conclusion, N. arvensis, N. orientalis, and N. hispanica seeds, for the first time examined for antimicrobial and anti-inflammatory effects, revealed their significant activity in one or both assays.

  6. Evaluation and optimization of ethanol production from carob pod extract by Zymomonas mobilis using response surface methodology.

    PubMed

    Vaheed, Hossein; Shojaosadati, Seyed Abbas; Galip, Hasan

    2011-01-01

    In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett-Burman (P-B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g(-1) initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g(-1) initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.

  7. Comparative Physiological Studies of the Yeast and Mycelial Forms of Histoplasma capsulatum: Uptake and Incorporation of l-Leucine

    PubMed Central

    Gupta, Rishab K.; Howard, Dexter H.

    1971-01-01

    l-Leucine entered the cells of both morphological forms of Histoplasma capsulatum by a permease-like system at low external concentrations of substrate. However, at levels greater than 5 × 10−5m l-leucine, the amino acid entered the cells both through a simple diffusion-like process and the permease-like system. The rate of the amino acid diffusion into yeast and mycelial forms appeared to be the same, whereas the initial rate of accumulation through the permease-like system was 5 to 10 times faster in the mycelial phase than it was in the yeast phase. The Michaelis constants were 2.2 × 10−5m in yeast phase and 2 × 10−5m in mycelial phase cells. Transport of l-leucine at an external concentration of 10−5m showed all of the characteristics of a system of active transport, which was dependent on temperature and pH. Displacement or removal of the α-amino group, or modification of the α-carboxyl group abolished amino acid uptake. The process was competitively inhibited by neutral aliphatic side-chain amino acids (inhibition constants ranged from 1.5 × 10−5 to 6.2 × 10−5m). Neutral aromatic side-chain amino acids and the d-isomers of leucine and valine did not inhibit l-leucine uptake. These data were interpreted to mean that the l-leucine transport system is stereospecific and is highly specific for neutral aliphatic side-chain amino acids. Incorporation of l-leucine into macromolecules occurred at almost the same rate in both morphological forms of the fungus. The mycelial phase but not the yeast phase showed a slight initial lag in incorporation. In both morphological forms the intracellular pool of l-leucine was of limited capacity, and the total uptake of the amino acid was a function of intracellular pool size. The initial rate of l-leucine uptake was independent of the level of intracellular pool. Both morphological forms deaminated and degraded only a minor fraction of the accumulated leucine. PMID:4323295

  8. Evaluation of the Composition of Culture Medium for Yeast Biomass Production Using Raw Glycerol from Biodiesel Synthesis

    PubMed Central

    dos Santos, Elisane Odriosolla; Michelon, Mariano; Furlong, Eliana Badiale; Burkert, Janaína Fernandes de Medeiros; Kalil, Susana Juliano; Burkert, Carlos André Veiga

    2012-01-01

    The work herewith investigated the production of yeast biomass as a source of protein, using Yarrowia lipolytica NRRL YB-423 and raw glycerol from biodiesel synthesis as the main carbon source. A significant influence of glycerol concentration, initial pH and yeast extract concentration on biomass and protein content was observed according to the 2v5-1 fractional design. These factors were further evaluated using a central composite design and response surface methodology, and an empirical model for protein content was established and validated. The biomass of Yarrowia lipolytica NRRL YB-423 reached 19.5 ± 1.0 g/L in shaken flasks cultivation, with a protein content of 20.1 ± 0.6% (w/w). PMID:24031849

  9. Extraction of brewer's yeasts using different methods of cell disruption for practical biodiesel production.

    PubMed

    Řezanka, Tomáš; Matoulková, Dagmar; Kolouchová, Irena; Masák, Jan; Viden, Ivan; Sigler, Karel

    2015-05-01

    The methods of preparation of fatty acids from brewer's yeast and its use in production of biofuels and in different branches of industry are described. Isolation of fatty acids from cell lipids includes cell disintegration (e.g., with liquid nitrogen, KOH, NaOH, petroleum ether, nitrogenous basic compounds, etc.) and subsequent processing of extracted lipids, including analysis of fatty acid and computing of biodiesel properties such as viscosity, density, cloud point, and cetane number. Methyl esters obtained from brewer's waste yeast are well suited for the production of biodiesel. All 49 samples (7 breweries and 7 methods) meet the requirements for biodiesel quality in both the composition of fatty acids and the properties of the biofuel required by the US and EU standards.

  10. S-Adenosyl-L-methionine protects the probiotic yeast, Saccharomyces boulardii, from acid-induced cell death.

    PubMed

    Cascio, Vincent; Gittings, Daniel; Merloni, Kristen; Hurton, Matthew; Laprade, David; Austriaco, Nicanor

    2013-02-13

    Saccharomyces boulardii is a probiotic yeast routinely used to prevent and to treat gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. However, only 1-3% of the yeast administered orally is recovered alive in the feces suggesting that this yeast is unable to survive the acidic environment of the gastrointestinal tract. We provide evidence that suggests that S. boulardii undergoes programmed cell death (PCD) in acidic environments, which is accompanied by the generation of reactive oxygen species and the appearance of caspase-like activity. To better understand the mechanism of cell death at the molecular level, we generated microarray gene expression profiles of S. boulardii cells cultured in an acidic environment. Significantly, functional annotation revealed that the up-regulated genes were significantly over-represented in cell death pathways Finally, we show that S-adenosyl-L-methionine (AdoMet), a commercially available, FDA-approved dietary supplement, enhances the viability of S. boulardii in acidic environments, most likely by preventing programmed cell death. In toto, given the observation that many of the proven health benefits of S. boulardii are dependent on cell viability, our data suggests that taking S. boulardii and AdoMet together may be a more effective treatment for gastrointestinal disorders than taking the probiotic yeast alone.

  11. Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract

    PubMed Central

    2012-01-01

    Background Magnolia grandiflora L. flower is wildly used in Asian as a traditional herbal medication. The purpose of the study was to investigate the antimelanogenic and antioxidant properties of Magnolia grandiflora L. flower extract. In the study, the inhibitory effects of M. grandiflora L. flower extract on mushroom tyrosinase, B16F10 intracellular tyrosinase activity and melanin content were determined spectrophotometrically. Meanwhile, the antioxidative capacity of the flower extract was also investigated. Results Our results revealed that M. grandiflora L. flower extract inhibit mushroom tyrosinase activity (IC50 =11.1%; v/v), the flower extract also effectively suppressed intracellular tyrosinase activity (IC50 = 13.6%; v/v) and decreased the amount of melanin (IC50 = 25.6%; v/v) in a dose-dependent manner in B16F10 cells. Protein expression level of tyrosinase and tyrosinase-related protein 1 (TRP-1) were also decreased by the flower extract. Additionally, antioxidant capacities such as ABTS+ free radical scavenging activity, reducing capacity and total phenolic content of the flower extract were increased in a dose-dependent pattern. Conclusions Our results concluded that M. grandiflora L. flower extract decreased the expression of tyrosinase and TRP-1, and then inhibited melanogenesis in B16F10 cells. The flower extract also show antioxidant capacities and depleted cellular reactive oxygen species (ROS). Hence, M. grandiflora L. flower extract could be applied as a type of dermatological whitening agent in skin care products. PMID:22672352

  12. Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract.

    PubMed

    Huang, Huey-Chun; Hsieh, Wan-Yu; Niu, Yu-Lin; Chang, Tsong-Min

    2012-06-06

    Magnolia grandiflora L. flower is wildly used in Asian as a traditional herbal medication. The purpose of the study was to investigate the antimelanogenic and antioxidant properties of Magnolia grandiflora L. flower extract. In the study, the inhibitory effects of M. grandiflora L. flower extract on mushroom tyrosinase, B16F10 intracellular tyrosinase activity and melanin content were determined spectrophotometrically. Meanwhile, the antioxidative capacity of the flower extract was also investigated. Our results revealed that M. grandiflora L. flower extract inhibit mushroom tyrosinase activity (IC(50) = 11.1%; v/v), the flower extract also effectively suppressed intracellular tyrosinase activity (IC(50) = 13.6%; v/v) and decreased the amount of melanin (IC(50) = 25.6%; v/v) in a dose-dependent manner in B16F10 cells. Protein expression level of tyrosinase and tyrosinase-related protein 1 (TRP-1) were also decreased by the flower extract. Additionally, antioxidant capacities such as ABTS(+) free radical scavenging activity, reducing capacity and total phenolic content of the flower extract were increased in a dose-dependent pattern. Our results concluded that M. grandiflora L. flower extract decreased the expression of tyrosinase and TRP-1, and then inhibited melanogenesis in B16F10 cells. The flower extract also show antioxidant capacities and depleted cellular reactive oxygen species (ROS). Hence, M. grandiflora L. flower extract could be applied as a type of dermatological whitening agent in skin care products.

  13. Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells.

    PubMed

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N; Dietzgen, Ralf G; Roberts-Thomson, Sarah J; Gidley, Michael J; Monteith, Gregory R

    2013-02-26

    Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.

  14. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production.

    PubMed

    Neu, Anna-Katrin; Pleissner, Daniel; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-07-01

    In this study, mucilage, a residue from coffee production, was investigated as substrate in fermentative l(+)-lactic acid production. Mucilage was provided as liquid suspension consisting glucose, galactose, fructose, xylose and sucrose as free sugars (up to 60gL(-1)), and used directly as medium in Bacillus coagulans batch fermentations carried out at 2 and 50L scales. Using mucilage and 5gL(-1) yeast extract as additional nitrogen source, more than 40gL(-1) lactic acid was obtained. Productivity and yield were 4-5gL(-1)h(-1) and 0.70-0.77g lactic acid per g of free sugars, respectively, irrespective the scale. Similar yield was found when no yeast extract was supplied, the productivity, however, was 1.5gL(-1)h(-1). Down-stream processing of culture broth, including filtration, electrodialysis, ion exchange chromatography and distillation, resulted in a pure lactic acid formulation containing 930gL(-1)l(+)-lactic acid. Optical purity was 99.8%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Male contraceptive efficacy of Ricinus communis L. extract.

    PubMed

    Nath, Sushmita; Dutta Choudhury, Manabendra; Roychoudhury, Shubhadeep; Talukdar, Anupam Das; Misro, Man Mohan

    2013-08-26

    Ricinus communis L. (Rc), of Euphorbiaceae family is a widespread plant in tropical regions and it is used in traditional medicines as an antifertility agent in India and different parts of the world. The aim of the present study is to revalidate the ethnobotanical knowledge by evaluating the activity of only crude stem bark extracts of Rc. In this study, effects of extracts on male contraceptive efficacy were experimented in vitro with human sperm sample. The work is based on primordial and contemporary therapeutic uses of this plant. In this study, dose of petroleum ether extract, ethyl acetate extract, acetone extract and lyophilised aqueous extract of Rc were added to fresh human semen in 1:1 volumetric ratio. As the aqueous extract showed a promising result in 1:1 ratio, therefore, the Hypo-osmotic swelling test (HOS), Nuclear chromatin decondensation test (NCD) and Acrosomal status and function test (AFT) were also carried out with the aqueous extract of Rc. The sperm immobilisation effects of the extract appeared immediately in a dose-dependent manner when the samples were treated with four different extracts of this plant. At a concentration of 100mg/mL, 100% (p<0.001 and p<0.05) sperms lost their progressive motility. At a concentration of 300 mg/mL, 100% (p<0.001 and p<0.05) became immotile when treated with aqueous extract. There was 88% (p<0.001 and p<0.05) morphological deformities in sperm sample due the effect of aqueous extract when they were tested for HOS and 91% (p<0.05) sperms behaved against NCD as compared to control group. Also there was a distinct decline (p<0.05) in AFT with increase in dosage concentration. The findings of the study revealed that aqueous stem bark extract of the plant showed dose dependent loss of sperm motility by influencing the morphological deformation, blockage in nuclear envelope and distinct declination in acrosomal status of spermatozoa. This research, thus, opens up scope for future exploration of bark of the

  16. Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts.

    PubMed

    Leite, João Jaime Giffoni; Brito, Erika Helena Salles; Cordeiro, Rossana Aguiar; Brilhante, Raimunda Sâmia Nogueira; Sidrim, José Júlio Costa; Bertini, Luciana Medeiros; Morais, Selene Maia de; Rocha, Marcos Fábio Gadelha

    2009-01-01

    The present study had the aim of testing the hexane and methanol extracts of avocado seeds, in order to determine their toxicity towards Artemia salina, evaluate their larvicidal activity towards Aedes aegypti and investigate their in vitro antifungal potential against strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis through the microdilution technique. In toxicity tests on Artemia salina, the hexane and methanol extracts from avocado seeds showed LC50 values of 2.37 and 24.13 mg mL-1 respectively. Against Aedes aegypti larvae, the LC50 results obtained were 16.7 mg mL-1 for hexane extract and 8.87 mg mL-1 for methanol extract from avocado seeds. The extracts tested were also active against all the yeast strains tested in vitro, with differing results such that the minimum inhibitory concentration of the hexane extract ranged from 0.625 to 1.25mg L-(1), from 0.312 to 0.625 mg mL-1 and from 0.031 to 0.625 mg mL-1, for the strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis, respectively. The minimal inhibitory concentration for the methanol extract ranged from 0.125 to 0.625 mg mL-1, from 0.08 to 0.156 mg mL-1 and from 0.312 to 0.625 mg mL-1, for the strains of Candida spp., Cryptococcus neoformans and Malassezia pachydermatis, respectively.

  17. Effects of Vernonia cinerea less methanol extract on growth and morphogenesis of Candida albicans.

    PubMed

    Latha, L Yoga; Darah, I; Jain, K; Sasidharan, S

    2011-05-01

    Vernonia (V.) cinerea Less (Asteraceae) have many therapeutic uses in the practice of traditional medicine. The methanol extract of V cinerea, was screened for antiyeast activity against pathogenic yeast Candida albicans. The antimicrobial activities were studied by using disc diffusion method and broth dilution method. The effect of the extract on the growth profile of the yeast was also examined via time-kill assay. In addition to the fungicidal effects study, microscopic observations using Scanning (SEM) electron microscopy, Transmission (TEM) electron microscopy and light microscopy (LM) were done to determine the major alterations in the microstructure of Candida (C) albicans. The extract showed a favorable antimicrobial activity against C. albicans with a minimum inhibitory concentration (MIC) value of 1.56 mg/mL. Time-kill assay suggested that Vernonia cinerea extract had completely inhibited Candida albicans growth and also exhibited prolonged antiyeast activity. The main abnormalities notes from these microscopic observations were the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The extract of Vernonia cinerea may be an effective agent to treat the Candida albicans infection.

  18. Optimum production and characterization of an acid protease from marine yeast Metschnikowia reukaufii W6b

    NASA Astrophysics Data System (ADS)

    Li, Jing; Peng, Ying; Wang, Xianghong; Chi, Zhenming

    2010-12-01

    The marine yeast strain W6b isolated from sediment of the South China Sea was found to produce a cell-bound acid protease. The crude acid protease produced by this marine yeast showed the highest activity at pH 3.5 and 40 °C. The optimal pH and temperature for the crude acid protease were in agreement with those for acid protease produced by the terrestrial yeasts. The optimal medium of the acid protease production was seawater containing 1.0% glucose, 1.5% casein, and 0.5% yeast extract, and the optimal cultivation conditions of the acid protease production were pH 4.0, a temperature of 25 °C and a shaking speed of 140 rmin-1. Under the optimal conditions, 72.5 UmL-1 of acid protease activity could be obtained in cell suspension within 48 h of fermentation at shake flask level. The acid protease production was induced by high-molecular-weight nitrogen sources and repressed by low-molecular-weight nitrogen sources. Skimmed-milk-clotting test showed that the crude acid protease from the cell suspension of the yeast W6b had high skimmed milk coagulability. The acid protease produced by M. reukaufii W6b may have highly potential applications in cheese, food and fermentation industries.

  19. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil

    PubMed Central

    Ananias, Karla Rubia; de Melo, Adriane Alexandre Machado; de Moura, Celso José

    2013-01-01

    The development of mold of environmental origin in honey affects its quality and leads to its deterioration, so yeasts and molds counts have been used as an important indicator of hygiene levels during its processing, transportation and storage. The aim of this study was to evaluate the levels of yeasts and molds contamination and their correlation with moisture and acidity levels in Apis mellifera L. honey from central Brazil. In 20% of the samples, the yeasts and molds counts exceeded the limit established by legislation for the marketing of honey in the MERCOSUR, while 42.8% and 5.7% presented above-standard acidity and moisture levels, respectively. Although samples showed yeasts and molds counts over 1.0 × 102 UFC.g−1, there was no correlation between moisture content and the number of microorganisms, since, in part of the samples with above-standard counts, the moisture level was below 20%. In some samples the acidity level was higher than that established by legislation, but only one sample presented a yeasts and molds count above the limit established by MERCOSUR, which would suggest the influence of the floral source on this parameter. In general, of the 35 samples analyzed, the quality was considered inadequate in 45.7% of cases. PMID:24516434

  20. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil.

    PubMed

    Ananias, Karla Rubia; de Melo, Adriane Alexandre Machado; de Moura, Celso José

    2013-01-01

    The development of mold of environmental origin in honey affects its quality and leads to its deterioration, so yeasts and molds counts have been used as an important indicator of hygiene levels during its processing, transportation and storage. The aim of this study was to evaluate the levels of yeasts and molds contamination and their correlation with moisture and acidity levels in Apis mellifera L. honey from central Brazil. In 20% of the samples, the yeasts and molds counts exceeded the limit established by legislation for the marketing of honey in the MERCOSUR, while 42.8% and 5.7% presented above-standard acidity and moisture levels, respectively. Although samples showed yeasts and molds counts over 1.0 × 10(2) UFC.g(-1), there was no correlation between moisture content and the number of microorganisms, since, in part of the samples with above-standard counts, the moisture level was below 20%. In some samples the acidity level was higher than that established by legislation, but only one sample presented a yeasts and molds count above the limit established by MERCOSUR, which would suggest the influence of the floral source on this parameter. In general, of the 35 samples analyzed, the quality was considered inadequate in 45.7% of cases.

  1. Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate.

    PubMed

    Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; Silva, Silvio S

    2013-10-01

    Selection of the raw material and its efficient utilization are the critical factors in economization of second generation (2G) ethanol production. Fermentation of the released sugars into ethanol by a suitable ethanol producing microorganism using cheap media ingredients is the cornerstone of the overall process. This study evaluated the potential of rice bran extract (RBE) as a cheap nitrogen source for the production of 2G ethanol by Scheffersomyces (Pichia) stipitis NRRL Y-7124 using sugarcane bagasse (SB) hemicellulosic hydrolysate. Dilute acid hydrolysis of SB showed 12.45 g/l of xylose and 0.67 g/l of glucose along with inhibitors. It was concentrated by vacuum evaporation and submitted to sequential detoxification (neutralization by calcium hydroxide and charcoal adsorption). The detoxified hydrolysate revealed the removal of furfural (81 %) and 5-hydroxymethylfurfural (61 %) leading to the final concentration of glucose (1.69 g/l) and xylose (33.03 g/l). S. stipitis was grown in three different fermentation media composed of detoxified hydrolysate as carbon source supplemented with varying nitrogen sources i.e. medium #1 (RBE + ammonium sulfate + calcium chloride), medium #2 (yeast extract + peptone) and medium #3 (yeast extract + peptone + malt extract). Medium #1 showed maximum ethanol production (8.6 g/l, yield 0.22 g/g) followed by medium #2 (8.1 g/l, yield 0.19 g/g) and medium #3 (7.4 g/l, yield 0.18 g/g).

  2. [Eukaryotic expression of Leptospira interrogans lipL32/1-ompL1/1 fusion gene encoding genus-specific protein antigens and the immunoreactivity of expression products].

    PubMed

    Yan, Jie; Zhao, Shou-feng; Mao, Ya-fei; Ruan, Ping; Luo, Yi-hui; Li, Shu-ping; Li, Li-wei

    2005-01-01

    To construct the eukaryotic expression system of L.interrogans lipL32/1-ompL1/1 fusion gene and to identify the immunoreactivity of expression products. PCR with linking primer was used to construct the fusion gene lipL32/1-ompL1/1. The P.pastoris eukaryotic expression system of the fusion gene, pPIC9K-lipL32/1-ompL1/1-P. pastorisGS115, was constructed after the fusion gene was cloned and sequenced. Colony with phenotype His(+)Mut(+) was isolated by using MD and MM plates and His(+) Mut(+) transformant with high resistance to G418 was screened out by using YPD plate. Using lysate of His(+) Mut(+) colony with high copies of the target gene digested with yeast lyase as the template and 5'AOX1 and 3'AOX1 as the primers, the target fusion gene in chromosome DNA of the constructed P. pastoris engineering strain was detected by PCR. Methanol in BMMY medium was used to induce the target recombinant protein rLipL32/1-rOmpL1/1 expression. rLipL32/1-rOmpL1/1 in the medium supernatant was extracted by using ammonium sulfate precipitation and Ni-NTA affinity chromatography. Output and immunoreactivity of rLipL32/1-rOmpL1/1 were measured by SDS-PAGE and Western blot methods, respectively. Amplification fragments of the obtained fusion gene lipL32/1-ompL1/1 was 1794 bp in size. The homogeneity of nucleotide and putative amino acid sequences of the fusion gene were as high as 99.94 % and 100 %, respectively, compared with the sequences of original lipL32/1 and ompL1/1 genotypes. The constructed eukaryotic expression system was able to secrete rLipL32/1-rOmpL1/1 with an output of 10 % of the total proteins in the supernatant, which located the expected position after SDS-PAGE. The rabbit anti-rLipL32/1 and anti-rOmpL1/1 sera could combine the expressed rLipL32/1-rOmpL1/1. An eukaryotic expression system with high efficiency in P.pastoris of L.interrogans lipL32/1-ompL1/1 fusion gene was successfully constructed in this study. The expressed fusion protein shows specific

  3. The yeast Hot1 transcription factor is critical for activating a single target gene, STL1

    PubMed Central

    Bai, Chen; Tesker, Masha; Engelberg, David

    2015-01-01

    Transcription factors are commonly activated by signal transduction cascades and induce expression of many genes. They therefore play critical roles in determining the cell's fate. The yeast Hog1 MAP kinase pathway is believed to control the transcription of hundreds of genes via several transcription factors. To identify the bona fide target genes of Hog1, we inducibly expressed the spontaneously active variant Hog1D170A+F318L in cells lacking the Hog1 activator Pbs2. This system allowed monitoring the effects of Hog1 by itself. Expression of Hog1D170A+F318L in pbs2∆ cells imposed induction of just 105 and suppression of only 26 transcripts by at least twofold. We looked for the Hog1-responsive element within the promoter of the most highly induced gene, STL1 (88-fold). A novel Hog1 responsive element (HoRE) was identified and shown to be the direct target of the transcription factor Hot1. Unexpectedly, we could not find this HoRE in any other yeast promoter. In addition, the only gene whose expression was abolished in hot1∆ cells was STL1. Thus Hot1 is essential for transcription of just one gene, STL1. Hot1 may represent a class of transcription factors that are essential for transcription of a very few genes or even just one. PMID:25904326

  4. Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism

    PubMed Central

    Nasuno, Ryo; Hirano, Yoshinori; Itoh, Takafumi; Hakoshima, Toshio; Hibi, Takao; Takagi, Hiroshi

    2013-01-01

    Mpr1 (sigma1278b gene for proline-analog resistance 1), which was originally isolated as N-acetyltransferase detoxifying the proline analog l-azetidine-2-carboxylate, protects yeast cells from various oxidative stresses. Mpr1 mediates the l-proline and l-arginine metabolism by acetylating l1-pyrroline-5-carboxylate, leading to the l-arginine–dependent production of nitric oxide, which confers oxidative stress tolerance. Mpr1 belongs to the Gcn5-related N-acetyltransferase (GNAT) superfamily, but exhibits poor sequence homology with the GNAT enzymes and unique substrate specificity. Here, we present the X-ray crystal structure of Mpr1 and its complex with the substrate cis-4-hydroxy-l-proline at 1.9 and 2.3 Å resolution, respectively. Mpr1 is folded into α/β-structure with eight-stranded mixed β-sheets and six α-helices. The substrate binds to Asn135 and the backbone amide of Asn172 and Leu173, and the predicted acetyl-CoA–binding site is located near the backbone amide of Phe138 and the side chain of Asn178. Alanine substitution of Asn178, which can interact with the sulfur of acetyl-CoA, caused a large reduction in the apparent kcat value. The replacement of Asn135 led to a remarkable increase in the apparent Km value. These results indicate that Asn178 and Asn135 play an important role in catalysis and substrate recognition, respectively. Such a catalytic mechanism has not been reported in the GNAT proteins. Importantly, the amino acid substitutions in these residues increased the l1-pyrroline-5-carboxylate level in yeast cells exposed to heat stress, indicating that these residues are also crucial for its physiological functions. These studies provide some benefits of Mpr1 applications, such as the breeding of industrial yeasts and the development of antifungal drugs. PMID:23818613

  5. Yeast and Mammalian Metallothioneins Functionally Substitute for Yeast Copper-Zinc Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.

    1993-09-01

    Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.

  6. S-Adenosyl-L-Methionine protects the probiotic yeast, Saccharomyces boulardii, from acid-induced cell death

    PubMed Central

    2013-01-01

    Background Saccharomyces boulardii is a probiotic yeast routinely used to prevent and to treat gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. However, only 1-3% of the yeast administered orally is recovered alive in the feces suggesting that this yeast is unable to survive the acidic environment of the gastrointestinal tract. Results We provide evidence that suggests that S. boulardii undergoes programmed cell death (PCD) in acidic environments, which is accompanied by the generation of reactive oxygen species and the appearance of caspase-like activity. To better understand the mechanism of cell death at the molecular level, we generated microarray gene expression profiles of S. boulardii cells cultured in an acidic environment. Significantly, functional annotation revealed that the up-regulated genes were significantly over-represented in cell death pathways Finally, we show that S-adenosyl-L-methionine (AdoMet), a commercially available, FDA-approved dietary supplement, enhances the viability of S. boulardii in acidic environments, most likely by preventing programmed cell death. Conclusions In toto, given the observation that many of the proven health benefits of S. boulardii are dependent on cell viability, our data suggests that taking S. boulardii and AdoMet together may be a more effective treatment for gastrointestinal disorders than taking the probiotic yeast alone. PMID:23402325

  7. [Enhanced ε-poly-L-lysine production through pH regulation and organic nitrogen addition in fed-batch fermentation].

    PubMed

    Sun, Qixing; Chen, Xusheng; Ren, Xidong; Zheng, Gencheng; Mao, Zhonggui

    2015-05-01

    During the production of ε-poly-L-lysine (ε-PL) in fed-batch fermentation, the decline of ε-PL synthesis often occurs at middle or late phase of the fermentation. To solve the problem, we adopted two strategies, namely pH shift and feeding yeast extract, to improve the productivity of ε-PL. ε-PL productivity in fermentation by pH shift and feeding yeast extract achieved 4.62 g/(L x d) and 5.16 g/(L x d), which were increased by 27.3% and 42.2% compared with the control ε-PL fed-batch fermentation, respectively. Meanwhile, ε-PL production enhanced 36.95 g/L and 41.32 g/L in 192 h with these two strategies, increased by 27.4% and 42.48% compared to the control, respectively. ε-PL production could be improved at middle or late phase of fed-batch fermentation by pH shift or feeding yeast extract.

  8. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs.

    PubMed

    Kariluoto, Susanna; Aittamaa, Marja; Korhola, Matti; Salovaara, Hannu; Vahteristo, Liisa; Piironen, Vieno

    2006-02-01

    Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp., L. acidophilus TSB 262, L. brevis TSB 307, L. plantarum TSB 304, and L. sanfranciscensis TSB 299 originally isolated from rye sourdough were examined for their abilities to produce or consume folates. The microorganisms were grown in yeast extract-peptone-d-glucose medium as well as in small-scale fermentations that modelled the sourdough fermentation step used in rye baking. Total folate contents were determined using Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism. The microorganisms studied did not excrete folates into the media in significant amounts. Yeasts increased the folate contents of sterilised rye flour-water mixtures from 6.5 microg/100 g to between 15 and 23 microg/100 g after 19-h fermentation, whereas lactic acid bacteria decreased it to between 2.9 and 4.2 microg/100 g. Strains of Lactobacillus bulgaricus, L. casei, L. curvatus, L. fermentum, L. helveticus, Pediococcus spp., and Streptococcus thermophilus that were also tested gave folate contents after fermentation that varied between 2 and 10.4 microg/100 g. Although the four Lactobacillus spp. from sourdough consumed folates their effect on folate contents in co-cultivations was minimal. It was concluded that the increase of folate content during fermentation was mainly due to folate synthesis by yeasts. Fermentation of non-sterilised flour-water mixtures as such resulted in three-fold increases in the folate contents. Two folate producing bacteria were isolated from the non-sterilised flour and identified as Enterobacter cowanii and Pantoea agglomerans.

  9. Inhibitory mechanism of an extract of Althaea officinalis L. on endothelin-1-induced melanocyte activation.

    PubMed

    Kobayashi, Akemi; Hachiya, Akira; Ohuchi, Atsushi; Kitahara, Takashi; Takema, Yoshinori

    2002-02-01

    It is known that expression of endothelin-1 (ET-1) increases in the epidermis after UVB irradiation, and that this plays an important role during the induction of pigmentation both as a mitogen and as a melanogen for normal human melanocytes (NHMC). When ET-1 acts on NHMC via the endothelin B receptor (ET(B)R) on their cell surface, mobilization of intracellular calcium is induced, which is followed by activation of Raf-1 located upstream of mitogen activated protein kinase (MAPK). We have continued the search for new agent which inhibit this calcium mobilization and we have found that an extract of Althaea officinalis L. has such an action. In this study, we investigated the precise inhibitory mechanism of this botanical extract on the ET-1-induced activation of melanocytes. Treatment of NHMC with this extract abrogated the stimulatory effect of ET-1 on proliferation and also on activation of MAPK in the intracellular signal transduction pathway, but did not affect the binding of ET-1 to the ET(B)R or the production of Inositol 1,4,5-Trisphosphate (IP3). Further, when this extract was used to treat normal human keratinocytes (NHKC), secretion of ET-1 by those cells was reduced. Taken together, these findings indicate that an extract of A. officinalis inhibits both the secretion of ET-1 from NHKC and the action of ET-1 on NHMC mainly by suppressing the ET-1-induced calcium mobilization without the modification of IP3 production, which in turn suggests that this extract is a useful ingredient for a whitening agent.

  10. Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments.

    PubMed

    Jiang, Hong; Liu, Nan-Nan; Liu, Guang-Lei; Chi, Zhe; Wang, Jian-Ming; Zhang, Ly-Ly; Chi, Zhen-Ming

    2016-07-01

    The yeast strain XJ5-1 isolated from the Taklimakan desert soil was identified to be a strain of Aureobasdium melanogenum and could produce a large amount of melanin when it was grown in the PDA medium, but its melanin biosynthesis and expression of the PKS gene responsible for the melanin biosynthesis was significantly repressed in the presence of (NH4)2SO4. However, A. melanogenum P5 strain isolated from a mangrove ecosystem grown in both the presence and the absence of (NH4)2SO4 did not produce any melanin. The cell size of A. melanogenum XJ5-1 strain was much higher than that of A. melanogenum P5 strain. The melanized cells of the yeast strain XJ5-1 had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), heat treatment (40 °C), salt shock (200.0 g/L NaCl), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than the non-melanized cells of the same yeast strain XJ5-1. At the same time, the melanized cells of the yeast strain XJ5-1 also had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than A. melanogenum P5 strain, but had similar resistance to heat treatment (40 °C) and salt shock (200.0 g/L NaCl) compared to those of A. melanogenum P5 strain. All the results revealed that many characteristics of A. melanogenum XJ5-1 isolated from the Taklimakan desert soil was different from those of A. melanogenum P5 strain isolated from the mangrove ecosystem.

  11. Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.

    PubMed

    Yamamura, Y; Mizuguchi, Y; Taura, F; Kurosaki, F

    2014-10-01

    A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells.

  12. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

    PubMed

    Hirayama, Satoru; Shimizu, Masashi; Tsuchiya, Noriko; Furukawa, Soichi; Watanabe, Daisuke; Shimoi, Hitoshi; Takagi, Hiroshi; Ogihara, Hirokazu; Morinaga, Yasushi

    2015-05-01

    We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. A Meta-Analysis of Red Yeast Rice: An Effective and Relatively Safe Alternative Approach for Dyslipidemia

    PubMed Central

    Li, Yinhua; Jiang, Long; Jia, Zhangrong; Xin, Wei; Yang, Shiwei; Yang, Qiu; Wang, Luya

    2014-01-01

    Objective To explore whether red yeast rice is a safe and effective alternative approach for dyslipidemia. Methods Pubmed, the Cochrane Library, EBSCO host, Chinese VIP Information (VIP), China National Knowledge Infrastructure (CNKI), Wanfang Databases were searched for appropriate articles. Randomized trials of RYR (not including Xuezhikang and Zhibituo) and placebo as control in patients with dyslipidemia were considered. Two authors read all papers and independently extracted all relevant information. The primary outcomes were serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C). The secondary outcomes were increased levels of alanine transaminase, aspartate aminotransferase, creatine kinase, creatinine and fasting blood glucose. Results A total of 13 randomized, placebo-controlled trials containing 804 participants were analyzed. Red yeast rice exhibited significant lowering effects on serum TC [WMD = −0.97 (95% CI: −1.13, −0.80) mmol/L, P<0.001], TG [WMD = −0.23 (95% CI: −0.31, −0.14) mmol/L, P<0.001], and LDL-C [WMD = −0.87 (95% CI: −1.03, −0.71) mmol/L, P<0.001] but no significant increasing effect on HDL-C [WMD = 0.08 (95% CI: −0.02, 0.19) mmol/L, P = 0.11] compared with placebo. No serious side effects were reported in all trials. Conclusions The meta-analysis suggests that red yeast rice is an effective and relatively safe approach for dyslipidemia. However, further long-term, rigorously designed randomized controlled trials are still warranted before red yeast rice could be recommended to patients with dyslipidemia, especially as an alternative to statins. PMID:24897342

  14. Statistical optimisation of cell growth and carotenoid production by rhodotorula mucilaginosa

    PubMed Central

    Maldonade, Iriani R.; Rodriguez-Amaya, Delia B.; Scamparini, Adilma R. P.

    2012-01-01

    Sequential statistical methods were used to maximise carotenoid production by a strain of Rhodotorula mucilaginosa, isolated from the Brazilian ecosystem. Initially, a factorial 25–1 experimental design was used, and the variables were pH and the levels of glucose, yeast extract, MgSO4.7H2O and KH2PO4. The nitrogen source (yeast extract) was the most important variable in enhancing carotenoid production; MgSO4.7H2O and KH2PO4 had a negative influence. The initial pH had no significant effect on carotenoid and cell productions. We further investigated the effects of glucose and yeast extract effects, using a second-order central composite design (CCD) to optimise carotenoid production, which was adequately approximated with a full quadratic equation obtained from a two-factor-2-level design. The analysis of quadratic surfaces showed that after 5 days of cultivation at 25 °C, the maximum carotenoid concentration (745 µg l-1) was obtained with 15 g l-1 of yeast extract and 20 g l-1 of glucose. The maximum carotenoid production (152 µg g-1) was obtained with 5 g l-1 yeast extract and 10 g l-1 glucose. Carotenoid formation was more sensitive to changes in yeast extract concentration than to changes in glucose concentration. Maximum cell production was achieved with 15–17 g l-1 of yeast extract and 15–20 g l-1 of glucose. PMID:24031809

  15. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction

    PubMed Central

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85%) and oleic acid (1.64%–18.97%). Thymoquinone (0.72%–21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. PMID:28814830

  16. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction.

    PubMed

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P <0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.

  17. Bcs1p can rescue a large and productive cytochrome bc(1) complex assembly intermediate in the inner membrane of yeast mitochondria.

    PubMed

    Conte, Laura; Trumpower, Bernard L; Zara, Vincenzo

    2011-01-01

    The yeast cytochrome bc(1) complex, a component of the mitochondrial respiratory chain, is composed of ten distinct protein subunits. In the assembly of the bc(1) complex, some ancillary proteins, such as the chaperone Bcs1p, are actively involved. The deletion of the nuclear gene encoding this chaperone caused the arrest of the bc(1) assembly and the formation of a functionally inactive bc(1) core structure of about 500-kDa. This immature bc(1) core structure could represent, on the one hand, a true assembly intermediate or, on the other hand, a degradation product and/or an incorrect product of assembly. The experiments here reported show that the gradual expression of Bcs1p in the yeast strain lacking this protein was progressively able to rescue the bc(1) core structure leading to the formation of the functional homodimeric bc(1) complex. Following Bcs1p expression, the mature bc(1) complex was also progressively converted into two supercomplexes with the cytochrome c oxidase complex. The capability of restoring the bc(1) complex and the supercomplexes was also possessed by the mutated yeast R81C Bcsp1. Notably, in the human ortholog BCS1L, the corresponding point mutation (R45C) was instead the cause of a severe bc(1) complex deficiency. Differently from the yeast R81C Bcs1p, two other mutated Bcs1p's (K192P and F401I) were unable to recover the bc(1) core structure in yeast. This study identifies for the first time a productive assembly intermediate of the yeast bc(1) complex and gives new insights into the molecular mechanisms involved in the last steps of bc(1) assembly. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Yeasts as important agents of onychomycosis: in vitro activity of propolis against yeasts isolated from patients with nail infection.

    PubMed

    Khosravi, Ali Reza; Shokri, Hojjatollah; Nikaein, Donya; Mansouri, Parvin; Erfanmanesh, Ahmad; Chalangari, Reza; Katalin, Martis

    2013-01-01

    The purposes of this study were to determine the frequency of the yeast species obtained from patients with clinical features of onychomycosis and the in vitro antifungal susceptibility of the yeast species to propolis. A prospective study was carried out at the Mycology Research Center in Iran from 2010 to 2011. Clinical diagnosis was performed by direct microscopic examination and culture. Different yeast species were identified by morphological and biochemical tests. An antifungal susceptibility test to fluconazole (FLU) and propolis by the broth microdilution method was performed on each isolate. One hundred and twenty-eight fungal isolates were obtained. The most prevalent fungi were yeasts (81, 63.2%), dermatophytes (36, 28.1%), and nondermatophyte fungi (11, 8.6%). Fingernails were more affected than toenails (65.4% vs. 19.8%, respectively). The most frequently found species was Candida albicans (38.5%), followed by Candida spp. (23.1%), C. tropicalis (10.8%), C. kefyr (6.2%), C. krusei (3.1%), Malassezia globosa (4.6%), M. slooffiae (4.6%), and M. pachydermatis (1.5%). Of all yeast isolates (65), seven showed resistance to FLU. The average MIC of propolis for FLU-susceptible isolates was 5.8 μg/mL, whereas this value was 12.25 μg/mL for FLU-resistant isolates. Our results proved that the propolis inhibits the growth of pathogenic yeasts and confirmed the efficiency of propolis as an anti-Candida and anti-Malassezia agent.

  19. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in l-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT1R Expression

    PubMed Central

    Maneesai, Putcharawipa; Prasarttong, Patoomporn; Bunbupha, Sarawoot; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Tangsucharit, Panot; Prachaney, Parichat; Pakdeechote, Poungrat

    2016-01-01

    This study examined the effect of Carthamus tinctorius (CT) extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO) bioavailability, oxidative stress and renin-angiotensin system (RAS) in Nω-Nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day) for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day): captopril (5 mg/kg/day) or CT extract (300 mg/kg/day) plus captopril (5 mg/kg/day) for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS. PMID:26938552

  20. Construction of a recombinant wine yeast strain expressing beta-(1,4)-endoglucanase and its use in microvinification processes.

    PubMed Central

    Pérez-González, J A; González, R; Querol, A; Sendra, J; Ramón, D

    1993-01-01

    A genetic transformation system for an industrial wine yeast strain is presented here. The system is based on the acquisition of cycloheximide resistance and is a direct adaptation of a previously published procedure for brewing yeasts (L. Del Pozo, D. Abarca, M. G. Claros, and A. Jiménez, Curr. Genet. 19:353-358, 1991). Transformants arose at an optimal frequency of 0.5 transformant per microgram of DNA, are stable in the absence of selective pressure, and produce wine in the same way as the untransformed industrial strain. By using this transformation protocol, a filamentous fungal beta-(1,4)-endoglucanase gene has been expressed in an industrial wine yeast under the control of the yeast actin gene promoter. Endoglucanolytic wine yeast secretes the fungal enzyme to the must, producing a wine with an increased fruity aroma. Images PMID:8215355

  1. Malt-yeast extract-sucrose agar, a suitable medium for enumeration and isolation of fungi from silage.

    PubMed Central

    Skaar, I; Stenwig, H

    1996-01-01

    A general medium named malt-yeast extract-sucrose agar (MYSA) containing oxgall was designed. The medium was intended for the enumeration and isolation of molds and yeasts in routine examinations of animal feed stuffs. In this study MYSA was tested as a general medium for mycological examination of silage. The medium was compared with dichloran-rose bengal medium (DRBC) in an examination of more than 500 specimens of big bale grass silage. Selected characteristics of known fungal species commonly isolated from feeds were examined after growth on MYSA and DRBC and on malt extract agar, used as a noninhibitory control medium. MYSA suppressed bacterial growth, without affecting the growth of fungi common in feeds. The fungi growing on MYSA were easily recognized, and the medium seemed to slow radial growth of fungal colonies, which permitted, easy counting. The number of species found was higher on MYSA than on DRBC. When we compared MYSA with DRBC for mycological examination of grass silage samples, MYSA was found to be the medium of choice. PMID:8837416

  2. In vitro Antioxidant Potentials of Cyperus rotundus L. Rhizome Extracts and Their Phytochemical Analysis.

    PubMed

    Kamala, Arunagiri; Middha, Sushil Kumar; Gopinath, Chitra; Sindhura, H S; Karigar, Chandrakant S

    2018-01-01

    Cyperus rotundus L. (family Cyperaceae), native to India, is a multivalent medicinal plant widely used in conventional medicine. The research reports on bioactive components from C. rotundus L. are scanty. The objective of the study was to optimize the best solvent system and bioprospect the possible phytochemicals in C. rotundus L. rhizome (CRR). The phytochemicals were extracted from the rhizomes of C. rotundus L. by successive Soxhlet technique with solvents of increasing polarity. The resultant extracts were analyzed for their total flavonoid content (TFC), total phenolic content (TPC), total proanthocyanidin content (TPAC), in vitro antioxidant potential, and inhibition of lipid peroxidation. The 70% acetone extract of CRR was analyzed using gas chromatography-mass spectrometry (GC-MS) for probable phytochemicals. The TPC, TFC, and TPAC estimates ranged from 0.036 ± 0.002 to 118.924 ± 5.946 μg/mg extract, 7.196 ± 0.359 to 200.654 ± 10.032 μg/mg extract, and 13.115 ± 0.656 to 45.901 ± 2.295 μg/mg extract, respectively. The quantities of TPC, TFC, and TPAC were found to be the highest in 70% acetone extract. The 70% acetone and 70% methanol extracts revealed best radical scavenging effect. GC-MS analysis of CRR extract revealed the presence of a novel compound 1 (2)-acetyl-3 (5)-styryl-5 (3)-methylthiopyrazole. The study indicated that 70% acetone and 70% methanol extracts of CRRs can be a potential source of antioxidants. The studies suggest 70% methanol and acetone as the suitable solvents for the extraction of phytochemicalsNovel compound 1(2)-Acetyl-3(5)-styryl-5(3)-methylthiopyrazole was detected in 70% acetone extract. Abbreviations used: ACRE: Acetone C. rotundus L. rhizome extract; AlCl 3 : Aluminum chloride; AQRE: Aqueous C. rotundus L. rhizome extract; CE: Catechin Equivalent; CHRE: Chloroform C. rotundus L. rhizome extract; CRR: C. rotundus L. rhizome; DPPH: 2,2 diphenyl-1-picrylhydrazyl; ETRE: Ethanolic C. rotundus L. rhizome extract; EARE

  3. In vitro Antioxidant Potentials of Cyperus rotundus L. Rhizome Extracts and Their Phytochemical Analysis

    PubMed Central

    Kamala, Arunagiri; Middha, Sushil Kumar; Gopinath, Chitra; Sindhura, H. S.; Karigar, Chandrakant S.

    2018-01-01

    Background: Cyperus rotundus L. (family Cyperaceae), native to India, is a multivalent medicinal plant widely used in conventional medicine. The research reports on bioactive components from C. rotundus L. are scanty. Objective: The objective of the study was to optimize the best solvent system and bioprospect the possible phytochemicals in C. rotundus L. rhizome (CRR). Materials and Methods: The phytochemicals were extracted from the rhizomes of C. rotundus L. by successive Soxhlet technique with solvents of increasing polarity. The resultant extracts were analyzed for their total flavonoid content (TFC), total phenolic content (TPC), total proanthocyanidin content (TPAC), in vitro antioxidant potential, and inhibition of lipid peroxidation. The 70% acetone extract of CRR was analyzed using gas chromatography–mass spectrometry (GC-MS) for probable phytochemicals. Results and Discussion: The TPC, TFC, and TPAC estimates ranged from 0.036 ± 0.002 to 118.924 ± 5.946 μg/mg extract, 7.196 ± 0.359 to 200.654 ± 10.032 μg/mg extract, and 13.115 ± 0.656 to 45.901 ± 2.295 μg/mg extract, respectively. The quantities of TPC, TFC, and TPAC were found to be the highest in 70% acetone extract. The 70% acetone and 70% methanol extracts revealed best radical scavenging effect. GC-MS analysis of CRR extract revealed the presence of a novel compound 1 (2)-acetyl-3 (5)-styryl-5 (3)-methylthiopyrazole. Conclusion: The study indicated that 70% acetone and 70% methanol extracts of CRRs can be a potential source of antioxidants. SUMMARY The studies suggest 70% methanol and acetone as the suitable solvents for the extraction of phytochemicalsNovel compound 1(2)-Acetyl-3(5)-styryl-5(3)-methylthiopyrazole was detected in 70% acetone extract. Abbreviations used: ACRE: Acetone C. rotundus L. rhizome extract; AlCl3: Aluminum chloride; AQRE: Aqueous C. rotundus L. rhizome extract; CE: Catechin Equivalent; CHRE: Chloroform C. rotundus L. rhizome extract; CRR: C. rotundus L. rhizome

  4. Expression and purification of soluble murine CD40L monomers and polymers in yeast Pichia pastoris

    PubMed Central

    Hermanrud, Christina E.; Lucas, Carrie L.; Sykes, Megan; Huang, Christene A.; Wang, Zhirui

    2010-01-01

    The anti-murine CD40L monoclonal antibody MR1 has been widely used in immunology research to block the CD40-CD40L interaction for induction of transplantation tolerance and to abrogate autoimmune diseases. The availability of recombinant CD40L with high binding capacity for MR1 would provide a valuable immunological research tool. In this study, we constructed the single chain murine soluble CD40L monomer, dimer, trimer and successfully expressed them in yeast Pichia pastoris under the control of the alcohol oxidase promoter. The secreted single chain murine soluble CD40L monomers, dimers, and trimers were initially enriched through histidine tag capture by Ni-Sepharose 6 fast flow resin and further purified on a cation exchange resin. Purity reached more than 95% for the monomer and dimer forms and more than 90% for the trimer. Protein yield following purification was 16 mg/L for the monomer and dimer, and 8 mg/L for the trimer. ELISA analysis demonstrated that the CD40L dimers and trimers correctly folded in conformations exposing the MR1 antigenic determinant. PMID:21074618

  5. Antiproliferative activity of aqueous leaf extract of Annona muricata L. on the prostate, BPH-1 cells, and some target genes.

    PubMed

    Asare, George Awuku; Afriyie, Dan; Ngala, Robert A; Abutiate, Harry; Doku, Derek; Mahmood, Seidu A; Rahman, Habibur

    2015-01-01

    Annona muricata L. has been reported to possess antitumor and antiproliferative properties. Not much work has been done on its effect on BPH-1 cell lines, and no in vivo studies targeting the prostate organ exist. The study determined the effect of A muricata on human BPH-1 cells and prostate organ. The MTT assay was performed on BPH-1 cells using the aqueous leaf extract of A muricata. Cells (1 × 10(5) per well) were challenged with 0.5, 1.0, and 1.5 mg/mL extract for 24, 48, and 72 hours. Cell proliferation and morphology were examined microscopically. BPH-1 cells (1 × 10(4) per well) were seeded into 6-well plates and incubated for 48 hours with 0.5, 1.0, and 1.5 mg/mL A muricata extract. Reverse transcriptase polymerase chain reaction was performed using mRNA extracted from the cells. Possible target genes, Bax and Bcl-2, were examined. Twenty F344 male rats (≈200 g) were gavaged 30 mg/mL (10 rats) and 300 mg/mL (10 rats) and fed ad libitum alongside 10 control rats. Rats were sacrificed after 60 days. The prostate, seminal vesicles, and testes were harvested for histological examination. Annona muricata demonstrated antiproliferative effects with an IC50 of 1.36 mg/mL. Best results were obtained after 48 hours, with near cell extinction at 72 hours. Bax gene was upregulated, while Bcl-2 was downregulated. Normal histological architecture was observed for all testes. Seminal vesicle was significantly reduced in test groups (P < .05) and demonstrated marked atrophy with increased cellularity and the acinii, empty of secretion. Prostate of test groups were reduced with epithelial lining showing pyknotic nucleus, condensation, and marginalization of the nuclear material, characteristic of apoptosis of the glandular epithelium. Furthermore, scanty prostatic secretion with flattening of acinar epithelial lining occurred. Annona muricata has antiproliferative effects on BPH-1 cells and reduces prostate size, possibly through apoptosis. © The Author(s) 2014.

  6. Efficacy and safety of a combination of red yeast rice and olive extract in hypercholesterolemic patients with and without statin-associated myalgia.

    PubMed

    Tshongo Muhindo, Christian; Ahn, Sylvie A; Rousseau, Michel F; Dierckxsens, Yvan; Hermans, Michel P

    2017-12-01

    Cholesfytol ® , a lipid-lowering dietary supplement with antioxidant and anti-atherosclerotic properties, combines red yeast rice (RYR) and olive extract (5mg hydroxytyrosol equivalent) and represents an alternative for patients who do not wish or are unable to use chemical statins, including individuals with previous statin-associated muscle symptoms (SAMS). A 2-months observational non-randomized study was performed to evaluate the efficacy, tolerance and safety of Cholesfytol ® (1 tablet/day) in 642 hypercholesterolemic patients (mean age: 59 yrs; total cholesterol (TC) ≥200; LDL-C ≥140mg/dl). Patients were followed by 126 GPs, and included irrespective of SAMS history and/or diabetes. None of the patients were taking statins or other lipid-modifying therapy at inclusion. At baseline, 26% had fasting glucose >100 ≤125mg/dL, and 5% >125mg/dL; 32% (n=194) had a SAMS history; and 21% had atherogenic dyslipidemia (AD). In the entire cohort, pre-treatment TC; non-HDL-C; LDL-C; and TG were 259; 200; 168; 158mg/dL, respectively, and decreased significantly on treatment (-17.5% (TC) and -23.3% (LDL-C)). Fasting glucose and HbA 1c decreased between visits. The reduction in lipids was greater in patients with higher values at baseline. For comparable pre-treatment values, patients with SAMS history had reductions in TC, LDL-C, non-HDL-C, and apoB 100 slightly less than patients without myalgia. AD patients had greater on-treatment decrease in TG. Overall, 13 patients reported minor side-effects, and 4 patients reporting myalgia had antecedent SAMS. In conclusion, a substantial decrease in LDL-C was obtained with a combination of RYR and olive extract in high-risk hypercholesterolemic patients, without inducing new-onset SAMS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. In vivo hypoglycemic effect of methanolic fruit extract of Momordica charantia L.

    PubMed

    Nkambo, W; Anyama, N G; Onegi, B

    2013-12-01

    Momordica charantia L. is a medicinal plant commonly used in the management of diabetes mellitus. We investigated the blood glucose lowering effect of the methanolic fruit extract of the Ugandan variety of M. charantia L. in alloxan-induced diabetic albino rats. 500g of M. charantia powder were macerated in methanol and the extract administered to two groups of alloxan-induced diabetic rats. The first group received 125mg/kg, the second 375mg/kg and a third group 7mg/kg of metformin. A fourth group received 1ml normal saline. Fasting blood glucose (FBG) levels were measured at 0.5,1,2,3,5,8 and 12 hours and compared using one-way ANOVA. There was an initial rise in FBG for 1 hour after administration of extracts followed by steep reductions. Significant reduction in FBG occurred at 2 hours for 125mg/kg of extract (-3.2%, 313±25.9 to 303±25.0mg/dL, p = 0.049), 375mg/kg of extract (-3.9%, 356±19.7 to 342±20.3mg/dL, p = 0.001), and metformin (-2.6%, 344±21.7 to 335±21.1mg/dL, p = 0.003) when compared to normal saline. The maximum percentage reduction in FBG by both extracts occurred between 3 and 12 hours post dose. The methanolic fruit extract of M. charantia exhibits dose dependent hypoglycaemic activity in vivo.

  8. α-Glucosidase inhibition and antioxidant activity of an oenological commercial tannin. Extraction, fractionation and analysis by HPLC/ESI-MS/MS and (1)H NMR.

    PubMed

    Muccilli, Vera; Cardullo, Nunzio; Spatafora, Carmela; Cunsolo, Vincenzo; Tringali, Corrado

    2017-01-15

    Two batches of the oenological tannin Tan'Activ R, (toasted oak wood - Quercus robur), were extracted with ethanol. A fractionation on XAD-16 afforded four fractions for each extract. Extracts and fractions were evaluated for antioxidant activity (DPPH), polyphenol content (GAE) and yeast α-glucosidase inhibitory activity. Comparable results were obtained for both columns, fractions X1B and X2B showing the highest antioxidant activity. Fractions X1C and X2C notably inhibited α-glucosidase, with IC50=9.89 and 8.05μg/mL, respectively. Fractions were subjected to HPLC/ESI-MS/MS and (1)H NMR analysis. The main phenolic constituents of both X1B and X2B were a monogalloylglucose isomer (1), a HHDP-glucose isomer (2), castalin (3) gallic acid (4), vescalagin (5), and grandinin (or its isomer roburin E, 6). X1C and X2C showed a complex composition, including non-phenolic constituents. Fractionation of X2C gave a subfraction, with enhanced α-glucosidase inhibitory activity (IC50=6.15μg/mL), with castalagin (7) as the main constituent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. T-screen and yeast assay for the detection of the thyroid-disrupting activities of cadmium, mercury, and zinc.

    PubMed

    Li, Jian; Liu, Yun; Kong, Dongdong; Ren, Shujuan; Li, Na

    2016-05-01

    In the present study, a two-hybrid yeast bioassay and a T-screen were used to screen for the thyroid receptor (TR)-disrupting activity of select metallic compounds (CdCl2, ZnCl2, HgCl2, CuSO4, MnSO4, and MgSO4). The results reveal that none of the tested metallic compounds showed TR-agonistic activity, whereas ZnCl2, HgCl2, and CdCl2 demonstrated TR antagonism. For the yeast assay, the dose-response relationship of these metallic compounds was established, and the concentrations producing 20 % of the maximum effect of ZnCl2, HgCl2, and CdCl2 were 9.1 × 10(-5), 3.2 × 10(-6), and 1.2 × 10(-6) mol/L, respectively. The T-screen also supported the finding that ZnCl2, HgCl2, and CdCl2 decreased the cell proliferation at concentrations ranging from 10(-6) to 10(-4) mol/L. Furthermore, the thyroid-disrupting activity of metallic compounds in environmental water samples collected from the Guanting Reservoir, Beijing, China was evaluated. Solid-phase extraction was used to separate the organic extracts, and a modified two-hybrid yeast bioassay revealed that the metallic compounds in the water samples could affect thyroid hormone-induced signaling by decreasing the binding of the thyroid hormone. The addition of ethylenediaminetetraacetic acid (30 mg/L) could eliminate the effects. Thus, the cause(s) of the thyroid toxicity in the water samples appeared to be partly related to the metallic compounds.

  10. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    PubMed

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability.

  11. Immobilised Sarawak Malaysia yeast cells for production of bioethanol.

    PubMed

    Zain, Masniroszaime Mohd; Kofli, Noorhisham Tan; Rozaimah, Siti; Abdullah, Sheikh

    2011-05-01

    Bioethanol production using yeast has become a popular topic due to worrying depleting worldwide fuel reserve. The aim of the study was to investigate the capability of Malaysia yeast strains isolated from starter culture used in traditional fermented food and alcoholic beverages in producing Bioethanol using alginate beads entrapment method. The starter yeast consists of groups of microbes, thus the yeasts were grown in Sabouraud agar to obtain single colony called ST1 (tuak) and ST3 (tapai). The growth in Yeast Potatoes Dextrose (YPD) resulted in specific growth of ST1 at micro = 0.396 h-1 and ST3 at micro = 0.38 h-1, with maximum ethanol production of 7.36 g L-1 observed using ST1 strain. The two strains were then immobilized using calcium alginate entrapment method producing average alginate beads size of 0.51 cm and were grown in different substrates; YPD medium and Local Brown Sugar (LBS) for 8 h in flask. The maximum ethanol concentration measured after 7 h were at 6.63 and 6.59 g L-1 in YPD media and 1.54 and 1.39 g L-1in LBS media for ST1 and ST3, respectively. The use of LBS as carbon source showed higher yield of product (Yp/s), 0.59 g g-1 compared to YPD, 0.25 g g-1 in ST1 and (Yp/s), 0.54 g g-1 compared to YPD, 0.24 g g-1 in ST3 . This study indicated the possibility of using local strains (STI and ST3) to produce bioethanol via immobilization technique with local materials as substrate.

  12. [The influence of stinging nettle (Urtica dioica L.) extracts on the activity of catalase in THP1 monocytes/macrophages].

    PubMed

    Wolska, Jolanta; Janda, Katarzyna; Szkyrpan, Sylwia; Gutowska, Izabela

    2015-01-01

    Stinging nettle (Urtica dioicd L.) is one of the most valuable plants used in phytotherapy. The herbal raw material is a herb (Urticae herba), leaves (Urticae folium), roots (Urticae radix) and seeds (Urticae semina). This plant is a good source of vitamins, minerals, fibre, protein and biologically active compounds with antioxidant properties. The literature provides limited information about the chemical composition and properties of the seed heads. No papers are available on the effect of extracts of this plant on catalase activity in human cells. The aim of this study was to investigate the impact of stinging nettle (Urtica dioica L.) extracts on the antioxidant activity of catalase in THP1 macrophages. Two types of extracts: water and alcohol, at two different concentrations, were used in experiments. Nettle was collected in September and October in 2012 in the area of Szczecin. The collected plant material was frozen and lyophilized. After those procedures water and alcohol extracts of nettle were prepared and then added to THP1 cells. The antioxidant activity of catalase was established with the spectrophotometric method. The study showed that both extracts (water and alcohol) significantly increased the antioxidant activity of catalase in THP1 cells. The increase in catalase was directly proportional to the concentration of the added alcohol extract.

  13. The Yeast HAL1 Gene Improves Salt Tolerance of Transgenic Tomato1

    PubMed Central

    Gisbert, Carmina; Rus, Ana M.; Bolarín, M. Carmen; López-Coronado, J. Miguel; Arrillaga, Isabel; Montesinos, Consuelo; Caro, Manuel; Serrano, Ramon; Moreno, Vicente

    2000-01-01

    Overexpression of the HAL1 gene in yeast has a positive effect on salt tolerance by maintaining a high internal K+ concentration and decreasing intracellular Na+ during salt stress. In the present work, the yeast gene HAL1 was introduced into tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens-mediated transformation. A sample of primary transformants was self-pollinated, and progeny from both transformed and non-transformed plants (controls) were evaluated for salt tolerance in vitro and in vivo. Results from different tests indicated a higher level of salt tolerance in the progeny of two different transgenic plants bearing four copies or one copy of the HAL1 gene. In addition, measurement of the intracellular K+ to Na+ ratios showed that transgenic lines were able to retain more K+ than the control under salt stress. Although plants and yeast cannot be compared in an absolute sense, these results indicate that the mechanism controlling the positive effect of the HAL1 gene on salt tolerance may be similar in transgenic plants and yeast. PMID:10806256

  14. Iron metabolism mutant hbd mice have a deletion in Sec15l1, which has homology to a yeast gene for vesicle docking.

    PubMed

    White, Robert A; Boydston, Leigh A; Brookshier, Terri R; McNulty, Steven G; Nsumu, Ndona N; Brewer, Brandon P; Blackmore, Krista

    2005-12-01

    Defects in iron absorption and utilization lead to iron deficiency and anemia. While iron transport by transferrin receptor-mediated endocytosis is well understood, it is not completely clear how iron is transported from the endosome to the mitochondria where heme is synthesized. We undertook a positional cloning project to identify the causative mutation for the hemoglobin-deficit (hbd) mouse mutant, which suffers from a microcytic, hypochromic anemia apparently due to defective iron transport in the endocytosis cycle. As shown by previous studies, reticulocyte iron accumulation in homozygous hbd/hbd mice is deficient despite normal binding of transferrin to its receptor and normal transferrin uptake in the cell. We have identified a strong candidate gene for hbd, Sec15l1, a homologue to yeast SEC15, which encodes a key protein in vesicle docking. The hbd mice have an exon deletion in Sec15l1, which is the first known mutation of a SEC gene homologue in mammals.

  15. Modulation of rat macrophage function by the Mangifera indica L. extracts Vimang and mangiferin.

    PubMed

    García, D; Delgado, R; Ubeira, F M; Leiro, J

    2002-05-01

    Vimang is an aqueous extract of Mangiferia indica L., traditionally used in Cuba as an anti-inflammatory, analgesic and antioxidant. In the present study, we investigated the effects of Vimang and of mangiferin (a C-glucosylxanthone present in the extract) on rat macrophage functions including phagocytic activity and the respiratory burst. Both Vimang and mangiferin showed inhibitory effects on macrophage activity: (a) intraperitoneal doses of only 50-250 mg/kg markedly reduced the number of macrophages in peritoneal exudate following intraperitoneal injection of thioglycollate 5 days previously (though there was no significant effect on the proportion of macrophages in the peritoneal-exudate cell population); (b) in vitro concentrations of 0.1-100 microg/ml reduced the phagocytosis of yeasts cells by resident peritoneal and thioglycollate-elicited macrophages; (c) in vitro concentrations of 1-50 microg/ml reduced nitric oxide (NO) production by thioglycollate-elicited macrophages stimulated in vitro with lipopolysaccharide (LPS) and IFNgamma; and (d) in vitro concentrations of 1-50 microg/ml reduced the extracellular production of reactive oxygen species (ROS) by resident and thioglycollate-elicited macrophages stimulated in vitro with phorbol myristate acetate (PMA). These results suggest that components of Vimang, including the polyphenol mangiferin, have depressor effects on the phagocytic and ROS production activities of rat macrophages and, thus, that they may be of value in the treatment of diseases of immunopathological origin characterized by the hyperactivation of phagocytic cells such as certain autoimmune disorders.

  16. Anaerobic digestion of food waste using yeast.

    PubMed

    Suwannarat, Jutarat; Ritchie, Raymond J

    2015-08-01

    Fermentative breakdown of food waste seems a plausible alternative to feeding food waste to pigs, incineration or garbage disposal in tourist areas. We determined the optimal conditions for the fermentative breakdown of food waste using yeast (Saccharomyces cerevisiae) in incubations up to 30days. Yeast efficiently broke down food waste with food waste loadings as high as 700g FW/l. The optimum inoculation was ≈46×10(6)cells/l of culture with a 40°C optimum (25-40°C). COD and BOD were reduced by ≈30-50%. Yeast used practically all the available sugars and reduced proteins and lipids by ≈50%. Yeast was able to metabolize lipids much better than expected. Starch was mobilized after very long term incubations (>20days). Yeast was effective in breaking down the organic components of food waste but CO2 gas and ethanol production (≈1.5%) were only significant during the first 7days of incubations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Sympathomimetic effects of Scoparia dulcis L. and catecholamines isolated from plant extracts.

    PubMed

    Freire, S M; Torres, L M; Souccar, C; Lapa, A J

    1996-06-01

    The herb Scoparia dulcis L. is used in Brazilian folk medicine to treat bronchitis, gastric disorders, haemorrhoids, insect bites and skin wounds, and in oriental medicine to treat hypertension. A previous study has shown that extracts of S. dulcis have analgesic and anti-inflammatory properties; in this work the sympathomimetic activity of an ethanolic extract of Scoparia dulcis L. has been investigated in rodent preparations in-vivo and in-vitro. Administration of the extract (0.5-2 mg kg-1, i.v.) to anaesthetized rats produced dose-related hypertension blocked by the alpha-adrenoceptor antagonist prazosin (1 mg kg-1). Partition of the extract in chloroform-water yielded an aqueous phase 20 times more potent than the extract; this produced hypertension in either reserpine-treated or pithed rats. In untreated and reserpine-treated rats the same fraction (1-3 x 10(3) micrograms mL-1) produced concentration-dependent contractions of the vas deferens musculature parallel to those obtained with noradrenaline (10(-8)-10(-4)M). Prazosin (10(-7)M) reduced the maximum contractile effect of the aqueous fraction, and shifted the concentration-response curves for noradrenaline to the right. The aqueous fraction (25 and 50 micrograms mL-1) increased the inotropism of electrically driven left atria of rats, the effect being blocked by propranolol (0.4 microgram mL-1). In preparations of guinea-pig tracheal rings the aqueous fraction (1-3 x 10(3) micrograms mL-1) relaxed the muscle contraction induced by histamine (10(-4) M) in proportion to the concentration. The effect was antagonized competitively by propranolol (1.5 microM). High-performance liquid-chromatographic analysis of the aqueous fraction revealed the presence of both noradrenaline and adrenaline in the plant extract. The results indicated that both catecholamines may account for the hypertensive and inotropic effects obtained after parenteral administration of S. dulcis extracts. This sympathomimetic activity is

  18. Biogenesis of the yeast cytochrome bc1 complex.

    PubMed

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-01-01

    The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.

  19. Culturable yeasts in meltwaters draining from two glaciers in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Buzzini, Pietro; Turchetti, Benedetta; Diolaiuti, Guglielmina; D'Agata, Carlo; Martini, Alessandro; Smiraglia, Claudio

    The meltwaters draining from two glaciers in the Italian Alps contain metabolically active yeasts isolable by culture-based laboratory procedures. The average number of culturable yeast cells in the meltwaters was 10 20 colony-forming units (CFU) L-1, whereas supraglacial stream waters originating from overlying glacier ice contained <1 CFU L-1. Yeast cell number increased as the suspended-sediment content of the water samples increased. Basidiomycetous yeasts represent >80% of isolated strains (Cryptococcus spp. and Rhodotorula spp. were 33.3% and 17.8% of total strains, respectively). Culturable yeasts were psychrotolerant, predominantly obligate aerobes and able to degrade organic macromolecules (e.g. starch, esters, lipids, proteins). To the authors' knowledge, this is the first study to report the presence of culturable yeasts in meltwaters originating from glaciers. On the basis of these results, it is reasonable to suppose that the viable yeasts observed in meltwaters derived predominantly from the subglacial zone and that they originated from the subglacial microbial community. Their metabolic abilities could contribute to the microbial activity occurring in subglacial environments.

  20. Distinct Kynureninase and Hydroxykynureninase Activities in Microorganisms: Occurrence and Properties of a Single Physiologically Discrete Enzyme in Yeast

    PubMed Central

    Shetty, A. S.; Gaertner, F. H.

    1973-01-01

    (i) Saccharomyces cerevisiae grown in the presence of 1.0 mM l-tryptophan slowly excreted fluorescent material that was chromatographically identifiable as 3-hydroxyanthranilate but did not excrete detectable amounts of anthranilate nor rapidly deplete the medium of l-tryptophan. Under similar growth conditions, Neurospora crassa rapidly excretes anthranilate and rapidly depletes the medium of l-tryptophan. (ii) Chromatographic analysis of crude extracts from yeast revealed a single kynureninase-type enzyme whose synthesis was not measurably affected by the presence of tryptophan in the medium. Previous studies have provided evidence for two kynureninase-type enzymes in N. crassa, an inducible kynureninase and a constitutive hydroxykynureninase. (iii) Kinetic analysis of the partially purified yeast enzyme provided Michaelis constants for l-3-hydroxykynurenine and l-kynurenine of 6.7 × 10−6 and 5.4 × 10−4 M, respectively. This and other kinetic properties of the yeast enzyme are comparable to those reported for the constitutive enzyme from N. crassa. (iv) These findings suggest that S. cerevisiae has in common with N. crassa the biosynthetic enzyme hydroxykynureninase but lacks the catabolic enzyme kynureninase. Therefore, it can be predicted that, unlike N. crassa, S. cerevisiae does not carry out the tryptophan-anthranilate cycle. Distinct kynureninase-type enzymes may exist in other microorganisms and in mammals. PMID:4266242

  1. Fission yeast Csk1 is a CAK-activating kinase (CAKAK).

    PubMed Central

    Hermand, D; Pihlak, A; Westerling, T; Damagnez, V; Vandenhaute, J; Cottarel, G; Mäkelä, T P

    1998-01-01

    Cell cycle progression is dependent on the sequential activity of cyclin-dependent kinases (CDKs). For full activity, CDKs require an activating phosphorylation of a conserved residue (corresponding to Thr160 in human CDK2) carried out by the CDK-activating kinase (CAK). Two distinct CAK kinases have been described: in budding yeast Saccharomyces cerevisiae, the Cak1/Civ1 kinase is responsible for CAK activity. In several other species including human, Xenopus, Drosophila and fission yeast Schizosaccharomyces pombe, CAK has been identified as a complex homologous to CDK7-cyclin H (Mcs6-Mcs2 in fission yeast). Here we identify the fission yeast Csk1 kinase as an in vivo activating kinase of the Mcs6-Mcs2 CAK defining Csk1 as a CAK-activating kinase (CAKAK). PMID:9857180

  2. Co-production of tannase and pectinase by free and immobilized cells of the yeast Rhodotorula glutinis MP-10 isolated from tannin-rich persimmon (Diospyros kaki L.) fruits.

    PubMed

    Taskin, Mesut

    2013-02-01

    Hyper tannase and pectinase-producing yeast Rhodotorula glutinis MP-10 was isolated from persimmon (Diospyros kaki L.) fruits. The main pectinase activity of yeast was exo-polygalacturonase. No pectin methyl esterase and too low pectin lyase activities were detected for this yeast. The maximum exo-activities of tannase and polygalacturonase were determined as 15.2 and 26.9 U/mL for free cells and 19.8 and 28.6 U/mL for immobilized cells, respectively. Immobilized cells could be reused in 13 successive reaction cycles without any loss in the maximum tannase and polygalacturonase activities. Besides, too little decreases in activities of these enzymes were recorded between 14 and 18 cycles. At the end of 18 successive reaction cycles, total 503.1 U/mL of polygalacturonase and 349.6 U/mL of tannase could be produced using the same immobilized cells. This is the first report on the use of free and/or immobilized cells of a microorganism for the co-production of tannase and pectinase.

  3. Purification of ribonucleoproteins by a novel approach: isolation of the SSB1 ribonucleoprotein from yeast and demonstration that it has no role in mRNA splicing.

    PubMed

    Cusick, M E

    1992-12-29

    A novel approach is described to purify potential ribonucleoproteins (RNP) of yeast. The method assays a yeast RNP complex, assembled in vitro on actin pre-mRNA, by low-ionic strength acrylamide gel electrophoresis. The minimal protein components of this RNP complex were three proteins, one of 30 kDa and two at 42-44 kDa, defined by formation of the complex on biotinylated-RNA, binding of this complex to avidin-agarose, and salt elution of the protein in the biotinylated-RNP complex. Using the assay for RNP complex formation, an RNP protein was purified to homogeneity on the basis of its affinity towards single-stranded DNA and RNA. This RNP protein turned out to be identical to a known RNP protein, the single-stranded binding protein 1 (ssb1) of yeast, on the basis of identical gel electrophoretic migration, antibody cross-reactivity, and identical properties on the gel complex formation assay. In vitro mRNA splicing was normal in extracts made from a yeast strain missing ssb1 (ssb1- strain). Addition of anti-ssb1 antibody to splicing extracts made from a wild type strain did not inhibit or diminish splicing. Instead, mRNA splicing was reproducibly stimulated several fold, indicating competition between ssb1 and splicing factors for binding to single-stranded RNA in the extracts. RNP complexes still formed in the ssb1- strain, demonstrating that it would be possible to purify other RNP proteins from this strain using the gel complex formation assay.

  4. Synthesis of recombinant human parainfluenza virus 1 and 3 nucleocapsid proteins in yeast Saccharomyces cerevisiae.

    PubMed

    Juozapaitis, Mindaugas; Zvirbliene, Aurelija; Kucinskaite, Indre; Sezaite, Indre; Slibinskas, Rimantas; Coiras, Mayte; de Ory Manchon, Fernando; López-Huertas, María Rosa; Pérez-Breña, Pilar; Staniulis, Juozas; Narkeviciute, Irena; Sasnauskas, Kestutis

    2008-05-01

    Human parainfluenza virus types 1 and 3 (HPIV1 and HPIV3, respectively), members of the virus family Paramyxoviridae, are common causes of lower respiratory tract infections in infants, young children, the immunocompromised, the chronically ill, and the elderly. In order to synthesize recombinant HPIV1 and HPIV3 nucleocapsid proteins, the coding sequences were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of recombinant virus nucleocapsid proteins expression (20-24 mg l(-1) of yeast culture) was obtained. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. These structures contained host RNA, which was resistant to RNase treatment. The nucleocapsid proteins were stable in yeast and were easily purified by caesium chloride gradient ultracentrifugation. Therefore, this system proved to be simple, efficient and cost-effective, suitable for high-level production of parainfluenza virus nucleocapsids as nucleocapsid-like particles. When used as coating antigens in an indirect ELISA, the recombinant N proteins reacted with sera of patients infected with HPIV1 or 3. Serological assays to detect HPIV-specific antibodies could be designed on this basis.

  5. Use of whey lactose from dairy industry for economical kefiran production by Lactobacillus kefiranofaciens in mixed cultures with yeasts.

    PubMed

    Cheirsilp, Benjamas; Radchabut, Sirilaor

    2011-10-01

    To evaluate the feasibility of producing kefiran industrially, whey lactose, a by-product from dairy industry, was used as a low cost carbon source. Because the accumulation of lactic acid as a by-product of Lactobacillus kefiranofaciens inhibited cell growth and kefiran production, the kefir grain derived and non-derived yeasts were screened for their abilities to reduce lactic acid and promote kefiran production in a mixed culture. Six species of yeasts were examined: Torulaspora delbrueckii IFO 1626; Saccharomyces cerevisiae IFO 0216; Debaryomyces hansenii TISTR 5155; Saccharomyces exiguus TISTR 5081; Zygosaccharomyces rouxii TISTR 5044; and Saccharomyces carlsbergensis TISTR 5018. The mixed culture of L. kefiranofaciens with S. cerevisiae IFO 0216 enhanced the kefiran production best from 568 mg/L in the pure culture up to 807 and 938 mg/L in the mixed cultures under anaerobic and microaerobic conditions, respectively. The optimal conditions for kefiran production by the mixed culture were: whey lactose 4%; yeast extract 4%; initial pH of 5.5; and initial amounts of L. kefiranofaciens and S. cerevisiae IFO 0216 of 2.1×10(7) and 4.0×10(6)CFU/mL, respectively. Scaling up the mixed culture in a 2L bioreactor with dissolved oxygen control at 5% and pH control at 5.5 gave the maximum kefiran production of 2,580 mg/L in batch culture and 3,250 mg/L in fed-batch culture. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Benko, Zsigmond; Elder, Robert T; Li, Ge; Liang, Dong; Zhao, Richard Y

    2016-01-01

    HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.

  7. Proteomic analysis of rodent ribosomes revealed heterogeneity including ribosomal proteins L10-like, L22-like 1, and L39-like.

    PubMed

    Sugihara, Yoshihiko; Honda, Hiroki; Iida, Tomoharu; Morinaga, Takuma; Hino, Shingo; Okajima, Tetsuya; Matsuda, Tsukasa; Nadano, Daita

    2010-03-05

    Heterogeneity of ribosome structure, due to variations in ribosomal protein composition, has been shown to be of physiological significance in plants and yeast. Mammalian genomics have demonstrated numerous genes that are paralogous to genes encoding ribosomal proteins. Although the vast majority are considered to be pseudogenes, mRNA expression of a few paralogues, such as human ribosomal protein L39-like/L39-2, has been reported. In the present study, ribosomes from the liver, mammary gland, and testis of rodents were analyzed using a combination of two-dimensional gel electrophoresis under radical-free and highly reducing conditions, and mass spectrometry. This system allowed identification of 78 ribosomal proteins and Rack1 from a single gel. The degree of heterogeneity was far less than that reported for plant and yeast ribosomes, and was in accord with published biochemical and genetic data for mammalian ribosomes. Nevertheless, an uncharacterized paralogue of ribosomal protein L22, ribosomal protein L22-like 1, was identified as a minor ribosomal component. Ribosomal proteins L10-like and L39-like, paralogues of ribosomal proteins L10 and L39, respectively, were found in ribosomes only from the testis. Reverse transcription-polymerase chain reaction yielded supportive evidence for specific expression of L10-like and L39-like in the testis. Newly synthesized L39-like is likely to be transported to the nucleolus, where ribosome biosynthesis occurs, and then incorporated into translating ribosomes in the cytoplasm. Heterogeneity of mammalian testicular ribosomes is structurally non-negligible, and may offer valuable insights into the function of the customized ribosome.

  8. Spent yeast as natural source of functional food additives

    PubMed

    Rakowska, Rita; Sadowska, Anna; Dybkowska, Ewa; Świderski, Franciszek

    Spent yeasts are by-products arising from beer and wine production which over many years have been chiefly used as feed additives for livestock. They contain many valuable and bioactive substances which has thereby generated much interest in their exploitation. Up till now, the main products obtained from beer-brewing yeasts are β-glucans and yeast extracts. Other like foodstuffs include dried brewer’s yeast, where this is dried and the bitterness removed to be fit for human consumption as well as mannan-oligosaccharides hitherto used in the feed industry. β-glucans constitute the building blocks of yeast cell walls and can thus be used in human nutrition as dietary supplements or serving as food additives in functional foods. β-glucans products obtained via post-fermentation of beer also exhibit a high and multi-faceted biological activity where they improve the blood’s lipid profile, enhance immunological status and have both prebiotic and anti-oxidant properties. Yeast extracts are currently being used more and more to enhance flavour in foodstuffs, particularly for meat and its products. Depending on how autolysis is carried out, it is possible to design extracts of various meat flavours characteristic of specific meats. Many different flavour profiles can be created which may be additionally increased in combination with vegetable extracts. Within the food market, yeast extracts can appear in various guises such as liquids, pastes or powders. They all contain significant amounts of glutamic acid, 5’-GMP and 5’-IMP nucleotides together with various amino acids and peptides that act synergistically for enhancing the flavour of foodstuff products. Recent studies have demonstrated additional benefits of yeast extracts as valuable sources of amino acids and peptides which can be used in functional foods and dietary supplements. These products possess GRAS status (Generally Recognised As Safe) which thereby also adds further as to why they should be used

  9. Anti-tumor effect of hot aqueous extracts from Sonchus oleraceus (L.) L. and Juniperus sabina L - Two traditional medicinal plants in China.

    PubMed

    Huyan, Ting; Li, Qi; Wang, Yi-Lin; Li, Jing; Zhang, Jian-Yang; Liu, Ya-Xiong; Shahid, Muhammad Riaz; Yang, Hui; Li, Huan-Qing

    2016-06-05

    Sonchus oleraceus (L.) L (SO) and Juniperus sabina L (JS) are traditional medicinal plants in China. And the aqueous extracts of them have been used to treat tumor, inflammatory diseases, infection and so on in Chinese folk culture. However, the underlying mechanisms of their anti-tumor activities have not been illustrated yet. This study aims to evaluate the inhibitory effects of aqueous extracts from SO and JS on tumor cells. The prepared aqueous extracts of SO and JS were used to treat HepG-2 and K562 tumor cells, while the human peripheral blood mononuclear cells (PBMCs) were set as normal control. The viabilities, cell cycle and apoptosis of tumor cells after extracts treatment were assessed, in addition the expression of apoptosis-related genes (FasL, caspase 3, 6, 7, 8, 9, and 10) were analyzed. Meanwhile, the adherence and migration of HepG-2 were tested, and the expression levels of MMPs and ICAM-1 were analyzed. On top of that, the pSTAT in the two cells were also analyzed and suggested the related signaling pathway that the extracts acted on with in these tumor cells. Results showed that aqueous extracts of SO and JS have inhibitory effects on HepG-2 and K562 cells by decreasing cell viability and inducing apoptosis via up-regulation of the expression of the apoptosis-related genes FasL, caspase 3 and caspase 9. The extracts had different IC50 on tumor cells and PBMCs, which could block the tumor cell cycle at the G(0)/G(1) stage and significantly inhibit the adherence of HepG-2 cells. The extracts inhibited migration of these cells by inhibiting the expression of ICAM-1, MMP-2 and MMP-9. Further study indicated that the inhibition of pSTAT1 and 3 might be responsible for the inhibitory effects of the extracts on tumor cells. The results of this study indicated that SO and JS extracts had the anti-tumor effects, which may be developed as novel anti-tumor drugs and used in cancer therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Effect of black soybean koji extract on glucose utilization and adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Huang, Chi-Chang; Huang, Wen-Ching; Hou, Chien-Wen; Chi, Yu-Wei; Huang, Hui-Yu

    2014-05-09

    Adipocyte differentiation and the extent of subsequent fat accumulation are closely related to the occurrence and progression of diseases such as insulin resistance and obesity. Black soybean koji (BSK) is produced by the fermentation of black soybean with Aspergilllus awamori. Previous study indicated that BSK extract has antioxidative and multifunctional bioactivities, however, the role of BSK in the regulation of energy metabolism is still unclear. We aimed to investigate the effect of glucose utilization on insulin-resistant 3T3-L1 preadipocytes and adipogenesis-related protein expression in differentiated adipocytes with BSK treatment. Cytoxicity assay revealed that BSK did not adversely affect cell viability at levels up to 200 µg/mL. The potential for glucose utilization was increased by increased glucose transporter 1 (GLUT1), GLUT4 and protein kinase B (AKT) protein expression in insulin-resistant 3T3-L1 cells in response to BSK treatment. Simultaneously, BSK inhibited lipid droplet accumulation in differentiated 3T3-L1 cells. The inhibitory effect of adipogenesis was associated with downregulated peroxisome proliferator-activated receptor g (PPARγ) level and upregulated Acrp30 protein expression. Our results suggest that BSK extract could improve glucose uptake by modulating GLUT1 and GLUT4 expression in a 3T3-L1 insulin-resistance cell model. In addition, BSK suppressed differentiation and lipid accumulation in mature 3T3-L1 adipocytes, which may suggest its potential for food supplementation to prevent obesity and related metabolic abnormalities.

  11. SOD1 oxidation and formation of soluble aggregates in yeast: Relevance to sporadic ALS development

    PubMed Central

    Martins, Dorival; English, Ann M.

    2014-01-01

    Misfolding and aggregation of copper–zinc superoxide dismutase (Sod1) are observed in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Mutations in Sod1 lead to familial ALS (FALS), which is a late-onset disease. Since oxidative damage to proteins increases with age, it had been proposed that oxidation of Sod1 mutants may trigger their misfolding and aggregation in FALS. However, over 90% of ALS cases are sporadic (SALS) with no obvious genetic component. We hypothesized that oxidation could also trigger the misfolding and aggregation of wild-type Sod1 and sought to confirm this in a cellular environment. Using quiescent, stationary-phase yeast cells as a model for non-dividing motor neurons, we probed for post-translational modification (PTM) and aggregation of wild-type Sod1 extracted from these cells. By size-exclusion chromatography (SEC), we isolated two populations of Sod1 from yeast: a low-molecular weight (LMW) fraction that is catalytically active and a catalytically inactive, high-molecular weight (HMW) fraction. High-resolution mass spectrometric analysis revealed that LMW Sod1 displays no PTMs but HMW Sod1 is oxidized at Cys146 and His71, two critical residues for the stability and folding of the enzyme. HMW Sod1 is also oxidized at His120, a copper ligand, which will promote loss of this catalytic metal cofactor essential for SOD activity. Monitoring the fluorescence of a Sod1-green-fluorescent-protein fusion (Sod1-GFP) extracted from yeast chromosomally expressing this fusion, we find that HMW Sod1-GFP levels increase up to 40-fold in old cells. Thus, we speculate that increased misfolding and inclusion into soluble aggregates is a consequence of elevated oxidative modifications of wild-type Sod1 as cells age. Our observations argue that oxidative damage to wild-type Sod1 initiates the protein misfolding mechanisms that give rise to SALS. PMID:24936435

  12. In vitro effects of Italian Lavandula multifida L. leaf extracts on gilthead seabream (Sparus aurata) leucocytes and SAF-1 cells.

    PubMed

    Fazio, Angela; Cerezuela, Rebeca; Panuccio, Maria Rosaria; Cuesta, Alberto; Esteban, Maria Ángeles

    2017-07-01

    Lavandula multifida is very appreciated by pharmaceutical and cosmetic industries. In Italy is only found in Calabria and Sicily and, at present, urge its valorization due to its high extinction and genetic erosion risks. Possible applications of L. multifida extracts as immunostimulant in fish aquaculture were assayed by using gilthead seabream (Sparus aurata) as a marine fish model, due to its importance in fish aquaculture. The in vitro effects of both aqueous and ethanolic leaf extracts obtained from two Italian populations of L. multifida on head kidney leucocyte activities (viability, phagocytosis, respiratory burst and peroxidase content) were assessed. Furthermore, the possible cytotoxic effects of the extracts on SAF-1 cells and their bactericidal effects on three fish pathogenic bacteria (Vibrio harveyi, Vibrio anguillarum, Aeromonas salmonicida) were also evaluated. All the assays were performed in comparison with leaf extracts obtained from a widely-distributed species as L. angustifolia. Results showed that water and ethanolic leaf extracts obtained from L. multifida enhanced innate immune activities of S. aurata HK leucocytes. Furthermore, SAF-1 cell viability was not affected significantly after being incubated with the extracts. These extracts did not exert any bactericidal activity on the pathogenic bacterial strains tested in the present study. Results obtained in the present work suggested the possibility of use such extracts in in vivo studies in order to corroborate the possibility of their use in aquaculture. Their use could prevent to improve fish defense against pathogenic infections through enhancement of the fish immune status. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hydrolysis of proteins with methanesulfonic acid for improved HPLC-ICP-MS determination of seleno-methionine in yeast and nuts.

    PubMed

    Wrobel, Katarzyna; Kannamkumarath, Sasi S; Wrobel, Kazimierz; Caruso, Joseph A

    2003-01-01

    In this work, the use of methanesulfonic acid for protein hydrolysis is proposed for evaluation of Se-methionine in yeast, Brazil nuts, and possibly other selenium-rich biological samples. The hydrolysis was carried out by heating the sample with 4 mol L(-1) acid at reflux for 8 h. Two chromatographic techniques (size-exclusion and ion-pairing) coupled with ICP-MS detection were used to compare the release of Se-methionine from proteins by enzymatic (proteinase K, protease XIV) and acid hydrolyses. A more efficient liberation of Se-methionine was observed by acid hydrolysis. For quantification, the sample extracts were introduced onto a C8 Alltima column, and the separation was achieved with a mobile phase containing 5 mmol L(-1) hexanesulfonic acid in citrate buffer (pH 4.5)/methanol (95:5). The results obtained by standard addition showed 816+/-17 micro g g(-1) and 36.2+/-1.5 micro g g(-1) of selenium in the form of Se-methionine in yeast and nuts, respectively (65% and 75% of total selenium).

  14. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc.

    PubMed Central

    da Silva, Ana P. Sant'Anna; Nascimento da Silva, Luís C.; Martins da Fonseca, Caíque S.; de Araújo, Janete M.; Correia, Maria T. dos Santos; Cavalcanti, Marilene da Silva; Lima, Vera L. de Menezes

    2016-01-01

    Due to the use of Cleome spinosa Jacq. (Cleomaceae) in traditional medicine against inflammatory and infectious processes, this study evaluated the in vitro antimicrobial potential and phytochemical composition of extracts from its roots and leaves. From leaves (L) and roots (R) of C. spinosa different extracts were obtained (cyclohexane: ChL and ChR; chloroform: CL and CR; ethyl acetate: EAL and EAR, methanol: ML and MR). The antimicrobial activity was evaluated by the broth microdilution method to obtain the minimum inhibitory (MIC) and microbicidal (MMC) concentrations against 17 species, including bacteria and yeasts. Additionally, antimicrobial and combinatory effects with oxacillin were assessed against eight clinical isolates of Staphylococcus aureus. All C. spinosa extracts showed a broad spectrum of antimicrobial activity, as they have inhibited all tested bacteria and yeasts. This activity seems to be related to the phytochemicals (flavonoid, terpenoids and saponins) detected into the extracts of C. spinosa. ChL and CL extracts were the most actives, with MIC less than 1 mg/mL against S. aureus, Bacillus subtilis, and Micrococcus luteus. It is important to note that these concentrations are much lower than their 50% hemolysis concentration (HC50) values. Strong correlations were found between the average MIC against S. aureus and their phenolic (r = −0.89) and flavonoid content (r = −0.87), reinforcing the possible role of these metabolite classes on the antimicrobial activity of C. spinosa derived extracts. Moreover, CL and CR showed the best inhibitory activity against S. aureus clinical isolates, they also showed synergistic action with oxacillin against all these strains (at least at one combined proportion). These results encourage the identification of active substances which could be used as lead(s) molecules in the development of new antimicrobial drugs. PMID:27446005

  15. Simple method for the extraction and reversed-phase high-performance liquid chromatographic analysis of carotenoid pigments from red yeasts (Basidiomycota, Fungi).

    PubMed

    Weber, Roland W S; Anke, Heidrun; Davoli, Paolo

    2007-03-23

    A simple method for the extraction of carotenoid pigments from frozen wet cells of red yeasts (Basidiomycota) and their analysis by reversed-phase HPLC using a C(18) column and a water/acetone solvent system is described. Typical red yeast carotenoids belonging to an oxidative series from the monocyclic gamma-carotene to 2-hydroxytorularhodin and from the bicyclic beta-carotene to astaxanthin were separated. Pigment identity was confirmed by LC-atmospheric pressure chemical ionisation (APCI) mass spectrometry using similar chromatographic conditions.

  16. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    DOEpatents

    Miller, Matthew [Boston, MA; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Hause, Benjamin Matthew [Currie, MN; Van Hoek, Pim [Camarillo, CA; Dundon, Catherine Asleson [Minneapolis, MN

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  17. Phytate destruction by yeast fermentation in whole wheat meals. Study of high-extraction rate meals.

    PubMed

    Reinhold, J G

    1975-01-01

    Destruction of phytate by yeast fermentation is compared in sponges prepared from Iranian whole wheat meals of different extraction rates. Phytate was destroyed rapidly in whole meals of 75 to 85 and 85 to 90 per cent extraction, but destruction was retarded in those of 95 to 100 per cent extraction. Production of acid-soluble phosphorus kept pace with phytate destruction in the two whole meals of lower extraction rates but was delayed with less-than-expected yield in those of 95 to 100 per cent rate. Unleavened whole meal bread contains little acid-soluble phosphorus. Leavened breads made from whole meals of slightly lower extraction rate average five times as much. Since phytate phosphorus appears to remain unavailable in the small intestine in many circumstances, dependece on unleavened whole meal bread may result in critically low intakes of available phosphorus when other sources are lacking in the diet. It is concluded that replacement of the whole meals of 95 to 100 per cent extraction rate, presently the main staple of the diet of rural Iran, by those of somewhat lower rate is an important preliminary to the introduction of leaven and fermentation into village bread-making methods.

  18. Yeast ecology of Kombucha fermentation.

    PubMed

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  19. [Continuous ethanol fermentation coupled with recycling of yeast flocs].

    PubMed

    Wang, Bo; Ge, Xu-Meng; Li, Ning; Bai, Feng-Wu

    2006-09-01

    A continuous ethanol fermentation system composed of three-stage tanks in series coupled with two sedimentation tanks was established. A self-flocculating yeast strain developed by protoplast fusion from Saccharomyces cerevisiae and Schizosaccharomyces pombe was applied. Two-stage enzymatic hydrolysate of corn powder containing 220g/L of reducing sugar, supplemented with 1.5g/L (NH4)2HPO4 and 2.5g/L KH2PO4, was used as the ethanol fermentation substrate and fed into the first fermentor at the dilution rate of 0.057h(-1). The yeast flocs separated by sedimentation were recycled into the first fermentor as two different models: activation-recycle and direct recycle. The quasi-steady states were obtained for both operation models after the fermentation systems experienced short periods of transitions. Activation process helped enhance the performance of ethanol fermentation at the high dilution rates. The broth containing more than 101g/L ethanol, 3.2g/L residual reducing sugar and 7.7g/L residual total sugar was produced. The ethanol productivity was calculated to be 5.77g/(L x h), which increased by more than 70% compared with that achieved in the same tank in series system without recycling of yeast cells.

  20. Free amino nitrogen concentration correlates to total yeast assimilable nitrogen concentration in apple juice.

    PubMed

    Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C

    2018-01-01

    Yeast assimilable nitrogen (YAN) is essential for yeast growth and metabolism during apple ( Malus x domestica Borkh.) cider fermentation. YAN concentration and composition can impact cider fermentation kinetics and the formation of volatile aroma compounds by yeast. The YAN concentration and composition of apples grown in Virginia, USA over the course of two seasons was determined through analysis of both free amino nitrogen (FAN) and ammonium ion concentration. FAN was the largest fraction of YAN, with a mean value of 51 mg N L -1 FAN compared to 9 mg N L -1 ammonium. Observed YAN values ranged from nine to 249 mg N L -1 , with a mean value of 59 mg N L -1 . Ninety-four percent of all samples analyzed in this study contained <140 mg N L -1 YAN, a concentration generally considered the minimum level needed in grape-based wines for yeast to fully utilize all of the fermentable sugars. FAN concentration was correlated with total YAN concentration, but ammonium concentration was not. Likewise, there was no correlation between FAN and ammonium concentration.

  1. Scanning electron microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175.

    PubMed

    Rahim, Zubaidah Haji Abdul; Thurairajah, Nalina

    2011-04-01

    Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1)); with sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1))]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm² glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL(-1) corresponded to that of 0.12% chlorhexidine. At 4 mg mL(-1) of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved.

  2. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12.

    PubMed

    Juturu, Veeresh; Wu, Jin Chuan

    2018-03-01

    Thermophilic Bacillus coagulans JI12 was used to ferment hemicellulose hydrolysate obtained by acid hydrolysis of oil palm empty fruit bunch at 50 °C and pH 6, producing 105.4 g/L of l-lactic acid with a productivity of 9.3 g/L/H by fed-batch fermentation under unsterilized conditions. Simultaneous saccharification and fermentation (SSF) was performed at pH 5.5 and 50 °C to convert both hemicellulose hydrolysate and cellulose-lignin complex in the presence of Cellic Ctec2 cellulases using yeast extract (20 g/L) as the nitrogen source, giving 114.0 g/L of l-lactic acid with a productivity of 5.7 g/L/H. The SSF was also conducted by replacing yeast extract with equal amount of dry Bakers' yeast, achieving 120.0 g/L of l-lactic acid with a productivity of 4.3 g/L/H. To the best of our knowledge, these lactic acid titers and productivities are the highest ever reported from lignocellulose hydrolysates. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  3. The antioxidant and cytotoxic activities of Sonchus oleraceus L. extracts.

    PubMed

    Yin, Jie; Kwon, Gu-Joong; Wang, Myeong-Hyeon

    2007-01-01

    This study investigated in vitro antioxidant activity of Sonchus oleraceus L. by extraction solvent, which were examined by reducing power, hydroxyl radical-scavenging activity(HRSA) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assays. 70% MeOH extract had the greatest reducing power while EtOH extract had the greatest HRSA. The antioxidant activity of S. oleraceus extracts was concentration dependent and its IC(50) values ranged from 47.1 to 210.5 microg/ml and IC(50) of 70% MeOH, boiling water and 70% EtOH extracts were 47.1, 52.7 and 56.5 microg/ml, respectively. 70% MeOH extract of S. oleraceus contained the greatest amount of both phenolic and flavonoid contents. The extracts tested had greater nitrite scavenging effects at lower pH conditions. The cytotoxic activity showed that EtOH extract had the best activity against the growth of stomach cancer cell. These results suggest that S. oleraceus extract could be used as a potential source of natural antioxidants.

  4. Antimicrobial and antioxidant activities of the methanolic extracts of three Salvia species from Tunisia.

    PubMed

    Salah, Karima Bel Hadj; Mahjoub, Mohamed Ali; Ammar, Samia; Michel, Laura; Millet-Clerc, Joelle; Chaumont, Jean Pierre; Mighri, Zine; Aouni, Mahjoub

    2006-10-01

    This study examines the in vitro antimicrobial and antioxidant activities of the methanolic extracts of three Salvia species from Tunisia: Salvia aegyptiaca L., S. argentea L. and S. verbenaca Ssp. clandestina L. Pugsley. The extracts inhibited the growth of dermatophytes and of bacteria responsible for unpleasant odours to varying degrees; the pathogenic yeasts Candida albicans and Cryptococcus neoformans, the filamentous fungi Aspergillus fumigatus and selected dog otitis bacteria were all resistant to each of the extracts. The extracts were screened for their antioxidant activities using 2,2-diphenyl-1-picrylhydrazyl free radical scavenging and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) test systems, and gave positive results in both tests. The extracts of S. aegyptiaca were the most active in both tests, followed by those of S. verbenaca, then S. argentea. These results confirm the antimicrobial and antioxidant activities of the genus Salvia and underline the potential of these plants either as natural preservatives or in pharmaceutical applications.

  5. Yeast Surface-Displayed H5N1 Avian Influenza Vaccines

    PubMed Central

    Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey

    2016-01-01

    Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation. PMID:28078309

  6. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    PubMed

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  7. Synergistic effect of sodium and yeast in improving the efficiency of DSSC sensitized with extract from petals of Kigelia Africana

    NASA Astrophysics Data System (ADS)

    Shalini, S.; Balasundaraprabhu, R.; Satish Kumar, T.; Sivakumaran, K.; Kannan, M. D.

    2018-05-01

    TiO2 nanostructures with two different dopants, sodium and yeast have been successfully synthesized by hydrothermal method. Doping sodium is found to extend the absorbance of TiO2 into the visible region as well as it acts as mordant in fixing and improving the absorption of dye. Yeast, as a dopant, can help in absorption of more anthocyanins from the natural dye extract by TiO2 and also aids in retaining the colour of the dye and increases the stability of the dye at varying pH. Anthocyanins are the major class of pigment present in the newly addressed maroon, velvety and trumpet shaped flower "Kigelia Africana". X-ray diffraction analysis revealed the formation of rutile phase for all the samples. Field Emission Scanning Electron microscopy images revealed the formation of nanorods and nanoflowers with change in dopant as well as their concentration. The photoelectric conversion efficiency of DSSC with undoped TiO2 photoelectrode is 0.87% and DSSC with 6% Na doped TiO2 photoelectrode is 1.56%. The efficiency of DSSC with 6% Na+6% yeast doped TiO2 photoelectrode is found to increase from 2.09% (DSSC with 6% Na+4% yeast doped TiO2 photoelectrode) to 2.31% on varying the dopant concentration. Doping is also found to increase the dye absorption and superior charge transport efficiency which in turn helps to improve the performance of DSSC.

  8. The genetic incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast.

    PubMed

    Supekova, Lubica; Zambaldo, Claudio; Choi, Seihyun; Lim, Reyna; Luo, Xiaozhou; Kazane, Stephanie A; Young, Travis S; Schultz, Peter G

    2018-05-15

    The noncanonical amino acid p-azidomethyl-l-phenylalanine can be genetically incorporated into proteins in bacteria, and has been used both as a spectroscopic probe and for the selective modification of proteins by alkynes using click chemistry. Here we report identification of Escherichia coli tyrosyl tRNA synthetase mutants that allow incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast. When expressed together with the cognate E. coli tRNA CUA Tyr , the new mutant tyrosyl tRNA synthetases directed robust incorporation of p-azidomethyl-l-phenylalanine into a model protein, human superoxide dismutase, in response to the UAG amber nonsense codon. Mass spectrometry analysis of purified superoxide dismutase proteins confirmed the efficient site-specific incorporation of p-azidomethyl-l-phenylalanine. This work provides an additional tool for the selective modification of proteins in eukaryotic cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Increase of ethanol productivity by cell-recycle fermentation of flocculating yeast.

    PubMed

    Wang, F Z; Xie, T; Hui, M

    2011-01-01

    Using the recombinant flocculating Angel yeast F6, long-term repeated batch fermentation for ethanol production was performed and a high volumetric productivity resulted from half cells not washed and the optimum opportunity of residual glucose 20 g l(-1) of last medium. The obtained highest productivity was 2.07 g l-(1) h(-1), which was improved by 75.4% compared with that of 1.18 g l(-1) h(-1) in the first batch fermentation. The ethanol concentration reached 8.4% corresponding to the yield of 0.46 g g(-1). These results will contribute greatly to the industrial production of fuel ethanol using the commercial method with the flocculating yeast.

  10. Zinc-containing yeast extract promotes nonrapid eye movement sleep in mice.

    PubMed

    Cherasse, Yoan; Saito, Hitomi; Nagata, Nanae; Aritake, Kosuke; Lazarus, Michael; Urade, Yoshihiro

    2015-10-01

    Zinc is an essential trace element for humans and animals, being located, among other places, in the synaptic vesicles of cortical glutamatergic neurons and hippocampal mossy fibers in the brain. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate and GABA receptors. Because of the central role of these neurotransmitters in brain activity, we examined in this study the sleep-promoting activity of zinc by monitoring locomotor activity and electroencephalogram after its administration to mice. Zinc-containing yeast extract (40 and 80 mg/kg) dose dependently increased the total amount of nonrapid eye movement sleep and decreased the locomotor activity. However, this preparation did not change the amount of rapid eye movement sleep or show any adverse effects such as rebound of insomnia during a period of 24 h following the induction of sleep; whereas the extracts containing other divalent cations (manganese, iron, and copper) did not decrease the locomotor activity. This is the first evidence that zinc can induce sleep. Our data open the way to new types of food supplements designed to improve sleep. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts

    PubMed Central

    2012-01-01

    Background Arnica montana L. and Artemisia absinthium L. (Asteraceae) are medicinal plants native to temperate regions of Europe, including Romania, traditionally used for treatment of skin wounds, bruises and contusions. In the present study, A. montana and A. absinthium ethanolic extracts were evaluated for their chemical composition, antioxidant activity and protective effect against H2O2-induced oxidative stress in a mouse fibroblast-like NCTC cell line. Results A. absinthium extract showed a higher antioxidant capacity than A. montana extract as Trolox equivalent antioxidant capacity, Oxygen radical absorbance capacity and 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging activity, in correlation with its flavonoids and phenolic acids content. Both plant extracts had significant effects on the growth of NCTC cells in the range of 10–100 mg/L A. montana and 10–500 mg/L A. absinthium. They also protected fibroblast cells against hydrogen peroxide-induced oxidative damage, at the same doses. The best protection was observed in cell pre-treatment with 10 mg/L A. montana and 10–300 mg/L A. absinthium, respectively, as determined by Neutral red and lactate dehydrogenase assays. In addition, cell pre-treatment with plant extracts, at these concentrations, prevented morphological changes induced by hydrogen peroxide. Flow-cytometry analysis showed that pre-treatment with A. montana and A. absinthium extracts restored the proportion of cells in each phase of the cell cycle. Conclusions A. montana and A. absinthium extracts, rich in flavonoids and phenolic acids, showed a good antioxidant activity and cytoprotective effect against oxidative damage in fibroblast-like cells. These results provide scientific support for the traditional use of A. montana and A. absinthium in treatment of skin disorders. PMID:22958433

  12. Hop (Humulus lupulus L.) Extract and 6-Prenylnaringenin Induce P450 1A1 Catalyzed Estrogen 2-Hydroxylation

    PubMed Central

    2016-01-01

    Humulus lupulus L. (hops) is a popular botanical dietary supplement used by women as a sleep aid and for postmenopausal symptom relief. In addition to its efficacy for menopausal symptoms, hops can also modulate the chemical estrogen carcinogenesis pathway and potentially protect women from breast cancer. In the present study, an enriched hop extract and the key bioactive compounds [6-prenylnarigenin (6-PN), 8-prenylnarigenin (8-PN), isoxanthohumol (IX), and xanthohumol (XH)] were tested for their effects on estrogen metabolism in breast cells (MCF-10A and MCF-7). The methoxyestrones (2-/4-MeOE1) were analyzed as biomarkers for the nontoxic P450 1A1 catalyzed 2-hydroxylation and the genotoxic P450 1B1 catalyzed 4-hydroxylation pathways, respectively. The results indicated that the hop extract and 6-PN preferentially induced the 2-hydroxylation pathway in both cell lines. 8-PN only showed slight up-regulation of metabolism in MCF-7 cells, whereas IX and XH did not have significant effects in either cell line. To further explore the influence of hops and its bioactive marker compounds on P450 1A1/1B1, mRNA expression and ethoxyresorufin O-dealkylase (EROD) activity were measured. The results correlated with the metabolism data and showed that hop extract and 6-PN preferentially enhanced P450 1A1 mRNA expression and increased P450 1A1/1B1 activity. The aryl hydrocarbon receptor (AhR) activation by the isolated compounds was tested using xenobiotic response element (XRE) luciferase construct transfected cells. 6-PN was found to be an AhR agonist that significantly induced XRE activation and inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced XRE activity. 6-PN mediated induction of EROD activity was also inhibited by the AhR antagonist CH223191. These data show that the hop extract and 6-PN preferentially enhance the nontoxic estrogen 2-hydroxylation pathway through AhR mediated up-regulation of P450 1A1, which further emphasizes the importance of

  13. Antioxidant potential of hydro-methanolic extract of Prasium majus L: an in vitro study.

    PubMed

    Chaouche, T M; Haddouchi, F; Ksouri, R; Medini, F; El-Haci, I A; Boucherit, Z; Sekkal, F Z; Atik-Bekara, F

    2013-11-01

    Phytochemicals are extensively found at different levels in many medicinal plants. To investigate the phenolic compound content and in vitro antioxidant activity of hydro-methanolic extract from Prasium majus L. (Lamiaceae). The present investigation comprises, estimation of total polyphenol, flavonoid, tannin, in vitro antioxidant assays such as total antioxidant capacity, DPPH, ABTS, beta-carotene and ferric reducing power. P. majus exhibited 64.25 mg GAE g(-1) extract of polyphenol phenol content and better scavenging activity of DPPH (IC50 = 7.95 microg mL(-1)), ABTS*+ (IC50 = 373.78 microg mL(-1)) and beta-carotene (IC50 = 122.56 microg mL(-1)). Our results clearly demonstrated that hydro-methanolic extract P. majus has antioxidant capacity. Therefore is a valuable source of natural antioxidants.

  14. [Treatment of oil-manufacturing wastewater by yeast-SBR system].

    PubMed

    Lü, Wen-zhou; Liu, Ying; Huang, Yi-zhen

    2008-04-01

    Eight yeast strains were applied to a sequencing batch reactor (SBR) to treat high-strength oil-containing wastewater. The removal performance, yeast cultivation method and key factors affecting the stability of system were discussed. The results show yeast sludge with MLSS of 19 g/L and SVI of 35 mL/g can be obtained in 6 d in an open system without any molds and bacteria inhibitor addition; In 30 d continuous wastewater treatment, COD and oil removal rate achieve 86.8%-96.9% and above 99.5% respectively under the influent conditions of the COD of 9000-23000 mg/L and oil of 4500-16000 mg/L; Short period of pH impact brings reversible effects on the system and the sludge retention time can affect the SVI of the yeast; Absence of nitrogen induces morphology conversion of some yeast cells from single cell to filamentous one and impairs the settling capability of the yeast.

  15. Effects of yeast extract and vitamin D on turkey mortality and cellulitis incidence in a transport stress model.

    USDA-ARS?s Scientific Manuscript database

    We evaluated yeast extract (YE) and vitamin D (VD) in turkeys treated with dexamethasone (Dex) at intervals designed to simulate transport stress during a 3 stage growout. YE but not VD decreased early mortality (P = 0.001) and mortality at wk 7 (P= 0.02) and wk 12 (P = 0.002) but not wk 16. Celluli...

  16. Chemical composition and antifungal activity of essential oils and supercritical CO2 extracts of Apium nodiflorum (L.) Lag.

    PubMed

    Maxia, Andrea; Falconieri, Danilo; Piras, Alessandra; Porcedda, Silvia; Marongiu, Bruno; Frau, Maria Assunta; Gonçalves, Maria J; Cabral, Célia; Cavaleiro, Carlos; Salgueiro, Lígia

    2012-07-01

    Aerial parts of Apium nodiflorum collected in Portugal and Italy were submitted to hydrodistillation; also a supercritical fluid extract was obtained from Italian plants. The extracts were analyzed by GC and GC/MS. Both essential oils, obtained from Portuguese and Italian plants, posses high content of phenylpropanoids (51.6 vs. 70.8%); in the former, the percentage split in myristicin (29.1%) and dillapiol (22.5%), whereas in the latter, the total percentage is only of dillapiol (70.8%). The co-occurrence of myristicin and dillapiol is frequent because dillapiol results from enzymatic methoxylation of myristicin. Antimicrobial activity of phenylpropanoids has been patented, what suggest the potential of plants with high amounts of these compounds. Minimal inhibitory concentration (MIC) and minimal lethal concentration, determined according to NCCLS, were used to evaluate the antifungal activity of the essential oils against yeasts, Aspergillus species and dermatophytes. Essential oils exhibited higher antifungal activity than other Apiaceae against dermatophytes, with MIC ranging from 0.04 to 0.32 μl/ml. These results support the potential of A. nodiflorum oil in the treatment of dermatophytosis and candidosis.

  17. Screening of a thiamine-auxotrophic yeast for alpha-ketoglutaric acid overproduction.

    PubMed

    Zhou, Jingwen; Zhou, Haiyan; Du, Guocheng; Liu, Liming; Chen, Jian

    2010-09-01

    To obtain a thiamine-auxotrophic yeast strain that overproduces alpha-ketoglutaric acid (alpha-KG) from glycerol and to investigate nutrient effects on alpha-KG production. Yeast strain WSH-Z06, a thiamine auxotroph that gave high yields of alpha-KG from glycerol, was obtained by screening for ampicillin/kanamycin resistance and thiamine auxotrophy. The strain was identified as Yarrowia lipolytica based on physiological, chemical, and phylogenetic analysis. The ability of the strain to convert glycerol to alpha-KG was analysed by investigating the effects of nutritional factors, including thiamine, riboflavin, nitrogen sources, and calcium ion. Thiamine and calcium ion concentration had the greatest effect on alpha-KG accumulation. Under optimal conditions, a yield of 39.2 g l(-1)alpha-KG was obtained from 100 g l(-1) glycerol, with 16.84 g l(-1) pyruvate as a by-product. The current work provides a method for screening for an alpha-KG overproducer. Nutrients have a significant impact on alpha-KG production in the yeast strain presented here. The alpha-KG-overproducing yeast strain Y. lipolytica WSH-Z06 is a promising parent strain for further metabolic engineering to lower by-product accumulation and accelerate glycerol utilization.

  18. Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle

    PubMed Central

    2010-01-01

    Background The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. Methods For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Results Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated

  19. Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle.

    PubMed

    Siegner, Ralf; Heuser, Stefan; Holtzmann, Ursula; Söhle, Jörn; Schepky, Andreas; Raschke, Thomas; Stäb, Franz; Wenck, Horst; Winnefeld, Marc

    2010-08-05

    The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated by a decrease in the ADD1

  20. Scanning Electron Microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175

    PubMed Central

    RAHIM, Zubaidah Haji Abdul; THURAIRAJAH, Nalina

    2011-01-01

    Introduction Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. Objectives: In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. Material and Methods S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL-1 and 4 mg mL-1); with sucrose containing the extract (2 mg mL-1 and 4 mg mL-1)]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. Results It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm2 glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL-1 corresponded to that of 0.12% chlorhexidine. At 4 mg mL-1 of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. Conclusion The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved. PMID

  1. The antioxidant and cytotoxic activities of Sonchus oleraceus L. extracts

    PubMed Central

    Yin, Jie; Kwon, Gu-Joong

    2007-01-01

    This study investigated in vitro antioxidant activity of Sonchus oleraceus L. by extraction solvent, which were examined by reducing power, hydroxyl radical-scavenging activity(HRSA) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assays. 70% MeOH extract had the greatest reducing power while EtOH extract had the greatest HRSA. The antioxidant activity of S. oleraceus extracts was concentration dependent and its IC50 values ranged from 47.1 to 210.5 µg/ml and IC50 of 70% MeOH, boiling water and 70% EtOH extracts were 47.1, 52.7 and 56.5 µg/ml, respectively. 70% MeOH extract of S. oleraceus contained the greatest amount of both phenolic and flavonoid contents. The extracts tested had greater nitrite scavenging effects at lower pH conditions. The cytotoxic activity showed that EtOH extract had the best activity against the growth of stomach cancer cell. These results suggest that S. oleraceus extract could be used as a potential source of natural antioxidants. PMID:20368937

  2. A Study on L-Asparaginase of Nocardia levis MK-VL_113

    PubMed Central

    Kavitha, Alapati; Vijayalakshmi, Muvva

    2012-01-01

    An enzyme-based drug, L-asparaginase, was produced by Nocardia levis MK-VL_113 isolated from laterite soils of Guntur region. Cultural parameters affecting the production of L-asparaginase by the strain were optimized. Maximal yields of L-asparaginase were recorded from 3-day-old culture grown in modified asparagine-glycerol salts broth with initial pH 7.0 at temperature 30°C. Glycerol (2%) and yeast extract (1.5%) served as good carbon and nitrogen sources for L-asparaginase production, respectively. Cell-disrupting agents like EDTA slightly enhanced the productivity of L-asparaginase. Ours is the first paper on the production of L-asparaginase by N. levis. PMID:22619604

  3. A study on L-asparaginase of Nocardia levis MK-VL_113.

    PubMed

    Kavitha, Alapati; Vijayalakshmi, Muvva

    2012-01-01

    An enzyme-based drug, L-asparaginase, was produced by Nocardia levis MK-VL_113 isolated from laterite soils of Guntur region. Cultural parameters affecting the production of L-asparaginase by the strain were optimized. Maximal yields of L-asparaginase were recorded from 3-day-old culture grown in modified asparagine-glycerol salts broth with initial pH 7.0 at temperature 30°C. Glycerol (2%) and yeast extract (1.5%) served as good carbon and nitrogen sources for L-asparaginase production, respectively. Cell-disrupting agents like EDTA slightly enhanced the productivity of L-asparaginase. Ours is the first paper on the production of L-asparaginase by N. levis.

  4. Characterization of Linum usitatissimum L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract

    PubMed Central

    Chauhan, Rishika; Chester, Karishma; Khan, Yasmeen; Tamboli, Ennus Tajuddin; Ahmad, Sayeed

    2015-01-01

    Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE), ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2) were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), and Fourier-transformed infrared spectroscopy (FT-IR) fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method. PMID:26681884

  5. Antibacterial, antioxidant, and anticholinesterase activities of plant seed extracts from Brazilian semiarid region.

    PubMed

    Farias, Davi Felipe; Souza, Terezinha Maria; Viana, Martônio Ponte; Soares, Bruno Marques; Cunha, Arcelina Pacheco; Vasconcelos, Ilka Maria; Ricardo, Nágila Maria Pontes Silva; Ferreira, Paulo Michel Pinheiro; Melo, Vânia Maria Maciel; Carvalho, Ana Fontenele Urano

    2013-01-01

    The antimicrobial, antioxidant, and anticholinesterase activities of ethanolic seed extracts of twenty-one plant species from Brazilian semiarid region were investigated. The extracts were tested for antimicrobial activity against six bacteria strains and three yeasts. Six extracts presented activity against the Gram (-) organism Salmonella choleraesuis and the Gram (+) organisms Staphylococcus aureus and Bacillus subtilis. The MIC values ranged from 4.96 to 37.32 mg/mL. The Triplaris gardneriana extract presented activity against the three species, with MIC values 18.8, 13.76, and 11.15 mg/mL, respectively. Five extracts presented antioxidant activity, with EC50 values ranging from 69.73 μ g/mL (T. gardneriana) to 487.51 μ g/mL (Licania rigida). For the anticholinesterase activity, eleven extracts were capable of inhibiting the enzyme activity. From those, T. gardneriana, Parkia platycephala and Connarus detersus presented the best activities, with inhibition values of 76.7, 71.5, and 91.9%, respectively. The extracts that presented antimicrobial activity were tested for hemolytic assay against human A, B, and O blood types and rabbit blood. From those, only the Myracrodruon urundeuva extract presented activity (about 20% of hemolysis at the lowest tested concentration, 1.9 µg/mL). Infrared spectroscopy of six representative extracts attested the presence of tannins, polyphenols, and flavonoids, which was confirmed by a qualitative phytochemical assay.

  6. Evaluation of Brewer's spent yeast to produce flavor enhancer nucleotides: influence of serial repitching.

    PubMed

    Vieira, Elsa; Brandão, Tiago; Ferreira, Isabel M P L V O

    2013-09-18

    The present work evaluates the influence of serial yeast repitching on nucleotide composition of brewer's spent yeast extracts produced without addition of exogenous enzymes. Two procedures for disrupting cell walls were compared, and the conditions for low-cost and efficient RNA hydrolysis were selected. A HILIC methodology was validated for the quantification of nucleotides and nucleosides in yeast extracts. Thirty-seven samples of brewer's spent yeast ( Saccharomyces pastorianus ) organized according to the number of serial repitchings were analyzed. Nucleotides accounted for 71.1-88.2% of the RNA products; 2'AMP was the most abundant (ranging between 0.08 and 2.89 g/100 g dry yeast). 5'GMP content ranged between 0.082 and 0.907 g/100 g dry yeast. The sum of 5'GMP, 5'IMP, and 5'AMP represented between 25 and 32% of total nucleotides. This works highlights for the first time that although serial repitching influences the content of monophosphate nucleotides and nucleosides, the profiles of these RNA hydrolysis products are not affected.

  7. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid.

    PubMed

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-11-04

    Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 microg mL(-1) in shake-flask cultures and 1 g L(-1) in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by yeast

  8. Response Surface Methodology for Ultrasound-Assisted Extraction of Astaxanthin from Haematococcus pluvialis

    PubMed Central

    Zou, Tang-Bin; Jia, Qing; Li, Hua-Wen; Wang, Chang-Xiu; Wu, Hong-Fu

    2013-01-01

    Astaxanthin is a novel carotenoid nutraceutical occurring in many crustaceans and red yeasts. It has exhibited various biological activities including prevention or amelioration of cardiovascular disease, gastric ulcer, hypertension, and diabetic nephropathy. In this study, ultrasound-assisted extraction was developed for the effective extraction of astaxanthin from Haematococcus pluvialis. Some parameters such as extraction solvent, liquid-to-solid ratio, extraction temperature, and extraction time were optimized by single-factor experiment and response surface methodology. The optimal extraction conditions were 48.0% ethanol in ethyl acetate, the liquid-to-solid ratio was 20:1 (mL/g), and extraction for 16.0 min at 41.1 °C under ultrasound irradiation of 200 W. Under optimal conditions, the yield of astaxanthin was 27.58 ± 0.40 mg/g. The results obtained are beneficial for the full utilization of Haematococcus pluvialis, which also indicated that ultrasound-assisted extraction is a very useful method for extracting astaxanthin from marine life. PMID:23697948

  9. Expression and characterization of human CB1 cannabinoid receptor in methylotrophic yeast Pichia pastoris.

    PubMed

    Kim, Tae-Kang; Zhang, Rundong; Feng, Wenke; Cai, Jian; Pierce, William; Song, Zhao-Hui

    2005-03-01

    For the purpose of purification and structural characterization, the CB1 cannabinoid receptors are expressed in methylotrophic yeast Pichia pastoris. The expression plasmid was constructed in which the CB1 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase I gene. To facilitate easy detection and purification, a FLAG tag was introduced at the N-terminal, a c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB1. In membrane preparations of CB1 gene transformed yeast cells, Western blot analysis detected the expression of CB1 proteins. Radioligand binding assays demonstrated that the tagged CB1 receptors expressed in P. pastoris have a pharmacological profile similar to that of the untagged CB1 receptors expressed in mammalian systems. Furthermore, the tagged CB1 receptors were purified by anti-FLAG M2 affinity chromatography and the identity of the purified CB1 receptor proteins was confirmed by Western blot analysis. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions of purified CB1 preparations detected 17 peptide fragments derived from the CB1, thus further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope tagged, functional CB1 cannabinoid receptors can be expressed in P. pastoris for purification and mass spectrometry characterization.

  10. Crystal structures of fission yeast histone chaperone Asf1 complexed with the Hip1 B-domain or the Cac2 C terminus.

    PubMed

    Malay, Ali D; Umehara, Takashi; Matsubara-Malay, Kazuko; Padmanabhan, Balasundaram; Yokoyama, Shigeyuki

    2008-05-16

    The assembly of core histones onto eukaryotic DNA is modulated by several histone chaperone complexes, including Asf1, CAF-1, and HIRA. Asf1 is a unique histone chaperone that participates in both the replication-dependent and replication-independent pathways. Here we report the crystal structures of the apo-form of fission yeast Asf1/Cia1 (SpAsf1N; residues 1-161) as well as its complexes with the B-domain of the fission yeast HIRA orthologue Hip1 (Hip1B) and the C-terminal region of the Cac2 subunit of CAF-1 (Cac2C). The mode of the fission yeast Asf1N-Hip1B recognition is similar to that of the human Asf1-HIRA recognition, suggesting that Asf1N recognition of Hip1B/HIRA is conserved from yeast to mammals. Interestingly, Hip1B and Cac2C show remarkably similar interaction modes with Asf1. The binding between Asf1N and Hip1B was almost completely abolished by the D37A and L60A/V62A mutations in Asf1N, indicating the critical role of salt bridge and van der Waals contacts in the complex formation. Consistently, both of the aforementioned Asf1 mutations also drastically reduced the binding to Cac2C. These results provide a structural basis for a mutually exclusive Asf1-binding model of CAF-1 and HIRA/Hip1, in which Asf1 and CAF-1 assemble histones H3/H4 (H3.1/H4 in vertebrates) in a replication-dependent pathway, whereas Asf1 and HIRA/Hip1 assemble histones H3/H4 (H3.3/H4 in vertebrates) in a replication-independent pathway.

  11. Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing.

    PubMed

    Di Cagno, Raffaella; Cardinali, Gainluigi; Minervini, Giovanna; Antonielli, Livio; Rizzello, Carlo Giuseppe; Ricciuti, Patrizia; Gobbetti, Marco

    2010-05-01

    Pichia guilliermondii was the only identified yeast in pineapple fruits. Lactobacillus plantarum and Lactobacillus rossiae were the main identified species of lactic acid bacteria. Typing of lactic acid bacteria differentiated isolates depending on the layers. L. plantarum 1OR12 and L. rossiae 2MR10 were selected within the lactic acid bacteria isolates based on the kinetics of growth and acidification. Five technological options, including minimal processing, were considered for pineapple: heating at 72 degrees C for 15 s (HP); spontaneous fermentation without (FP) or followed by heating (FHP), and fermentation by selected autochthonous L. plantarum 1OR12 and L. rossiae 2MR10 without (SP) or preceded by heating (HSP). After 30 days of storage at 4 degrees C, HSP and SP had a number of lactic acid bacteria 1000 to 1,000,000 times higher than the other processed pineapples. The number of yeasts was the lowest in HSP and SP. The Community Level Catabolic Profiles of processed pineapples indirectly confirmed the capacity of autochthonous starters to dominate during fermentation. HSP and SP also showed the highest antioxidant activity and firmness, the better preservation of the natural colours and were preferred for odour and overall acceptability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. Secretion of non-cell-bound phytase by the yeast Pichia kudriavzevii TY13.

    PubMed

    Hellström, A; Qvirist, L; Svanberg, U; Veide Vilg, J; Andlid, T

    2015-05-01

    Mineral deficiencies cause several health problems in the world, especially for populations consuming cereal-based diets rich in the anti-nutrient phytate. Our aim was to characterize the phytate-degrading capacity of the yeast Pichia kudriavzevii TY13 and its secretion of phytase. The phytase activity in cell-free supernatants from cultures with 100% intact cells was 35-190 mU ml(-1) depending on the media. The Km was 0.28 mmol l(-1) and the specific phytase activity 0.32 U mg(-1) total protein. The phytase activity and secretion of extracellular non-cell-bound phytase was affected by the medium phosphate concentrations. Further, addition of yeast extract had a clearly inducing effect, resulting in over 60% of the cultures total phytase activity as non-cell-bound. Our study reveals that it is possible to achieve high extracellular phytase activity from the yeast P. kudriavzevii TY13 by proper composition of the growth medium. TY13 could be a promising future starter culture for fermented foods with improved mineral bioavailability. Using strains that secrete phytase to the food matrix may significantly improve the phytate degradation by facilitating the enzyme-to-substrate interaction. The secreted non-cell-bound phytase activities by TY13 could further be advantageous in industrial production of phytase. © 2015 The Society for Applied Microbiology.

  13. SSB-1 of the yeast Saccharomyces cerevisiae is a nucleolar-specific, silver-binding protein that is associated with the snR10 and snR11 small nuclear RNAs

    PubMed Central

    1990-01-01

    SSB-1, the yeast single-strand RNA-binding protein, is demonstrated to be a yeast nucleolar-specific, silver-binding protein. In double-label immunofluorescence microscopy experiments antibodies to two other nucleolar proteins, RNA Pol I 190-kD and fibrillarin, were used to reveal the site of rRNA transcription; i.e., the fibrillar region of the nucleolus. SSB-1 colocalized with fibrillarin in a double-label immunofluorescence mapping experiment to the yeast nucleolus. SSB-1 is located, though, over a wider region of the nucleolus than the transcription site marker. Immunoprecipitations of yeast cell extracts with the SSB-1 antibody reveal that in 150 mM NaCl SSB-1 is bound to two small nuclear RNAs (snRNAs). These yeast snRNAs are snR10 and snR11, with snR10 being predominant. Since snR10 has been implicated in pre-rRNA processing, the association of SSB-1 and snR10 into a nucleolar snRNP particle indicates SSB-1 involvement in rRNA processing as well. Also, another yeast protein, SSB-36-kD, isolated by single- strand DNA chromatography, is shown to bind silver under the conditions used for nucleolar-specific staining. It is, most likely, another yeast nucleolar protein. PMID:2121740

  14. A mitochondria-dependent pathway mediates the apoptosis of GSE-induced yeast.

    PubMed

    Cao, Sishuo; Xu, Wentao; Zhang, Nan; Wang, Yan; Luo, YunBo; He, Xiaoyun; Huang, Kunlun

    2012-01-01

    Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL) and 4,6'-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency.

  15. A Mitochondria-Dependent Pathway Mediates the Apoptosis of GSE-Induced Yeast

    PubMed Central

    Cao, Sishuo; Xu, Wentao; Zhang, Nan; Wang, Yan; Luo, YunBo; He, Xiaoyun; Huang, Kunlun

    2012-01-01

    Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase–mediated dUTP Nick End Labeling (TUNEL) and 4,6′-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency. PMID:22403727

  16. Antibacterial and antioxidant activity of Juniperus thurifera L. leaf extracts growing in East of Algeria

    PubMed Central

    Manel, Merradi; Nouzha, Heleili; Rim, Mekari; Imane, Mekkaoui; Sana, Aouachria; Yasmine, Oucheriah; Ammar, Ayachi

    2018-01-01

    Aim: This work aimed to evaluate the biological activity of the leaf extracts of Juniperus thurifera L., which is an Algerian endemic tree that belongs to the family of Cupressaceae. Materials and Methods: The plant leaves were extracted in solvents of increasing polarity to obtain different extracts such as methanol, petroleum ether, chloroform, ethyl acetate, and aqueous extracts (MeE, PEE, ChlE, EtAE, and AqE). The antioxidant activity of four extracts (MeE, ChlE, EtAE, and AqE) was assessed by trapping test of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The evaluation of antibacterial activity of MeE, ChlE, EtAE, and PEE was done using the disk diffusion method on solid agar. Results: The three extracts of EtAE, AqE, and MeE showed high antiradical activity toward the DPPH radical (IC50=29.348 µg/mL, 37.538 µg/mL, and 52.573 µg/mL, respectively), while the lowest radical scavenging activity was expressed by the ChlE (IC50=70.096 µg/mL). These extracts were active only toward the Gram-positive bacteria (Staphylococcus aureus ATCC and methicillin-resistant S. aureus) at different concentrations, and the highest activity was obtained with the ChlE with an inhibition diameter of 14 mm at the concentration of 1 g/mL. No inhibition was detected for all of these extracts against the Gram-negative tested strains (Escherichia coli ATCC, Pseudomonas aeruginosa ATCC, and Enterobacter cloacae (extended spectrum β-lactamase). Conclusion: From this study, on the one hand, it was concluded that J. thurifera L. leaves extracts exhibited a very intense antioxidant potential toward the DPPH radical, and on the other hand, the antibacterial activity showed an action spectrum exclusively toward the Gram-positive bacteria. PMID:29657432

  17. An original method for producing acetaldehyde and diacetyl by yeast fermentation.

    PubMed

    Rosca, Irina; Petrovici, Anca Roxana; Brebu, Mihai; Stoica, Irina; Minea, Bogdan; Marangoci, Narcisa

    In this study a natural culture medium that mimics the synthetic yeast peptone glucose medium used for yeast fermentations was designed to screen and select yeasts capable of producing high levels of diacetyl and acetaldehyde. The presence of whey powder and sodium citrate in the medium along with manganese and magnesium sulfate enhanced both biomass and aroma development. A total of 52 yeasts strains were cultivated in two different culture media, namely, yeast peptone glucose medium and yeast acetaldehyde-diacetyl medium. The initial screening of the strains was based on the qualitative reaction of the acetaldehyde with Schiff's reagent (violet color) and diacetyl with Brady's reagent (yellow precipitate). The fermented culture media of 10 yeast strains were subsequently analyzed by gas chromatography to quantify the concentration of acetaldehyde and diacetyl synthesized. Total titratable acidity values indicated that a total titratable acidity of 5.5°SH, implying culture medium at basic pH, was more favorable for the acetaldehyde biosynthesis using strain D15 (Candida lipolytica; 96.05mgL -1 acetaldehyde) while a total titratable acidity value of 7°SH facilitated diacetyl flavor synthesis by strain D38 (Candida globosa; 3.58mgL -1 diacetyl). Importantly, the results presented here suggest that this can be potentially used in the baking industry. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L.

    PubMed

    Güllüce, M; Sökmen, M; Daferera, D; Ağar, G; Ozkan, H; Kartal, N; Polissiou, M; Sökmen, A; Sahin, F

    2003-07-02

    The present study was designated to evaluate the antimicrobial and antioxidant activities of the essential oil, obtained by using a Clevenger distillation apparatus, water soluble (polar) and water insoluble (nonpolar) subfractions of the methanol extracts from aerial parts of Satureja hortensis L. plants, and methanol extract from calli established from the seeds using Gamborg's B5 basal media supplemented with indole-3-butyric acid (1.0 ppm), 6-benzylaminopurine (N(6)-benzyladenine) (1.0 ppm), and sucrose (2.5%). The antimicrobial test results showed that the essential oil of S. hortensis had great potential antimicrobial activities against all 23 bacteria and 15 fungi and yeast species tested. In contrast, the methanol extract from callus cultures and water soluble subfraction of the methanol extract did not show antimicrobial activities, but the nonpolar subfraction had antibacterial activity against only five out of 23 bacterial species, which were Bacillus subtilis, Enterococcus fecalis, Pseudomonas aeruginosa, Salmonella enteritidis, and Streptococcus pyogenes. Antioxidant studies suggested that the polar subfractions of the methanol extract of intact plant and methanol extract of callus cultures were able to reduce the stable free radical 2,2-diphenyl-1-picrylhydrazyl to the yellow-colored diphenylpicrylhydrazine. In this assay, the strongest effect was observed for the tissue culture extract, with an IC(50) value of 23.76 +/- 0.80 microgram/mL, which could be compared with the synthetic antioxidant agent butylated hydroxytoluene. On the other hand, linoleic acid oxidation was 95% inhibited in the presence of the essential oil while the inhibition was 90% with the chloroform subfraction of the intact plant. The chemical composition of a hydrodistilled essential oil of S. hortensis was analyzed by gas chromatography (GC)/flame ionization detection (FID) and a GC-mass spectrometry system. A total 22 constituents representing 99.9% of the essential oil were

  19. Systematic mutational analysis of the intracellular regions of yeast Gap1 permease.

    PubMed

    Merhi, Ahmad; Gérard, Nicolas; Lauwers, Elsa; Prévost, Martine; André, Bruno

    2011-04-19

    The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent endocytosis and degradation upon addition of a good nitrogen source, e.g., ammonium. It comprises 12 transmembrane domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER). We used alanine-scanning mutagenesis to isolate 64 mutant Gap1 proteins altered in the NT, the CT, or one of the five TM-connecting intracellular loops (L2, -4, -6, -8 and -10). We found 17 mutations (in L2, L8, L10 and CT) impairing Gap1 exit from the ER. Of the 47 mutant proteins reaching the plasma membrane normally, two are unstable and rapidly down-regulated even when the nitrogen source is poor. Six others are totally inactive and another four, altered in a 16-amino-acid sequence in the NT, are resistant to ammonium-induced down-regulation. Finally, a mutation in L6 causes missorting of Gap1 from the secretory pathway to the vacuole. Interestingly, this direct vacuolar sorting seems to be independent of Gap1 ubiquitylation. This study illustrates the importance of multiple intracellular regions of Gap1 in its secretion, transport activity, and down-regulation.

  20. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan.

    PubMed

    Mekoue Nguela, J; Poncet-Legrand, C; Sieczkowski, N; Vernhet, A

    2016-11-01

    At present, there is a great interest in enology for yeast derived products to replace aging on lees in winemaking or as an alternative for wine fining. These are yeast protein extracts (YPE), cell walls and mannoproteins. Our aim was to further understand the mechanisms that drive interactions between these components and red wine polyphenols. To this end, interactions between grape skin tannins or wine polyphenols or tannins and a YPE, a mannoprotein fraction and a β-glucan were monitored by binding experiments, ITC and DLS. Depending on the tannin structure, a different affinity between the polyphenols and the YPE was observed, as well as differences in the stability of the aggregates. This was attributed to the mean degree of polymerization of tannins in the polyphenol fractions and to chemical changes that occur during winemaking. Much lower affinities were found between polyphenols and polysaccharides, with different behaviors between mannoproteins and β-glucans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Interaction between lactic acid bacteria and yeasts in sour-dough using a rheofermentometer.

    PubMed

    Gobbetti, M; Corsetti, A; Rossi, J

    1995-11-01

    Rheofermentometer assays were used to characterize the leavening of sour-doughs produced using species of lactic acid bacteria (LAB) and yeasts, alone or in combination. Saccharomyces cerevisiae 141 produced the most CO2 and ethanol whereas S. exiguus M14 and Lactobacillus brevis subsp. lindneri CB1 contributed poorly to leavening and gave sour-doughs without porosity. In comparison with that seen in sour-dough produced with yeast alone, yeast fermentation with heterofermentative LAB present was faster whereas that with homofermentative LAB (L. plantarum DC400, L. farciminis CF3) present was slower and produced more CO2. Combining L. brevis subsp. lindneri CB1 with S. cerevisiae 141 decreased bacterial cell numbers and souring activity. However, addition of fructose to the sour-dough overcame these problems as well as activating S. cerevisiae 141.

  2. Direct quantification of fatty acids in wet microalgal and yeast biomass via a rapid in situ fatty acid methyl ester derivatization approach.

    PubMed

    Dong, Tao; Yu, Liang; Gao, Difeng; Yu, Xiaochen; Miao, Chao; Zheng, Yubin; Lian, Jieni; Li, Tingting; Chen, Shulin

    2015-12-01

    Accurate determination of fatty acid contents is routinely required in microalgal and yeast biofuel studies. A method of rapid in situ fatty acid methyl ester (FAME) derivatization directly from wet fresh microalgal and yeast biomass was developed in this study. This method does not require prior solvent extraction or dehydration. FAMEs were prepared with a sequential alkaline hydrolysis (15 min at 85 °C) and acidic esterification (15 min at 85 °C) process. The resulting FAMEs were extracted into n-hexane and analyzed using gas chromatography. The effects of each processing parameter (temperature, reaction time, and water content) upon the lipids quantification in the alkaline hydrolysis step were evaluated with a full factorial design. This method could tolerate water content up to 20% (v/v) in total reaction volume, which equaled up to 1.2 mL of water in biomass slurry (with 0.05-25 mg of fatty acid). There were no significant differences in FAME quantification (p>0.05) between the standard AOAC 991.39 method and the proposed wet in situ FAME preparation method. This fatty acid quantification method is applicable to fresh wet biomass of a wide range of microalgae and yeast species.

  3. Incubation of premise plumbing water samples on Buffered Charcoal Yeast Extract agar at elevated temperature and pH selects for Legionella pneumophila.

    PubMed

    Veenendaal, Harm R; Brouwer-Hanzens, Anke J; van der Kooij, Dick

    2017-10-15

    Worldwide, over 90% of the notified cases of Legionnaires' disease are caused by Legionella pneumophila. However, the standard culture medium for the detection of Legionella in environmental water samples, Buffered Charcoal Yeast Extract (BCYE) agar of pH 6.9 ± 0.4 with or without antimicrobial agents incubated at 36 ± 1 °C, supports the growth of a large diversity of Legionella species. BCYE agar of elevated pH or/and incubation at elevated temperature gave strongly reduced recoveries of most of 26 L. non-pneumophila spp. tested, but not of L. pneumophila. BCYE agar of pH 7.3 ± 0.1, incubated at 40 ± 0.5 °C (BCYE pH 7.3/40 °C) was tested for selective enumeration of L. pneumophila. Of the L. non-pneumophila spp. tested, only L. adelaidensis and L. londiniensis multiplied under these conditions. The colony counts on BCYE pH 7.3/40 °C of a L. pneumophila serogroup 1 strain cultured in tap water did not differ significantly from those on BCYE pH 6.9/36 °C when directly plated and after membrane filtration and showed repeatability's of 13-14%. By using membrane filtration L. pneumophila was detected in 58 (54%) of 107 Legionella-positive water samples from premise plumbing systems under one or both of these culture conditions. The L. pneumophila colony counts (log-transformed) on BCYE pH 7.3/40 °C were strongly related (r 2  = 0.87) to those on BCYE pH 6.9/36 °C, but differed significantly (p < 0.05) by a mean of - 0.12 ± 0.30 logs. L. non-pneumophila spp. were detected only on BCYE pH 6.9/36 °C in 49 (46%) of the samples. Hence, BCYE pH 7.3/40 °C can facilitate the enumeration of L. pneumophila and their isolation from premise plumbing systems with culturable L. non-pneumophila spp., some of which, e.g. L. anisa, can be present in high numbers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Oral yeast colonization throughout pregnancy

    PubMed Central

    Rio, Rute; Simões-Silva, Liliana; Garro, Sofia; Silva, Mário-Jorge; Azevedo, Álvaro

    2017-01-01

    Background Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with non-pregnant women. Material and Methods The oral yeast colonization was assessed in saliva of 30 pregnant and non-pregnant women longitudinally over a 6-months period. Demographic information was collected, a non-invasive intra-oral examination was performed and saliva flow and pH were determined. Results Pregnant and non-pregnant groups were similar regarding age and level of education. Saliva flow rate did not differ, but saliva pH was lower in pregnant than in non-pregnant women. Oral yeast prevalence was higher in pregnant than in non-pregnant women, either in the first or in the third trimester, but did not attain statistical significance. In individuals colonized with yeast, the total yeast quantification (Log10CFU/mL) increase from the 1st to the 3rd trimester in pregnant women, but not in non-pregnant women. Conclusions Pregnancy may favour oral yeast growth that may be associated with an acidic oral environment. Key words:Oral yeast, fungi, pregnancy, saliva pH. PMID:28160578

  5. Fuel ethanol production from Jerusalem artichoke stalks using different yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaritis, A.; Bajpai, P.; Bajpai, P.K.

    1983-01-01

    The inulin-type sugars present in the stalks of Jerusalem artichoke (Helianthus tuberosus) were extracted with hot water and were used as a substrate to produce fuel EtOH. Seven different yeasts were used to obtain batch kinetic data. The medium consisted of stalk extract from Jerusalem artichoke containing 7.3% total sugars, supplemented with 0.01% oleic acid, 0.01% corn steep liquor, and 0.05% Tween 80. All batch fermentations were carried out in a 1-L bioreactor at 35 degrees and pH 4.6, and the following parameters were measured as a function of time: total sugars, EtOH and biomass concentration, maximum specific growth rate,more » and biomass and EtOH yields. The best EtOH producer was Kluyveromyces marxianus UCD (FST) 55-82 which gave an EtOH-to-sugar yield 97% of the theoretical maximum value, with almost 100% sugar utilization.« less

  6. Aromatic hydrocarbon biodegradation activates neutral lipid biosynthesis in oleaginous yeast.

    PubMed

    Deeba, Farha; Pruthi, Vikas; Negi, Yuvraj S

    2018-05-01

    In this study, the biodegradation ability of oleaginous yeast Cryptococcus psychrotolerans IITRFD for aromatic hydrocarbons (AHs) was investigated. It was found to completely degrade range of AHs such as 1 g/L phenol, 0.75 g/L naphthalene, 0.50 g/L anthracene and 0.50 g/L pyrene with lipid productivity (g/L/h) of 0.0444, 0.0441, 0.0394 and 0.0383, respectively. This work demonstrated the ring cleavage pathways of AHs by this yeast which follow ortho route for phenol and naphthalene while meta route for anthracene and pyrene degradation. The end products generated during biodegradation of AHs are feed as precursors for de novo triacylglycerols (TAG) biosynthesis pathway of oleaginous yeast. A high quantity of lipid content (46.54%) was observed on phenol as compared to lipid content on naphthalene (46.38%), anthracene (44.97%) and pyrene (44.16%). The lipid profile revealed by GC-MS analysis shows elevated monounsaturated fatty acid (MUFA) content with improved biodiesel quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications

    PubMed Central

    Lucas, Cândida; Ferreira, Célia; Cazzanelli, Giulia; Franco-Duarte, Ricardo; Tulha, Joana

    2016-01-01

    In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information. PMID:29615596

  8. Anti-Obesity Property of Lichen Thamnolia vermicularis Extract in 3T3-L1 Cells and Diet-Induced Obese Mice

    PubMed Central

    Choi, Ra-Yeong; Ham, Ju Ri; Yeo, Jiyoung; Hur, Jae-Seoun; Park, Seok-Kyu; Kim, Myung-Joo; Lee, Mi-Kyung

    2017-01-01

    Thamnolia vermicularis (TV) is an edible lichen that is prevalent in the alpine zone of East Asia. This study evaluated the feasibility of using TV acetone extracts as a functional food based on experiments using cell line and obese mice. The cellular triglyceride levels and Oil red O staining of 3T3-L1 cells indicated that TV extracts (5 and 10 μg/mL) dose-dependently suppressed adipocyte differentiation and lipid accumulation compared with the control. The TV extract (0.4%, w/w) in a high-fat diet (HFD) was supplemented to C57BL/6N mice for 12 weeks, and TV extract supplement significantly reduced visceral fat mass and body weight compared with HFD feeding alone. The TV extract also induced significant decreases in serum and hepatic lipids, whereas it increased the serum high-density lipoproteins-cholesterol/total cholesterol ratio and fecal lipids levels. Moreover, the TV extract led to significantly lower homeostasis model assessment of insulin resistance in diet-induced obese mice. Taken together, these results suggest that the TV extract may have anti-obesity effects, including lipid-lowering, and it is a natural resource with the potential for use in obesity management. PMID:29333380

  9. Oral yeast colonization throughout pregnancy.

    PubMed

    Rio, R; Simões-Silva, L; Garro, S; Silva, M-J; Azevedo, Á; Sampaio-Maia, B

    2017-03-01

    Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with non-pregnant women. The oral yeast colonization was assessed in saliva of 30 pregnant and non-pregnant women longitudinally over a 6-months period. Demographic information was collected, a non-invasive intra-oral examination was performed and saliva flow and pH were determined. Pregnant and non-pregnant groups were similar regarding age and level of education. Saliva flow rate did not differ, but saliva pH was lower in pregnant than in non-pregnant women. Oral yeast prevalence was higher in pregnant than in non-pregnant women, either in the first or in the third trimester, but did not attain statistical significance. In individuals colonized with yeast, the total yeast quantification (Log10CFU/mL) increase from the 1st to the 3rd trimester in pregnant women, but not in non-pregnant women. Pregnancy may favour oral yeast growth that may be associated with an acidic oral environment.

  10. Comparison of volatile sulphur compound production by cheese-ripening yeasts from methionine and methionine-cysteine mixtures.

    PubMed

    López Del Castillo-Lozano, M; Delile, A; Spinnler, H E; Bonnarme, P; Landaud, S

    2007-07-01

    Production of volatile sulphur compounds (VSC) was assessed in culture media supplemented with L-methionine or L-methionine/L-cysteine mixtures, using five cheese-ripening yeasts: Debaryomyces hansenii DH47(8), Kluyveromyces lactis KL640, Geotrichum candidum GC77, Yarrowia lipolytica YL200 and Saccharomyces cerevisiae SC45(3). All five yeasts produced VSC with L-methionine or L-methionine/L-cysteine, but different VSC profiles were found. GC77 and YL200 produced dimethyldisulphide and trace levels of dimethyltrisulphide while DH47(8), KL640 and SC45(3) produced mainly methionol and low levels of methional. S-methylthioacetate was produced by all the yeasts but at different concentrations. DH47(8), KL640 and SC45(3) also produced other minor VSC including 3-methylthiopropyl acetate, ethyl-3-methylthiopropanoate, a thiophenone, and an oxathiane. However, VSC production diminished in a strain-dependent behaviour when L-cysteine was supplemented, even at a low concentration (0.2 g l(-1)). This effect was due mainly to a significant decrease in L-methionine consumption in all the yeasts except YL200. Hydrogen sulphide produced by L-cysteine catabolism did not seem to contribute to VSC generation at the acid pH of yeast cultures. The significance of such results in the cheese-ripening context is discussed.

  11. Antifungal activity and cytotoxicity of extracts and triterpenoid saponins obtained from the aerial parts of Anagallis arvensis L.

    PubMed

    Soberón, José R; Sgariglia, Melina A; Pastoriza, Ana C; Soruco, Estela M; Jäger, Sebastián N; Labadie, Guillermo R; Sampietro, Diego A; Vattuone, Marta A

    2017-05-05

    Anagallis arvensis L. (Primulaceae) is used in argentinean northwestern traditional medicine to treat fungal infections. We are reporting the isolation and identification of compounds with antifungal activity against human pathogenic yeast Candida albicans, and toxicity evaluation. to study the antifungal activity of extracts and purified compounds obtained form A. arvensis aerial parts, alone and in combinations with fluconazole (FLU), and to study the toxicity of the active compounds. Disk diffusion assays were used to perform an activity-guided isolation of antifungal compounds from the aerial parts of A. arvensis. Broth dilution checkerboard and viable cell count assays were employed to determine the effects of samples and combinations of FLU + samples against Candida albicans. The chemical structures of active compounds were elucidated by spectroscopic analysis. Genotoxic and haemolytic effects of the isolated compounds were determined. Four triterpenoid saponins (1-4) were identified. Anagallisin C (AnC), exerted the highest inhibitory activity among the assayed compounds against C. albicans reference strain (ATCC 10231), with MIC-0 =1µg/mL. The Fractional Inhibitory Concentration Index (FICI=0.129) indicated a synergistic effect between AnC (0.125µg/mL) and FLU (0.031µg/mL) against C. albicans ATCC 10231. AnC inhibited C. albicans 12-99 FLU resistant strain (MIC-0 =1µg/mL), and the FICI=0.188 indicated a synergistic effect between AnC (0.125µg/mL) and fluconazole (16µg/mL). The combination AnC+ FLU exerted fungicidal activity against both C. albicans strains. AnC exerted inhibitory activity against C. albicans ATCC 10231 sessile cells (MIC 5 0=0.5µg/mL and MIC 80 =1µg/mL) and against C. albicans 12-99 sessile cells (MIC 5 0=0.75µg/mL and MIC 80 =1.25µg/mL). AnC exerted haemolytic effect against human red blood cells at 15µg/mL and did not exerted genotoxic effect on Bacillus subtilis rec strains. The antifungal activity and lack of genotoxic

  12. In vitro antioxidant evaluation and total phenolics of methanolic leaf extracts of Nyctanthes arbor-tristis L.

    PubMed

    Michael, J Savarimuthu; Kalirajan, A; Padmalatha, C; Singh, A J A Ranjit

    2013-09-01

    To investigate the in vitro antioxidant activity and total phenolic content of the methanolic leaf extract of Nyctanthes arbor-tristis L. (NA). The sample was tested using five in vitro antioxidant methods (1, 1-diphenyl-2-picryl hydrazine radical scavenging activity (DPPH), hydroxyl radical-scavenging activity (-OH), nitric oxide scavenging activity (NO), superoxide radical-scavenging activity, and total antioxidant activity) to evaluate the in vitro antioxidant potential of NA and the total phenolic content (Folin-Ciocalteu method). The extract showed good free radical scavenging property which was calculated as an IC50 value. IC50 (Half maximal inhibitory concentration) of the methanolic extract was found to be 57.93 μg·mL(-1) for DPPH, 98.61 μg·mL(-1) for -OH, 91.74 μg·mL(-1) for NO, and 196.07 μg·mL(-1) for superoxide radical scavenging activity. Total antioxidant capacity of the extract was found to be (1198 ± 24.05) mg ascorbic acid for the methanolic extract. Free radical scavenging activity observed in the extracts of NA showed a concentration-dependent reaction. The in vitro scavenging tested for free radicals was reported to be due to high phenolic content in the leaf extract. The leaf extract of NA showed the highest total phenolic content with a value of 78.48 ± 4.2 equivalent mg TAE/g (tannic acid equivalent). N. arbor-tristis leaf extract exhibited potent free radical scavenging activity. The finding suggests that N. arbor-tristis leaves could be a potential source of natural antioxidant. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  13. The extraction and chromatographic determination of the essentials oils from Ocimum basilicum L. by different techniques

    NASA Astrophysics Data System (ADS)

    Loredana Soran, Maria; Codruta Cobzac, Simona; Varodi, Codruta; Lung, Ildiko; Surducan, Emanoil; Surducan, Vasile

    2009-08-01

    Three different techniques (maceration, sonication and extraction in microwave field) were used for extraction of essential oils from Ocimum basilicum L. The extracts were analyzed by TLC/HPTLC technique and the fingerprint informations were obtained. The GC-FID was used to characterized the extraction efficiency and for identify the terpenic bioactive compounds. The most efficient extraction technique was maceration followed by microwave and ultrasound. The best extraction solvent system was ethyl ether + ethanol (1:1, v/v). The main compounds identified in Ocimum basilicum L. extracts were: α and β-pinene (mixture), limonene, citronellol, and geraniol.

  14. Antibacterial, Antioxidant, and Anticholinesterase Activities of Plant Seed Extracts from Brazilian Semiarid Region

    PubMed Central

    Farias, Davi Felipe; Souza, Terezinha Maria; Viana, Martônio Ponte; Soares, Bruno Marques; Cunha, Arcelina Pacheco; Vasconcelos, Ilka Maria; Ricardo, Nágila Maria Pontes Silva; Ferreira, Paulo Michel Pinheiro; Melo, Vânia Maria Maciel; Carvalho, Ana Fontenele Urano

    2013-01-01

    The antimicrobial, antioxidant, and anticholinesterase activities of ethanolic seed extracts of twenty-one plant species from Brazilian semiarid region were investigated. The extracts were tested for antimicrobial activity against six bacteria strains and three yeasts. Six extracts presented activity against the Gram (−) organism Salmonella choleraesuis and the Gram (+) organisms Staphylococcus aureus and Bacillus subtilis. The MIC values ranged from 4.96 to 37.32 mg/mL. The Triplaris gardneriana extract presented activity against the three species, with MIC values 18.8, 13.76, and 11.15 mg/mL, respectively. Five extracts presented antioxidant activity, with EC50 values ranging from 69.73 μg/mL (T. gardneriana) to 487.51 μg/mL (Licania rigida). For the anticholinesterase activity, eleven extracts were capable of inhibiting the enzyme activity. From those, T. gardneriana, Parkia platycephala and Connarus detersus presented the best activities, with inhibition values of 76.7, 71.5, and 91.9%, respectively. The extracts that presented antimicrobial activity were tested for hemolytic assay against human A, B, and O blood types and rabbit blood. From those, only the Myracrodruon urundeuva extract presented activity (about 20% of hemolysis at the lowest tested concentration, 1.9 µg/mL). Infrared spectroscopy of six representative extracts attested the presence of tannins, polyphenols, and flavonoids, which was confirmed by a qualitative phytochemical assay. PMID:24386637

  15. Fractionation and characterization of semi polar and polar compounds from leaf extract Nicotiana tabaccum L. reflux ethanol extraction results

    NASA Astrophysics Data System (ADS)

    Rahardjo, Andhika Priotomo; Fauzantoro, Ahmad; Gozan, Misri

    2018-02-01

    The decline in cigarette production as the solution of health problems can interfere with the welfare of tobacco farmers in Indonesia. So, it is required to utilize the alternative uses of tobacco with chemical compounds inside it as the raw material for producing alternative products. One of the methods that is efficient in separating chemical compounds from plant extracts is fractionation and characterization method. This method has never been used for Nicotiana tabaccum L. extract using semi polar and polar solvents. This study begins with preparing Nicotiana tabaccum L. extract ingredients obtained through reflux ethanol extraction process. Extracts are analyzed by HPLC which serves to determine the chemical compounds in tobacco extract qualitatively. Extract that has been analyzed, is then fractionated using column chromatography with semi polar (ethyl acetate) and polar (ethane) solvents sequentially. Chemical compounds from tobacco extracts will be dissolved in accordance with the polarity of each solvents. The chemical compound is then characterized using HPLC quantitatively and qualitatively. Then, the data that has been obtained is used to find the partition coefficient of the main components in Nicotiana tabaccum L., which is Nicotine (kN) in Virginia 1 (Ethyl Acetate) fraction at 0.075; Virginia 2 (Ethyl Acetate) fraction at 0.037; And Virginia 3 (Ethyl Acetate) fraction at 0.043.

  16. The presence of a mycangium in European Sinodendron cylindricum (Coleoptera: Lucanidae) and the associated yeast symbionts

    PubMed Central

    Tanahashi, Masahiko; Hawes, Colin J.

    2016-01-01

    Part of the exoskeleton of some wood-inhabiting insects is modified to form a mycangium, which is a specialized organ used to convey fungal spores or yeasts to their offspring. Although most stag beetles (Coleoptera: Lucanidae) are known to have female-specific mycangia and associated yeast symbionts, the evolutionary origin of the mycangium in this group remains unresolved. Here, we report the presence of a mycangium and associated yeast symbionts in the European horned stag beetle Sinodendron cylindricum (L.), which belongs to an ancestral clade of the Lucanidae. The mycangium of S. cylindricum is shown to be female-specific and have the same developmental origin as that of other stag beetles. A total of five yeast strains were isolated from adult mycangia and larval gut of S. cylindricum. Of these, we suggest that SICYAM1 is an undescribed yeast with taxonomic novelty, and have identified SICYLG3 as the xylose-fermenting yeast Scheffersomyces insectosa using nuclear ribosomal RNA and ITS sequences. The remaining three yeast strains, SICYAM2, SICYLG1, and SICYLG2, were assigned to the genus Sugiyamaella. Yeast density in the adult mycangium was lower than that of the more evolutionarily advanced stag beetles, the European Lucanus cervus (L.) and Dorcus parallelipipedus (L.), which were also examined in this study. No living yeasts were isolated from the adult guts. However, a third instar larva of S. cylindricum harbored 104–106 living yeasts in each gut region, which suggests that gut yeasts play an important role in these wood-feeding larvae. PMID:27432353

  17. Fermentation behaviour and volatile compound production by agave and grape must yeasts in high sugar Agave tequilana and grape must fermentations.

    PubMed

    Arrizon, Javier; Fiore, Concetta; Acosta, Guillermina; Romano, Patrizia; Gschaedler, Anne

    2006-01-01

    Few studies have been performed on the characterization of yeasts involved in the production of agave distilled beverages and their individual fermentation properties. In this study, a comparison and evaluation of yeasts of different origins in the tequila and wine industries were carried out for technological traits. Fermentations were carried out in high (300 g l(-1)) and low (30 g l(-1)) sugar concentrations of Agave tequilana juice, in musts obtained from Fiano (white) and Aglianico (red) grapes and in YPD medium (with 270 g l(-1) of glucose added) as a control. Grape yeasts exhibited a reduced performance in high-sugar agave fermentation, while both agave and grape yeasts showed similar fermentation behaviour in grape musts. Production levels of volatile compounds by grape and agave yeasts differed in both fermentations.

  18. Citrus aurantium L. dry extracts promote C/ebpβ expression and improve adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Raciti, Gregory Alexander; Fiory, Francesca; Campitelli, Michele; Desiderio, Antonella; Spinelli, Rosa; Longo, Michele; Nigro, Cecilia; Pepe, Giacomo; Sommella, Eduardo; Campiglia, Pietro; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2018-01-01

    Metabolic and/or endocrine dysfunction of the white adipose tissue (WAT) contribute to the development of metabolic disorders, such as Type 2 Diabetes (T2D). Therefore, the identification of products able to improve adipose tissue function represents a valuable strategy for the prevention and/or treatment of T2D. In the current study, we investigated the potential effects of dry extracts obtained from Citrus aurantium L. fruit juice (CAde) on the regulation of 3T3-L1 cells adipocyte differentiation and function in vitro. We found that CAde enhances terminal adipocyte differentiation of 3T3-L1 cells raising the expression of CCAAT/enhancer binding protein beta (C/Ebpβ), peroxisome proliferator activated receptor gamma (Pparγ), glucose transporter type 4 (Glut4) and fatty acid binding protein 4 (Fabp4). CAde improves insulin-induced glucose uptake of 3T3-L1 adipocytes, as well. A focused analysis of the phases occurring in the pre-adipocytes differentiation to mature adipocytes furthermore revealed that CAde promotes the early differentiation stage by up-regulating C/ebpβ expression at 2, 4 and 8 h post the adipogenic induction and anticipating the 3T3-L1 cell cycle entry and progression during mitotic clonal expansion (MCE). These findings provide evidence that the exposure to CAde enhances in vitro fat cell differentiation of pre-adipocytes and functional capacity of mature adipocytes, and pave the way to the development of products derived from Citrus aurantium L. fruit juice, which may improve WAT functional capacity and may be effective for the prevention and/or treatment of T2D.

  19. Type 1 diabetes in children is not a predisposing factor for oral yeast colonization.

    PubMed

    Costa, Ana L; Silva, Branca M A; Soares, Rui; Mota, Diana; Alves, Vera; Mirante, Alice; Ramos, João C; Maló de Abreu, João; Santos-Rosa, Manuel; Caramelo, Francisco; Gonçalves, Teresa

    2017-06-01

    Type 1 diabetes mellitus (T1D) is considered a risk factor associated with oral yeast infections. The aim of this study was to evaluate the yeast oral carriage (in saliva and mucosal surface) of children with T1D and potential relation with host factors, particularly the subset of CD4+ T cells. Yeasts were quantified and identified in stimulated saliva and in cheek mucosal swabs of 133 diabetic T1D and 72 healthy control subjects. Salivary lymphocytes were quantified using flow cytometry. The presence of yeasts in the oral cavity (60% of total patients) was not affected by diabetes, metabolic control, duration of the disease, salivary flow rate or saliva buffer capacity, by age, sex, place of residence, number of daily meals, consumption of sweets or frequency of tooth brushing. Candida albicans was the most prevalent yeast species, but a higher number of yeast species was isolated in nondiabetics. T1D children with HbA1c ≤ 7.5 (metabolically controlled) presented higher number of CD4+ T salivary subsets when compared with the other groups of children (non-diabetic and nonmetabolically controlled) and also presented the highest number of individuals without oral yeast colonization. In conclusion, T1D does not predisposes for increased oral yeast colonization and a higher number of salivary CD4+T cells seems to result in the absence of oral colonization by yeasts. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The Yeast Plasma Membrane ATP Binding Cassette (ABC) Transporter Aus1

    PubMed Central

    Marek, Magdalena; Milles, Sigrid; Schreiber, Gabriele; Daleke, David L.; Dittmar, Gunnar; Herrmann, Andreas; Müller, Peter; Pomorski, Thomas Günther

    2011-01-01

    The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter. PMID:21521689

  1. Rice Shaker Potassium Channel OsKAT1 Confers Tolerance to Salinity Stress on Yeast and Rice Cells1[OA

    PubMed Central

    Obata, Toshihiro; Kitamoto, Hiroko K.; Nakamura, Atsuko; Fukuda, Atsunori; Tanaka, Yoshiyuki

    2007-01-01

    We screened a rice (Oryza sativa L. ‘Nipponbare’) full-length cDNA expression library through functional complementation in yeast (Saccharomyces cerevisiae) to find novel cation transporters involved in salt tolerance. We found that expression of a cDNA clone, encoding the rice homolog of Shaker family K+ channel KAT1 (OsKAT1), suppressed the salt-sensitive phenotype of yeast strain G19 (Δena1–4), which lacks a major component of Na+ efflux. It also suppressed a K+-transport-defective phenotype of yeast strain CY162 (Δtrk1Δtrk2), suggesting the enhancement of K+ uptake by OsKAT1. By the expression of OsKAT1, the K+ contents of salt-stressed G19 cells increased during the exponential growth phase. At the linear phase, however, OsKAT1-expressing G19 cells accumulated less Na+ than nonexpressing cells, but almost the same K+. The cellular Na+ to K+ ratio of OsKAT1-expressing G19 cells remained lower than nonexpressing cells under saline conditions. Rice cells overexpressing OsKAT1 also showed enhanced salt tolerance and increased cellular K+ content. These functions of OsKAT1 are likely to be common among Shaker K+ channels because OsAKT1 and Arabidopsis (Arabidopsis thaliana) KAT1 were able to complement the salt-sensitive phenotype of G19 as well as OsKAT1. The expression of OsKAT1 was restricted to internodes and rachides of wild-type rice, whereas other Shaker family genes were expressed in various organs. These results suggest that OsKAT1 is involved in salt tolerance of rice in cooperation with other K+ channels by participating in maintenance of cytosolic cation homeostasis during salt stress and thus protects cells from Na+. PMID:17586689

  2. Mitochondrial fission proteins regulate programmed cell death in yeast.

    PubMed

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie

    2004-11-15

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.

  3. Anti-inflammatory activity of hydroalcoholic extracts of Lavandula dentata L. and Lavandula stoechas L.

    PubMed

    Algieri, Francesca; Rodriguez-Nogales, Alba; Vezza, Teresa; Garrido-Mesa, Jose; Garrido-Mesa, Natividad; Utrilla, M Pilar; González-Tejero, M Reyes; Casares-Porcel, Manuel; Molero-Mesa, Joaquin; Del Mar Contreras, Maria; Segura-Carretero, Antonio; Pérez-Palacio, José; Diaz, Caridad; Vergara, Noemí; Vicente, Francisca; Rodriguez-Cabezas, M Elena; Galvez, Julio

    2016-08-22

    Plants from genus Lavandula have been used as anti-inflammatory drugs in Mediterranean traditional medicine. Nowadays, there is a growing interest for complementary medicine, including herbal remedies, to treat inflammatory bowel disease (IBD). To test the anti-inflammatory properties of Lavandula dentata and Lavandula stoechas extracts in two inflammatory experimental models: TNBS model of rat colitis and the carrageenan-induced paw edema in mice, in order to mimic the intestinal conditions and the extra-intestinal manifestations of human IBD, respectively. The extracts were characterized through the qualitative HPLC analysis. Then, they were assayed in vitro and in vivo. In vitro studies were performed in BMDMs and CMT-93 epithelial cells with different concentrations of the extracts (ranging from 0.1 to 100µg/ml). The extracts were tested in vivo in the TNBS model of rat colitis (10 and 25mg/kg) and in the carrageenan-induced paw edema in mice (10, 25 and 100mg/kg). L. dentata and L. stoechas extracts displayed immunomodulatory properties in vitro down-regulating different mediators of inflammation like cytokines and nitric oxide. They also showed anti-inflammatory effects in the TNBS model of colitis as evidenced by reduced myeloperoxidase activity and increased total glutathione content, indicating a decrease of neutrophil infiltration and an improvement of the oxidative state. Besides, both extracts modulated the expression of pro-inflammatory cytokines and chemokines, and ameliorated the altered epithelial barrier function. They also displayed anti-inflammatory effects in the carrageenan-induced paw edema in mice, since a significant reduction of the paw thickness was observed. This was associated with a down-regulation of the expression of different inducible enzymes like MMP-9, iNOS and COX-2 and pro-inflammatory cytokines, all involved in the maintenance of the inflammatory condition. L. dentata and L. stoechas extracts showed intestinal anti

  4. Antimicrobial Activity of Emilia sonchifolia DC., Tridax procumbens L. and Vernonia cinerea L. of Asteracea Family: Potential as Food Preservatives.

    PubMed

    Yoga Latha, L; Darah, I; Sasidharan, S; Jain, K

    2009-09-01

    Chemical preservatives have been used in the food industry for many years. However, with increased health concerns, consumers prefer additive-free products or food preservatives based on natural products. This study evaluated antimicrobial activities of extracts from Emilia sonchifolia L. (Common name: lilac tassel flower), Tridax procumbens L. (Common name: tridax daisy) and Vernonia cinerea L. (Common name: Sahadevi), belonging to the Asteracea family, to explore their potential for use against general food spoilage and human pathogens so that new food preservatives may be developed. Three methanol extracts of these plants were tested in vitro against 20 bacterial species, 3 yeast species, and 12 filamentous fungi by the agar diffusion and broth dilution methods. The V. cinerea extract was found to be most effective against all of the tested organisms and the methanol fraction showed the most significant (p < 0.05) antimicrobial activity among all the soluble fractions tested. The minimum inhibitory concentrations (MICs) of extracts determined by the broth dilution method ranged from 1.56 to 100.00mg/mL. The MIC of methanol fraction was the lowest in comparison to the other four extracts. The study findings indicate that bioactive natural products from these plants may be isolated for further testing as leads in the development of new pharmaceuticals in food preservation as well as natural plant-based medicine.

  5. Pest-managing efficacy of trans-asarone isolated from Daucus carota L. seeds.

    PubMed

    Momin, Rafikali A; Nair, Muraleeddharan G

    2002-07-31

    The bioactive hexane extract of Daucus carota seed yielded 2,4,5-trimethoxybenzaldehyde (1), oleic acid (2), trans-asarone (3), and geraniol (4). Compounds 1-4 were evaluated for their mosquitocidal, nematicidal, antifeedant, and antimicrobial activities. Only trans-asarone was active in the assays performed, causing 100% mortality to fourth-instar mosquito larvae, Aedes aegyptii, at 200 microg mL(-1) and the nematodes Caenorhabditis elegans and Panagrellus redivivus at 100 microg mL(-1). In feeding trials, trans-asarone also caused significant weight reductions of the caterpillars Helicovarpa zea, Heliothis virescens, and Manduca sexta when incorporated into artificial diet at a concentration of 100 microg mL(-1). Also, it exhibited slight activity at 100 microg mL(-1) against the yeasts Candida albicans, Candida parapsilasis, and Candida kruseii.

  6. Laboratory evolution of copper tolerant yeast strains

    PubMed Central

    2012-01-01

    Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper

  7. Chemicals or mutations that target mitochondrial translation can rescue the respiratory deficiency of yeast bcs1 mutants.

    PubMed

    Panozzo, C; Laleve, A; Tribouillard-Tanvier, D; Ostojić, J; Sellem, C H; Friocourt, G; Bourand-Plantefol, A; Burg, A; Delahodde, A; Blondel, M; Dujardin, G

    2017-12-01

    Bcs1p is a chaperone that is required for the incorporation of the Rieske subunit within complex III of the mitochondrial respiratory chain. Mutations in the human gene BCS1L (BCS1-like) are the most frequent nuclear mutations resulting in complex III-related pathologies. In yeast, the mimicking of some pathogenic mutations causes a respiratory deficiency. We have screened chemical libraries and found that two antibiotics, pentamidine and clarithromycin, can compensate two bcs1 point mutations in yeast, one of which is the equivalent of a mutation found in a human patient. As both antibiotics target the large mtrRNA of the mitoribosome, we focused our analysis on mitochondrial translation. We found that the absence of non-essential translation factors Rrf1 or Mif3, which act at the recycling/initiation steps, also compensates for the respiratory deficiency of yeast bcs1 mutations. At compensating concentrations, both antibiotics, as well as the absence of Rrf1, cause an imbalanced synthesis of respiratory subunits which impairs the assembly of the respiratory complexes and especially that of complex IV. Finally, we show that pentamidine also decreases the assembly of complex I in nematode mitochondria. It is well known that complexes III and IV exist within the mitochondrial inner membrane as supramolecular complexes III 2 /IV in yeast or I/III 2 /IV in higher eukaryotes. Therefore, we propose that the changes in mitochondrial translation caused by the drugs or by the absence of translation factors, can compensate for bcs1 mutations by modifying the equilibrium between illegitimate, and thus inactive, and active supercomplexes. Copyright © 2017. Published by Elsevier B.V.

  8. In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts

    PubMed Central

    Ranasinghe, Priyanga; Ranasinghe, Pathmasiri; Abeysekera, W. P. Kaushalya M.; Premakumara, G. A. Sirimal; Perera, Yashasvi S.; Gurugama, Padmalal; Gunatilake, Saman B.

    2012-01-01

    Background: Carica papaya L. fruit juice and leaf extracts are known to have many beneficial medical properties. Recent reports have claimed possible beneficial effects of C. papaya L. leaf juice in treating patients with dengue viral infections. This study aims to evaluate the membrane stabilization potential of C. papaya L. leaf extracts using an in vitro hemolytic assay. Materials and Methods: The study was conducted in between June and August 2010. Two milliliters of blood from healthy volunteers and patients with serologically confirmed current dengue infection were freshly collected and used in the assays. Fresh papaya leaves at three different maturity stages (immature, partly matured, and matured) were cleaned with distilled water, crushed, and the juice was extracted with 10 ml of cold distilled water. Freshly prepared cold water extracts of papaya leaves (1 ml containing 30 μl of papaya leaf extracts, 20 μl from 40% erythrocytes suspension, and 950 μl of phosphate buffered saline) were used in the heat-induced and hypotonic-induced hemolytic assays. In dose response experiments, six different concentrations (9.375, 18.75, 37.5, 75, 150, and 300 μg/ml) of freeze dried extracts of the partly matured leaves were used. Membrane stabilization properties were investigated with heat-induced and hypotonicity-induced hemolysis assays. Results: Extracts of papaya leaves of all three maturity levels showed a significant reduction in heat-induced hemolysis compared to controls (P < 0.05). Papaya leaf extracts of all three maturity levels showed more than 25% inhibition at a concentration of 37.5 μg/ml. The highest inhibition of heat-induced hemolysis was observed at 37.5 μg/ml. Inhibition activity of different maturity levels was not significantly (P < 0.05) different from one another. Heat-induced hemolysis inhibition activity did not demonstrate a linear dose response relationship. At 37.5 μg/ml concentration of the extract, a marked inhibition of

  9. In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts.

    PubMed

    Ranasinghe, Priyanga; Ranasinghe, Pathmasiri; Abeysekera, W P Kaushalya M; Premakumara, G A Sirimal; Perera, Yashasvi S; Gurugama, Padmalal; Gunatilake, Saman B

    2012-10-01

    Carica papaya L. fruit juice and leaf extracts are known to have many beneficial medical properties. Recent reports have claimed possible beneficial effects of C. papaya L. leaf juice in treating patients with dengue viral infections. This study aims to evaluate the membrane stabilization potential of C. papaya L. leaf extracts using an in vitro hemolytic assay. The study was conducted in between June and August 2010. Two milliliters of blood from healthy volunteers and patients with serologically confirmed current dengue infection were freshly collected and used in the assays. Fresh papaya leaves at three different maturity stages (immature, partly matured, and matured) were cleaned with distilled water, crushed, and the juice was extracted with 10 ml of cold distilled water. Freshly prepared cold water extracts of papaya leaves (1 ml containing 30 μl of papaya leaf extracts, 20 μl from 40% erythrocytes suspension, and 950 μl of phosphate buffered saline) were used in the heat-induced and hypotonic-induced hemolytic assays. In dose response experiments, six different concentrations (9.375, 18.75, 37.5, 75, 150, and 300 μg/ml) of freeze dried extracts of the partly matured leaves were used. Membrane stabilization properties were investigated with heat-induced and hypotonicity-induced hemolysis assays. Extracts of papaya leaves of all three maturity levels showed a significant reduction in heat-induced hemolysis compared to controls (P < 0.05). Papaya leaf extracts of all three maturity levels showed more than 25% inhibition at a concentration of 37.5 μg/ml. The highest inhibition of heat-induced hemolysis was observed at 37.5 μg/ml. Inhibition activity of different maturity levels was not significantly (P < 0.05) different from one another. Heat-induced hemolysis inhibition activity did not demonstrate a linear dose response relationship. At 37.5 μg/ml concentration of the extract, a marked inhibition of hypotonicity-induced hemolysis was observed. C. papaya

  10. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging

    PubMed Central

    Petruzzi, Leonardo; Baiano, Antonietta; De Gianni, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria; Bevilacqua, Antonio

    2015-01-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments were conducted using Nero di Troia red wine contaminated with 2 μg/L OTA and supplemented with yeast biomass (20 g/L). The samples were analyzed periodically to assess mycotoxin concentration, chromatic characteristics, and total anthocyanins over 84 days of aging. Yeast cell walls revealed the highest OTA-adsorption in comparison to thermally-inactivated cells (50% vs. 43% toxin reduction), whilst no significant differences were found for the amount of adsorbed anthocyanins in OTA-contaminated and control wines. OTA and anthocyanins adsorption were not competitive phenomena. Unfortunately, the addition of yeast cells to wine could cause color loss; therefore, yeast selection should also focus on this trait to select the best strain. PMID:26516913

  11. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol-gel silica materials

    NASA Astrophysics Data System (ADS)

    Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma

    2014-02-01

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  12. Accelerated solvent extraction of carotenoids from: Tunisian Kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.).

    PubMed

    Zaghdoudi, Khalil; Pontvianne, Steve; Framboisier, Xavier; Achard, Mathilde; Kudaibergenova, Rabiga; Ayadi-Trabelsi, Malika; Kalthoum-Cherif, Jamila; Vanderesse, Régis; Frochot, Céline; Guiavarc'h, Yann

    2015-10-01

    Extraction of carotenoids from biological matrices and quantifications remains a difficult task. Accelerated solvent extraction was used as an efficient extraction process for carotenoids extraction from three fruits cultivated in Tunisia: kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.). Based on a design of experiment (DoE) approach, and using a binary solvent consisting of methanol and tetrahydrofuran, we could identify the best extraction conditions as being 40°C, 20:80 (v:v) methanol/tetrahydrofuran and 5 min of extraction time. Surprisingly and likely due to the high extraction pressure used (103 bars), these conditions appeared to be the best ones both for extracting xanthophylls such as lutein, zeaxanthin or β-cryptoxanthin and carotenes such as β-carotene, which present quite different polarities. Twelve surface responses were generated for lutein, zeaxanthin, β-cryptoxanthin and β-carotene in kaki, peach and apricot. Further LC-MS analysis allowed comparisons in carotenoids profiles between the fruits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Enhancement of L-phenylalanine production by engineered Escherichia coli using phased exponential L-tyrosine feeding combined with nitrogen source optimization.

    PubMed

    Yuan, Peipei; Cao, Weijia; Wang, Zhen; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2015-07-01

    Nitrogen source optimization combined with phased exponential L-tyrosine feeding was employed to enhance L-phenylalanine production by a tyrosine-auxotroph strain, Escherichia coli YP1617. The absence of (NH4)2SO4, the use of corn steep powder and yeast extract as composite organic nitrogen source were more suitable for cell growth and L-phenylalanine production. Moreover, the optimal initial L-tyrosine level was 0.3 g L(-1) and exponential L-tyrosine feeding slightly improved L-phenylalanine production. Nerveless, L-phenylalanine production was greatly enhanced by a strategy of phased exponential L-tyrosine feeding, where exponential feeding was started at the set specific growth rate of 0.08, 0.05, and 0.02 h(-1) after 12, 32, and 52 h, respectively. Compared with exponential L-tyrosine feeding at the set specific growth rate of 0.08 h(-1), the developed strategy obtained a 15.33% increase in L-phenylalanine production (L-phenylalanine of 56.20 g L(-1)) and a 45.28% decrease in L-tyrosine supplementation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Effect of different aging techniques on the polysaccharide and phenolic composition and sensory characteristics of Syrah red wines fermented using different yeast strains.

    PubMed

    del Barrio-Galán, Rubén; Medel-Marabolí, Marcela; Peña-Neira, Álvaro

    2015-07-15

    The effect of high levels of the polysaccharide Saccharomyces cerevisiae yeast strain (HPS) and another conventional yeast strain (FERM) on the polysaccharide and phenolic composition of Syrah red wines during alcoholic fermentation and subsequent aging on lees, with or without oak wood chips, and on inactive dry yeast was investigated. The HPS yeast released higher amounts of polysaccharides during alcoholic fermentation than FERM yeast (485 g L(-1) and 403 g L(-1), respectively) and after the aging period (516 g L(-1) and 500 g L(-1), respectively). The different aging techniques increased the polysaccharide concentration; the concentration was dependent on the aging technique applied. The interaction of the polysaccharides with the phenolic compounds depended on the yeast strain, aging technique, aging period and compound analysed. The HPS wines exhibited better sensory characteristics than the FERM wines after alcoholic fermentation; however, during the aging period, it was difficult to determine which technique produced the best wine due to the interactions of aging technique, aging period and sensory attribute evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Chemical and Biological Properties of S-1-Propenyl-l-Cysteine in Aged Garlic Extract.

    PubMed

    Kodera, Yukihioro; Ushijima, Mitsuyasu; Amano, Hirotaka; Suzuki, Jun-Ichiro; Matsutomo, Toshiaki

    2017-03-31

    S-1-Propenyl-l-cysteine (S1PC) is a stereoisomer of S-1-Propenyl-l-cysteine (SAC), an important sulfur-containing amino acid that plays a role for the beneficial pharmacological effects of aged garlic extract (AGE). The existence of S1PC in garlic preparations has been known since the 1960's. However, there was no report regarding the biological and/or pharmacological activity of S1PC until 2016. Recently, we performed a series of studies to examine the chemical, biological, pharmacological and pharmacokinetic properties of S1PC, and obtained some interesting results. S1PC existed only in trace amounts in raw garlic, but its concentration increased almost up to the level similar of SAC through aging process of AGE. S1PC showed immunomodulatory effects in vitro and in vivo, and reduced blood pressure in a hypertensive animal model. A pharmacokinetic study revealed that S1PC was readily absorbed after oral administration in rats and dogs with bioavailability of 88-100%. Additionally, S1PC had little inhibitory influence on human cytochrome P450 activities, even at a concentration of 1 mM. Based on these findings, S1PC was suggested to be another important, pharmacologically active and safe component of AGE similar to SAC. In this review, we highlight some results from recent studies on S1PC and discuss the potential medicinal value of S1PC.

  16. Development of an IP-Free Biotechnology Platform for Constitutive Production of HPV16 L1 Capsid Protein Using the Pichia pastoris PGK1 Promoter.

    PubMed

    Mariz, F C; Coimbra, E C; Jesus, A L S; Nascimento, L M; Torres, F A G; Freitas, A C

    2015-01-01

    The human papillomavirus (HPV) L1 major capsid protein, which forms the basis of the currently available vaccines against cervical cancer, self-assembles into virus-like particles (VLPs) when expressed heterologously. We report the development of a biotechnology platform for HPV16 L1 protein expression based on the constitutive PGK1 promoter (PPGK1) from the methylotrophic yeast Pichia pastoris. The L1 gene was cloned under regulation of PPGK1 into pPGKΔ3 expression vector to achieve intracellular expression. In parallel, secretion of the L1 protein was obtained through the use of an alternative vector called pPGKΔ3α, in which a codon optimized α-factor signal sequence was inserted. We devised a work-flow based on the detection of the L1 protein by dot blot, colony blot, and western blot to classify the positive clones. Finally, intracellular HPV VLPs assembly was demonstrated for the first time in yeast cells. This study opens up perspectives for the establishment of an innovative platform for the production of HPV VLPs or other viral antigens for vaccination purposes, based on constitutive expression in P. pastoris.

  17. Continuous production of ethanol from starch using glucoamylase and yeast co-immobilized in pectin gel.

    PubMed

    Giordano, Raquel L C; Trovati, Joubert; Schmidell, Willibaldo

    2008-03-01

    This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silica-enzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica-enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/l of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/l of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/l/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 x 10(-4) cm/s.

  18. Antimicrobial activity of seed extracts and bondenolide from Caesalpinia bonduc (L.) Roxb.

    PubMed

    Simin, K; Khaliq-Uz-Zaman, S M; Ahmad, V U

    2001-08-01

    The antibacterial and antifungal activities, along with a phytotoxicity test of the newly isolated diterpene bondenolide (1), of a methanol extract, ethylacetate fraction and water soluble part of the methanol extract of Caesalpinia bonduc (L.) Roxb. were assayed. Copyright 2001 John Wiley & Sons, Ltd.

  19. Production of astaxanthin rich feed supplement for animals from Phaffia rhodozyma yeast at low cost

    NASA Astrophysics Data System (ADS)

    Irtiza, Ayesha; Shatunova, Svetlana; Glukhareva, Tatiana; Kovaleva, Elena

    2017-09-01

    Dietary nutrients such as amino acids, vitamins, minerals and antioxidants can play a significant role in determining meat quality and also the growth rate of poultry or animal. Phaffia rhodozyma was grown on waste from brewery industry to produce astaxanthin rich feed supplements at a very low cost. Phaffia rhodozyma is yeast specie that has ability to produce carotenoids and approximately 80% of its total carotenoid content is astaxanthin, which is highly valuable carotenoid for food, feed and aquaculture industry. This study was carried out to test yeast extract of spent yeast from brewing industry waste (residual yeast) as potential nitrogen source for growth of Phaffia rhodozyma. Cultivation was carried out in liquid media prepared by yeast extracts and other components (glucose and peptone). Carotenoids from the biomass were released into biomass by suspending cells in DMSO for destruction of cells followed by extraction with petroleum ether. The extracted carotenoids were studied by spectrophotometry to identify and quantify astaxanthin and other carotenoids produced.

  20. Antinociceptive and anti-inflammatory activity of the ethanolic extract of Cymbidium aloifolium (L.).

    PubMed

    Howlader, Md Amran; Alam, Mahmudul; Ahmed, Kh Tanvir; Khatun, Farjana; Apu, Apurba Sarker

    2011-10-01

    The ethanol leaf extract of Cymbidium aloifolium (L.) was evaluated for its analgesic and antiinflammatory activities. The extract, at the dose of 200 and 400 mg kg(-1) body weight, exerted the analgesic activity by observing the number of abdominal contractions and anti-inflammatory activity against Carrageenin induced paw edema in mice by measuring the paw volume. The ethanolic extract of Cymbidium aloifolium (L.) showed statistically significant (p < 0.05) reduction of percentage of writhing of 33.57 and 61.31% at 200 and 400 mg kg(-1) oral dose, respectively, when compared to negative control. The Ethanolic plant extract also showed significant (p < 0.05) dose dependent reduction of mean increase of formation of paw edema. The results of the experiment and its statistical analysis showed that the ethanolic plant extract had shown significant (p < 0.05) dose dependent analgesic and anti-inflammatory activities when compared to the control.

  1. Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation.

    PubMed

    Zhao, X Q; Xue, C; Ge, X M; Yuan, W J; Wang, J Y; Bai, F W

    2009-01-01

    The effects of zinc supplementation were investigated in the continuous ethanol fermentation using self-flocculating yeast. Zinc sulfate was added at the concentrations of 0.01, 0.05 and 0.1 g l(-1), respectively. Reduced average floc sizes were observed in all the zinc-supplemented cultures. Both the ethanol tolerance and thermal tolerance were significantly improved by zinc supplements, which correlated well with the increased ergosterol and trehalose contents in the yeast flocs. The highest ethanol concentration by 0.05 g l(-1) zinc sulfate supplementation attained 114.5 g l(-1), in contrast to 104.1 g l(-1) in the control culture. Glycerol production was decreased by zinc supplementations, with the lowest level 3.21 g l(-1), about 58% of the control. Zinc content in yeast cells was about 1.4 microMol g(-1) dry cell weight, about sixfold higher than that of control in all the zinc-supplemented cultures, and close correlation of zinc content in yeast cells with the cell viability against ethanol and heat shock treatment was observed. These studies suggest that exogenous zinc addition led to a reprogramming of cellular metabolic network, resulting in enhanced ethanol tolerance and ethanol production.

  2. Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches.

    PubMed

    Mašković, Pavle Z; Veličković, Vesna; Đurović, Saša; Zeković, Zoran; Radojković, Marija; Cvetanović, Aleksandra; Švarc-Gajić, Jaroslava; Mitić, Milan; Vujić, Jelena

    2018-01-01

    Lavatera thuringiaca L. is herbaceous perennial plant from Malvaceae family, which is known for its biological activity and richness in polyphenolic compounds. Despite this, the information regarding the biological activity and chemical profile is still insufficient. Aim of this study was to investigate biological potential and chemical profile of Lavatera thuringiaca L., as well as influence of applied extraction technique on them. Two conventional and four non-conventional extraction techniques were applied in order to obtain extracts rich in bioactive compound. Extracts were further tested for total phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins contents using spectrophotometric assays. Polyphenolic profile was established using HPLC-DAD analysis. Biological activity was investigated regarding antioxidant, cytotoxic and antibacterial activities. Four antioxidant assays were applied as well as three different cell lines for cytotoxic and fifteen bacterial strain for antibacterial activity. Results showed that subcritical water extraction (SCW) dominated over the other extraction techniques, where SCW extract exhibited the highest biological activity. Study indicates that plant Lavatera thuringiaca L. may be used as a potential source of biologically compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Investigation of Diospyros Kaki L.f husk extracts as corrosion inhibitors and bactericide in oil field

    PubMed Central

    2013-01-01

    Background Hydrochloric acid is used in oil-well acidizing commonly for improving the crude oil production of the low-permeable reservoirs, while it is a great challenge for the metal instruments involved in the acidification. Developing natural products as oilfield chemicals is a straight way to find less expensive, green and eco-friendly materials. The great plant resources in Qin-ling and Ba-shan Mountain Area of Shannxi Province enable the investigating of new green oil field chemicals. Diospyros Kaki L.f (persimmon), a famous fruit tree is widely planted in Qin-ling and Ba-shan Mountain Area of Shaanxi Province. It has been found that the crude persimmon extracts are complex mixtures containing vitamins, p-coumaric acid, gallic acid, catechin, flavonoids, carotenoids and condensed tannin and so on, which indicates the extracts of persimmon husk suitable to be used as green and eco-friendly corrosion inhibitors. Findings Extracts of persimmon husk were investigated, by using weight loss and potentiodynamic polarisation techniques, as green and eco-friendly corrosion inhibitors of Q235A steel in 1M HCl. The inhibition efficiency of the extracts varied with extract concentration from 10 to 1,000 mg/L. There are some synergistic effects between the extracts and KI, KSCN and HMTA. Potentiodynamic polarization studies indicate that extracts are mixed-type inhibitors. Besides, the extracts were screened for antibacterial activity against oil field microorganisms, and they showed good to moderate activity against SRB, IB and TGB. Conclusions The inhibition efficiency of the extracts varied with extract concentration from 10 to 1,000 mg/L, and the highest reaches to 65.1% with the con concentration of 1,000 mg/L WE. KI, KSCN and HMTA they can enhance the IE of WE effectively to 97.3% at most, but not effective for KI and KSCN to AE. Tafel polarisation measurements indicate the extracts behave as mixed type inhibitor. Investigation of the antibacterial activity against

  4. Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction

    PubMed Central

    Sanz, Alberto; Soikkeli, Mikko; Portero-Otín, Manuel; Wilson, Angela; Kemppainen, Esko; McIlroy, George; Ellilä, Simo; Kemppainen, Kia K.; Tuomela, Tea; Lakanmaa, Matti; Kiviranta, Essi; Stefanatos, Rhoda; Dufour, Eric; Hutz, Bettina; Naudí, Alba; Jové, Mariona; Zeb, Akbar; Vartiainen, Suvi; Matsuno-Yagi, Akemi; Yagi, Takao; Rustin, Pierre; Pamplona, Reinald; Jacobs, Howard T.

    2010-01-01

    Mutations in mitochondrial oxidative phosphorylation complex I are associated with multiple pathologies, and complex I has been proposed as a crucial regulator of animal longevity. In yeast, the single-subunit NADH dehydrogenase Ndi1 serves as a non-proton-translocating alternative enzyme that replaces complex I, bringing about the reoxidation of intramitochondrial NADH. We have created transgenic strains of Drosophila that express yeast NDI1 ubiquitously. Mitochondrial extracts from NDI1-expressing flies displayed a rotenone-insensitive NADH dehydrogenase activity, and functionality of the enzyme in vivo was confirmed by the rescue of lethality resulting from RNAi knockdown of complex I. NDI1 expression increased median, mean, and maximum lifespan independently of dietary restriction, and with no change in sirtuin activity. NDI1 expression mitigated the aging associated decline in respiratory capacity and the accompanying increase in mitochondrial reactive oxygen species production, and resulted in decreased accumulation of markers of oxidative damage in aged flies. Our results support a central role of mitochondrial oxidative phosphorylation complex I in influencing longevity via oxidative stress, independently of pathways connected to nutrition and growth signaling. PMID:20435911

  5. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    PubMed Central

    Pervin, Mehnaz; Hasnat, Md Abul; Lim, Beong Ou

    2013-01-01

    Objective To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum). Methods Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenoic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx), metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion for seven strains of bacteria. Results Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone) against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone) at 10 mg/ disc. The IC50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.

  6. Homocysteine regulates fatty acid and lipid metabolism in yeast.

    PubMed

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O; Wolinski, Heimo; Rechberger, Gerald N; Tehlivets, Oksana

    2018-04-13

    S -Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S -adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Homocysteine regulates fatty acid and lipid metabolism in yeast

    PubMed Central

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O.; Wolinski, Heimo; Rechberger, Gerald N.; Tehlivets, Oksana

    2018-01-01

    S-Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S-adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. PMID:29414770

  8. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest.

    PubMed

    Cadete, Raquel M; Melo, Monaliza A; Dussán, Kelly J; Rodrigues, Rita C L B; Silva, Silvio S; Zilli, Jerri E; Vital, Marcos J S; Gomes, Fátima C O; Lachance, Marc-André; Rosa, Carlos A

    2012-01-01

    This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates. A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB)-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L) culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g) and productivities (0.62 g/L · h to 0.75 g/L · h). Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g), with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g) and productivity (0.2 g/L · h), while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers. This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates.

  9. A New Method, "Reverse Yeast Two-Hybrid Array" (RYTHA), Identifies Mutants that Dissociate the Physical Interaction Between Elg1 and Slx5.

    PubMed

    Lev, Ifat; Shemesh, Keren; Volpe, Marina; Sau, Soumitra; Levinton, Nelly; Molco, Maya; Singh, Shivani; Liefshitz, Batia; Ben Aroya, Shay; Kupiec, Martin

    2017-07-01

    The vast majority of processes within the cell are carried out by proteins working in conjunction. The Yeast Two-Hybrid (Y2H) methodology allows the detection of physical interactions between any two interacting proteins. Here, we describe a novel systematic genetic methodology, "Reverse Yeast Two-Hybrid Array" (RYTHA), that allows the identification of proteins required for modulating the physical interaction between two given proteins. Our assay starts with a yeast strain in which the physical interaction of interest can be detected by growth on media lacking histidine, in the context of the Y2H methodology. By combining the synthetic genetic array technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify trans -acting mutations that disrupt the physical interaction of interest. We apply this novel method in a screen for mutants that disrupt the interaction between the N-terminus of Elg1 and the Slx5 protein. Elg1 is part of an alternative replication factor C-like complex that unloads PCNA during DNA replication and repair. Slx5 forms, together with Slx8, a SUMO-targeted ubiquitin ligase (STUbL) believed to send proteins to degradation. Our results show that the interaction requires both the STUbL activity and the PCNA unloading by Elg1, and identify topoisomerase I DNA-protein cross-links as a major factor in separating the two activities. Thus, we demonstrate that RYTHA can be applied to gain insights about particular pathways in yeast, by uncovering the connection between the proteasomal ubiquitin-dependent degradation pathway, DNA replication, and repair machinery, which can be separated by the topoisomerase-mediated cross-links to DNA. Copyright © 2017 by the Genetics Society of America.

  10. Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast.

    PubMed

    Lowman, Douglas W; Greene, Rachel R; Bearden, Daniel W; Kruppa, Michael D; Pottier, Max; Monteiro, Mario A; Soldatov, Dmitriy V; Ensley, Harry E; Cheng, Shih-Chin; Netea, Mihai G; Williams, David L

    2014-02-07

    The innate immune system differentially recognizes Candida albicans yeast and hyphae. It is not clear how the innate immune system effectively discriminates between yeast and hyphal forms of C. albicans. Glucans are major components of the fungal cell wall and key fungal pathogen-associated molecular patterns. C. albicans yeast glucan has been characterized; however, little is known about glucan structure in C. albicans hyphae. Using an extraction procedure that minimizes degradation of the native structure, we extracted glucans from C. albicans hyphal cell walls. (1)H NMR data analysis revealed that, when compared with reference (1→3,1→6) β-linked glucans and C. albicans yeast glucan, hyphal glucan has a unique cyclical or "closed chain" structure that is not found in yeast glucan. GC/MS analyses showed a high abundance of 3- and 6-linked glucose units when compared with yeast β-glucan. In addition to the expected (1→3), (1→6), and 3,6 linkages, we also identified a 2,3 linkage that has not been reported previously in C. albicans. Hyphal glucan induced robust immune responses in human peripheral blood mononuclear cells and macrophages via a Dectin-1-dependent mechanism. In contrast, C. albicans yeast glucan was a much less potent stimulus. We also demonstrated the capacity of C. albicans hyphal glucan, but not yeast glucan, to induce IL-1β processing and secretion. This finding provides important evidence for understanding the immune discrimination between colonization and invasion at the mucosal level. When taken together, these data provide a structural basis for differential innate immune recognition of C. albicans yeast versus hyphae.

  11. Novel Structural Features in Candida albicans Hyphal Glucan Provide a Basis for Differential Innate Immune Recognition of Hyphae Versus Yeast*

    PubMed Central

    Lowman, Douglas W.; Greene, Rachel R.; Bearden, Daniel W.; Kruppa, Michael D.; Pottier, Max; Monteiro, Mario A.; Soldatov, Dmitriy V.; Ensley, Harry E.; Cheng, Shih-Chin; Netea, Mihai G.; Williams, David L.

    2014-01-01

    The innate immune system differentially recognizes Candida albicans yeast and hyphae. It is not clear how the innate immune system effectively discriminates between yeast and hyphal forms of C. albicans. Glucans are major components of the fungal cell wall and key fungal pathogen-associated molecular patterns. C. albicans yeast glucan has been characterized; however, little is known about glucan structure in C. albicans hyphae. Using an extraction procedure that minimizes degradation of the native structure, we extracted glucans from C. albicans hyphal cell walls. 1H NMR data analysis revealed that, when compared with reference (1→3,1→6) β-linked glucans and C. albicans yeast glucan, hyphal glucan has a unique cyclical or “closed chain” structure that is not found in yeast glucan. GC/MS analyses showed a high abundance of 3- and 6-linked glucose units when compared with yeast β-glucan. In addition to the expected (1→3), (1→6), and 3,6 linkages, we also identified a 2,3 linkage that has not been reported previously in C. albicans. Hyphal glucan induced robust immune responses in human peripheral blood mononuclear cells and macrophages via a Dectin-1-dependent mechanism. In contrast, C. albicans yeast glucan was a much less potent stimulus. We also demonstrated the capacity of C. albicans hyphal glucan, but not yeast glucan, to induce IL-1β processing and secretion. This finding provides important evidence for understanding the immune discrimination between colonization and invasion at the mucosal level. When taken together, these data provide a structural basis for differential innate immune recognition of C. albicans yeast versus hyphae. PMID:24344127

  12. Hibiscus Sabdariffa L. Flowers and Olea Europea L. Leaves Extract-Based Formulation for Hypertension Care: In Vitro Efficacy and Toxicological Profile.

    PubMed

    Micucci, Matteo; Angeletti, Andrea; Cont, Massimiliano; Corazza, Ivan; Aldini, Rita; Donadio, Elisa; Chiarini, Alberto; Budriesi, Roberta

    2016-05-01

    Olea europaea L. leaves extract (Oe) and Hybiscus sabdariffa L. flowers extract (Hs) have calcium antagonistic properties. Aim of this work was to study the cardiovascular effects of Pres Phytum(®), a nutraceutical formulation containing a mixture of the two extracts and the excipients, and investigate its possible off-target effects, using in vitro biological assays on guinea pig isolated organs. Cardiovascular effects were assessed using guinea pig atria and aorta. The effects of Pres Phytum on spontaneous gastrointestinal, urinary, and respiratory tracts smooth muscle contractility were evaluated. Pres Phytum exerted a vasorelaxant effect (IC50 = 2.38 mg/mL) and a negative chronotropic effect (IC50 = 1.04 mg/mL) at concentrations lower than those producing smooth muscle spontaneous contractility alterations in the other organs. Compared to Pres Phytum, the mixture did not exert negative inotropic activity, while it maintained a negative chronotropic efficacy (IC50 = 1.04 mg/mL). These experimental data suggest a possible nutraceutical use of this food supplement for the management of preclinical hypertension.

  13. Isolation of oligotrophic yeasts from supraglacial environments of different altitude on the Gulkana Glacier (Alaska).

    PubMed

    Uetake, Jun; Yoshimura, Yoshitaka; Nagatsuka, Naoko; Kanda, Hiroshi

    2012-11-01

    Psychrophilic yeasts have been isolated from supra- and subglacial ice at many sites worldwide. To understand the ecology of psychrophilic yeasts on glaciers, we focused on their adaptation to wide range of nutrient concentrations and their distribution with altitude on the Gulkana Glacier in Alaska. We found various culturable psychrophilic yeasts on the ice surfaces of the glacier, and 11 species were isolated with incubation at 4 °C in four different dilutions of agar medium. Some of our isolated species (Rhodotorula psychrophenolica, Rhodotorula aff. psychrophenolica, Rhodotorula glacialis, and Basidiomycota sp. 1) can grow on the low dissolved organic matter (DOC) concentrations medium (7.6 mg L(-1)) which is close to the typical level of supraglacial melt water, suggesting that these species can inhabit in any supraglacial meltwater. Otherwise, most of other species were isolated only from higher DOC concentration medium (183 mg L(-1) -18.3 g L(-1)), suggesting that these are inhabitant around the cryoconite, because DOC concentrations in melted surface-ice contained cryoconite is much higher than in melted water. Similarity of altitudinal distribution between culturable yeast and algal biomass suggests that the ecological role played by the cold-adapted yeasts is as organic matter decomposers and nutrient cyclers in glacier ecosystem. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Antioxidant activity of Vitex agnus-castus L. extracts.

    PubMed

    Sağlam, Hüsniye; Pabuçcuoğlu, Aysun; Kivçak, Bijen

    2007-11-01

    The ethanol, n-hexane and water extracts of Vitex agnus-castus L. leaves and fruits were screened for antioxidant activity. The antioxidant activity of plant extracts was determined by an improved assay based on the decolorization of the radical monocation of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS.+). The water and ethanol extracts showed stronger antioxidant activity than the n-hexane extracts. Copyright (c) 2007 John Wiley & Sons, Ltd.

  15. [Evaluation of mass spectrometry: MALDI-TOF MS for fast and reliable yeast identification].

    PubMed

    Relloso, María S; Nievas, Jimena; Fares Taie, Santiago; Farquharson, Victoria; Mujica, María T; Romano, Vanesa; Zarate, Mariela S; Smayevsky, Jorgelina

    2015-01-01

    The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique known as MALDI-TOF MS is a tool used for the identification of clinical pathogens by generating a protein spectrum that is unique for a given species. In this study we assessed the identification of clinical yeast isolates by MALDI-TOF MS in a university hospital from Argentina and compared two procedures for protein extraction: a rapid method and a procedure based on the manufacturer's recommendations. A short protein extraction procedure was applied in 100 isolates and the rate of correct identification at genus and species level was 98.0%. In addition, we analyzed 201 isolates, previously identified by conventional methods, using the methodology recommended by the manufacturer and there was 95.38% coincidence in the identification at species level. MALDI TOF MS showed to be a fast, simple and reliable tool for yeast identification. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Pharmacokinetics of anthocyanidin-3-glycosides following consumption of Hibiscus sabdariffa L. extract.

    PubMed

    Frank, Thomas; Janssen, Marlies; Netzel, Michael; Strass, Gabriele; Kler, Adolf; Kriesl, Erwin; Bitsch, Irmgard

    2005-02-01

    Pharmacokinetic parameters of several dietary anthocyanins following consumption of Hibiscus sabdariffa L. extract were determined in 6 healthy volunteers. Subjects were given a single oral dose of 150 mL of Hibiscus sabdariffa L. extract yielding 62.6 mg of cyanidin-3-sambubioside, 81.6 mg of delphindin-3-sambubioside, and 147.4 mg of total anthocyanins (calculated as cyanidin equivalents). Within 7 hours, the urinary excretion of cyanidin-3-sambubioside, delphinidin-3-sambubioside, and total anthocyanins (ie, the sum of all quantifiable anthocyanidin glycosides) was 0.016%, 0.021%, and 0.018% of the administered doses, respectively. Maximum excretion rates were determined at 1.5 to 2.0 hours after intake. The dose-normalized plasma area under the curve estimates were 0.076, 0.032, and 0.050 ng x h/mL/mg for cyanidin-3-sambubioside, delphinidin-3-sambubioside, and total anthocyanins, respectively. The dose-normalized C(max) estimates were 0.036, 0.015, and 0.023 ng/mL/mg in the same sequence. They were reached each at 1.5 hours (median) after intake. The geometric means of t1/2 were 2.18, 3.34, and 2.63 hours for cyanidin-3-sambubioside, delphinidin-3-sambubioside, and total anthocyanins, respectively. The urinary excretion of intact anthocyanins was fast and appeared to be monoexponential. To evaluate the contribution of anthocyanins to the health-protecting effects of Hibiscus sabdariffa L. extract, it will be necessary to perform further studies on both the intact glycosides and their in vivo metabolites or conjugates in human plasma and urine.

  17. House dust mite induces expression of intercellular adhesion molecule-1 in EoL-1 human eosinophilic leukemic cells.

    PubMed

    Kwon, Byoung Chul; Sohn, Myung Hyun; Kim, Kyung Won; Kim, Eun Soo; Kim, Kyu-Earn; Shin, Myeong Heon

    2007-10-01

    The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-kappaB and JNK.

  18. House Dust Mite Induces Expression of Intercellular Adhesion Molecule-1 in EoL-1 Human Eosinophilic Leukemic Cells

    PubMed Central

    Kwon, Byoung Chul; Sohn, Myung Hyun; Kim, Kyung Won; Kim, Eun Soo; Kim, Kyu-Earn

    2007-01-01

    The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-κB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-κB and JNK. PMID:17982228

  19. Optimization of pressurized liquid extraction of inositols from pine nuts (Pinus pinea L.).

    PubMed

    Ruiz-Aceituno, L; Rodríguez-Sánchez, S; Sanz, J; Sanz, M L; Ramos, L

    2014-06-15

    Pressurized liquid extraction (PLE) has been used for the first time to extract bioactive inositols from pine nuts. The influence of extraction time, temperature and cycles of extraction in the yield and composition of the extract was studied. A quadratic lineal model using multiple linear regression in the stepwise mode was used to evaluate possible trends in the process. Under optimised PLE conditions (50°C, 18 min, 3 cycles of 1.5 mL water each one) at 10 MPa, a noticeable reduction in extraction time and solvent volume, compared with solid-liquid extraction (SLE; room temperature, 2h, 2 cycles of 5 mL water each one) was achieved; 5.7 mg/g inositols were extracted by PLE, whereas yields of only 3.7 mg/g were obtained by SLE. Subsequent incubation of PLE extracts with Saccharomyces cerevisiae (37°C, 5h) allowed the removal of other co-extracted low molecular weight carbohydrates which may interfere in the bioactivity of inositols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  1. Morinda citrifolia L. leaf extract as antibacterial Salmonella typhimurium to increase productivity of quail (Coturnix coturnix japonica).

    PubMed

    Retnani, Y; Dan, T M Wardiny; Taryati

    2014-04-01

    The objective of this study was to apply effect of Morinda citrifolia L. citrifolia L. leaf extract as antibacterial of Salmonella typhimurium on mortality of Day Old Quail (DOQ), egg production and Hen day, hatchability of layer quail. This research was conducted at Laboratory of microbiology and laboratory of poultry nutrition, faculty of animal science, bogor agricultural university and slamet quail farms cilangkap, sukabumi, west java, Indonesia on March-July 2012. Two hundred and forty heads of quail were randomly assigned to four dietary treatments (sixty heads of quail/treatment). Experimental design used was Completely Randomized Design (CRD). The treatments consist of level of biscuit Morinda citrifolia L. Citrifolia L. leaf extract i.e R1 = 0%, R2 = 5%, R3 = 10%, R4 = 15%. The results indicated the treatments had significant effect (p < 0.05) on mortality of Day Old Quail (DOQ). The average mortality of Day Old Quail (DOQ) was given extract Morinda citrifolia L. leaf were R1 (4.00%), R2 (1.00%), R3 (1.33%), R4 (0.67%). The average mortality of Day Old Quail (DOQ) was given 15% extract Morinda citrifolia L. leaf (R4) was lowest than control treatment (R1). The results of the analysis indicated that Morinda citrifolia L. leaf of quail drink had not significant effect (p > 0.05) on egg production, hen day and hatchability. It was concluded that the Morinda citrifolia L. leaf extract 15% can reduce mortality of Day Old Quail (DOQ) and can increase its egg production, hen day and hatchability.

  2. L-Asparaginase from Streptomyces griseus NIOT-VKMA29: optimization of process variables using factorial designs and molecular characterization of L-asparaginase gene

    NASA Astrophysics Data System (ADS)

    Meena, Balakrishnan; Anburajan, Lawrance; Sathish, Thadikamala; Vijaya Raghavan, Rangamaran; Dharani, Gopal; Valsalan Vinithkumar, Nambali; Kirubagaran, Ramalingam

    2015-07-01

    Marine actinobacteria are known to be a rich source for novel metabolites with diverse biological activities. In this study, a potential extracellular L-asparaginase was characterised from the Streptomyces griseus NIOT-VKMA29. Box-Behnken based optimization was used to determine the culture medium components to enhance the L-asparaginase production. pH, starch, yeast extract and L-asparagine has a direct correlation for enzyme production with a maximum yield of 56.78 IU mL-1. A verification experiment was performed to validate the experiment and more than 99% validity was established. L-Asparaginase biosynthesis gene (ansA) from Streptomyces griseus NIOT-VKMA29 was heterologously expressed in Escherichia coli M15 and the enzyme production was increased threefold (123 IU mL-1) over the native strain. The ansA gene sequences reported in this study encloses several base substitutions with that of reported sequences in GenBank, resulting in altered amino acid sequences of the translated protein.

  3. Pharmacological effects of the phytochemicals of Anethum sowa L. root extracts.

    PubMed

    Saleh-E-In, Md Moshfekus; Sultana, Nasim; Hossain, Md Nur; Hasan, Sayeema; Islam, Md Rabiul

    2016-11-14

    Anethum sowa L. is widely used as an important spice and traditional medicinal plants to treat various ailments. On the basis of scientific ethnobotanical information, this study was undertaken to evaluate the antioxidant, antimicrobial and cytotoxic activity of the crude extracts of Anethum sowa L. roots as well as to identify the classes of phytochemicals by chemical tests. The antioxidant potential of the extracts was ascertained with the stable organic free radical (2, 2-diphenyl-1-picryl-hydrazyl). The agar well diffusion method was used to determine the susceptibility of bacterial and fungal strains of the crude extracts. The minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC) were determined by the microdilution test. Cytotoxic activities were screened using brine shrimps (Artemia salina) lethality assay. Finally, phytochemicals were profiled using standard procedures. A preliminary phytochemical screening of the different crude extracts by methanol, ethyl acetate and chloroform showed the presence of secondary metabolites such as flavonoids, alkaloids, saponin, cardiac glycosides and tannins while cyanogenetic glycosides were not detected. The methanol, ethyl acetate and chloroform extracts displayed high antioxidant activity (IC 50  = 13.08 ± 0.03, 33.48 ± 0.16 and 36.42 ± 0.41 μg/mL, respectively) in the DPPH assay comparable to that of the standard ascorbic acid and BHT (IC 50  = 3.74 ± 0.05 and 11.84 ± 0.29 μg/mL). The cytotoxic activity of the crude ethyl acetate and chloroform extracts possessed excellent activity (LC 50  = 5.03 ± 0.08, 5.23 ± 0.11 and 17.22 ± 0.14 μg/mL, respectively) against brine shrimp larvae after 24 h of treatment and compared with standard vincristine sulphate (LC 50  = 0.46 ± 0.05 μg/mL). The extracts also showed good antimicrobial activity against both Gram-positive and Gram-negative bacteria when compared with two standard

  4. Effects of Mangifera indica L. aqueous extract (Vimang) on primary culture of rat hepatocytes.

    PubMed

    Rodeiro, I; Donato, M T; Jiménez, N; Garrido, G; Delgado, R; Gómez-Lechón, M J

    2007-12-01

    Vimang is an aqueous extract from stem bark of Mangifera indica L. (Mango) with pharmacological properties. It is a mixture of polyphenols (as main components), terpenoids, steroids, fatty acids and microelements. In the present work we studied the cytotoxic effects of Vimang on rat hepatocytes, possible interactions of the extract with drug-metabolizing enzymes and its effects on GSH levels and lipid peroxidation. No cytotoxic effects were observed after 24 h exposure to Vimang of up to 1000 microg/mL, while a moderate cytotoxicity was observed after 48 and 72 h of exposure at higher concentrations (500 and 1000 microg/mL). The effect of the extract (50-400 microg/mL) on several P450 isozymes was evaluated. Exposure of hepatocytes to Vimang at concentrations of up to 100 microg/mL produced a significant reduction (60%) in 7-methoxyresorufin-O-demethylase (MROD; CYP1A2) activity, an increase (50%) in 7-penthoxyresorufin-O-depentylase (PROD; CYP2B1) activity, while no significant effect was observed with other isozymes. To our knowledge, this is the first report regarding the modulation of the activity of the P450 system by an extract of Mangifera indica L. The antioxidant properties of Vimang were also evaluated in t-butyl-hydroperoxide-treated hepatocytes. A 36-h pre-treatment of cells with Vimang (25-200 microg/mL) strongly inhibited the decrease of GSH levels and lipid peroxidation induced by t-butyl-hydroperoxide dose- and time-dependently.

  5. NET1 and HFI1 genes of yeast mediate both chromosome maintenance and mitochondrial rho(-) mutagenesis.

    PubMed

    Koltovaya, N A; Guerasimova, A S; Tchekhouta, I A; Devin, A B

    2003-08-01

    An increase in the mitochondrial rho(-) mutagenesis is a well-known response of yeast cells to mutations in numerous nuclear genes as well as to various kinds of stress. Despite extensive studies for several decades, the biological significance of this response is still not fully understood. The genetic approach to solving this enigma includes a study of genes that are required for the high incidence of spontaneous rho(-) mutants. We have obtained mutations of a few nuclear genes of that sort and found that mutations in certain genes, including CDC28, the central cell-cycle regulation gene, result in a decrease in spontaneous rho(-) mutability and simultaneously affect the maintenance of the yeast chromosomes and plasmids. Two more genes resembling CDC28 in this respect are identified in the present work as a result of the characterization of four new mutants. These two genes are NET1 and HFI1 which mediate important regulatory protein-protein interactions in the yeast cell. The effects of four mutations, including net1-srm and hfi1-srm, on the maintenance of the yeast mitochondrial genome, chromosomes and plasmids, as well as on the cell's sensitivity to ionizing radiation, are also described. The data presented suggest that the pleiotropic srm mutations determining coordinate changes in the fidelity of mitotic transmission of chromosomes, plasmids and mtDNA molecules identify genes that most probably operate high up in the hierarchy of the general genetic regulation of yeast. Copyright 2003 John Wiley & Sons, Ltd.

  6. Effect of aqueous extract of Arctium lappa L. (burdock) roots on the sexual behavior of male rats.

    PubMed

    JianFeng, Cao; PengYing, Zhang; ChengWei, Xu; TaoTao, Huang; YunGui, Bai; KaoShan, Chen

    2012-02-01

    Arctium lappa L. root has traditionally been recommended as an aphrodisiac agent. It is used to treat impotence and sterility in China, and Native Americans included the root in herbal preparations for women in labor. However, its use has not been scientifically validated. The present study therefore investigated the effects of aqueous extract of Arctium lappa L. roots on sexual behavior in normal male rats. Seventy-five albino male rats were randomly divided into five groups of 15 rats each. Rats in group 1 (control) were administered 10 mL/kg body weight distilled water (vehicle), group 2 received 60 mg/kg body weight sildenafil citrate (Viagra), while those in groups 3, 4, and 5 were given 300, 600, and 1,200 mg/kg body weight, respectively, of aqueous extract of Arctium lappa L. roots in the same volume. Female albino rats were made receptive by hormonal treatment. Sexual behavior parameters in male rats were monitored on days 3, 7 and 15 by pairing with receptive females (1:3). Male serum testosterone concentrations and potency were also determined. Oral administration of Arctium lappa L. roots extract at 600 and 1,200 mg/kg body weight significantly increased the frequencies of mount, intromission, and ejaculation frequency (p < 0.05). The latencies of mount and intromission were significantly reduced and ejaculation latency was prolonged. Administration of the extract also reduced the post-ejaculatory interval. The standard drug (Viagra) was more effective than the extract. The extract significantly increased the frequencies of all components of penile reflexes as well as serum testosterone levels, compared with the distilled water controls. The results of this study demonstrate that aqueous extract of Arctium lappa L. roots enhances sexual behavior in male rats. The aphrodisiac effects of the plant extract may be related to the presence of flavonoids, saponins, lignans and alkaloids, acting via a multitude of central and peripheral mechanisms. These results

  7. Living organisms as an alternative to hyphenated techniques for metal speciation. Evaluation of baker's yeast immobilized on silica gel for Hg speciation*1

    NASA Astrophysics Data System (ADS)

    Pérez-Corona, Teresa; Madrid-Albarrán, Yolanda; Cámara, Carmen; Beceiro, Elisa

    1998-02-01

    The use of living organisms for metal preconcentration and speciation is discussed. Among substrates, Saccharomyces cerevisiae baker's yeast has been successfully used for the speciation of mercury [Hg(II) and CH 3Hg +], selenium [Se(IV) and Se(VI)] and antimony [Sb(III) and Sb(V)]. To illustrate the capabilities of these organisms, the analytical performance of baker's yeast immobilized on silica gel for on-line preconcentration and speciation of Hg(II) and methylmercury is reported. The immobilized cells were packed in a PTFE microcolumn, through which mixtures of organic and inorganic mercury solutions were passed. Retention of inorganic and organic mercury solutions took place simultaneously, with the former retained in the silica and the latter on the yeast. The efficiency uptake for both species was higher than 95% over a wide pH range. The speciation was carried out by selective and sequential elution with 0.02 mol L -1 HCl for methylmercury and 0.8 mol L -1 CN - for Hg(II). This method allows both preconcentration and speciation of mercury. The preconcentration factors were around 15 and 100 for methylmercury and mercury(II), respectively. The method has been successfully applied to spiked sea water samples.

  8. Malassezia yeasts produce a collection of exceptionally potent activators of the Ah (dioxin) receptor detected in diseased human skin.

    PubMed

    Magiatis, Prokopios; Pappas, Periklis; Gaitanis, George; Mexia, Nikitia; Melliou, Eleni; Galanou, Maria; Vlachos, Christophoros; Stathopoulou, Konstantina; Skaltsounis, Alexios Leandros; Marselos, Marios; Velegraki, Aristea; Denison, Michael S; Bassukas, Ioannis D

    2013-08-01

    Malassezia yeasts are commensal microorganisms, which under insufficiently understood conditions can become pathogenic. We have previously shown that specific strains isolated from diseased human skin can preferentially produce agonists of the aryl hydrocarbon receptor (AhR), whose activation has been linked to certain skin diseases. Investigation of skin scale extracts from patients with Malassezia-associated diseases demonstrated 10- to 1,000-fold higher AhR-activating capacity than control skin extracts. Liquid chromatography-tandem mass spectrometry analysis of the patients' extracts revealed the presence of indirubin, 6-formylindolo[3,2-b]carbazole (FICZ), indolo[3,2-b]carbazole (ICZ), malassezin, and pityriacitrin. The same compounds were also identified in 9 out of 12 Malassezia species culture extracts tested, connecting their presence in skin scales with this yeast. Studying the activity of the Malassezia culture extracts and pure metabolites in HaCaT cells by reverse transcriptase real-time PCR revealed significant alterations in mRNA levels of the endogenous AhR-responsive genes Cyp1A1, Cyp1B1, and AhRR. Indirubin- and FICZ-activated AhR in HaCaT and human HepG2 cells with significantly higher, yet transient, potency as compared with the prototypical AhR ligand, dioxin. In loco synthesis of these highly potent AhR inducers by Malassezia yeasts could have a significant impact on skin homeostatic mechanisms and disease development.

  9. Methods and materials for the production of L-lactic acid in yeast

    DOEpatents

    Hause, Ben [Jordan, MN; Rajgarhia, Vineet [Minnetonka, MN; Suominen, Pirkko [Maple Grove, MN

    2009-05-19

    Recombinant yeast are provided having, in one aspect, multiple exogenous LDH genes integrated into the genome, while leaving native PDC genes intact. In a second aspect, recombinant yeast are provided having an exogenous LDH gene integrated into its genome at the locus of a native PDC gene, with deletion of the native PDC gene. The recombinant yeast are useful in fermentation process for producing lactic acid.

  10. Identification of the Transcription Factor Znc1p, which Regulates the Yeast-to-Hypha Transition in the Dimorphic Yeast Yarrowia lipolytica

    PubMed Central

    Martinez-Vazquez, Azul; Gonzalez-Hernandez, Angelica; Domínguez, Ángel; Rachubinski, Richard; Riquelme, Meritxell; Cuellar-Mata, Patricia; Guzman, Juan Carlos Torres

    2013-01-01

    The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica. PMID:23826133

  11. Isolation and characterization of ethanol tolerant yeast strains

    PubMed Central

    Tikka, Chiranjeevi; Osuru, Hari Prasad; Atluri, Navya; Raghavulu, Praveen Chakravarthi Veera; yellapu, Nanda Kumar; Mannur, Ismail Shaik; Prasad, Uppu Venkateswara; Aluru, Sudheer; K, Narasimha Varma; Bhaskar, Matcha

    2013-01-01

    Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains. PMID:23750092

  12. In-tube extraction for the determination of the main volatile compounds in Physalis peruviana L.

    PubMed

    Kupska, Magdalena; Jeleń, Henryk H

    2017-01-01

    An analytical procedure based on in-tube extraction followed by gas chromatography with mass spectrometry has been developed for the analysis of 24 of the main volatile components in cape gooseberry (Physalis peruviana L.) samples. According to their chemical structure, the compounds were organized into different groups: one hydrocarbon, one aldehyde, four alcohols, four esters, and 14 monoterpenes. By single-factor experiments, incubation temperature, incubation time, extraction volume, extraction strokes, extraction speed, desorption temperature, and desorption speed were determined as 60°C, 20 min, 1000 μL, 20, 50:50 μL/s, 280°C, 100 μL/s, respectively. Quantitative analysis using authentic standards and external calibration curves was performed. The limit of detection and limit of quantification for the analytical procedure were calculated. Results shown the benzaldehyde, ethyl butanoate, 2-methyl-1-butanol, 1-hexanol, 1-butanol, α-terpineol, and terpinen-4-ol were the most abundant volatile compounds in analyzed fruits (68.6-585 μg/kg). The obtained data may contribute to qualify cape gooseberry to the group of superfruits and, therefore, increase its popularity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Screening antimicrobial activity of various extracts of Urtica dioica.

    PubMed

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to

  14. Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells

    PubMed Central

    de Jesus, Daiane; Figueira, Leandro Wagner; de Oliveira, Felipe Eduardo; Pacheco Soares, Cristina; Camargo, Samira Estves Afonso; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2017-01-01

    R. officinalis L. is an aromatic plant commonly used as condiment and for medicinal purposes. Biological activities of its extract were evaluated in this study, as antimicrobial effect on mono- and polymicrobial biofilms, cytotoxicity, anti-inflammatory capacity, and genotoxicity. Monomicrobial biofilms of Candida albicans, Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans and Pseudomonas aeruginosa and polymicrobial biofilms composed of C. albicans with each bacterium were formed in microplates during 48 h and exposed for 5 min to R. officinalis L. extract (200 mg/mL). Its cytotoxic effect was examined on murine macrophages (RAW 264.7), human gingival fibroblasts (FMM-1), human breast carcinoma cells (MCF-7), and cervical carcinoma cells (HeLa) after exposure to different concentrations of the extract, analyzed by MTT, neutral red (NR), and crystal violet (CV) assays. The anti-inflammatory activity was evaluated on RAW 264.7 non-stimulated or stimulated by lipopolysaccharide (LPS) from Escherichia coli and treated with different concentrations of the extract for 24 h. Interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) were quantified by ELISA. Genotoxicity was verified by the frequency of micronuclei (MN) at 1000 cells after exposure to concentrations of the extract for 24 h. Data were analyzed by T-Test or ANOVA and Tukey Test (P ≤ 0.05). Thus, significant reductions in colony forming units per milliliter (CFU/mL) were observed in all biofilms. Regarding the cells, it was observed that concentrations ≤ 50 mg/mL provided cell viability of above 50%. Production of proinflammatory cytokines in the treated groups was similar or lower compared to the control group. The MN frequency in the groups exposed to extract was similar or less than the untreated group. It was shown that R. officinalis L. extract was effective on mono- and polymicrobial biofilms; it also provided cell viability of above 50% (at

  15. Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation

    NASA Astrophysics Data System (ADS)

    Lopez-Arce, Paula; Zornoza-Indart, Ainara

    2015-09-01

    Carbonation of Ca(OH)2 nanoparticles and consolidation of limestone are accelerated by high humidity and a yeast fermentation system that supplies a saturated atmosphere on CO2, H2O vapor and ethanol during 28 days. Nanoparticles were analyzed by X-ray diffraction and differential thermal analyses with thermogravimetry. Spectrophotometry, scanning electron microscopy analyses, and hydric and mechanical tests were also performed in stones specimens. Samples exposed to the yeast environment achieve 100 % relative CaCO3 yield, whereas at high humidity but without the yeast and under laboratory environment, relative yields of 95 % CaCO3 and 15 % CaCO3 are, respectively, reached, with white crusts and glazing left on the stone surfaces when the nanoparticles are applied at a concentration of 25 g/l. The largest increase in the drilling resistance and surface hardness values with slight increase in the capillarity absorption and desorption coefficients and with lesser stone color changes are produced at a concentration of 5 g/l, in the yeast system environment. This especially happens in stone specimens initially with bimodal pore size distributions, more amounts of pores with diameters between 0.1 and 1 µm, higher open porosity values and faster capillary coefficients. An inexpensive and reliable method based on water and yeast-sugar solution is presented to speed up carbonation of Ca(OH)2 nanoparticles used as a consolidating product to improve the mechanical properties of decayed limestone from archaeological and architectural heritage.

  16. Binary solvent extraction system and extraction time effects on phenolic antioxidants from kenaf seeds (Hibiscus cannabinus L.) extracted by a pulsed ultrasonic-assisted extraction.

    PubMed

    Wong, Yu Hua; Lau, Hwee Wen; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β -carotene bleaching inhibition assay, and ferric reducing antioxidant power (FRAP) assay. Total phenolic content (TPC) and total flavonoid content (TFC) evaluations were carried out to determine the phenolic and flavonoid contents in KSE. The KSE from the best extraction parameter was then subjected to high performance liquid chromatography (HPLC) to quantify the phenolic compounds. The optimised extraction condition employed 80% ethanol for 15 min, with the highest values determined for the DPPH, ABTS, and FRAP assay. KSE contained mainly tannic acid (2302.20 mg/100 g extract) and sinapic acid (1198.22 mg/100 g extract), which can be used as alternative antioxidants in the food industry.

  17. Binary Solvent Extraction System and Extraction Time Effects on Phenolic Antioxidants from Kenaf Seeds (Hibiscus cannabinus L.) Extracted by a Pulsed Ultrasonic-Assisted Extraction

    PubMed Central

    Lau, Hwee Wen; Nyam, Kar Lin

    2014-01-01

    The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β-carotene bleaching inhibition assay, and ferric reducing antioxidant power (FRAP) assay. Total phenolic content (TPC) and total flavonoid content (TFC) evaluations were carried out to determine the phenolic and flavonoid contents in KSE. The KSE from the best extraction parameter was then subjected to high performance liquid chromatography (HPLC) to quantify the phenolic compounds. The optimised extraction condition employed 80% ethanol for 15 min, with the highest values determined for the DPPH, ABTS, and FRAP assay. KSE contained mainly tannic acid (2302.20 mg/100 g extract) and sinapic acid (1198.22 mg/100 g extract), which can be used as alternative antioxidants in the food industry. PMID:24592184

  18. The divergently transcribed genes encoding yeast ribosomal proteins L46 and S24 are activated by shared RPG-boxes.

    PubMed Central

    Kraakman, L S; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J

    1989-01-01

    Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental strategies were followed: cloning of the respective genes on multicopy vectors and construction of fusion genes. Cloning of the L46 + S24 gene including the intergenic region in a multicopy yeast vector indicated that both genes are transcriptionally active. Using constructs in which only the S24 or the L46 gene is present, with or without the intergenic region, we obtained evidence that the intergenic region is indispensable for transcription activation of either gene. To demarcate the element(s) responsible for this activation, fusions of the intergenic region in either orientation to the galK reporter gene were made. Northern analysis of the levels of hybrid mRNA demonstrated that the intergenic region can serve as an heterologous promoter when it is in the 'S24-orientation'. Surprisingly, however, when fused in the reverse orientation the intergenic region did hardly confer transcription activity on the fusion gene. Furthermore, a 274 bp FnuDII-FnuDII fragment from the intergenic region that contains the RPG-boxes, could replace the naturally occurring upstream activation site (UASrpg) of the L25 rp-gene only when inserted in the 'S24-orientation'. Removal of 15 bp from the FnuDII fragment appeared to be sufficient to obtain transcription activation in the 'L46 orientation' as well. Analysis of a construct in which the RPG-boxes were selectively deleted from the promoter region of the L46 gene indicated that the RPG-boxes are needed for efficient transcriptional activation of

  19. The divergently transcribed genes encoding yeast ribosomal proteins L46 and S24 are activated by shared RPG-boxes.

    PubMed

    Kraakman, L S; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J

    1989-12-11

    Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental strategies were followed: cloning of the respective genes on multicopy vectors and construction of fusion genes. Cloning of the L46 + S24 gene including the intergenic region in a multicopy yeast vector indicated that both genes are transcriptionally active. Using constructs in which only the S24 or the L46 gene is present, with or without the intergenic region, we obtained evidence that the intergenic region is indispensable for transcription activation of either gene. To demarcate the element(s) responsible for this activation, fusions of the intergenic region in either orientation to the galK reporter gene were made. Northern analysis of the levels of hybrid mRNA demonstrated that the intergenic region can serve as an heterologous promoter when it is in the 'S24-orientation'. Surprisingly, however, when fused in the reverse orientation the intergenic region did hardly confer transcription activity on the fusion gene. Furthermore, a 274 bp FnuDII-FnuDII fragment from the intergenic region that contains the RPG-boxes, could replace the naturally occurring upstream activation site (UASrpg) of the L25 rp-gene only when inserted in the 'S24-orientation'. Removal of 15 bp from the FnuDII fragment appeared to be sufficient to obtain transcription activation in the 'L46 orientation' as well. Analysis of a construct in which the RPG-boxes were selectively deleted from the promoter region of the L46 gene indicated that the RPG-boxes are needed for efficient transcriptional activation of

  20. Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations.

    PubMed

    Souza, Raquel Santos; Diaz-Albiter, Hector Manuel; Dillon, Vivian Maureen; Dillon, Rod J; Genta, Fernando Ariel

    2016-01-01

    Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2 h, 100% in 48 h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated.

  1. Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus.

    PubMed

    Costa, G M; Endo, E H; Cortez, D A G; Nakamura, T U; Nakamura, C V; Dias Filho, B P

    2016-09-01

    Three chalcones, 2'-hydroxy-4,4',6'-trimethoxychalcone, 2'-hydroxy-4,4',6'-tetramethoxychalcone, and 3,2'-dihydroxy-4,4',6'-trimethoxychalcone, were isolated from the leaves of Piper hispidum in a bioguided fractionation of crude extract. The antimicrobial activity of crude extract of P. hispidum leaves was determined against bacteria Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and yeasts Candida albicans, C. parapsilosis and C. tropicalis. Fractions and chalcones were tested against C. albicans and S. aureus. The checkerboard assay was performed to assess synergic interactions between extract and antifungal drugs, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay was used to evaluate anti-biofilm effects of extract. The extract was active against yeasts, S. aureus and B. subtilis with MIC values between 15.6 and 62.5μg/mL. Synergistic effects of extract associated with fluconazole and nystatin were observed against C. albicans, with fractional inhibitory concentration indices of 0.37 and 0.24, respectively. The extract was also effective against C. albicans and S. aureus biofilm cells at concentrations of 62.5 and 200μg/mL, respectively. Thus, P. hispidum may be a possible source of bioactive substances with antimicrobial properties. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Antioxidant activities of Vaccinium uliginosum L. extract and its active components.

    PubMed

    Kim, Young-Hee; Bang, Chae-Young; Won, Eun-Kyung; Kim, Jong-Pyung; Choung, Se-Young

    2009-08-01

    Vaccinium uliginosum L. (also known as bog bilberry) is a low-growing deciduous shrub classified in the Ericaceae family of plants, which includes numerous Vaccinium berries, blueberries, and cranberries. Berries of the Ericaceae family are known to contain organic acids, vitamins, glycosides, and anthocyanins and have been reported to have antioxidant activity. In order to identify the antioxidative principles of V. uliginosum, we separated water extracts into polyphenol, anthocyanin-rich (pigment), and sugar/acid fractions by using ethyl acetate, acidic methanol (MeOH), and 0.01 N HCl. Antioxidant activities were assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide radical, and hydroxyl radical assays. The crude extract and fractions containing polyphenol and pigment exhibited the greatest antioxidant activities with 50% inhibitory concentration (IC(50)) values of 85.8 microg/mL, 33.2 microg/mL, and 16.7 microg/mL, respectively, for the DPPH assay and 48.1 microg/mL, 83.8 microg/mL, and 51.9 microg/mL for the nonenzymatic superoxide radical assay. The fractions containing polyphenol, pigment, and sugar/acid significantly inhibited xanthine oxidase. To investigate the functional compounds from the active fractions, we purified the polyphenol fraction and separated the compounds by using chromatographic techniques. The crude extract was dissolved in MeOH and further purified by reversed-phase high-performance liquid chromatography (HPLC) using MeOH-water (35:65 vol/vol) (with 0.04% trifluoroacetic acid) to obtain VU-EA-1 (16.6 mg), VU-EA-2 (8.5 mg), VU-EA-3 (19.8 mg), VU-EA-4 (12.8 mg), VU-EA-5 (6.5 mg), and VU-EA-6 (23.5 mg). The MeOH-washed fraction from the HPLC was concentrated and purified by reversed-phase HPLC using MeOH-water (50:50 vol/vol) to give VU-EA-10 (12.4 mg). Antioxidant activity was assessed by DPPH, superoxide radical, and hydroxyl radical assays. The isolated compounds exhibited dose-dependent antioxidant activity with IC(50) values of

  3. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Production of Sophorolipid from an Identified Current Yeast, Lachancea thermotolerans BBMCZ7FA20, Isolated from Honey Bee.

    PubMed

    Mousavi, Fereshteh; Beheshti-Maal, Keivan; Massah, Ahmadreza

    2015-08-01

    Biosurfactants are a family of diverse amphipathic molecules that are produced by several microorganisms such as bacteria, molds, and yeasts. These surface active agents have several applications in agriculture, oil processing, food, and pharmaceutical industries. In this research using YMG and YUG culture media, a native yeast strain, HG5, was isolated from honey bee. The oil spread test as a screening method was used to evaluate biosurfactant production by the yeast HG5 isolate. The 5.8s-rDNA analysis confirmed that the isolated yeast was related to Lachancea thermotolerans. We named this strain Lachancea thermotolerans strain BBMCZ7FA20 and its 5.8s-rDNA sequence was deposited in GenBank, NCBI under accession number of KM042082.1. The best precursor of biosurfactant production was canola oil and the sophorolipid amount was measured for 24.2 g/l. The thin layer chromatography and Fourier Transform Infrared Spectroscopy analysis showed that the extracted biosurfactant from Lachancea thermotolerans was sophorolipid. In conclusion, this is the first report of sophorolipid production by a native yeast Lachancea thermotolerans BBMCZ7FA20 we isolated from the honey bee gut collected from an apiary farm in Saman, Chaharmahal Bakhtiari province, Iran. We suggested that some cost-effective supplements such as canola oil, sunflower oil, and corn oils could be applied for increasing the sophorolipid production by this native yeast strain. According to several applications of biosurfactants in today world, the production of sophorolipid by Lachancea thermotolerans could be considered as a potential in the current industrial microbiology and modern microbial biotechnology.

  5. Host Defense Proteins in Breast Milk and Neonatal Yeast Colonization.

    PubMed

    Chow, Brian D W; Reardon, Juliann L; Perry, Emily O; Laforce-Nesbitt, Sonia S; Tucker, Richard; Bliss, Joseph M

    2016-02-01

    Colonization increases risk for invasive candidiasis in neonates. Breast milk host defense proteins may affect yeast colonization of infants. This study aimed to evaluate breast milk host defense proteins relative to yeast colonization in infants. Infants admitted for longer than 72 hours to the neonatal intensive care unit at Women & Infants Hospital in Providence, Rhode Island, were eligible. After consent, expressed breast milk and swabs from oral, rectal, and inguinal sites from infants were cultured weekly for 12 weeks, or until discharge, transfer, or death. Breast milk was tested for levels of human lactoferrin, lysozyme, apolipoprotein J, mucin-1, dermcidin, and soluble CD14 using commercial ELISA. Concentrations of these components were compared in breast milk received by infants who were colonized or not colonized with yeast. From an original cohort of 130, 61 infants had samples available for this subanalysis. A convenience sample of stored breast milk was analyzed. Median lactoferrin, apolipoprotein J, and mucin-1 did not differ between colonized and uncolonized groups. Soluble CD14 was higher in the surface-colonized group (1.8 μg/mL, n = 12) compared with the surface-uncolonized group (1.6 μg/mL, n = 12, P = .02). Median lysozyme levels were higher in the surface-uncolonized group (483.0 ng/mL, n = 12) versus the surface-colonized group (298.3 ng/mL, n = 12, P = .04). Median dermcidin levels were higher in the surface-uncolonized group (19.4 ng/mL, n = 12) versus the surface-colonized group (8.7 ng/mL, n = 12, P = .04). This study shows an association between colonization with Candida in neonates and lower levels of lysozyme and dermcidin in received breast milk. Further study is needed to confirm these findings. © The Author(s) 2015.

  6. Analysis of condensed and hydrolysable tannins from commercial plant extracts.

    PubMed

    Romani, A; Ieri, F; Turchetti, B; Mulinacci, N; Vincieri, F F; Buzzini, P

    2006-05-03

    High performance liquid chromatography (HPLC)/DAD and MS qualitative and quantitative analyses of polyphenols, hydrolysable and condensed tannins from Pinus maritima L. and tannic acid (TA) extracts were performed using normal and reverse phase. Normal-phase HPLC was more suitable for pine bark (PBE) and tannic acid extracts analysis. The chromatographic profile revealed that P. maritima L. extract was mainly composed by polymeric flavanols (containing from two to seven units) and tannic acid (characterized by a mixture of glucose gallates containing from three to seven units of gallic acid). Concerning their antimycotic properties, P. maritima L. extract exhibited a broad activity towards yeast strains of the genera Candida, Cryptococcus, Filobasidiella, Issatchenkia, Saccharomyces: MICs from 200 to 4000 microg/ml (corresponding to 140-2800 microg/ml of active polyphenols) were determined. Conversely, no activity of tannic acid was observed over the same target microorganisms. Taken into consideration the above results of HPLC analysis and on the basis of the current literature, we may conclude that only 70.2% of polyphenols (recognized as condensed tannins) occurring in P. maritima L. extract can be apparently considered responsible for its antimycotic activity.

  7. A Four-Hour Yeast Bioassay for the Direct Measure of Estrogenic Activity in Wastewater without Sample Extraction, Concentration, or Sterilization

    PubMed Central

    Balsiger, Heather A.; de la Torre, Roberto; Lee, Wen-Yee; Cox, Marc B.

    2010-01-01

    The assay described here represents an improved yeast bioassay that provides a rapid yet sensitive screening method for EDCs with very little hands-on time and without the need for sample preparation. Traditional receptor-mediated reporter assays in yeast were performed twelve to twenty four hours after ligand addition, used colorimetric substrates, and, in many cases, required high, non-physiological concentrations of ligand. With the advent of new chemiluminescent substrates a ligand-induced signal can be detected within thirty minutes using high picomolar to low nanomolar concentrations of estrogen. As a result of the sensitivity (EC50 for estradiol is ~ 0.7 nM) and the very short assay time (2-4 hours) environmental water samples can typically be assayed directly without sterilization, extraction, and concentration. Thus, these assays represent rapid and sensitive approaches for determining the presence of contaminants in environmental samples. As proof of principle, we directly assayed wastewater influent and effluent taken from a wastewater treatment plant in the El Paso, TX area for the presence of estrogenic activity. The data obtained in the four-hour yeast bioassay directly correlated with GC-mass spectrometry analysis of these same water samples. PMID:20074779

  8. Malassezia yeasts produce a collection of exceptionally potent activators of the Ah (dioxin) receptor detected in diseased human skin

    PubMed Central

    Magiatis, Prokopios; Pappas, Periklis; Gaitanis, George; Mexia, Nikitia; Melliou, Eleni; Galanou, Maria; Vlachos, Christophoros; Stathopoulou, Konstantina; Skaltsounis, Alexios Leandros; Marselos, Marios; Velegraki, Aristea; Denison, Michael S.; Bassukas, Ioannis D.

    2013-01-01

    Malassezia yeasts are commensal microorganisms which under insufficiently understood conditions can become pathogenic. We have previously shown that specific strains isolated from diseased human skin can preferentially produce agonists of the aryl hydrocarbon receptor (AhR), whose activation has been linked to certain skin diseases. Investigation of skin scale extracts from patients with Malassezia associated diseases demonstrated 10–1000 fold higher AhR activating capacity than control skin extracts. LC/MS/MS analysis of the patients’ extracts revealed the presence of indirubin, 6-formylindolo[3,2-b]carbazole (FICZ), indolo[3,2-b]carbazole (ICZ), malassezin, and pityriacitrin. The same compounds were also identified in 9/12 Malassezia species culture extracts tested, connecting their presence in skin scales with this yeast. Studying the activity of the Malassezia culture-extracts and pure metabolites in HaCaT cells by Reverse Transcriptase Real-Time PCR revealed significant alterations in mRNA levels of the endogenous AhR-responsive genes Cyp1A1, Cyp1B1 and AhRR. Indirubin and FICZ activated AhR in HaCaT and human HepG2 cells with significantly higher, yet transient, potency as compared to the prototypical AhR ligand, dioxin. In loco synthesis of these highly potent AhR inducers by Malassezia yeasts could have a significant impact on skin homeostatic mechanisms and disease development. PMID:23448877

  9. Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO₂ extraction and hydro-distillation.

    PubMed

    Bagheri, Hossein; Abdul Manap, Mohd Yazid Bin; Solati, Zeinab

    2014-04-01

    The aim of this study was to optimize the antioxidant activity of Piper nigrum L. essential oil extracted using the supercritical carbon dioxide (SC-CO₂) technique. Response surface methodology was applied using a three-factor central composite design to evaluate the effects of three independent extraction variables: pressure of 15-30 MPa, temperature of 40-50 °C and dynamic extraction time of 40-80 min. The DPPH radical scavenging method was used to evaluate the antioxidant activity of the extracts. The results showed that the best antioxidant activity was achieved at 30 MPa, 40 °C and 40 min. The extracts were analyzed by GC-FID and GC-MS. The main components extracted using SC-CO₂ extraction in optimum conditions were β-caryophyllene (25.38 ± 0.62%), limonene (15.64 ± 0.15%), sabinene (13.63 ± 0.21%), 3-carene (9.34 ± 0.04%), β-pinene (7.27 ± 0.05%), and α-pinene (4.25 ± 0.06%). The essential oil obtained through this technique was compared with the essential oil obtained using hydro-distillation. For the essential oil obtained by hydro-distillation, the most abundant compounds were β-caryophyllene (18.64 ± 0.84%), limonene (14.95 ± 0.13%), sabinene (13.19 ± 0.17%), 3-carene (8.56 ± 0.11%), β-pinene (9.71 ± 0.12%), and α-pinene (7.96 ± 0.14%). Radical scavenging activity of the extracts obtained by SC-CO₂ and hydro-distillation showed an EC₅₀ of 103.28 and 316.27 µg mL(-1) respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Post-fermentative production of glutathione by baker's yeast (S. cerevisiae) in compressed and dried forms.

    PubMed

    Musatti, Alida; Manzoni, Matilde; Rollini, Manuela

    2013-01-25

    The study was aimed at investigating the best biotransformation conditions to increase intracellular glutathione (GSH) levels in samples of baker's yeast (Saccharomyces cerevisiae) employing either the commercially available compressed and dried forms. Glucose, GSH precursors amino acids, as well as other cofactors, were dissolved in a biotransformation solution and yeast cells were added (5%dcw). Two response surface central composite designs (RSCCDs) were performed in sequence: in the first step the influence of amino acid composition (cysteine, glycine, glutamic acid and serine) on GSH accumulation was investigated; once their formulation was set up, the influence of other components was studied. Initial GSH content was found 0.53 and 0.47%dcw for compressed and dried forms. GSH accumulation ability of baker's yeast in compressed form was higher at the beginning of shelf life, that is, in the first week, and a maximum of 2.04%dcw was obtained. Performance of yeast in dried form was not found satisfactory, as the maximum GSH level was 1.18%dcw. When cysteine lacks from the reaction solution, yeast cells do not accumulate GSH. With dried yeast, the highest GSH yields occurred when cysteine was set at 3 g/L, glycine and glutamic acid at least at 4 g/L, without serine. Employing compressed yeast, the highest GSH yields occurred when cysteine and glutamic acid were set at 2-3 g/L, while glycine and serine higher than 2 g/L. Results allowed to set up an optimal and feasible procedure to obtain GSH-enriched yeast biomass, with up to threefold increase with respect to initial content. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Flavonoid content in leaf extracts of the fig (Ficus carica L.), carob (Ceratonia siliqua L.) and pistachio (Pistacia lentiscus L.).

    PubMed

    Vaya, Jacob; Mahmood, Saeed

    2006-01-01

    The total flavonoid content of leaf extracts (70% ethanol) from fig (Ficus carica L.), carob (Ceratonia siliqua L.) and pistachio (Pistacia lentiscus L.) plants were determined by using reverse phase high-performance liquid chromatography (HPLC)-and analyzed by UV/VIS array and electrospray ionization (ESI)-mass spectrometry (MS) detectors. As a base for comparison, flavonoid type and level were also determined in extracts from soybeans and grape seeds. It was found that the major flavonoids in Ficus are quercetin and luteolin, with a total of 631 and 681 mg/kg extract, respectively. In Ceratonia leaves, nine different flavonoids were detected. The major one was myricetin (1486 mg/kg extract), with a similar level in Pistacia (1331 mg/kg extract, myricetin). The present study is the first to report the presence of the isoflavone genistein in the Pistacia leaf, which was discovered to consist of about a third of the genistein level detected in soybean.

  12. Antitumor activity of ethanol extract from Hippophae rhamnoides L. leaves towards human acute myeloid leukemia cells in vitro.

    PubMed

    Zhamanbaeva, G T; Murzakhmetova, M K; Tuleukhanov, S T; Danilenko, M P

    2014-12-01

    We studied the effects of ethanol extract from Hippophae rhamnoides L. leaves on the growth and differentiation of human acute myeloid leukemia cells (KG-1a, HL60, and U937). The extract of Hippophae rhamnoides L. leaves inhibited cell growth depending on the cell strain and extract dose. In a high concentration (100 μg/ml), the extract also exhibited a cytotoxic effect on HL60 cells. Hippophae rhamnoides L. leaves extract did not affect cell differentiation and did not modify the differentiating effect of calcitriol, active vitamin D metabolite. Inhibition of cell proliferation was paralleled by paradoxical accumulation of phase S cells (synthetic phase) with a reciprocal decrease in the count of G1 cells (presynthetic phase). The extract in a concentration of 100 μg/ml induced the appearance of cells with a subdiploid DNA content (sub-G1 phase cells), which indicated induction of apoptosis. The antiproliferative effect of Hippophae rhamnoides L. extract on acute myeloid leukemia cells was at least partially determined by activation of the S phase checkpoint, which probably led to deceleration of the cell cycle and apoptosis induction.

  13. Antileishmanial Activity of Date (Phoenix dactylifera L) Fruit and Pit Extracts In Vitro.

    PubMed

    Albakhit, Sedighe; Khademvatan, Shahram; Doudi, Monir; Foroutan-Rad, Masoud

    2016-10-01

    Leishmaniasis is considered as a major public health problem worldwide. Current drugs in treatment of leishmaniasis have some limitations; thus, the current study was aimed to assess the methanolic extracts of pit and fruit of Phoenix dactylifera against Leishmania major promastigotes. L major promastigotes were cultured in RPMI 1640 and incubated at 25°C ± 1°C for 24, 48, and 72 hours. For obtaining the IC50 (half maximal inhibitory concentration) value, MTT assay was employed. Furthermore, promastigotes were examined in terms of morphology under light microscope. About 48 hours after treatment, IC50s were estimated 23 μg/mL and 500 mg/mL for methanolic extracts of pit and fruit of P dactylifera, respectively. Both extracts exhibited a dose and time-dependent antileishmanial activity against L major parasites. Also, some visible morphological changes were seen. This finding revealed both date fruit and pit, are effective against L major promastigotes. Further studies should be designed in future based on apoptosis induction in vitro and in vivo. © The Author(s) 2016.

  14. Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Kurek, Eliza

    2017-02-25

    Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV) to organic derivatives (e.g., selenomethionine). Selenium introduced (20-30 mg Se 4+ ∙L -1 ) to the experimental media in the form of sodium(IV) selenite (Na₂SeO₃) salt caused a significant increase in selenium content in the biomass of C. utilis ,irrespective of the concentration. The highest amount of selenium (1841 μg∙g d.w. -1 ) was obtained after a 48-h culture in media containing 30 mg Se 4+ ∙L -1 . The highest content of selenomethionine (238.8 μg∙g d.w. -1 ) was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se 4+ ∙L -1 . Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L -1 . The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans.

  15. L-Phenylalanine Transport in Saccharomyces cerevisiae: Participation of GAP1, BAP2, and AGP1

    PubMed Central

    Sáenz, Daniel A.; Chianelli, Mónica S.; Stella, Carlos A.

    2014-01-01

    We focused on the participation of GAP1, BAP2, and AGP1 in L-phenylalanine transport in yeast. In order to study the physiological functions of GAP1, BAP2, and AGP1 in L-phenylalanine transport, we examined the kinetics, substrate specificity, and regulation of these systems, employing isogenic haploid strains with the respective genes disrupted individually and in combination. During the characterization of phenylalanine transport, we noted important regulatory phenomena associated with these systems. Our results show that Agp1p is the major transporter of the phenylalanine in a gap1 strain growing in synthetic media with leucine present as an inducer. In a wild type strain grown in the presence of leucine, when ammonium ion was the nitrogen source, Bap2p is the principal phenylalanine carrier. PMID:24701347

  16. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

    PubMed

    Hull, Claire M; Loveridge, E Joel; Donnison, Iain S; Kelly, Diane E; Kelly, Steven L

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

  17. Effect of aqueous extract of Arctium lappa L. (burdock) roots on the sexual behavior of male rats

    PubMed Central

    2012-01-01

    Background Arctium lappa L. root has traditionally been recommended as an aphrodisiac agent. It is used to treat impotence and sterility in China, and Native Americans included the root in herbal preparations for women in labor. However, its use has not been scientifically validated. The present study therefore investigated the effects of aqueous extract of Arctium lappa L. roots on sexual behavior in normal male rats. Methods Seventy-five albino male rats were randomly divided into five groups of 15 rats each. Rats in group 1 (control) were administered 10 mL⁄kg body weight distilled water (vehicle), group 2 received 60 mg/kg body weight sildenafil citrate (Viagra), while those in groups 3, 4, and 5 were given 300, 600, and 1,200 mg/kg body weight, respectively, of aqueous extract of Arctium lappa L. roots in the same volume. Female albino rats were made receptive by hormonal treatment. Sexual behavior parameters in male rats were monitored on days 3, 7 and 15 by pairing with receptive females (1:3). Male serum testosterone concentrations and potency were also determined. Results Oral administration of Arctium lappa L. roots extract at 600 and 1,200 mg/kg body weight significantly increased the frequencies of mount, intromission, and ejaculation frequency (p < 0.05). The latencies of mount and intromission were significantly reduced and ejaculation latency was prolonged. Administration of the extract also reduced the post-ejaculatory interval. The standard drug (Viagra) was more effective than the extract. The extract significantly increased the frequencies of all components of penile reflexes as well as serum testosterone levels, compared with the distilled water controls. Conclusions The results of this study demonstrate that aqueous extract of Arctium lappa L. roots enhances sexual behavior in male rats. The aphrodisiac effects of the plant extract may be related to the presence of flavonoids, saponins, lignans and alkaloids, acting via a multitude of central

  18. A yeast bioassay for direct measurement of thyroid hormone disrupting effects in water without sample extraction, concentration, or sterilization.

    PubMed

    Li, Jian; Ren, Shujuan; Han, Shaolun; Li, Na

    2014-04-01

    The present study introduces an improved yeast bioassay for rapid yet sensitive evaluation of thyroid hormone disruption at the level of thyroid receptor (TR) in environmental water samples. This assay does not require water sample preparation and thus requires very little hands-on time. Based on different β-galactosidase substrates, two modified bioassays, a colorimetric bioassay and a chemiluminescent bioassay, were developed. The compounds tested included the known thyroid hormone 3,3',5-triiodo-l-thyronine (T3), the specific TR antagonist amiodarone hydrochloride (AH) and phthalate esters (PAEs), which potentially disrupt thyroid hormone signaling. The EC50 values for T3 were similar to those previously obtained using a 96-well plate bioassay. TR antagonism by AH was studied in the presence of 2.5 × 10(-7)M T3, and the concentration producing 20% of the maximum effect (RIC20) for AH was 3.1 × 10(-7)M and 7.8 × 10(-9)M for the colorimetric bioassay and chemiluminescent bioassay, respectively. None of the tested PAEs induced β-galactosidase expression, but diethylhexyl phthalate, benzyl butyl phthalate and dibutyl phthalate demonstrated TR antagonism. Furthermore, water samples collected from Guanting reservoir in Beijing were evaluated. Although TR agonism was not observed, antagonism was detected in all water samples and is expressed as AH equivalents. The toxicology equivalent quantity values obtained by the chemiluminescent bioassay ranged from 21.2 ± 1.6 to 313.9 ± 28.8 μg L(-1) AH, and similar values were obtained for the colorimetric bioassay. The present study shows that the modified yeast bioassay can be used as a valuable tool for quantification of thyroid hormone disrupting effects in environmental water samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A cadmium-transporting P1B-type ATPase in yeast Saccharomyces cerevisiae.

    PubMed

    Adle, David J; Sinani, Devis; Kim, Heejeong; Lee, Jaekwon

    2007-01-12

    Detoxification and homeostatic acquisition of metal ions are vital for all living organisms. We have identified PCA1 in yeast Saccharomyces cerevisiae as an overexpression suppressor of copper toxicity. PCA1 possesses signatures of a P1B-type heavy metal-transporting ATPase that is widely distributed from bacteria to humans. Copper resistance conferred by PCA1 is not dependent on catalytic activity, but it appears that a cysteine-rich region located in the N terminus sequesters copper. Unexpectedly, when compared with two independent natural isolates and an industrial S. cerevisiae strain, the PCA1 allele of the common laboratory strains we have examined possesses a missense mutation in a predicted ATP-binding residue conserved in P1B-type ATPases. Consistent with a previous report that identifies an equivalent mutation in a copper-transporting P1B-type ATPase of a Wilson disease patient, the PCA1 allele found in laboratory yeast strains is nonfunctional. Overexpression or deletion of the functional allele in yeast demonstrates that PCA1 is a cadmium efflux pump. Cadmium as well as copper and silver, but not other metals examined, dramatically increase PCA1 protein expression through post-transcriptional regulation and promote subcellular localization to the plasma membrane. Our study has revealed a novel metal detoxification mechanism in yeast mediated by a P1B-type ATPase that is unique in structure, substrate specificity, and mode of regulation.

  20. The absorption of protons with specific amino acids and carbohydrates by yeast

    PubMed Central

    Seaston, A.; Inkson, C.; Eddy, A. A.

    1973-01-01

    1. Proton uptake in the presence of various amino acids was studied in washed yeast suspensions containing deoxyglucose and antimycin to inhibit energy metabolism. A series of mutant strains of Saccharomyces cerevisiae with defective amino acid permeases was used. The fast absorption of glycine, l-citrulline and l-methionine through the general amino acid permease was associated with the uptake of about 2 extra equivalents of protons per mol of amino acid absorbed, whereas the slower absorption of l-methionine, l-proline and, possibly, l-arginine through their specific permeases was associated with about 1 proton equivalent. l-Canavanine and l-lysine were also absorbed with 1–2 equivalents of protons. 2. A strain of Saccharomyces carlsbergensis behaved similarly with these amino acids. 3. Preparations of the latter yeast grown with maltose subsequently absorbed it with 2–3 equivalents of protons. The accelerated rate of proton uptake increased up to a maximum value with the maltose concentration (Km=1.6mm). The uptake of protons was also faster in the presence of α-methylglucoside and sucrose, but not in the presence of glucose, galactose or 2-deoxyglucose. All of these compounds except the last could cause acid formation. The uptake of protons induced by maltose, α-methylglucoside and sucrose was not observed when the yeast was grown with glucose, although acid was then formed both from sucrose and glucose. 4. A strain of Saccharomyces fragilis that both fermented and formed acid from lactose absorbed extra protons in the presence of lactose. 5. The observations show that protons were co-substrates in the systems transporting the amino acids and certain of the carbohydrates. PMID:4587071

  1. Inotropic effects of extracts of Psidium guajava L. (guava) leaves on the guinea pig atrium.

    PubMed

    Conde Garcia, E A; Nascimento, V T; Santiago Santos, A B

    2003-05-01

    Many pharmacological effects have been ascribed to extracts of Psidium guajava L. (guava) leaves. However, in spite of its widespread use in Brazilian folk medicine and a reasonable number of scientific reports about it, we could not find any study dealing with its action on the mammalian myocardium. In the present study, by measuring isometric force, we observed that the crude extract of P. guajava (water-alcohol extract obtained by macerating dry leaves) depresses the guinea pig atrial contractility in a concentration-dependent fashion (N = 8 hearts, 15 trials). The compound with cardiac activity was concentrated by extraction in a Soxhlet apparatus using 17 M glacial acetic acid after removing the less polar fractions (hexane, chloroform, acetone, ethanol and methanol), suggesting that this compound is a highly polar substance. In the isolated guinea pig left atrium the acetic acid fraction (10-800 mg/l) of P. guajava 1) reversibly decreased myocardial force in a concentration-dependent fashion (EC50 = 0.07g/l, N = 5 hearts, 9 trials, P<0.05), 2) increased the atrial relaxation time measured at 20% of the force amplitude up to 35% (91 +/- 15 to 123 +/- 30 ms, N = 3 hearts, 6 trials, P<0.05), 3) abolished the positive staircase effect (Bowditch phenomenon) in a concentration-dependent fashion suggesting a decrease of the cellular inward calcium current (N = 4 hearts, 8 trials, P<0.05), and 4) its inotropic effect was abolished by cholinergic receptor blockade with 1.5 mM atropine sulfate, indicating a cholinergic involvement in the mechanism of action of the extract (N = 7 hearts, 15 trials, P<0.05). The acetic acid extract was 20 times more potent than crude extract (EC50 = 1.4 g/l). The results showed that extracts from P. guajava leaves depress myocardial inotropism.

  2. Anti-inflammatory and antipyretic properties of Corchorus olitorius aqueous root extract in Wistar rats.

    PubMed

    Owoyele, Bamidele V; Oyewole, Aboyeji L; Alimi, Modupe L; Sanni, Shukurat A; Oyeleke, Sabitiu A

    2015-07-01

    This study was designed to provide information about the antipyretic and anti-inflammatory effects of Corchorus olitorius root. Thirty male Wistar rats were divided into six groups of five animals each; the control and reference groups were administered normal saline (10 mL/kg) and indomethacin (5 mg/kg), respectively, whereas the remaining four groups were administered aqueous extract of C. olitorius at doses of 25, 50, 100, or 200 mg/kg, respectively. Pyrexia was induced by injecting 10 mL/kg of 20% (w/v) brewer's yeast suspension into the dorsum of rats, whereas inflammation was induced through an injection of 0.1% carrageenan into the right hind paw of each rat and through a subcutaneous implantation of a 30-g sterilized cotton pellet into the groin of each rat. The results showed that C. olitorius root extract (p<0.05) decreased the elevated temperature after brewer's yeast injection compared with the 17 h (pre-drug) temperature. In the inflammatory tests, the paw sizes and granuloma weights in the test groups were significantly (p<0.05) decreased compared with the control group. Corchorus olitorius root is another good source of phytomedicine that can be used effectively to treat inflammation and pyrexia that accompany some diseases.

  3. Activity antifungal of the essential oils; aqueous and ethanol extracts from Citrus aurantium L.

    PubMed

    Metoui, N; Gargouri, S; Amri, I; Fezzani, T; Jamoussi, B; Hamrouni, L

    2015-01-01

    Our study is about the essential oil of Citrus aurantium L. in Tunisia and its plant extract. The yield of this essential oil is 0, 56% but the yield of the extract of plant was 17.1% for the aqueous extract ant 18.3% for the ethanolic extract. The analysis of chemical composition by using GC and GC/MS showed the essential oil of C. aurantium L. species to be rich in monoterpenes such as α-terpineol, lianolyl acetate, linalool and limonene. The antifungal activity of this oil showed us an inhibition of the germination of mushrooms, in the same way we could note that the biologic activities are generally assigned to the chemotypes high content in oxygenated monoterpene.

  4. Effect of high hydrostatic pressure extract of fresh ginseng on adipogenesis in 3T3-L1 adipocytes.

    PubMed

    Lee, Mak-Soon; Jung, Sunyoon; Oh, Soojung; Shin, Yoonjin; Kim, Chong-Tai; Kim, In-Hwan; Kim, Yangha

    2015-09-01

    Red ginseng is produced by steaming and drying fresh ginseng. Through this processing, chemical compounds are modified, and then biological activities are changed. In the food-processing industry, high hydrostatic pressure (HHP) has become an alternative to heat processing to make maximum use of bioactive compounds in food materials. This study comparatively investigated the anti-adipogenic effects of water extract of red ginseng (WRG) and high hydrostatic pressure extract of fresh ginseng (HPG) in 3T3-L1 adipocytes. Both WRG and HPG inhibited the accumulation of intracellular lipids and triglycerides, and the activity of glycerol-3-phosphate dehydrogenase (GPDH), a key enzyme in triglyceride biosynthesis. Intracellular lipid content and GPDH activity were significantly lower in the HPG group compared to the WRG group. In addition, mRNA expression of adipogenic genes, including CEBP-α, SREBP-1c and aP2, were lower in HPG-treated cells compared to WRG-treated cells. HPG significantly increased the activity of AMPK, and WRG did not. Results suggested that HPG may have superior beneficial effects on the inhibition of adipogenesis compared with WRG. The anti-adipogenic effects of HPG were partially associated with the inhibition of GPDH activity, suppression of adipogenic gene expression and activation of AMPK in 3T3-L1 adipocytes. © 2014 Society of Chemical Industry.

  5. In vitro antioxidant and antimicrobial activity of extracts from Morus alba L. leaves, stems and fruits.

    PubMed

    Wang, Wei; Zu, Yuangang; Fu, Yujie; Efferth, Thomas

    2012-01-01

    In this study, the aqueous and ethanolic extracts (leaves, stems and fruits) from Morus alba L., a traditional Chinese medicine, were evaluated for their antioxidant and antimicrobial properties. Ethanolic extracts showed higher contents of both total phenolics and flavonoids than aqueous extracts. The total phenolic content was in the order of: leaf extracts > fruit extracts > stem extracts, whereas the total flavonoids was: leaf extracts > stem extracts > fruit extracts. Using DPPH assays, the concentrations providing 50% inhibition (IC(50)) values of aqueous extracts from leaves, stems and fruits were 7.11 ± 1.45 mg/ml, 86.78 ± 3.21 mg/ml and 14.38 ± 2.83 mg/ml, respectively, whereas the IC(50) values of ethanolic extracts were 3.11 ± 0.86 mg/ml, 14.62 ± 2.45 mg/ml and 12.42 ± 2.76 mg/ml, respectively. In sum, the antioxidant activities of ethanolic extracts from M. alba L. were stronger than the aqueous extracts, and in the order of: leaf extracts > fruit extracts > stem extracts. The ethanolic extracts exhibited moderate antimicrobial activities, whereas the aqueous extracts showed poor antimicrobial properties in our test system. This study validated the medicinal potential of M. alba L.

  6. Toxicity of extracts from disposable chopsticks, toothpicks, and paper cups on L-929 cells.

    PubMed

    Li, Juntao; Chen, Sifan; Li, Wenxue; Yang, Guangyu; Zhu, Wei

    2015-04-01

    To evaluate the toxicity of extracts from disposable chopsticks, toothpicks, and paper cups on L-929 cells. We followed national standards to prepare the extracts from disposable chopsticks, toothpicks, and paper cups used for the cell culture media, and the morphology of L-929 cells was observed with an optical microscope. The loss rate for adherent cells was evaluated with the trypan blue exclusion method, and cell proliferation was determined using the WST-1 assay. Compared with the control group, the cells cultured in media containing the extracts showed signs of apoptosis and necrosis after culturing for 4 or 7 days, and the loss rate for adherent cells was significantly increased (P < 0.05). An obvious decrease in cell viability was also observed (P < 0.05). The extracts from disposable chopsticks, toothpicks, and paper cups can affect the growth and proliferation of L-929 cells and are potentially toxic to humans.

  7. Preparation of l-phenylalanine-imprinted solid-phase extraction sorbent by Pickering emulsion polymerization and the selective enrichment of l-phenylalanine from human urine.

    PubMed

    Li, Ji; Hu, Xiaoling; Guan, Ping; Zhang, Xiaoyan; Qian, Liwei; Zhang, Nan; Du, Chunbao; Song, Renyuan

    2016-05-01

    A novel l-phenylalanine molecularly imprinted solid-phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion-pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid-phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l-phenylalanine. Under the optimized conditions of the procedure, an analytical method for l-phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse-phase silica gel, the obtained molecularly imprinted polymer as an solid-phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L(-1) ) for the isolation of l-phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion-pair dummy template imprinting is effective for preparing selective solid-phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Pharmacological and Genotoxic Properties of Polyphenolic Extracts of Cedrela odorata L. and Juglans regia L. Barks in Rodents

    PubMed Central

    Almonte-Flores, Dulce Carolina; Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Rosales-Castro, Martha

    2015-01-01

    Evaluation of the phenolic compounds and antioxidant activity of Cedrela odorata L. and Juglans regia L. bark extracts was performed in vitro. Juglans regia showed greater extract concentration and higher antioxidant activity. Hypoglycemic activity in rats was assessed by generating a glucose tolerance curve and determining the area under the curve (AUC). Diabetes was later induced by an injection with streptozotocin (65 mg/kg of b.w.) and confirmed after 24 hours. The extract was administered (200 mg/kg b.w.) over 10 days, and blood glucose was monitored and compared with a control group. The glucose AUC showed a hypoglycemic effect of J. regia and C. odorata in normal rats. Both extracts reduced hepatic lipid peroxidation in diabetic rats. Polyphenolic extracts reduced cholesterol levels in a hypercholesterolemic mouse model and decreased hepatic lipid peroxidation. Polyphenolic extract doses of 100 and 200 mg/kg b.w. were administered alone or with cyclophosphamide (CPA) 50 mg/kg ip, which was used as a positive control. Analyses were performed using leukocytes in a comet assay after 4 and 24 h of treatment. Genotoxic effects were evaluated by the comet assay, which showed that while J. regia extract had no effect, C. odorata extract induced slight damage at 200 mg/kg, with the formation of type 0 and 1 comets. PMID:25945104

  9. Extracting Phonological Patterns for L2 Word Learning: The Effect of Poor Phonological Awareness

    ERIC Educational Resources Information Center

    Hu, Chieh-Fang

    2014-01-01

    An implicit word learning paradigm was designed to test the hypothesis that children who came to the task of L2 vocabulary acquisition with poorer L1 phonological awareness (PA) are less capable of extracting phonological patterns from L2 and thus have difficulties capitalizing on this knowledge to support L2 vocabulary learning. A group of…

  10. Effect of Bulk MoS₂ on the Metabolic Profile of Yeast.

    PubMed

    Yu, Yadong; Yang, Qi; Wu, Na; Tang, Hanlin; Yi, Yanliang; Wang, Gaihong; Ge, Yilin; Zong, Jiajun; Madzak, Catherine; Zhao, Ye; Jiang, Ling; Huang, He

    2018-06-01

    MoS2, a kind of two-dimensional material with unique performances, has been widely used in many fields. However, an in-depth understanding of its toxicity is still needed, let alone its effects on the environmental microorganism. Herein, we used different methods, including metabolomics technology, to investigate the influence of bulk MoS2 (BMS) on yeast cells. The results indicated that high concentrations (1 mg/L and more) of BMS could destroy cell membrane and induce ROS accumulation. When exposed to a low concentration of BMS (0.1 mg/L), the intracellular concentrations of many metabolites (e.g., fumaric acid, lysine) increased. However, most of their concentrations descended significantly as the yeast cells were treated with BMS of high concentrations (1 mg/L and more). Metabolomics analysis further revealed that exposure to high concentrations of BMS could significantly affect some metabolic pathways such as amino acid and citrate cycle related metabolism. These findings will be beneficial for MoS2 toxicity assessment and further applications.

  11. Extraction optimization and influences of drying methods on antioxidant activities of polysaccharide from cup plant (Silphium perfoliatum L.)

    PubMed Central

    Li, Ran; Duan, Meng-Ying; Wu, Hong-Xin

    2017-01-01

    Response surface methodology (RSM) was used to investigate the extraction condition of polysaccharide from cup plant (Silphium perfoliatum L.) (named CPP). Water to raw material ratio (10–30 mL/g), extraction time (40–80 min) and extraction temperature (60–100°C) were set as the 3 independent variables, and their effects on the extraction yield of CPP were measured. In addition, the effects of drying methods including hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the antioxidant activities of CPP were evaluated. The results showed that the optimal condition to extract CPP was: water to raw material ratio (15 mL/g), extraction time (61 min), and extraction temperature (97°C), a maximum CPP yield of 6.49% was obtained under this condition. CPP drying with FD method showed stronger reducing power (0.943 at 6 mg/mL) and radical scavenging capacities against DPPH radical (75.71% at 1.2 mg/mL) and ABTS radical (98.06 at 1.6 mg/mL) than CPP drying with HD and VD methods. Therefore, freeze drying served as a good method for keeping the antioxidant activities of polysaccharide from cup plant. The polysaccharide from cup plant has potential to use as a natural antioxidant. PMID:28837625

  12. The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors.

    PubMed

    Christiaens, Joaquin F; Franco, Luis M; Cools, Tanne L; De Meester, Luc; Michiels, Jan; Wenseleers, Tom; Hassan, Bassem A; Yaksi, Emre; Verstrepen, Kevin J

    2014-10-23

    Yeast cells produce various volatile metabolites that are key contributors to the pleasing fruity and flowery aroma of fermented beverages. Several of these fruity metabolites, including isoamyl acetate and ethyl acetate, are produced by a dedicated enzyme, the alcohol acetyl transferase Atf1. However, despite much research, the physiological role of acetate ester formation in yeast remains unknown. Using a combination of molecular biology, neurobiology, and behavioral tests, we demonstrate that deletion of ATF1 alters the olfactory response in the antennal lobe of fruit flies that feed on yeast cells. The flies are much less attracted to the mutant yeast cells, and this in turn results in reduced dispersal of the mutant yeast cells by the flies. Together, our results uncover the molecular details of an intriguing aroma-based communication and mutualism between microbes and their insect vectors. Similar mechanisms may exist in other microbes, including microbes on flowering plants and pathogens. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.

    PubMed

    Hu, Kejin; Guo, Shuguang; Yan, Gonghong; Yuan, Wenjie; Zheng, Yin; Jiang, Yu

    2016-04-01

    In the yeast Saccharomyces cerevisiae the TOR complex 1 (TORC1) controls many growth-related cellular processes and is essential for cell growth and proliferation. Macrolide antibiotic rapamycin, in complex with a cytosol protein named FKBP12, specifically inhibits TORC1, causing growth arrest. The FKBP12-rapamycin complex interferes with TORC1 function by binding to the FRB domain of the TOR proteins. In an attempt to understand the role of the FRB domain in TOR function, we identified a single point mutation (Tor2(W2041R) ) in the FRB domain of Tor2 that renders yeast cells rapamycin resistant and temperature sensitive. At the permissive temperature, the Tor2 mutant protein is partially defective for binding with Kog1 and TORC1 is impaired for membrane association. At the restrictive temperature, Kog1 but not the Tor2 mutant protein, is rapidly degraded. Overexpression of ubiquitin stabilizes Kog1 and suppresses the growth defect associated with the tor2 mutant at the nonpremissive temperature. We find that ubiquitin binds non-covalently to Kog1, prevents Kog1 from degradation and stabilizes TORC1. Our data reveal a unique role for ubiquitin in regulation of TORC1 and suggest that Kog1 requires association with the Tor proteins for stabilization. © 2016 John Wiley & Sons Ltd.

  14. Ginkgo biloba L. leaf extract offers multiple mechanisms in bridling N-methylnitrosourea - mediated experimental colorectal cancer.

    PubMed

    Ahmed, Hanaa H; El-Abhar, Hanan S; Hassanin, Elsayed Abdul Khalik; Abdelkader, Noha F; Shalaby, Mohamed B

    2017-11-01

    In Egypt, colorectal cancer (CRC) is the 6th cancer in both gender and CRC rates are high in subjects under 40 years of age. This study goaled to determine the development of CRC using relevant biochemical markers and to elucidate the potent mechanism of Ginkgo biloba L. leaf extract in retrogression of experimental CRC. Adult male Sprague-Dawley rats were administered N-methylnitrosourea (N-MNU; 2mg in 0.5ml water/rat) intrarectally thrice a week for five weeks to induce CRC, followed by treatment with either 5-fluorouracil (5-FU; 12.5mg/kg, i.p.) or Ginkgo biloba L. leaf extract in a dose of 0.675 and 1.35g/kg, p.o. respectively. The developed tumor enhanced plasma TGF-β, and Bcl 2 , serum EGF, CEA, CCSA, and MMP-7 significantly. Also, gene expression analysis showed significant upregulation of colonic β-Catenin, K-ras and C-myc genes. Besides, immunohistochemical findings revealed significant increase in COX-2, cyclin D1 and survivin content in colon tissue. These data were further supported by the histological observations. Ginkgo biloba L. leaf extract-treated rats; particularly those treated with dose of 1.35g/kg, exhibited significant reduction in the aforementioned parameters and improvement in the histological organization of the colon tissue. The therapeutic effect of Ginkgo biloba L. leaf extract was comparable with that mediated by 5-FU. The current research proved that Ginkgo biloba L. leaf extract could suppress tumor cell proliferation, promote apoptosis, and mitigat inflammation in vivo. The amelioration of these key events might be linked with the inhibition of Wnt/β-Catenin signaling module. The outcomes of the present investigation encourage the use of Ginkgo biloba L. leaf extract as a complementary and alternative therapeutic approach to abate CRC. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Spores of the mycorrhizal fungus Glomus mosseae host yeasts that solubilize phosphate and accumulate polyphosphates.

    PubMed

    Mirabal Alonso, Loreli; Kleiner, Diethelm; Ortega, Eduardo

    2008-04-01

    The present paper reports the presence of bacteria and yeasts tightly associated with spores of an isolate of Glomus mosseae. Healthy spores were surface disinfected by combining chloramine-T 5%, Tween-40, and cephalexin 2.5 g L(-1) (CTCf). Macerates of these spores were incubated on agar media, microorganisms were isolated, and two yeasts were characterized (EndoGm1, EndoGm11). Both yeasts were able to solubilize low-soluble P sources (Ca and Fe phosphates) and accumulate polyphosphates (polyPs). Sequence analysis of 18S ribosomal deoxyribonucleic acid showed that the yeasts belong to the genera Rhodotorula or Rhodosporidium (EndoGm1) and Cryptococcus (EndoGm11). Results from inoculation experiments showed an effect of the spore-associated yeasts on the root growth of rice, suggesting potential tripartite interactions with mycorrhizal fungi and plants.

  16. Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production.

    PubMed

    Mukai, Nobuhiko; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2014-07-01

    Among industrial yeasts used for alcoholic beverage production, most wine and weizen beer yeasts decarboxylate ferulic acid to 4-vinylguaiacol, which has a smoke-like flavor, whereas sake, shochu, top-fermenting, and bottom-fermenting yeast strains lack this ability. However, the factors underlying this difference among industrial yeasts are not clear. We previously confirmed that both PAD1 (phenylacrylic acid decarboxylase gene, YDR538W) and FDC1 (ferulic acid decarboxylase gene, YDR539W) are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. In the present study, single nucleotide polymorphisms (SNPs) of PAD1 and FDC1 in sake, shochu, wine, weizen, top-fermenting, bottom-fermenting, and laboratory yeast strains were examined to clarify the differences in ferulic acid decarboxylation ability between these types of yeast. For PAD1, a nonsense mutation was observed in the gene sequence of standard top-fermenting yeast. Gene sequence analysis of FDC1 revealed that sake, shochu, and standard top-fermenting yeasts contained a nonsense mutation, whereas a frameshift mutation was identified in the FDC1 gene of bottom-fermenting yeast. No nonsense or frameshift mutations were detected in laboratory, wine, or weizen beer yeast strains. When FDC1 was introduced into sake and shochu yeast strains, the transformants exhibited ferulic acid decarboxylation activity. Our findings indicate that a positive relationship exists between SNPs in PAD1 and FDC1 genes and the ferulic acid decarboxylation ability of industrial yeast strains. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Design and optimization of hydrogen production from hydrothermally pretreated sugarcane bagasse using response surface methodology.

    PubMed

    Soares, Lais Américo; Braga, Juliana Kawanishi; Motteran, Fabrício; Sakamoto, Isabel Kimiko; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio

    2017-07-01

    Hydrogen production from hydrothermally pretreated (200 °C for 10 min at 16 bar) sugarcane bagasse was analyzed using response surface methodology. The yeast extract concentration and the temperature had a significant influence for hydrogen production (p-value 0.027 and 0.009, respectively). Maximum hydrogen production (17.7 mmol/L) was observed with 3 g/L yeast extract at 60 °C (C10). In this conditions were produced acetic acid (50.44 mg/L), butyric acid (209.71 mg/L), ethanol (38.4 mg/L), and methane (6.27 mmol/L). Lower hydrogen productions (3.5 mmol/L and 3.9 mmol/L) were observed under the conditions C7 (2 g/L of yeast extract, 35.8 °C) and C9 (1 g/L of yeast extract, 40 °C), respectively. The low yeast extract concentration and low temperature caused a negative effect on the hydrogen production. By means of denaturing gradient gel electrophoresis 20% of similarity was observed between the archaeal population of mesophilic (35 and 40 °C) and thermophilic (50, 60 and 64 °C) reactors. Likewise, similarity of 22% was noted between the bacterial population for the reactors with the lowest hydrogen production (3.5 mmol/L), at 35.8 °C and with the highest hydrogen production (17.7 mmol/L) at 60 °C demonstrating that microbial population modification was a function of incubation temperature variation.

  18. Selection of Yarrowia lipolytica strains with high protein content from yeasts isolated from different marine environments

    NASA Astrophysics Data System (ADS)

    Chi, Zhenming; Wang, Fang; Wang, Lin; Li, Jing; Wang, Xianghong

    2007-10-01

    A total of 78 Yarrowia lipolytica yeast strains from seawater, sediments, mud of salterns, the guts of marine fish, and marine algae were obtained. After the crude protein of the yeasts was estimated by the method of Kjehldahl, we found that seven strains of the marine yeasts grown in soy bean cake hydrolysate with 20 g L-1 of glucose for 48 h at 28°C contained more than 41.0 g protein per 100 g of cell dry weight and the cell dry weight was more than 4.4 g per L of the culture. Among them, strain SWJ-1b contained the highest crude protein. The results of Biolog identification and molecular methods further confirmed that they indeed belonged to Y. lipolytica.

  19. Studies of the expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces cerevisiae and identification of PARP-1 substrates by yeast proteome microarray screening.

    PubMed

    Tao, Zhihua; Gao, Peng; Liu, Hung-Wen

    2009-12-15

    Poly(ADP-ribosyl)ation of various nuclear proteins catalyzed by a family of NAD(+)-dependent enzymes, poly(ADP-ribose) polymerases (PARPs), is an important posttranslational modification reaction. PARP activity has been demonstrated in all types of eukaryotic cells with the exception of yeast, in which the expression of human PARP-1 was shown to lead to retarded cell growth. We investigated the yeast growth inhibition caused by human PARP-1 expression in Saccharomyces cerevisiae. Flow cytometry analysis reveals that PARP-1-expressing yeast cells accumulate in the G(2)/M stage of the cell cycle. Confocal microscopy analysis shows that human PARP-1 is distributed throughout the nucleus of yeast cells but is enriched in the nucleolus. Utilizing yeast proteome microarray screening, we identified 33 putative PARP-1 substrates, six of which are known to be involved in ribosome biogenesis. The poly(ADP-ribosyl)ation of three of these yeast proteins, together with two human homologues, was confirmed by an in vitro PARP-1 assay. Finally, a polysome profile analysis using sucrose gradient ultracentrifugation demonstrated that the ribosome levels in yeast cells expressing PARP-1 are lower than those in control yeast cells. Overall, our data suggest that human PARP-1 may affect ribosome biogenesis by modifying certain nucleolar proteins in yeast. The artificial PARP-1 pathway in yeast may be used as a simple platform to identify substrates and verify function of this important enzyme.

  20. Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.).

    PubMed

    El-Ghorab, Ahmed; El-Massry, Khaled F; Shibamoto, Takayuki

    2007-10-31

    A total of 36 compounds, which comprised 99.4% of the extract, were identified by gas chromatography and mass spectrometry (GC-MS) in the volatile dichloromethane extract obtained from Egyptian corn silk. The main constituents of the volatile extract were cis-alpha-terpineol (24.22%), 6,11-oxidoacor-4-ene (18.06%), citronellol (16.18%), trans-pinocamphone (5.86%), eugenol (4.37%), neo-iso-3-thujanol (2.59%), and cis-sabinene hydrate (2.28%). Dried Egyptian corn silk was also directly extracted with petroleum ether, ethanol, and water. All extracts from solvent extraction and the volatile extract described above exhibited clear antioxidant activities at levels of 50-400 microg/mL in the 2,2-diphenyl-1-picrylhydrazyl (DPPH)/linoleic acid assay. The ethanol extract inhibited DPPH activity by 84% at a level of 400 microg/mL. All samples tested via the beta-carotene bleaching assay also exhibited satisfactory antioxidant activity with clear dose responses. This study indicates that corn silk could be used to produce novel natural antioxidants as well as a flavoring agent in various food products.

  1. Modifying Expression Modes of Human Neurotensin Receptor Type 1 Alters Sensing Capabilities for Agonists in Yeast Signaling Biosensor.

    PubMed

    Hashi, Hiroki; Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko

    2018-04-01

    Neurotensin receptor type 1 (NTSR1), a member of the G-protein-coupled receptor (GPCR) family, is naturally activated by binding of a neurotensin peptide, leading to a variety of physiological effects. The budding yeast Saccharomyces cerevisiae is a proven host organism for assaying the agonistic activation of human GPCRs. Previous studies showed that yeast cells can functionally express human NTSR1 receptor, permitting the detection of neurotensin-promoted signaling using a ZsGreen fluorescent reporter gene. However, the fluorescence intensity (sensitivity) of NTSR1-expressing yeast cells is low compared to that of yeast cells expressing other human GPCRs (e.g., human somatostatin receptors). The present study sought to increase the sensitivity of the NTSR1-expressing yeast for use as a fluorescent biosensor, including modification of the expression of human NTSR1 in yeast. Changes in the transcription, translation, and transport of the receptor are attempted by altering the promoter, consensus Kozak-like sequence, and secretion signal sequences of the NTSR1-encoding gene. The resulting yeast cells exhibited increased sensitivity to exogenously added peptide. The cells are further engineered by using cell-surface display technology to ensure that the agonistic peptides are secreted and tethered to the yeast cell wall, yielding cells with enhanced NTSR1 activation. This yeast biosensor holds promise for the identification of agonists to treat NTSR1-related diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characterization of butter spoiling yeasts and their inhibition by some spices.

    PubMed

    Sagdic, Osman; Ozturk, Ismet; Bayram, Okan; Kesmen, Zulal; Yilmaz, Mustafa Tahsin

    2010-01-01

    This study was designed to identify the yeasts in packaged and unpackaged butters and screen antiyeast activity of spices, including marjoram (Origanum majorana L.), summer savory (Satureja hortensis L.), and black cumin (Nigella sativa L.) against the most dominant yeast species in the packaged and unpackaged butters. Mean total yeast populations were 5.40 log CFU/g in unpackaged butter samples and 2.22 log CFU/g in packaged butter samples, indicating better hygienic quality of packaged samples. Forty-nine yeast species were isolated and identified from butter samples with the most prevalent isolates belonging to genera Candida-C. kefyr, C. zeylanoides, and C. lambica-and with moderate number of isolates belonging to genera Cryptococcus, Rhodotorula, Saccharomyces, and Zygosaccharomyces. Black cumin exhibited the highest antiyeast activity against C. zeylanoides and C. lambica species, even inhibited these species, while summer savory inhibited C. kefyr. The results of this study revealed clear antimicrobial potential of black cumin against the yeast species isolated from butters. Marjoram, summer savory, and black cumin could be used as natural antimicrobial agents against spoilage yeasts in food preservation, especially in butter. © 2010 Institute of Food Technologists®

  3. Phosphatidic acid synthesis in yeast

    PubMed Central

    Kuhn, N. J.; Lynen, F.

    1965-01-01

    1. The presence of palmitoyl-CoA–l-glycerol 1-phosphate palmitoyltransferase (EC2.3.1.15) has been demonstrated in a particulate fraction of baker's yeast. 2. The enzyme has been characterized, and its activity studied as a function of pH and concentration of substrates. 3. Inhibition by thiol poisons and protection by acyl-CoA have been used to obtain information on the active site. 4. By various methods of supplying acyl radicals, the species `palmitoyl-CoA' has been shown to be the true acyl donor to the transferase. PMID:14342236

  4. Association of Constitutive Hyperphosphorylation of Hsf1p with a Defective Ethanol Stress Response in Saccharomyces cerevisiae Sake Yeast Strains

    PubMed Central

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains. PMID:22057870

  5. Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains.

    PubMed

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.

  6. Preliminary Study of Hyptis pectinata (L.) Poit Extract Biotransformation by Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Rejeki, D. S.; Aminin, A. L. N.; Suzery, M.

    2018-04-01

    One alternative approach to increase the content of bioactive compounds is fermentation. Hyptis pectinata (L.) Poit is a plant that can be found in tropical area and potentially as anticancer, anti-inflammatory, insect repellant, antiviral and antioxidant. In this research, efforts have been made to increase bioactive plant capacity of Hyptis pectinata (L.) Poit through submerged fermentation using Aspergillus niger. The study was performed by adding methanol extract of Hyptis pectinata (L.) Poit on two conditions, that was added at the beginning of fermentation and while entering a phase of death. Aspergillus niger growth rate in both conditions was observed by determining the dry weight of cells every 24 hours. The transformation profil of extract was observed after 24 hours of extract addition in early death phase by the TLC method. The results show that the addition of Hyptis pectinata (L.) Poit extract at log phase triggers the cells to growth faster, whereas the addition at the early death phase precisely accelerates cell death. TLC profile shows the emergence of new compounds suspected as the products of transformation of Hyptis pectinata (L.) Poit extract on day 8 after addition of extract.

  7. Impact of new ingredients obtained from brewer's spent yeast on bread characteristics.

    PubMed

    Martins, Z E; Pinho, O; Ferreira, I M P L V O

    2018-05-01

    The impact of bread fortification with β-glucans and with proteins/proteolytic enzymes from brewers' spent yeast on physical characteristics was evaluated. β-Glucans extraction from spent yeast cell wall was optimized and the extract was incorporated on bread to obtain 2.02 g β-glucans/100 g flour, in order to comply with the European Food Safety Authority guidelines. Protein/proteolytic enzymes extract from spent yeast was added to bread at 60 U proteolytic activity/100 g flour. Both β-glucans rich and proteins/proteolytic enzymes extracts favoured browning of bread crust. However, breads with proteins/proteolytic enzymes addition presented lower specific volume, whereas the incorporation of β-glucans in bread lead to uniform pores that was also noticeble in terms of higher specific volume. Overall, the improvement of nutritional/health promoting properties is highlighted with β-glucan rich extract, not only due to bread β-glucan content but also for total dietary fibre content (39% increase). The improvement was less noticeable for proteins/proteolytic enzymes extract. Only a 6% increase in bread protein content was noted with the addition of this extract and higher protein content would most likely accentuate the negative impact on bread specific volume that in turn could impair consumer acceptance. Therefore, only β-glucan rich extract is a promising bread ingredient.

  8. Antioxidant, antimutagenic, and anticarcinogenic effects of Papaver rhoeas L. extract on Saccharomyces cerevisiae.

    PubMed

    Todorova, Teodora; Pesheva, Margarita; Gregan, Fridrich; Chankova, Stephka

    2015-04-01

    The aim of this work was to analyze the antioxidant and antimutagenic/anticarcinogenic capacity of Papaver rhoeas L. water extract against standard mutagen/carcinogen methyl methanesulfonate (MMS) and radiomimetic zeocin (Zeo) on a test system Saccharomyces cerevisiae. The following assays were used: 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, quantitative determination of superoxide anion (antireactive oxygen species [antiROS test]), DNA topology assay, D7ts1 test--for antimutagenic--and Ty1 transposition test--for anticarcinogenic effects. Strong pro-oxidative capacity of Zeo was shown to correlate with its well-expressed mutagenic and carcinogenic properties. The mutagenic and carcinogenic effects of MMS were also confirmed. Our data concerning the antioxidant activity of P. rhoeas L. extract revealed that concentration corresponding to IC(50) in the DPPH assay possessed the highest antioxidant activity in the antiROS biological assay. It was also observed that a concentration with 50% scavenging activity expressed the most pronounced antimutagenic properties decreasing Zeo-induced gene conversion twofold, reverse mutation fivefold, and total aberrations fourfold. The same concentration possessed well-expressed anticarcinogenic properties measured as reduction of MMS-induced Ty1 transposition rate fivefold and fourfold when Zeo was used as an inductor. Based on the well-expressed antioxidant, antimutagenic, and anticarcinogenic properties obtained in this work, the P. rhoeas L. extract could be recommended for further investigations and possible use as a food additive.

  9. Comparative effects of L-DOPA and velvet bean seed extract on soybean lignification.

    PubMed

    Bido, Graciene de Souza; Silva, Hingrid Ariane da; Bortolo, Tiara da Silva Coelho; Maldonado, Marcos Rodrigues; Marchiosi, Rogério; Dos Santos, Wanderley Dantas; Ferrarese-Filho, Osvaldo

    2018-04-03

    Velvet bean (Mucuna pruriens) is an efficient cover forage that controls weeds, pathogens and nematodes, and the non-protein amino acid L-3,4-dihydroxyphenylalanine (L-DOPA) is its main allelochemical. The effects of 3 g L -1 of an aqueous extract of velvet bean seeds, along with 0.5 mM L-DOPA for comparison, were evaluated in roots, stems and leaves of soybean (Glycine max). The activities of phenylalanine ammonia lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) were determined, along with the lignin content and its monomeric composition. The results revealed similar effects caused by L-DOPA and the aqueous extract. Both treatments reduced PAL and CAD activities, lignin, and lignin monomer contents in roots; PAL and CAD activities in stems, and CAD activity in leaves. These findings provide further evidence that the effects of velvet bean cover forage on root lignification were due to the L-DOPA, its major allelochemical.

  10. Detection of L-phenylalanine using molecularly imprinted solid-phase extraction and flow injection electrochemiluminescence.

    PubMed

    Lu, Juanjuan; Ge, Shenguang; Wan, Fuwei; Yu, Jinghua

    2012-01-01

    A novel flow injection electrochemiluminescence method combined with molecularly imprinted solid-phase extraction was developed for the determination of L-phenylalanine, in which ${\\rm{Ru(bpy}})_3^{2 + }$ was used as the luminophor and indium tin oxide glass was modified as the working electrode. Molecularly imprinted polymers, synthesized by self-assembly with functional monomer and crossing linker, were used for the selective extraction of L-phenylalanine. In order to overcome the drawbacks of traditional electrochemiluminescence cells such as high IR drop, high over-potential and so on, a novel electrochemiluminescence cell was developed. The enhanced electrochemiluminescence intensity was linearly related with the concentration of L-phenylalanine in the range from 1.0×10(-7) to 5.0×10(-5) g/mL with a detection limit of 2.59×10(-8) g/mL. The relative standard deviation for the determination of 1.0×10(-6) g/mL L-phenylalanine was 1.2% (n=11). The method showed higher sensitivity and good repeatability, and was successfully applied for the determination of L-phenylalanine in egg white, chicken and serum samples. A possible mechanism for the enhanced electrochemiluminescence response on indium tin oxide glass is proposed. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Investigation of stages of chemical leaching and biooxidation during the extraction of gold from sulfide concentrates].

    PubMed

    Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T V

    2015-01-01

    We examined the chemical leaching and biooxidation stages in a two-stage biooxidation process of an auriferous sulfide concentrate containing pyrrhotite, arsenopyrite and pyrite. Chemical leaching of the concentrate (slurry density at 200 g/L) by ferric sulfate biosolvent (initial concentration at 35.6 g/L), which was obtained by microbial oxidation of ferrous sulfate for 2 hours at 70°C at pH 1.4, was allowed to oxidize 20.4% ofarsenopyrite and 52.1% of sulfur. The most effective biooxidation of chemically leached concentrate was observed at 45°C in the presence of yeast extract. Oxidation of the sulfide concentrate in a two-step process proceeded more efficiently than in one-step. In a two-step mode, gold extraction from the precipitate was 10% higher and the content of elemental sulfur was two times lower than in a one-step process.

  12. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves.

    PubMed

    Dahmoune, Farid; Nayak, Balunkeswar; Moussi, Kamal; Remini, Hocine; Madani, Khodir

    2015-01-01

    Phytochemicals, such as phenolic compounds, are of great interest due to their health-benefitting antioxidant properties and possible protection against inflammation, cardiovascular diseases and certain types of cancer. Maximum retention of these phytochemicals during extraction requires optimised process parameter conditions. A microwave-assisted extraction (MAE) method was investigated for extraction of total phenolics from Myrtus communis leaves. The total phenolic capacity (TPC) of leaf extracts at optimised MAE conditions was compared with ultrasound-assisted extraction (UAE) and conventional solvent extraction (CSE). The influence of extraction parameters including ethanol concentration, microwave power, irradiation time and solvent-to-solid ratio on the extraction of TPC was modeled by using a second-order regression equation. The optimal MAE conditions were 42% ethanol concentration, 500 W microwave power, 62 s irradiation time and 32 mL/g solvent to material ratio. Ethanol concentration and liquid-to-solid ratio were the significant parameters for the extraction process (p<0.01). Under the MAE optimised conditions, the recovery of TPC was 162.49 ± 16.95 mg gallic acidequivalent/gdry weight(DW), approximating the predicted content (166.13 mg GAE/g DW). When bioactive phytochemicals extracted from Myrtus leaves using MAE compared with UAE and CSE, it was also observed that tannins (32.65 ± 0.01 mg/g), total flavonoids (5.02 ± 0.05 mg QE/g) and antioxidant activities (38.20 ± 1.08 μg GAE/mL) in MAE extracts were higher than the other two extracts. These findings further illustrate that extraction of bioactive phytochemicals from plant materials using MAE method consumes less extraction solvent and saves time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Extraction of glutathione from EFB fermentation waste using methanol with sonication process

    NASA Astrophysics Data System (ADS)

    Muryanto, Muryanto; Alvin, Nurdin, Muhammad; Hanifah, Ummu; Sudiyani, Yanni

    2017-11-01

    Glutathione is important compound on the human body. Glutathione have a widely use at pharmacy and cosmetics as detoxification, skin whitening agent, antioxidant and many other. This study aims to obtain glutathione from Saccharomyces cerevisiae in fermentation waste of second generation bioethanol. The remaining yeast in the empty fruit bunch (EFB) fermentation was separated from the fermentation solution use centrifugation process and then extracted using a methanol-water solution. The extraction process was done by maceration which was assisted by sonication process. Solvent concentration and time of sonication were varied to see its effect on glutathione concentration. The concentration of glutathione from the extraction process was analyzed using alloxan method with UV-Vis spectrophotometer. The results show that the highest glutathione concentration was approximately 1.32 g/L obtained with methanol solvent at 90 minutes of maceration following with 15 minutes sonication.

  14. Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis.

    PubMed

    Blomqvist, J; South, E; Tiukova, I; Tiukova, L; Momeni, M H; Hansson, H; Ståhlberg, J; Horn, S J; Schnürer, J; Passoth, V

    2011-07-01

    Testing the ability of the alternative ethanol production yeast Dekkera bruxellensis to produce ethanol from lignocellulose hydrolysate and comparing it to Saccharomyces cerevisiae. Industrial isolates of D. bruxellensis and S. cerevisiae were cultivated in small-scale batch fermentations of enzymatically hydrolysed steam exploded aspen sawdust. Different dilutions of hydrolysate were tested. None of the yeasts grew in undiluted or 1:2 diluted hydrolysate [final glucose concentration always adjusted to 40 g l⁻¹ (0.22 mol l⁻¹)]. This was most likely due to the presence of inhibitors such as acetate or furfural. In 1:5 hydrolysate, S. cerevisiae grew, but not D. bruxellensis, and in 1:10 hydrolysate, both yeasts grew. An external vitamin source (e.g. yeast extract) was essential for growth of D. bruxellensis in this lignocellulosic hydrolysate and strongly stimulated S. cerevisiae growth and ethanol production. Ethanol yields of 0.42 ± 0.01 g ethanol (g glucose)⁻¹ were observed for both yeasts in 1:10 hydrolysate. In small-scale continuous cultures with cell recirculation, with a gradual increase in the hydrolysate concentration, D. bruxellensis was able to grow in 1:5 hydrolysate. In bioreactor experiments with cell recirculation, hydrolysate contents were increased up to 1:2 hydrolysate, without significant losses in ethanol yields for both yeasts and only slight differences in viable cell counts, indicating an ability of both yeasts to adapt to toxic compounds in the hydrolysate. Dekkera bruxellensis and S. cerevisiae have a similar potential to ferment lignocellulose hydrolysate to ethanol and to adapt to fermentation inhibitors in the hydrolysate. This is the first study investigating the potential of D. bruxellensis to ferment lignocellulosic hydrolysate. Its high competitiveness in industrial fermentations makes D. bruxellensis an interesting alternative for ethanol production from those substrates. © 2011 The Authors. Letters in Applied

  15. Enantioseparation of Racemic Flurbiprofen by Aqueous Two-Phase Extraction With Binary Chiral Selectors of L-dioctyl Tartrate and L-tryptophan.

    PubMed

    Chen, Zhi; Zhang, Wei; Wang, Liping; Fan, Huajun; Wan, Qiang; Wu, Xuehao; Tang, Xunyou; Tang, James Z

    2015-09-01

    A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two-phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two-phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L-dioctyl tartrate and L-tryptophan, which were screened from amino acids, β-cyclodextrin derivatives, and L-tartrate esters. Factors such as the amounts of L-dioctyl tartrate and L-tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L-dioctyl tartrate, 80 mg; L-tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L-dioctyl tartrate and L-tryptophan, which enantioselectively recognized R- and S-enantiomers in top and bottom phases, respectively. Compared to conventional liquid-liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. © 2015 Wiley Periodicals, Inc.

  16. Antigenic characterisation of yeast-expressed lyssavirus nucleoproteins.

    PubMed

    Kucinskaite, Indre; Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Johnson, Nicholas; Staniulis, Juozas; Fooks, Anthony R; Müller, Thomas; Sasnauskas, Kestutis; Ulrich, Rainer G

    2007-12-01

    In Europe, three genotypes of the genus Lyssavirus, family Rhabdoviridae, are present, classical rabies virus (RABV, genotype 1), European bat lyssavirus type 1 (EBLV-1, genotype 5) and European bat lyssavirus type 2 (EBLV-2, genotype 6). The entire authentic nucleoprotein (N protein) encoding sequences of RABV (challenge virus standard, CVS, strain), EBLV-1 and EBLV-2 were expressed in yeast Saccharomyces cerevisiae at high level. Purification of recombinant N proteins by caesium chloride gradient centrifugation resulted in yields between 14-17, 25-29 and 18-20 mg/l of induced yeast culture for RABV-CVS, EBLV-1 and EBLV-2, respectively. The purified N proteins were evaluated by negative staining electron microscopy, which revealed the formation of nucleocapsid-like structures. The antigenic conformation of the N proteins was investigated for their reactivity with monoclonal antibodies (mAbs) directed against different lyssaviruses. The reactivity pattern of each mAb was virtually identical between immunofluorescence assay with virus-infected cells, and ELISA and dot blot assay using the corresponding recombinant N proteins. These observations lead us to conclude that yeast-expressed lyssavirus N proteins share antigenic properties with naturally expressed virus protein. These recombinant proteins have the potential for use as components of serological assays for lyssaviruses.

  17. Conditions of activation of yeast plasma membrane ATPase.

    PubMed

    Sychrová, H; Kotyk, A

    1985-04-08

    The in vivo activation of the H+-ATPase of baker's yeast plasma membrane found by Serrano in 1983 was demonstrated with D-glucose aerobically and anaerobically (as well as in a respiration-deficient mutant) and, after suitable induction, with maltose, trehalose, and galactose. The activated but not the control ATPase was sensitive to oligomycin. No activation was possible in a cell-free extract with added glucose. The ATPase was not activated in yeast protoplasts which may account for the absence of glucose-stimulated secondary active transports in these wall-less cells and provide support for a microscopic coupling between ATPase activity and these transports in yeast cells.

  18. Antinociceptive activity of Sempervivum tectorum L. extract in rats.

    PubMed

    Kekesi, Gabriella; Dobos, Ildiko; Benedek, György; Horvath, Gyöngyi

    2003-11-01

    The extract of Sempervivum tectorum L. (Crassulaceae) containing several flavonoids is widely used as an antiinflammatory agent in folk medicine. Previous studies have demonstrated that various flavonoids or flavonoid-containing plant extracts produce significant antinociception, but no data are available concerning their antinociceptive effect especially at the spinal level. The purpose of the present study was to investigate the antinociceptive activity of Sempervivum tectorum L. extract on acute and inflammatory pain sensitivity in awake rats. The pain sensitivity was assessed by the acute tail- flick test in intact rats and by the paw withdrawal test after carrageenan-induced inflammation using heat stimulus. The plant extract was administered intraperitoneally and intrathecally in rats. The intraperitoneal injection of a high dose of the extract (1000 mg/kg) significantly (p < 0.05) increased the paw withdrawal latency of the inflamed paw. The intrathecal administration (30-300 micro g) caused a small, but significant increase (10%-15%) in tail- flick latency. In the carrageenan-induced inflammatory model, the intrathecally applied extract (30-1000 micro g) significantly decreased, but did not relieve the thermal hyperalgesia. The results suggest that the spinal cord does not seem to play an important role in the antinociceptive effects of this plant extract. Copyright 2003 John Wiley & Sons, Ltd.

  19. Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1.

    PubMed

    Chang, Yiming; Schlenstedt, Gabriel; Flockerzi, Veit; Beck, Andreas

    2010-05-17

    Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP-like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Volatile compounds in whole meal bread crust: The effects of yeast level and fermentation temperature.

    PubMed

    Nor Qhairul Izzreen, M N; Hansen, Se S; Petersen, Mikael A

    2016-11-01

    The influence of fermentation temperatures (8°C, 16°C, and 32°C) and yeast levels (2%, 4%, and 6% of the flour) on the formation of volatile compounds in the crust of whole meal wheat bread was investigated. The fermentation times were regulated to optimum bread height for each treatment. The volatile compounds were extracted by dynamic headspace extraction and analyzed by gas chromatography-mass spectrometry. The results were evaluated using multivariate data analysis and ANOVA. In all crust samples 28 volatile compounds out of 58 compounds were identified and the other 30 compounds were tentatively identified. Higher fermentation temperatures promoted the formation of Maillard reaction products 3-methyl-1-butanol, pyrazine, 2-ethylpyrazine, 2-ethyl-3-methylpyrazine, 2-vinylpyrazine, 3-hydroxy-2-butanone, 3-(methylsulfanyl)-propanal, and 5-methyl-2-furancarboxaldehyde whereas at lower temperature (8°C) the formation of 2- and 3-methylbutanal was favored. Higher levels of yeast promoted the formation of 3-methyl-1-butanol, 2-methyl-1-propanol and 3-(methylsulfanyl)-propanal, whereas hexanal was promoted in the crust fermented with lower yeast level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Genotoxic and chemopreventive assessment of Cynara scolymus L. aqueous extract in a human-derived liver cell line.

    PubMed

    da Silva, Regiane Pereira; Jacociunas, Laura Vicedo; de Carli, Raíne Fogliati; de Abreu, Bianca Regina Ribas; Lehmann, Mauricio; da Silva, Juliana; Ferraz, Alexandre de Barros Falcão; Dihl, Rafael Rodrigues

    2017-10-01

    Cynara scolymus L., popularly known as artichoke, is consumed as food and used as tea infusions for pharmacological purposes to treat liver dysfunctions and other conditions. Scientific data on the safety and protective effect of artichoke in human-derived liver cells is missing. This study investigated the genotoxic and modulatory effect of a liophilized extract suspended in water of C. scolymus L. leaves. Four extract concentrations (0.62, 1.25, 2.5 and 5.0 mg/mL) were evaluated using the comet assay on human hepatocyte cultures, HepG2 cells. Genotoxicity was assessed after two treatment periods, 1 and 24 h. Antigenotoxicity was evaluated against oxidative lesions induced by hydrogen peroxide in pre-, simultaneous and post-treatment protocols. Artichoke leaves aqueous extract induced genotoxic effects in HepG2 cells after 1- and 24-h treatments. In turn, extract concentrations of 0.62, 1.25 and 2.5 mg/mL, exhibited a protective effect in pretreatment, compared to hydrogen peroxide alone. However, in simultaneous and post-treatment protocols, only the lowest concentration reduced the frequency of DNA damage induced by hydrogen peroxide. In addition, in the simultaneous treatment protocol, the highest artichoke extract concentration increased hydrogen peroxide genotoxicity. It can be concluded that artichoke is genotoxic, in vitro, to HepG2 cells, but can also modulate hydrogen peroxide DNA damage.

  2. Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: determination of optimal extraction parameters.

    PubMed

    Santoyo, S; Cavero, S; Jaime, L; Ibañez, E; Señoráns, F J; Reglero, G

    2006-02-01

    Oregano leaves were extracted using a pilot-scale supercritical fluid extraction plant under a wide range of extraction conditions, with the goal of determining the extraction and fractionation conditions to obtain extracts with optimal antimicrobial activity. In this investigation, the essential oil-rich fractions were selectively precipitated in the second separator, and their chemical composition and antimicrobial activity were investigated. Gas chromatography-mass spectrometry analysis of the various fractions resulted in the identification of 27 compounds of the essential oil. The main components of these fractions were carvacrol, trans-sabinene hydrate, cis-piperitol, borneol, terpinen-4-ol, and linalool. Antimicrobial activity was investigated by the disk diffusion and broth dilution methods against six different microbial species, including two gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), two gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), a yeast (Candida albicans), and a fungus (Aspergillus niger). All of the supercritical fluid extraction fractions obtained showed antimicrobial activity against all of the microorganisms tested, although the most active fraction was the one obtained in experiment 5 (fraction was obtained with 7% ethanol at 150 bar and 40 degrees C). C. albicans was the most sensitive microorganism to the oregano extracts, whereas the least susceptible was A. niger. Carvacrol, sabinene hydrate, borneol, and linalool standards also showed antimicrobial activity against all of the microorganisms tested, with carvacrol being the most effective. Consequently, it was confirmed that essential oil from experiment 5, with the best antimicrobial activity, also presented the highest quantity of carvacrol.

  3. [Yeast irrigation enhances the nutritional content in hydroponic green maize fodder].

    PubMed

    Bedolla-Torres, Martha H; Palacios Espinosa, Alejandro; Palacios, Oskar A; Choix, Francisco J; Ascencio Valle, Felipe de Jesús; López Aguilar, David R; Espinoza Villavicencio, José Luis; de Luna de la Peña, Rafael; Guillen Trujillo, Ariel; Avila Serrano, Narciso Y; Ortega Pérez, Ricardo

    2015-01-01

    The objective of this study was to evaluate the effect of irrigation with yeasts (Debaryomyces hansenii var. Fabry, Yarowia lipolytica YIBCS002, Yarowia lipolytica var. BCS and Candida pseudointermedia) on the final nutritional content of hydroponic green maize fodder (Zea Zea mays L.), applied at different fodder growth stages (1. seed-seedling stage, 2. seedling-plant 20cm, 3. during all the culture). Irrespective of the fodder growth stages at which they were applied, all yeasts tested enhanced the content of raw protein, lipids, ash, moisture and energy. The percentage of electrolytes (Na, K, Cl, sulphates, Ca and Mg) showed different responses depending on the kind of yeast applied; D. hansenii exhibited the highest increment in all electrolytes, except for phosphorous. We conclude that the addition of yeasts belonging to the genera Debaryomyces, Candida and Yarowia to the irrigation solution of hydroponic systems enhances the nutrient content of green fodder. This kind of irrigation can be applied to generate high commercial value cultures in limited spaces. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Antimicrobial activity of crude epicarp and seed extracts from mature avocado fruit (Persea americana) of three cultivars.

    PubMed

    Raymond Chia, Teck Wah; Dykes, Gary A

    2010-07-01

    The epicarp and seed of Persea Americana Mill. var. Hass (Lauraceae), Persea Americana Mill. var. Shepard, and Persea americana Mill. var Fuerte cultivars of mature avocados (n = 3) were ground separately and extracted with both absolute ethanol and distilled water. Extracts were analyzed for antimicrobial activity using the microtiter broth microdilution assay against four Gram-positive bacteria, six Gram-negative bacteria, and one yeast. Antimicrobial activity against two molds was determined by the hole plate method. The ethanol extracts showed antimicrobial activity (104.2-416.7 microg/mL) toward both Gram-positive and Gram-negative bacteria (except Escherichia coli), while inhibition of the water extracts was only observed for Listeria monocytogenes (93.8-375.0 microg/mL) and Staphylococcus epidermidis (354.2 microg/mL). The minimum concentration required to inhibit Zygosaccharomyces bailii was 500 microg/mL for the ethanol extracts, while no inhibition was observed for the water extracts. No inhibition by either ethanol or water extracts was observed against Penicillium spp. and Aspergillus flavus.

  5. European Ethnopharmaceuticals for Self-Medication in Japan: Review Experience of Vitis vinifera L., Folium Extract and Vitex agnus-castus L., Fructus Extract as OTC Drugs.

    PubMed

    Hoshino, Tatsuro; Muto, Nanami; Tsukada, Shinsuke; Nakamura, Takatoshi; Maegawa, Hikoichiro

    2018-01-06

    Since the publication of "Application Guideline for Western Traditional Herbal Medicines as OTC Drugs" in 2007, only two European ethnopharmaceuticals, Vitis vinifera L., folium extract (Antistax) and Vitex agnus-castus L., fructus extract (Prefemin), have been approved as OTC drugs in Japan. In this review, we describe the current regulation of Western ethnopharmaceuticals in Japan, summarize our regulatory experiences and discuss the scientific and regulatory issues involved.

  6. Trehalose accumulation from corn starch by Saccharomycopsis fibuligera A11 during 2-l fermentation and trehalose purification.

    PubMed

    Chi, Zhe; Wang, Ji-Ming; Chi, Zhen-Ming; Ye, Fang

    2010-01-01

    In this study, corn starch was used as the substrate for cell growth and trehalose accumulation by Saccharomycopsis fibuligera A11. Effect of different aeration rates, agitation speeds, and concentrations of corn starch on direct conversion of corn starch to trehalose by S. fibuligera A11 were examined using a Biostat B2 2-l fermentor. We found that the optimal conditions for direct conversion of corn starch to trehalose by this yeast strain were that agitation speed was 200 rpm, aeration rate was 4.0 l/min, concentration of corn starch was 2.0% (w/v), initial pH was 5.5, fermentation temperature was 30 degrees C. Under these conditions, over 22.9 g of trehalose per 100 g of cell dry weight was accumulated in the yeast cells, cell mass was 15.2 g/l of the fermentation medium, 0.12% (w/v) of reducing sugar, and 0.21% (w/v) of total sugar were left in the fermented medium within 48 h of the fermentation. It was found that trehalose in the yeast cells could be efficiently extracted by the hot distilled water (80 degrees C). After isolation and purification, the crystal trehalose was obtained from the extract of the cells.

  7. Microwave-assisted extraction of three bioactive alkaloids from Peganum harmala L. and their acaricidal activity against Psoroptes cuniculi in vitro.

    PubMed

    Shang, Xiaofei; Guo, Xiao; Li, Bing; Pan, Hu; Zhang, Jiyu; Zhang, Yu; Miao, Xiaolou

    2016-11-04

    Peganum harmala L. is a perennial herbaceous, glabrous plant that grows in semi-arid conditions, steppe areas and sandy soils. It is used to treat fever, diarrhoea, subcutaneous tumours, arthralgia, rheumatism, cough, amnesia and parasitic diseases in folk medicines. In this paper, we aimed to develop a simpler and faster method for the extraction of three alkaloids from Peganum harmala L. than other conventional methods by optimizing the parameters of a microwave-assisted extraction (MAE) method, and to investigate the acaricidal activities of three compounds against Psoroptes cuniculi. After optimizing the operating parameters with the single factor experiment and a Box-Behnken design combined with a response-surface methodology, a MAE method was developed for extracting the alkaloids from the seeds, and a high-performance liquid chromatography was used to quantify these compounds. An in vitro experiments were used to study the acaricidal activities. The optimal conditions of MAE method were as follows: liquid-to-solid ratio 31.3:1mL/g, ethanol concentration 75.5%, extraction time 10.1min, temperature 80.7°C, and microwave power 600W. Compared to the heat reflux extraction (HRE, 60min) and the ultrasonic-assisted extraction (UAE, 30min) methods, MAE method require the shortest time (10min) and obtain the highest yield of three compounds (61.9mg/g). Meanwhile, the LT 50 values for the vasicine (1.25 and 2.5mg/mL), harmaline (1.25 and 2.5mg/mL), harmine (1.25 and 2.5mg/mL) and MAE extract (100mg/mL) against Psoroptes cuniculi were 12.188h, 9.791h, 11.994h, 10.095h, 11.293h, 9.273h and 17.322h, respectively. The MAE method developed exhibited the highest extraction yield within the shortest time and thus could be used to extract the active compounds from Peganum harmala L. on an industrial basis. As the active compounds of Peganum harmala L., vasicine, harmalin and harmine presented the marked acaricidal activities against Psoroptes cuniculi, and could be widely

  8. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.

    PubMed

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L

    2017-08-01

    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Exploration of anti-Malassezia potential of Nyctanthes arbor-tristis L. and their application to combat the infection caused by Mala s1 a novel allergen.

    PubMed

    Mishra, Rohit K; Mishra, Vani; Pandey, Anand; Tiwari, Amit K; Pandey, Himanshu; Sharma, Shivesh; Pandey, Avinash C; Dikshit, Anupam

    2016-03-31

    Malassezia commensal yeasts along with multitude of antigens have been found to be associated with various skin disorders including Pityriasis versicolor (PV). Amongst them Mala s1, a 37 kDa protein has been proved to be a major allergen reacting with a large panel of sera. However, there exists no therapeutic alternative to combat such problems in form of plant based natural compounds. The purpose of this study is in the first place, to determine the anti-Malassezia activity of Nyctanthes arbor-tristis L. (NAT) ethanolic leaf extract through turbidimetric growth curves, disruption of plasma membrane and secondly, it aims to present in silico validation of its active constituents over Mala s1a novel allergen. The antifungal susceptibility 50 % ethanolic extract of NAT was determined by broth microdilution method according to CLSI guidelines. Further MICs and IC50 were determined spectrophotometrically using the software SoftMax® Pro-5 (Molecular Devices, USA). Active constituents mediated disruption of plasma membrane was studied through flowcytometry by permeabilization of fluorescent dye Propidium Iodide (PI). Antioxidant activity of the extract was determined using the DPPH stable radical. Molecular validation of fungal DNA from the extract was observed using PCR amplification. In silico analysis of its active constituents over Mala s1 was performed using HEX software and visualized through Pymol. The anti-Malassezia potential of NAT leaf extracts reflected moderate MIC 1.05 μg/μl against M. globosa, while least effective against M. restricta with MIC 1.47 μg/μl. A linear correlation coefficient R (2) = 0.866 was obtained in case of M. globosa while minimum was observed in M. restricta with R (2) = 0.732. The flow cytometric data reveal ~ 75 % cell death when treated with active constituents β-Sitosterol and Calceolarioside A. The docking confirmations and the interaction energies between Mala s1 and the active constituents (β-Sitosterol and

  10. [Determination of trace elements in waste beer yeasts by ICP-MS with microwave digestion].

    PubMed

    Cheng, Xian-zhong; Jin, Can; Zhang, Kai-cheng

    2008-10-01

    The waste beer yeast has rich nutritional compositions and is widely used in food, medical and forage industries. The security of the yeast plays an important role in everyone's daily life. But the yeast contanining microamount of lead, cadmium, chromium, arsenic and other harmful metals is endangering human health. A new method was developed for the direct determination of eight elements, namely copper, lead, zinc, iron, manganese, cadmium, chromium and arsenic in waste beer yeast by inductively coupled plasma-mass spectrometry (ICP-MS) with microwave digestion. The parameters of plasma system, mass system, vacuum system and spectrometer system were optimized. The spectral interferences were eliminated by selecting alternation analytical isotopes of 65Cu, 208Pb, 66Zn, 57Fe, 55Mn, 114Cd, 52Cr and 5As, and the internal standards of Rh was selected to compensate the drift of analytical signals. The samples were digested with concentrated nitric acid-hydrogen peroxide (2:1) mixed solution more rapidly and more effectively. The effects of the type of mixed acid , the volume of digesting solution, heating time, and heating power were investigated in detail. In the closed system, the complete digestion was performed using 4 mL HNO3 and 2mL H2O2 for 2.0 min at 0.5 MPa, 3 min at 1.0 MPa and 5 min at 1.5 MPa. The detection limits of these eight elements were 0.013-0.122 microg x L(-1). The relative standard deviation (RSD) was 0.94%-3.26% (n=9), and the addition standard recovery was 98.4%-102.6% for all elements. The proposed method has been applied to the determination of trace elements of Cu, Pb, Zn, Fe, Mn, Cd, Cr and As in waste beer yeast samples with satisfactory results. The determination results indicated that the content of trace elements of Cu, Pb, Cd and As in waste beer yeast samples are significantly low.

  11. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry.

    PubMed

    Bindon, Keren; Varela, Cristian; Kennedy, James; Holt, Helen; Herderich, Markus

    2013-06-01

    The study aimed to quantify the effects of grape maturity on wine alcohol, phenolics, flavour compounds and polysaccharides in Vitis vinifera L. cv Cabernet Sauvignon. Grapes were harvested at juice soluble solids from 20 to 26 °Brix which corresponded to a range of wine ethanol concentrations between 12% and 15.5%. Grape anthocyanin and skin tannin concentration increased as ripening progressed, while seed tannin declined. In the corresponding wines, monomeric anthocyanin and wine tannin concentration increased with harvest date, consistent with an enhanced extraction of skin-derived phenolics. In wines, there was an observed increase in yeast-derived metabolites, including volatile esters, dimethyl sulfide, glycerol and mannoproteins with harvest date. Wine volatiles which were significantly influenced by harvest date were isobutyl methoxypyrazine, C(6) alcohols and hexyl acetate, all of which decreased as ripening progressed. The implications of harvest date for wine composition is discussed in terms of both grape composition and yeast metabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1(T).

    PubMed

    Yuan, Bo; Hu, Nan; Sun, Juan; Wang, Shi-An; Li, Fu-Li

    2012-12-01

    A novel extracellular exoinulinase was purified and characterized from a new yeast strain KRF1(T), and the gene encoding the enzyme was successfully cloned. The enzyme was stable at low pH between 3.0 and 6.5. The K (m) and V (max) values of the purified enzyme for inulin were 2.3 mg/mL and 4.8 mg/min, respectively. The optimum temperature of the inulinase was 50 °C, and the enzyme remained 78 % of activity at 60 °C for 2 h. The inulinase showed an amino acid sequence identity of 58 % to its closest homolog in Meyerozyma (Pichia) guilliermondii. In the secondary structure, the domain G (VMEVH) of the enzyme contained three unique residues (V, M, and H). Compared with previously reported inulinases, the enzyme from strain KRF1(T) displayed strong acid resistance, notable thermostability, and high affinity for the substrate of inulin. Based on sequence analysis of the 26S rDNA D1/D2 domain and phenotypic characterization, the yeast strain KRF1(T) was found to represent a novel anamorphic, ascomycetous yeast species. A complete description of the species is given and the name Candida kutaonensis sp. nov (type strain = KRF1(T) = AS 2.4027(T) = CBS 11388(T)) is proposed.

  13. 1H NMR determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental and biological samples.

    PubMed

    Moura, Sidnei; Ultramari, Mariah de Almeida; de Paula, Daniela Mendes Louzada; Yonamine, Mauricio; Pinto, Ernani

    2009-04-01

    A nuclear magnetic resonance (1H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by 1H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 microg/mL. Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples.

  14. Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes

    PubMed Central

    Lumbera, Wenchie Marie L.; dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu

    2016-01-01

    There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at 42°C for one hour and then allowed to recover at normal incubation temperature of 37°C for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to 400 μg/mL) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat

  15. Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes.

    PubMed

    Lumbera, Wenchie Marie L; Dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu

    2016-03-01

    There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at 42°C for one hour and then allowed to recover at normal incubation temperature of 37°C for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to 400 μg/mL) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat

  16. Anthelminthic properties of Methylene chloride-methanol (1:1) extracts of two Cameroonians medicinal plants on Heligmosomoides bakeri (Nematoda: Heligmosomatidea).

    PubMed

    Ngouateu Teufack, Sergine Errole; NMbogning Tayo, Gertrude; Ngangout Alidou, Marc; Yondo, Jeannette; Djiomene, Amely Frankline; Wabo Poné, Josué; Mbida, Faùily Mpoame

    2017-08-11

    The resistance of some medico-veterinary parasite strains as well as the unavailability and toxicity of synthetic anthelminthics on humans, animals and the impacts of their residues in the environment have pushed scientists to turn to plants with anthelminthic properties. Hence, the aim of this work was to contribute to the fight against helminths of medical and veterinary importance in general, and also to clear the environment of their free living stages. Fresh eggs of Heligmosomoides bakeri were obtained from the faeces of experimentally infected mice. L 1 and L 2 larval stages were obtained after 48 and 72 h of coproculture respectively. Methylene Chloride-Methanol (1:1) extracts of Annona senegalensis and Nauclea latifolia were diluted in DMSO or Tween 80 to prepare the following concentrations: 625, 1250, 2500, 3750 and 5000 μg/ml. The effects of extract solutions were evaluated on the embryonation of eggs, egg hatching and on L 1 and L 2 survival after 48, 10 and 24 h of incubation. Negative controls were 1.5% DMSO, 4% Tween 80 and a mixture of these solvents. The TLC was carried out and the profiles of secondary metabolites were made. Negative controls had no effect on the embryonation, eggs hatching and on larval mortality. However, it was found that, the extracts affected the free living stages of H. bakeri in a concentration-dependant manner. At the highest concentration (5000 μg/ml), the rate of inhibition of embryonation obtained were 20.80%, 38.15% and 84.83% for Methylene Chloride-Methanol of Annona senegalensis (MCM As), Nauclea latifolia (MCM Nl) extracts and mixture of Annona senegalensis and Nauclea latifolia (MCM As-Nl) extract respectively. For egg hatch, the inhibition rate was 16.10%, 46.24% and 87.07% for the above three extracts respectively at the same concentration of 5000 μg/ml. On L 1 and L 2 larval stages after 24 h of exposure to extracts, the mortality rates of 100%, 54.76% and 96.77% against 98%, 51.44% and 100% were

  17. Extraction of curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kimthet, Chhouk; Wahyudiono, Kanda, Hideki; Goto, Motonobu

    2017-05-01

    Curcumin is one of phenolic compounds, which has been recently shown to have useful pharmacological properties such as anti-inflammatory, anti-bacterial, anti-carcinogenic, antifungal, and antimicrobial activities. The objective of this research is to extract the curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide extraction (USC-CO2). The extraction was performed at 50°C, 25 MPa, CO2 flow rate of 3 mL/min with 10% cosolvent. The result of extraction, thermogravimetry (TG), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) showed that ultrasound power could disrupt cell wall and release the target compounds from Curcuma longa L. USC-CO2 could provide higher curcumin content in the extracts and faster extraction compared to SC-CO2 extraction without ultrasound.

  18. Yeasts associated with an abandoned mining area in Pernek and their tolerance to different chemical elements.

    PubMed

    Vadkertiová, Renáta; Molnárová, Jana; Lux, Alexander; Vaculík, Marek; Lišková, Desana

    2016-05-01

    Four plants, Cirsium arvense (creeping thistle), Equisetum arvense (field horsetail), Oxalis acetosella (wood sorrel) and Phragmites australis (common reed), which grew in an abandoned Sb-mining area in Pernek (Malé Karpaty Mts., Slovakia), were investigated for the yeast species. Yeasts were isolated from both the leaves of the plants and the soil adjacent to the plants. In total, 65 yeast cultures, belonging to 11 ascomycetous and 5 basidiomycetous yeast species, were isolated. The species most frequently isolated from both the soil and leaf samples were Trichosporon porosum, Galactomyces candidus and Candida solani, whereas Aureobasidium pullulans, Candida tsuchiyae and Sporidiobolus metaroseus were isolated exclusively from the plant leaves. All the yeast species isolated were tested for their tolerance to two heavy metals (Cd, Zn) and three metalloids (As, Sb and Si). The yeasts isolated from both the leaves and soils exhibited a high tolerance level to both As and Sb, present in elevated concentrations at the locality. Among the yeast species tested, Cryptococcus musci, a close relative to Cryptococcus humicola, was the species most tolerant to all the chemical elements tested, with the exception of Si. It grew in the presence of 200 mmol/L Zn, 200 mmol/L Cd, 60 mmol/L As and 50 mmol/L Sb, and therefore, it can be considered as a multi-tolerant species. Some of the yeast species were tolerant to the individual chemical elements. The yeast-like species Trichosporon laibachii exhibited the highest tolerance to Si of all yeasts tested, and Cryptococcus flavescens and Lindnera saturnus showed the same tolerance as Cryptococcus musci to Zn and As, respectively. The majority of the yeasts showed a notably low tolerance to Cd (not exceeded 0.5 mmol/L), which was present in small amounts in the soil. However, Candida solani, isolated from the soil, exhibited a higher tolerance to Cd (20 mmol/L) than to As (2 mmol/L).

  19. Cardiovascular effects in vitro of aqueous extract of wild strawberry (Fragaria vesca, L.) leaves.

    PubMed

    Mudnic, I; Modun, D; Brizic, I; Vukovic, J; Generalic, I; Katalinic, V; Bilusic, T; Ljubenkov, I; Boban, M

    2009-05-01

    In contrast to the strawberry fruits, strawberry leaves as a source of bioactive compounds with potentially beneficial biological effects have been largely overlooked. In this study we examined direct, dose-dependent effects of wild strawberry (Fragaria vesca, L.) leaves aqueous extract, in two experimental models and animal species, the isolated guinea pig hearts and rat aortic rings. Vasodilatory potential of the wild strawberry leaves extract was compared with vasodilatory activity of aqueous extract of hawthorn (Crataegus oxycantha, L) leaves with flowers, which can be regarded as a reference plant extract with a marked vasodilatory activity. The extracts were analysed by their "phenolic fingerprints", total phenolic content and antioxidative capacity. Their vasodilatory activity was determined and compared in the isolated aortic rings from 24 rats that were exposed to the extracts doses of 0.06, 0.6, 6, and 60 mg/100ml. Both extracts induced similar, dose-dependent vasodilation. Maximal relaxation was 72.2+/-4.4% and 81.3+/-4.5%, induced by the strawberry and hawthorn extract, respectively. To determine vasodilatory mechanisms of the wild strawberry leaves extract, endothelium-denuded and intact rings exposed to nitric oxide (NO) synthase inhibitor L-NAME or cyclooxygenase inhibitor indomethacin were used. Removal of the endothelium prevented and exposure to L-NAME or indomethacin strongly diminished the vasodilatatory response to the extract. In the isolated hearts (n=12), the wild strawberry extract was applied at concentrations of 0.06, 0.18, 0.6, and 1.8 mg/100ml. Each dose was perfused for 3.5 min with 15 min of washout periods. Heart contractility, electrophysiological activity, coronary flow and oxygen consumption were continuously monitored. The extract did not significantly affect heart rate and contractility, main parameters of the cardiac action that determine oxygen demands, while coronary flow increased up to 45% over control value with a

  20. European Ethnopharmaceuticals for Self-Medication in Japan: Review Experience of Vitis vinifera L., Folium Extract and Vitex agnus-castus L., Fructus Extract as OTC Drugs

    PubMed Central

    Hoshino, Tatsuro; Muto, Nanami; Tsukada, Shinsuke; Nakamura, Takatoshi; Maegawa, Hikoichiro

    2018-01-01

    Since the publication of “Application Guideline for Western Traditional Herbal Medicines as OTC Drugs” in 2007, only two European ethnopharmaceuticals, Vitis vinifera L., folium extract (Antistax) and Vitex agnus-castus L., fructus extract (Prefemin), have been approved as OTC drugs in Japan. In this review, we describe the current regulation of Western ethnopharmaceuticals in Japan, summarize our regulatory experiences and discuss the scientific and regulatory issues involved. PMID:29316611

  1. Biological effects of THC and a lipophilic cannabis extract on normal and insulin resistant 3T3-L1 adipocytes.

    PubMed

    Gallant, M; Odei-Addo, F; Frost, C L; Levendal, R-A

    2009-10-01

    Type 2 diabetes, a chronic disease, affects about 150 million people world wide. It is characterized by insulin resistance of peripheral tissues such as liver, skeletal muscle, and fat. Insulin resistance is associated with elevated levels of tumor necrosis factor alpha (TNF-alpha), which in turn inhibits insulin receptor tyrosine kinase autophosphorylation. It has been reported that cannabis is used in the treatment of diabetes. A few reports indicate that smoking cannabis can lower blood glucose in diabetics. Delta(9)-tetrahydrocannabinol (THC) is the primary psychoactive component of cannabis. This study aimed to determine the effect of a lipophilic cannabis extract on adipogenesis, using 3T3-L1 cells, and to measure its effect on insulin sensitivity in insulin resistant adipocytes. Cells were cultured in Dulbecco's modified eagle medium (DMEM) with 10% fetal bovine serum (FBS) and differentiated over a 3 day period for all studies. In the adipogenesis studies, differentiated cells were exposed to the extract in the presence and absence of insulin. Lipid content and glucose uptake was subsequently measured. Insulin-induced glucose uptake increased, while the rate of adipogenesis decreased with increasing THC concentration. Insulin-resistance was induced using TNF-alpha, exposed to the extract and insulin-induced glucose uptake measured. Insulin-induced glucose was increased in these cells after exposure to the extract. Semiquantitative real time polymerase chain reaction (RT-PCR) was performed after ribonucleic acid (RNA) extraction to evaluate the effects of the extract on glucose transporter isotype 4 (GLUT-4), insulin receptor substrate-1 (IRS-1) and IRS-2 gene expression.

  2. A single-cysteine mutant and chimeras of essential Leishmania Erv can complement the loss of Erv1 but not of Mia40 in yeast.

    PubMed

    Specht, Sandra; Liedgens, Linda; Duarte, Margarida; Stiegler, Alexandra; Wirth, Ulrike; Eberhardt, Maike; Tomás, Ana; Hell, Kai; Deponte, Marcel

    2018-05-01

    Mia40/CHCHD4 and Erv1/ALR are essential for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals. In contrast, many protists, including important apicomplexan and kinetoplastid parasites, lack Mia40. Furthermore, the Erv homolog of the model parasite Leishmania tarentolae (LtErv) was shown to be incompatible with Saccharomyces cerevisiae Mia40 (ScMia40). Here we addressed structure-function relationships of ScErv1 and LtErv as well as their compatibility with the oxidative protein folding system in yeast using chimeric, truncated, and mutant Erv constructs. Chimeras between the N-terminal arm of ScErv1 and a variety of truncated LtErv constructs were able to rescue yeast cells that lack ScErv1. Yeast cells were also viable when only a single cysteine residue was replaced in LtErv C17S . Thus, the presence and position of the C-terminal arm and the kinetoplastida-specific second (KISS) domain of LtErv did not interfere with its functionality in the yeast system, whereas a relatively conserved cysteine residue before the flavodomain rendered LtErv incompatible with ScMia40. The question whether parasite Erv homologs might also exert the function of Mia40 was addressed in another set of complementation assays. However, neither the KISS domain nor other truncated or mutant LtErv constructs were able to rescue yeast cells that lack ScMia40. The general relevance of Erv and its candidate substrate small Tim1 was analyzed for the related parasite L. infantum. Repeated unsuccessful knockout attempts suggest that both genes are essential in this human pathogen and underline the potential of mitochondrial protein import pathways for future intervention strategies. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Drying enhances immunoactivity of spent brewer's yeast cell wall β-D-glucans.

    PubMed

    Liepins, Janis; Kovačova, Elena; Shvirksts, Karlis; Grube, Mara; Rapoport, Alexander; Kogan, Grigorij

    2015-07-20

    Due to immunological activity, microbial cell wall polysaccharides are defined as 'biological response modifiers' (BRM). Cell walls of spent brewer's yeast also have some BRM activity. However, up to date there is no consensus on the use of spent brewer's yeast D-glucan as specific BRM in humans or animals. The aim of this paper is to demonstrate the potential of spent brewer's yeast β-D-glucans as BRM, and drying as an efficient pretreatment to increase β-D-glucan's immunogenic activity. Our results revealed that drying does not change spent brewer's yeast biomass carbohydrate content as well as the chemical structure of purified β-D-glucan. However, drying increased purified β-D-glucan TNF-α induction activity in the murine macrophage model. We presume drying pretreatment enhances purity of extracted β-D-glucan. This is corroborated with FT-IR analyses of the β-D-glucan spectra. Based on our results, we suggest that dry spent brewer's yeast biomass can be used as a cheap source for high-quality β-D-glucan extraction. Drying in combination with carboxylmethylation (CM), endows spent brewer's yeast β-D-glucan with the immunoactivity similar or exceeding that of a well-characterized fungal BRM pleuran. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Sensitivity of salad greens (Lactuca sativa L. and Eruca sativa Mill.) exposed to crude extracts of toxic and non-toxic cyanobacteria.

    PubMed

    Bittencourt-Oliveira, M C; Hereman, T C; Macedo-Silva, I; Cordeiro-Araújo, M K; Sasaki, F F C; Dias, C T S

    2015-05-01

    We evaluated the effect of crude extracts of the microcystin-producing (MC+) cyanobacteria Microcystis aeruginosa on seed germination and initial development of lettuce and arugula, at concentrations between 0.5 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent, and compared it to crude extracts of the same species without the toxin (MC-). Crude extracts of the cyanobacteria with MC (+) and without MC (-) caused different effects on seed germination and initial development of the salad green seedlings, lettuce being more sensitive to both extracts when compared to arugula. Crude extracts of M. aeruginosa (MC+) caused more evident effects on seed germination and initial development of both species of salad greens than MC-. Concentrations of 75 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent induced a greater occurrence of abnormal seedlings in lettuce, due to necrosis of the radicle and shortening of this organ in normal seedlings, as well as the reduction in total chlorophyll content and increase in the activity of the antioxidant enzyme peroxidase (POD). The MC- extract caused no harmful effects to seed germination and initial development of seedlings of arugula. However, in lettuce, it caused elevation of POD enzyme activity, decrease in seed germination at concentrations of 75 μg.L(-1) (MC-75) and 100 μg.L(-1) (MC-100), and shortening of the radicle length, suggesting that other compounds present in the cyanobacteria extracts contributed to this result. Crude extracts of M. aeruginosa (MC-) may contain other compounds, besides the cyanotoxins, capable of causing inhibitory or stimulatory effects on seed germination and initial development of salad green seedlings. Arugula was more sensitive to the crude extracts of M. aeruginosa (MC+) and (MC-) and to other possible compounds produced by the cyanobacteria.

  5. Kinetic and Stochastic Models of 1D yeast ``prions"

    NASA Astrophysics Data System (ADS)

    Kunes, Kay

    2005-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeasts have proteins, which can undergo similar reconformation and aggregation processes to PrP; yeast ``prions" are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein (1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics along with our own stochastic approach (2). Both models assume reconformation only upon aggregation, and include aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates.

  6. Culture medium optimization for osmotolerant yeasts by use of a parallel fermenter system and rapid microbiological testing.

    PubMed

    Pfannebecker, Jens; Schiffer-Hetz, Claudia; Fröhlich, Jürgen; Becker, Barbara

    2016-11-01

    In the present study, a culture medium for qualitative detection of osmotolerant yeasts, named OM, was developed. For the development, culture media with different concentrations of glucose, fructose, potassium chloride and glycerin were analyzed in a Biolumix™ test incubator. Selectivity for osmotolerant yeasts was guaranteed by a water activity (a w )-value of 0.91. The best results regarding fast growth of Zygosaccharomyces rouxii (WH 1002) were achieved in a culture medium consisting of 45% glucose, 5% fructose and 0.5% yeast extract and in a medium with 30% glucose, 10% glycerin, 5% potassium chloride and 0.5% yeast extract. Substances to stimulate yeast fermentation rates were analyzed in a RAMOS ® parallel fermenter system, enabling online measurement of the carbon dioxide transfer rate (CTR) in shaking flasks. Significant increases of the CTR was achieved by adding especially 0.1-0.2% ammonium salts ((NH 4 ) 2 HPO 4 , (NH 4 ) 2 SO 4 or NH 4 NO 3 ), 0.5% meat peptone and 1% malt extract. Detection times and the CTR of 23 food-borne yeast strains of the genera Zygosaccharomyces, Torulaspora, Schizosaccharomyces, Candida and Wickerhamomyces were analyzed in OM bouillon in comparison to the selective culture media YEG50, MYG50 and DG18 in the parallel fermenter system. The OM culture medium enabled the detection of 10 2 CFU/g within a time period of 2-3days, depending on the analyzed yeast species. Compared with YEG50 and MYG50 the detection times could be reduced. As an example, W. anomalus (WH 1021) was detected after 124h in YEG50, 95.5h in MYG50 and 55h in OM bouillon. Compared to YEG50 the maximum CO 2 transfer rates for Z. rouxii (WH 1001), T. delbrueckii (DSM 70526), S. pombe (DSM 70576) and W. anomalus (WH 1016) increased by a factor ≥2.6. Furthermore, enrichment cultures of inoculated high-sugar products in OM culture medium were analyzed in the Biolumix™ system. The results proved that detection times of 3days for Z. rouxii and T. delbrueckii

  7. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.

    PubMed

    Kumari, Rajni; Pramanik, K

    2012-06-01

    The present research deals with the development of a hybrid yeast strain with the aim of converting pentose and hexose sugar components of lignocellulosic substrate to bioethanol by fermentation. Different fusant strains were obtained by fusing protoplasts of Saccharomyces cerevisiae and xylose-fermenting yeasts such as Pachysolen tannophilus, Candida shehatae and Pichia stipitis. The fusants were sorted by fluorescent-activated cell sorter and further confirmed by molecular characterization. The fusants were evaluated by fermentation of glucose-xylose mixture and the highest ethanol producing fusant was used for further study to ferment hydrolysates produced by acid pretreatment and enzymatic hydrolysis of cotton gin waste. Among the various fusant and parental strains used under present study, RPR39 was found to be stable and most efficient strain giving maximum ethanol concentration (76.8 ± 0.31 g L(-1)), ethanol productivity (1.06 g L(-1) h(-1)) and ethanol yield (0.458 g g(-1)) by fermentation of glucose-xylose mixture under test conditions. The fusant has also shown encouraging result in fermenting hydrolysates of cotton gin waste with ethanol concentration of 7.08 ± 0.142 g L(-1), ethanol yield of 0.44 g g(-1), productivity of 0.45 g L(-1) h(-1) and biomass yield of 0.40 g g(-1).

  8. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    PubMed

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Antifungal activity of the ethanolic extracts of Punica granatum L. and evaluation of the morphological and structural modifications of its compounds upon the cells of Candida spp

    PubMed Central

    Anibal, Paula Cristina; Peixoto, Iza Teixeira Alves; Foglio, Mary Ann; Höfling, José Francisco

    2013-01-01

    Ethanolic crude extracts prepared from the arils and seeds, pericarp, peels and from the whole fruit of Punica granatum, known as pomegranate, had their antifungal activity tested against Candida spp. The ethanolic crude extracts were analyzed by Mass Spectrometry and yielded many compounds such as punicalagin and galladydilacton. The extracts from the pericarp and peel showed activity against Candida spp., with MICs of 125 μg/mL. The effect of pericarp and peel extracts upon the morphological and structure of C. albicans and C. krusei were examined by scanning and transmission electron microscopy, with the visualization of an irregular membrane and hyphae, formation of vacuoles and thickening of the cell wall. The data obtained revealed potential antimicrobial activity against yeasts cells of the Candida genus, and the bioactive compounds could be responsible for changes in cell morphology and structure. The data obtained open new perspectives for future research in continuation to this study, where information such as determination of the site of action of the compounds could contribute to an alternative therapy against these organisms. PMID:24516425

  10. Antimicrobial activity of fermented Theobroma cacao pod husk extract.

    PubMed

    Santos, R X; Oliveira, D A; Sodré, G A; Gosmann, G; Brendel, M; Pungartnik, C

    2014-09-26

    Theobroma cacao L. contains more than 500 different chemical compounds some of which have been traditionally used for their antioxidant, anti-carcinogenic, immunomodulatory, vasodilatory, analgesic, and antimicrobial activities. Spontaneous aerobic fermentation of cacao husks yields a crude husk extract (CHE) with antimicrobial activity. CHE was fractioned by solvent partition with polar solvent extraction or by silica gel chromatography and a total of 12 sub-fractions were analyzed for chemical composition and bioactivity. CHE was effective against the yeast Saccharomyces cerevisiae and the basidiomycete Moniliophthora perniciosa. Antibacterial activity was determined using 6 strains: Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis (Gram-positive) and Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella choleraesuis (Gram-negative). At doses up to 10 mg/mL, CHE was not effective against the Gram-positive bacteria tested but against medically important P. aeruginosa and S. choleraesuis with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Sub-fractions varied widely in activity and strongest antibacterial activity was seen with CHE8 against S. choleraesuis (MIC of 1.0 mg/mL) and CHE9 against S. epidermidis (MIC of 2.5 mg/mL). All bioactive CHE fractions contained phenols, steroids, or terpenes, but no saponins. Fraction CHE9 contained flavonoids, phenolics, steroids, and terpenes, amino acids, and alkaloids, while CHE12 had the same compounds but lacked flavonoids.

  11. Optimization of Culture Medium for the Growth of Candida sp. and Blastobotrys sp. as Starter Culture in Fermentation of Cocoa Beans (Theobroma cacao) Using Response Surface Methodology (RSM).

    PubMed

    Mahazar, N H; Zakuan, Z; Norhayati, H; MeorHussin, A S; Rukayadi, Y

    2017-01-01

    Inoculation of starter culture in cocoa bean fermentation produces consistent, predictable and high quality of fermented cocoa beans. It is important to produce healthy inoculum in cocoa bean fermentation for better fermented products. Inoculum could minimize the length of the lag phase in fermentation. The purpose of this study was to optimize the component of culture medium for the maximum cultivation of Candida sp. and Blastobotrys sp. Molasses and yeast extract were chosen as medium composition and Response Surface Methodology (RSM) was then employed to optimize the molasses and yeast extract. Maximum growth of Candida sp. (7.63 log CFU mL-1) and Blastobotrys sp. (8.30 log CFU mL-1) were obtained from the fermentation. Optimum culture media for the growth of Candida sp., consist of 10% (w/v) molasses and 2% (w/v) yeast extract, while for Blastobotrys sp., were 1.94% (w/v) molasses and 2% (w/v) yeast extract. This study shows that culture medium consists of molasses and yeast extract were able to produce maximum growth of Candida sp. and Blastobotrys sp., as a starter culture for cocoa bean fermentation.

  12. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  13. Anti-inflammatory, cyclooxygenase inhibitory and antioxidant activities of standardized extracts of Tridax procumbens L.

    PubMed

    Jachak, Sanjay M; Gautam, Raju; Selvam, C; Madhan, Himanshu; Srivastava, Amit; Khan, Taj

    2011-03-01

    The standardized EtOAc, MeOH and 70% EtOH extracts of Tridax procumbens aerial parts showed significant inhibition of rat paw edema at a medium dose of 200mg/kg and the EtOAC extract was the most active. These extracts were standardized by HPLC with the help of chemical markers. Further, the extracts were evaluated for COX-1 and COX-2 inhibitory activity and EtOAc extract exhibited the highest inhibition of COX-1 and COX-2 at 50 μg/mL. Cent aurein, centaureidin and bergenin were isolated as COX-1 and COX-2 inhibitory principles from the EtOAc extract. The extracts also exhibited antioxidant activity against DPPH and ABTS free radicals. The anti-inflammatory activity of T. procumbens aerial parts could be at least in part due to COX-1, COX-2 enzyme inhibition and free radical-scavenging activities which may be attributed to the presence of flavonoids and other polyphenols in the extracts. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  15. Study of Sugarcane Pieces as Yeast Supports for Ethanol Production from Sugarcane Juice and Molasses Using Newly Isolated Yeast from Toddy Sap

    PubMed Central

    Satyanarayana, Botcha; Balakrishnan, Kesavapillai; Raghava Rao, Tamanam; Seshagiri Rao, Gudapaty

    2012-01-01

    A repeated batch fermentation system was used to produce ethanol using Saccharomyces cerevisiae strain (NCIM 3640) immobilized on sugarcane (Saccharum officinarum L.) pieces. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Scanning electron microscopy evidently showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 72.65~76.28 g/L in an average value) and ethanol productivities (about 2.27~2.36 g/L/hr in an average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.9~3.25 g/L) with conversions ranging from 98.03~99.43%, showing efficiency 91.57~95.43 and operational stability of biocatalyst for ethanol fermentation. The results of the work pertaining to the use of sugarcane as immobilized yeast support could be promising for industrial fermentations. PMID:22783132

  16. The C Terminus of the Histone Chaperone Asf1 Cross-Links to Histone H3 in Yeast and Promotes Interaction with Histones H3 and H4

    PubMed Central

    Dennehey, Briana K.; Noone, Seth; Liu, Wallace H.; Smith, Luke

    2013-01-01

    The central histone H3/H4 chaperone Asf1 comprises a highly conserved globular core and a divergent C-terminal tail. While the function and structure of the Asf1 core are well known, the function of the tail is less well understood. Here, we have explored the role of the yeast (yAsf1) and human (hAsf1a and hAsf1b) Asf1 tails in Saccharomyces cerevisiae. We show, using a photoreactive, unnatural amino acid, that Asf1 tail residue 210 cross-links to histone H3 in vivo and, further, that loss of C-terminal tail residues 211 to 279 weakens yAsf1-histone binding affinity in vitro nearly 200-fold. Via several yAsf1 C-terminal truncations and yeast-human chimeric proteins, we found that truncations at residue 210 increase transcriptional silencing and that the hAsf1a tail partially substitutes for full-length yAsf1 with respect to silencing but that full-length hAsf1b is a better overall substitute for full-length yAsf1. In addition, we show that the C-terminal tail of Asf1 is phosphorylated at T270 in yeast. Loss of this phosphorylation site does not prevent coimmunoprecipitation of yAsf1 and Rad53 from yeast extracts, whereas amino acid residue substitutions at the Asf1-histone H3/H4 interface do. Finally, we show that residue substitutions in yAsf1 near the CAF-1/HIRA interface also influence yAsf1's function in silencing. PMID:23184661

  17. Quantification of 1,3-β-D-glucan from yeast added as a functional ingredient to bread.

    PubMed

    Rieder, Anne; Ballance, Simon; Böcker, Ulrike; Knutsen, Svein

    2018-02-01

    Due to their immunomodulatory effect, 1,3-β-G from yeast are used as functional ingredients, but reliable methods for their detection in foods are lacking. We have adapted a method based on fluorescence detection with aniline blue to quantify the amount of five commercial yeast β-glucan preparations added to crisp or yeast-leavened bread. This assay detected yeast β-glucan preparations added to different breads with an average recovery of 90, 96, 99 and 105%, while one of the preparations was overestimated, with an average recovery of 157%. The presence of cereal 1,3-1,4-β- D- glucans did not interfere with assay performance. The addition of 1,3-β-G at 0.2 and 0.5 g/100g is low compared to the recommended dose of 1,3-β-G per serving demonstrating assay sensitivity. However, more research is needed to fully understand the effect of 1,3-β-G conformation/structure on aniline blue interaction as well as the effect of baking on structure and dissolution properties of yeast β-glucans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Radical Scavenging Activities of Tannin Extracted from Amaranth (Amaranthus caudatus L.).

    PubMed

    Jo, Hyeon-Ju; Chung, Kang-Hyun; Yoon, Jin A; Lee, Kwon-Jai; Song, Byeong Chun; An, Jeung Hee

    2015-06-01

    This study investigates the bioactivity of tannin from amaranth (Amaranthus caudatus L.) extracts. The antioxidant activities of the extracts from amaranth leaves, flowers, and seeds were evaluated. Tannin from leaves of amaranth has been evaluated for superoxide scavenging activity by using DPPH and ABTS(+) analysis, reducing power, protective effect against H2O2-induced oxidative damage in L-132 and BNL-CL2 cells, and inhibition of superoxide radical effects on HL-60 cells. At a concentration of 100 μg/ml, tannin showed protective effects and restored cell survival to 69.2% and 41.8% for L-132 and BNL-CL2 cells, respectively. Furthermore, at the same concentration, tannin inhibited 41% of the activity of the superoxide radical on HL-60 cells and 43.4% of the increase in nitric oxide levels in RAW 264.7 cells. The expression levels of the antioxidant-associated protein SOD-1 were significantly increased in a concentration-dependent manner in RAW 264.7 cells treated with tannin from amaranth leaves. These results suggest that tannin from the leaves of Amaranthus caudatus L. is a promising source of antioxidant component that can be used as a food preservative or nutraceutical.

  19. Test of Fruit Extract Pare (Momordica charantia L.) to Quality of Ejaculated Spermatozoa Mice (Mus musculus L.)

    NASA Astrophysics Data System (ADS)

    Fifendy, M.; Indriati, G.

    2018-04-01

    Pare (Momordica charantia L.) can be used in the treatment of various diseases, such as influenza, cancer, anti-inflammatory, anti-HIV, antimitotic and antifertilitas. This study aimed to determine the effect of the herbal bitter (Momordica charantia L.) to ejaculated sperm quality mice (Mus musculus L.). This research was conducted using Completely Randomized Design (CRD) with 4 treatments and 6 replications, water and fed adlibitum. First treatment is given solvent extract. Second treatments extract were given 0.2 gram, third treatment were given 0.4 gram of extracts and fourth treatment were treated exstrac 0.6 gram were orally for 30 days. After the mice decapitated, dissected and take sperm from vas deferens. Then, the sperm preparation determined using the improved Neubauer. Data were analyzed by ANOVA (Analysis of Varians). The results shoured at doses of 0,2 gram, the average sperm count was 19.89. decrease significant when compared with the control in which the average number of sperm 29.13. So with this research the effective doses to decrease sperm count and can be used as a contraception medication dosage was 0,2 gram. It can be conclude that the extract of bitter (Momordica charantia L.) can decrease the quality of the ejaculated sperm of mice (Mus musculus L.)

  20. Methanol Expression Regulator 1 (Mxr1p) Is Essential for the Utilization of Amino Acids as the Sole Source of Carbon by the Methylotrophic Yeast, Pichia pastoris.

    PubMed

    Sahu, Umakant; Rangarajan, Pundi N

    2016-09-23

    Unlike Saccharomyces cerevisiae, the methylotrophic yeast Pichia pastoris can assimilate amino acids as the sole source of carbon and nitrogen. It can grow in media containing yeast extract and peptone (YP), yeast nitrogen base (YNB) + glutamate (YNB + Glu), or YNB + aspartate (YNB + Asp). Methanol expression regulator 1 (Mxr1p), a zinc finger transcription factor, is essential for growth in these media. Mxr1p regulates the expression of several genes involved in the utilization of amino acids as the sole source of carbon and nitrogen. These include the following: (i) GDH2 encoding NAD-dependent glutamate dehydrogenase; (ii) AAT1 and AAT2 encoding mitochondrial and cytosolic aspartate aminotransferases, respectively; (iii) MDH1 and MDH2 encoding mitochondrial and cytosolic malate dehydrogenases, respectively; and (iv) GLN1 encoding glutamine synthetase. Synthesis of all these enzymes is regulated by Mxr1p at the level of transcription except GDH2, whose synthesis is regulated at the level of translation. Mxr1p activates the transcription of AAT1, AAT2, and GLN1 in cells cultured in YP as well as in YNB + Glu media, whereas transcription of MDH1 and MDH2 is activated in cells cultured in YNB + Glu but not in YP. A truncated Mxr1p composed of 400 N-terminal amino acids activates transcription of target genes in cells cultured in YP but not in YNB + Glu. Mxr1p binds to Mxr1p response elements present in the promoters of AAT2, MDH2, and GLN1 We conclude that Mxr1p is essential for utilization of amino acids as the sole source of carbon and nitrogen, and it is a global regulator of multiple metabolic pathways in P. pastoris. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase.

    PubMed

    Manolson, M F; Proteau, D; Preston, R A; Stenbit, A; Roberts, B T; Hoyt, M A; Preuss, D; Mulholland, J; Botstein, D; Jones, E W

    1992-07-15

    Yeast vacuolar acidification-defective (vph) mutants were identified using the pH-sensitive fluorescence of 6-carboxyfluorescein diacetate (Preston, R. A., Murphy, R. F., and Jones, E. W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 7027-7031). Vacuoles purified from yeast bearing the vph1-1 mutation had no detectable bafilomycin-sensitive ATPase activity or ATP-dependent proton pumping. The peripherally bound nucleotide-binding subunits of the vacuolar H(+)-ATPase (60 and 69 kDa) were no longer associated with vacuolar membranes yet were present in wild type levels in yeast whole cell extracts. The VPH1 gene was cloned by complementation of the vph1-1 mutation and independently cloned by screening a lambda gt11 expression library with antibodies directed against a 95-kDa vacuolar integral membrane protein. Deletion disruption of the VPH1 gene revealed that the VPH1 gene is not essential for viability but is required for vacuolar H(+)-ATPase assembly and vacuolar acidification. VPH1 encodes a predicted polypeptide of 840 amino acid residues (molecular mass 95.6 kDa) and contains six putative membrane-spanning regions. Cell fractionation and immunodetection demonstrate that Vph1p is a vacuolar integral membrane protein that co-purifies with vacuolar H(+)-ATPase activity. Multiple sequence alignments show extensive homology over the entire lengths of the following four polypeptides: Vph1p, the 116-kDa polypeptide of the rat clathrin-coated vesicles/synaptic vesicle proton pump, the predicted polypeptide encoded by the yeast gene STV1 (Similar To VPH1, identified as an open reading frame next to the BUB2 gene), and the TJ6 mouse immune suppressor factor.

  2. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    PubMed

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2018-03-01

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  3. Vicilin-like peptides from Capsicum baccatum L. seeds are α-amylase inhibitors and exhibit antifungal activity against important yeasts in medical mycology.

    PubMed

    Vieira Bard, Gabriela C; Nascimento, Viviane V; Oliveira, Antônia Elenir A; Rodrigues, Rosana; Da Cunha, Maura; Dias, Germana B; Vasconcelos, Ilka M; Carvalho, Andre O; Gomes, Valdirene M

    2014-07-01

    The objective of this study was to isolate antimicrobial peptides from Capsicum baccatum seeds and evaluate their antimicrobial activity and inhibitory effects against α-amylase. Initially, proteins from the flour of C. baccatum seeds were extracted in sodium phosphate buffer, pH 5.4, and precipitated with ammonium sulfate at 90% saturation. The D1 and D2 fractions were subjected to antifungal tests against the yeasts Saccharomyces cerevisiae, Candida albicans, Candida tropicalis, and Kluyveromyces marxiannus, and tested against α-amylases from Callosobruchus maculates and human saliva. The D2 fraction presented higher antimicrobial activity and was subjected to further purification and seven new different fractions (H1-H7) were obtained. Peptides in the H4 fraction were sequenced and the N-terminal sequences revealed homology with previously reported storage vicilins from seeds. The H4 fraction exhibited strong antifungal activity and also promoted morphological changes in yeast, including pseudohyphae formation. All fractions, including H4, inhibited mammalian α-amylase activity but only the H4 fraction was able to inhibit C. maculatus α-amylase activity. These results suggest that the fractions isolated from the seeds of C. baccatum can act directly in plant defenses against pathogens and insects. © 2014 Wiley Periodicals, Inc.

  4. Resinless section electron microscopy reveals the yeast cytoskeleton.

    PubMed

    Penman, J; Penman, S

    1997-04-15

    The cytoskeleton of Saccharomyces cerevisiae is essentially invisible using conventional microscopy techniques. A similar problem was solved for the mammalian cell cytoskeleton using resinless section electron microscopy, a technique applied here to yeast. In the resinless image, soluble proteins are no longer cloaked by embedding medium and must be removed by selective detergent extraction. In yeast, this requires breaching the cell wall by digesting with Zymolyase sufficiently to allow detergent extraction of the plasma membrane lipids. Gel electropherograms show that the extracted or "soluble" proteins are distinct from the retained or "structural" proteins that presumably comprise the cytoskeleton. These putative cytoskeleton proteins include the major portions of a 43-kDa protein, which is presumably actin, and of proteins in a band appearing at 55 kDa, as well as numerous less abundant, nonactin proteins. Resinless section electron micrographs show a dense, three-dimensional web of anastomosing, polymorphic filaments bounded by the remnant cell wall. Although the filament network is very heterogenous, there appear to be two principal classes of filament diameters-5 nm and 15-20 nm-which may correspond to actin and intermediate filaments, respectively. A large oval region of lower filament density probably corresponds to the vacuole, and an electron dense spheroidal body, 300-500 nm in diameter, is likely the nucleus. The techniques detailed in this report afford new approaches to the study of yeast cytoarchitecture.

  5. Selective and sensitive speciation analysis of Cr(VI) and Cr(III), at sub-μgL-1 levels in water samples by electrothermal atomic absorption spectrometry after electromembrane extraction.

    PubMed

    Tahmasebi, Zeinab; Davarani, Saied Saeed Hosseiny

    2016-12-01

    In this work, electromembrane extraction in combination with electrothermal atomic absorption spectrometry (ET-AAS) was investigated for speciation, preconcentration and quantification of Cr(VI) and Cr(III) in water samples through the selective complexation of Cr(VI) with 1,5-diphenylcarbazide (DPC) as a complexing agent. DPC reduces Cr(VI) to Cr(III) ions and then Cr(III) species are extracted based on electrokinetic migration of their cationic complex (Cr(III)-DPC) toward the negative electrode placed in the hollow fiber. Also, once oxidized to Cr(VI), Cr(III) ions in initial sample were determined by this procedure. The influence of extraction parameters such as pH, type of organic solvent, chelating agent concentration, stirring rate, extraction time and applied voltage were evaluated following a one-at-a-time optimization approach. Under optimized conditions, the extracted analyte was quantified by ETAAS, with an acceptable linearity in the range of 0.05-5ngmL -1 (R 2 value=0.996), and a repeatability (%RSD) between 3.7% and 12.2% (n=4) for 5.0 and 1.0ngmL -1 of Cr(VI), respectively. Also, we obtained an enrichment factor of 110 that corresponded to the recovery of 66%. The detection limit (S/N ratio of 3:1) was 0.02ngmL -1 . Finally, this new method was successfully employed to determine Cr(III) and Cr(VI) species in real water samples. Copyright © 2016. Published by Elsevier B.V.

  6. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain.

    PubMed

    Caballero, Antonio; Ramos, Juan Luis

    2017-04-01

    Lignocellulose contains two pentose sugars, l-arabinose and d-xylose, neither of which is naturally fermented by first generation (1G) ethanol-producing Saccharomyces cerevisiae yeast. Since these sugars are inaccessible to 1G yeast, a significant percentage of the total carbon in bioethanol production from plant residues, which are used in second generation (2G) ethanol production, remains unused. Recombinant Saccharomyces cerevisiae strains capable of fermenting d-xylose are available on the market; however, there are few examples of l-arabinose-fermenting yeasts, and commercially, there are no strains capable of fermenting both d-xylose and l-arabinose because of metabolic incompatibilities when both metabolic pathways are expressed in the same cell. To attempt to solve this problem we have tested d-xylose and l-arabinose co-fermentation. To find efficient alternative l-arabinose utilization pathways to the few existing ones, we have used stringent methodology to screen for new genes (metabolic and transporter functions) to facilitate l-arabinose fermentation in recombinant yeast. We demonstrate the feasibility of this approach in a successfully constructed yeast strain capable of using l-arabinose as the sole carbon source and capable of fully transforming it to ethanol, reaching the maximum theoretical fermentation yield (0.43 g g-1). We demonstrate that efficient co-fermentation of d-xylose and l-arabinose is feasible using two different co-cultured strains, and observed no fermentation delays, yield drops or accumulation of undesired byproducts. In this study we have identified a technically efficient strategy to enhance ethanol yields by 10 % in 2G plants in a process based on C5 sugar co-fermentation.

  7. Genotoxic and mutagenic properties of Bauhinia platypetala extract, a traditional Brazilian medicinal plant.

    PubMed

    Santos, Francisco José Borges Dos; Moura, Dinara Jaqueline; Péres, Valéria Flores; Sperotto, Angelo Regis de Moura; Caramão, Elina Bastos; Cavalcante, Ana Amélia de Carvalho Melo; Saffi, Jenifer

    2012-12-18

    Bauhinia platypetala Burch. is a traditionally used Brazilian medicinal plant, although no evidence in the literature substantiates the safety of its use. The aim of this study was to investigate the safety of the ethanolic extract and the ethereal fraction of B. platypetala leaves. The identification of chemical compounds from the B. platypetala ethanolic extract and its ethereal fraction was performed by GC/MS and ESI-MS/MS. The plant's toxicological, cytotoxic, mutagenic and genotoxic properties were determined in Saccharomyces cerevisiae strains and V79 cell culture by survival assays and comet assay. The major compound identified in the B. platypetala ethanolic extract is palmitic acid, kaempferitirin and quercitrin, while the B. platypetala ethereal fraction was found to be rich in phytol, gamma-sitosterol and vitamin E. Moreover, the results indicated that the B. platypetala ethanolic extract has an anti-oxidative effect against H(2)O(2) in yeast. In addition, the B. platypetala ethanolic extract did not induce mutagenic effects on the S. cerevisiae N123 strain, but the ethereal fraction of B. platypetala at higher concentrations (250-500 μg/mL) induced cytotoxicity and mutagenicity. A slight cytotoxic effect was observed in mammalian V79 cells; however, both the B. platypetala ethanolic extract and its ethereal fraction were able to induce DNA strand breaks in V79 cells, as detected by the alkaline comet assay. The B. platypetala ethanolic extract has antioxidant action and showed absence of mutagenic effects in yeast S. cerevisiae. On the other hand B. platypetala ethereal fraction is mutagenic and does not show antioxidant activity in yeast. In mammalian cells B. platypetala ethanolic extract and it's ethereal fraction induce cyotoxic and genotoxic action. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Identification of significant medium components that affect docosahexaenoic acid production by Schizochytrium sp. SW1

    NASA Astrophysics Data System (ADS)

    Manikan, Vidyah; Hamid, Aidil A.

    2013-11-01

    Central composite design (CCD) was employed to investigate the significance of glucose, yeast extract, MSG and sea salt in affecting the amount of docosahexaenoic acid (DHA) accumulated by a locally isolated strain of Schizochytrium. Design Expert software was used to construct a set of experiments where each medium component mentioned above was varied over three levels. Cultivation was carried out in 250mL flasks containing 50mL of medium, incubated at 30°C with 200 rpm agitation for 96 hours. ANOVA was conducted to identify the influential factors and the level of their significance where factors that scored a probability value of less than 0.05 were considered significant. The level of influence for each independent variable was also interpreted using perturbation whereas pattern of interaction between the factors were interpreted using interaction plots. This experiment revealed that yeast extract and monosodium glutamate have significant influence on DHA accumulation process by Schizochytrium sp. SW1.

  9. Use of a novel immobilization yeast system for winemaking.

    PubMed

    Peinado, Rafael A; Moreno, Juan J; Maestre, Oscar; Mauricio, Juan C

    2005-09-01

    Penicillium was used to immobilize Saccharomyces cerevisiae, without using physico-chemical external supports, to form yeast biocapsules. The biocapsules, once the Penicillium was killed by the ethanol produced, were used in a grape must fermentation. Must fermentation was carried out for 160 h with the biocapsules and for 300 h with free yeast cells. Acetaldehyde (84 vs. 63 mg/l), isobutanol (217 vs. 194 mg/l), L: -proline (7.7 vs. 6.5 mM: ) and aspartic acid (0.42 vs. 0 mM: ) in final wine were higher with the biocapsules than with free cells.

  10. [Vasodilator effect mediated by nitric oxide of the Zea mays L (andean purple corn) hydroalcoholic extract in aortic rings of rat].

    PubMed

    Moreno-Loaiza, Oscar; Paz-Aliaga, Azael

    2010-01-01

    To evaluate the vasodilator response of the hydroalcoholic extract of Zea mays L. (Andean purple corn) and to determine if this response is mediated by nitric oxide (NO). We obtained an extract by maceration for eight days of Andean purple corn cobs in 70% ethanol and subsequent concentration of the product. Thoracic aortic rings were evaluated in an isolated organ chamber, bathed with Krebs-Hensleit solution (KH), and vasomotor activity was recorded with an isometric tension transducer. Basal contraction was produced with 120 mM KCl and then, we proceeded to determinate the vasodilator effect of 3 doses of the extract: 0.1, 0.5, and 1.0 mg/mL. We used L-NG-Nitroarginin methyl ester (L-NAME) to verify that the vasodilation depends on nitric oxide sinteasa (NOs). Then we compared the inhibition of vascular contraction after incubation for 30 minutes, with purple corn extract and captopril 10-5 M. We observed a reduction in maximum contraction (100%) to 85.25 ± 2.60%, 77.76 ± 3.23%, and 73.3 ± 4.87% for doses of 0.1, 0.5 and 1,0 mg/mL respectively. The vasodilation was inhibited by prior incubation with L-NAME. Andean purple corn extract did not inhibit vascular contraction as captopril did (reduction to 75.27 ± 8.61%). The hydroalcoholic extract of Zea mays L produces NO dependent vasodilation.

  11. The Effect of Proanthocyanidins on Growth and Alcoholic Fermentation of Wine Yeast under Copper Stress.

    PubMed

    Jia, Bo; Liu, Xingyan; Zhan, Jicheng; Li, Jingyuan; Huang, Weidong

    2015-06-01

    Proanthocyanidins (PAs) derived from the grape skin, as well as from grape seeds, grape stems, are an important group of polyphenols in wine. The aim of this study was to understand the effect of PAs (0.1, 1.0 g/L) on growth and alcoholic fermentation of 2 strains of Saccharomyces cerevisiae (commercial strain FREDDO and newly selected strain BH8) during copper-stress fermentation, using a simple model fermentation system. Our results showed that both PAs and Cu(2+) could pose significant inhibition effects on the growth of yeast cells, CO2 release, sugar consumption, and ethanol production during the initial phase of the fermentation. Compared to PAs, Cu(2+) performed more obvious inhibition on the yeast growth and fermentation. However, adding 1.0 g/L PAs increased in the vitality and metabolism activity of yeast cells at the mid-exponential phase of fermentation in the mediums with no copper and 0.1 mM Cu(2+) added, shortened the period of wine fermentation, and decreased the copper residues. It indicated that PAs could improve the ability of wine yeast to resist detrimental effects under copper-stress fermentation condition, maintaining cells metabolic activity, and fermentation could be controlled by manipulating PAs supplementation. © 2015 Institute of Food Technologists®

  12. Optimization of Xylanase Production from Penicillium sp.WX-Z1 by a Two-Step Statistical Strategy: Plackett-Burman and Box-Behnken Experimental Design

    PubMed Central

    Cui, Fengjie; Zhao, Liming

    2012-01-01

    The objective of the study was to optimize the nutrition sources in a culture medium for the production of xylanase from Penicillium sp.WX-Z1 using Plackett-Burman design and Box-Behnken design. The Plackett-Burman multifactorial design was first employed to screen the important nutrient sources in the medium for xylanase production by Penicillium sp.WX-Z1 and subsequent use of the response surface methodology (RSM) was further optimized for xylanase production by Box-Behnken design. The important nutrient sources in the culture medium, identified by the initial screening method of Placket-Burman, were wheat bran, yeast extract, NaNO3, MgSO4, and CaCl2. The optimal amounts (in g/L) for maximum production of xylanase were: wheat bran, 32.8; yeast extract, 1.02; NaNO3, 12.71; MgSO4, 0.96; and CaCl2, 1.04. Using this statistical experimental design, the xylanase production under optimal condition reached 46.50 U/mL and an increase in xylanase activity of 1.34-fold was obtained compared with the original medium for fermentation carried out in a 30-L bioreactor. PMID:22949884

  13. Optimization of Xylanase production from Penicillium sp.WX-Z1 by a two-step statistical strategy: Plackett-Burman and Box-Behnken experimental design.

    PubMed

    Cui, Fengjie; Zhao, Liming

    2012-01-01

    The objective of the study was to optimize the nutrition sources in a culture medium for the production of xylanase from Penicillium sp.WX-Z1 using Plackett-Burman design and Box-Behnken design. The Plackett-Burman multifactorial design was first employed to screen the important nutrient sources in the medium for xylanase production by Penicillium sp.WX-Z1 and subsequent use of the response surface methodology (RSM) was further optimized for xylanase production by Box-Behnken design. The important nutrient sources in the culture medium, identified by the initial screening method of Placket-Burman, were wheat bran, yeast extract, NaNO(3), MgSO(4), and CaCl(2). The optimal amounts (in g/L) for maximum production of xylanase were: wheat bran, 32.8; yeast extract, 1.02; NaNO(3), 12.71; MgSO(4), 0.96; and CaCl(2), 1.04. Using this statistical experimental design, the xylanase production under optimal condition reached 46.50 U/mL and an increase in xylanase activity of 1.34-fold was obtained compared with the original medium for fermentation carried out in a 30-L bioreactor.

  14. Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction.

    PubMed

    Brandenburg, Jule; Poppele, Ieva; Blomqvist, Johanna; Puke, Maris; Pickova, Jana; Sandgren, Mats; Rapoport, Alexander; Vedernikovs, Nikolajs; Passoth, Volkmar

    2018-07-01

    This study investigates biofuel production from wheat straw hydrolysate, from which furfural was extracted using a patented method developed at the Latvian State Institute of Wood Chemistry. The solid remainder after furfural extraction, corresponding to 67.6% of the wheat straw dry matter, contained 69.9% cellulose of which 4% was decomposed during the furfural extraction and 26.3% lignin. Enzymatic hydrolysis released 44% of the glucose monomers in the cellulose. The resulting hydrolysate contained mainly glucose and very little amount of acetic acid. Xylose was not detectable. Consequently, the undiluted hydrolysate did not inhibit growth of yeast strains belonging to Saccharomyces cerevisiae, Lipomyces starkeyi, and Rhodotorula babjevae. In the fermentations, average final ethanol concentrations of 23.85 g/l were obtained, corresponding to a yield of 0.53 g ethanol per g released glucose. L. starkeyi generated lipids with a rate of 0.08 g/h and a yield of 0.09 g per g consumed glucose. R. babjevae produced lipids with a rate of 0.18 g/h and a yield of 0.17 per g consumed glucose. In both yeasts, desaturation increased during cultivation. Remarkably, the R. babjevae strain used in this study produced considerable amounts of heptadecenoic, α,- and γ-linolenic acid.

  15. Discovery of synthesis and secretion of polyol esters of fatty acids by four basidiomycetous yeast species in the order Sporidiobolales.

    PubMed

    Garay, Luis A; Sitepu, Irnayuli R; Cajka, Tomas; Fiehn, Oliver; Cathcart, Erin; Fry, Russell W; Kanti, Atit; Joko Nugroho, Agustinus; Faulina, Sarah Asih; Stephanandra, Sira; German, J Bruce; Boundy-Mills, Kyria L

    2017-06-01

    Polyol esters of fatty acids (PEFA) are amphiphilic glycolipids produced by yeast that could play a role as natural, environmentally friendly biosurfactants. We recently reported discovery of a new PEFA-secreting yeast species, Rhodotorula babjevae, a basidiomycetous yeast to display this behavior, in addition to a few other Rhodotorula yeasts reported on the 1960s. Additional yeast species within the taxonomic order Sporidiobolales were screened for secreted glycolipid production. PEFA production equal or above 1 g L -1 were detected in 19 out of 65 strains of yeast screened, belonging to 6 out of 30 yeast species tested. Four of these species were not previously known to secrete glycolipids. These results significantly increase the number of yeast species known to secrete PEFA, holding promise for expanding knowledge of PEFA synthesis and secretion mechanisms, as well as setting the groundwork towards commercialization.

  16. Inhibition of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) by Gelidium elegans Using Alternative Drying and Extraction Conditions in 3T3-L1 and RAW 264.7 Cells.

    PubMed

    Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, Ok-Hwan; Jeon, You-Jin; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans.

  17. Inhibition of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) by Gelidium elegans Using Alternative Drying and Extraction Conditions in 3T3-L1 and RAW 264.7 Cells

    PubMed Central

    Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, OK-Hwan; Jeon, You-Jin; Lee, Boo-Yong

    2012-01-01

    Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans. PMID:24471073

  18. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L.) Oil.

    PubMed

    Mohammed, Nameer Khairullah; Abd Manap, Mohd Yazid; Tan, Chin Ping; Muhialdin, Belal J; Alhelli, Amaal M; Meor Hussin, Anis Shobirin

    2016-01-01

    The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE.

  19. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L.) Oil

    PubMed Central

    Mohammed, Nameer Khairullah; Abd Manap, Mohd Yazid; Muhialdin, Belal J.; Alhelli, Amaal M.

    2016-01-01

    The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE. PMID:27642353

  20. Conventional and unconventional extraction methods applied to the plant, Thymus serpyllum L

    NASA Astrophysics Data System (ADS)

    Đukić, D.; Mašković, P.; Vesković Moračanin, S.; Kurćubić, V.; Milijašević, M.; Babić, J.

    2017-09-01

    This study deals with the application of two conventional and three non-conventional extraction approaches for isolation of bioactive compounds from the plant Thymus serpyllum L. The extracts obtained were tested regarding their chemical profile (content of phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins) and antioxidant activities. Subcritical water extract of Thymus serpyllum L. generally had the highest concentrations of the chemical bioactive compounds examined and the best antioxidant properties.

  1. New approaches for improving the production of the 1st and 2nd generation ethanol by yeast.

    PubMed

    Kurylenko, Olena; Semkiv, Marta; Ruchala, Justyna; Hryniv, Orest; Kshanovska, Barbara; Abbas, Charles; Dmytruk, Kostyantyn; Sibirny, Andriy

    2016-01-01

    Increase in the production of 1st generation ethanol from glucose is possible by the reduction in the production of ethanol co-products, especially biomass. We have developed a method to reduce biomass accumulation of Saccharomyces cerevisiae by the manipulation of the intracellular ATP level due to overexpression of genes of alkaline phosphatase, apyrase or enzymes involved in futile cycles. The strains constructed accumulated up to 10% more ethanol on a cornmeal hydrolysate medium. Similar increase in ethanol accumulation was observed in the mutants resistant to the toxic inhibitors of glycolysis like 3-bromopyruvate and others. Substantial increase in fuel ethanol production will be obtained by the development of new strains of yeasts that ferment sugars of the abundant lignocellulosic feedstocks, especially xylose, a pentose sugar. We have found that xylose can be fermented under elevated temperatures by the thermotolerant yeast, Hansenula polymorpha. We combined protein engineering of the gene coding for xylose reductase (XYL1) along with overexpression of the other two genes responsible for xylose metabolism in yeast (XYL2, XYL3) and the deletion of the global transcriptional activator CAT8, with the selection of mutants defective in utilizing ethanol as a carbon source using the anticancer drug, 3-bromopyruvate. Resulted strains accumulated 20-25 times more ethanol from xylose at the elevated temperature of 45°C with up to 12.5 g L(-1) produced. Increase in ethanol yield and productivity from xylose was also achieved by overexpression of genes coding for the peroxisomal enzymes: transketolase (DAS1) and transaldolase (TAL2), and deletion of the ATG13 gene.

  2. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Akira; Kawahara, Nobuhiro; Takagi, Hiroshi, E-mail: hiro@bs.naist.jp

    Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiologicalmore » role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.« less

  3. Reconstructing the Qo Site of Plasmodium falciparum bc 1 Complex in the Yeast Enzyme

    PubMed Central

    Vallières, Cindy; Fisher, Nicholas; Meunier, Brigitte

    2013-01-01

    The bc 1 complex of the mitochondrial respiratory chain is essential for Plasmodium falciparum proliferation, the causative agent of human malaria. Therefore, this enzyme is an attractive target for antimalarials. However, biochemical investigations of the parasite enzyme needed for the study of new drugs are challenging. In order to facilitate the study of new compounds targeting the enzyme, we are modifying the inhibitor binding sites of the yeast Saccharomyces cerevisiae to generate a complex that mimics the P. falciparum enzyme. In this study we focused on its Qo pocket, the site of atovaquone binding which is a leading antimalarial drug used in treatment and causal prophylaxis. We constructed and studied a series of mutants with modified Qo sites where yeast residues have been replaced by P. falciparum equivalents, or, for comparison, by human equivalents. Mitochondria were prepared from the yeast Plasmodium-like and human-like Qo mutants. We measured the bc 1 complex sensitivity to atovaquone, azoxystrobin, a Qo site targeting fungicide active against P. falciparum and RCQ06, a quinolone-derivative inhibitor of P. falciparum bc 1 complex.The data obtained highlighted variations in the Qo site that could explain the differences in inhibitor sensitivity between yeast, plasmodial and human enzymes. We showed that the yeast Plasmodium-like Qo mutants could be useful and easy-to-use tools for the study of that class of antimalarials. PMID:23951230

  4. Chemical composition of Juniperus communis L. fruits supercritical CO2 extracts: dependence on pressure and extraction time.

    PubMed

    Barjaktarović, Branislava; Sovilj, Milan; Knez, Zeljko

    2005-04-06

    Ground fruits of the common juniper (Juniperus communis L.), with a particle size range from 0.250-0.400 mm, forming a bed of around 20.00 +/- 0.05 g, were extracted with supercritical CO(2) at pressures of 80, 90, and 100 bars and at a temperature of 40 degrees C. The total amount of extractable substances or global yield (mass of extract/mass of raw material) for the supercritical fluid extraction process varied from 0.65 to 4.00% (wt). At each investigated pressure, supercritical CO(2) extract fractions collected in successive time intervals over the course of the extraction were analyzed by capillary gas chromatography, using flame ionization (GC-FID) and mass spectrometric detection (GC-MS). More than 200 constituents were detected in the extracts, and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene, and oxygenated sesquiterpene hydrocarbon groups on the extraction time was investigated, and conditions that favored the yielding of each terpene groups were emphasized. At all pressures, monoterpene hydrocarbons were almost completely extracted from the berries in the first 0.6 h. It was possible to extract oxygenated monoterpenes at 100 bar in 0.5 h and at 90 bar in 1.2 h. Contrary to that, during an extraction period of 4 h at 80 bar, it was possible to extract only 75% of the maximum yielded value of oxygenated monoterpene at 100 bar. Intensive extraction of sesquiterpenes could be by no means avoided at any pressure, but at the beginning of the process (the first 0.5 h) at 80 bar, they were extracted about 8 and 3 times slower than at 100 and 90 bar, respectively. Oxygenated sesquiterpenes were yielded at fast, constant extraction rates at 100 and 90 bar in 1.2 and 3 h, respectively. This initial fast extraction period was consequently followed by much slower extraction of oxygenated sesquiterpenes.

  5. Extraction of valerenic acids from valerian (Valeriana officinalis L.) rhizomes.

    PubMed

    Boyadzhiev, L; Kancheva, D; Gourdon, C; Metcheva, D

    2004-09-01

    Extraction of valerenic acids (valerenic, acetoxyvalerenic and hydroxyvalerenic) from dry ground rhizomes of valerian (Valeriana officinalis L.) was studied. The effect of ethanol concentration in the solvent, extraction temperature and drug particle size on extraction kinetics were investigated and the optimum values of these process parameters were determined for the case of intensively stirred two-phase dispersion. It was found that increased processing temperature favors extraction kinetics, but provokes moderate degradation of valerenic acids.

  6. Antiproliferative and Antioxidant Activities of Two Extracts of the Plant Species Euphorbia dendroides L.

    PubMed

    Ghout, Agena; Zellagui, Amar; Gherraf, Noureddine; Demirtas, Ibrahim; Ayse Sahin, Yaglioglu; Boukhenaf, Meriem; Lahouel, Mesbah; Nieto, Gema; Akkal, Salah

    2018-04-20

    Background: These days, the desire for naturally occurring antioxidants has significantly increased, especially for use in foodstuffs, cosmetics, and pharmaceutical products, to replace synthetic antioxidants that are regularly constrained due to their carcinogenicity. Methods : The study in hand aimed to appraise the antioxidant effect of two Euphorbia dendroides extracts using reducing power, anti-peroxidation, and DPPH (1,1 Diphenyl 2 Pycril Hydrazil) scavenging essays, in addition to the anticancer activity against two tumor cell lines, namely C6 (rat brain tumor)cells, and Hela (human uterus carcinoma)cell lines. Results : The results indicated that the ethyl acetate extract exhibited antiradical activity of 29.49%, higher than that of n -butanol extract (18.06%) at 100 µg/mL but much lower than that of gallic acid (78.21%).The ethyl acetate extract exhibits better reducing capacity and lipid peroxidation inhibitory activity compared to n -butanol extract but less than all tested standards. Moreover, the ethyl acetate extract was found to have an antiproliferative activity of more than 5-FU (5-fluoro-Uracil) against C6 cells at 250 µg/mL with IC 50 and IC 75 of 113.97, 119.49 µg/mL, respectively, and good cytotoxic activity against the Hela cell lines at the same concentration. The HPLC-TOF-MS (high performance liquid chromatography-Time-of-flight-Mass Spectrometry) analyses exposed the presence of various compounds, among which Gallic and Chlorogenic acids functioned as major compounds. Conclusions : The two extracts exhibited moderate anticancer abilities and behaved somewhat as average antioxidant agents. Based on the total phenolics and flavonoids contents, as well as HPLC results, it could be concluded that antiproliferative and antioxidant activities depend upon the content of different phenolics and flavonoids.

  7. Effect of date (Phoenix dactylifera L.) seed extract on stability of olive oil.

    PubMed

    Özcan, Mehmet Musa; Al Juhaimi, Fahad

    2015-02-01

    In this study, the antioxidant effect of date (Phoenix dactylifera L., Arecaceae) seed extracts at different concentrations (0.5 %, 1.0 % and 1.5 %) on the oxidative stability of olive oil at 60 °C was determined. Butylated hydroxyanisole (BHA) was used as positive control in the experiment. All extracts exhibited antioxidant activity compared to BHA up to 21 days. When antioxidant effect of extract concentrations were compared with BHA, the effect of 0.5 % extract concentration was more remarkable for olive oil up to 21 days. After 14 days of assay, all of seed extracts was effective at 60 °C in comparison with control. On the other hand, an important increase was observed in both the peroxide and free fatty acidity values during the experiment period. It concluded that date seed extract could be used as a oxidative inhibitor agent in oil and oil products.

  8. L-Asparaginase Production by Erwinia aroideae1

    PubMed Central

    Peterson, R. E.; Ciegler, A.

    1969-01-01

    Maximum yields of 1,250 IU (international unit)/g (dry weight of cells) of L-asparaginase were obtained in 8 hr from Erwinia aroideae NRRL B-138. Partial purification and concentration of the extracted L-asparaginase yielded a preparation with an activity of 275 IU/ml. Only one L-asparaginase was present as determined by electrophoresis, and the enzyme exhibited a pH optimum of 7.5 and a Km of 3 × 10-3 M. PMID:5803630

  9. Antifungal susceptibility profile of diferent yeasts isolates from wild animals, cow's milk with subclinical mastitis and hospital environment.

    PubMed

    Mendes, J F; Gonçalves, C L; Ferreira, G F; Esteves, I A; Freitas, C H; Villarreal, J P V; Mello, J R B; Meireles, M C A; Nascente, P S

    2018-02-01

    Yeast infections have acquired great importance due to increasing frequency in immunocompromised patients or patients undergoing invasive diagnostic and therapeutic techniques, and also because of its high morbidity and mortality. At the same time, it has been seen an increase in the emergence of new pathogenic species difficult to diagnose and treat. The aim of this study was to determine the in vitro susceptibility of 89 yeasts from different sources against the antifungals amphotericin B, voriconazole, fluconazole and flucytosine, using the VITEK® 2 Compact system. The antifungal susceptibility was performed automatically by the Vitek® 2 Compact system. The origin of the yeasts was: Group 1 - microbiota of wild animals (W) (26/89), 2 - cow's milk with subclinical mastitis (M) (27/89) and 3 - hospital enviorment (H) (36/89). Of the 89 yeasts submitted to the Vitek® 2 test, 25 (20.9%) were resistant to fluconazole, 11 (12.36%) to amphotericin B, 3 (3.37%) to voriconazole, and no sample was resistant to flucytosine. Regarding the minimum inhibitory concentration (MIC), fluconazole showed an MIC between 1 and 64 mg/mL for the three groups, voriconazole had an MIC between 0.12 and 8 mg/mL, amphotericin B had an MIC between 0.25 and 4 mg/mL for group H and group W respectively, between 0.25 and 16 mg/mL for group M and flucytosine had an MIC equal to 1μg/mL for all groups. The yeasts isolated from the H group showed the highest resistance to fluconazole 12/89 (13.49%), followed by group W (7.87%) and group M (5.62%). The more resistant group to voriconazole was followed by the M and H groups, the W group showed no resistance to this antifungal. Group H was the least resistant (2.25%) to amphotericin.

  10. Sphingolipid biosynthesis upregulation by TOR Complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress

    PubMed Central

    Guerreiro, Joana F.; Muir, Alexander; Ramachandran, Subramaniam; Thorner, Jeremy; Sá-Correia, Isabel

    2016-01-01

    Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus, understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for S. cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the Target of Rapamycin (TOR) Complex 2 (TORC2). We show here by several independent criteria that TORC2-Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2-Ypk1-mediated activation of L-serine: palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus, appropriate modulation of the TORC2-Ypk1-sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks. PMID:27671892

  11. Isolation, identification and characterization of Cystobasidium oligophagum JRC1: A cellulase and lipase producing oleaginous yeast.

    PubMed

    Vyas, Sachin; Chhabra, Meenu

    2017-01-01

    Oleaginous yeast closely related to Cystobasidium oligophagum was isolated from soil rich in cellulosic waste. The yeast was isolated based on its ability to accumulate intracellular lipid, grow on carboxymethylcellulose (CMC) and produce lipase. It could accumulate up to 39.44% lipid in a glucose medium (12.45±0.97g/l biomass production). It was able to grow and accumulate lipids (36.46%) in the medium containing CMC as the sole carbon source. The specific enzyme activities obtained for endoglucanase, exoglucanase, and β-glucosidase were 2.27, 1.26, and 0.98IU/mg respectively. The specific enzyme activities obtained for intracellular and extracellular lipase were 2.16 and 2.88IU/mg respectively. It could grow and accumulate lipids in substrates including glycerol (42.04%), starch (41.54%), xylose (36.24%), maltose (26.31%), fructose (24.29%), lactose (21.91%) and sucrose (21.72%). The lipid profile of the organism was suitable for obtaining biodiesel with desirable fuel properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Culex pipiens Development Is Greatly Influenced by Native Bacteria and Exogenous Yeast

    PubMed Central

    Díaz-Nieto, Leonardo M.; D´Alessio, Cecilia

    2016-01-01

    Culex pipiens is the most cosmopolitan mosquito of the Pipiens Assemblage. By studying the nature of interactions between this species and microorganisms common to its breeding environment we can unravel important pitfalls encountered during development. We tested the survival rate of larval stages, pupae and adults of a Cx. pipiens colony exposed to a variety of microorganisms in laboratory conditions and assessed the transmission to offspring (F1) by those organisms that secured development up to adulthood. Three complementary experiments were designed to: 1) explore the nutritional value of yeasts and other microorganisms during Cx. pipiens development; 2) elucidate the transstadial transmission of yeast to the host offspring; and 3) to examine the relevance of all these microorganisms in female choice for oviposition-substratum. The yeast Saccharomyces cerevisiae proved to be the most nutritional diet, but despite showing the highest survival rates, vertical transmission to F1 was never confirmed. In addition, during the oviposition trials, none of the gravid females was attracted to the yeast substratum. Notably, the two native bacterial strains, Klebsiella sp. and Aeromonas sp., were the preferred oviposition media, the same two bacteria that managed to feed neonates until molting into 2nd instar larvae. Our results not only suggest that Klebsiella sp. or Aeromonas sp. serve as attractants for oviposition habitat selection, but also nurture the most fragile instar, L1, to assure molting into a more resilient stage, L2, while yeast proves to be the most supportive diet for completing development. These experiments unearthed survival traits that might be considered in the future development of strategies of Cx. pipiens control. These studies can be extended to other members of the Pipiens Assemblage. PMID:27055276

  13. Construction of recombinant Kluyveromyces marxianus UFV-3 to express dengue virus type 1 nonstructural protein 1 (NS1).

    PubMed

    Bragança, Caio Roberto Soares; Colombo, Lívia Tavares; Roberti, Alvaro Soares; Alvim, Mariana Caroline Tocantins; Cardoso, Silvia Almeida; Reis, Kledna Constancio Portes; de Paula, Sérgio Oliveira; da Silveira, Wendel Batista; Passos, Flavia Maria Lopes

    2015-02-01

    The yeast Kluyveromyces marxianus is a convenient host for industrial synthesis of biomolecules. However, despite its potential, there are few studies reporting the expression of heterologous proteins using this yeast. Here, we report expression of a dengue virus protein in K. marxianus for the first time. The dengue virus type 1 nonstructural protein 1 (NS1) was integrated into the K. marxianus UFV-3 genome at the LAC4 locus using an adapted integrative vector designed for high-level expression of recombinant protein in Kluyveromyces lactis. The NS1 gene sequence was codon-optimized to increase the level of protein expression in yeast. The synthetic gene was cloned in frame with K. lactis α-mating factor signal peptide, and the recombinant plasmid obtained was used to transform K. marxianus UFV-3 by electroporation. The transformed cells, selected in yeast extract peptone dextrose containing 200 μg mL(-1) Geneticin, were mitotically stable. Analysis of recombinant strains by RT-PCR and protein detection using blot analysis confirmed both transcription and expression of extracellular NS1 polypeptide. After induction with galactose, the NS1 protein was analyzed by sodium dodecyl sulfate-PAGE and immunogenic detection. Protein production was investigated under two conditions: with galactose and biotin pulses at 24-h intervals during 96 h of induction and without galactose and biotin supplementation. Protease activity was not detected in post-growth medium. Our results indicate that recombinant K. marxianus is a good host for the production of dengue virus NS1 protein, which has potential for diagnostic applications.

  14. Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis.

    PubMed

    Lavoie, Serge; Côté, Isabelle; Pichette, André; Gauthier, Charles; Ouellet, Michaël; Nagau-Lavoie, Francine; Mshvildadze, Vakhtang; Legault, Jean

    2017-02-22

    Many plants of boreal forest of Quebec have been used by Native Americans to treat a variety of microbial infections. However, the antiviral activities of these plants have been seldom evaluated on cellular models to validate their in vitro efficiencies. In this study, Cornus canadensis L. (Cornaceae), a plant used in Native American traditional medicine to treat possible antiviral infections, has been selected for further examination. The plant was extracted by decoction and infusion with water, water/ethanol 1:1 and ethanol to obtain extracts similar to those used by Native Americans. The effects of the extracts were tested on herpes simplex virus type-1 (HSV-1) using a plaque reduction assay. Moreover, bioassay-guided fractionation was achieved to isolate bioactive compounds. Water/ethanol 1:1 infusion of C. canadensis leaves were the most active extracts to inhibit virus absorption with EC 50 of about 9 μg mL -1 , whereas for direct mode, both extraction methods using water or water/ethanol 1:1 as solvent were relatively similar with EC 50 ranging from 11 to 17 μg mL -1 . The fractionation led to the identification of active fractions containing hydrolysable tannins. Tellimagrandin I was found the most active compound with an EC 50 of 2.6 μM for the direct mode and 5.0 μM for the absorption mode. Altogether, the results presented in this work support the antiviral activity of Cornus canadensis used in Native American traditional medicine.

  15. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    PubMed

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  16. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Oshiro, Satoshi; Shima, Jun; Takagi, Hiroshi

    2013-08-01

    During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Phenolic content and antioxidant activity of Hibiscus cannabinus L. seed extracts after sequential solvent extraction.

    PubMed

    Yusri, Noordin Mohd; Chan, Kim Wei; Iqbal, Shahid; Ismail, Maznah

    2012-10-25

    A sequential solvent extraction scheme was employed for the extraction of antioxidant compounds from kenaf (Hibiscus cannabinus L.) seeds. Yield of extracts varied widely among the solvents and was the highest for hexane extract (16.6% based on dry weight basis), while water extract exhibited the highest total phenolic content (18.78 mg GAE/g extract), total flavonoid content (2.49 mg RE/g extract), and antioxidant activities (p < 0.05). DPPH and hydroxyl radical scavenging, β-carotene bleaching, metal chelating activity, ferric thiocyanate and thiobarbituric acid reactive substances assays were employed to comprehensively assess the antioxidant potential of different solvent extracts prepared sequentially. Besides water, methanolic extract also exhibited high retardation towards the formation of hydroperoxides and thiobarbituric acid reactive substances in the total antioxidant activity tests (p < 0.05). As conclusion, water and methanol extracts of kenaf seed may potentially serve as new sources of antioxidants for food and nutraceutical applications.

  18. Effect of Ethanol, Sulfur Dioxide and Glucose on the Growth of Wine Spoilage Yeasts Using Response Surface Methodology

    PubMed Central

    Chandra, Mahesh; Oro, Inês; Ferreira-Dias, Suzana; Malfeito-Ferreira, Manuel

    2015-01-01

    Response surface methodology (RSM) was used to study the effect of three factors, sulfur dioxide, ethanol and glucose, on the growth of wine spoilage yeast species, Zygosaccharomyces bailii, Schizosaccharomyces pombe, Saccharomycodes ludwigii and Saccharomyces cerevisiae. Seventeen central composite rotatable design (CCRD) trials were designed for each test yeast using realistic concentrations of the factors (variables) in premium red wine. Polynomial regression equations were fitted to experimental data points, and the growth inhibitory conditions of these three variables were determined. The overall results showed Sa. ludwigii as the most resistant species growing under high ethanol/free sulfur dioxide concentrations, i.e., 15% (v/v)/20 mg L-1, 14% (v/v)/32 mg L-1 and 12.5% (v/v)/40 mg L-1, whereas other yeasts did not survive under the same levels of ethanol/free sulfur dioxide concentrations. The inhibitory effect of ethanol was primarily observed during longer incubation periods, compared with sulfur dioxide, which showed an immediate effect. In some CCRD trials, Sa. ludwigii and S. cerevisiae showed growth recovery after a short death period under the exposure of 20–32 mg L-1 sulfur dioxide in the presence of 11% (v/v) or more ethanol. However, Sc. pombe and Z. bailii did not show such growth recovery under similar conditions. Up to 10 g L-1 of glucose did not prevent cell death under the sulfur dioxide or ethanol stress. This observation demonstrates that the sugar levels commonly used in wine to sweeten the mouthfeel do not increase wine susceptibility to spoilage yeasts, contrary to the anecdotal evidence. PMID:26107389

  19. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing.

    PubMed

    Gamalinda, Michael; Jakovljevic, Jelena; Babiano, Reyes; Talkish, Jason; de la Cruz, Jesús; Woolford, John L

    2013-02-01

    Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.

  20. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing

    PubMed Central

    Gamalinda, Michael; Jakovljevic, Jelena; Babiano, Reyes; Talkish, Jason; de la Cruz, Jesús; Woolford, John L.

    2013-01-01

    Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2. PMID:23268442

  1. Behavior of yeast cells in aqueous suspension affected by pulsed electric field.

    PubMed

    El Zakhem, H; Lanoisellé, J-L; Lebovka, N I; Nonus, M; Vorobiev, E

    2006-08-15

    This work discusses pulsed electric fields (PEF) induced effects in treatment of aqueous suspensions of concentrated yeast cells (S. cerevisiae). The PEF treatment was done using pulses of near-rectangular shape, electric field strength was within E=2-5 kV/cm and the total time of treatment was t(PEF)=10(-4)-0.1 s. The concentration of aqueous yeast suspensions was in the interval of C(Y)=0-22 (wt%), where 1% concentration corresponds to the cellular density of 2x10(8) cells/mL. Triton X-100 was used for studying non-ionic surfactant additive effects. The electric current peak value I was measured during each pulse application, and from these data the electrical conductivity sigma was estimated. The PEF-induced damage results in increase of sigma with t(PEF) increasing and attains its saturation level sigma approximately sigma(max) at long time of PEF treatment. The value of sigma(max) reflects the efficiency of damage. The reduced efficiency of damage at suspension volume concentration higher than phi(Y) approximately 32 vol% is explained by the percolation phenomenon in the randomly packed suspension of near-spherical cells. The higher cytoplasmic ions leakage was observed in presence of surfactant. Experiments were carried out in the static and continuous flow treatment chambers in order to reveal the effects of mixing in PEF-treatment efficiency. A noticeable aggregation of the yeast cells was observed in the static flow chamber during the PEF treatment, while aggregation was not so pronounced in the continuous flow chamber. The nature of the enhanced aggregation under the PEF treatment was revealed by the zeta-potential measurements: these data demonstrate different zeta-potential signs for alive and dead cells. The effect of the electric field strength on the PEF-induced extraction of the intracellular components of S. cerevisiae is discussed.

  2. Antimicrobial and antioxidant properties of the flavonoid extract from Raphanus sativus L.

    NASA Astrophysics Data System (ADS)

    Ngoc, Pham Thi Kim; Nguyet, Nguyen Thi Minh; Dao, Dong Thi Anh

    2017-09-01

    This study was conducted to evaluate the in vitro antimicrobial and antioxidant activities of flavonoid extract from white radish roots (Raphanus sativus L.). Antimicrobial activity was determined by agar diffusion method against 4 strains: Bacillus cereus, Staphylococus aureus, Pseudomonas aeruginosa and Salmonella typhi. Antioxidant activity was determined by ABTS* radical scavenging activity and total antioxidant capacity (TAC). The constituent elements of flavonoid extract were identified by LC-MS. Results showed that the flavonoid extract from Raphanus sativus L. had antibacterial activity against to all four tested bacteria strains with antibacterial ring diameters in the range 8 - 20 mm in the test concentrations from 100 to 1600 mg/ml. Minimum concentration to inhibit (MIC) in the range 20 - 40 mg/ml. In addition, the extract also has the ability to eliminate ABTS* free radical with IC50 = 7.074 µg/ml. The total antioxidant capacity of extract at concentration of 100 µg/ml was 3.424 ± 0.043 mg ascorbic acid/mg. In the extract, there are three flavonoids were found: rutin, quercetin and narigenin. This is the first time narigenin was found in Raphanus sativus L. extract.

  3. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    PubMed

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  4. Effects of onion (Allium cepa L.) and garlic (Allium sativum L.) essential oils on the Aspergillus versicolor growth and sterigmatocystin production.

    PubMed

    Kocić-Tanackov, Sunčica; Dimić, Gordana; Lević, Jelena; Tanackov, Ilija; Tepić, Aleksandra; Vujičić, Biserka; Gvozdanović-Varga, Jelica

    2012-05-01

    In the present study the effects of individual and combined essential oils (EOs) extracted from onion (Allium cepa L.) bulb and garlic (Allium sativum L.) clove on the growth of Aspergillus versicolor and sterigmatocystin (STC) production were investigated. The EOs obtained by hydrodistillation were analyzed by GC/MS. Twenty one compounds were identified in onion EO. The major components were: dimethyl-trisulfide (16.64%), methyl-propyl-trisulfide (14.21%), dietil-1,2,4-tritiolan (3R,5S-, 3S,5S- and 3R,5R- isomers) (13.71%), methyl-(1-propenyl)-disulfide (13.14%), and methyl-(1-propenyl)-trisulfide (13.02%). The major components of garlic EO were diallyl-trisulfide (33.55%), and diallyl-disulfide (28.05%). The mycelial growth and the STC production were recorded after 7, 14, and 21 d of the A. versicolor growth in Yeast extract sucrose (YES) broth containing different EOs concentrations. Compared to the garlic EO, the onion EO showed a stronger inhibitory effect on the A. versicolor mycelial growth and STC production. After a 21-d incubation of fungi 0.05 and 0.11 μg/mL of onion EO and 0.11 μg/mL of garlic EO completely inhibited the A. versicolor mycelial growth and mycotoxins biosynthesis. The combination of EOs of onion (75%) and garlic (25%) had a synergistic effect on growth inhibition of A. versicolor and STC production. © 2012 Institute of Food Technologists®

  5. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2).

    PubMed

    Abdel-Lateef, Ezzat; Mahmoud, Faten; Hammam, Olfat; El-Ahwany, Eman; El-Wakil, Eman; Kandil, Sherihan; Abu Taleb, Hoda; El-Sayed, Mortada; Hassenein, Hanaa

    2016-09-01

    The present study was designed to identify the chemical constituents of the methanolic extract of Curcuma longa L. rhizomes and their inhibitory effect on a hepatoma cell line. The methanolic extract was subjected to GC-MS analysis to identify the volatile constituents and the other part of the same extract was subjected to liquid column chromatographic separation to isolate curcumin. The inhibition of cell growth in the hepatoma cell line and the cytopathological changes were studied. GC-MS analysis showed the presence of fifty compounds in the methanolic extract of C. longa. The major compounds were ar-turmerone (20.50 %), β-sesquiphellandrene (5.20 %) and curcumenol (5.11 %). Curcumin was identified using IR, 1H and 13C NMR. The inhibition of cell growth by curcumin (IC50 = 41.69 ± 2.87 μg mL-1) was much more effective than that of methanolic extract (IC50 = 196.12 ± 5.25 μg mL-1). Degenerative and apoptotic changes were more evident in curcumin- treated hepatoma cells than in those treated with the methanol extract. Antitumor potential of the methanolic extract may be attributed to the presence of sesquiterpenes and phenolic constituents including curcumin (0.051 %, 511.39 μg g-1 dried methanol extract) in C. longa rhizomes.

  6. Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil.

    PubMed

    Abdul Salam, Jaseetha; Lakshmi, V; Das, Devlina; Das, Nilanjana

    2013-03-01

    Lindane is a notorious organochlorine pesticide due to its high toxicity, persistence in the environment and its tendency to bioaccumulate. A yeast strain isolated from sorghum cultivation field was able to use lindane as carbon and energy source under aerobic conditions. With molecular techniques, it was identified and named as Rhodotorula strain VITJzN03. The effects of nutritional and environmental factors on yeast growth and the biodegradation of lindane was investigated. The maximum production of yeast biomass along with 100 % lindane mineralization was noted at an initial lindane concentration of 600 mg l(-1) within a period of 10 days. Lindane concentration above 600 mg l(-1) inhibited the growth of yeast in liquid medium. A positive relationship was noted between the release of chloride ions and the increase of yeast biomass as well as degradation of lindane. The calculated degradation rate and half life of lindane were found to be 0.416 day(-1) and 1.66 days, respectively. The analysis of the metabolites using GC-MS identified the formation of seven intermediates including γ-pentachlorocyclohexane(γ-PCCH), 1,3,4,6-tetrachloro-1,4-cyclohexadiene(1,4-TCCHdiene), 1,2,4-trichlorobenzene (1,2,4 TCB), 1,4-dichlorobenzene (1,4 DCB), chloro-cis-1,2-dihydroxycyclohexadiene (CDCHdiene), 3-chlorocatechol (3-CC) and maleylacetate (MA) derivatives indicating that lindane degradation follows successive dechlorination and oxido-reduction. Based on the results of the present study, the possible pathway for lindane degradation by Rhodotorula sp. VITJzN03 has been proposed. To the best of our knowledge, this is the first report on lindane degradation by yeast which can serve as a potential agent for in situ bioremediation of medium to high level lindane-contaminated sites.

  7. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis.

    PubMed

    Choi, Hwa-Young; Ryu, Hee-Kyoung; Park, Kyung-Min; Lee, Eun Gyo; Lee, Hongweon; Kim, Seon-Won; Choi, Eui-Sung

    2012-06-01

    Lactic acid fermentation of Jerusalem artichoke tuber was performed with strains of Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis prior to fermentation. Some strains of L. paracasei, notably KCTC13090 and KCTC13169, could ferment hot-water extract of Jerusalem artichoke tuber more efficiently compared with other Lactobacillus spp. such as L. casei type strain KCTC3109. The L. paracasei strains could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke. Inulin-fermenting L. paracasei strains produced c.a. six times more lactic acid compared with L. casei KCTC3109. Direct lactic fermentation of Jerusalem artichoke tuber extract at 111.6g/L of sugar content with a supplement of 5 g/L of yeast extract by L. paracasei KCTC13169 in a 5L jar fermentor produced 92.5 ce:hsp sp="0.25"/>g/L of lactic acid with 16.8 g/L fructose equivalent remained unutilized in 72 h. The conversion efficiency of inulin-type sugars to lactic acid was 98% of the theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Genotoxic effect of Physalis angulata L. (Solanaceae) extract on human lymphocytes treated in vitro.

    PubMed

    Alves dos Santos, Raquel; Cabral, Teresinha Rosa; Cabral, Isabel Rosa; Antunes, Lusânia Maria; Pontes Andrade, Cristiane; Cerqueira dos Santos Cardoso, Plínio; de Oliveira Bahia, Marcelo; Pessoa, Claudia; Martins do Nascimento, José Luis; Rodríguez Burbano, Rommel; Takahashi, Catarina Satie

    2008-08-01

    Physalis angulata L (Solanaceae) is a medicinal plant from North of Brazil, whose different extracts and infusions are commonly used in the popular medicine for the treatment of malaria, asthma, hepatitis, dermatitis and rheumatism. However, the genotoxic effects of P. angulata on human cells is not well known. The main purpose of the present study was to evaluate the in vitro genotoxic effects of aqueous extract of P. angulata using the comet assay and the micronucleus assay in human lymphocytes provided from 6 healthy donors. Treatments with P. angulata extracts were performed in vitro in order to access the extent of DNA damage. The comet assay has shown that treatments with P. angulata at 0.5, 1.0, 2.0, 3.0 and 6.0 microg/mL in culture medium were genotoxic. Lymphocytes treated with P. angulata at the concentrations of 3.0 and 6.0 microg/mL in culture medium showed a statistically significant increase in the frequency of micronucleus (p<0.05), however, the cytokinesis blocked proliferation index (CBPI) was not decreased after P. angulata treatment. In conclusion, the present work demonstrated the genotoxic effects of P. angulata extract on human lymphocytes in vitro.

  9. Compositional Shift in Fatty Acid Profiles of Lipids Obtained from Oleaginous Yeasts upon the Addition of Essential Oil from Citrus sinensis L.

    PubMed

    Uprety, Bijaya K; Rakshit, Sudip K

    2017-12-01

    Tailoring lipids from oleaginous yeasts to contain specific types of fatty acid is of considerable interest to food, fuel, and pharmaceutical industries. In this study, the essential oil obtained from Citrus sinesus L. has been used to alter the fatty acid composition of two common oleaginous yeasts, Rhodosporidium toruloides and Cryptococcus curvatus. With increasing levels of essential oil in the medium, the metabolic flux of the fatty acid biosynthesis pathway shifted towards saturated fatty acid production. Essential oil reduced the activities of elongase and ∆9 desaturase. This made the lipid obtained from both these yeasts rich in saturated fatty acids. At certain specific concentrations of the essential oil in the medium, the lipid obtained from R. toruloides and C. curvatus cultures was similar to mahuwa butter and palm oil, respectively. Limonene is the major constituents of orange essential oil. Its effect on one of the oleaginous yeasts, R. toruloides, was also studied separately. Effects similar to orange essential oil were obtained with limonene. Thus, we can conclude that limonene in orange essential oil brings about compositional change of microbial lipid produced in this organism.

  10. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology.

    PubMed

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20-60°C), time (20-40 min) and power (200-350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. The results of quantification showed that the guava leaves are the potential source of antioxidant compounds.

  11. [CONTENT OF OXIDATIVE STRESS MARKERS IN BLOOD PLASMA UNDER THE ACTION OF EXTRACTS OF GRATIOLA OFFICINALIS L., HELICHRYSUM ARENARIUM (L.) MOENCH, AND ANTHOCYANIN FORMS OF ZEA MAYS L].

    PubMed

    Durnova, N A; Afanas'eva, G A; Kurchatova, M N; Zaraeva, N V; Golikov, A G; Bucharskaya, A B; Golikov, A G; Bucharskaya, A B; Plastun, V O; Andreeva, N V

    2015-01-01

    The effect of aqueous solutions of dry ethanol extracts of Gratiola officinalis L., Helichrysum arenarium (L.) Moench, and anthocyanin forms of Zea mays L. on the dioxidin-induced lipid peroxidation in blood has been studied on rats. It is established that all these extracts are capable of reducing the amount of avera- ge-mass (AM) molecules and malonic dialdehyde (MDA) in rat blood plasma. The extract of Gratiola officinalis L. reduces the concentration of AM and MDA moleules by 43%. The extract of Helichrysum arenarium (L.) Moench reduces the concentration of AM molecules on the average by 18.66% (within 9.22 -34.81%) and MDA by 49.36% (within 34.12-79.75%). The Extract of anthocyanin forms of Zea mays L. does not reduce the concentration of AM mo- lecules, but reduces the amount of MDA in the blood of rats on average by 27.88% (within 21.58-37.82%) (p < 0.01).

  12. Yrb4p, a yeast ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus.

    PubMed Central

    Schlenstedt, G; Smirnova, E; Deane, R; Solsbacher, J; Kutay, U; Görlich, D; Ponstingl, H; Bischoff, F R

    1997-01-01

    Gsp1p, the essential yeast Ran homologue, is a key regulator of transport across the nuclear pore complex (NPC). We report the identification of Yrb4p, a novel Gsp1p binding protein. The 123 kDa protein was isolated from Saccharomyces cerevisiae cells and found to be related to importin-beta, the mediator of nuclear localization signal (NLS)-dependent import into the nucleus, and to Pse1p. Like importin-beta, Yrb4p and Pse1p specifically bind to Gsp1p-GTP, protecting it from GTP hydrolysis and nucleotide exchange. The GTPase block of Gsp1p complexed to Yrb4p or Pse1p is released by Yrb1p, which contains a Gsp1p binding domain distinct from that of Yrb4p. This might reflect an in vivo function for Yrb1p. Cells disrupted for YRB4 are defective in nuclear import of ribosomal protein L25, but show no defect in the import of proteins containing classical NLSs. Expression of a Yrb4p mutant deficient in Gsp1p-binding is dominant-lethal and blocks bidirectional traffic across the NPC in wild-type cells. L25 binds to Yrb4p and Pse1p and is released by Gsp1p-GTP. Consistent with its putative role as an import receptor for L25-like proteins, Yrb4p localizes to the cytoplasm, the nucleoplasm and the NPC. PMID:9321403

  13. Growth inhibitory response and ultrastructural modification of oral-associated candidal reference strains (ATCC) by Piper betle L. extract

    PubMed Central

    Nordin, Mohd-Al-Faisal; Wan Harun, Wan Himratul-Aznita; Abdul Razak, Fathilah; Musa, Md Yusoff

    2014-01-01

    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments: (i) in the absence of P. betle extract; and in the presence of P. betle extract at respective concentrations of (ii) 1 mg⋅mL−1; (iii) 3 mg⋅mL−1; and (iv) 6 mg⋅mL−1. The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (µ). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the µ-values of the treated cells were significantly different than those of the untreated cells (P<0.05), indicating the fungistatic properties of the P. betle extract. The candidal population was also reduced from an average of 13.44×106 to 1.78×106 viable cell counts (CFU)⋅mL−1. SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity. PMID:24406634

  14. Antibacterial Activity of Ethanolic Extract of Syzygium polyanthum L. (Salam) Leaves against Foodborne Pathogens and Application as Food Sanitizer

    PubMed Central

    Ramli, Suzita; Radu, Son; Shaari, Khozirah

    2017-01-01

    The aim of this study was to determine antibacterial activity of S. polyanthum L. (salam) leaves extract foodborne pathogens. All the foodborne pathogens were inhibited after treating with extract in disk diffusion test with range 6.67 ± 0.58–9.67 ± 0.58 mm of inhibition zone. The range of MIC values was between 0.63 and 1.25 mg/mL whereas MBC values were in the range 0.63 mg/mL to 2.50 mg/mL. In time-kill curve, L. monocytogenes and P. aeruginosa were found completely killed after exposing to extract in 1 h incubation at 4x MIC. Four hours had been taken to completely kill E. coli, S. aureus, V. cholerae, and V. parahaemolyticus at 4x MIC. However, the population of K. pneumoniae, P. mirabilis, and S. typhimurium only reduced to 3 log CFU/mL. The treated cell showed cell rupture and leakage of the cell cytoplasm in SEM observation. The significant reduction of natural microflora in grapes fruit was started at 0.50% of extract at 5 min and this concentration also was parallel to sensory attributes acceptability where application of extract was accepted by the panellists until 5%. In conclusion, S. polyanthum extract exhibits antimicrobial activities and thus might be developed as natural sanitizer for washing raw food materials. PMID:29410966

  15. Effect of pulsed electric fields on the activity of neutral trehalase from beer yeast and RSM analysis.

    PubMed

    Ye, Haiqing; Jin, Yan; Lin, Songyi; Liu, Mingyuan; Yang, Yi; Zhang, Meishuo; Zhao, Ping; Jones, Gregory

    2012-06-01

    The trehalase activity plays an important role in extraction of trehalose from beer yeast. In this study, the effect of pulsed electric field processing on neutral trehalase activity in beer yeast was investigated. In order to develop and optimize a pulsed electric field (PEF) mathematical model for activating the neutral trehalase, we have investigated three variables, including electric field intensity (10-50 kV/cm), pulse duration (2-10 μs) and liquid-solid ratio (20-50 ml/g) and subsequently optimized them by response surface methodology (RSM). The experimental data were fitted to a second-order polynomial equation and profiled into the corresponding contour plots. Optimal condition obtained by RSM is as follows: electric field intensity 42.13 kV/cm, liquid-solid ratio 30.12 ml/g and pulse duration 5.46 μs. Under these conditions, with the trehalose decreased 8.879 mg/L, the PEF treatment had great effect on activating neutral trehalase in beer yeast cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  17. Optimization of acidic extraction of astaxanthin from Phaffia rhodozyma *

    PubMed Central

    Ni, Hui; Chen, Qi-he; He, Guo-qing; Wu, Guang-bin; Yang, Yuan-fan

    2008-01-01

    Optimization of a process for extracting astaxanthin from Phaffia rhodozyma by acidic method was investigated, regarding several extraction factors such as acids, organic solvents, temperature and time. Fractional factorial design, central composite design and response surface methodology were used to derive a statistically optimal model, which corresponded to the following optimal condition: concentration of lactic acid at 5.55 mol/L, ratio of ethanol to yeast dry weight at 20.25 ml/g, temperature for cell-disruption at 30 °C, and extraction time for 3 min. Under this condition, astaxanthin and the total carotenoids could be extracted in amounts of 1294.7 μg/g and 1516.0 μg/g, respectively. This acidic method has advantages such as high extraction efficiency, low chemical toxicity and no special requirement of instruments. Therefore, it might be a more feasible and practical method for industrial practice. PMID:18196613

  18. Bioactivity studies of extracts from Tridax procumbens.

    PubMed

    Taddei, A; Rosas-Romero, A J

    2000-06-01

    An updated review on the biological activity of Tridax procumbens is presented. A detailed biological screening comprised of gram-positive and gram-negative bacteria, yeasts and fungi using crude extracts of this plant was undertaken. The n-hexane extract of the flowers showed activity against Escherichia coli. The same extract of the whole aerial parts was active against Mycobacterium smegmatis, Escherichia coli, Salmonella group C and Salmonella paratyphi. The ethyl-acetate extract of the flowers was active against Bacillus cereus and Klebsiella sp. The aerial parts extract also showed activity only against Mycobacterium smegmatis and Staphylococcus aureus, while the aqueous extract showed no antimicrobial activity. None of the tested extracts was active against the yeasts, Candida albicans, Candida tropicalis and Rhodotorula rubra; or the fungi: Aspergillus flavus, Aspergillus niger, Mucor sp. and Trichophyton rubrum.

  19. Yeast identification in floral nectar of Mimulus aurantiacus (Invited)

    NASA Astrophysics Data System (ADS)

    Kyauk, C.; Belisle, M.; Fukami, T.

    2009-12-01

    Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.

  20. Optimization of extraction of polysaccharides from fruiting body of Cordyceps militaris (L.) link using response surface methodology

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang Chinh; Thi, Dinh Huynh Mong; Pham, Dinh Chuong

    2018-04-01

    Polysaccharides from fruiting body of Cordyceps militaris (L.) Link possess various pharmaceutical activities. In this study, polysaccharides from the fruiting body of C. militaris were extracted with different solvents. Of those solvents tested, distilled water was identified as the most efficient solvent for the extraction, resulting in a significant increase in polysaccharides yield. Response surface methodology was then used to optimize the extraction conditions and establish a reliable mathematical model for prediction. A maximum polysaccharides yield of 11.07% was reached at a ratio of water to raw material of 23.2:1 mL/g, an extraction time of 76 min, and a temperature of 93.6°C. This study indicates that the obtained optimal extraction conditions are an efficient method for extraction of polysaccharides from the fruiting body of C. militaris.