Sample records for l-3-hydroxybutyryl-coa dehydrogenase activity

  1. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury.

    PubMed

    Cornille, Emilie; Abou-Hamdan, Mhamad; Khrestchatisky, Michel; Nieoullon, André; de Reggi, Max; Gharib, Bouchra

    2010-04-23

    The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.

  2. Thermophilic Coenzyme B12-Dependent Acyl Coenzyme A (CoA) Mutase from Kyrpidia tusciae DSM 2912 Preferentially Catalyzes Isomerization of (R)-3-Hydroxybutyryl-CoA and 2-Hydroxyisobutyryl-CoA.

    PubMed

    Weichler, Maria-Teresa; Kurteva-Yaneva, Nadya; Przybylski, Denise; Schuster, Judith; Müller, Roland H; Harms, Hauke; Rohwerder, Thore

    2015-07-01

    The recent discovery of a coenzyme B12-dependent acyl-coenzyme A (acyl-CoA) mutase isomerizing 3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA in the mesophilic bacterium Aquincola tertiaricarbonis L108 (N. Yaneva, J. Schuster, F. Schäfer, V. Lede, D. Przybylski, T. Paproth, H. Harms, R. H. Müller, and T. Rohwerder, J Biol Chem 287:15502-15511, 2012, http://dx.doi.org/10.1074/jbc.M111.314690) could pave the way for a complete biosynthesis route to the building block chemical 2-hydroxyisobutyric acid from renewable carbon. However, the enzyme catalyzes only the conversion of the stereoisomer (S)-3-hydroxybutyryl-CoA at reasonable rates, which seriously hampers an efficient combination of mutase and well-established bacterial poly-(R)-3-hydroxybutyrate (PHB) overflow metabolism. Here, we characterize a new 2-hydroxyisobutyryl-CoA mutase found in the thermophilic knallgas bacterium Kyrpidia tusciae DSM 2912. Reconstituted mutase subunits revealed highest activity at 55°C. Surprisingly, already at 30°C, isomerization of (R)-3-hydroxybutyryl-CoA was about 7,000 times more efficient than with the mutase from strain L108. The most striking structural difference between the two mutases, likely determining stereospecificity, is a replacement of active-site residue Asp found in strain L108 at position 117 with Val in the enzyme from strain DSM 2912, resulting in a reversed polarity at this binding site. Overall sequence comparison indicates that both enzymes descended from different prokaryotic thermophilic methylmalonyl-CoA mutases. Concomitant expression of PHB enzymes delivering (R)-3-hydroxybutyryl-CoA (beta-ketothiolase PhaA and acetoacetyl-CoA reductase PhaB from Cupriavidus necator) with the new mutase in Escherichia coli JM109 and BL21 strains incubated on gluconic acid at 37°C led to the production of 2-hydroxyisobutyric acid at maximal titers of 0.7 mM. Measures to improve production in E. coli, such as coexpression of the chaperone MeaH and repression of

  3. Crystal structure of 4-hydroxybutyryl-CoA dehydratase: radical catalysis involving a [4Fe-4S] cluster and flavin.

    PubMed

    Martins, Berta M; Dobbek, Holger; Cinkaya, Irfan; Buckel, Wolfgang; Messerschmidt, Albrecht

    2004-11-02

    Dehydratases catalyze the breakage of a carbon-oxygen bond leading to unsaturated products via the elimination of water. The 1.6-A resolution crystal structure of 4-hydroxybutyryl-CoA dehydratase from the gamma-aminobutyrate-fermenting Clostridium aminobutyricum represents a new class of dehydratases with an unprecedented active site architecture. A [4Fe-4S](2+) cluster, coordinated by three cysteine and one histidine residues, is located 7 A from the Re-side of a flavin adenine dinucleotide (FAD) moiety. The structure provides insight into the function of these ubiquitous prosthetic groups in the chemically nonfacile, radical-mediated dehydration of 4-hydroxybutyryl-CoA. The substrate can be bound between the [4Fe-4S](2+) cluster and the FAD with both cofactors contributing to its radical activation and catalytic conversion. Our results raise interesting questions regarding the mechanism of acyl-CoA dehydrogenases, which are involved in fatty acid oxidation, and address the divergent evolution of the ancestral common gene.

  4. Cyclohexanecarboxyl-Coenzyme A (CoA) and Cyclohex-1-ene-1-Carboxyl-CoA Dehydrogenases, Two Enzymes Involved in the Fermentation of Benzoate and Crotonate in Syntrophus aciditrophicus

    PubMed Central

    Kung, Johannes W.; Seifert, Jana; von Bergen, Martin

    2013-01-01

    The strictly anaerobic Syntrophus aciditrophicus is a fermenting deltaproteobacterium that is able to degrade benzoate or crotonate in the presence and in the absence of a hydrogen-consuming partner. During growth in pure culture, both substrates are dismutated to acetate and cyclohexane carboxylate. In this work, the unknown enzymes involved in the late steps of cyclohexane carboxylate formation were studied. Using enzyme assays monitoring the oxidative direction, a cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA)-forming cyclohexanecarboxyl-CoA (ChCoA) dehydrogenase was purified and characterized from S. aciditrophicus and after heterologous expression of its gene in Escherichia coli. In addition, a cyclohexa-1,5-diene-1-carboxyl-CoA (Ch1,5CoA)-forming Ch1CoA dehydrogenase was characterized after purification of the heterologously expressed gene. Both enzymes had a native molecular mass of 150 kDa and were composed of a single, 40- to 45-kDa subunit; both contained flavin adenine dinucleotide (FAD) as a cofactor. While the ChCoA dehydrogenase was competitively inhibited by Ch1CoA in the oxidative direction, Ch1CoA dehydrogenase further converted the product Ch1,5CoA to benzoyl-CoA. The results obtained suggest that Ch1,5CoA is a common intermediate in benzoate and crotonate fermentation that serves as an electron-accepting substrate for the two consecutively operating acyl-CoA dehydrogenases characterized in this work. In the case of benzoate fermentation, Ch1,5CoA is formed by a class II benzoyl-CoA reductase; in the case of crotonate fermentation, Ch1,5CoA is formed by reversing the reactions of the benzoyl-CoA degradation pathway that are also employed during the oxidative (degradative) branch of benzoate fermentation. PMID:23667239

  5. Functional role of a distal (3'-phosphate) group of CoA in the recombinant human liver medium-chain acyl-CoA dehydrogenase-catalysed reaction.

    PubMed Central

    Peterson, K L; Srivastava, D K

    1997-01-01

    The X-ray crystallographic structure of medium-chain acyl-CoA dehydrogenase (MCAD)-octenoyl-CoA complex reveals that the 3'-phosphate group of CoA is confined to the exterior of the protein structure [approx. 15 A (1.5 nm) away from the enzyme active site], and is fully exposed to the outside solvent environment. To ascertain whether such a distal (3'-phosphate) fragment of CoA plays any significant role in the enzyme catalysis, we investigated the recombinant human liver MCAD (HMCAD)-catalysed reaction by using normal (phospho) and 3'-phosphate-truncated (dephospho) forms of octanoyl-CoA and butyryl-CoA substrates. The steady-state kinetic data revealed that deletion of the 3'-phosphate group from octanoyl-CoA substrate increased the turnover rate of the enzyme to about one-quarter, whereas that from butyryl-CoA substrate decreased the turnover rate of the enzyme to about one-fifth; the Km values of both these substrates were increased by 5-10-fold on deletion of the 3'-phosphate group from the corresponding acyl-CoA substrates. The transient kinetics for the reductive half-reaction, oxidative half-reaction and the dissociation 'off-rate' (of the reaction product from the oxidized enzyme site) were all found to be affected by deletions of the 3'-phosphate group from octanoyl-CoA and butyryl-CoA substrates. A cumulative account of these results reveals that, although the 3'-phosphate group of acyl-CoA substrates might seem 'useless' on the basis of the structural data, it has an essential functional role during HMCAD catalysis. PMID:9271097

  6. Effects of the 1- N-(4-Amino-2 S-hydroxybutyryl) and 6'- N-(2-Hydroxyethyl) Substituents on Ribosomal Selectivity, Cochleotoxicity, and Antibacterial Activity in the Sisomicin Class of Aminoglycoside Antibiotics.

    PubMed

    Sonousi, Amr; Sarpe, Vikram A; Brilkova, Margarita; Schacht, Jochen; Vasella, Andrea; Böttger, Erik C; Crich, David

    2018-05-10

    Syntheses of the 6'- N-(2-hydroxyethyl) and 1- N-(4-amino-2 S-hydroxybutyryl) derivatives of the 4,6-aminoglycoside sisomicin and that of the doubly modified 1- N-(4-amino-2 S-hydroxybutyryl)-6'- N-(2-hydroxyethyl) derivative known as plazomicin are reported together with their antibacterial and antiribosomal activities and selectivities. The 6'- N-(2-hydroxyethyl) modification results in a moderate increase in prokaryotic/eukaryotic ribosomal selectivity, whereas the 1- N-(4-amino-2 S-hydroxybutyryl) modification has the opposite effect. When combined in plazomicin, the effects of the two groups on ribosomal selectivity cancel each other out, leading to the prediction that plazomicin will exhibit ototoxicity comparable to those of the parent and the current clinical aminoglycoside antibiotics gentamicin and tobramycin, as borne out by ex vivo studies with mouse cochlear explants. The 6'- N-(2-hydroxyethyl) modification restores antibacterial activity in the presence of the AAC(6') aminoglycoside-modifying enzymes, while the 1- N-(4-amino-2 S-hydroxybutyryl) modification overcomes resistance to the AAC(2') class but is still affected to some extent by the AAC(3) class. Neither modification is able to circumvent the ArmA ribosomal methyltransferase-induced aminoglycoside resistance. The use of phenyltriazenyl protection for the secondary amino group of sisomicin facilitates the synthesis of each derivative and their characterization through the provision of sharp NMR spectra for all intermediates.

  7. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme.

    PubMed

    Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa

    2017-01-15

    l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P) + -dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD + Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD + /NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme. In this study, we determined the three-dimensional structure of l-Trp dehydrogenase, analyzed its various site-directed substitution mutants at residues located in the active site, and obtained the

  8. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function.

    PubMed

    Rawat, Dhwajbahadur K; Hecker, Peter; Watanabe, Makino; Chettimada, Sukrutha; Levy, Richard J; Okada, Takao; Edwards, John G; Gupte, Sachin A

    2012-01-01

    We recently demonstrated that a 17-ketosteroid, epiandrosterone, attenuates L-type Ca(2+) currents (I(Ca-L)) in cardiac myocytes and inhibits myocardial contractility. Because 17-ketosteroids are known to inhibit glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, and to reduce intracellular NADPH levels, we hypothesized that inhibition of G6PD could be a novel signaling mechanism which inhibit I(Ca-L) and, therefore, cardiac contractile function. We tested this idea by examining myocardial function in isolated hearts and Ca(2+) channel activity in isolated cardiac myocytes. Myocardial function was tested in Langendorff perfused hearts and I(Ca-L) were recorded in the whole-cell patch configuration by applying double pulses from a holding potential of -80 mV and then normalized to the peak amplitudes of control currents. 6-Aminonicotinamide, a competitive inhibitor of G6PD, increased pCO(2) and decreased pH. Additionally, 6-aminonicotinamide inhibited G6PD activity, reduced NADPH levels, attenuated peak I(Ca-L) amplitudes, and decreased left ventricular developed pressure and ±dp/dt. Finally, dialyzing NADPH into cells from the patch pipette solution attenuated the suppression of I(Ca-L) by 6-aminonicotinamide. Likewise, in G6PD-deficient mice, G6PD insufficiency in the heart decreased GSH-to-GSSG ratio, superoxide, cholesterol and acetyl CoA. In these mice, M-mode echocardiographic findings showed increased diastolic volume and end-diastolic diameter without changes in the fraction shortening. Taken together, these findings suggest that inhibiting G6PD activity and reducing NADPH levels alters metabolism and leads to inhibition of L-type Ca(2+) channel activity. Notably, this pathway may be involved in modulating myocardial contractility under physiological and pathophysiological conditions during which the pentose phosphate pathway-derived NADPH redox is modulated (e.g., ischemia-reperfusion and heart failure).

  9. Some Lactobacillus l-Lactate Dehydrogenases Exhibit Comparable Catalytic Activities for Pyruvate and Oxaloacetate

    PubMed Central

    Arai, Kazuhito; Kamata, Takeo; Uchikoba, Hiroyuki; Fushinobu, Shinya; Matsuzawa, Hiroshi; Taguchi, Hayao

    2001-01-01

    The nonallosteric and allosteric l-lactate dehydrogenases of Lactobacillus pentosus and L. casei, respectively, exhibited broad substrate specificities, giving virtually the same maximal reaction velocity and substrate Km values for pyruvate and oxaloacetate. Replacement of Pro101 with Asn reduced the activity of the L. pentosus enzyme toward these alternative substrates to a greater extent than the activity toward pyruvate. PMID:11114942

  10. Mycophenolic acid exposure and complement fraction C3 influence inosine 5'-monophosphate dehydrogenase activity in systemic lupus erythematosus.

    PubMed

    Mino, Yasuaki; Naito, Takafumi; Shimoyama, Kumiko; Ogawa, Noriyoshi; Kawakami, Junichi

    2017-07-01

    Background Mycophenolate mofetil has recently been reported to be effective against systemic lupus erythematosus. The influence of the pharmacokinetics of mycophenolic acid, the active form of mycophenolate mofetil and the major inactive mycophenolic acid phenolic glucuronide on the activity of the target enzyme inosine 5'-monophosphate dehydrogenase, is expected to be revealed. The aim of this study was to identify the factors associated with inosine 5'-monophosphate dehydrogenase activity in systemic lupus erythematosus patients. Methods Fifty systemic lupus erythematosus patients in remission maintenance phase (29 received mycophenolate mofetil [MMF+] and 21 did not [MMF-]) were enrolled. Median and interquartile range of dose of mycophenolate mofetil were 1500 and 1000-1500 mg/day, respectively. Stepwise multiple linear regression analysis was performed to assess the dependence between inosine 5'-monophosphate dehydrogenase activity and 25 predictor values including predose plasma concentrations of free mycophenolic acid and mycophenolic acid phenolic glucuronide. Results Median and interquartile range of predose total plasma concentrations of mycophenolic acid and mycophenolic acid phenolic glucuronide were 2.73 and 1.43-5.73 and 25.5 and 13.1-54.7  µg/mL, respectively. Predose inosine 5'-monophosphate dehydrogenase activity was significantly higher in MMF+ than MMF- patients (median 38.3 and 20.6 nmoL xanthosine 5'-monophosphate/g haemoglobin/h, P<0.01). The plasma concentration of free mycophenolic acid phenolic glucuronide, complement fraction C3 and body weight were significant predictors accounting for interindividual variability in the inosine 5'-monophosphate dehydrogenase activity (adjusted R 2  = 0.52, P < 0.01) in a multivariate analysis. Conclusions Predose inosine 5'-monophosphate dehydrogenase activity was higher in systemic lupus erythematosus patients receiving mycophenolate mofetil therapy. Inosine 5'-monophosphate dehydrogenase

  11. Molecular Structure of a 9-MDa Icosahedral Pyruvate Dehydrogenase Subcomplex Containing the E2 and E3 Enzymes Using Cryoelectron Microscopy*

    PubMed Central

    Milne, Jacqueline L. S.; Wu, Xiongwu; Borgnia, Mario J.; Lengyel, Jeffrey S.; Brooks, Bernard R.; Shi, Dan; Perham, Richard N.; Subramaniam, Sriram

    2006-01-01

    The pyruvate dehydrogenase multienzyme complexes are among the largest multifunctional catalytic machines in cells, catalyzing the production of acetyl CoA from pyruvate. We have previously reported the molecular architecture of an 11-MDa subcomplex comprising the 60-mer icosahedral dihydrolipoyl acetyltransferase (E2) decorated with 60 copies of the heterotetrameric (α2β2) 153-kDa pyruvate decarboxylase (E1) from Bacillus stearothermophilus (Milne, J. L. S., Shi, D., Rosenthal, P. B., Sunshine, J. S., Domingo, G. J., Wu, X., Brooks, B. R., Perham, R. N., Henderson, R., and Subramaniam, S. (2002) EMBO J. 21, 5587–5598). An annular gap of ~90 Å separates the acetyltransferase catalytic domains of the E2 from an outer shell formed of E1 tetramers. Using cryoelectron microscopy, we present here a three-dimensional reconstruction of the E2 core decorated with 60 copies of the homodimeric 100-kDa dihydrolipoyl dehydrogenase (E3). The E2E3 complex has a similar annular gap of ~75 Å between the inner icosahedral assembly of acetyltransferase domains and the outer shell of E3 homodimers. Automated fitting of the E3 coordinates into the map suggests excellent correspondence between the density of the outer shell map and the positions of the two best fitting orientations of E3. As in the case of E1 in the E1E2 complex, the central 2-fold axis of the E3 homodimer is roughly oriented along the periphery of the shell, making the active sites of the enzyme accessible from the annular gap between the E2 core and the outer shell. The similarities in architecture of the E1E2 and E2E3 complexes indicate fundamental similarities in the mechanism of active site coupling involved in the two key stages requiring motion of the swinging lipoyl domain across the annular gap, namely the synthesis of acetyl CoA and regeneration of the dithiolane ring of the lipoyl domain. PMID:16308322

  12. Coupling between d-3-phosphoglycerate dehydrogenase and d-2-hydroxyglutarate dehydrogenase drives bacterial l-serine synthesis

    PubMed Central

    Zhang, Wen; Zhang, Manman; Gao, Chao; Zhang, Yipeng; Ge, Yongsheng; Guo, Shiting; Guo, Xiaoting; Zhou, Zikang; Liu, Qiuyuan; Zhang, Yingxin; Ma, Cuiqing; Tao, Fei; Xu, Ping

    2017-01-01

    l-Serine biosynthesis, a crucial metabolic process in most domains of life, is initiated by d-3-phosphoglycerate (d-3-PG) dehydrogenation, a thermodynamically unfavorable reaction catalyzed by d-3-PG dehydrogenase (SerA). d-2-Hydroxyglutarate (d-2-HG) is traditionally viewed as an abnormal metabolite associated with cancer and neurometabolic disorders. Here, we reveal that bacterial anabolism and catabolism of d-2-HG are involved in l-serine biosynthesis in Pseudomonas stutzeri A1501 and Pseudomonas aeruginosa PAO1. SerA catalyzes the stereospecific reduction of 2-ketoglutarate (2-KG) to d-2-HG, responsible for the major production of d-2-HG in vivo. SerA combines the energetically favorable reaction of d-2-HG production to overcome the thermodynamic barrier of d-3-PG dehydrogenation. We identified a bacterial d-2-HG dehydrogenase (D2HGDH), a flavin adenine dinucleotide (FAD)-dependent enzyme, that converts d-2-HG back to 2-KG. Electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) are also essential in d-2-HG metabolism through their capacity to transfer electrons from D2HGDH. Furthermore, while the mutant with D2HGDH deletion displayed decreased growth, the defect was rescued by adding l-serine, suggesting that the D2HGDH is functionally tied to l-serine synthesis. Substantial flux flows through d-2-HG, being produced by SerA and removed by D2HGDH, ETF, and ETFQO, maintaining d-2-HG homeostasis. Overall, our results uncover that d-2-HG–mediated coupling between SerA and D2HGDH drives bacterial l-serine synthesis. PMID:28827360

  13. Identification of 9α-Hydroxy-17-Oxo-1,2,3,4,10,19-Hexanorandrostan-5-Oic Acid in Steroid Degradation by Comamonas testosteroni TA441 and Its Conversion to the Corresponding 6-En-5-Oyl Coenzyme A (CoA) Involving Open Reading Frame 28 (ORF28)- and ORF30-Encoded Acyl-CoA Dehydrogenases

    PubMed Central

    Hayashi, Toshiaki; Koshino, Hiroyuki; Malon, Michal; Hirota, Hiroshi; Kudo, Toshiaki

    2014-01-01

    Comamonas testosteroni TA441 degrades steroids via aromatization and meta-cleavage of the A ring, followed by hydrolysis, and produces 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid as an intermediate compound. Herein, we identify a new intermediate compound, 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid. Open reading frame 28 (ORF28)- and ORF30-encoded acyl coenzyme A (acyl-CoA) dehydrogenase was shown to convert the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid to the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid. A homology search of the deduced amino acid sequences suggested that the ORF30-encoded protein is a member of the acyl-CoA dehydrogenase_fadE6_17_26 family, whereas the deduced amino acid sequence of ORF28 showed no significant similarity to specific acyl-CoA dehydrogenase family proteins. Possible steroid degradation gene clusters similar to the cluster of TA441 appear in bacterial genome analysis data. In these clusters, ORFs similar to ORFs 28 and 30 are often found side by side and ordered in the same manner as ORFs 28 and 30. PMID:25092028

  14. Adrenal 11-beta hydroxysteroid dehydrogenase activity in response to stress.

    PubMed

    Zallocchi, Marisa; Matković, Laura; Damasco, María C

    2004-06-01

    This work studied the effect of stresses produced by simulated gavage or gavage with 200 mmol/L HCl two hours before adrenal extraction, on the activities of the 11beta-hydroxysteroid dehydrogenase 1 and 11beta-hydroxysteroid dehydrogenase 2 isoforms present in the rat adrenal gland. These activities were determined on immediately prepared adrenal microsomes following incubations with 3H-corticosterone and NAD+ or NADP+. 11-dehydrocorticosterone was measured as an end-product by TLC, and controls were adrenal microsomes from rats kept under basal (unstressed) conditions. 11beta-hydroxysteroid dehydrogenase 1 activity, but not 11beta-hydroxysteroid dehydrogenase 2 activity, was increased under both stress-conditions. Homeostatically, the stimulation of 11beta-hydroxysteroid dehydrogenase 1 activity would increase the supply of glucocorticoids. These, in turn, would activate the enzyme phenylethanolamine N-methyl transferase, thereby improving the synthesis of epinephrine as part of the stress-response.

  15. Inhibitory effect on in vitro LDL oxidation and HMG Co-A reductase activity of the liquid-liquid partitioned fractions of Hericium erinaceus (Bull.) Persoon (lion's mane mushroom).

    PubMed

    Rahman, Mohammad Azizur; Abdullah, Noorlidah; Aminudin, Norhaniza

    2014-01-01

    Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ). The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins) for the formation of conjugated diene (CD) at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL) of thiobarbituric acid reactive substances (TBARS) at 1 mg/mL. It also mostly inhibited (59.91%) the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases.

  16. Structural and functional comparison of two human liver dihydrodiol dehydrogenases associated with 3 alpha-hydroxysteroid dehydrogenase activity.

    PubMed Central

    Deyashiki, Y; Taniguchi, H; Amano, T; Nakayama, T; Hara, A; Sawada, H

    1992-01-01

    Two monomeric dihydrodiol dehydrogenases with pI values of 5.4 and 7.6 were co-purified with androsterone dehydrogenase activity to homogeneity from human liver. The two enzymes differed from each other on peptide mapping and in their heat-stabilities; with respect to the latter the dihydrodiol dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase activities of the respective enzymes were similarly inactivated. The pI 5.4 enzyme was equally active towards trans- and cis-benzene dihydrodiols, and towards (S)- and (R)-forms of indan-1-ol and 1,2,3,4-tetrahydronaphth-1-ol and oxidized the 3 alpha-hydroxy group of C19-, C21- and C24-steroids, whereas the pI 7.6 enzyme showed high specificity for trans-benzene dihydrodiol, (S)-forms of the alicyclic alcohols and C19- and C21-steroids. Although the two enzymes reduced various xenobiotic carbonyl compounds and the 3-oxo group of C19- and C21-steroids, and were A-specific in the hydrogen transfer from NADPH, only the pI 5.4 enzyme showed reductase activity towards 7 alpha-hydroxy-5 beta-cholestan-3-one and dehydrolithocholic acid. The affinity of the two enzymes for the steroidal substrates was higher than that for the xenobiotic substrates. The two enzymes also showed different susceptibilities to the inhibition by anti-inflammatory drugs and bile acids. Whereas the pI-5.4 enzyme was highly sensitive to anti-inflammatory steroids, showing mixed-type inhibitions with respect to indan-1-ol and androsterone, the pI 7.6 enzyme was inhibited more potently by non-steroidal anti-inflammatory drugs and bile acids than by the steroidal drugs, and the inhibitions were all competitive. These structural and functional differences suggest that the two enzymes are 3 alpha-hydroxysteroid dehydrogenase isoenzymes. Images Fig. 2. PMID:1554355

  17. Demonstration of 3 alpha(17 beta)-hydroxysteroid dehydrogenase distinct from 3 alpha-hydroxysteroid dehydrogenase in hamster liver.

    PubMed Central

    Ohmura, M; Hara, A; Nakagawa, M; Sawada, H

    1990-01-01

    NAD(+)-linked and NADP(+)-linked 3 alpha-hydroxysteroid dehydrogenases were purified to homogeneity from hamster liver cytosol. The two monomeric enzymes, although having similar molecular masses of 38,000, differed from each other in pI values, activation energy and heat stability. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with protease. The NADP(+)-linked enzyme catalysed the oxidoreduction of various 3 alpha-hydroxysteroids, whereas the NAD(+)-linked enzyme oxidized the 3 alpha-hydroxy group of pregnanes and some bile acids, and the 17 beta-hydroxy group of testosterone and androstanes. The thermal stabilities of the 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the NAD(+)-linked enzyme were identical, and the two enzyme activities were inhibited by mixing 17 beta- and 3 alpha-hydroxysteroid substrates, respectively. Medroxyprogesterone acetate, hexoestrol and 3 beta-hydroxysteroids competitively inhibited 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the enzyme. These results show that hamster liver contains a 3 alpha(17 beta)-hydroxysteroid dehydrogenase structurally and functionally distinct from 3 alpha-hydroxysteroid dehydrogenase. Images Fig. 1. Fig. 2. PMID:2317205

  18. Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2.

    PubMed

    Sukpipat, Wiphat; Komeda, Hidenobu; Prasertsan, Poonsuk; Asano, Yasuhisa

    2017-01-01

    Meyerozyma caribbica strain 5XY2, which was isolated from an alcohol fermentation starter in Thailand, was found to catabolize l-arabinose as well as d-glucose and d-xylose. The highest production amounts of ethanol from d-glucose, xylitol from d-xylose, and l-arabitol from l-arabinose were 0.45 g/g d-glucose, 0.60 g/g d-xylose, and 0.61 g/g l-arabinose with 21.7 g/L ethanol, 20.2 g/L xylitol, and 30.3 g/l l-arabitol, respectively. The enzyme with l-arabitol dehydrogenase (LAD) activity was purified from the strain and found to exhibit broad specificity to polyols, such as xylitol, d-sorbitol, ribitol, and l-arabitol. Xylitol was the preferred substrate with K m =16.1 mM and k cat /K m =67.0 min -1 mM -1 , while l-arabitol was also a substrate for the enzyme with K m =31.1 mM and k cat /K m =6.5 min -1  mM -1 . Therefore, this enzyme from M. caribbica was named xylitol dehydrogenase (McXDH). McXDH had an optimum temperature and pH at 40°C and 9.5, respectively. The McXDH gene included a coding sequence of 1086 bp encoding a putative 362 amino acid protein of 39 kDa with an apparent homopentamer structure. Native McXDH and recombinant McXDH exhibited relative activities toward l-arabitol of approximately 20% that toward xylitol, suggesting the applicability of this enzyme with the functions of XDH and LAD to the development of pentose-fermenting Saccharomyces cerevisiae. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Systematic Functional Analysis of Active-Site Residues in l-Threonine Dehydrogenase from Thermoplasma volcanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.

    Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less

  20. Systematic Functional Analysis of Active-Site Residues in l-Threonine Dehydrogenase from Thermoplasma volcanium

    DOE PAGES

    Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.; ...

    2017-07-07

    Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less

  1. Inhibitory Effect on In Vitro LDL Oxidation and HMG Co-A Reductase Activity of the Liquid-Liquid Partitioned Fractions of Hericium erinaceus (Bull.) Persoon (Lion's Mane Mushroom)

    PubMed Central

    Aminudin, Norhaniza

    2014-01-01

    Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ). The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins) for the formation of conjugated diene (CD) at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL) of thiobarbituric acid reactive substances (TBARS) at 1 mg/mL. It also mostly inhibited (59.91%) the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases. PMID:24959591

  2. Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme.

    PubMed

    Ogura, Ryutaro; Wakamatsu, Taisuke; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2014-06-10

    An NAD(+)-dependent l-tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH) was cloned and overexpressed in Escherichia coli. The recombinant NpTrpDH with a C-terminal His6-tag was purified to homogeneity using a Ni-NTA agarose column, and was found to be a homodimer with a molecular mass of 76.1kDa. The enzyme required NAD(+) and NADH as cofactors for oxidative deamination and reductive amination, respectively, but not NADP(+) or NADPH. l-Trp was the preferred substrate for deamination, though l-Phe was deaminated at a much lower rate. The enzyme exclusively aminated 3-indolepyruvate; phenylpyruvate was inert. The pH optima for the deamination of l-Trp and amination of 3-indolpyruvate were 11.0 and 7.5, respectively. For deamination of l-Trp, maximum enzymatic activity was observed at 45°C. NpTrpDH retained more than 80% of its activity after incubation for 30min at pHs ranging from 5.0 to 11.5 or incubation for 10min at temperatures up to 40°C. Unlike l-Trp dehydrogenases from higher plants, NpTrpDH activity was not activated by metal ions. Typical Michaelis-Menten kinetics were observed for NAD(+) and l-Trp for oxidative deamination, but with reductive amination there was marked substrate inhibition by 3-indolepyruvate. NMR analysis of the hydrogen transfer from the C4 position of the nicotinamide moiety of NADH showed that NpTrpDH has a pro-S (B-type) stereospecificity similar to the Glu/Leu/Phe/Val dehydrogenase family. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Mutations in COA3 cause isolated complex IV deficiency associated with neuropathy, exercise intolerance, obesity, and short stature.

    PubMed

    Ostergaard, Elsebet; Weraarpachai, Woranontee; Ravn, Kirstine; Born, Alfred Peter; Jønson, Lars; Duno, Morten; Wibrand, Flemming; Shoubridge, Eric A; Vissing, John

    2015-03-01

    We investigated a subject with an isolated cytochrome c oxidase (COX) deficiency presenting with an unusual phenotype characterised by neuropathy, exercise intolerance, obesity, and short stature. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis showed an almost complete lack of COX assembly in subject fibroblasts, consistent with the very low enzymatic activity, and pulse-labelling mitochondrial translation experiments showed a specific decrease in synthesis of the COX1 subunit, the core catalytic subunit that nucleates assembly of the holoenzyme. Whole exome sequencing identified compound heterozygous mutations (c.199dupC, c.215A>G) in COA3, a small inner membrane COX assembly factor, resulting in a pronounced decrease in the steady-state levels of COA3 protein. Retroviral expression of a wild-type COA3 cDNA completely rescued the COX assembly and mitochondrial translation defects, confirming the pathogenicity of the mutations, and resulted in increased steady-state levels of COX1 in control cells, demonstrating a role for COA3 in the stabilisation of this subunit. COA3 exists in an early COX assembly complex that contains COX1 and other COX assembly factors including COX14 (C12orf62), another single pass transmembrane protein that also plays a role in coupling COX1 synthesis with holoenzyme assembly. Immunoblot analysis showed that COX14 was undetectable in COA3 subject fibroblasts, and that COA3 was undetectable in fibroblasts from a COX14 subject, demonstrating the interdependence of these two COX assembly factors. The mild clinical course in this patient contrasts with nearly all other cases of severe COX assembly defects that are usually fatal early in life, and underscores the marked tissue-specific involvement in mitochondrial diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.

    PubMed

    Deutch, Charles E

    2013-11-01

    The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.

  5. CoAs: The line of 3 d demarcation

    NASA Astrophysics Data System (ADS)

    Campbell, Daniel J.; Wang, Limin; Eckberg, Chris; Graf, Dave; Hodovanets, Halyna; Paglione, Johnpierre

    2018-05-01

    Transition metal-pnictide compounds have received attention for their tendency to combine magnetism and unconventional superconductivity. Binary CoAs lies on the border of paramagnetism and the more complex behavior seen in isostructural CrAs, MnP, FeAs, and FeP. Here we report the properties of CoAs single crystals grown with two distinct techniques along with density functional theory calculations of its electronic structure and magnetic ground state. While all indications are that CoAs is paramagnetic, both experiment and theory suggest proximity to a ferromagnetic instability. Quantum oscillations are seen in torque measurements up to 31.5 T and support the calculated paramagnetic Fermiology.

  6. A non-enzymatic function of 17β-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival

    PubMed Central

    Rauschenberger, Katharina; Schöler, Katja; Sass, Jörn Oliver; Sauer, Sven; Djuric, Zdenka; Rumig, Cordula; Wolf, Nicole I; Okun, Jürgen G; Kölker, Stefan; Schwarz, Heinz; Fischer, Christine; Grziwa, Beate; Runz, Heiko; Nümann, Astrid; Shafqat, Naeem; Kavanagh, Kathryn L; Hämmerling, Günter; Wanders, Ronald J A; Shield, Julian P H; Wendel, Udo; Stern, David; Nawroth, Peter; Hoffmann, Georg F; Bartram, Claus R; Arnold, Bernd; Bierhaus, Angelika; Oppermann, Udo; Steinbeisser, Herbert; Zschocke, Johannes

    2010-01-01

    Deficiency of the mitochondrial enzyme 2-methyl-3-hydroxybutyryl-CoA dehydrogenase involved in isoleucine metabolism causes an organic aciduria with atypical neurodegenerative course. The disease-causing gene is HSD17B10 and encodes 17β-hydroxysteroid dehydrogenase type 10 (HSD10), a protein also implicated in the pathogenesis of Alzheimer's disease. Here we show that clinical symptoms in patients are not correlated with residual enzymatic activity of mutated HSD10. Loss-of-function and rescue experiments in Xenopus embryos and cells derived from conditional Hsd17b10−/− mice demonstrate that a property of HSD10 independent of its enzymatic activity is essential for structural and functional integrity of mitochondria. Impairment of this function in neural cells causes apoptotic cell death whilst the enzymatic activity of HSD10 is not required for cell survival. This finding indicates that the symptoms in patients with mutations in the HSD17B10 gene are unrelated to accumulation of toxic metabolites in the isoleucine pathway and, rather, related to defects in general mitochondrial function. Therefore alternative therapeutic approaches to an isoleucine-restricted diet are required. PMID:20077426

  7. Activity of select dehydrogenases with sepharose-immobilized N(6)-carboxymethyl-NAD.

    PubMed

    Beauchamp, Justin; Vieille, Claire

    2015-01-01

    N(6)-carboxymethyl-NAD (N(6)-CM-NAD) can be used to immobilize NAD onto a substrate containing terminal primary amines. We previously immobilized N(6)-CM-NAD onto sepharose beads and showed that Thermotoga maritima glycerol dehydrogenase could use the immobilized cofactor with cofactor recycling. We now show that Saccharomyces cerevisiae alcohol dehydrogenase, rabbit muscle L-lactate dehydrogenase (type XI), bovine liver L-glutamic dehydrogenase (type III), Leuconostoc mesenteroides glucose-6-phosphate dehydro-genase, and Thermotoga maritima mannitol dehydrogenase are active with soluble N(6)-CM-NAD. The products of all enzymes but 6-phospho-D-glucono-1,5-lactone were formed when sepharose-immobilized N(6)-CM-NAD was recycled by T. maritima glycerol dehydrogenase, indicating that N(6)-immobilized NAD is suitable for use by a variety of different dehydrogenases. Observations of the enzyme active sites suggest that steric hindrance plays a greater role in limiting or allowing activity with the modified cofactor than do polarity and charge of the residues surrounding the N(6)-amine group on NAD.

  8. Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity.

    PubMed

    Jiang, Ting; Xu, Yanbing; Sun, Xiucheng; Zheng, Zhaojuan; Ouyang, Jia

    2014-03-01

    Bacillus coagulans is a homofermentative, acid-tolerant and thermophilic sporogenic lactic acid bacterium, which is capable of producing high yields of optically pure lactic acid. The l-(+)-lactate dehydrogenase (l-LDH) from B. coagulans is considered as an ideal biocatalyst for industrial production. In this study, the gene ldhL encoding a thermostable l-LDH was amplified from B. coagulans NL01 genomic DNA and successfully expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was partially purified and its enzymatic properties were characterized. Sequence analysis demonstrated that the l-LDH was a fructose 1,6-diphosphate-activated NAD-dependent lactate dehydrogenase (l-nLDH). Its molecular weight was approximately 34-36kDa. The Km and Vmax values of the purified l-nLDH for pyruvate were 1.91±0.28mM and 2613.57±6.43μmol(minmg)(-1), respectively. The biochemical properties of l-nLDH showed that the specific activity were up to 2323.29U/mg with optimum temperature of 55°C and pH of 6.5 in the pyruvate reduction and 351.01U/mg with temperature of 55°C and pH of 11.5 in the lactate oxidation. The enzyme also showed some activity in the absence of FDP, with a pH optimum of 4.0. Compared to other lactic acid bacterial l-nLDHs, the enzyme was found to be relatively stable at 50°C. Ca(2+), Ba(2+), Mg(2+) and Mn(2+) ions had activated effects on the enzyme activity, and the enzyme was greatly inhibited by Ni(2+) ion. Besides these, l-nLDH showed the higher specificity towards pyruvate esters, such as methyl pyruvate and ethyl pyruvate. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Role of Feedback Regulation of Pantothenate Kinase (CoaA) in Control of Coenzyme A Levels in Escherichia coli

    PubMed Central

    Rock, Charles O.; Park, Hee-Won; Jackowski, Suzanne

    2003-01-01

    Pantothenate kinase (CoaA) is a key regulator of coenzyme A (CoA) biosynthesis in Escherichia coli, and its activity is controlled by feedback inhibition by CoA and its thioesters. The importance of feedback inhibition in the control of the intracellular CoA levels was tested by constructing three site-directed mutants of CoaA that were predicted to be feedback resistant based on the crystal structure of the CoaA-CoA binary complex. CoaA[R106A], CoaA[H177Q], and CoaA[F247V] were purified and shown to retain significant catalytic activity and be refractory to inhibition by CoA. CoaA[R106A] retained 50% of the catalytic activity of CoaA, whereas the CoaA[H177Q] and CoaA[F247V] mutants were less active. The importance of feedback control of CoaA to the intracellular CoA levels was assessed by expressing either CoaA or CoaA[R106A] in strain ANS3 [coaA15(Ts) panD2]. Cells expressing CoaA[R106A] had significantly higher levels of phosphorylated pantothenate-derived metabolites and CoA in vivo and excreted significantly more 4′-phosphopantetheine into the medium compared to cells expressing the wild-type protein. These data illustrate the key role of feedback regulation of pantothenate kinase in the control of intracellular CoA levels. PMID:12754240

  10. Production of 2-Hydroxyisobutyric Acid from Methanol by Methylobacterium extorquens AM1 Expressing (R)-3-Hydroxybutyryl Coenzyme A-Isomerizing Enzymes

    PubMed Central

    Rohde, Maria-Teresa; Tischer, Sylvi; Harms, Hauke

    2016-01-01

    ABSTRACT The biotechnological production of the methyl methacrylate precursor 2-hydroxyisobutyric acid (2-HIBA) via bacterial poly-3-hydroxybutyrate (PHB) overflow metabolism requires suitable (R)-3-hydroxybutyryl coenzyme A (CoA)-specific coenzyme B12-dependent mutases (RCM). Here, we characterized a predicted mutase from Bacillus massiliosenegalensis JC6 as a mesophilic RCM closely related to the thermophilic enzyme previously identified in Kyrpidia tusciae DSM 2912 (M.-T. Weichler et al., Appl Environ Microbiol 81:4564–4572, 2015, https://doi.org/10.1128/AEM.00716-15). Using both RCM variants, 2-HIBA production from methanol was studied in fed-batch bioreactor experiments with recombinant Methylobacterium extorquens AM1. After complete nitrogen consumption, the concomitant formation of PHB and 2-HIBA was achieved, indicating that both sets of RCM genes were successfully expressed. However, although identical vector systems and incubation conditions were chosen, the metabolic activity of the variant bearing the RCM genes from strain DSM 2912 was severely inhibited, likely due to the negative effects caused by heterologous expression. In contrast, the biomass yield of the variant expressing the JC6 genes was close to the wild-type performance, and 2-HIBA titers of 2.1 g liter−1 could be demonstrated. In this case, up to 24% of the substrate channeled into overflow metabolism was converted to the mutase product, and maximal combined 2-HIBA plus PHB yields from methanol of 0.11 g g−1 were achieved. Reverse transcription-quantitative PCR analysis revealed that metabolic genes, such as methanol dehydrogenase and acetoacetyl-CoA reductase genes, are strongly downregulated after exponential growth, which currently prevents a prolonged overflow phase, thus preventing higher product yields with strain AM1. IMPORTANCE In this study, we genetically modified a methylotrophic bacterium in order to channel intermediates of its overflow metabolism to the C4 carboxylic

  11. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Behal, Robert; Schnable, Patrick S.; Ke, Jinshan; Johnson, Jerry L.; Allred, Carolyn C.; Fatland, Beth; Lutziger, Isabelle; Wen, Tsui-Jung

    2005-09-13

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.

  12. Activation of human liver 3 alpha-hydroxysteroid dehydrogenase by sulphobromophthalein.

    PubMed Central

    Matsuura, K; Tamada, Y; Deyashiki, Y; Miyabe, Y; Nakanishi, M; Ohya, I; Hara, A

    1996-01-01

    Human liver contains at least two isoenzymes (DD2 and DD4) of 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. The NADP(H)-linked oxidoreductase activities of DD4 were activated more than 4-fold by sulphobromophthalein at concentrations above 20 microM and under physiological pH conditions. Sulphobromophthalein did not stimulate the activities of DD2 and human liver aldehyde reductase, which are functionally and/or structurally related to DD4. No stimulatory effect on the activity of DD4 was observed with other organic anions such as Indocyanine Green, haematin and Rose Bengal. The binding of sulphobromophthalein to DD4 was instantaneous and reversible, and was detected by fluorescence and ultrafiltration assays. The activation by sulphobromophthalein decreased the activation energy in the dehydrogenation reaction for the enzyme, and increased both kcat, and Km values for the coenzymes and substrates. Kinetic analyses with respect to concentrations of NADP+ and (S)-(+)-indan-1-ol indicated that sulphobromophthalein was a non-essential activator of mixed type showing a dissociation constant of 2.6 microM. Thus, the human 3 alpha-hydroxysteroid dehydrogenase isoenzyme has a binding site specific to sulphobromophthalein, and the hepatic metabolism mediated by this isoenzyme may be influenced when this drug is administered. PMID:8546681

  13. Chromium picolinate inhibits resistin secretion in insulin-resistant 3T3-L1 adipocytes via activation of amp-activated protein kinase.

    PubMed

    Wang, Yi-Qun; Dong, Yi; Yao, Ming-Hui

    2009-08-01

    1. Chromium picolinate (CrPic) has been recommended as an alternative therapeutic regimen for Type 2 diabetes mellitus (T2DM). However, the molecular mechanism underlying the action of CrPic is poorly understood. 2. Using normal and insulin-resistant 3T3-L1 adipocytes, we examined the effects of CrPic on the gene transcription and secretion of adiponectin and resistin. In addition, using immunoblotting, ELISA and real-time reverse transcription-polymerase chain reaction (RT-PCR), we investigated the effects of 10 nmol/L CrPic for 24 h on AMP-activated protein kinase (AMPK) to determine whether this pathway contributed to the regulation of adiponectin and resistin expression and secretion. 3. Chromium picolinate did not modulate the expression of adiponectin and resistin; however, it did significantly inhibit the secretion of resistin, but not adiponectin, by normal and insulin-resistant 3T3-L1 adipocytes in vitro. Furthermore, although CrPic markedly elevated levels of phosphorylated AMPK and acetyl CoA carboxylase in 3T3-L1 adipocytes, it had no effect on the levels of AMPK alpha-1 and alpha-2 mRNA transcripts. Importantly, inhibition of AMPK by 2 h pretreatment of cells with 20 micromol/L compound C completely abolished the CrPic-induced suppression of resistin secretion. 4. In conclusion, the data suggest that CrPic inhibits resistin secretion via activation of AMPK in normal and insulin-resistant 3T3-L1 adipocytes.

  14. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site.

    PubMed

    Sayer, Christopher; Finnigan, William; Isupov, Michail N; Levisson, Mark; Kengen, Servé W M; van der Oost, John; Harmer, Nicholas J; Littlechild, Jennifer A

    2016-05-10

    A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions.

  15. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site

    PubMed Central

    Sayer, Christopher; Finnigan, William; Isupov, Michail N.; Levisson, Mark; Kengen, Servé W. M.; van der Oost, John; Harmer, Nicholas J.; Littlechild, Jennifer A.

    2016-01-01

    A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions. PMID:27160974

  16. Sirtuin 3 (SIRT3) Protein Regulates Long-chain Acyl-CoA Dehydrogenase by Deacetylating Conserved Lysines Near the Active Site

    PubMed Central

    Bharathi, Sivakama S.; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E.; Rardin, Matthew J.; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W.; Hirschey, Matthew D.; Goetzman, Eric S.

    2013-01-01

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  17. Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme.

    PubMed

    Mukherjee, J J; Dekker, E E

    1987-10-25

    Starting with 100 g (wet weight) of a mutant of Escherichia coli K-12 forced to grow on L-threonine as sole carbon source, we developed a 6-step procedure that provides 30-40 mg of homogeneous 2-amino-3-ketobutyrate CoA ligase (also called aminoacetone synthetase or synthase). This ligase, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, has an apparent molecular weight approximately equal to 85,000 and consists of two identical (or nearly identical) subunits with Mr = 42,000. Computer analysis of amino acid composition data, which gives the best fit nearest integer ratio for each residue, indicates a total of 387 amino acids/subunit with a calculated Mr = 42,093. Stepwise Edman degradation provided the N-terminal sequence of the first 21 amino acids. It is a pyridoxal phosphate-dependent enzyme since (a) several carbonyl reagents caused greater than 90% loss of activity, (b) dialysis against buffer containing hydroxylamine resulted in 89% loss of activity coincident with an 86% decrease in absorptivity at 428 nm, (c) incubation of the apoenzyme with 20 microM pyridoxal phosphate showed a parallel recovery (greater than 90%) of activity and 428-nm absorptivity, and (d) reduction of the holoenzyme with NaBH4 resulted in complete inactivation, disappearance of a new absorption maximum at 333 nm. Strict specificity for glycine is shown but acetyl-CoA (100%), n-propionyl-CoA (127%), or n-butyryl-CoA (16%) is utilized in the condensation reaction. Apparent Km values for acetyl-CoA, n-propionyl-CoA, and glycine are 59 microM, 80 microM, and 12 mM, respectively; the pH optimum = 7.5. Added divalent metal ions or sulfhydryl compounds inhibited catalysis of the condensation reaction.

  18. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans

    PubMed Central

    Tuck, Laura R.; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D.; Campopiano, Dominic J.; Clarke, David J.; Marles-Wright, Jon

    2016-01-01

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes. PMID:26899032

  19. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans.

    PubMed

    Tuck, Laura R; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D; Campopiano, Dominic J; Clarke, David J; Marles-Wright, Jon

    2016-02-22

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD(+). This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes.

  20. Cloning, expression, and characterization of bacterial L-arabinose 1-dehydrogenase involved in an alternative pathway of L-arabinose metabolism.

    PubMed

    Watanabe, Seiya; Kodaki, Tsutomu; Kodak, Tsutomu; Makino, Keisuke

    2006-02-03

    Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps. We purified and characterized L-arabinose 1-dehydrogenase (EC 1.1.1.46), catalyzing the conversion of L-arabinose to L-arabino-gamma-lactone as an enzyme responsible for the first step of this alternative pathway of L-arabinose metabolism. The purified enzyme preferred NADP+ to NAD+ as a coenzyme. Kinetic analysis revealed that the enzyme had high catalytic efficiency for both L-arabinose and D-galactose. The gene encoding L-arabinose 1-dehydrogenase was cloned using a partial peptide sequence of the purified enzyme and was overexpressed in Escherichia coli as a fully active enzyme. The enzyme consists of 308 amino acids and has a calculated molecular mass of 33,663.92 Da. The deduced amino acid sequence had some similarity to glucose-fructose oxidoreductase, D-xylose 1-dehydrogenase, and D-galactose 1-dehydrogenase. Site-directed mutagenesis revealed that the enzyme possesses unique catalytic amino acid residues. Northern blot analysis showed that this gene was induced by L-arabinose but not by D-galactose. Furthermore, a disruptant of the L-arabinose 1-dehydrogenase gene did not grow on L-arabinose but grew on D-galactose at the same growth rate as the wild-type strain. There was a partial gene for L-arabinose transport in the flanking region of the L-arabinose 1-dehydrogenase gene. These results indicated that the enzyme is involved in the metabolism of L-arabinose but not D-galactose. This is the first identification of a gene involved in an alternative pathway of L-arabinose metabolism in bacterium.

  1. Plant mitochondrial pyruvate dehydrogenase complex: purification and identification of catalytic components in potato.

    PubMed Central

    Millar, A H; Knorpp, C; Leaver, C J; Hill, S A

    1998-01-01

    The pyruvate dehydrogenase complex (mPDC) from potato (Solanum tuberosum cv. Romano) tuber mitochondria was purified 40-fold to a specific activity of 5.60 micromol/min per mg of protein. The activity of the complex depended on pyruvate, divalent cations, NAD+ and CoA and was competitively inhibited by both NADH and acetyl-CoA. SDS/PAGE revealed the complex consisted of seven polypeptide bands with apparent molecular masses of 78, 60, 58, 55, 43, 41 and 37 kDa. N-terminal sequencing revealed that the 78 kDa protein was dihydrolipoamide transacetylase (E2), the 58 kDa protein was dihydrolipoamide dehydrogenase (E3), the 43 and 41 kDa proteins were alpha subunits of pyruvate dehydrogenase, and the 37 kDa protein was the beta subunit of pyruvate dehydrogenase. N-terminal sequencing of the 55 kDa protein band yielded two protein sequences: one was another E3; the other was similar to the sequence of E2 from plant and yeast sources but was distinctly different from the sequence of the 78 kDa protein. Incubation of the mPDC with [2-14C]pyruvate resulted in the acetylation of both the 78 and 55 kDa proteins. PMID:9729464

  2. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    PubMed

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates.

  3. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose

    PubMed Central

    Wang, Qingzhao; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(−)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L-1 of optically pure D(−)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min-1 (mg protein)-1. By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(−) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  4. Toxic Neuronal Death by Glyeraldehyde-3-Phosphate Dehydrogenase and Mitochondria

    DTIC Science & Technology

    2003-08-01

    Neuroreport, 10(5), 1149-1153. Sioud, M., & Jespersen, L. (1996). Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase...1996) Enhancemen t of hammerhead r ibozyme cata lysis by glycera ldehyde-3- phospha te dehydrogenase. J Mol Biol 257:775–789. Sirover MA (1997) Role of

  5. Enzymatic characterization of a novel bovine liver dihydrodiol dehydrogenase--reaction mechanism and bile acid dehydrogenase activity.

    PubMed

    Nanjo, H; Adachi, H; Morihana, S; Mizoguchi, T; Nishihara, T; Terada, T

    1995-05-11

    Bovine liver cytosolic dihydrodiol dehydrogenase (DD3) has been characterized by its unique dihydrodiol dehydrogenase activity for trans-benzenedihydrodiol (trans-1,2-dihydrobenzene-1,2-diol) with the highest affinity and the greatest velocity among three multiple forms of dihydrodiol dehydrogenases (DD1-DD3). It is the first time that DD3 has shown a significant dehydrogenase activity for (S)-(+)-1-indanol with low Km value (0.33 +/- 0.022 mM) and high K(cat) value (25 +/- 0.79 min-1). The investigation of the product inhibition of (S)-(+)-1-indanol with NADP+ versus 1-indanone and NADPH clearly showed that the enzymatic reaction of DD3 may follow a typical ordered Bi Bi mechanism similar to many aldo/keto reductases. Additionally, DD3 was shown to catalyze the dehydrogenation of bile acids (lithocholic acid, taurolithocholic acid and taurochenodeoxycholic acid) having no 12-hydroxy groups with low Km values (17 +/- 0.65, 33 +/- 1.9 and 890 +/- 73 microM, respectively). In contrast, DD1, 3 alpha-hydroxysteroid dehydrogenase, shows a broad substrate specificity for many bile acids with higher affinity than those of DD3. Competitive inhibition of DD3 with androsterone against dehydrogenase activity for (S)-(+)-1-indanol, trans-benzenedihydrodiol or lithocholic acid suggests that these three substrates bind to the same substrate binding site of DD3, different from the case of human liver bile acid binder/dihydrodiol dehydrogenase (Takikawa, H., Stolz, A., Sugiyama, Y., Yoshida, H., Yamamoto, M. and Kaplowitz, N. (1990) J. Biol. Chem. 265, 2132-2136). Considering the reaction mechanism, DD3 may also play an important role in bile acids metabolism as well as the detoxication of aromatic hydrocarbons.

  6. Purification and Properties of a New L-Sorbose Dehydrogenase Accelerative Protein from Bacillus megaterium Bred by Ion-Beam Implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Shiguang; Yao, Liming; Su, Caixin; Wang, Tao; Wang, Jun; Tang, Mingli; Yu, Zengliang

    2008-06-01

    Bacillus megaterium BM302 bred by ion-beam implantation produces L-sorbose dehydrogenase accelerative protein (SAP) to accelerate the activity of L-sorbose dehydrogenase (SDH) of Gluconobacter oxydans in the 2-keto-L-gulonic acid (2KLG) fermentation from L-sorbose by the mixed culture of B. megaterium BM302 and G. oxydans. The SAP purified by three chromatographic steps gave 35-fold purification with a yield of 13% and a specific activity of 5.21 units/mg protein. The molecular weight of the purified SAP was about 58 kDa. The SDH accelerative activity of SAP at pH 7 and 50°C was the highest. Additionally, it retained 60% activity at a pH range of 6.5 ~ 10 and was stable at 20°C ~ 60°C. After 0.32-unit SAP was added to the single cultured G. oxydans strains, the SDH activity was apparently accelerated and the 2KLG yield of GO29, GO112, G0 and GI13 was enhanced 2.1, 3.3, 3.5 and 2.9 folds respectively over that of the strains without the addition of SAP.

  7. Purification, properties and immunological relationship of L (+)-lactate dehydrogenase from Lactobacillus casei.

    PubMed

    Gordon, G L; Doelle, H W

    1976-08-16

    The fructose-1,6-bisphosphate-activated L-lactate dehydrogenase (EC 1.1.1.27) from Lactobacillus casei ATCC 393 has been purified to homogenity by including affinity chromatography (cibacronblue-Sephadex-G-200) and preparative polyacrylamide gel electrophoresis into the purification procedures. The enzyme has an Mr of 132000-135000 with a subunit Mr of 34000. The pH optimum was found to be 5.4 insodium acetate buffer. Tris/maleate and citrate/phosphate buffers inhibited enzyme activity at this pH. The enzyme was completely inactivated by a temperature increase from 60 degrees C to 70 degrees C. Pyruvate saturation curves were sigmoidal in the absence of fructose 1,6-bisphosphate. In the presence of 20 muM fructose 1,6-bisphosphate a Km of 1.0 mM for pyruvate was obtained, whereas fructose 1,6-bisphosphate had no effect on the Km of 0.01 mM for NADH. The use of pyruvate analogues revealed two types of pyruvate binding sites, a catalytic and an effector site. The enzyme from L. casei appears to be subject to strict metabolic control, since ADP, ATP, dihydroxyacetone phosphate and 6-phosphogluconate are strong inhibitors. Immunodiffusion experiments with a rabbit antiserum to L. casei lactate dehydrogenase revealed that L. casei ATCC 393 L (+)-lactate dehydrogenase is probably not immunologically related to group D and group N streptococci. Of 24 lactic acid bacterial strains tested only 5 strains did cross-react: L. casei ATCC 393 = L. casei var. rhamnosus ATCC 7469 - L. casei var. alactosus NCDO 680 greater than L. casei UQM 95 greater than L. plantarum ATCC 14917.

  8. Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase

    PubMed Central

    Van Hellemond, Jaap J.; Opperdoes, Fred R.; Tielens, Aloysius G. M.

    1998-01-01

    Hydrogenosome-containing anaerobic protists, such as the trichomonads, produce large amounts of acetate by an acetate:succinate CoA transferase (ASCT)/succinyl CoA synthetase cycle. The notion that mitochondria and hydrogenosomes may have originated from the same α-proteobacterial endosymbiont has led us to look for the presence of a similar metabolic pathway in trypanosomatids because these are the earliest-branching mitochondriate eukaryotes and because they also are known to produce acetate. The mechanism of acetate production in these organisms, however, has remained unknown. Four different members of the trypanosomatid family: promastigotes of Leishmania mexicana mexicana, L. infantum and Phytomonas sp., and procyclics of Trypanosoma brucei were analyzed as well as the parasitic helminth Fasciola hepatica. They all use a mitochondrial ASCT for the production of acetate from acetyl CoA. The succinyl CoA that is produced during acetate formation by ASCT is recycled presumably to succinate by a mitochondrial succinyl CoA synthetase, concomitantly producing ATP from ADP. The ASCT of L. mexicana mexicana promastigotes was further characterized after partial purification of the enzyme. It has a high affinity for acetyl CoA (Km 0.26 mM) and a low affinity for succinate (Km 6.9 mM), which shows that significant acetate production can occur only when high mitochondrial succinate concentrations prevail. This study identifies a metabolic pathway common to mitochondria and hydrogenosomes, which strongly supports a common origin for these two organelles. PMID:9501211

  9. Characterization of human DHRS4: an inducible short-chain dehydrogenase/reductase enzyme with 3beta-hydroxysteroid dehydrogenase activity.

    PubMed

    Matsunaga, Toshiyuki; Endo, Satoshi; Maeda, Satoshi; Ishikura, Shuhei; Tajima, Kazuo; Tanaka, Nobutada; Nakamura, Kazuo T; Imamura, Yorishige; Hara, Akira

    2008-09-15

    Human DHRS4 is a peroxisomal member of the short-chain dehydrogenase/reductase superfamily, but its enzymatic properties, except for displaying NADP(H)-dependent retinol dehydrogenase/reductase activity, are unknown. We show that the human enzyme, a tetramer composed of 27kDa subunits, is inactivated at low temperature without dissociation into subunits. The cold inactivation was prevented by a mutation of Thr177 with the corresponding residue, Asn, in cold-stable pig DHRS4, where this residue is hydrogen-bonded to Asn165 in a substrate-binding loop of other subunit. Human DHRS4 reduced various aromatic ketones and alpha-dicarbonyl compounds including cytotoxic 9,10-phenanthrenequinone. The overexpression of the peroxisomal enzyme in cultured cells did not increase the cytotoxicity of 9,10-phenanthrenequinone. While its activity towards all-trans-retinal was low, human DHRS4 efficiently reduced 3-keto-C(19)/C(21)-steroids into 3beta-hydroxysteroids. The stereospecific conversion to 3beta-hydroxysteroids was observed in endothelial cells transfected with vectors expressing the enzyme. The mRNA for the enzyme was ubiquitously expressed in human tissues and several cancer cells, and the enzyme in HepG2 cells was induced by peroxisome-proliferator-activated receptor alpha ligands. The results suggest a novel mechanism of cold inactivation and role of the inducible human DHRS4 in 3beta-hydroxysteroid synthesis and xenobiotic carbonyl metabolism.

  10. Investigation of the Roles of Allosteric Domain Arginine, Aspartate, and Glutamate Residues of Rhizobium etli Pyruvate Carboxylase in Relation to Its Activation by Acetyl CoA.

    PubMed

    Sirithanakorn, Chaiyos; Jitrapakdee, Sarawut; Attwood, Paul V

    2016-08-02

    The mechanism of allosteric activation of pyruvate carboxylase by acetyl CoA is not fully understood. Here we have examined the roles of residues near the acetyl CoA binding site in the allosteric activation of Rhizobium etli pyruvate carboxylase using site-directed mutagenesis. Arg429 was found to be especially important for acetyl CoA binding as substitution with serine resulted in a 100-fold increase in the Ka of acetyl CoA activation and a large decrease in the cooperativity of this activation. Asp420 and Arg424, which do not make direct contact with bound acetyl CoA, were nonetheless found to affect acetyl CoA binding when mutated, probably through changed interactions with another acetyl CoA binding residue, Arg427. Thermodynamic activation parameters for the pyruvate carboxylation reaction were determined from modified Arrhenius plots and showed that acetyl CoA acts to decrease the activation free energy of the reaction by both increasing the activation entropy and decreasing the activation enthalpy. Most importantly, mutations of Asp420, Arg424, and Arg429 enhanced the activity of the enzyme in the absence of acetyl CoA. A main focus of this work was the detailed investigation of how this increase in activity occurred in the R424S mutant. This mutation decreased the activation enthalpy of the pyruvate carboxylation reaction by an amount consistent with removal of a single hydrogen bond. It is postulated that Arg424 forms a hydrogen bonding interaction with another residue that stabilizes the asymmetrical conformation of the R. etli pyruvate carboxylase tetramer, constraining its interconversion to the symmetrical conformer that is required for catalysis.

  11. Role of Medium- and Short-Chain L-3-Hydroxyacyl-CoA Dehydrogenase in the Regulation of Body Weight and Thermogenesis

    PubMed Central

    Schulz, Nadja; Himmelbauer, Heinz; Rath, Michaela; van Weeghel, Michel; Houten, Sander; Kulik, Wim; Suhre, Karsten; Scherneck, Stephan; Vogel, Heike; Kluge, Reinhart; Wiedmer, Petra; Joost, Hans-Georg

    2011-01-01

    Dysregulation of fatty acid oxidation plays a pivotal role in the pathophysiology of obesity and insulin resistance. Medium- and short-chain-3-hydroxyacyl-coenzyme A (CoA) dehydrogenase (SCHAD) (gene name, hadh) catalyze the third reaction of the mitochondrial β-oxidation cascade, the oxidation of 3-hydroxyacyl-CoA to 3-ketoacyl-CoA, for medium- and short-chain fatty acids. We identified hadh as a putative obesity gene by comparison of two genome-wide scans, a quantitative trait locus analysis previously performed in the polygenic obese New Zealand obese mouse and an earlier described small interfering RNA-mediated mutagenesis in Caenorhabditis elegans. In the present study, we show that mice lacking SCHAD (hadh−/−) displayed a lower body weight and a reduced fat mass in comparison with hadh+/+ mice under high-fat diet conditions, presumably due to an impaired fuel efficiency, the loss of acylcarnitines via the urine, and increased body temperature. Food intake, total energy expenditure, and locomotor activity were not altered in knockout mice. Hadh−/− mice exhibited normal fat tolerance at 20 C. However, during cold exposure, knockout mice were unable to clear triglycerides from the plasma and to maintain their normal body temperature, indicating that SCHAD plays an important role in adaptive thermogenesis. Blood glucose concentrations in the fasted and postprandial state were significantly lower in hadh−/− mice, whereas insulin levels were elevated. Accordingly, insulin secretion in response to glucose and glucose plus palmitate was elevated in isolated islets of knockout mice. Therefore, our data indicate that SCHAD is involved in thermogenesis, in the maintenance of body weight, and in the regulation of nutrient-stimulated insulin secretion. PMID:21990309

  12. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wubben, T.; Mesecar, A.D.; UIC)

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observedmore » in the MtPPAT-CoA complex.« less

  13. SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells.

    PubMed

    Ozden, Ozkan; Park, Seong-Hoon; Wagner, Brett A; Song, Ha Yong; Zhu, Yueming; Vassilopoulos, Athanassios; Jung, Barbara; Buettner, Garry R; Gius, David

    2014-11-01

    Pyruvate dehydrogenase E1α (PDHA1) is the first component enzyme of the pyruvate dehydrogenase (PDH) complex that transforms pyruvate, via pyruvate decarboxylation, into acetyl-CoA that is subsequently used by both the citric acid cycle and oxidative phosphorylation to generate ATP. As such, PDH links glycolysis and oxidative phosphorylation in normal as well as cancer cells. Herein we report that SIRT3 interacts with PDHA1 and directs its enzymatic activity via changes in protein acetylation. SIRT3 deacetylates PDHA1 lysine 321 (K321), and a PDHA1 mutant mimicking a deacetylated lysine (PDHA1(K321R)) increases PDH activity, compared to the K321 acetylation mimic (PDHA1(K321Q)) or wild-type PDHA1. Finally, PDHA1(K321Q) exhibited a more transformed in vitro cellular phenotype compared to PDHA1(K321R). These results suggest that the acetylation of PDHA1 provides another layer of enzymatic regulation, in addition to phosphorylation, involving a reversible acetyllysine, suggesting that the acetylome, as well as the kinome, links glycolysis to respiration. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Differences among Adult COAs and Adult Non-COAs on Levels of Self-Esteem, Depression, and Anxiety.

    ERIC Educational Resources Information Center

    Dodd, David T.; Roberts, Richard L.

    1994-01-01

    Examined self-esteem, depression, and anxiety among 60 adult children of alcoholics (COAs) and 143 adult non-COAs. Subjects completed Children of Alcoholics Screening Test, demographic questionnaire, Beck Depression Inventory, State-Trait Anxiety Inventory, and Coopersmith Self-Esteem Inventory. Found no significant differences between COAs and…

  15. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemazanyy, Ivan; Panasyuk, Ganna; Breus, Oksana

    2006-03-24

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy {beta} and originally identified CoA synthase, CoASy {alpha}. The transcript specific for CoASy {beta} was identified by electronic screening and by RT-PCR analysismore » of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy {beta}. In contrast to CoASy {alpha}, which shows ubiquitous expression, CoASy {beta} is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation.« less

  16. Guinea-pig liver testosterone 17 beta-dehydrogenase (NADP+) and aldehyde reductase exhibit benzene dihydrodiol dehydrogenase activity.

    PubMed Central

    Hara, A; Hayashibara, M; Nakayama, T; Hasebe, K; Usui, S; Sawada, H

    1985-01-01

    We have kinetically and immunologically demonstrated that testosterone 17 beta-dehydrogenase (NADP+) isoenzymes (EC 1.1.1.64) and aldehyde reductase (EC 1.1.1.2) from guinea-pig liver catalyse the oxidation of benzene dihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene) to catechol. One isoenzyme of testosterone 17 beta-dehydrogenase, which has specificity for 5 beta-androstanes, oxidized benzene dihydrodiol at a 3-fold higher rate than 5 beta-dihydrotestosterone, and showed a more than 4-fold higher affinity for benzene dihydrodiol and Vmax. value than did another isoenzyme, which exhibits specificity for 5 alpha-androstanes, and aldehyde reductase. Immunoprecipitation of guinea-pig liver cytosol with antisera against the testosterone 17 beta-dehydrogenase isoenzymes and aldehyde reductase indicated that most of the benzene dihydrodiol dehydrogenase activity in the tissue is due to testosterone 17 beta-dehydrogenase. PMID:2983661

  17. Characterization of an aldolase-dehydrogenase complex from the cholesterol degradation pathway of Mycobacterium tuberculosis.

    PubMed

    Carere, Jason; McKenna, Sarah E; Kimber, Matthew S; Seah, Stephen Y K

    2013-05-21

    HsaF and HsaG are an aldolase and dehydrogenase from the cholesterol degradation pathway of Mycobacterium tuberculosis. HsaF could be heterologously expressed and purified as a soluble dimer, but the enzyme was inactive in the absence of HsaG. HsaF catalyzes the aldol cleavage of 4-hydroxy-2-oxoacids to produce pyruvate and an aldehyde. The enzyme requires divalent metals for activity, with a preference for Mn(2+). The Km values for 4-hydroxy-2-oxoacids were about 20-fold lower than observed for the aldolase homologue, BphI from the polychlorinated biphenyl degradation pathway. Acetaldehyde and propionaldehyde were channeled directly to the dehydrogenase, HsaG, without export to the bulk solvent where they were transformed to acyl-CoA in an NAD(+) and coenzyme A dependent reaction. HsaG is able to utilize aldehydes up to five carbons in length as substrates, with similar catalytic efficiencies. The HsaF-HsaG complex was crystallized and its structure was determined to a resolution of 1.93 Å. Substitution of serine 41 in HsaG with isoleucine or aspartate resulted in about 35-fold increase in Km for CoA but only 4-fold increase in Km dephospho-CoA, suggesting that this residue interacts with the 3'-ribose phosphate of CoA. A second protein annotated as a 4-hydroxy-2-oxopentanoic acid aldolase in M. tuberculosis (MhpE, Rv3469c) was expressed and purified, but was found to lack aldolase activity. Instead this enzyme was found to possess oxaloacetate decarboxylase activity, consistent with the conservation (with the 4-hydroxy-2-oxoacid aldolases) of residues involved in pyruvate enolate stabilization.

  18. Reversible inactivation of CO dehydrogenase with thiol compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreß, Oliver; Gnida, Manuel; Pelzmann, Astrid M.

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceedsmore » at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration

  19. Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in murine epidermis. Modulation of enzyme content and activation state by barrier requirements.

    PubMed Central

    Proksch, E; Elias, P M; Feingold, K R

    1990-01-01

    Epidermal cholesterol biosynthesis is regulated by barrier function. We quantitated the amount and activation state (phosphorylation-dephosphorylation) of the rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, in epidermis before and after barrier disruption. In murine epidermis we found high enzyme activity (1.75 +/- 0.02 nmol/min per mg protein). After acute barrier disruption, enzyme activity began to increase after 1.5 h, reaching a maximum increase by 2.5 h, and returned to normal by 15 h. Chronic barrier disruption increased total enzyme activity by 83%. In normal epidermis, measurement of HMG CoA reductase activity in microsomes isolated in NaF- vs. NaCl-containing buffers demonstrated that 46 +/- 2% of the enzyme was in the active form. After acute or chronic barrier disruption, a marked increase in the percentage of HMG CoA reductase in the active form was observed. Acute disruption increased enzyme activation state as early as 15 min, reaching a maximum after 2.5 h, with an increase still present at 15 h, indicating that changes in activation state had a close temporal relationship with barrier function. Increases in total HMG CoA reductase activity occurred only after profound barrier disruption, whereas changes in activation state occur with lesser degrees of barrier disruption. Artificial correction of barrier function prevented the increase in total HMG CoA reductase activity, and partially prevented the increase in enzyme activation. These results show that barrier requirements regulate epidermal cholesterol synthesis by modulating both the HMG CoA reductase amount and activation state. Images PMID:2312730

  20. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  1. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production

    PubMed Central

    Dave, Khyati K.; Punekar, Narayan S.

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production. PMID:26683313

  2. 9-Hydroxyprostaglandin dehydrogenase activity in the adult rat kidney. Regional distribution and sub-fractionation.

    PubMed

    Asciak, C P; Domazet, Z

    1975-02-20

    1. Catabolism of prostaglandin F2alpha in the adult rat kidney takes place by the following sequence of enzymatic steps: (1) 15-hydroxyprostaglandin dehydrogenase; (2) prostaglandin delta13-reductase; and (3) 9-hydroxyprostaglandin dehydrogenase. 2. 9-Hydroxyprostaglandin dehydrogenase activity was highest in the cortex with lesser amounts in the medulla and negligible activity detected in the papilla. A similar distribution was observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 3. Most of the 9-hydroxyprostaglandin dehydrogenase activity in the homogenate was found in the high-speed supernatant as also observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 4. These observations indicate that the rat kidney contains an abundance of prostaglandin-catabolising enzymes which favour formation of metabolites of the E-type.

  3. Directed modification of L-LcLDH1, an L-lactate dehydrogenase from Lactobacillus casei, to improve its specific activity and catalytic efficiency towards phenylpyruvic acid.

    PubMed

    Li, Jian-Fang; Li, Xue-Qing; Liu, Yan; Yuan, Feng-Jiao; Zhang, Ting; Wu, Min-Chen; Zhang, Ji-Ru

    2018-05-22

    To improve the specific activity and catalytic efficiency of L-LcLDH1, an NADH-dependent allosteric L-lactate dehydrogenase from L. casei, towards phenylpyruvic acid (PPA), its directed modification was conducted based on the semi-rational design. The three variant genes, Lcldh1 Q88R , Lcldh1 I229A and Lcldh1 T235G , were constructed by whole-plasmid PCR as designed theoretically, and expressed in E. coli BL21(DE3), respectively. The purified mutant, L-LcLDH1 Q88R or L-LcLDH1 I229A , displayed the specific activity of 451.5 or 512.4 U/mg towards PPA, by which the asymmetric reduction of PPA afforded L-phenyllactic acid (PLA) with an enantiomeric excess (ee p ) more than 99%. Their catalytic efficiencies (k cat /K m ) without D-fructose-1,6-diphosphate (D-FDP) were 4.8- and 5.2-fold that of L-LcLDH1. Additionally, the k cat /K m values of L-LcLDH1 Q88R and L-LcLDH1 I229A with D-FDP were 168.4- and 8.5-fold higher than those of the same enzymes without D-FDP, respectively. The analysis of catalytic mechanisms by molecular docking (MD) simulation indicated that substituting I229 in L-LcLDH1 with Ala enlarges the space of substrate-binding pocket, and that the replacement of Q88 with Arg makes the inlet of pocket larger than that of L-LcLDH1. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Purification and Characterization of Two Distinct NAD(P)H Dehydrogenases from Onion (Allium cepa L.) Root Plasma Membrane.

    PubMed Central

    Serrano, A.; Cordoba, F.; Gonzalez-Reyes, J. A.; Navas, P.; Villalba, J. M.

    1994-01-01

    Highly purified plasma membrane fractions were obtained from onion (Allium cepa L.) roots and used as a source for purification of redox proteins. Plasma membranes solubilized with Triton X-100 contained two distinct polypeptides showing NAD(P)H-dependent dehydrogenase activities. Dehydrogenase I was purified by gel filtration in Sephacryl S-300 HR, ion-exchange chromatography in DEAE-Sepharose CL-6B, and dye-ligand affinity chromatography in Blue-Sepharose CL-6B after biospecific elution with NADH. Dehydrogenase I consisted of a single polypeptide of about 27 kD and an isoelectric point of about 6. Dehydrogenase II was purified from the DEAE-unbound fraction by chromatography in Blue-Sepharose CL-6B and affinity elution with NADH. Dehydrogenase II consisted of a single polypeptide of about 31 kD and an isoelectric point of about 8. Purified dehydrogenase I oxidized both NADPH and NADH, although higher rates of electron transfer were obtained with NADPH. Maximal activity was achieved with NADPH as donor and juglone or coenzyme Q as acceptor. Dehydrogenase II was specific for NADH and exhibited maximal activity with ferricyanide. Optimal pH for both dehydrogenases was about 6. Dehydrogenase I was moderately inhibited by dicumarol, thenoyltrifluoroacetone, and the thiol reagent N-ethyl-maleimide. A strong inhibition of dehydrogenase II was obtained with dicumarol, thenoyltrifluoroacetone, and the thiol reagent p-hydroxymercuribenzoate. PMID:12232306

  5. Crystal structure of the NADP+ and tartrate-bound complex of L-serine 3-dehydrogenase from the hyperthermophilic archaeon Pyrobaculum calidifontis.

    PubMed

    Yoneda, Kazunari; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa

    2018-05-01

    A gene encoding L-serine dehydrogenase (L-SerDH) that exhibits extremely low sequence identity to the Agrobacterium tumefaciens L-SerDH was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The predicted amino acid sequence showed 36% identity with that of Pseudomonas aeruginosa L-SerDH, suggesting that P. calidifontis L-SerDH is a novel type of L-SerDH, like Ps. aeruginosa L-SerDH. The overexpressed enzyme appears to be the most thermostable L-SerDH described to date, and no loss of activity was observed by incubation for 30 min at temperatures up to 100 °C. The enzyme showed substantial reactivity towards D-serine, in addition to L-serine. Two different crystal structures of P. calidifontis L-SerDH were determined using the Se-MAD and MR method: the structure in complex with NADP + /sulfate ion at 1.18 Å and the structure in complex with NADP + /L-tartrate (substrate analog) at 1.57 Å. The fold of the catalytic domain showed similarity with that of Ps. aeruginosa L-SerDH. However, the active site structure significantly differed between the two enzymes. Based on the structure of the tartrate, L- and D-serine and 3-hydroxypropionate molecules were modeled into the active site and the substrate binding modes were estimated. A structural comparison suggests that the wide cavity at the substrate binding site is likely responsible for the high reactivity of the enzyme toward both L- and D-serine enantiomers. This is the first description of the structure of the novel type of L-SerDH with bound NADP + and substrate analog, and it provides new insight into the substrate binding mechanism of L-SerDH. The results obtained here may be very informative for the creation of L- or D-serine-specific SerDH by protein engineering.

  6. Biochemical characterization of recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

    PubMed

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Khan, Bashir M

    2013-07-01

    Recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) protein from Leucaena leucocephala was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Optimum pH for forward and reverse reaction was found to be 6.5 and 7.8 respectively. The enzyme was most stable around pH 6.5 at 25°C for 90 min. The enzyme showed Kcat/Km for feruloyl, caffeoyl, sinapoyl, coumaroyl CoA, coniferaldehyde and sinapaldehyde as 4.6, 2.4, 2.3, 1.7, 1.9 and 1.2 (×10(6) M(-1) s(-1)), respectively, indicating affinity of enzyme for feruloyl CoA over other substrates and preference of reduction reaction over oxidation. Activation energy, Ea for various substrates was found to be in the range of 20-50 kJ/mol. Involvement of probable carboxylate ion, histidine, lysine or tyrosine at the active site of enzyme was predicted by pH activity profile. SAXS studies of protein showed radius 3.04 nm and volume 49.25 nm(3) with oblate ellipsoid shape. Finally, metal ion inhibition studies revealed that Ll-CCRH1 is a metal independent enzyme. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effects of folic acid deficiency in pregnant Wistar rats on the activities of D5-3 beta hydroxysteroid dehydrogenase and glucose-6 phosphate dehydrogenase in the ovaries of their litters.

    PubMed

    Uche-Nwachi, E O; Caxton-Martins, A E

    1997-06-01

    Histochemical studies of the activities of glucose-6-phosphate dehydrogenase (G-6-PD) and D5-3 beta-hydroxysteroid dehydrogenase (D5-3 beta-HSD) in the ovaries of 40 day old litters of Wistar rats whose mothers were folic acid deficient from the 13th day of gestation showed very weak or no enzyme activity. Biochemical estimations of these enzymes showed that the specific activity of 3 beta-HSD in the experimental animal was 20% that of control while that of G-6-PD in the experimental animals was 14% that of control. This implies that folic acid deficiency instituted at a critical period in gestation in Wistar rats adversely affects steroidogenesis in the ovaries of their litters.

  8. A single amino acid change (Y318F) in the L-arabitol dehydrogenase (LadA) from Aspergillus niger results in a significant increase in affinity for D-sorbitol

    PubMed Central

    2009-01-01

    Background L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are involved in the degradation of L-arabinose and D-xylose, which are among the most abundant monosaccharides on earth. Previous data demonstrated that LAD and XDH not only differ in the activity on their biological substrate, but also that only XDH has significant activity on D-sorbitol and may therefore be more closely related to D-sorbitol dehydrogenases (SDH). In this study we aimed to identify residues involved in the difference in substrate specificity. Results Phylogenetic analysis demonstrated that LAD, XDH and SDH form 3 distinct groups of the family of dehydrogenases containing an Alcohol dehydrogenase GroES-like domain (pfam08240) and likely have evolved from a common ancestor. Modelling of LadA and XdhA of the saprobic fungus Aspergillus niger on human SDH identified two residues in LadA (M70 and Y318), that may explain the absence of activity on D-sorbitol. While introduction of the mutation M70F in LadA of A. niger resulted in a nearly complete enzyme inactivation, the Y318F resulted in increased activity for L-arabitol and xylitol. Moreover, the affinity for D-sorbitol was increased in this mutant. Conclusion These data demonstrates that Y318 of LadA contributes significantly to the substrate specificity difference between LAD and XDH/SDH. PMID:19674460

  9. Mutations in COA7 cause spinocerebellar ataxia with axonal neuropathy.

    PubMed

    Higuchi, Yujiro; Okunushi, Ryuta; Hara, Taichi; Hashiguchi, Akihiro; Yuan, Junhui; Yoshimura, Akiko; Murayama, Kei; Ohtake, Akira; Ando, Masahiro; Hiramatsu, Yu; Ishihara, Satoshi; Tanabe, Hajime; Okamoto, Yuji; Matsuura, Eiji; Ueda, Takehiro; Toda, Tatsushi; Yamashita, Sumimasa; Yamada, Kenichiro; Koide, Takashi; Yaguchi, Hiroaki; Mitsui, Jun; Ishiura, Hiroyuki; Yoshimura, Jun; Doi, Koichiro; Morishita, Shinichi; Sato, Ken; Nakagawa, Masanori; Yamaguchi, Masamitsu; Tsuji, Shoji; Takashima, Hiroshi

    2018-06-01

    , Drosophila COA7 (dCOA7) knockdown models showed rough eye phenotype, reduced lifespan, impaired locomotive ability and shortened synaptic branches of motor neurons. Our results suggest that loss-of-function COA7 mutation is responsible for the phenotype of the presented patients, and this new entity of disease would be referred to as spinocerebellar ataxia with axonal neuropathy type 3.

  10. Activity of 3-Ketosteroid 9α-Hydroxylase (KshAB) Indicates Cholesterol Side Chain and Ring Degradation Occur Simultaneously in Mycobacterium tuberculosis*

    PubMed Central

    Capyk, Jenna K.; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C.; Eltis, Lindsay D.

    2011-01-01

    Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (kcat/Km) of KshAB for the CoA thioester substrates was 20–30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent KmO2 was 90 ± 10 μm in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ1 ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism. PMID:21987574

  11. Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis.

    PubMed

    Capyk, Jenna K; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C; Eltis, Lindsay D

    2011-11-25

    Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (k(cat)/K(m)) of KshAB for the CoA thioester substrates was 20-30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent K(m)(O(2)) was 90 ± 10 μM in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ(1) ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism.

  12. 3-cyanoindole-based inhibitors of inosine monophosphate dehydrogenase: synthesis and initial structure-activity relationships.

    PubMed

    Dhar, T G Murali; Shen, Zhongqi; Gu, Henry H; Chen, Ping; Norris, Derek; Watterson, Scott H; Ballentine, Shelley K; Fleener, Catherine A; Rouleau, Katherine A; Barrish, Joel C; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2003-10-20

    A series of novel small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH), based upon a 3-cyanoindole core, were explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SAR), derived from in vitro studies, for this new series of inhibitors is given.

  13. Changes in Acetyl CoA Levels during the Early Embryonic Development of Xenopus laevis

    PubMed Central

    Tsuchiya, Yugo; Pham, Uyen; Hu, Wanzhou; Ohnuma, Shin-ichi; Gout, Ivan

    2014-01-01

    Coenzyme A (CoA) is a ubiquitous and fundamental intracellular cofactor. CoA acts as a carrier of metabolically important carboxylic acids in the form of CoA thioesters and is an obligatory component of a multitude of catabolic and anabolic reactions. Acetyl CoA is a CoA thioester derived from catabolism of all major carbon fuels. This metabolite is at a metabolic crossroads, either being further metabolised as an energy source or used as a building block for biosynthesis of lipids and cholesterol. In addition, acetyl CoA serves as the acetyl donor in protein acetylation reactions, linking metabolism to protein post-translational modifications. Recent studies in yeast and cultured mammalian cells have suggested that the intracellular level of acetyl CoA may play a role in the regulation of cell growth, proliferation and apoptosis, by affecting protein acetylation reactions. Yet, how the levels of this metabolite change in vivo during the development of a vertebrate is not known. We measured levels of acetyl CoA, free CoA and total short chain CoA esters during the early embryonic development of Xenopus laevis using HPLC. Acetyl CoA and total short chain CoA esters start to increase around midblastula transition (MBT) and continue to increase through stages of gastrulation, neurulation and early organogenesis. Pre-MBT embryos contain more free CoA relative to acetyl CoA but there is a shift in the ratio of acetyl CoA to CoA after MBT, suggesting a metabolic transition that results in net accumulation of acetyl CoA. At the whole-embryo level, there is an apparent correlation between the levels of acetyl CoA and levels of acetylation of a number of proteins including histones H3 and H2B. This suggests the level of acetyl CoA may be a factor, which determines the degree of acetylation of these proteins, hence may play a role in the regulation of embryogenesis. PMID:24831956

  14. Effects of synthetic detergents on in vivo activity of tissue phosphatases and succinic dehydrogenase from Mystus vittatus.

    PubMed

    Mohan, D; Verma, S R

    1981-05-01

    African catfish (Mystus vittatus) were exposed to three sub-lethal concentrations of Swascofix E45 (13.8, 9.2 and 4.6 mg/l) and Swascol 3L (69.3, 46.2 and 23.1 mg/l) for 15 and 30 days, and their effects on alkaline and acid phosphatase, and succinic dehydrogenase in liver, kidney and intestine were measured. The enzymes were found to be inhibited in all the tissues. Maximum inhibition (38.44%) was observed in liver alkaline phosphatase activity after 30 days with the highest concentration of Swascofix E45 and the lowest inhibition (0.118%) was found in kidney acid phosphatase activity with the lowest concentration of Swascol 3L after 15 days. Insignificant enzyme stimulation in some cases was also observed.

  15. Three-dimensional structure of holo 3 alpha,20 beta-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family.

    PubMed Central

    Ghosh, D; Weeks, C M; Grochulski, P; Duax, W L; Erman, M; Rimsay, R L; Orr, J C

    1991-01-01

    The x-ray structure of a short-chain dehydrogenase, the bacterial holo 3 alpha,20 beta-hydroxysteroid dehydrogenase (EC 1.1.1.53), is described at 2.6 A resolution. This enzyme is active as a tetramer and crystallizes with four identical subunits in the asymmetric unit. It has the alpha/beta fold characteristic of the dinucleotide binding region. The fold of the rest of the subunit, the quaternary structure, and the nature of the cofactor-enzyme interactions are, however, significantly different from those observed in the long-chain dehydrogenases. The architecture of the postulated active site is consistent with the observed stereospecificity of the enzyme and the fact that the tetramer is the active form. There is only one cofactor and one substrate-binding site per subunit; the specificity for both 3 alpha- and 20 beta-ends of the steroid results from the binding of the steroid in two orientations near the same cofactor at the same catalytic site. Images PMID:1946424

  16. Subcellular distribution of 3 beta-hydroxysteroid dehydrogenase-isomerase in bovine and murine adrenocortical tissue: species differences in the localization of activity and immunoreactivity.

    PubMed

    Perry, J E; Ishii-Ohba, H; Stalvey, J R

    1991-06-01

    Key to the production of biologically active steroids is the enzyme 3 beta-hydroxysteroid dehydrogenase-isomerase. Some controversy has arisen concerning the subcellular distribution of this enzyme within steroidogenic cells. The distribution of 3 beta-hydroxysteroid dehydrogenase-isomerase was assessed in subcellular fractions obtained from homogenates of rat, bovine, and mouse adrenal glands in two ways. The activity of 3 beta-hydroxysteroid dehydrogenase-isomerase was quantitated by measuring the conversion of radiolabeled pregnenolone to radiolabeled progesterone in an aliquot of each of the fractions obtained. The presence of the enzyme was assessed by performing Western analyses on aliquots of each of the fractions obtained with the use of a specific polyclonal antiserum against 3 beta-hydroxysteroid dehydrogenase-isomerase, the characterization of which is described. In control experiments, the degree of contamination of the fractions was determined by assessing the presence of known subcellular fraction markers with Western analysis. In the bovine and mouse adrenal glands, 3 beta-hydroxysteroid dehydrogenase-isomerase appears to be localized solely in the microsomal fraction, while in the rat, 3 beta-hydroxysteroid dehydrogenase-isomerase appears to have dual subcellular distribution: the microsomes and the inner mitochondrial membrane. We conclude that there is a species difference in the subcellular distribution of this important steroidogenic enzyme and that this species difference may be related to the steroidogenic pathway preferred in that species.

  17. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    PubMed Central

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-01-01

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor. PMID:23203056

  18. Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase (L-CHAD) deficiency in a patient with the Bannayan-Riley-Ruvalcaba syndrome.

    PubMed

    Fryburg, J S; Pelegano, J P; Bennett, M J; Bebin, E M

    1994-08-01

    Bannayan-Riley-Ruvalcaba syndrome (BRRS) is an autosomal dominant condition of macrocephaly in combination with lipomas/hemangiomas, hypotonia, developmental delay, and a lipid myopathy. The etiology of the lipid storage myopathy has been unclear. We describe a black boy with findings of BRRS who also has a defect in long-chain fatty acid oxidation expressed in cultured skin fibroblasts as a deficiency of long-chain-L-3-hydroxyacyl-CoA dehydrogenase (L-CHAD). He also has an abnormal brain MRI and increased size of both lower limbs. We present this child because of his unusual combination of findings, and postulate that L-CHAD deficiency may be the cause of the lipid myopathy in BRRS.

  19. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.

    PubMed

    Sillers, Ryan; Al-Hinai, Mohab Ali; Papoutsakis, Eleftherios T

    2009-01-01

    Metabolic engineering (ME) of Clostridium acetobutylicum has led to increased solvent (butanol, acetone, and ethanol) production and solvent tolerance, thus demonstrating that further efforts have the potential to create strains of industrial importance. With recently developed ME tools, it is now possible to combine genetic modifications and thus implement more advanced ME strategies. We have previously shown that antisense RNA (asRNA)-based downregulation of CoA transferase (CoAT, the first enzyme in the acetone-formation pathway) results in increased butanol to acetone selectivity, but overall reduced butanol yields and titers. In this study the alcohol/aldehyde dehydrogenase (aad) gene (encoding the bifunctional protein AAD responsible for butanol and ethanol production from butyryl-CoA and acetyl-CoA, respectively) was expressed from the phosphotransbutyrylase (ptb) promoter to enhance butanol formation and selectivity, while CoAT downregulation was used to minimize acetone production. This led to early production of high alcohol (butanol plus ethanol) titers, overall solvent titers of 30 g/L, and a higher alcohol/acetone ratio. Metabolic flux analysis revealed the likely depletion of butyryl-CoA. In order to increase then the flux towards butyryl-CoA, we examined the impact of thiolase (THL, thl) overexpression. THL converts acetyl-CoA to acetoacetyl-CoA, the first step of the pathway from acetyl-CoA to butyryl-CoA, and thus, combining thl overexpression with aad overexpression decreased, as expected, acetate and ethanol production while increasing acetone and butyrate formation. thl overexpression in strains with asRNA CoAT downregulation did not significantly alter product formation thus suggesting that a more complex metabolic engineering strategy is necessary to enhance the intracellular butyryl-CoA pool and reduce the acetyl-CoA pool in order to achieve improved butanol titers and selectivity.

  20. A Korean patient with glutaric aciduria type 1 with a novel mutation in the glutaryl CoA dehydrogenase gene.

    PubMed

    Kim, Hee Su; Yu, Hee Joon; Lee, Jeehun; Park, Hyung-Doo; Kim, Ji Hye; Shin, Hyung-Jin; Jin, Dong Kyu; Lee, Munhyang

    2014-01-01

    Mutations in the glutaryl-CoA dehydrogenase gene can result in Glutaric aciduria type 1(GA 1) by accumulation of glutaric acid, 3-hydroxyglutaric acid (3-OH-GA), and glutarylcarnitine (C5DC). GA 1 is characterized by macrocephaly, subdural hemorrhage (SDH), and dystonic movement disorder after acute encephalopathic crisis. We report a Korean patient with GA1 and a novel mutation. A 16-month-old boy presented with SDH, macrocephaly, and developmental delay. In the neurologic examination, the patient had mild axial hypotonia, but otherwise normal neurologic functions. The brain MRI showed large amounts of bilateral SDH and high signal intensity in both basal ganglia and thalamus. Metabolic screening tests detected highly elevated urinary GA levels but 3-OH-glutaric acid was normal. C5DC was 0.94 μM/L (reference range < 0.3 μM/L). The patient had compound heterozygous mutations of the GCDH gene: p.Arg257Gln (c.770G>A) and p.Cys308Arg (c.922T>C). p.Cys308Arg is a novel mutation; reports of p.Arg257Gln were also rare both in Caucasians and Asian populations. In summary, we hereby report one Korean patient with GA1 with clinical, biochemical, and radiologic characteristics confirmed by genetic analysis.

  1. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase

    PubMed Central

    Laurent, Gaëlle; German, Natalie J.; Saha, Asish K.; de Boer, Vincent C. J.; Davies, Michael; Koves, Timothy R.; Dephoure, Noah; Fischer, Frank; Boanca, Gina; Vaitheesvaran, Bhavapriya; Lovitch, Scott B.; Sharpe, Arlene H.; Kurland, Irwin J.; Steegborn, Clemens; Gygi, Steven P.; Muoio, Deborah M.; Ruderman, Neil B.; Haigis, Marcia C.

    2013-01-01

    Summary Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a novel regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a novel SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis. PMID:23746352

  2. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase.

    PubMed

    Laurent, Gaëlle; German, Natalie J; Saha, Asish K; de Boer, Vincent C J; Davies, Michael; Koves, Timothy R; Dephoure, Noah; Fischer, Frank; Boanca, Gina; Vaitheesvaran, Bhavapriya; Lovitch, Scott B; Sharpe, Arlene H; Kurland, Irwin J; Steegborn, Clemens; Gygi, Steven P; Muoio, Deborah M; Ruderman, Neil B; Haigis, Marcia C

    2013-06-06

    Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis, whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism, leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Efficient reductive amination process for enantioselective synthesis of L-phosphinothricin applying engineered glutamate dehydrogenase.

    PubMed

    Yin, Xinjian; Wu, Jianping; Yang, Lirong

    2018-05-01

    The objective of this study was to identify and exploit a robust biocatalyst that can be applied in reductive amination for enantioselective synthesis of the competitive herbicide L-phosphinothricin. Applying a genome mining-based library construction strategy, eight NADPH-specific glutamate dehydrogenases (GluDHs) were identified for reductively aminating 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) to L-phosphinothricin. Among them, the glutamate dehydrogenase cloned from Pseudomonas putida (PpGluDH) exhibited relatively high catalytic activity and favorable soluble expression. This enzyme was purified to homogeneity for further characterization. The specific activity of PpGluDH was 296.1 U/g-protein, which is significantly higher than the reported value for a GluDH. To the best of our knowledge, there has not been any report on protein engineering of GluDH for PPO-oriented activity. Taking full advantage of the available information and the diverse characteristics of the enzymes in the enzyme library, PpGluDH was engineered by site-directed mutation based on multiple sequence alignment. The mutant I170M, which had 2.1-fold enhanced activity, was successfully produced. When the I170M mutant was applied in the batch production of L-phosphinothricin, it showed markedly improved catalytic efficiency compared with the wild type enzyme. The conversion reached 99% (0.1 M PPO) with an L-phosphinothricin productivity of 1.35 g/h·L, which far surpassed the previously reported level. These results show that PpGluDH I170M is a promising biocatalyst for highly enantioselective synthesis of L-phosphinothricin by reductive amination.

  4. Synthesis and magnetic properties of superparamagnetic CoAs nanostructures

    NASA Astrophysics Data System (ADS)

    Desai, P.; Ashokaan, N.; Masud, J.; Pariti, A.; Nath, M.

    2015-03-01

    This article provides a comprehensive guide on the synthesis and characterization of superparamagnetic CoAs nanoparticles and elongated nanostructures with high blocking temperature, (TB), via hot-injection precipitation and solvothermal methods. Cobalt arsenides constitute an important family of magnetically active solids that find a variety of applications ranging from magnetic semiconductors to biomedical imaging. While the higher temperature hot-injection precipitation technique (300 °C) yields pure CoAs nanostructures, the lower temperature solvothermal method (200 °C) yields a mixture of CoAs nanoparticles along with other Co-based impurity phases. The synthesis in all these cases involved usage of triphenylarsine ((C6H5)3As) as the As precursor which reacts with solid Co2(CO)8 by ligand displacement to yield a single source precursor. The surfactant, hexadecylamine (HDA) further assists in controlling the morphology of the nanostructures. HDA also provides a basic medium and molten flux-like conditions for the redox chemistry to occur between Co and As at elevated temperatures. The influence of the length of reaction time was investigated by studying the evolution of product morphology over time. It was observed that while spontaneous nucleation at higher temperature followed by controlled growth led to the predominant formation of short nanorods, with longer reaction time, the nanorods were further converted to nanoparticles. The size of the nanoparticles obtained, was mostly in the range of 10-15 nm. The key finding of this work is exceptionally high coercivity in CoAs nanostructures for the first time. Coercivity observed was as high as 0.1 T (1000 Oe) at 2 K. These kinds of magnetic nanostructures find multiple applications in spintronics, whereas the superparamagnetic nanoparticles are viable for use in magnetic storage, ferrofluids and as contrast enhancing agents in MRI.

  5. Catalysis of nitrite generation from nitroglycerin by glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

    PubMed

    Seabra, Amedea B; Ouellet, Marc; Antonic, Marija; Chrétien, Michelle N; English, Ann M

    2013-11-30

    Vascular relaxation to nitroglycerin (glyceryl trinitrate; GTN) requires its bioactivation by mechanisms that remain controversial. We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the release of nitrite from GTN. In assays containing dithiothreitol (DTT) and NAD(+), the GTN reductase activity of purified GAPDH produces nitrite and 1,2-GDN as the major products. A vmax of 2.6nmolmin(-)(1)mg(-)(1) was measured for nitrite production by GAPDH from rabbit muscle and a GTN KM of 1.2mM. Reductive denitration of GTN in the absence of DTT results in dose- and time-dependent inhibition of GAPDH dehydrogenase activity. Disulfiram, a thiol-modifying drug, inhibits both the dehydrogenase and GTN reductase activity of GAPDH, while DTT or tris(2-carboxyethyl)phosphine reverse the GTN-induced inhibition. Incubation of intact human erythrocytes or hemolysates with 2mM GTN for 60min results in 50% inhibition of GAPDH's dehydrogenase activity, indicating that GTN is taken up by these cells and that the dehydrogenase is a target of GTN. Thus, erythrocyte GAPDH may contribute to GTN bioactivation. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. Enhancement of stability of L-tryptophan dehydrogenase from Nostoc punctiforme ATCC29133 and its application to L-tryptophan assay.

    PubMed

    Matsui, Daisuke; Okazaki, Seiji; Matsuda, Motoki; Asano, Yasuhisa

    2015-02-20

    Microbial NAD(+)-dependent L-tryptophan dehydrogenase (TrpDH, EC1.4.1.19), which catalyzes the reversible oxidative deamination and the reductive amination between L-tryptophan and indole-3-pyruvic acid, was found in the scytonemin biosynthetic pathway of Nostoc punctiforme ATCC29133. The TrpDH exhibited high specificity toward L-tryptophan, but its instability was a drawback for L-tryptophan determination. The mutant enzyme TrpDH L59F/D168G/A234D/I296N with thermal stability was obtained by screening of Escherichia coli transformants harboring various mutant genes, which were generated by error-prone PCR using complementation in an L-tryptophan auxotroph of E. coli. The specific activity and stability of this mutant enzyme were higher than those of the wild type enzyme. We also revealed here that in these four mutation points, the two amino acid residues Asp168 and Ile296 contributed to increase the enzyme stability, and the Leu59, Ala234 residues to increase its specific activity. Growth of the strain harboring the gene of above 4 point mutated enzyme was accelerated by the enhanced performance. In the present study, we demonstrated that TrpDH L59F/D168G/A234D/I296N was available for determination of L-tryptophan in human plasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Role of Microsomal Retinol/Sterol Dehydrogenase-Like Short-Chain Dehydrogenases/Reductases in the Oxidation and Epimerization of 3α-Hydroxysteroids in Human Tissues

    PubMed Central

    Belyaeva, Olga V.; Chetyrkin, Sergei V.; Clark, Amy L.; Kostereva, Natalia V.; SantaCruz, Karen S.; Chronwall, Bibie M.; Kedishvili, Natalia Y.

    2008-01-01

    Allopregnanolone (ALLO) and androsterone (ADT) are naturally occurring 3α-hydroxysteroids that act as positive allosteric regulators of γ-aminobutyric acid type A receptors. In addition, ADT activates nuclear farnesoid X receptor and ALLO activates pregnane X receptor. At least with respect to γ-aminobutyric acid type A receptors, the biological activity of ALLO and ADT depends on the 3α-hydroxyl group and is lost upon its conversion to either 3-ketosteroid or 3β-hydroxyl epimer. Such strict structure-activity relationships suggest that the oxidation or epimerization of 3α-hydroxysteroids may serve as physiologically relevant mechanisms for the control of the local concentrations of bioactive 3α-hydroxysteroids. The exact enzymes responsible for the oxidation and epimerization of 3α-hydroxysteroids in vivo have not yet been identified, but our previous studies showed that microsomal nicotinamide adenine dinucleotide-dependent short-chain dehydrogenases/reductases (SDRs) with dual retinol/sterol dehydrogenase substrate specificity (RoDH-like group of SDRs) can oxidize and epimerize 3α-hydroxysteroids in vitro. Here, we present the first evidence that microsomal nicotinamide adenine dinucleotide-dependent 3α-hydroxysteroid dehydrogenase/epimerase activities are widely distributed in human tissues with the highest activity levels found in liver and testis and lower levels in lung, spleen, brain, kidney, and ovary. We demonstrate that RoDH-like SDRs contribute to the oxidation and epimerization of ALLO and ADT in living cells, and show that RoDH enzymes are expressed in tissues that have microsomal 3α-hydroxysteroid dehydrogenase/epimerase activities. Together, these results provide further support for the role of RoDH-like SDRs in human metabolism of 3α-hydroxysteroids and offer a new insight into the enzymology of ALLO and ADT inactivation. PMID:17289849

  8. Role of microsomal retinol/sterol dehydrogenase-like short-chain dehydrogenases/reductases in the oxidation and epimerization of 3alpha-hydroxysteroids in human tissues.

    PubMed

    Belyaeva, Olga V; Chetyrkin, Sergei V; Clark, Amy L; Kostereva, Natalia V; SantaCruz, Karen S; Chronwall, Bibie M; Kedishvili, Natalia Y

    2007-05-01

    Allopregnanolone (ALLO) and androsterone (ADT) are naturally occurring 3alpha-hydroxysteroids that act as positive allosteric regulators of gamma-aminobutyric acid type A receptors. In addition, ADT activates nuclear farnesoid X receptor and ALLO activates pregnane X receptor. At least with respect to gamma-aminobutyric acid type A receptors, the biological activity of ALLO and ADT depends on the 3alpha-hydroxyl group and is lost upon its conversion to either 3-ketosteroid or 3beta-hydroxyl epimer. Such strict structure-activity relationships suggest that the oxidation or epimerization of 3alpha-hydroxysteroids may serve as physiologically relevant mechanisms for the control of the local concentrations of bioactive 3alpha-hydroxysteroids. The exact enzymes responsible for the oxidation and epimerization of 3alpha-hydroxysteroids in vivo have not yet been identified, but our previous studies showed that microsomal nicotinamide adenine dinucleotide-dependent short-chain dehydrogenases/reductases (SDRs) with dual retinol/sterol dehydrogenase substrate specificity (RoDH-like group of SDRs) can oxidize and epimerize 3alpha-hydroxysteroids in vitro. Here, we present the first evidence that microsomal nicotinamide adenine dinucleotide-dependent 3alpha-hydroxysteroid dehydrogenase/epimerase activities are widely distributed in human tissues with the highest activity levels found in liver and testis and lower levels in lung, spleen, brain, kidney, and ovary. We demonstrate that RoDH-like SDRs contribute to the oxidation and epimerization of ALLO and ADT in living cells, and show that RoDH enzymes are expressed in tissues that have microsomal 3alpha-hydroxysteroid dehydrogenase/epimerase activities. Together, these results provide further support for the role of RoDH-like SDRs in human metabolism of 3alpha-hydroxysteroids and offer a new insight into the enzymology of ALLO and ADT inactivation.

  9. The Core of Allosteric Motion in Thermus caldophilus l-Lactate Dehydrogenase*

    PubMed Central

    Ikehara, Yoko; Arai, Kazuhito; Furukawa, Nayuta; Ohno, Tadashi; Miyake, Tatsuya; Fushinobu, Shinya; Nakajima, Masahiro; Miyanaga, Akimasa; Taguchi, Hayao

    2014-01-01

    For Thermus caldophilus l-lactate dehydrogenase (TcLDH), fructose 1,6-bisphosphate (FBP) reduced the pyruvate S0.5 value 103-fold and increased the Vmax value 4-fold at 30 °C and pH 7.0, indicating that TcLDH has a much more T state-sided allosteric equilibrium than Thermus thermophilus l-lactate dehydrogenase, which has only two amino acid replacements, A154G and H179Y. The inactive (T) and active (R) state structures of TcLDH were determined at 1.8 and 2.0 Å resolution, respectively. The structures indicated that two mobile regions, MR1 (positions 172–185) and MR2 (positions 211–221), form a compact core for allosteric motion, and His179 of MR1 forms constitutive hydrogen bonds with MR2. The Q4(R) mutation, which comprises the L67E, H68D, E178K, and A235R replacements, increased Vmax 4-fold but reduced pyruvate S0.5 only 5-fold in the reaction without FBP. In contrast, the P2 mutation, comprising the R173Q and R216L replacements, did not markedly increase Vmax, but 102-reduced pyruvate S0.5, and additively increased the FBP-independent activity of the Q4(R) enzyme. The two types of mutation consistently increased the thermal stability of the enzyme. The MR1-MR2 area is a positively charged cluster, and its center approaches another positively charged cluster (N domain cluster) across the Q-axis subunit interface by 5 Å, when the enzyme undergoes the T to R transition. Structural and kinetic analyses thus revealed the simple and unique allosteric machinery of TcLDH, where the MR1-MR2 area pivotally moves during the allosteric motion and mediates the allosteric equilibrium through electrostatic repulsion within the protein molecule. PMID:25258319

  10. Glyceraldehyde-3-phosphate dehydrogenase from Chironomidae showed differential activity towards metals.

    PubMed

    Chong, Isaac K W; Ho, Wing S

    2013-09-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to interact with different biomolecules and was implicated in many novel cellular activities including programmed cell death, nuclear RNA transport unrelated to the commonly known carbohydrate metabolism. We reported here the purification of GAPDH from Chironomidae larvae (Insecta, Diptera) that showed different biologic activity towards heavy metals. It was inhibited by copper, cobalt nickel, iron and lead but was activated by zinc. The GAPDH was purified by ammonium sulphate fractionation and Chelating Sepharose CL-6B chromatography followed by Blue Sepharose CL-6B chromatography. The 150-kDa tetrameric GAPDH showed optimal activity at pH 8.5 and 37°C. The multiple alignment of sequence of the Chironomidae GAPDH with other known species showed 78 - 88% identity to the conserved regions of the GADPH. Bioinformatic analysis unveils substantial N-terminal sequence similarity of GAPDH of Chironomidae larvae to mammalian GADPHs. However, the GADPH of Chironomidae larvae showed different biologic activities and cytotoxicity towards heavy metals. The GAPDH enzyme would undergo adaptive molecular changes through binding at the active site leading to higher tolerance to heavy metals.

  11. Binding, hydration, and decarboxylation of the reaction intermediate glutaconyl-coenzyme A by human glutaryl-CoA dehydrogenase.

    PubMed

    Westover, J B; Goodman, S I; Frerman, F E

    2001-11-20

    Glutaconyl-coenzyme A (CoA) is the presumed enzyme-bound intermediate in the oxidative decarboxylation of glutaryl-CoA that is catalyzed by glutaryl-CoA dehydrogenase. We demonstrated glutaconyl-CoA bound to glutaryl-CoA dehydrogenase after anaerobic reduction of the dehydrogenase with glutaryl-CoA. Glutaryl-CoA dehydrogenase also has intrinsic enoyl-CoA hydratase activity, a property of other members of the acyl-CoA dehydrogenase family. The enzyme rapidly hydrates glutaconyl-CoA at pH 7.6 with a k(cat) of 2.7 s(-1). The k(cat) in the overall oxidation-decarboxylation reaction at pH 7.6 is about 9 s(-1). The binding of glutaconyl-CoA was quantitatively assessed from the K(m) in the hydratase reaction, 3 microM, and the K(i), 1.0 microM, as a competitive inhibitor of the dehydrogenase. These values compare with K(m) and K(i) of 4.0 and 12.9 microM, respectively, for crotonyl-CoA. Glu370 is the general base catalyst in the dehydrogenase that abstracts an alpha-proton of the substrate to initiate the catalytic pathway. The mutant dehydrogenase, Glu370Gln, is inactive in the dehydrogenation and the hydratase reactions. However, this mutant dehydrogenase decarboxylates glutaconyl-CoA to crotonyl-CoA without oxidation-reduction reactions of the dehydrogenase flavin. Addition of glutaconyl-CoA to this mutant dehydrogenase results in a rapid, transient increase in long-wavelength absorbance (lambda(max) approximately 725 nm), and crotonyl-CoA is found as the sole product. We propose that this 725 nm-absorbing species is the delocalized crotonyl-CoA anion that follows decarboxylation and that the decay is the result of slow protonation of the anion in the absence of the general acid catalyst, Glu370(H(+)). In the absence of detectable oxidation-reduction, the data indicate that oxidation-reduction of the dehydrogenase flavin is not essential for decarboxylation of glutaconyl-CoA.

  12. Highly Stable l-Lysine 6-Dehydrogenase from the Thermophile Geobacillus stearothermophilus Isolated from a Japanese Hot Spring: Characterization, Gene Cloning and Sequencing, and Expression

    PubMed Central

    Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko

    2004-01-01

    l-Lysine dehydrogenase, which catalyzes the oxidative deamination of l-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Δ1-piperideine-6-carboxylate, indicating that the enzyme is l-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70°C, respectively. No activity was lost at temperatures up to 65°C in the presence of 5 mM l-lysine. The enzyme was relatively selective for l-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for l-lysine, NAD, and NADP at 50°C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da. PMID:14766574

  13. Highly stable L-lysine 6-dehydrogenase from the thermophile Geobacillus stearothermophilus isolated from a Japanese hot spring: characterization, gene cloning and sequencing, and expression.

    PubMed

    Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko

    2004-02-01

    L-Lysine dehydrogenase, which catalyzes the oxidative deamination of L-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Delta1-piperideine-6-carboxylate, indicating that the enzyme is L-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70 degrees C, respectively. No activity was lost at temperatures up to 65 degrees C in the presence of 5 mM L-lysine. The enzyme was relatively selective for L-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for L-lysine, NAD, and NADP at 50 degrees C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da.

  14. Substrate specificity of sheep liver sorbitol dehydrogenase.

    PubMed Central

    Lindstad, R I; Köll, P; McKinley-McKee, J S

    1998-01-01

    The substrate specificity of sheep liver sorbitol dehydrogenase has been studied by steady-state kinetics over the range pH 7-10. Sorbitol dehydrogenase stereo-selectively catalyses the reversible NAD-linked oxidation of various polyols and other secondary alcohols into their corresponding ketones. The kinetic constants are given for various novel polyol substrates, including L-glucitol, L-mannitol, L-altritol, D-altritol, D-iditol and eight heptitols, as well as for many aliphatic and aromatic alcohols. The maximum velocities (kcat) and the substrate specificity-constants (kcat/Km) are positively correlated with increasing pH. The enzyme-catalysed reactions occur by a compulsory ordered kinetic mechanism with the coenzyme as the first, or leading, substrate. With many substrates, the rate-limiting step for the overall reaction is the enzyme-NADH product dissociation. However, with several substrates there is a transition to a mechanism with partial rate-limitation at the ternary complex level, especially at low pH. The kinetic data enable the elucidation of new empirical rules for the substrate specificity of sorbitol dehydrogenase. The specificity-constants for polyol oxidation vary as a function of substrate configuration with D-xylo> D-ribo > L-xylo > D-lyxo approximately L-arabino > D-arabino > L-lyxo. Catalytic activity with a polyol or an aromatic substrate and various 1-deoxy derivatives thereof varies with -CH2OH > -CH2NH2 > -CH2OCH3 approximately -CH3. The presence of a hydroxyl group at each of the remaining chiral centres of a polyol, apart from the reactive C2, is also nonessential for productive ternary complex formation and catalysis. A predominantly nonpolar enzymic epitope appears to constitute an important structural determinant for the substrate specificity of sorbitol dehydrogenase. The existence of two distinct substrate binding regions in the enzyme active site, along with that of the catalytic zinc, is suggested to account for the lack of

  15. Autodisplay of active sorbitol dehydrogenase (SDH) yields a whole cell biocatalyst for the synthesis of rare sugars.

    PubMed

    Jose, Joachim; von Schwichow, Steffen

    2004-04-02

    Whole cell biocatalysts are attractive technological tools for the regio- and enantioselective synthesis of products, especially from substrates with several identical reactive groups. In the present study, a whole cell biocatalyst for the synthesis of rare sugars from polyalcohols was constructed. For this purpose, sorbitol dehydrogenase (SDH) from Rhodobacter sphaeroides, a member of the short-chain dehydrogenase/reductase (SDR) family, was expressed on the surface of Escherichia coli using Autodisplay. Autodisplay is an efficient surface display system for Gram-negative bacteria and is based on the autotransporter secretion pathway. Transport of SDH to the outer membrane was monitored by SDS-PAGE and Western blotting of different cell fractions. The surface exposure of the enzyme could be verified by immunofluorescence microscopy and fluorescence activated cell sorting (FACS). The activity of whole cells displaying SDH at the surface was determined in an optical test. Specific activities were found to be 12 mU per 3.3 x 10(8) cells for the conversion of D-glucitol (sorbitol) to D-fructose, 7 mU for the conversion D-galactitol to D-tagatose, and 17 mU for the conversion of L-arabitol to L-ribulose. The whole cell biocatalyst obtained by surface display of SDH could also produce D-glucitol from D-fructose (29 mU per 3.3 x 10(8) cells).

  16. Subcellular distribution of delta 5-3 beta-hydroxy steroid dehydrogenase in the granulosa cells of the domestic fowl (Gallus domesticus).

    PubMed Central

    Armstrong, D G

    1979-01-01

    1. The distribution of 3 beta-hydroxy steroid dehydrogenase was examined in the subcellular fractions of granulosa cells collected from the ovary of the domestic fowl. 2. 3 beta-hydroxy steroid dehydrogenase activity was observed in the mitochondrial (4000g for 20min) and microsomal (105 000g for 120min) fractions. 3. Approximately three times more 3 beta-hydroxy steroid dehydrogenase activity was associated with the cytochrome oxidase activity (a mitochondrial marker enzyme) in anteovulatory-follicle granulosa cells than with that of the postovulatory follicle. 4. Comparison of the latent properties of mitochondrial 3 beta-hydroxy steroid dehydrogenase with those of cytochrome oxidase and isocitrate dehydrogenase indicated that 3 beta-hydroxy steroid dehydrogenase is located extramitochondrially. 5. This apparent distribution of 3 beta-hydroxy steroid dehydrogenase is explained on the basis that the mitochondrial activity is either an artefact caused by a redistribution in the subcellular location of the enzyme, occurring during homogenization, or by the existence of a functionally heterogeneous endoplasmic reticulum that yields particles of widely differing sedimentation properties. PMID:518548

  17. The investigation of plasma glucose-6-phosphate dehydrogenase, 6-phoshogluconate dehydrogenase, glutathione reductase in premenauposal patients with iron deficiency anemia.

    PubMed

    Ozcicek, Fatih; Aktas, Mehmet; Türkmen, Kultigin; Coban, T Abdulkadir; Cankaya, Murat

    2014-07-01

    Iron is an essential element that is necessary for all cells in the body. Iron deficiency anemia (IDA) is one of the most common nutritional disorders in both developed and developing countries. The glutathione pathway is paramount to antioxidant defense and glucose-6-phosphate dehydrogenase (G6PD)-deficient cells do not cope well with oxidative damage. The goal of this study was to check the activities of G6PD, 6-phosphogluconate dehydrogenase, glutathione reductase in patients with IDA. We analyzed the plasma samples of 102 premenopausal women with IDA and 88 healthy control subjects. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activity as compared to the reduction of NADP +, glutathione reductase activity was performed based on the oxidation of NADPH. 2 ml of plasma were used in all analyzes. SPSS program was used for all of the statistical analysis. Diagnosis of iron deficiency in patients belonging to the analysis of blood were ferritin 3.60 ± 2.7 ng / mL, hemoglobin 9.4 ± 1.5 mg / dl and hematocrit 30.7 ± 4.1% ratio; in healthy subjects ferritin 53.5 ± 41.7 ng/ml, hemoglobin level 13.9 ± 1.3 mg / dl and hematocrit ratio 42 ± 3.53%. When compared to healthy subjects the glutathione reductase level (P<0.001) was found to be significantly higher in patients with IDA. IDA patients with moderate and severe anemia had lower GR activity when compared to IDA patients with mild anemia. But the plasma levels of glucose-6-phosphate dehydrogenase (P<0,600) and 6-phosphogluconate dehydrogenase (P<0,671) did not show any differences between healthy subjects and in patients with IDA. It was shown that Glucose-6-Phosphate Dehydrogenase and 6-Phosphogluconate Dehydrogenase have no effect on iron-deficiency anemia in patients. The plasma GR levels of premenopausal women with IDA were found to be higher compared to healthy subjects, which could be secondary to erythrocyte protection against oxidative stress being commonly seen in IDA.

  18. Novel characteristics of UDP-glucose dehydrogenase activities in maize: non-involvement of alcohol dehydrogenases in cell wall polysaccharide biosynthesis.

    PubMed

    Kärkönen, Anna; Fry, Stephen C

    2006-03-01

    UDP-glucose dehydrogenase (UDPGDH) activity was detected in extracts of maize cell-cultures and developing leaves. The reaction product was confirmed as UDP-glucuronate. Leaf extracts from null mutants defective in one or both of the ethanol dehydrogenase genes, ADH1 and ADH2, had similar UDPGDH activities to wild-type, showing that UDPGDH activity is not primarily due to ADH proteins. The mutants showed no defect in their wall matrix pentose:galactose ratios, or matrix:cellulose ratio, showing that ADHs were not required for normal wall biosynthesis. The majority of maize leaf UDPGDH activity had K (m) (for UDP-glucose) 0.5-1.0 mM; there was also a minor activity with an unusually high K (m) of >50 mM. In extracts of cultured cells, kinetic data indicated at least three UDPGDHs, with K (m) values (for UDP-glucose) of roughly 0.027, 2.8 and >50 mM (designated enzymes E(L), E(M) and E(H) respectively). E(M) was the single major contributor to extractable UDPGDH activity when assayed at 0.6-9.0 mM UDP-Glc. Most studies, in other plant species, had reported only E(L)-like isoforms. Ethanol (100 mM) partially inhibited UDPGDH activity assayed at low, but not high, UDP-glucose concentrations, supporting the conclusion that at least E(H) activity is not due to ADH. At 30 microM UDP-glucose, 20-150 microM UDP-xylose inhibited UDPGDH activity, whereas 5-15 microM UDP-xylose promoted it. In conclusion, several very different UDPGDH isoenzymes contribute to UDP-glucuronate and hence wall matrix biosynthesis in maize, but ADHs are not responsible for these activities.

  19. The fruits of Gleditsia sinensis Lam. inhibits adipogenesis through modulation of mitotic clonal expansion and STAT3 activation in 3T3-L1 cells.

    PubMed

    Lee, Ji-Hye; Go, Younghoon; Lee, Bonggi; Hwang, Youn-Hwan; Park, Kwang Il; Cho, Won-Kyung; Ma, Jin Yeul

    2018-08-10

    Gleditsia sinensis Lam. (G. sinensis) has been used in Oriental medicine for tumor, thrombosis, inflammation-related disease, and obesity. The pharmacological inhibitory effects of fruits of G. sinensis (GFE) on hyperlipidemia have been reported, but its inhibitory effects on adipogenesis and underlying mechanisms have not been elucidated. Herein we evaluated the anti-adipogenic effects of GFE and described the underlying mechanisms. The effects of ethanol extracts of GFE on adipocyte differentiation were examined in 3T3-L1 cells using biochemical and molecular analyses. During the differentiation of 3T3-L1 cells, GFE significantly reduced lipid accumulation and downregulated master adipogenic transcription factors, including CCAAT/enhancer-binding protein-α and peroxisome proliferator-activated receptor-γ, at mRNA and protein levels. These changes led to the suppression of several adipogenic-specific genes and proteins, including fatty acid synthase, sterol regulatory element-binding protein 1, stearoyl-CoA desaturase-1, and acetyl CoA carboxylase. However, the inhibitory effects of GFE on lipogenesis were only shown when GFE is treated in the early stage of adipogenesis within the first two days of differentiation. As a potential mechanism, during the early stages of differentiation, GFE inhibited cell proliferation by a decrease in the expression of DNA synthesis-related proteins and increased p27 expression and suppressed signal transducer and activator of transcription 3 (STAT3) activation induced in a differentiation medium. GFE inhibits lipogenesis by negative regulation of adipogenic transcription factors, which is associated with GFE-mediated cell cycle arrest and STAT3 inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    PubMed

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  1. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    NASA Technical Reports Server (NTRS)

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  2. Inhibition of several enzymes by gold compounds. II. beta-Glucuronidase, acid phosphatase and L-malate dehydrogenase by sodium thiomalatoraurate (I), sodium thiosulfatoaurate (I) and thioglucosoaurate (I).

    PubMed

    Lee, M T; Ahmed, T; Haddad, R; Friedman, M E

    1989-01-01

    Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.

  3. Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of Mycobacterium tuberculosis.

    PubMed

    Evans, Joanna C; Trujillo, Carolina; Wang, Zhe; Eoh, Hyungjin; Ehrt, Sabine; Schnappinger, Dirk; Boshoff, Helena I M; Rhee, Kyu Y; Barry, Clifton E; Mizrahi, Valerie

    2016-12-09

    Mycobacterium tuberculosis relies on its own ability to biosynthesize coenzyme A to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the essential pantothenate and coenzyme A biosynthesis pathways have attracted attention as targets for tuberculosis drug development. To identify the optimal step for coenzyme A pathway disruption in M. tuberculosis, we constructed and characterized a panel of conditional knockdown mutants in coenzyme A pathway genes. Here, we report that silencing of coaBC was bactericidal in vitro, whereas silencing of panB, panC, or coaE was bacteriostatic over the same time course. Silencing of coaBC was likewise bactericidal in vivo, whether initiated at infection or during either the acute or chronic stages of infection, confirming that CoaBC is required for M. tuberculosis to grow and persist in mice and arguing against significant CoaBC bypass via transport and assimilation of host-derived pantetheine in this animal model. These results provide convincing genetic validation of CoaBC as a new bactericidal drug target.

  4. Activation of liver alcohol dehydrogenase by glycosylation.

    PubMed Central

    Tsai, C S; White, J H

    1983-01-01

    D-Fructose and D-glucose activate alcohol dehydrogenase from horse liver to oxidize ethanol. One mol of D-[U-14C]fructose or D-[U-14C]glucose is covalently incorporated per mol of the maximally activated enzyme. Amino acid and N-terminal analyses of the 14C-labelled glycopeptide isolated from a proteolytic digest of the [14C]glycosylated enzyme implicate lysine-315 as the site of the glycosylation. 13C-n.m.r.-spectroscopic studies indicate that D-[13C]glucose is covalently linked in N-glucosidic and Amadori-rearranged structures in the [13C]glucosylated alcohol dehydrogenase. Experimental results are consistent with the formation of the N-glycosylic linkage between glycose and lysine-315 of liver alcohol dehydrogenase in the initial step that results in an enhanced catalytic efficiency to oxidize ethanol. PMID:6342612

  5. Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds.

    PubMed

    Larson, Tony R; Edgell, Teresa; Byrne, James; Dehesh, Katayoon; Graham, Ian A

    2002-11-01

    Several Brassica napus lines transformed with genes responsible for the synthesis of medium- or long-chain fatty acids were examined to determine limiting factor(s) for the subsequent accumulation of these fatty acids in seed lipids. Examination of a decanoic acid (10:0) accumulating line revealed a disproportionately high concentration of 10:0 CoA during seed development compared to long-chain acyl CoAs isolated from the same tissues, suggesting that poor incorporation of 10:0 CoA into seed lipids limits 10:0 fatty acid accumulation. This relationship was also seen for dodecanoyl (12:0) CoA and fatty acid in a high 12:0 line, but not for octadecanoic (18:0) CoA and fatty acid in a high 18:0 line. Comparison of 10:0 CoA and fatty acid proportions from seeds at different developmental stages for transgenic B. napus and Cuphea hookeriana, the source plant for the medium-chain thioesterase and 3-ketoacyl-ACP synthase transgenes, revealed that C. hookeriana incorporates 10:0 CoA into seed lipids more efficiently than transgenic B. napus. Furthermore, beta-oxidation and glyoxylate cycle activities were not increased above wild type levels during seed development in the 8:0/10:0 line, suggesting that lipid catabolism was not being induced in response to the elevated 10:0 CoA concentrations. Taken together, these data suggest that transgenic plants that are engineered to synthesize medium-chain fatty acids may lack the necessary mechanisms, such as specific acyltransferases, to incorporate these fatty acids efficiently into seed lipids.

  6. The Activity of Class I-IV Alcohol Dehydrogenase Isoenzymes and Aldehyde Dehydrogenase in Bladder Cancer Cells.

    PubMed

    Orywal, Karolina; Jelski, Wojciech; Werel, Tadeusz; Szmitkowski, Maciej

    2018-01-02

    The aim of this study was to determine the differences in the activity of Alcohol Dehydrogenase (ADH) isoenzymes and Aldehyde Dehydrogenase (ALDH) in normal and cancerous bladder cells. Class III, IV of ADH and total ADH activity were measured by the photometric method and class I, II ADH and ALDH activity by the fluorometric method. Significantly higher total activity of ADH was found in both, low-grade and high-grade bladder cancer, in comparison to healthy tissues. The increased activity of total ADH in bladder cancer cells may be the cause of metabolic disorders in cancer cells, which may intensify carcinogenesis.

  7. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.

    PubMed

    Buchholz, Jens; Schwentner, Andreas; Brunnenkan, Britta; Gabris, Christina; Grimm, Simon; Gerstmeir, Robert; Takors, Ralf; Eikmanns, Bernhard J; Blombach, Bastian

    2013-09-01

    Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products.

  8. Platform Engineering of Corynebacterium glutamicum with Reduced Pyruvate Dehydrogenase Complex Activity for Improved Production of l-Lysine, l-Valine, and 2-Ketoisovalerate

    PubMed Central

    Buchholz, Jens; Schwentner, Andreas; Brunnenkan, Britta; Gabris, Christina; Grimm, Simon; Gerstmeir, Robert; Takors, Ralf; Eikmanns, Bernhard J.

    2013-01-01

    Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products. PMID:23835179

  9. 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production.

    PubMed

    Stevens, Marc J A; Vollenweider, Sabine; Meile, Leo; Lacroix, Christophe

    2011-08-03

    Lactobacillus reuteri metabolizes glycerol to 3-hydroxypropionaldehyde (3-HPA) and further to 1,3-propanediol (1,3-PDO), the latter step catalysed by a propanediol dehydrogenase (PDH). The last step in this pathway regenerates NAD+ and enables therefore the energetically more favourable production of acetate over ethanol during growth on glucose. A search throughout the genome of L. reuteri DSM 20016 revealed two putative PDHs encoded by ORFs lr_0030 and lr_1734. ORF lr_1734 is situated in the pdu operon encoding the glycerol conversion machinery and therefore likely involved in 1,3-PDO formation. ORF lr_0030 has not been associated with PDH-activity so far. To elucidate the role of these two PDHs, gene deletion mutant strains were constructed. Growth behaviour on glucose was comparable between the wild type and both mutant strains. However, on glucose + glycerol, the exponential growth rate of Δlr_0030 was lower compared to the wild type and the lr_1734 mutant. Furthermore, glycerol addition resulted in decreased ethanol production in the wild type and Δlr_1734, but not in Δlr_0030. PDH activity measurements using 3-HPA as a substrate revealed lower activity of Δlr_0030 extracts from exponential growing cells compared to wild type and Δlr_1734 extracts.During biotechnological 3-HPA production using non-growing cells, the ratio 3-HPA to 1,3-PDO was approximately 7 in the wild type and Δlr_0030, whereas this ratio was 12.5 in the mutant Δlr_1734. The enzyme encoded by lr_0030 plays a pivotal role in 3-HPA conversion in exponential growing L. reuteri cells. The enzyme encoded by lr_1734 is active during 3-HPA production by non-growing cells and this enzyme is a useful target to enhance 3-HPA production and minimize formation of the by-product 1,3-PDO.

  10. Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity.

    PubMed

    Su, Yue; Rhee, Mun Su; Ingram, Lonnie O; Shanmugam, K T

    2011-03-01

    Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.

  11. Cloud condensation nuclei activity and hygroscopicity of fresh and aged cooking organic aerosol

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Tasoglou, Antonios; Liangou, Aikaterini; Cain, Kerrigan P.; Jahn, Leif; Gu, Peishi; Kostenidou, Evangelia; Pandis, Spyros N.

    2018-03-01

    Cooking organic aerosol (COA) is potentially a significant fraction of organic particulate matter in urban areas. COA chemical aging experiments, using aerosol produced by grilling hamburgers, took place in a smog chamber in the presence of UV light or excess ozone. The water solubility distributions, cloud condensation nuclei (CCN) activity, and corresponding hygroscopicity of fresh and aged COA were measured. The average mobility equivalent activation diameter of the fresh particles at 0.4% supersaturation ranged from 87 to 126 nm and decreased for aged particles, ranging from 65 to 88 nm. Most of the fresh COA had water solubility less than 0.1 g L-1, even though the corresponding particles were quite CCN active. After aging, the COA fraction with water solubility greater than 0.1 g L-1 increased more than 2 times. Using the extended Köhler theory for multiple partially soluble components in order to predict the measured activation diameters, the COA solubility distribution alone could not explain the CCN activity. Surface tensions less than 30 dyn cm-1 were required to explain the measured activation diameters. In addition, COA particles appear to not be spherical, which can introduce uncertainties into the corresponding calculations.

  12. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    PubMed

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Activities of some enzymes of lignin formation in reaction wood of Thuja orientalis, Metasequoia glyptostroboides and Robinia pseudoacacia.

    PubMed

    Kutsuki, H; Higuchi, T

    1981-07-01

    The activities of the following five enzymes which are involved in the formation of lignin have been compared in reaction wood and in opposite wood: phenylalanine ammonia lyase (EC 4.3.1.5), caffeate 3-O-methyltransferase (EC 2.1.1.-), p-hydroxycinnamate: CoA ligase (EC 6.2.1.12), cinnamyl alcohol dehydrogenase (EC 1.1.1.-) and peroxidase (EC 1.11.1.7). The activities of the four first-named enzymes in the compression wood of Thuja orientalis L. and Metasequoia glyptostroboides Hu et Cheng were 2.8±1.4-fold and 2.6±1.5-fold higher than those in opposite wood, respectively, whereas peroxidase had the same level of activity in either type of wood. On the other hand, no differences were observed in the activities of the five enzymes between tension and opposite woods of Robinia pseudoacacia L. These findings are well in accord with the chemical structure of lignin in the compression and tension woods of the three species studied: high content of lignin rich in condensed units in compression wood, and little difference in lignin between tension and opposite woods.

  14. 3-Hydroxy-3-methylglutaryl CoA lyase (HL): Mouse and human HL gene (HMGCL) cloning and detection of large gene deletions in two unrelated HL-deficient patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.P.; Robert, M.F.; Mitchell, G.A.

    1996-04-01

    3-hydroxy-3-methylglutaryl CoA lyase (HL, EC 4.1.3.4) catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetic acid and acetyl CoA, the final reaction of both ketogenesis and leucine catabolism. Autosomal-recessive HL deficiency in humans results in episodes of hypoketotic hypoglycemia and coma. Using a mouse HL cDNA as a probe, we isolated a clone containing the full-length mouse HL gene that spans about 15 kb of mouse chromosome 4 and contains nine exons. The promoter region of the mouse HL gene contains elements characteristic of a housekeeping gene: a CpG island containing multiple Sp1 binding sites surrounds exon 1, and neither amore » TATA nor a CAAT box are present. We identified multiple transcription start sites in the mouse HL gene, 35 to 9 bases upstream of the translation start codon. We also isolated two human HL genomic clones that include HL exons 2 to 9 within 18 kb. The mouse and human HL genes (HGMW-approved symbol HMGCL) are highly homologous, with identical locations of intron-exon junctions. By genomic Southern blot analysis and exonic PCR, was found 2 of 33 HL-deficient probands to be homozygous for large deletions in the HL gene. 26 refs., 4 figs., 2 tabs.« less

  15. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.

    PubMed

    Jung, Moo-Young; Ng, Chiam Yu; Song, Hyohak; Lee, Jinwon; Oh, Min-Kyu

    2012-07-01

    2,3-Butanediol is an important bio-based chemical product, because it can be converted into several C4 industrial chemicals. In this study, a lactate dehydrogenase-deleted mutant was constructed to improve 2,3-butanediol productivity in Enterobacter aerogenes. To delete the gene encoding lactate dehydrogenase, λ Red recombination method was successfully adapted for E. aerogenes. The resulting strain produced a very small amount of lactate and 16.7% more 2,3-butanediol than that of the wild-type strain in batch fermentation. The mutant and its parental strain were then cultured with six different carbon sources, and the mutant showed higher carbon source consumption and microbial growth rates in all media. The 2,3-butanediol titer reached 69.5 g/l in 54 h during fed-batch fermentation with the mutant,which was 27.4% higher than that with the parental strain.With further optimization of the medium and aeration conditions,118.05 g/l 2,3-butanediol was produced in 54 h during fed-batch fermentation with the mutant. This is by far the highest titer of 2,3-butanediol with E. aerogenes achieved by metabolic pathway engineering.

  16. l-Valine Production with Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum▿

    PubMed Central

    Blombach, Bastian; Schreiner, Mark E.; Holátko, Jiří; Bartek, Tobias; Oldiges, Marco; Eikmanns, Bernhard J.

    2007-01-01

    Corynebacterium glutamicum was engineered for the production of l-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the l-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum ΔaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, l-alanine, and l-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum ΔaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and l-alanine towards l-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum ΔaceE(pJC4ilvBNCE) produced up to 210 mM l-valine with a volumetric productivity of 10.0 mM h−1 (1.17 g l−1 h−1) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose. PMID:17293513

  17. Effects of long-term exposure to Cu2+ and Cd2+ on the pentose phosphate pathway dehydrogenase activities in the ovary of adult Bufo arenarum: possible role as biomarker for Cu2+ toxicity.

    PubMed

    Carattino, Marcelo D; Peralta, Susana; Pérez-Coll, Cristina; Naab, Fabián; Burlón, Alejandro; Kreiner, Andrés J; Preller, Ana F; de Schroeder, Teresa M Fonovich

    2004-03-01

    The effects of copper and cadmium on metabolism through the pentose phosphate pathway were evaluated in Bufo arenarum toad ovary. The effects of the two metals on dehydrogenases from this pathway were evaluated by three experiments: (1) in samples obtained from control females with addition of the metals to the reaction mixture (in vitro), (2) in samples obtained from control females and after long-term exposure of females to 4 and 100 microg/L of Cu or Cd in the incubation media (in vitro after exposure to the metals in vivo), and (3) 14CO2 production through the pentose phosphate pathway was evaluated after [U-14C]glucose microinjection on ovulated oocytes (in vivo after microinjection of the metals). Results from (1) evidenced inhibition of both enzyme activities but only above 1.5 mM Cu and Cd added to the reaction mixture. In (2) both glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities decreased in samples from the ovaries of females exposed in vivo to Cu, in a concentration-dependent manner (up to 90% in females exposed to 100 microg/L Cu: 2.12 +/- 1.57 NADPH micromol/min microg protein x 10(-5) vs 19.97 +/- 8.54 in control females). Cd treatment of the toads only rendered an inhibitory effect on 6-phosphogluconate dehydrogenase activity after exposure to 4 microg/L of the bivalent cation. (3) In vivo 14CO2 evolution significantly decreased in oocytes coinjected with 6.3 x 10(-3) mM Cu (calculated intracellular final concentration of the metal injected) and radioactive glucose. Cu and Cd concentration in samples from exposed females were always under detection limit by particle-induced X-ray emission. The results presented here are in agreement with a role for both glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities determination as biomarkers of effect and exposure for Cu but not for Cd toxicity.

  18. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Akio, E-mail: watanabea@jfrl.or.jp; Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555; Kato, Tsuyoshi

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence ofmore » insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.« less

  19. Alcohol Dehydrogenase Activities of Wine Yeasts in Relation to Higher Alcohol Formation

    PubMed Central

    Singh, Rajendra; Kunkee, Ralph E.

    1976-01-01

    Alcohol dehydrogenase activities were examined in cell-free extracts of 10 representative wine yeast strains having various productivities of higher alcohols (fusel oil). The amount of fusel alcohols (n-propanol, isobutanol, active pentanol, and isopentanol) produced by the different yeasts and the specific alcohol dehydrogenase activities with the corresponding alcohols as substrates were found to be significantly related. No such relationship was found for ethanol. The amounts of higher alcohols formed during vinification could be predicted from the specific activities of the alcohol dehydrogenases with high accuracy. The results suggest a close relationship between the control of the activities of alcohol dehydrogenase and the formation of fusel oil alcohols. Also, new procedures for the prediction of higher alcohol formation during alcoholic beverage fermentation are suggested. PMID:16345179

  20. Bisphenol A 3,4-quinone induces the conversion of xanthine dehydrogenase into oxidase in vitro.

    PubMed

    Sakuma, Satoru; Nakanishi, Masahiko; Morinaga, Kazuhiro; Fujitake, Mihoyo; Wada, Shun-ichi; Fujimoto, Yohko

    2010-01-01

    In the present study, we assessed the influence of bisphenol A (BPA) and bisphenol A 3,4-quinone (BPAQ) on the conversion of xanthine dehydrogenase (XD) into xanthine oxidase (XO) in the rat liver in vitro. BPA up to 100 micromol/L did not affect the XO and XD activities in the partially purified cytosolic fraction from rat liver, whereas BPAQ (2-10 micromol/L) dose-dependently enhanced the XO activity concomitant with a decrease in the XD activity, implying that BPAQ, but not BPA, can convert XD into the reactive oxygen species (ROS) producing the form XO. Furthermore, it was found that BPAQ could increase the generation of ROS and oxidize the guanine moiety of deoxyguanosine in the DNA of primary rat hepatocyte cultures. These results suggest that BPAQ has the potential to convert XD into XO in the liver, which in turn may lead to ROS generation and oxidative DNA damage in this region. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. N-acetyl cysteine, L-cysteine, and beta-mercaptoethanol augment selenium-glutathione peroxidase activity in glucose-6-phosphate dehydrogenase-deficient human erythrocytes.

    PubMed

    Alicigüzel, Y; Aslan, M

    2004-09-01

    In glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes, failure to maintain normal levels of reduced glutathione (GSH) due to decreased NADPH regeneration in the hexose monophosphate pathway results in acute hemolytic anemia following exposure to oxidative insults, such as ingestion of Vicia fava beans or use of certain drugs. GSH is a source of protection against oxidative attack, used by the selenium-dependent glutathione peroxidase (Se-GSH-Px)/reductase (GR) system to detoxify hydrogen peroxide and organic peroxides, provided that sufficient GSH is made available. In this study, Se-GSH-Px activity was analyzed in G6PD-deficient patients in the presence of reducing agents such as N-Acetyl cysteine, L-cysteine, and beta-mercaptoethanol. Se-GSH-Px activity was decreased in G6PD-deficient red blood cells (RBCs). N-Acetyl cysteine, L-cysteine, and beta-mercaptoethanol increased Se-GSH-Px activity in G6PD-deficient human erythrocytes, indicating that other reducing agents can be utilized to complement Se-GSH-Px activity in G6PD deficiency. Based on the increased susceptibility of G6PD-deficient patients to oxidative stress, the reported increase in Se-GSH-Px activity can facilitate the detoxification of reactive oxygen species.

  2. Pubertal Development in
17Beta-Hydroxysteroid Dehydrogenase Type 3 Deficiency
.

    PubMed

    Hiort, Olaf; Marshall, Louise; Birnbaum, Wiebke; Wünsch, Lutz; Holterhus, Paul-Martin; Döhnert, Ulla; Werner, Ralf

    2017-01-01

    17β-hydroxysteroid dehydrogenase (17β-HSD) type 3 deficiency is an autosomal recessive disorder with diminished testosterone synthesis and consequently underandrogenisation. 46,XY patients with 17β-HSD type 3 deficiency are often assigned a female sex at birth but have a high virilisation potential at the time of puberty. We studied four 46,XY patients with 17β-HSD type 3 deficiency at puberty with regard to the underlying mutations, the hormone values, and the clinical findings. Three patients were initially assigned a female sex and 1 was assigned a male sex. All had relevant mutations in the HSD17B3 gene. The 2 patients with deleterious mutations had lower testosterone values at the time of puberty than the patients with possible residual activity of 17β-HSD type 3. One of the latter patients changed to male gender. All 4 patients with 17β-HSD type 3 deficiency synthesized relevant amounts (>0.7 µg/L) of testosterone at puberty, which lead to variable androgenisation. In patients with presumable residual activity of the mutated enzyme, testosterone values in the male reference range can be achieved, thereby inducing male pubertal development. These patients should possibly be assigned a male sex. Any surgical intervention should be avoided until the patients are old enough to consider their options of medical and surgical intervention.
. © 2016 S. Karger AG, Basel.

  3. Fecal hydroxysteroid dehydrogenase activities in vegetarian Seventh-Day Adventists, control subjects, and bowel cancer patients.

    PubMed

    Macdonald, I A; Webb, G R; Mahony, D E

    1978-10-01

    Cell-free extracts were prepared from mixed fecal anaerobic bacteria grown from stools of 14 vegetarian Seventh-Day Adventists, 16 omnivorous control subjects, and eight patients recently diagnosed with cancer of the large bowel. Preparations were assayed for NAD- and NADP-dependent 3alpha-, 7alpha- and 12alpha-hydroxysteroid dehydrogenases with bile salts and androsterone as substrates (eight substrate-cofactor combinations were tested). A significant intergroup difference was observed in the amounts of NAD- and NADP-dependent 7alpha-hydroxysteroid dehydrogenase produced: bowel cancer patients exceeded controls, and controls exceeded Seventh-Day Adventists. Other enzyme activity comparisons were not significant. The pH values of the stools were significantly higher in cancer patients compared to Seventh-Day Adventists; values were 7.03 +/- 0.60 and 6.46 +/- 0.58 respectively. The pH value for controls was 6.66 +/- 0.62. A plot of pH value versus NADP-dependent 7alpha-hydroxysteroid dehydrogenase tended to separate the cancer patients from the other groups. Comparative data suggest that much of the 3alpha-hydroxysteroid dehydrogenase active against bile salt is also active against androsterone.

  4. In vivo antitumor activity of 4-amino 4-methyl 2-pentyne 1-al, an inhibitor of aldehyde dehydrogenase.

    PubMed

    Quemener, V; Quash, G; Moulinoux, J P; Penlap, V; Ripoll, H; Havouis, R; Doutheau, A; Goré, J

    1989-01-01

    4-amino-4-methyl-2-pentyne-1-al (AMPAL), a new irreversible inhibitor of aldehyde dehydrogenase (ALDH) has been assayed for its in vitro and in vivo antitumor activity. In vitro, AMPAL inhibits the proliferation and the ALDH activity of L1210 and RBL5 cell lines. In vivo, AMPAL significantly increases the mean survival time of mice i.p. grafted with leukemia (L1210, P815, MBL2, EL4, RBL5 cell lines) or carcinoma cells (Krebs cell line), without haematopoetic toxicity. No carcinostatic effect was observed against the P388 leukemia and the 3LL Lewis lung carcinoma. A possible relationship between the ALDH isoenzyme activity of the tumor and its sensitivity to AMPAL is discussed in the light of previous reports concerning the role of aldehydes in cell growth control.

  5. Diammonium phosphate stimulates transcription of L-lactate dehydrogenase leading to increased L-lactate production in the thermotolerant Bacillus coagulans strain.

    PubMed

    Sun, Lifan; Li, Yanfeng; Wang, Limin; Wang, Yanping; Yu, Bo

    2016-08-01

    Exploration of cost-effective fermentation substrates for efficient lactate production is an important economic objective. Although some organic nitrogen sources are also cheaper, inorganic nitrogen salts for lactate fermentation have additional advantages in facilitating downstream procedures and significantly improving the commercial competitiveness of lactate production. In this study, we first established an application of diammonium phosphate to replace yeast extract with a reduced 90 % nitrogen cost for a thermotolerant Bacillus coagulans strain. In vivo enzymatic and transcriptional analyses demonstrated that diammonium phosphate stimulates the gene expression of L-lactate dehydrogenase, thus providing higher specific enzyme activity in vivo and increasing L-lactic acid production. This new information provides a foundation for establishing a cost-effective process for polymer-grade L-lactic acid production in an industrial setting.

  6. Mitochondrial 3β-Hydroxysteroid Dehydrogenase Enzyme Activity Requires Reversible pH-dependent Conformational Change at the Intermembrane Space*

    PubMed Central

    Prasad, Manoj; Thomas, James L.; Whittal, Randy M.; Bose, Himangshu S.

    2012-01-01

    The inner mitochondrial membrane protein 3β-hydroxysteroid dehydrogenase 2 (3βHSD2) synthesizes progesterone and androstenedione through its dehydrogenase and isomerase activities. This bifunctionality requires 3βHSD2 to undergo a conformational change. Given its proximity to the proton pump, we hypothesized that pH influences 3βHSD2 conformation and thus activity. Circular dichroism (CD) showed that between pH 7.4 and 4.5, 3βHSD2 retained its primarily α-helical character with a decrease in α-helical content at lower pH values, whereas the β-sheet content remained unchanged throughout. Titrating the pH back to 7.4 restored the original conformation within 25 min. Metabolic conversion assays indicated peak 3βHSD2 activity at pH 4.5 with ∼2-fold more progesterone synthesized at pH 4.5 than at pH 3.5 and 7.4. Increasing the 3βHSD2 concentration from 1 to 40 μg resulted in a 7-fold increase in progesterone at pH 4.5, but no change at pH 7.4. Incubation with guanidinum hydrochloride (GdmHCl) showed a three-step cooperative unfolding of 3βHSD2 from pH 7.4 to 4.5, possibly due to the native state unfolding to the intermediate ion core state. With further decreases in pH, increasing concentrations of GdmHCl led to rapid two-step unfolding that may represent complete loss of structure. Between pH 4 and 5, the two intermediate states appeared stable. Stopped-flow kinetics showed slower unfolding at around pH 4, where the protein is in a pseudostable state. Based on our data, we conclude that at pH 4–5, 3βHSD2 takes on a molten globule conformation that promotes the dual functionality of the enzyme. PMID:22262841

  7. The interaction of methanol dehydrogenase and cytochrome cL in the acidophilic methylotroph Acetobacter methanolicus.

    PubMed Central

    Chan, H T; Anthony, C

    1991-01-01

    The quinoprotein methanol dehydrogenase (MDH) of Acetobacter methanolicus has an alpha 2 beta 2 structure. By contrast with other MDHs, the beta-subunit (approx. 8.5 kDa) does not contain the five lysine residues previously proposed to be involved in ionic interactions with the electron acceptor cytochrome cL. That electrostatic interactions are involved was confirmed by the demonstration that methanol:cytochrome cL oxidoreductase activity was inhibited by high ionic strength (I), the strength of interaction being inversely related to the square root of I. Specific modifiers of arginine residues on MDH inhibited this reaction but not the dye-linked MDH activity. Modification of lysine residues on MDH that altered its charge had no effect on the dye-linked activity but inhibited reaction with cytochrome cL. When the charge was retained on modification of lysine residues, little effect on either activity was observed. Cross-linking experiments confirmed that lysine residues on the alpha-subunit, but not the beta-subunit, are involved in the 'docking' process between the proteins. Images Fig. 4. PMID:1660263

  8. Crystal Structure of an Iron-Dependent Group III Dehydrogenase That Interconverts l-Lactaldehyde and l-1,2-Propanediol in Escherichia coli†

    PubMed Central

    Montella, Cristina; Bellsolell, Lluis; Pérez-Luque, Rosa; Badía, Josefa; Baldoma, Laura; Coll, Miquel; Aguilar, Juan

    2005-01-01

    The FucO protein, a member of the group III “iron-activated” dehydrogenases, catalyzes the interconversion between l-lactaldehyde and l-1,2-propanediol in Escherichia coli. The three-dimensional structure of FucO in a complex with NAD+ was solved, and the presence of iron in the crystals was confirmed by X-ray fluorescence. The FucO structure presented here is the first structure for a member of the group III bacterial dehydrogenases shown experimentally to contain iron. FucO forms a dimer, in which each monomer folds into an α/β dinucleotide-binding N-terminal domain and an all-α-helix C-terminal domain that are separated by a deep cleft. The dimer is formed by the swapping (between monomers) of the first chain of the β-sheet. The binding site for Fe2+ is located at the face of the cleft formed by the C-terminal domain, where the metal ion is tetrahedrally coordinated by three histidine residues (His200, His263, and His277) and an aspartate residue (Asp196). The glycine-rich turn formed by residues 96 to 98 and the following α-helix is part of the NAD+ recognition locus common in dehydrogenases. Site-directed mutagenesis and enzyme kinetic assays were performed to assess the role of different residues in metal, cofactor, and substrate binding. In contrast to previous assumptions, the essential His267 residue does not interact with the metal ion. Asp39 appears to be the key residue for discriminating against NADP+. Modeling l-1,2-propanediol in the active center resulted in a close approach of the C-1 hydroxyl of the substrate to C-4 of the nicotinamide ring, implying that there is a typical metal-dependent dehydrogenation catalytic mechanism. PMID:15995211

  9. Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London

    NASA Astrophysics Data System (ADS)

    Ots, Riinu; Vieno, Massimo; Allan, James D.; Reis, Stefan; Nemitz, Eiko; Young, Dominique E.; Coe, Hugh; Di Marco, Chiara; Detournay, Anais; Mackenzie, Ian A.; Green, David C.; Heal, Mathew R.

    2016-11-01

    Cooking organic aerosol (COA) is currently not included in European emission inventories. However, recent positive matrix factorization (PMF) analyses of aerosol mass spectrometer (AMS) measurements have suggested important contributions of COA in several European cities. In this study, emissions of COA were estimated for the UK, based on hourly AMS measurements of COA made at two sites in London (a kerbside site in central London and an urban background site in a residential area close to central London) for the full calendar year of 2012 during the Clean Air for London (ClearfLo) campaign. Iteration of COA emissions estimates and subsequent evaluation and sensitivity experiments were conducted with the EMEP4UK atmospheric chemistry transport modelling system with a horizontal resolution of 5 km × 5 km. The spatial distribution of these emissions was based on workday population density derived from the 2011 census data. The estimated UK annual COA emission was 7.4 Gg per year, which is an almost 10 % addition to the officially reported UK national total anthropogenic emissions of PM2.5 (82 Gg in 2012), corresponding to 320 mg person-1 day-1 on average. Weekday and weekend diurnal variation in COA emissions were also based on the AMS measurements. Modelled concentrations of COA were then independently evaluated against AMS-derived COA measurements from another city and time period (Manchester, January-February 2007), as well as with COA estimated by a chemical mass balance model of measurements for a 2-week period at the Harwell rural site (˜ 80 km west of central London). The modelled annual average contribution of COA to ambient particulate matter (PM) in central London was between 1 and 2 µg m-3 (˜ 20 % of total measured OA1) and between 0.5 and 0.7 µg m-3 in other major cities in England (Manchester, Birmingham, Leeds). It was also shown that cities smaller than London can have a central hotspot of population density of smaller

  10. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver.

    PubMed

    Deyashiki, Y; Tamada, Y; Miyabe, Y; Nakanishi, M; Matsuura, K; Hara, A

    1995-08-01

    Human liver cytosol contains multiple forms of 3 alpha-hydroxysteroid dehydrogenase and dihydrodiol dehydrogenase with hydroxysteroid dehydrogenase activity, and multiple cDNAs for the enzymes have been cloned from human liver cDNA libraries. To understand the relationship of the multiple enzyme froms to the genes, a cDNA, which has been reported to code for an isoenzyme of human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase, was expressed in Escherichia coli. The recombinant enzyme showed structural and functional properties almost identical to those of the isoenzyme purified from human liver. In addition, the recombinant isoenzyme efficiently reduced 5 alpha-dihydrotestosterone and 5 beta-dihydrocortisone, the known substrates of human liver 3 alpha-hydroxysteroid dehydrogenase and chlordecone reductase previously purified, which suggests that these human liver enzymes are identical. Furthermore, the steady-state kinetic data for NADP(+)-linked (S)-1-indanol oxidation by the recombinant isoenzyme were consistent with a sequential ordered mechanism in which NADP+ binds first. Phenolphthalein inhibited this isoenzyme much more potently than it did the other human liver dihydrodiol dehydrogenases, and was a competitive inhibitor (Ki = 20 nM) that bound to the enzyme-NADP+ complex.

  11. Bifunctional isocitrate-homoisocitrate dehydrogenase: a missing link in the evolution of beta-decarboxylating dehydrogenase.

    PubMed

    Miyazaki, Kentaro

    2005-05-27

    Beta-decarboxylating dehydrogenases comprise 3-isopropylmalate dehydrogenase, isocitrate dehydrogenase, and homoisocitrate dehydrogenase. They share a high degree of amino acid sequence identity and occupy equivalent positions in the amino acid biosynthetic pathways for leucine, glutamate, and lysine, respectively. Therefore, not only the enzymes but also the whole pathways should have evolved from a common ancestral pathway. In Pyrococcus horikoshii, only one pathway of the three has been identified in the genomic sequence, and PH1722 is the sole beta-decarboxylating dehydrogenase gene. The organism does not require leucine, glutamate, or lysine for growth; the single pathway might play multiple (i.e., ancestral) roles in amino acid biosynthesis. The PH1722 gene was cloned and expressed in Escherichia coli and the substrate specificity of the recombinant enzyme was investigated. It exhibited activities on isocitrate and homoisocitrate at near equal efficiency, but not on 3-isopropylmalate. PH1722 is thus a novel, bifunctional beta-decarboxylating dehydrogenase, which likely plays a dual role in glutamate and lysine biosynthesis in vivo.

  12. Decision Support for Transportation Planning in Joint COA Development.

    DTIC Science & Technology

    1996-06-01

    COA generation is interwoven with COA evaluation. SOCAP demonstrates its ability to aid in feasibility estimation by producing output for the Dynamic...Analysis and Replanning Tool (DART) transportation feasibility estimator. The output of SOCAP is first used by an intermediate Force Module Enhancer...and Requirements Generator (FMERG), which elaborates the major force list produced by SOCAP in order to add supporting units and their transportation

  13. Overexpression of Lactobacillus casei D-hydroxyisocaproic acid dehydrogenase in cheddar cheese.

    PubMed

    Broadbent, Jeffery R; Gummalla, Sanjay; Hughes, Joanne E; Johnson, Mark E; Rankin, Scott A; Drake, Mary Anne

    2004-08-01

    Metabolism of aromatic amino acids by lactic acid bacteria is an important source of off-flavor compounds in Cheddar cheese. Previous work has shown that alpha-keto acids produced from Trp, Tyr, and Phe by aminotransferase enzymes are chemically labile and may degrade spontaneously into a variety of off-flavor compounds. However, dairy lactobacilli can convert unstable alpha-keto acids to more-stable alpha-hydroxy acids via the action of alpha-keto acid dehydrogenases such as d-hydroxyisocaproic acid dehydrogenase. To further characterize the role of this enzyme in cheese flavor, the Lactobacillus casei d-hydroxyisocaproic acid dehydrogenase gene was cloned into the high-copy-number vector pTRKH2 and transformed into L. casei ATCC 334. Enzyme assays confirmed that alpha-keto acid dehydrogenase activity was significantly higher in pTRKH2:dhic transformants than in wild-type cells. Reduced-fat Cheddar cheeses were made with Lactococcus lactis starter only, starter plus L. casei ATCC 334, and starter plus L. casei ATCC 334 transformed with pTRKH2:dhic. After 3 months of aging, the cheese chemistry and flavor attributes were evaluated instrumentally by gas chromatography-mass spectrometry and by descriptive sensory analysis. The culture system used significantly affected the concentrations of various ketones, aldehydes, alcohols, and esters and one sulfur compound in cheese. Results further indicated that enhanced expression of d-hydroxyisocaproic acid dehydrogenase suppressed spontaneous degradation of alpha-keto acids, but sensory work indicated that this effect retarded cheese flavor development.

  14. UVB induces epidermal 11β-hydroxysteroid dehydrogenase type 1 activity in vivo.

    PubMed

    Tiganescu, Ana; Hupe, Melanie; Jiang, Yan J; Celli, Anna; Uchida, Yoshikazu; Mauro, Theodora M; Bikle, Daniel D; Elias, Peter M; Holleran, Walter M

    2015-05-01

    Detrimental consequences of ultraviolet radiation (UVR) in skin include photoageing, immunosuppression and photocarcinogenesis, processes also significantly regulated by local glucocorticoid (GC) availability. In man, the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) generates the active GC cortisol from cortisone (or corticosterone from 11-dehydrocorticosterone in rodents). 11β-HSD1 oxo-reductase activity requires the cofactor NADPH, generated by hexose-6-phosphate dehydrogenase. We previously demonstrated increased 11β-HSD1 levels in skin obtained from photoexposed versus photoprotected anatomical regions. However, the direct effect of UVR on 11β-HSD1 expression remains to be elucidated. To investigate the cutaneous regulation of 11β-HSD1 following UVR in vivo, the dorsal skin of female SKH1 mice was irradiated with 50, 100, 200 and 400 mJ/cm(2) UVB. Measurement of transepidermal water loss, 11β-HSD1 activity, mRNA/protein expression and histological studies was taken at 1, 3 and 7 days postexposure. 11β-HSD1 and hexose-6-phosphate dehydrogenase mRNA expression peaked 1 day postexposure to 400 mJ/cm(2) UVB before subsequently declining (days 3 and 7). Corresponding increases in 11β-HSD1 protein and enzyme activity were observed 3 days postexposure coinciding with reduced GC receptor mRNA expression. Immunofluorescence studies revealed 11β-HSD1 localization to hyperproliferative epidermal keratinocytes in UVB-exposed skin. 11β-HSD1 expression and activity were also induced by 200 and 100 (but not 50) mJ/cm(2) UVB and correlated with increased transepidermal water loss (indicative of barrier disruption). UVB-induced 11β-HSD1 activation represents a novel mechanism that may contribute to the regulation of cutaneous responses to UVR exposure. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines

    PubMed Central

    Gibson, Gary E.; Xu, Hui; Chen, Huan-Lian; Chen, Wei; Denton, Travis; Zhang, Sheng

    2015-01-01

    Reversible post-translation modifications of proteins are common in all cells and appear to regulate many processes. Nevertheless, the enzyme(s) responsible for the alterations and the significance of the modification are largely unknown. Succinylation of proteins occurs and causes large changes in the structure of proteins; however, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins are unknown. These studies focused on succinylation of mitochondrial proteins. The results demonstrate that the α-ketoglutarate dehydrogenase complex (KGDHC) can serve as a trans-succinylase that mediates succinylation in an α-ketoglutarate-dependent manner. Inhibition of KGDHC reduced suc-cinylation of both cytosolic and mitochondrial proteins in cultured neurons and in a neuronal cell line. Purified KGDHC can succinylate multiple proteins including other enzymes of the tricarboxylic acid (TCA) cycle leading to modification of their activity. Inhibition of KGDHC also modifies acetylation by modifying the pyruvate dehydrogenase complex. The much greater effectiveness of KGDHC than succinyl CoA suggests that the catalysis due to the E2k suc-cinyltransferase is important. Succinylation appears to be a major signaling system and it can be mediated by KGDHC. PMID:25772995

  16. A Novel 3-Hydroxysteroid Dehydrogenase That Regulates Reproductive Development and Longevity

    PubMed Central

    Wollam, Joshua; Magner, Daniel B.; Magomedova, Lilia; Rass, Elisabeth; Shen, Yidong; Rottiers, Veerle; Habermann, Bianca; Cummins, Carolyn L.; Antebi, Adam

    2012-01-01

    Endogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs) regulate developmental timing and longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors LXR and FXR. Using metabolic genetics, mass spectrometry, and biochemical approaches, we identify new activities in DA biosynthesis and characterize an evolutionarily conserved short chain dehydrogenase, DHS-16, as a novel 3-hydroxysteroid dehydrogenase. Through regulation of DA production, DHS-16 controls DAF-12 activity governing longevity in response to signals from the gonad. Our elucidation of C. elegans bile acid biosynthetic pathways reveals the possibility of novel ligands as well as striking biochemical conservation to other animals, which could illuminate new targets for manipulating longevity in metazoans. PMID:22505847

  17. The metabolism of ethanol-derived acetaldehyde by alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase (EC 1.2.1.3) in Drosophila melanogaster larvae.

    PubMed Central

    Heinstra, P W; Geer, B W; Seykens, D; Langevin, M

    1989-01-01

    Both aldehyde dehydrogenase (ALDH, EC 1.2.1.3) and the aldehyde dehydrogenase activity of alcohol dehydrogenase (ADH, EC 1.1.1.1) were found to coexist in Drosophila melanogaster larvae. The enzymes, however, showed different inhibition patterns with respect to pyrazole, cyanamide and disulphiram. ALDH-1 and ALDH-2 isoenzymes were detected in larvae by electrophoretic methods. Nonetheless, in tracer studies in vivo, more than 75% of the acetaldehyde converted to acetate by the ADH ethanol-degrading pathway appeared to be also catalysed by the ADH enzyme. The larval fat body probably was the major site of this pathway. Images Fig. 1. Fig. 2. PMID:2499314

  18. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors.

    PubMed

    Lai, J C; Cooper, A J

    1986-11-01

    The substrate and cofactor requirements and some kinetic properties of the alpha-ketoglutarate dehydrogenase complex (KGDHC; EC 1.2.4.2, EC 2.3.1.61, and EC 1.6.4.3) in purified rat brain mitochondria were studied. Brain mitochondrial KGDHC showed absolute requirement for alpha-ketoglutarate, CoA and NAD, and only partial requirement for added thiamine pyrophosphate, but no requirement for Mg2+ under the assay conditions employed in this study. The pH optimum was between 7.2 and 7.4, but, at pH values below 7.0 or above 7.8, KGDHC activity decreased markedly. KGDHC activity in various brain regions followed the rank order: cerebral cortex greater than cerebellum greater than or equal to midbrain greater than striatum = hippocampus greater than hypothalamus greater than pons and medulla greater than olfactory bulb. Significant inhibition of brain mitochondrial KGDHC was noted at pathological concentrations of ammonia (0.2-2 mM). However, the purified bovine heart KGDHC and KGDHC activity in isolated rat heart mitochondria were much less sensitive to inhibition. At 5 mM both beta-methylene-D,L-aspartate and D,L-vinylglycine (inhibitors of cerebral glucose oxidation) inhibited the purified heart but not the brain mitochondrial enzyme complex. At approximately 10 microM, calcium slightly stimulated (by 10-15%) the brain mitochondrial KGDHC. At concentrations above 100 microM, calcium (IC50 = 1 mM) inhibited both brain mitochondrial and purified heart KGDHC. The present results suggest that some of the kinetic properties of the rat brain mitochondrial KGDHC differ from those of the purified bovine heart and rat heart mitochondrial enzyme complexes. They also suggest that the inhibition of KGDHC by ammonia and the consequent effect on the citric acid cycle fluxes may be of pathophysiological and/or pathogenetic importance in hyperammonemia and in diseases (e.g., hepatic encephalopathy, inborn errors of urea metabolism, Reye's syndrome) where hyperammonemia is a

  19. GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE-S, A SPERM-SPECIFIC GLYCOLYTIC ENZYME, IS REQUIRED FOR SPERM MOTILITY AND MALE FERTILITY

    EPA Science Inventory

    While glycolysis is highly conserved, it is remarkable that several novel isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like it...

  20. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  1. Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes

    PubMed Central

    Loder, Andrew J.; Zeldes, Benjamin M.; Garrison, G. Dale; Lipscomb, Gina L.; Adams, Michael W. W.

    2015-01-01

    n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures. PMID:26253677

  2. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate

    PubMed Central

    Kormanik, Kaitlyn; Kang, Heejung; Cuebas, Dean; Vockley, Jerry; Mohsen, Al-Walid

    2012-01-01

    Sodium phenylbutyrate is used for treating urea cycle disorders, providing an alternative for ammonia excretion. Following conversion to its CoA ester, phenylbutyryl-CoA is postulated to undergo one round of β-oxidation to phenylacetyl-CoA, the active metabolite. Molecular modeling suggests that medium chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3), a key enzyme in straight chain fatty acid β-oxidation, could utilize phenylbutyryl-CoA as substrate. Moreover, phenylpropionyl-CoA has been shown to be a substrate for MCAD and its intermediates accumulate in patients with MCAD deficiency. We have examined the involvement of MCAD and other acyl-CoA dehydrogenases (ACADs) in the metabolism of phenylbutyryl-CoA. Anaerobic titration of purified recombinant human MCAD with phenylbutyryl-CoA caused changes in the MCAD spectrum that are similar to those induced by octanoyl-CoA, its bona fide substrate, and unique to the development of the charge transfer ternary complex. The calculated apparent dissociation constant (KD app) for these substrates was 2.16 μM and 0.12 μM, respectively. The MCAD reductive and oxidative half reactions were monitored using the electron transfer flavoprotein (ETF) fluorescence reduction assay. The catalytic efficiency and the Km for phenylbutyryl-CoA were 0.2 mM−1· sec−1 and 5.3 μM compared to 4.0 mM−1· sec−1 and 2.8 μM for octanoyl-CoA. Extracts of wild type and MCAD-deficient lymphoblast cells were tested for the ability to reduce ETF using phenylbutyryl-CoA as substrate. While ETF reduction activity was detected in extracts of wild type cells, it was undetectable in extracts of cells deficient in MCAD. The results are consistent with MCAD playing a key role in phenylbutyrate metabolism. PMID:23141465

  3. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate.

    PubMed

    Kormanik, Kaitlyn; Kang, Heejung; Cuebas, Dean; Vockley, Jerry; Mohsen, Al-Walid

    2012-12-01

    Sodium phenylbutyrate is used for treating urea cycle disorders, providing an alternative for ammonia excretion. Following conversion to its CoA ester, phenylbutyryl-CoA is postulated to undergo one round of β-oxidation to phenylacetyl-CoA, the active metabolite. Molecular modeling suggests that medium chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3), a key enzyme in straight chain fatty acid β-oxidation, could utilize phenylbutyryl-CoA as substrate. Moreover, phenylpropionyl-CoA has been shown to be a substrate for MCAD and its intermediates accumulate in patients with MCAD deficiency. We have examined the involvement of MCAD and other acyl-CoA dehydrogenases (ACADs) in the metabolism of phenylbutyryl-CoA. Anaerobic titration of purified recombinant human MCAD with phenylbutyryl-CoA caused changes in the MCAD spectrum that are similar to those induced by octanoyl-CoA, its bona fide substrate, and unique to the development of the charge transfer ternary complex. The calculated apparent dissociation constant (K(D app)) for these substrates was 2.16 μM and 0.12 μM, respectively. The MCAD reductive and oxidative half reactions were monitored using the electron transfer flavoprotein (ETF) fluorescence reduction assay. The catalytic efficiency and the K(m) for phenylbutyryl-CoA were 0.2 mM 34(-1)·sec(-1) and 5.3 μM compared to 4.0 mM(-1)·sec(-1) and 2.8 μM for octanoyl-CoA. Extracts of wild type and MCAD-deficient lymphoblast cells were tested for the ability to reduce ETF using phenylbutyryl-CoA as substrate. While ETF reduction activity was detected in extracts of wild type cells, it was undetectable in extracts of cells deficient in MCAD. The results are consistent with MCAD playing a key role in phenylbutyrate metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Investigations on the effect of flavonoids from banana, Musa paradisiaca L. on lipid metabolism in rats.

    PubMed

    Vijayakumar, S; Presannakumar, G; Vijayalakshmi, N R

    2009-01-01

    Oral administration of flavonoids extracted from unripe fruits of Musa paradisiaca showed significant hypolipidemic activities in male rats (Sprague Dawley strain) at a dose of 1 mg/100 g body weight (BW)/day. Concentrations of cholesterol, phospholipids, free fatty acids, and triglycerides showed significant decrease in the serum, liver, kidney, and brain of experimental animals. HMG CoA reductase activity was found to be enhanced, while activities of glucose-6-phosphate dehydrogenase and malate dehydrogenase were significantly reduced. Activities of lipoprotein lipase and plasma LCAT showed significant enhancement. A significant increase in the concentrations of hepatic and fecal bile acids and fecal neutral sterols was also observed indicating a higher rate of degradation of cholesterol. The present study indicates that although there is an increase in the rate of synthesis of cholesterol in the liver, the process of degradation exceeds the rate of synthesis.

  5. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. [Phaseolus vulgaris L. ; Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loewus, M.W.; Bedgar, D.L.; Saito, Kazumi

    An NADP-dependent dehydrogenase catalyzing the conversion of L-sorbosone to L-ascorbic acid has been isolated from Phaseolus vulgaris L. and Spinacia oleracea L. and partially purified. It is stable at {minus}20{degree}C for up to 8 months. Molecular masses, as determined by gel filtration, were 21 and 29 kilodaltons for bean and spinach enzymes, respectively. K{sub m} for sorbosone were 12 {plus minus} 2 and 18 {plus minus} 2 millimolar and for NADP{sup +}, 0.14 {plus minus} 0.05 and 1.2 {plus minus} 0.5 millimolar, for bean and spinach, respectively. Lycorine, a purported inhibitor of L-ascorbic acid biosynthesis, had no effect on themore » reaction.« less

  6. Regulation of the Activity of Lactate Dehydrogenases from Four Lactic Acid Bacteria*

    PubMed Central

    Feldman-Salit, Anna; Hering, Silvio; Messiha, Hanan L.; Veith, Nadine; Cojocaru, Vlad; Sieg, Antje; Westerhoff, Hans V.; Kreikemeyer, Bernd; Wade, Rebecca C.; Fiedler, Tomas

    2013-01-01

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ≤ Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ≤ Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs. PMID:23720742

  7. Dehydrogenation of indanol by rabbit liver 3-hydroxyhexobarbital dehydrogenase.

    PubMed

    Takenoshita, R; Toki, S

    1977-06-01

    1. Among the several enzyme activities in rabbit liver cytosol able to dehydrogenate 1-indanol, only the main activity was not separable from 3-hydroxyhexobarbital dehydrogenase during purification including polyacrylamide gel disc electrophoresis. 2. Results of mixed substrate method indicated that the same enzyme catalyses the dehydrogenation of 1-indanol and 3-hydroxyhexobarbital. The ratio between the two dehydrogenation activities was almost constant as the enzyme underwent thermal inactivation. The Ki values of p-chloromercuribenzoate, the Km values for NAD+, and the Km values for NADP+ were very similar for the two dehydrogenations. These results lead to the conclusion that the same enzyme catalyses the dehydrogenation of 3-hydroxyhexobarbital and 1-indanol. 3. 1-Tetralol, 1-acenaphthenol, 9-fluorenol, thiochroman-4-ol and 4-chromanol also served as substrate of the enzyme, but 2-indanol, 2-tetralol, and trans- and cis-indan-1,2-diol were not oxidized. 4. Reversibility of the reaction was also confirmed using 1-indanone as substrate.

  8. Molecular cloning and expression of rat liver bile acid CoA ligase.

    PubMed

    Falany, Charles N; Xie, Xiaowei; Wheeler, James B; Wang, Jin; Smith, Michelle; He, Dongning; Barnes, Stephen

    2002-12-01

    Bile acid CoA ligase (BAL) is responsible for catalyzing the first step in the conjugation of bile acids with amino acids. Sequencing of putative rat liver BAL cDNAs identified a cDNA (rBAL-1) possessing a 51 nucleotide 5'-untranslated region, an open reading frame of 2,070 bases encoding a 690 aa protein with a molecular mass of 75,960 Da, and a 138 nucleotide 3'-nontranslated region followed by a poly(A) tail. Identity of the cDNA was established by: 1) the rBAL-1 open reading frame encoded peptides obtained by chemical sequencing of the purified rBAL protein; 2) expressed rBAL-1 protein comigrated with purified rBAL during SDS-polyacrylamide gel electrophoresis; and 3) rBAL-1 expressed in insect Sf9 cells had enzymatic properties that were comparable to the enzyme isolated from rat liver. Evidence for a relationship between fatty acid and bile acid metabolism is suggested by specific inhibition of rBAL-1 by cis-unsaturated fatty acids and its high homology to a human very long chain fatty acid CoA ligase. In summary, these results indicate that the cDNA for rat liver BAL has been isolated and expression of the rBAL cDNA in insect Sf9 cells results in a catalytically active enzyme capable of utilizing several different bile acids as substrates.

  9. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans.

    PubMed

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-11-25

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer.

  10. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans

    PubMed Central

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian

    2014-01-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production—NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)—were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. PMID:25217009

  11. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans.

    PubMed

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian; Yu, Bo

    2014-12-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Effects of a 3β-hydroxysteroid Dehydrogenase Inhibitor, Trilostane, on the Fathead Minnow Reproductive Axis

    EPA Science Inventory

    A number of environmental contaminants and plant flavonoid compounds have been shown to inhibit the activity of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD). Because 3β-HSD plays a critical role in steroid hormone synthesis, inhibition of 3β-HSD represents a potentia...

  13. Structure of Insoluble Rat Sperm Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) via Heterotetramer Formation with Escherichia coli GAPDH Reveals Target for Contraceptive Design*

    PubMed Central

    Frayne, Jan; Taylor, Abby; Cameron, Gus; Hadfield, Andrea T.

    2009-01-01

    Sperm glyceraldehyde-3-phosphate dehydrogenase has been shown to be a successful target for a non-hormonal contraceptive approach, but the agents tested to date have had unacceptable side effects. Obtaining the structure of the sperm-specific isoform to allow rational inhibitor design has therefore been a goal for a number of years but has proved intractable because of the insoluble nature of both native and recombinant protein. We have obtained soluble recombinant sperm glyceraldehyde-3-phosphate dehydrogenase as a heterotetramer with the Escherichia coli glyceraldehyde-3-phosphate dehydrogenase in a ratio of 1:3 and have solved the structure of the heterotetramer which we believe represents a novel strategy for structure determination of an insoluble protein. A structure was also obtained where glyceraldehyde 3-phosphate binds in the Ps pocket in the active site of the sperm enzyme subunit in the presence of NAD. Modeling and comparison of the structures of human somatic and sperm-specific glyceraldehyde-3-phosphate dehydrogenase revealed few differences at the active site and hence rebut the long presumed structural specificity of 3-chlorolactaldehyde for the sperm isoform. The contraceptive activity of α-chlorohydrin and its apparent specificity for the sperm isoform in vivo are likely to be due to differences in metabolism to 3-chlorolactaldehyde in spermatozoa and somatic cells. However, further detailed analysis of the sperm glyceraldehyde-3-phosphate dehydrogenase structure revealed sites in the enzyme that do show significant difference compared with published somatic glyceraldehyde-3-phosphate dehydrogenase structures that could be exploited by structure-based drug design to identify leads for novel male contraceptives. PMID:19542219

  14. Expression, purification and functional characterization of a novel 3α-hydroxysteroid dehydrogenase from Pseudomonas aeruginosa.

    PubMed

    Chen, Jianmin; Gao, Xiufeng; Hong, Lin; Ma, Liting; Li, Yongsheng

    2015-11-01

    3α-Hydroxysteroid dehydrogenase (3α-HSD) catalyzes the oxidation of the 3-hydroxyl group of steroids. The enzymatic conversion is a critical step in the enzymatic assay of urinary sulfated bile acids (SBAs), which is a valuable diagnosis index of hepatobiliary diseases. However, the source of 3α-HSD for clinical applications is limited. In this study, an open reading frame (ORF) encoding a novel 3α-HSD was successfully cloned from Pseudomonas aeruginosa and expressed in Escherichia coli BL21 (DE3). The recombinant protein was purified by immobilized metal ion affinity chromatography. Enzyme characterization studies revealed that the protein has 3α-HSD activity and the Km value for sodium cholate is 1.06 mmol L(-1). More than 60% relative enzyme activity was observed in a wide range of pH and temperature, with an optimum pH at 8.0 and an optimum temperature at 30°C. The enzyme's good thermostability under 40°C would be favorable in clinical applications. Ion interference experiments indicated that Zn(2+) was an activating cofactor which increased the enzyme activity 1.75-fold. With the favorable characteristics mentioned above, the new 3α-HSD is a promising enzyme for clinical applications. More importantly, the present work is the first report on a 3α-HSD from P. aeruginosa. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A Sulfurtransferase Is Essential for Activity of Formate Dehydrogenases in Escherichia coli*

    PubMed Central

    Thomé, Rémi; Gust, Alexander; Toci, René; Mendel, Ralf; Bittner, Florian; Magalon, Axel; Walburger, Anne

    2012-01-01

    l-Cysteine desulfurases provide sulfur to several metabolic pathways in the form of persulfides on specific cysteine residues of an acceptor protein for the eventual incorporation of sulfur into an end product. IscS is one of the three Escherichia coli l-cysteine desulfurases. It interacts with FdhD, a protein essential for the activity of formate dehydrogenases (FDHs), which are iron/molybdenum/selenium-containing enzymes. Here, we address the role played by this interaction in the activity of FDH-H (FdhF) in E. coli. The interaction of IscS with FdhD results in a sulfur transfer between IscS and FdhD in the form of persulfides. Substitution of the strictly conserved residue Cys-121 of FdhD impairs both sulfur transfer from IscS to FdhD and FdhF activity. Furthermore, inactive FdhF produced in the absence of FdhD contains both metal centers, albeit the molybdenum cofactor is at a reduced level. Finally, FdhF activity is sulfur-dependent, as it shows reversible sensitivity to cyanide treatment. Conclusively, FdhD is a sulfurtransferase between IscS and FdhF and is thereby essential to yield FDH activity. PMID:22194618

  16. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans

    PubMed Central

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-01-01

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer. PMID:27885267

  17. Inhibitory effects of compounds isolated from the dried branches and leaves of murta (Myrceugenia euosma) on lipid accumulation in 3T3-L1 cells.

    PubMed

    Oikawa, Naoki; Nobushi, Yasuhito; Wada, Taira; Sonoda, Kumiko; Okazaki, Yuzo; Tsutsumi, Shigetoshi; Park, Yong Kun; Kurokawa, Masahiko; Shimba, Shigeki; Yasukawa, Ken

    2016-07-01

    As obesity is a global health concern the demand for anti-obesity drugs is high. In this study, we investigated the anti-obesity effect of the dried branches and leaves of murta (Myrceugenia euosma Legrand, Myrtaceae). A methanol extract of the dried branches and leaves of murta inhibited adipogenesis in 3T3-L1 cells. Three known flavanones-cryptostrobin (1), pinocembrin (4), and 5,7-dihydroxy-6,8-dimethylflavanone (6), and three chalcones-2',6'-dihydroxy-3'-methyl-4'-methoxychalcone (2), pinostrobin chalcone (3), and 2',6'-dihydroxy-4'-methoxy-3',5'-dimethylchalcone (5) were isolated from the active fraction. Structures of these compounds were identified using various spectral data. Each of these compounds also inhibited adipogenesis in 3T3-L1 cells. In particular, compound 3 was a more potent inhibitor of triglyceride accumulation than the positive control berberine. Gene expression studies revealed that treatment of 3T3-L1 cells with 3 lowers the expression levels of CCAAT/enhancer-binding protein α and peroxisome proliferator activator γ2 during adipogenesis without affecting cell viability. Treatment of 3T3-L1 cells with 3 reduced the expression levels of mRNAs encoding sterol regulatory element-binding protein 1c and several lipogenic enzymes, including fatty acid synthase and stearoyl CoA desaturase-1. These results indicate that the methanol extract and compounds isolated from the dried branches and leaves of murta exert their anti-obesity effects through the inhibition of adipogenesis.

  18. Effects of 14 days of spaceflight and nine days of recovery on cell body size and succinate dehydrogenase activity of rat dorsal root ganglion neurons

    NASA Technical Reports Server (NTRS)

    Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.

    1997-01-01

    The cross-sectional areas and succinate dehydrogenase activities of L5 dorsal root ganglion neurons in rats were determined after 14 days of spaceflight and after nine days of recovery. The mean and distribution of the cross-sectional areas were similar to age-matched, ground-based controls for both the spaceflight and for the spaceflight plus recovery groups. The mean succinate dehydrogenase activity was significantly lower in spaceflight compared to aged-matched control rats, whereas the mean succinate dehydrogenase activity was similar in age-matched control and spaceflight plus recovery rats. The mean succinate dehydrogenase activity of neurons with cross-sectional areas between 1000 and 2000 microns2 was lower (between 7 and 10%) in both the spaceflight and the spaceflight plus recovery groups compared to the appropriate control groups. The reduction in the oxidative capacity of a subpopulation of sensory neurons having relatively large cross-sectional areas immediately following spaceflight and the sustained depression for nine days after returning to 1 g suggest that the 0 g environment induced significant alterations in proprioceptive function.

  19. Strategy Planning Visualization Tool (SPVT) for the Air Operations Center (AOC) Volume I: SPVT Summary and COA Sketch

    DTIC Science & Technology

    2009-12-01

    Limitations of Real Time Battle Damage Assessment. [Thesis.] Maxwell AFB, AL: Air University. Shadbolt, N., Hall, W., Berners - Lee , T. (2006, May-June... Tim ) COA Development Use Case 3.7: User creates a new Course of Action (COA) User Story / Context of Use:  The JFACC may issue clear and...default, the timing of a Mission Analysis object will be r elative to the Operation’s Default tim ing (D-Day). If Use Case 3.24 is implem ented, then

  20. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    PubMed

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-03

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  1. AMP-acetyl CoA synthetase from Leishmania donovani: identification and functional analysis of 'PX4GK' motif.

    PubMed

    Soumya, Neelagiri; Kumar, I Sravan; Shivaprasad, S; Gorakh, Landage Nitin; Dinesh, Neeradi; Swamy, Kayala Kambagiri; Singh, Sushma

    2015-04-01

    An adenosine monophosphate forming acetyl CoA synthetase (AceCS) which is the key enzyme involved in the conversion of acetate to acetyl CoA has been identified from Leishmania donovani for the first time. Sequence analysis of L. donovani AceCS (LdAceCS) revealed the presence of a 'PX4GK' motif which is highly conserved throughout organisms with higher sequence identity (96%) to lower sequence identity (38%). A ∼ 77 kDa heterologous protein with C-terminal 6X His-tag was expressed in Escherichia coli. Expression of LdAceCS in promastigotes was confirmed by western blot and RT-PCR analysis. Immunolocalization studies revealed that it is a cytosolic protein. We also report the kinetic characterization of recombinant LdAceCS with acetate, adenosine 5'-triphosphate, coenzyme A and propionate as substrates. Site directed mutagenesis of residues in conserved PX4GK motif of LdAceCS was performed to gain insight into its potential role in substrate binding, catalysis and its role in maintaining structural integrity of the protein. P646A, G651A and K652R exhibited more than 90% loss in activity signifying its indispensible role in the enzyme activity. Substitution of other residues in this motif resulted in altered substrate specificity and catalysis. However, none of them had any role in modulation of the secondary structure of the protein except G651A mutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Genetics Home Reference: 3-hydroxyacyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... short chain 3-hydroxylacyl-CoA dehydrogenase deficiency Screening, Technology and Research in Genetics (STAR-G) Patient Support and Advocacy Resources (3 links) Children Living with Inherited Metabolic Diseases (CLIMB) FOD (Fatty ...

  3. Succinate dehydrogenase activity and soma size of motoneurons innervating different portions of the rat tibialis anterior

    NASA Technical Reports Server (NTRS)

    Ishihara, A.; Roy, R. R.; Edgerton, V. R.

    1995-01-01

    The spatial distribution, soma size and oxidative enzyme activity of gamma and alpha motoneurons innervating muscle fibres in the deep (away from the surface of the muscle) and superficial (close to the surface of the muscle) portions of the tibialis anterior in normal rats were determined. The deep portion had a higher percentage of high oxidative fibres than the superficial portion of the muscle. Motoneurons were labelled by retrograde neuronal transport of fluorescent tracers: Fast Blue and Nuclear Yellow were injected into the deep portion and Nuclear Yellow into the superficial portion of the muscle. Therefore, motoneurons innervating the deep portion were identified by both a blue fluorescent cytoplasm and a golden-yellow fluorescent nucleus, while motoneurons innervating the superficial portion were identified by only a golden-yellow fluorescent nucleus. After staining for succinate dehydrogenase activity on the same section used for the identification of the motoneurons, soma size and succinate dehydrogenase activity of the motoneurons were measured. The gamma and alpha motoneurons innervating both the deep and superficial portions were located primarily at L4 and were intermingled within the same region of the dorsolateral portion of the ventral horn in the spinal cord. Mean soma size was similar for either gamma or alpha motoneurons in the two portions of the muscle. The alpha motoneurons innervating the superficial portion had a lower mean succinate dehydrogenase activity than those innervating the deep portion of the muscle. An inverse relationship between soma size and succinate dehydrogenase activity of alpha, but not gamma, motoneurons innervating both the deep and superficial portions was observed. Based on three-dimensional reconstructions within the spinal cord, there were no apparent differences in the spatial distribution of the motoneurons, either gamma or alpha, associated with the deep and superficial compartments of the muscle. The data

  4. Galectin-9 Produced by Intestinal Epithelial Cells Enhances Aldehyde Dehydrogenase Activity in Dendritic Cells in a PI3K- and p38-Dependent Manner.

    PubMed

    de Kivit, Sander; Kostadinova, Atanaska I; Kerperien, JoAnn; Ayechu Muruzabal, Veronica; Morgan, Mary E; Knippels, Leon M J; Kraneveld, Aletta D; Garssen, Johan; Willemsen, Linette E M

    2017-01-01

    Intestinal epithelial cells (IEC) drive regulatory T cell (Treg) responses by promoting the differentiation of aldehyde dehydrogenase (ALDH)-expressing CD103+ dendritic cells (DC). Apical stimulation of TLR9 by CpG DNA on IEC supports galectin-9 expression by IEC, which is promoted by short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (GF). While galectin-9 can induce the maturation of monocyte-derived DC (moDC), the contribution of galectin-9 on the induction of ALDH activity in DC is not known. To this end, DC were stimulated with galectin-9, and ALDH activity and the expression of CD103 were assessed. ALDH activity was increased by moDC exposed to galectin-9, while the expression of CD103 remained unaltered. Galectin-9 secreted by IEC apically exposed to CpG DNA and GF enhanced ALDH activity, but not CD103 expression by moDC, which was abrogated upon galectin-9 neutralization. Similar observations were found in murine GM-CSF-cultured bone marrow-derived DC (BMDC). Using Flt3L-cultured BMDC and ex vivo murine splenic DC, it was observed that galectin-9 only enhanced ALDH activity in the presence of GM-CSF in CD103- cells. The induction of ALDH activity in BMDC was dependent on p38 and PI3K signaling. These data indicate a novel role for galectin-9 in modulating innate immunity by inducing ALDH activity in DC. © 2017 S. Karger AG, Basel.

  5. Pyruvate Dehydrogenase Kinase-4 Structures Reveal a Metastable Open Conformation Fostering Robust Core-free Basal Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wynn, R. Max; Kato, Masato; Chuang, Jacinta L.

    2008-10-21

    Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-{angstrom} crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, comparedmore » with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp{sup 394}-Trp{sup 395}) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core.« less

  6. Pyruvate dehydrogenase kinase-4 structures reveal a metastable open conformation fostering robust core-free basal activity.

    PubMed

    Wynn, R Max; Kato, Masato; Chuang, Jacinta L; Tso, Shih-Chia; Li, Jun; Chuang, David T

    2008-09-12

    Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-A crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, compared with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp(394)-Trp(395)) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core.

  7. Exome Sequence Reveals Mutations in CoA Synthase as a Cause of Neurodegeneration with Brain Iron Accumulation

    PubMed Central

    Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B.; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M.; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison; Sanford, Lynn; Hamada, Jeffrey; Bettencourt, Conceição; Houlden, Henry; Chiapparini, Luisa; Zorzi, Giovanna; Kurian, Manju A.; Nardocci, Nardo; Prokisch, Holger; Hayflick, Susan; Gout, Ivan; Tiranti, Valeria

    2014-01-01

    Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA. PMID:24360804

  8. Genetics Home Reference: 3-beta-hydroxysteroid dehydrogenase deficiency

    MedlinePlus

    ... Topic: Adrenal Gland Disorders Health Topic: Assisted Reproductive Technology Health Topic: Infertility Genetic and Rare Diseases Information Center (1 link) 3-beta-hydroxysteroid dehydrogenase deficiency Educational Resources (6 links) Boston Children's Hospital: Congenital Adrenal ...

  9. Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C.

    PubMed

    Brautaset, Trygve; Jakobsen, Øyvind M; Degnes, Kristin F; Netzer, Roman; Naerdal, Ingemar; Krog, Anne; Dillingham, Rick; Flickinger, Michael C; Ellingsen, Trond E

    2010-07-01

    We here present the pyc gene encoding pyruvate carboxylase (PC), and the hom-1 and hom-2 genes encoding two active homoserine dehydrogenase (HD) proteins, in methylotrophic Bacillus methanolicus MGA3. In general, both PC and HD are regarded as key targets for improving bacterial L-lysine production; PC plays a role in precursor oxaloacetate (OAA) supply while HD controls an important branch point in the L-lysine biosynthetic pathway. The hom-1 and hom-2 genes were strongly repressed by L-threonine and L-methionine, respectively. Wild-type MGA3 cells secreted 0.4 g/l L-lysine and 59 g/l L-glutamate under optimised fed batch methanol fermentation. The hom-1 mutant M168-20 constructed herein secreted 11 g/l L-lysine and 69 g/l of L-glutamate, while a sixfold higher L-lysine overproduction (65 g/l) of the previously constructed classical B. methanolicus mutant NOA2#13A52-8A66 was accompanied with reduced L-glutamate production (28 g/l) and threefold elevated pyc transcription level. Overproduction of PC and its mutant enzyme P455S in M168-20 had no positive effect on the volumetric L-lysine yield and the L-lysine yield on methanol, and caused significantly reduced volumetric L-glutamate yield and L: -glutamate yield on methanol. Our results demonstrated that hom-1 represents one key target for achieving L-lysine overproduction, PC activity plays an important role in controlling L-glutamate production from methanol, and that OAA precursor supply is not a major bottleneck for L-lysine overproduction by B. methanolicus.

  10. Endophilin-A1 BAR domain interaction with arachidonyl CoA.

    PubMed

    Petoukhov, Maxim V; Weissenhorn, Winfried; Svergun, Dmitri I

    2014-01-01

    Endophilin-A1 belongs to the family of BAR domain containing proteins that catalyze membrane remodeling processes via sensing, inducing and stabilizing membrane curvature. We show that the BAR domain of endophilin-A1 binds arachidonic acid and molds its coenzyme A (CoA) activated form, arachidonyl-CoA into a defined structure. We studied low resolution structures of endophilin-A1-BAR and its complex with arachidonyl-CoA in solution using synchrotron small-angle X-ray scattering (SAXS). The free endophilin-A1-BAR domain is shown to be dimeric at lower concentrations but builds tetramers and higher order complexes with increasing concentrations. Extensive titration SAXS studies revealed that the BAR domain produces a homogenous complex with the lipid micelles. The structural model of the complexes revealed two arachidonyl-CoA micelles bound to the distal arms of an endophilin-A1-BAR dimer. Intriguingly, the radius of the bound micelles significantly decreases compared to that of the free micelles, and this structural result may provide hints on the potential biological relevance of the endophilin-A1-BAR interaction with arachidonyl CoA.

  11. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation.

    PubMed

    Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison; Sanford, Lynn; Hamada, Jeffrey; Bettencourt, Conceição; Houlden, Henry; Chiapparini, Luisa; Zorzi, Giovanna; Kurian, Manju A; Nardocci, Nardo; Prokisch, Holger; Hayflick, Susan; Gout, Ivan; Tiranti, Valeria

    2014-01-02

    Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Comparative 13C Metabolic Flux Analysis of Pyruvate Dehydrogenase Complex-Deficient, l-Valine-Producing Corynebacterium glutamicum▿†

    PubMed Central

    Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J.; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan

    2011-01-01

    l-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by 13C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an l-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for l-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP. PMID:21784914

  13. Hydroxysteroid dehydrogenase HSD1L is localised to the pituitary–gonadal axis of primates

    PubMed Central

    Bird, A Daniel; Greatorex, Spencer; Reser, David; Lavery, Gareth G

    2017-01-01

    Steroid hormones play clinically important and specific regulatory roles in the development, growth, metabolism, reproduction and brain function in human. The type 1 and 2 11-beta hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 2) have key roles in the pre-receptor modification of glucocorticoids allowing aldosterone regulation of blood pressure, control of systemic fluid and electrolyte homeostasis and modulation of integrated metabolism and brain function. Although the activity and function of 11β-HSDs is thought to be understood, there exists an open reading frame for a distinct 11βHSD-like gene; HSD11B1L, which is present in human, non-human primate, sheep, pig and many other higher organisms, whereas an orthologue is absent in the genomes of mouse, rat and rabbit. We have now characterised this novel HSD11B1L gene as encoded by 9 exons and analysis of EST library transcripts indicated the use of two alternate ATG start sites in exons 2 and 3, and alternate splicing in exon 9. Relatively strong HSD11B1L gene expression was detected in human, non-human primate and sheep tissue samples from the brain, ovary and testis. Analysis in non-human primates and sheep by immunohistochemistry localised HSD11B1L protein to the cytoplasm of ovarian granulosa cells, testis Leydig cells, and gonadatroph cells in the anterior pituitary. Intracellular localisation analysis in transfected human HEK293 cells showed HSD1L protein within the endoplasmic reticulum and sequence analysis suggests that similar to 11βHSD1 it is membrane bound. The endogenous substrate of this third HSD enzyme remains elusive with localisation and expression data suggesting a reproductive hormone as a likely substrate. PMID:28871060

  14. Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures

    PubMed Central

    Leferink, Nicole G. H.; Hendriks, Annemarie; Brouns, Stan J. J.; Hennemann, Hans-Georg; Dauβmann, Thomas; van der Oost, John

    2008-01-01

    There is considerable interest in the use of enantioselective alcohol dehydrogenases for the production of enantio- and diastereomerically pure diols, which are important building blocks for pharmaceuticals, agrochemicals and fine chemicals. Due to the need for a stable alcohol dehydrogenase with activity at low-temperature process conditions (30°C) for the production of (2S,5S)-hexanediol, we have improved an alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus (AdhA). A stable S-selective alcohol dehydrogenase with increased activity at 30°C on the substrate 2,5-hexanedione was generated by laboratory evolution on the thermostable alcohol dehydrogenase AdhA. One round of error-prone PCR and screening of ∼1,500 mutants was performed. The maximum specific activity of the best performing mutant with 2,5-hexanedione at 30°C was tenfold higher compared to the activity of the wild-type enzyme. A 3D-model of AdhA revealed that this mutant has one mutation in the well-conserved NADP(H)-binding site (R11L), and a second mutation (A180V) near the catalytic and highly conserved threonine at position 183. PMID:18452026

  15. Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes.

    PubMed

    Loder, Andrew J; Zeldes, Benjamin M; Garrison, G Dale; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M

    2015-10-01

    n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures. Copyright © 2015, American Society for

  16. The Alcohol Dehydrogenase Isoenzyme as a Potential Marker of Pancreatitis.

    PubMed

    Jelski, Wojciech; Piechota, Joanna; Orywal, Karolina; Szmitkowski, Maciej

    2018-05-01

    Human pancreas parenchyma contains various alcohol dehydrogenase (ADH) isoenzymes and also possesses aldehyde dehydrogenase (ALDH) activity. The altered activities of ADH and ALDH in damaged pancreatic tissue in the course of pancreatitis are reflected in the human serum. The aim of this study was to investigate a potential role of ADH and ALDH as markers for acute (AP) and chronic pancreatitis (CP). Serum samples were collected for routine biochemical investigations from 75 patients suffering from acute pancreatitis and 70 patients with chronic pancreatitis. Fluorometric methods were used to measure the activity of class I and II ADH and ALDH activity. The total ADH activity and activity of class III and IV isoenzymes were measured by a photometric method. There was a significant increase in the activity of ADH III isoenzyme (15.06 mU/l and 14.62 mU/l vs. 11.82 mU/l; p<0.001) and total ADH activity (764 mU/l and 735 mU/l vs. 568 mU/l) in the sera of patients with acute pancreatitis or chronic pancreatitis compared to the control. The diagnostic sensitivity for ADH III was about 84%, specificity was 92 %, positive and negative predictive values were 93% and 87% respectively in acute pancreatitis. Area under the Receiver Operating Curve (ROC) curve for ADH III in AP and CP was 0.88 and 0.86 respectively. ADH III has a potential role as a marker of acute and chronic pancreatitis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Modulation of Pantothenate Kinase 3 Activity by Small Molecules that Interact with the Substrate/Allosteric Regulatory Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonardi, Roberta; Zhang, Yong-Mei; Yun, Mi-Kyung

    2010-09-27

    Pantothenate kinase (PanK) catalyzes the rate-controlling step in coenzyme A (CoA) biosynthesis. PanK3 is stringently regulated by acetyl-CoA and uses an ordered kinetic mechanism with ATP as the leading substrate. Biochemical analysis of site-directed mutants indicates that pantothenate binds in a tunnel adjacent to the active site that is occupied by the pantothenate moiety of the acetyl-CoA regulator in the PanK3 acetyl-CoA binary complex. A high-throughput screen for PanK3 inhibitors and activators was applied to a bioactive compound library. Thiazolidinediones, sulfonylureas and steroids were inhibitors, and fatty acyl-amides and tamoxifen were activators. The PanK3 activators and inhibitors either stimulated ormore » repressed CoA biosynthesis in HepG2/C3A cells. The flexible allosteric acetyl-CoA regulatory domain of PanK3 also binds the substrates, pantothenate and pantetheine, and small molecule inhibitors and activators to modulate PanK3 activity.« less

  18. Mitochondrial oxidative enzyme activity in individual fibre types in hypo- and hyperthyroid rat skeletal muscles.

    PubMed

    Johnson, M A; Turnbull, D M

    1984-04-01

    Quantitative cytochemical and biochemical techniques have been used in combination to study the response of mitochondrial oxidative enzymes in individual muscle fibre types to hypo- and hyperthyroidism. Hypothyroidism resulted in decreased activity of succinate dehydrogenase (SDH), L-glycerol-3-phosphate dehydrogenase (L-GPDH), and D-3-hydroxybutyrate dehydrogenase (D-HBDH) in all fibre types of both slow-twitch soleus and fast-twitch extensor digitorum longus (e.d.l.) muscles. In hyperthyroidism, only L-GPDH activity increased in e.d.l. but more marked increases were seen in soleus muscles, which also showed increased SDH activity. In addition to these alterations in the enzyme activity in individual fibre types the metabolic profile of the muscle is further modified by the hormone-induced interconversion of slow- to fast-twitch fibres and vice versa.

  19. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  20. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity.

    PubMed

    Allonso, Diego; Andrade, Iamara S; Conde, Jonas N; Coelho, Diego R; Rocha, Daniele C P; da Silva, Manuela L; Ventura, Gustavo T; Silva, Emiliana M; Mohana-Borges, Ronaldo

    2015-12-01

    Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the

  1. Succinate dehydrogenase activity regulates PCB3-quinone-induced metabolic oxidative stress and toxicity in HaCaT human keratinocytes.

    PubMed

    Xiao, Wusheng; Sarsour, Ehab H; Wagner, Brett A; Doskey, Claire M; Buettner, Garry R; Domann, Frederick E; Goswami, Prabhat C

    2016-02-01

    Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone metabolite of 4-monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ-treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ-induced toxicity.

  2. Haloacetic Acid Water Disinfection Byproducts Affect Pyruvate Dehydrogenase Activity and Disrupt Cellular Metabolism.

    PubMed

    Dad, Azra; Jeong, Clara H; Wagner, Elizabeth D; Plewa, Michael J

    2018-02-06

    The disinfection of drinking water has been a major public health achievement. However, haloacetic acids (HAAs), generated as byproducts of water disinfection, are cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic. Previous studies of monoHAA-induced genotoxicity and cell stress demonstrated that the toxicity was due to inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to disruption of cellular metabolism and energy homeostasis. DiHAAs and triHAAs are also produced during water disinfection, and whether they share mechanisms of action with monoHAAs is unknown. In this study, we evaluated the effects of mono-, di-, and tri-HAAs on cellular GAPDH enzyme kinetics, cellular ATP levels, and pyruvate dehydrogenase complex (PDC) activity. Here, treatments conducted in Chinese hamster ovary (CHO) cells revealed differences among mono-, di-, and triHAAs in their molecular targets. The monoHAAs, iodoacetic acid and bromoacetic acid, were the strongest inhibitors of GAPDH and greatly reduced cellular ATP levels. Chloroacetic acid, diHAAs, and triHAAs were weaker inhibitors of GAPDH and some increased the levels of cellular ATP. HAAs also affected PDC activity, with most HAAs activating PDC. The primary finding of this work is that mono- versus multi-HAAs address different molecular targets, and the results are generally consistent with a model in which monoHAAs activate the PDC through GAPDH inhibition-mediated disruption in cellular metabolites, including altering ATP-to-ADP and NADH-to-NAD ratios. The monoHAA-mediated reduction in cellular metabolites results in accelerated PDC activity by way of metabolite-ratio-dependent PDC regulation. DiHAAs and triHAAs are weaker inhibitors of GAPDH, but many also increase cellular ATP levels, and we suggest that they increase PDC activity by inhibiting pyruvate dehydrogenase kinase.

  3. Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice.

    PubMed

    Sone, Hideyuki; Kamiyama, Shin; Higuchi, Mutsumi; Fujino, Kaho; Kubo, Shizuka; Miyazawa, Masami; Shirato, Saya; Hiroi, Yuka; Shiozawa, Kota

    2016-07-29

    It is known that biotin prevents the development of diabetes by increasing the functions of pancreatic beta-cells and improving insulin sensitivity in the periphery. However, its anti-obesity effects such as anorectic effects remain to be clarified. Acetyl CoA carboxylase (ACC), a biotin-dependent enzyme, has two isoforms (ACC1 and ACC2) and serves to catalyze the reaction of acetyl CoA to malonyl CoA. In the hypothalamus, ACC2 increases the production of malonyl CoA, which acts as a satiety signal. In this study, we investigated whether biotin increases the gene expression of ACC2 in the hypothalamus and suppresses food intake in mice administered excessive biotin. Food intake was significantly decreased by biotin, but plasma regulators of appetite, including glucose, ghrelin, and leptin, were not affected. On the other hand, biotin notably accumulated in the hypothalamus and enhanced ACC2 gene expression there, but it did not change the gene expression of ACC1, malonyl CoA decarboxylase (a malonyl CoA-degrading enzyme), and AMP-activated protein kinase α-2 (an ACC-inhibitory enzyme). These findings strongly suggest that biotin potentiates the suppression of appetite by upregulating ACC2 gene expression in the hypothalamus. This effect of biotin may contribute to the prevention of diabetes by biotin treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Regulation of schistosome egg production by HMG CoA reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VandeWaa, E.A.; Bennett, J.L.

    1986-03-05

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of /sup 14/C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivomore » were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production.« less

  5. Prostaglandin reductase-3 negatively modulates adipogenesis through regulation of PPARγ activity[S

    PubMed Central

    Yu, Yu-Hsiang; Chang, Yi-Cheng; Su, Tseng-Hsiung; Nong, Jiun-Yi; Li, Chao-Chin; Chuang, Lee-Ming

    2013-01-01

    Adipocyte differentiation is a multistep program under regulation by several factors. Peroxisome proliferator-activated receptor γ (PPARγ) serves as a master regulator of adipogenesis. However, the endogenous ligand for PPARγ remained elusive until 15-keto-PGE2 was identified recently as an endogenous PPARγ ligand. In this study, we demonstrate that zinc-containing alcohol dehydrogenase 2 (ZADH2; here termed prostaglandin reductase-3, PTGR-3) is a new member of prostaglandin reductase family that converts 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. Adipogenesis is accelerated when endogenous PTGR-3 is silenced in 3T3-L1 preadipocytes, whereas forced expression of PTGR-3 significantly decreases adipogenesis. PTGR-3 expression decreased during adipocyte differentiation, accompanied by an increased level of 15-keto-PGE2. 15-keto-PGE2 exerts a potent proadipogenic effect by enhancing PPARγ activity, whereas overexpression of PTGR-3 in 3T3-L1 preadipocytes markedly suppressed the proadipogenic effect of 15-keto-PGE2 by repressing PPARγ activity. Taken together, these findings demonstrate for the first time that PTGR-3 is a novel 15-oxoprostaglandin-Δ13-reductase and plays a critical role in modulation of normal adipocyte differentiation via regulation of PPARγ activity. Thus, modulation of PTGR-3 might provide a novel avenue for treating obesity and related metabolic disorders. PMID:23821743

  6. The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 mono-ubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana.

    PubMed

    Peralta, Diego A; Araya, Alejandro; Busi, Maria V; Gomez-Casati, Diego F

    2016-01-01

    The E3 ubiquitin-protein ligases are associated to various processes such as cell cycle control and diverse developmental pathways. Arabidopsis thaliana SEVEN IN ABSENTIA like 7, which has ubiquitin ligase activity, is located in the nucleus and cytosol and is expressed at several stages in almost all plant tissues suggesting an important role in plant functions. However, the mechanism underlying the regulation of this protein is unknown. Since we found that the SEVEN IN ABSENTIA like 7 gene expression is altered in plants with impaired mitochondria, and in plants deficient in the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase 1, we decided to study the possible interactions between both proteins as potential partners in plant signaling functions. We found that SEVEN IN ABSENTIA like 7 is able to interact in vitro with glyceraldehyde-3-phosphate dehydrogenase and that the Lys231 residue of the last is essential for this function. Following the interaction, a concomitant increase in the glyceraldehyde-3-phosphate dehydrogenase catalytic activity was observed. However, when SEVEN IN ABSENTIA like 7 was supplemented with E1 and E2 proteins to form a complete E1-E2-E3 modifier complex, we observed the mono-ubiquitination of glyceraldehyde-3-phosphate dehydrogenase 1 at the Lys76 residue and a dramatic decrease of its catalytic activity. Moreover, we found that localization of glyceraldehyde-3-phosphate dehydrogenase 1 in the nucleus is dependent on the expression SEVEN IN ABSENTIA like 7. These observations suggest that the association of both proteins might result in different biological consequences in plants either through affecting the glycolytic flux or via cytoplasm-nucleus relocation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency.

    PubMed

    Ghosh, Alok; Trivedi, Prachi P; Timbalia, Shrishiv A; Griffin, Aaron T; Rahn, Jennifer J; Chan, Sherine S L; Gohil, Vishal M

    2014-07-01

    Mitochondrial respiratory chain biogenesis is orchestrated by hundreds of assembly factors, many of which are yet to be discovered. Using an integrative approach based on clues from evolutionary history, protein localization and human genetics, we have identified a conserved mitochondrial protein, C1orf31/COA6, and shown its requirement for respiratory complex IV biogenesis in yeast, zebrafish and human cells. A recent next-generation sequencing study reported potential pathogenic mutations within the evolutionarily conserved Cx₉CxnCx₁₀C motif of COA6, implicating it in mitochondrial disease biology. Using yeast coa6Δ cells, we show that conserved residues in the motif, including the residue mutated in a patient with mitochondrial disease, are essential for COA6 function, thus confirming the pathogenicity of the patient mutation. Furthermore, we show that zebrafish embryos with zfcoa6 knockdown display reduced heart rate and cardiac developmental defects, recapitulating the observed pathology in the human mitochondrial disease patient who died of neonatal hypertrophic cardiomyopathy. The specific requirement of Coa6 for respiratory complex IV biogenesis, its intramitochondrial localization and the presence of the Cx₉CxnCx₁₀C motif suggested a role in mitochondrial copper metabolism. In support of this, we show that exogenous copper supplementation completely rescues respiratory and complex IV assembly defects in yeast coa6Δ cells. Taken together, our results establish an evolutionarily conserved role of Coa6 in complex IV assembly and support a causal role of the COA6 mutation in the human mitochondrial disease patient. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. A facile synthesis of lanost-8-en-3 beta-ol-24-one (24-ketolanosterol). An inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase.

    PubMed

    Parish, E J; Honda, H; Chitrakorn, S; Taylor, F R

    1988-10-01

    A facile chemical synthesis of lanost-8-en-3 beta-ol-24-one (24-ketolanosterol) is described. This compound was found to be a potent inhibitor of 3-hydroxy-3-methylglutaryl (HMG) CoA reductase activity in cultured mouse L cells. The synthetic scheme developed in this study utilizes commercial lanosterol as a starting material and involves selective hydroboration of the C-24 double bond followed by oxidation of the carbon-boron bond at C-24 by pyridinium chlorochromate (PCC).

  9. Inflammatory Flt3L is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection

    PubMed Central

    Guermonprez, Pierre; Helft, Julie; Claser, Carla; Deroubaix, Stephanie; Karanje, Henry; Gazumyan, Anna; Darrasse-Jeze, Guillaume; Telerman, Stephanie B.; Breton, Gaëlle; Schreiber, Heidi A.; Frias-Staheli, Natalia; Billerbeck, Eva; Dorner, Marcus; Rice, Charles M.; Ploss, Alexander; Klein, Florian; Swiecki, Melissa; Colonna, Marco; Kamphorst, Alice O.; Meredith, Matthew; Niec, Rachel; Takacs, Constantin; Mikhail, Fadi; Hari, Aswin; Bosque, David; Eisenreich, Tom; Merad, Miriam; Shi, Yan; Ginhoux, Florent; Rénia, Laurent; Urban, Britta C.; Nussenzweig, Michel C.

    2014-01-01

    Summary Innate sensing mechanisms trigger a variety of humoral and cellular events that are essential to adaptive immune responses. Here we describe an innate sensing pathway triggered by Plasmodium infection that regulates dendritic cell (DC) homeostasis and adaptive immunity via Flt3L release. Plasmodium-induced Flt3L release requires toll-like receptor activation and type I interferon production. We find that type I interferon supports the up-regulation of xanthine dehydrogenase, which metabolizes the xanthine accumulating in infected erythrocytes to uric acid. Uric acid crystals trigger mast cells to release soluble Flt3L from a pre-synthesized membrane-associated precursor. During infection Flt3L preferentially stimulates expansion of the CD8α+/CD103+ DC subset or its BDCA3+ human DC equivalent and has a significant impact on the magnitude of T cell activation, mostly in the CD8+ compartment. Our findings highlight a new mechanism that regulates DC homeostasis and T cell responses to infection. PMID:23685841

  10. Characterization of hamster NAD+-dependent 3(17)β-hydroxysteroid dehydrogenase belonging to the aldo-keto reductase 1C subfamily.

    PubMed

    Endo, Satoshi; Noda, Misato; Ikari, Akira; Tatematsu, Kenjiro; El-Kabbani, Ossama; Hara, Akira; Kitade, Yukio; Matsunaga, Toshiyuki

    2015-11-01

    The cDNAs for morphine 6-dehydrogenase (AKR1C34) and its homologous aldo-keto reductase (AKR1C35) were cloned from golden hamster liver, and their enzymatic properties and tissue distribution were compared. AKR1C34 and AKR1C35 similarly oxidized various xenobiotic alicyclic alcohols using NAD(+), but differed in their substrate specificity for hydroxysteroids and inhibitor sensitivity. While AKR1C34 showed 3α/17β/20α-hydroxysteroid dehydrogenase activities, AKR1C35 efficiently oxidized various 3β- and 17β-hydroxysteroids, including biologically active 3β-hydroxy-5α/β-dihydro-C19/C21-steroids, dehydroepiandrosterone and 17β-estradiol. AKR1C35 also differed from AKR1C34 in its high sensitivity to flavonoids, which inhibited competitively with respect to 17β-estradiol (Ki 0.11-0.69 μM). The mRNA for AKR1C35 was expressed liver-specific in male hamsters and ubiquitously in female hamsters, whereas the expression of the mRNA for AKR1C34 displayed opposite sexual dimorphism. Because AKR1C35 is the first 317Β-HYDROXYSTEROID DEHYDROGENASE IN THE AKR SUPERFAMILY: , we also investigated the molecular determinants for the 3β-hydroxysteroid dehydrogenase activity by replacement of Val54 and Cys310 in AKR1C35 with the corresponding residues in AKR1C34, Ala and Phe, respectively. The mutation of Val54Ala, but not Cys310Phe, significantly impaired this activity, suggesting that Val54 plays a critical role in recognition of the steroidal substrate. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  11. 3D-QSAR and docking studies on 1-hydroxypyridin-2-one compounds as mutant isocitrate dehydrogenase 1 inhibitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhenya; Chang, Yiqun; Han, Yushui; Liu, Kangjia; Hou, Jinsong; Dai, Chengli; Zhai, Yuanhao; Guo, Jialiang; Sun, Pinghua; Lin, Jing; Chen, Weimin

    2016-11-01

    Mutation of isocitrate dehydrogenase 1 (IDH1) which is frequently found in certain cancers such as glioma, sarcoma and acute myeloid leukemia, has been proven to be a potent drug target for cancer therapy. In silico methodologies such as 3D-QSAR and molecular docking were performed to explore compounds with better mutant isocitrate dehydrogenase 1 (MIDH1) inhibitory activity using a series of 40 newly reported 1-hydroxypyridin-2-one compounds as MIDH1 inhibitors. The satisfactory CoMFA and CoMSIA models obtained after internal and external cross-validation gave q2 values of 0.691 and 0.535, r2 values of 0.984 and 0.936, respectively. 3D contour maps generated from CoMFA and CoMSIA along with the docking results provided information about the structural requirements for better MIDH1 inhibitory activity. Based on the structure-activity relationship, 17 new potent molecules with better predicted activity than the most active compound in the literature have been designed.

  12. Structural and biochemical characterization of cinnamoyl-coa reductases

    USDA-ARS?s Scientific Manuscript database

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a str...

  13. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Hyperglycaemia per se does not affect erythrocyte glucose-6-phosphate dehydrogenase activity in ketosis-prone diabetes.

    PubMed

    Choukem, S P; Sobngwi, E; Garnier, J P; Letellier, S; Mauvais-Jarvis, F; Calvo, F; Gautier, J-F

    2015-09-01

    Previously, we described patients with ketosis-prone type 2 diabetes (KPD) and glucose-6-phosphate dehydrogenase (G6PD) deficiency, but no mutation of the G6PD gene. Our present study used two complementary approaches to test whether hyperglycaemia might inhibit G6PD activity: (1) effect of acute hyperglycaemia induced by glucose ramping; and (2) effect of chronic hyperglycaemia using correlation between G6PD activity and HbA1c levels. In the first substudy, 16 KPD patients were compared with 11 healthy, non-diabetic control subjects of the same geographical background. Erythrocyte G6PD activity and plasma glucose were assessed at baseline and every 40 min during intravenous glucose ramping that allowed maintaining hyperglycaemia for more than 3h. In the second substudy, erythrocyte G6PD activity and HbA1c levels were evaluated in 108 consecutive African patients with either type 2 diabetes or KPD, and a potential correlation sought between the two variables. The maximum plasma glucose level after 200 min of glucose perfusion was 20.9±3.7 mmol/L for patients and 10.7±2.3mmol/L for controls. There was no difference between baseline and repeated G6PD activity levels during acute hyperglycaemia in either KPD patients (P=0.94) or controls (P=0.57), nor was there any significant correlation between residual erythrocyte G6PD activity and HbA1c levels (r=-0.085, P=0.38). Neither acute nor chronic hyperglycaemia affects erythrocyte G6PD activity. Thus, hyperglycaemia alone does not explain cases of G6PD deficiency in the absence of gene mutation as described earlier. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Lactate dehydrogenase activity drives hair follicle stem cell activation

    PubMed Central

    Aimee, Flores; John, Schell; Abby, Krall; David, Jelinek; Matilde, Miranda; Melina, Grigorian; Daniel, Braas; White Andrew, C; Jessica, Zhou; Nick, Graham; Thomas, Graeber; Pankaj, Seth; Denis, Evseenko; Hilary, Coller; Jared, Rutter; Heather, Christofk; Lowry William, E

    2017-01-01

    Summary While normally dormant, Hair Follicle Stem Cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allow them to remain dormant and yet quickly respond to appropriate proliferative stimuli. PMID:28812580

  16. Synthesis of citrate from phosphoenolpyruvate and acetylcarnitine by mitochondria from rabbit, pigeon and rat liver: implications for lipogenesis.

    PubMed

    Wiese, T J; Wuensch, S A; Ray, P D

    1996-08-01

    Rabbit, pigeon and rat liver mitochondria convert exogenous phosphoenolpyruvate and acetylcarnitine to citrate at rates of 14, 74 and 8 nmol/15 min/mg protein. Citrate formation is dependent on exogenous HCO3-, is increased consistently by exogenous nucleotides (GDP, IDP, GTP, ADP, ATP) and inhibited strongly by 3-mercaptopicolinate and 1,2,3-benzenetricarboxylate. Citrate is not made from pyruvate alone or combined with acetylcarnitine. Pigeon and rat liver mitochondria make large amounts of citrate from exogenous succinate, suggesting the presence of an endogenous source of acetyl units or means of converting oxalacetate to acetyl units. Citrate synthesis from succinate by pigeon and rabbit mitochondria is increased significantly by exogenous acetylcarnitine. Pigeon and rat liver contain 80 and 15 times, respectively, more ATP:citrate lyase activity than does rabbit liver. Data suggest that mitochondrial phosphoenolpyruvate carboxykinase in vivo could convert glycolysis-derived phosphoenolpyruvate to oxalacetate that, with acetyl CoA, could form citrate for export to support cytosolic lipogenesis as an activator of acetyl CoA carboxylase, a carbon source via ATP:citrate lyase and NADPH via NADP:malate dehydrogenase or NADP:isocitrate dehydrogenase.

  17. Effect of high hydrostatic pressure extract of fresh ginseng on adipogenesis in 3T3-L1 adipocytes.

    PubMed

    Lee, Mak-Soon; Jung, Sunyoon; Oh, Soojung; Shin, Yoonjin; Kim, Chong-Tai; Kim, In-Hwan; Kim, Yangha

    2015-09-01

    Red ginseng is produced by steaming and drying fresh ginseng. Through this processing, chemical compounds are modified, and then biological activities are changed. In the food-processing industry, high hydrostatic pressure (HHP) has become an alternative to heat processing to make maximum use of bioactive compounds in food materials. This study comparatively investigated the anti-adipogenic effects of water extract of red ginseng (WRG) and high hydrostatic pressure extract of fresh ginseng (HPG) in 3T3-L1 adipocytes. Both WRG and HPG inhibited the accumulation of intracellular lipids and triglycerides, and the activity of glycerol-3-phosphate dehydrogenase (GPDH), a key enzyme in triglyceride biosynthesis. Intracellular lipid content and GPDH activity were significantly lower in the HPG group compared to the WRG group. In addition, mRNA expression of adipogenic genes, including CEBP-α, SREBP-1c and aP2, were lower in HPG-treated cells compared to WRG-treated cells. HPG significantly increased the activity of AMPK, and WRG did not. Results suggested that HPG may have superior beneficial effects on the inhibition of adipogenesis compared with WRG. The anti-adipogenic effects of HPG were partially associated with the inhibition of GPDH activity, suppression of adipogenic gene expression and activation of AMPK in 3T3-L1 adipocytes. © 2014 Society of Chemical Industry.

  18. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism.

    PubMed

    Koh, Ho-Jin; Lee, Su-Min; Son, Byung-Gap; Lee, Soh-Hyun; Ryoo, Zae Young; Chang, Kyu-Tae; Park, Jeen-Woo; Park, Dong-Chan; Song, Byoung J; Veech, Richard L; Song, Hebok; Huh, Tae-Lin

    2004-09-17

    NADPH is an essential cofactor for many enzymatic reactions including glutathione metabolism and fat and cholesterol biosynthesis. We have reported recently an important role for mitochondrial NADP(+)-dependent isocitrate dehydrogenase in cellular defense against oxidative damage by providing NADPH needed for the regeneration of reduced glutathione. However, the role of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is still unclear. We report here for the first time that IDPc plays a critical role in fat and cholesterol biosynthesis. During differentiation of 3T3-L1 adipocytes, both IDPc enzyme activity and its protein content were increased in parallel in a time-dependent manner. Increased expression of IDPc by stable transfection of IDPc cDNA positively correlated with adipogenesis of 3T3-L1 cells, whereas decreased IDPc expression by an antisense IDPc vector retarded adipogenesis. Furthermore, transgenic mice with overexpressed IDPc exhibited fatty liver, hyperlipidemia, and obesity. In the epididymal fat pads of the transgenic mice, the expressions of adipocyte-specific genes including peroxisome proliferator-activated receptor gamma were markedly elevated. The hepatic and epididymal fat pad contents of acetyl-CoA and malonyl-CoA in the transgenic mice were significantly lower, whereas the total triglyceride and cholesterol contents were markedly higher in the liver and serum of transgenic mice compared with those measured in wild type mice, suggesting that the consumption rate of those lipogenic precursors needed for fat biosynthesis must be increased by elevated IDPc activity. Taken together, our findings strongly indicate that IDPc would be a major NADPH producer required for fat and cholesterol synthesis.

  19. Aldehyde dehydrogenase 3A1 activation prevents radiation-induced xerostomia by protecting salivary stem cells from toxic aldehydes

    PubMed Central

    Saiki, Julie P.; Cao, Hongbin; Van Wassenhove, Lauren D.; Viswanathan, Vignesh; Bloomstein, Joshua; Nambiar, Dhanya K.; Mattingly, Aaron J.; Jiang, Dadi; Chen, Che-Hong; Simmons, Amanda L.; Park, Hyun Shin; von Eyben, Rie; Kool, Eric T.; Sirjani, Davud; Knox, Sarah M.; Le, Quynh Thu; Mochly-Rosen, Daria

    2018-01-01

    Xerostomia (dry mouth) is the most common side effect of radiation therapy in patients with head and neck cancer and causes difficulty speaking and swallowing. Since aldehyde dehydrogenase 3A1 (ALDH3A1) is highly expressed in mouse salivary stem/progenitor cells (SSPCs), we sought to determine the role of ALDH3A1 in SSPCs using genetic loss-of-function and pharmacologic gain-of-function studies. Using DarkZone dye to measure intracellular aldehydes, we observed higher aldehyde accumulation in irradiated Aldh3a1−/− adult murine salisphere cells and in situ in whole murine embryonic salivary glands enriched in SSPCs compared with wild-type glands. To identify a safe ALDH3A1 activator for potential clinical testing, we screened a traditional Chinese medicine library and isolated d-limonene, commonly used as a food-flavoring agent, as a single constituent activator. ALDH3A1 activation by d-limonene significantly reduced aldehyde accumulation in SSPCs and whole embryonic glands, increased sphere-forming ability, decreased apoptosis, and improved submandibular gland structure and function in vivo after radiation. A phase 0 study in patients with salivary gland tumors showed effective delivery of d-limonene into human salivary glands following daily oral dosing. Given its safety and bioavailability, d-limonene may be a good clinical candidate for mitigating xerostomia in patients with head and neck cancer receiving radiation therapy. PMID:29794221

  20. Acyl coenzyme a preference of diacylglycerol acyltransferase from the maturing seeds of cuphea, maize, rapeseed, and canola.

    PubMed

    Cao, Y Z; Huang, A H

    1987-07-01

    In their seed triacylglycerols, Cuphea carthagenensis contains 62% lauric acid; maize possesses 50% linoleic acid and 30% oleic acid; rapeseed (Brassica napus L. var Dwarf Essex) has 40% erucic acid; and Canola (Brassica napus L. var Tower) holds 60% oleic acid and 23% linoleic acid. Diacylglycerol acyltransferase (EC 2.3.1.20) in the microsomal preparations from maturing seeds of the above species were tested for their preference in using different forms of acyl coenzyme A (CoA). Lauroyl CoA, oleoyl CoA, and erucoyl CoA individually or in equimolar mixtures at increasing concentrations were added to the assay mixture containing diolein, and the formation of triacylglycerols from the acyl groups at 24, 32, and 40 degrees C was analyzed. The Cuphea enzyme preferred lauroyl CoA to oleoyl CoA, and was inactive on erucoyl CoA. The maize enzyme had about equal activities on oleoyl CoA and lauroyl CoA, and was inactive on erucoyl CoA. Enzymes from both rapeseed and Canola had the same pattern of acyl CoA preference, with highest activities on lauroyl CoA. The two enzymes were more active on oleoyl CoA than on erucoyl CoA at high acyl CoA concentrations (10 and 20 micromolar) at 24 degrees C, but were more active on erucoyl CoA than on oleoyl CoA at low acyl CoA concentrations (1.36 micromolar or less) at 32 and 40 degrees C. These findings are discussed in terms of the contribution of the enzyme to the acyl specificity in storage triacylglycerols and the implication in seed oil biotechnology.

  1. Acyl Coenzyme A Preference of Diacylglycerol Acyltransferase from the Maturing Seeds of Cuphea, Maize, Rapeseed, and Canola 1

    PubMed Central

    Cao, Yi-Zhi; Huang, Anthony H. C.

    1987-01-01

    In their seed triacylglycerols, Cuphea carthagenensis contains 62% lauric acid; maize possesses 50% linoleic acid and 30% oleic acid; rapeseed (Brassica napus L. var Dwarf Essex) has 40% erucic acid; and Canola (Brassica napus L. var Tower) holds 60% oleic acid and 23% linoleic acid. Diacylglycerol acyltransferase (EC 2.3.1.20) in the microsomal preparations from maturing seeds of the above species were tested for their preference in using different forms of acyl coenzyme A (CoA). Lauroyl CoA, oleoyl CoA, and erucoyl CoA individually or in equimolar mixtures at increasing concentrations were added to the assay mixture containing diolein, and the formation of triacylglycerols from the acyl groups at 24, 32, and 40°C was analyzed. The Cuphea enzyme preferred lauroyl CoA to oleoyl CoA, and was inactive on erucoyl CoA. The maize enzyme had about equal activities on oleoyl CoA and lauroyl CoA, and was inactive on erucoyl CoA. Enzymes from both rapeseed and Canola had the same pattern of acyl CoA preference, with highest activities on lauroyl CoA. The two enzymes were more active on oleoyl CoA than on erucoyl CoA at high acyl CoA concentrations (10 and 20 micromolar) at 24°C, but were more active on erucoyl CoA than on oleoyl CoA at low acyl CoA concentrations (1.36 micromolar or less) at 32 and 40°C. These findings are discussed in terms of the contribution of the enzyme to the acyl specificity in storage triacylglycerols and the implication in seed oil biotechnology. PMID:16665518

  2. Inhibitors of Fatty Acid Synthesis Induce PPARα-Regulated Fatty Acid β-Oxidative Genes: Synergistic Roles of L-FABP and Glucose

    PubMed Central

    Huang, Huan; McIntosh, Avery L.; Martin, Gregory G.; Petrescu, Anca D.; Landrock, Kerstin K.; Landrock, Danilo; Kier, Ann B.; Schroeder, Friedhelm

    2013-01-01

    While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone. Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome proliferator-activated receptor-α (PPARα) in the nucleus, was found to bind TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological (6 mM) glucose conferred on both TOFA and C75 the ability to induce PPARα transcription of the fatty acid β-oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice. However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein facilitating TOFA and C75-mediated induction of PPARα in the context of high glucose at levels similar to those in uncontrolled diabetes. PMID:23533380

  3. Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity.

    PubMed

    Aapola, Ulla; Liiv, Ingrid; Peterson, Pärt

    2002-08-15

    DNMT3L is a regulator of imprint establishment of normally methylated maternal genomic sequences. DNMT3L shows high similarity to the de novo DNA methyltransferases, DNMT3A and DNMT3B, however, the amino acid residues needed for DNA cytosine methyltransferase activity have been lost from the DNMT3L protein sequence. Apart from methyltransferase activity, Dnmt3a and Dnmt3b serve as transcriptional repressors associating with histone deacetylase (HDAC) activity. Here we show that DNMT3L can also repress transcription by binding directly to HDAC1 protein. We have identified the PHD-like zinc finger of the ATRX domain as a main repression motif of DNMT3L, through which DNMT3L recruits the HDAC activity needed for transcriptional silencing. Furthermore, we show that DNMT3L protein contains an active nuclear localisation signal at amino acids 156-159. These results describe DNMT3L as a co-repressor protein and suggest that a transcriptionally repressed chromatin organisation through HDAC activity is needed for establishment of genomic imprints.

  4. Chaetomium thermophilum formate dehydrogenase has high activity in the reduction of hydrogen carbonate (HCO3 -) to formate.

    PubMed

    Aslan, Aşkın Sevinç; Valjakka, Jarkko; Ruupunen, Jouni; Yildirim, Deniz; Turner, Nicholas J; Turunen, Ossi; Binay, Barış

    2017-01-01

    While formate dehydrogenases (FDHs) have been used for cofactor recycling in chemoenzymatic synthesis, the ability of FDH to reduce CO 2 could also be utilized in the conversion of CO 2 to useful products via formate (HCOO - ). In this study, we investigated the reduction of CO 2 in the form of hydrogen carbonate (HCO 3 - ) to formate by FDHs from Candida methylica (CmFDH) and Chaetomium thermophilum (CtFDH) in a NADH-dependent reaction. The catalytic performance with HCO 3 - as a substrate was evaluated by measuring the kinetic rates and conducting productivity assays. CtFDH showed a higher efficiency in converting HCO 3 - to formate than CmFDH, whereas CmFDH was better in the oxidation of formate. The pH optimum of the reduction was at pH 7-8. However, the high concentrations of HCO 3 - reduced the reaction rate. CtFDH was modeled in the presence of HCO 3 - showing that it fits to the active site. The active site setting for hydride transfer in CO 2 reduction was modeled. The hydride donated by NADH would form a favorable contact to the carbon atom of HCO 3 - , resulting in a surplus of electrons within the molecule. This would cause the complex formed by hydrogen carbonate and the hydride to break into formate and hydroxide ions. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Inhibitors of inosine monophosphate dehydrogenase: SARs about the N-[3-Methoxy-4-(5-oxazolyl)phenyl moiety.

    PubMed

    Iwanowicz, Edwin J; Watterson, Scott H; Guo, Junqing; Pitts, William J; Murali Dhar, T G; Shen, Zhongqi; Chen, Ping; Gu, Henry H; Fleener, Catherine A; Rouleau, Katherine A; Cheney, Daniel L; Townsend, Robert M; Hollenbaugh, Diane L

    2003-06-16

    The first reported structure-activity relationships (SARs) about the N-[3-methoxy-4-(5-oxazolyl)phenyl moiety for a series of recently disclosed inosine monophosphate dehydrogenase (IMPDH) inhibitors are described. The syntheses and in vitro inhibitory values for IMPDH II, and T-cell proliferation (for select analogues) are given.

  6. Digitalis metabolism and human liver alcohol dehydrogenase.

    PubMed Central

    Frey, W A; Vallee, B L

    1980-01-01

    Human liver alcohol dehydrogenase (alcohol: NAD" oxidoreductase, EC 1.1.1.1) catalyzes the oxidation of the 3 beta-OH group of digitoxigenin, digoxigenin, and gitoxigenin to their 3-keto derivatives, which have been characterized by high performance liquid chromatography and mass spectrometry. These studies have identified human liver alcohol dehydrogenase as the unknown NAD(H)-dependent liver enzyme specific for the free hydroxyl group at C3 of the cardiac genins; this hydroxyl is the critical site of the genins' enzymatic oxidation and concomitant pharmacological inactivation in humans. Several kinetic approaches have demonstrated that ethanol and the pharmacologically active components of the digitalis glycosides are oxidized with closely similar kcat/Km values at the same site on human liver alcohol dehydrogenase, for which they compete. Human liver alcohol dehydrogenase thereby becomes an important biochemical link in the metabolism, pharmacology, and toxicology of ethanol and these glycosides, structurally unrelated agents that are both used widely. Both the competition of ethanol with these cardiac sterols and the narrow margin of safety in the therapeutic use of digitalis derivatives would seem to place at increased risk those individuals who receive digitalis and simultaneously consume large amounts of ethanol or whose alcohol dehydrogenase function is impaired. PMID:6987673

  7. Inhibitors of Fatty Acid Synthesis Induce PPAR α -Regulated Fatty Acid β -Oxidative Genes: Synergistic Roles of L-FABP and Glucose.

    PubMed

    Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Petrescu, Anca D; Landrock, Kerstin K; Landrock, Danilo; Kier, Ann B; Schroeder, Friedhelm

    2013-01-01

    While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone. Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome proliferator-activated receptor- α (PPAR α ) in the nucleus, was found to bind TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological (6 mM) glucose conferred on both TOFA and C75 the ability to induce PPAR α transcription of the fatty acid β -oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice. However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein facilitating TOFA and C75-mediated induction of PPAR α in the context of high glucose at levels similar to those in uncontrolled diabetes.

  8. Inhibition of 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) activity of human lung microsomes by genistein, daidzein, coumestrol and C(18)-, C(19)- and C(21)-hydroxysteroids and ketosteroids.

    PubMed

    Blomquist, Charles H; Lima, Paul H; Hotchkiss, John R

    2005-07-01

    Epidemiologic data suggest a relationship between dietary intake of phytochemicals and a lower incidence of some cancers. Modulation of steroid hormone metabolism has been proposed as a basis for this effect. It has been shown that aromatase, 3beta-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase (17beta-HSD) are inhibited by the isoflavones, genistein and daidzein, and by coumestrol. In general, the extent of inhibition has been expressed in terms of IC50-values, which do not give information as to the pattern of inhibition, i.e., competitive, non-competitive, or mixed. Less is known of the effects of these compounds on 3alpha-HSD. The human lung is known to have a high level of 17beta-HSD and 3alpha-HSD activity. During the course of studies to characterize both activities in normal and inflamed lung and lung tumors we noted that 3alpha-HSD activity with 5alpha-DHT of microsomes from normal, adult lung was particularly susceptible to inhibition by coumestrol. To clarify the pattern of inhibition, the inhibition constants Ki and K'i were evaluated from plots of 1/v versus [I] and [S]/v versus [I]. Genistein, daidzein and coumestrol gave mixed inhibition patterns versus both 5alpha-DHT and NADH. In contrast, 5alpha-androstane-3,17-dione and 5alpha-pregnane-3,20-dione were competitive with 5alpha-DHT. NAD inhibited competitively with NADH. Our findings demonstrate that phytochemicals have the potential to inhibit 5alpha-DHT metabolism and thereby affect the androgen status of the human lung. The observation of a mixed inhibition pattern suggests these compounds bind to more than one form of the enzyme within the catalytic pathway.

  9. Cytosolic glyceraldehyde-3-phosphate dehydrogenases play crucial roles in controlling cold-induced sweetening and apical dominance of potato (Solanum tuberosum L.) tubers.

    PubMed

    Liu, Tengfei; Fang, Hui; Liu, Jun; Reid, Stephen; Hou, Juan; Zhou, Tingting; Tian, Zhendong; Song, Botao; Xie, Conghua

    2017-12-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme that functions in producing energy and supplying intermediates for cellular metabolism. Recent researches indicate that GAPDHs have multiple functions beside glycolysis. However, little information is available for functions of GAPDHs in potato. Here, we identified 4 putative cytosolic GAPDH genes in potato genome and demonstrated that the StGAPC1, StGAPC2, and StGAPC3, which are constitutively expressed in potato tissues and cold inducible in tubers, encode active cytosolic GAPDHs. Cosuppression of these 3 GAPC genes resulted in low tuber GAPDH activity, consequently the accumulation of reducing sugars in cold stored tubers by altering the tuber metabolite pool sizes favoring the sucrose pathway. Furthermore, GAPCs-silenced tubers exhibited a loss of apical dominance dependent on cell death of tuber apical bud meristem (TAB-meristem). It was also confirmed that StGAPC1, StGAPC2, and StGAPC3 interacted with the autophagy-related protein 3 (ATG3), implying that the occurrence of cell death in TAB-meristem could be induced by ATG3 associated events. Collectively, the present research evidences first that the GAPC genes play crucial roles in diverse physiological and developmental processes in potato tubers. © 2017 John Wiley & Sons Ltd.

  10. L-arabinose metabolism in Herbaspirillum seropedicae.

    PubMed Central

    Mathias, A L; Rigo, L U; Funayama, S; Pedrosa, F O

    1989-01-01

    The pathway for L-arabinose metabolism in Herbaspirillum seropedicae was shown to involve nonphosphorylated intermediates and to produce alpha-ketoglutarate. The activities of the enzymes and the natures of several intermediates were determined. The pathway was inducible by L-arabinose, and two key enzymes, L-arabinose dehydrogenase and 2-keto-glutarate semialdehyde dehydrogenase, were present in all strains of H. seropedicae tested. PMID:2768202

  11. The Antibiotic CJ-15,801 is an Antimetabolite which Hijacks and then Inhibits CoA Biosynthesis

    PubMed Central

    van der Westhuyzen, Renier; Hammons, Justin C.; Meier, Jordan L.; Dahesh, Samira; Moolman, Wessel J. A.; Pelly, Stephen C.; Nizet, Victor; Burkart, Michael D.; Strauss, Erick

    2012-01-01

    SUMMARY The natural product CJ-15,801 is an inhibitor of Staphylococcus aureus, but not other bacteria. Its close structural resemblance to pantothenic acid, the vitamin precursor of coenzyme A (CoA), and its Michael acceptor moiety suggest that it irreversibly inhibits an enzyme involved in CoA biosynthesis or utilization. However, its mode of action and the basis for its specificity have not been elucidated to date. We demonstrate that CJ-15,801 is transformed by the uniquely selective S. aureus pantothenate kinase, the first CoA biosynthetic enzyme, into a substrate for the next enzyme, phosphopantothenoylcysteine synthetase, which is inhibited through formation of a tight-binding structural mimic of its native reaction intermediate. These findings reveal CJ-15,801 as a vitamin biosynthetic pathway antimetabolite with a mechanism similar to that of the sulfonamide antibiotics, and highlight CoA biosynthesis as a viable antimicrobial drug target. PMID:22633408

  12. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  13. Dehydrogenase activity and quality of leachates in Technosols with gossan and sulfide materials from the São Domingos mine

    NASA Astrophysics Data System (ADS)

    Santos, Erika; Abreu, Manuela; Macías, Felipe; de Varennes, Amarílis

    2014-05-01

    Wastes produced by mining activity in São Domingos (Portuguese Iberian Pyrite Belt) were disposed over a large area. To speed up the ecological rehabilitation in this mine, an integrative strategy using different amendments+mine wastes was used to produce Technosols with enhanced soil functions. To evaluate the efficiency of these Technosols the dehydrogenase activity and chemical quality of leachates were monitored. Technosols were composed of different mine wastes (gossan and sulfide materials), collected at the São Domingos mine, and mixtures of amendments applied at 30 and 75 Mg/ha (rockwool+agriculture wastes+wastes from liquors distillation of strawberry tree fruits (Arbutus unedo L.) and/or carobs (Ceratonia siliqua L. fruits)). Three assays, under controlled conditions, were carried out: (1 and 2) Sulfide or gossan materials with/without amendments; (3) Sulfide wastes, with/without amendments, incubated during four months and then with application of an overlayer of gossan (~3 cm thick) with/without the same amendments. Dehydrogenase activity (DHA) and chemical characteristics of leachates (multielemental concentration, pH, and electric conductivity) were determined after four/seven/thirteen months of incubation. Sulfide wastes had more hazardous characteristics (pH~2 and total concentrations (g/kg) of Al (58.1), As (1.1), Cu (2.1), Fe (107.3), Pb (11.7), S (65.3) and Zn (1.1) than the gossan materials (pH=4.3; g/kg, Al: 24.8, As: 3.0, Cu: 0.2, Fe: 129, Pb: 9.2, S: 13.7, Zn: 0.04). Amendments application to gossan (assay 2) enhanced DHA in both sampling periods (µg TPF g dry weight 16 h-1, Control: 0,72-1,78; Amended treatments: 2.49-16.36 depending on mixture/application rate/sampling period). Greater application rates stimulated DHA (more than 1.5-fold with 75 Mg/ha). No differences were observed in DHA in the gossan layer with/without amendments (assay 3) suggesting a negative impact on gossan microrganisms from sulfide materials located below. In

  14. Inhibition of Pyruvate Dehydrogenase Kinase as a Therapeutic Strategy against Cancer.

    PubMed

    Sradhanjali, Swatishree; Reddy, Mamatha M

    2018-05-22

    Cancer cells alter their metabolism to support the uninterrupted supply of biosynthetic molecules required for continuous proliferation. Glucose metabolism is frequently reprogrammed in several tumors in addition to fatty acid, amino acid and glutamine metabolism. Pyruvate dehydrogenase kinase (PDK) is a gatekeeper enzyme involved in altered glucose metabolism in tumors. There are four isoforms of PDK (1 to 4) in humans. PDK phosphorylates E1α subunit of pyruvate dehydrogenase complex (PDC) and inactivates it. PDC decarboxylates pyruvate to acetyl CoA, which is further metabolized in mitochondria. Overexpression of PDK was observed in several tumors and is frequently associated with chemotherapy related drug resistance, invasion and metastasis. Elevated expression of PDK leads to a shift in glucose metabolism towards glycolysis instead of oxidative phosphorylation. This review summarizes recent literature related to the role of PDKs in cancer and their inhibition as a strategy. In particular, we discuss the role of PDK in tumor progression, metabolic reprogramming in stem cells, and their regulation by miRNAs and lncRNAs, oncogenes and tumor suppressors. Further, we review strategies aimed at targeting PDK to halt tumor growth and progression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Purification, gene cloning, and characterization of γ-butyrobetainyl CoA synthetase from Agrobacterium sp. 525a.

    PubMed

    Fujimitsu, Hiroshi; Matsumoto, Akira; Takubo, Sayaka; Fukui, Akiko; Okada, Kazuma; Mohamed Ahmed, Isam A; Arima, Jiro; Mori, Nobuhiro

    2016-08-01

    The report is the first of purification, overproduction, and characterization of a unique γ-butyrobetainyl CoA synthetase from soil-isolated Agrobacterium sp. 525a. The primary structure of the enzyme shares 70-95% identity with those of ATP-dependent microbial acyl-CoA synthetases of the Rhizobiaceae family. As distinctive characteristics of the enzyme of this study, ADP was released in the catalytic reaction process, whereas many acyl CoA synthetases are annotated as an AMP-forming enzyme. The apparent Km values for γ-butyrobetaine, CoA, and ATP were, respectively, 0.69, 0.02, and 0.24 mM.

  16. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    PubMed Central

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  17. RKIP phosphorylation–dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahm, Jong Ryeal; Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27; Ahmed, Mahmoud

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 wasmore » highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases

  18. Amine oxidation by d-arginine dehydrogenase in Pseudomonas aeruginosa.

    PubMed

    Ouedraogo, Daniel; Ball, Jacob; Iyer, Archana; Reis, Renata A G; Vodovoz, Maria; Gadda, Giovanni

    2017-10-15

    d-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) is a flavin-dependent oxidoreductase, which is part of a novel two-enzyme racemization system that functions to convert d-arginine to l-arginine. PaDADH contains a noncovalently linked FAD that shows the highest activity with d-arginine. The enzyme exhibits broad substrate specificity towards d-amino acids, particularly with cationic and hydrophobic d-amino acids. Biochemical studies have established the structure and the mechanistic properties of the enzyme. The enzyme is a true dehydrogenase because it displays no reactivity towards molecular oxygen. As established through solvent and multiple kinetic isotope studies, PaDADH catalyzes an asynchronous CH and NH bond cleavage via a hydride transfer mechanism. Steady-state kinetic studies with d-arginine and d-histidine are consistent with the enzyme following a ping-pong bi-bi mechanism. As shown by a combination of crystallography, kinetic and computational data, the shape and flexibility of loop L1 in the active site of PaDADH are important for substrate capture and broad substrate specificity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The antibiotic CJ-15,801 is an antimetabolite that hijacks and then inhibits CoA biosynthesis.

    PubMed

    van der Westhuyzen, Renier; Hammons, Justin C; Meier, Jordan L; Dahesh, Samira; Moolman, Wessel J A; Pelly, Stephen C; Nizet, Victor; Burkart, Michael D; Strauss, Erick

    2012-05-25

    The natural product CJ-15,801 is an inhibitor of Staphylococcus aureus, but not other bacteria. Its close structural resemblance to pantothenic acid, the vitamin precursor of coenzyme A (CoA), and its Michael acceptor moiety suggest that it irreversibly inhibits an enzyme involved in CoA biosynthesis or utilization. However, its mode of action and the basis for its specificity have not been elucidated to date. We demonstrate that CJ-15,801 is transformed by the uniquely selective S. aureus pantothenate kinase, the first CoA biosynthetic enzyme, into a substrate for the next enzyme, phosphopantothenoylcysteine synthetase, which is inhibited through formation of a tight-binding structural mimic of its native reaction intermediate. These findings reveal CJ-15,801 as a vitamin biosynthetic pathway antimetabolite with a mechanism similar to that of the sulfonamide antibiotics and highlight CoA biosynthesis as a viable antimicrobial drug target. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Catalytic Mechanism of Short Ethoxy Chain Nonylphenol Dehydrogenase Belonging to a Polyethylene Glycol Dehydrogenase Group in the GMC Oxidoreductase Family

    PubMed Central

    Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako

    2013-01-01

    Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor. PMID:23306149

  1. Catalytic mechanism of short ethoxy chain nonylphenol dehydrogenase belonging to a polyethylene glycol dehydrogenase group in the GMC oxidoreductase family.

    PubMed

    Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako

    2013-01-10

    Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor.

  2. Tea catechins and flavonoids from the leaves of Camellia sinensis inhibit yeast alcohol dehydrogenase.

    PubMed

    Manir, Md Maniruzzaman; Kim, Jeong Kee; Lee, Byeong-Gon; Moon, Surk-Sik

    2012-04-01

    Four new quercetin acylglycosides, designated camelliquercetisides A-D, quercetin 3-O-[α-L-arabinopyranosyl(1→3)][2-O″-(E)-p-coumaroyl][β-D-glucopyranosyl(1→3)-α-L-rhamnopyranosyl(1→6)]-β-D-glucoside (17), quercetin 3-O-[2-O″-(E)-p-coumaroyl][β-D-glucopyranosyl(1→3)-α-L-rhamnopyranosyl(1→6)]-β-D-glucoside (18), quercetin 3-O-[α-L-arabinopyranosyl(1→3)][2-O″-(E)-p-coumaroyl][α-L-rhamnopyranosyl(1→6)]-β-d-glucoside (19), and quercetin 3-O-[2-O″-(E)-p-coumaroyl][α-L-rhamnopyranosyl(1→6)]-β-D-glucoside (20), together with caffeine and known catechins, and flavonoids (1-16) were isolated from the leaves of Camellia sinensis. Their structures were determined by spectroscopic (1D and 2D NMR, IR, and HR-TOF-MS) and chemical methods. The catechins and flavonoidal glycosides exhibited yeast alcohol dehydrogenase (ADH) inhibitory activities in the range of IC(50) 8.0-70.3μM, and radical scavenging activities in the range of IC(50) 1.5-43.8 μM, measured by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Cloning, functional expression and characterization of a bifunctional 3-hydroxybutanal dehydrogenase /reductase involved in acetone metabolism by Desulfococcus biacutus.

    PubMed

    Frey, Jasmin; Rusche, Hendrik; Schink, Bernhard; Schleheck, David

    2016-11-25

    The strictly anaerobic, sulfate-reducing bacterium Desulfococcus biacutus can utilize acetone as sole carbon and energy source for growth. Whereas in aerobic and nitrate-reducing bacteria acetone is activated by carboxylation with CO 2 to acetoacetate, D. biacutus involves CO as a cosubstrate for acetone activation through a different, so far unknown pathway. Proteomic studies indicated that, among others, a predicted medium-chain dehydrogenase/reductase (MDR) superfamily, zinc-dependent alcohol dehydrogenase (locus tag DebiaDRAFT_04514) is specifically and highly produced during growth with acetone. The MDR gene DebiaDRAFT_04514 was cloned and overexpressed in E. coli. The purified recombinant protein required zinc as cofactor, and accepted NADH/NAD + but not NADPH/NADP + as electron donor/acceptor. The pH optimum was at pH 8, and the temperature optimum at 45 °C. Highest specific activities were observed for reduction of C 3 - C 5 -aldehydes with NADH, such as propanal to propanol (380 ± 15 mU mg -1 protein), butanal to butanol (300 ± 24 mU mg -1 ), and 3-hydroxybutanal to 1,3-butanediol (248 ± 60 mU mg -1 ), however, the enzyme also oxidized 3-hydroxybutanal with NAD + to acetoacetaldehyde (83 ± 18 mU mg -1 ). The enzyme might play a key role in acetone degradation by D. biacutus, for example as a bifunctional 3-hydroxybutanal dehydrogenase/reductase. Its recombinant production may represent an important step in the elucidation of the complete degradation pathway.

  4. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.

    PubMed

    Zhang, Junjiao; Zhao, Xiangying; Zhang, Jiaxiang; Zhao, Chen; Liu, Jianjun; Tian, Yanjun; Yang, Liping

    2017-09-14

    The present work aims to block 2,3-butanediol synthesis in acetoin fermentation of Bacillus subtilis. First, we constructed a recombinant strain BS168D by deleting the 2,3-butanediol dehydrogenase gene bdhA of the B. subtilis168, and there was almost no 2,3-butanediol production in 20 g/L of glucose media. The acetoin yield of BS168D reached 6.61 g/L, which was about 1.5 times higher than that of the control B. subtilis168 (4.47 g/L). Then, when the glucose concentration was increased to 100 g/L, the acetoin yield reached 24.6 g/L, but 2.4 g/L of 2,3-butanediol was detected at the end of fermentation. The analysis of 2,3-butanediol chiral structure indicated that the main 2,3-butanediol production of BS168D was meso-2,3-butanediol, and the bdhA gene was only responsible for (2R,3R)-2,3-butanediol synthesis. Therefore, we speculated that there may exit another pathway relating to the meso-2,3-butanediol synthesis in the B. subtilis. In addition, the results of low oxygen condition fermentation showed that deletion of bdhA gene successfully blocked the reversible transformation between acetoin and 2,3-butanediol and eliminated the effect of dissolved oxygen on the transformation.

  5. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency].

    PubMed

    Voloshchuk, O N; Kopylchuk, G P

    2016-01-01

    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.

  6. Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17β-hydroxysteroid dehydrogenase.

    PubMed

    Endo, Satoshi; Miyagi, Namiki; Matsunaga, Toshiyuki; Hara, Akira; Ikari, Akira

    2016-03-25

    We report characterization of a member of the short-chain dehydrogenase/reductase superfamily encoded in a human gene, DHRS11. The recombinant protein (DHRS11) efficiently catalyzed the conversion of the 17-keto group of estrone, 4- and 5-androstenes and 5α-androstanes into their 17β-hydroxyl metabolites with NADPH as a coenzyme. In contrast, it exhibited reductive 3β-hydroxysteroid dehydrogenase activity toward 5β-androstanes, 5β-pregnanes, 4-pregnenes and bile acids. Additionally, DHRS11 reduced α-dicarbonyls (such as diacetyl and methylglyoxal) and alicyclic ketones (such as 1-indanone and loxoprofen). The enzyme activity was inhibited in a mixed-type manner by flavonoids, and competitively by carbenoxolone, glycyrrhetinic acid, zearalenone, curcumin and flufenamic acid. The expression of DHRS11 mRNA was observed widely in human tissues, most abundantly in testis, small intestine, colon, kidney and cancer cell lines. Thus, DHRS11 represents a novel type of 17β-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. [Alanine dehydrogenase of the cyanobacterium Plectonema boryanum in the early period of cyanophage LPP-3 development].

    PubMed

    Perepelitsa, S I; Koltukova, N V; Mendzhul, M I

    1995-01-01

    It has been studied how reproduction of LPP-3 in Plectonema boryanum cells influences the alanine dehydrogenase activity. It has been found that immediately after the virus adsorption the enzyme activity falls by 50% and the anabolic reaction is blocked. Physicochemical properties of the enzyme vary as well. An infected cell has one isoenzyme-octamer with pl 9.1-9.2, pH-optimum by action 9-10, molecular weight about 27 kDa.

  8. Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings.

    PubMed

    Song, X Q; Fukao, T; Watanabe, H; Shintaku, H; Hirayama, K; Kassovska-Bratinova, S; Kondo, N; Mitchell, G A

    1998-01-01

    Succinyl-CoA:3-ketoacid CoA transferase (SCOT; EC 2.8.3.5; locus symbol OXCT) is the key enzyme of ketone body utilization. Hereditary SCOT deficiency (MIM 245050) causes episodes of severe ketoacidosis. We developed a transient expression system for mutant SCOT cDNAs, using immortalized SCOT-deficient fibroblasts. This paper describes and characterizes three missense mutations in two SCOT-deficient siblings from Japan. They are genetic compounds who inherited the mutation C456F (c1367 G-->T) from their mother. Their paternal allele contains two mutations in cis, T58M (c173 C-->T) and V133E (c398T-->A). Expression of SCOT cDNAs containing either V133E or C456F produces no detectable SCOT activity, whereas T58M is functionally neutral. T58M is a rare sequence variant not detected in 100 control Japanese alleles. In fibroblasts from the proband (GS02), in whom immunoblot demonstrated no detectable SCOT peptide, we measured an apparent residual SCOT activity of 20-35%. We hypothesize that the high residual SCOT activity in homogenates may be an artifact caused by use of the substrate, acetoacetyl-CoA by other enzymes. Expression of mutant SCOT cDNAs more accurately reflects the residual activity of SCOT than do currently available assays in cell or tissue homogenates.

  9. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Is Pyruvylated during 3-Bromopyruvate Mediated Cancer Cell Death

    PubMed Central

    Ganapathy-Kanniappan, Shanmugasundaram; Geschwind, Jean-Francois H.; Kunjithapatham, Rani; Buijs, Manon; Vossen, Josephina A.; Tchernyshyov, Irina; Cole, Robert N.; Syed, Labiq H.; Rao, Pramod P.; Ota, Shinichi; Vali, Mustafa

    2013-01-01

    Background The pyruvic acid analog 3-bromopyruvate (3BrPA) is an alkylating agent known to induce cancer cell death by blocking glycolysis. The anti-glycolytic effect of 3BrPA is considered to be the inactivation of glycolytic enzymes. Yet, there is a lack of experimental documentation on the direct interaction of 3BrPA with any of the suggested targets during its anticancer effect. Methods and Results In the current study, using radiolabeled (14C) 3BrPA in multiple cancer cell lines, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as the primary intracellular target of 3BrPA, based on two-dimensional (2D) gel electrophoretic autoradiography, mass spectrometry and immunoprecipitation. Furthermore, in vitro enzyme kinetic studies established that 3BrPA has marked affinity to GAPDH. Finally, Annexin V staining and active caspase-3 immunoblotting demonstrated that apoptosis was induced by 3BrPA. Conclusion GAPDH pyruvylation by 3BrPA affects its enzymatic function and is the primary intracellular target in 3BrPA mediated cancer cell death. PMID:20044597

  10. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    PubMed

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Phylogenetic and Kinetic Characterization of a Suite of Dehydrogenases from a Newly Isolated Bacterium, Strain SG61-1L, That Catalyze the Turnover of Guaiacylglycerol-β-Guaiacyl Ether Stereoisomers

    PubMed Central

    Palamuru, Shannu; Dellas, Nikki; Pearce, Stephen L.; Warden, Andrew C.; Oakeshott, John G.

    2015-01-01

    Lignin is a complex aromatic polymer found in plant cell walls that makes up 15 to 40% of plant biomass. The degradation of lignin substructures by bacteria is of emerging interest because it could provide renewable alternative feedstocks and intermediates for chemical manufacturing industries. We have isolated a bacterium, strain SG61-1L, that rapidly degrades all of the stereoisomers of one lignin substructure, guaiacylglycerol-β-guaiacyl ether (GGE), which contains a key β-O-4 linkage found in most intermonomer linkages in lignin. In an effort to understand the rapid degradation of GGE by this bacterium, we heterologously expressed and kinetically characterized a suite of dehydrogenase candidates for the first known step of GGE degradation. We identified a clade of active GGE dehydrogenases and also several other dehydrogenases outside this clade that were all able to oxidize GGE. Several candidates exhibited stereoselectivity toward the GGE stereoisomers, while others had higher levels of catalytic performance than previously described GGE dehydrogenases for all four stereoisomers, indicating a variety of potential applications for these enzymes in the manufacture of lignin-derived commodities. PMID:26386069

  12. Independent modulation of the activity of alpha-ketoglutarate dehydrogenase complex by Ca2+ and Mg2+.

    PubMed

    Panov, A; Scarpa, A

    1996-01-16

    The activity of alpha-ketoglutarate dehydrogenase complex (KGDHC), an important enzyme regulating several metabolic pathways, could be regulated by changes in the environment within the mitochondrial matrix. It has been postulated that the activity of this and other dehydrogenases in vivo could be modulated by changes in the intramitochondrial concentrations of Ca2+ or Mg2+. Using a purified alpha-ketoglutarate dehydrogenase from pig hearts, the effect of Ca2+ and/or Mg2+ on the enzyme activity was investigated. Either Ca2+ or Mg2+ increased enzyme activity, and the effects were additive if the concentrations of free divalent cations were below 0.1 and 1 mM for Ca2+ and Mg2+, respectively. In the presence of 1 mM alpha-ketoglutarate and other cofactors, the KM for Mg2+ was 25 microM and less than 1 microM for Ca2+. The KM for alpha-ketoglutarate was a function of the divalent cation(s) present: 4 +/- 1.1 mM in the absence of Ca2+, with or without Mg2+; 2.2 mM in the presence of 1.8 microM Ca2+ alone; and 0.3 mM in the presence of both Ca2+ and Mg2+. Mg2+ increased KGDHC activity only in the presence of thiamine pyrophosphate (TPP) indicating that KGDHC requires both TPP and Mg2+ for enzyme's maximal activity. The affinity of KGDHC for NAD+ is significantly changed by either Mg2+ or Ca2+. The conclusions are that changes in both Ca2+ and Mg2+, in concentrations possibly occurring within mitochondria, could control KGDHC activity and that thiamine pyrophosphate is required for maximal enzyme activity.

  13. Differential Role of Glutamate Dehydrogenase in Nitrogen Metabolism of Maize Tissues 1

    PubMed Central

    Loyola-Vargas, Victor Manuel; de Jimenez, Estela Sanchez

    1984-01-01

    Both calli and plantlets of maize (Zea mays L. var Tuxpeño 1) were exposed to specific nitrogen sources, and the aminative (NADH) and deaminative (NAD+) glutamate dehydrogenase activities were measured at various periods of time in homogenates of calli, roots, and leaves. A differential effect of the nitrogen sources on the tissues tested was observed. In callus tissue, glutamate, ammonium, and urea inhibited glutamate dehydrogenase (GDH) activity. The amination and deamination reactions also showed different ratios of activity under different nitrogen sources. In roots, ammonium and glutamine produced an increase in GDH-NADH activity whereas the same metabolites were inhibitory of this activity in leaves. These data suggest the presence of isoenzymes or conformers of GDH, specific for each tissue, whose activities vary depending on the nutritional requirements of the tissue and the state of differentiation. PMID:16663876

  14. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization

    PubMed Central

    Kim, Tae-Su; Patel, Sanjay K. S.; Selvaraj, Chandrabose; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul

    2016-01-01

    A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s−1 toward L-sorbitol, respectively. The enzyme exhibited high preference for NADP+ (vs. only 2.5% relative activity with NAD+). GoSLDH sequencing, structure analyses, and biochemical studies, suggested that it belongs to the NADP+-dependent polyol-specific long-chain sorbitol dehydrogenase family. GoSLDH is the first fully characterized SLDH to date, and it is distinguished from other L-sorbose-producing enzymes by its high activity and substrate specificity. Isothermal titration calorimetry showed that the protein binds more strongly to D-sorbitol than other L-sorbose-producing enzymes, and substrate docking analysis confirmed a higher turnover rate. The high oxidation potential of GoSLDH for D-sorbitol was confirmed by cyclovoltametric analysis. Further, stability of GoSLDH significantly improved (up to 13.6-fold) after cross-linking of immobilized enzyme on silica nanoparticles and retained 62.8% residual activity after 10 cycles of reuse. Therefore, immobilized GoSLDH may be useful for L-sorbose production from D-sorbitol. PMID:27633501

  15. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization.

    PubMed

    Kim, Tae-Su; Patel, Sanjay K S; Selvaraj, Chandrabose; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul

    2016-09-16

    A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s(-1) toward L-sorbitol, respectively. The enzyme exhibited high preference for NADP(+) (vs. only 2.5% relative activity with NAD(+)). GoSLDH sequencing, structure analyses, and biochemical studies, suggested that it belongs to the NADP(+)-dependent polyol-specific long-chain sorbitol dehydrogenase family. GoSLDH is the first fully characterized SLDH to date, and it is distinguished from other L-sorbose-producing enzymes by its high activity and substrate specificity. Isothermal titration calorimetry showed that the protein binds more strongly to D-sorbitol than other L-sorbose-producing enzymes, and substrate docking analysis confirmed a higher turnover rate. The high oxidation potential of GoSLDH for D-sorbitol was confirmed by cyclovoltametric analysis. Further, stability of GoSLDH significantly improved (up to 13.6-fold) after cross-linking of immobilized enzyme on silica nanoparticles and retained 62.8% residual activity after 10 cycles of reuse. Therefore, immobilized GoSLDH may be useful for L-sorbose production from D-sorbitol.

  16. The E1 beta-subunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin.

    PubMed

    Vastano, Valeria; Salzillo, Marzia; Siciliano, Rosa A; Muscariello, Lidia; Sacco, Margherita; Marasco, Rosangela

    2014-01-01

    Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile. Copyright © 2013. Published by Elsevier GmbH.

  17. Anti-obesity effects of hispidin and Alpinia zerumbet bioactives in 3T3-L1 adipocytes.

    PubMed

    Tu, Pham Thi Be; Tawata, Shinkichi

    2014-10-15

    Obesity and its related disorders have become leading metabolic diseases. In the present study, we used 3T3-L1 adipocytes to investigate the anti-obesity activity of hispidin and two related compounds that were isolated from Alpinia zerumbet (alpinia) rhizomes. The results showed that hispidin, dihydro-5,6-dehydrokawain (DDK), and 5,6-dehydrokawain (DK) have promising anti-obesity properties. In particular, all three compounds significantly increased intracellular cyclic adenosine monophosphate (cAMP) concentrations by 81.2% ± 0.06%, 67.0% ± 1.62%, and 56.9% ± 0.19%, respectively. Hispidin also stimulated glycerol release by 276.4% ± 0.8% and inhibited lipid accumulation by 47.8% ± 0.16%. Hispidin and DDK decreased intracellular triglyceride content by 79.5% ± 1.37% and 70.2% ± 1.4%, respectively, and all three compounds inhibited glycerol-3-phosphate dehydrogenase (GPDH) and pancreatic lipase, with hispidin and DDK being the most potent inhibitors. Finally, none of the three compounds reduced 3T3-L1 adipocyte viability. These results highlight the potential for developing hispidin and its derivatives as anti-obesity compounds.

  18. SIRT3 and SIRT5 Regulate the Enzyme Activity and Cardiolipin Binding of Very Long-Chain Acyl-CoA Dehydrogenase

    PubMed Central

    Zhang, Yuxun; Bharathi, Sivakama S.; Rardin, Matthew J.; Uppala, Radha; Verdin, Eric; Gibson, Bradford W.; Goetzman, Eric S.

    2015-01-01

    SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane. PMID:25811481

  19. [Effects of Light Near-Infrared Radiation on Rats Assessed by Succinate Dehydrogenase Activity in Lymphocytes on Blood Smears].

    PubMed

    Khunderyakova, N V; Zakharchenko, A V; Zakharchenko, M V; Muller, H; Fedotcheva, I; Kondrashova, M N

    2015-01-01

    Biological effects of light near infrared radiation (850 nm), with modulation acoustic frequency of 101 Hz, was studied. The study was conducted on rats, the effect was recorded by succinate dehydrogenase activity in lymphocytes on the blood smear after administration of the activating dose of adrenaline, which simulates the state of the organism in the early stages of the pathogenic effects (stress). A pronounced regulating effect of infrared radiation on the activity of succinate dehydrogenase in animals activated by adrenaline was shown. Infrared radiation has a normalizing effect reducing the degree of inhibition or activation of the enzyme induced by adrenaline and had no effect on the control animals. Thus, by modulating the activity of succinate dehydrogenase infrared radiation regulates energy production in the mitochondria supported by the most powerful oxidation substrate--succinic acid, which is especially pronounced under stress.

  20. Physiological consequences of starvation in Pseudomonas putida: degradation of intracellular protein and loss of activity of the inducible enzymes of L-arginine catabolism.

    PubMed

    Fan, C L; Rodwell, V W

    1975-12-01

    We investigated the degradation of radioisotopically labeled intracellular protein in starved, intact cells of Pseudomonas putida P2 (ATCC 25571) and the regulation of this process. Intracellular protein isotopically labeled with L-[4,5-3H]leucine during log-phase growth at 30 C is degraded at rates of 1 to 2%/h in log-phase cells and 7 to 9%/h in starved cells. Rifampin, chloramphenicol, and tosyllysine chloromethylketone lower the rate of protein degradation by starved cells. Addition to starved cells of a nutrient upon which the culture is induced for growth rapidly lowers the rate of protein degradation from 7 to 9%/h to less than 1.5%/h. A nutrient that is oxidized but that cannot immediately support growth also lowers the rate of starvation-induced protein degradation. Proteolytic activity of cell extracts requires a divalent metal ion and may be inhibited up to 60% by tosyllysine chloromethylketone or p-toluenesulfonyl fluoride. Rifampin and chloramphenicol have no effect. In contrast to intact cells, extracts of growing or starving cells degrade protein at equivalent rates. We also investigated the stabilities of the inducible transport system and of four inducible intracellular enzymes of L-arginine catabolism. These include: the membrane-associated, L-arginine-specific transport system; L-arginine oxidase (oxidase); alpha-ketoarginine decarboxylase (decarboxylase); gamma-guanidinobutyraldehyde dehydrogenase ( dehydrogenase); and gamma-guanidinobutyrate amidinohydrolase (hydrolase). In starved cells, the rates of loss of activities were: transport and dehydrogenase activities, stable; oxidase and decarboxylase activities, 20 to 30%/h; hydrolase activity, 5 to 8%/h. Chloramphenicol decreases the rate of loss of oxidase, decarboxylase, and hydrolase activity, whereas p-toluenesulfonyl fluoride lowers the rate of loss of decarboxylase but not of oxidase or hydrolase activity. Addition to starved cells of a nutrient for which they are already induced for

  1. Clustered Genes Encoding 2-Keto-l-Gulonate Reductase and l-Idonate 5-Dehydrogenase in the Novel Fungal d-Glucuronic Acid Pathway

    PubMed Central

    Kuivanen, Joosu; Arvas, Mikko; Richard, Peter

    2017-01-01

    D-Glucuronic acid is a biomass component that occurs in plant cell wall polysaccharides and is catabolized by saprotrophic microorganisms including fungi. A pathway for D-glucuronic acid catabolism in fungal microorganisms is only partly known. In the filamentous fungus Aspergillus niger, the enzymes that are known to be part of the pathway are the NADPH requiring D-glucuronic acid reductase forming L-gulonate and the NADH requiring 2-keto-L-gulonate reductase that forms L-idonate. With the aid of RNA sequencing we identified two more enzymes of the pathway. The first is a NADPH requiring 2-keto-L-gulonate reductase that forms L-idonate, GluD. The second is a NAD+ requiring L-idonate 5-dehydrogenase forming 5-keto-gluconate, GluE. The genes coding for these two enzymes are clustered and share the same bidirectional promoter. The GluD is an enzyme with a strict requirement for NADP+/NADPH as cofactors. The kcat for 2-keto-L-gulonate and L-idonate is 21.4 and 1.1 s-1, and the Km 25.3 and 12.6 mM, respectively, when using the purified protein. In contrast, the GluE has a strict requirement for NAD+/NADH. The kcat for L-idonate and 5-keto-D-gluconate is 5.5 and 7.2 s-1, and the Km 30.9 and 8.4 mM, respectively. These values also refer to the purified protein. The gluD deletion resulted in accumulation of 2-keto-L-gulonate in the liquid cultivation while the gluE deletion resulted in reduced growth and cessation of the D-glucuronic acid catabolism. PMID:28261181

  2. Prospects for robust biocatalysis: engineering of novel specificity in a halophilic amino acid dehydrogenase.

    PubMed

    Munawar, Nayla; Engel, Paul C

    2013-01-01

    Heat- and solvent-tolerant enzymes from halophiles, potentially important industrially, offer a robust framework for protein engineering, but few solved halophilic structures exist to guide this. Homology modelling has guided mutations in glutamate dehydrogenase (GDH) from Halobacterium salinarum to emulate conversion of a mesophilic GDH to a methionine dehydrogenase. Replacement of K89, A163 and S367 by leucine, glycine and alanine converted halophilic GDH into a dehydrogenase accepting L-methionine, L-norleucine and L-norvaline as substrates. Over-expression in the halophilic expression host Haloferax volcanii and three-step purification gave ~98 % pure protein exhibiting maximum activity at pH 10. This enzyme also showed enhanced thermostability and organic solvent tolerance even at 70 °C, offering a biocatalyst resistant to harsh industrial environments. To our knowledge, this is the first reported amino acid specificity change engineered in a halophilic enzyme, encouraging use of mesophilic models to guide engineering of novel halophilic biocatalysts for industrial application. Calibrated gel filtration experiments show that both the mutant and the wild-type enzyme are stable hexamers.

  3. Effect of feeding and of DDT on the activity of hepatic glucose 6- phosphate dehydrogenase in two salmonids

    USGS Publications Warehouse

    Buhler, Donald R.; Benville, P.

    1969-01-01

    The specific activity of liver glucose 6-phosphate dehydrogenase in yearling rainbow trout remained unchanged when the fish were starved for periods as long as 8 weeks and when starved animals were fed diets of various compositions. Injection of insulin concurrently with refeeding also failed to alter the specific activity of the enzyme in trout. The absence of a dietary or insulin influence on the teleost enzyme system is to be contrasted with studies in mammals in which the activity of hepatic glucose 6-P dehydrogenase was markedly stimulated after refeeding starved animals or injection of insulin.Ingestion of the pesticide DDT by juvenile coho salmon or adult rainbow trout also had no effect on the specific activity of liver glucose 6-P dehydrogenase and DDT failed to inhibit the rainbow trout enzyme in vitro. These results also differ considerably from those found in higher animals.These results suggest that the glucose 6-P dehydrogenase enzyme in teleosts may be under a different type of regulatory control from that found in mammals.

  4. Efficient androst-1,4-diene-3,17-dione production by co-expressing 3-ketosteroid-Δ1 -dehydrogenase and catalase in Bacillus subtilis.

    PubMed

    Shao, M; Sha, Z; Zhang, X; Rao, Z; Xu, M; Yang, T; Xu, Z; Yang, S

    2017-01-01

    3-ketosteroid-Δ 1 -dehydrogenase (KSDD), a flavin adenine dinucleotide (FAD)-dependent enzyme involved in sterol metabolism, specifically catalyses the conversion of androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). However, the low KSDD activity and the toxic effects of hydrogen peroxide (H 2 O 2 ) generated during the biotransformation of AD to ADD with FAD regeneration hinder its application on AD conversion. The aim of this work was to improve KSDD activity and eliminate the toxic effects of the generated H 2 O 2 to enhance ADD production. The ksdd gene obtained from Mycobacterium neoaurum JC-12 was codon-optimized to increase its expression level in Bacillus subtilis, and the KSDD activity reached 12·3 U mg -1 , which was sevenfold of that of codon-unoptimized gene. To improve AD conversion, catalase was co-expressed with KSDD in B. subtilis 168/pMA5-ksdd opt -katA to eliminate the toxic effects of H 2 O 2 generated during AD conversion. Finally, under optimized bioconversion conditions, fed-batch strategy was carried out and the ADD yield improved to 8·76 g l -1 . This work demonstrates the potential to improve enzyme activity by codon-optimization and eliminate the toxic effects of H 2 O 2 by co-expressing catalase. This study showed the highest ADD productivity ever reported and provides a promising strain for efficient ADD production in the pharmaceutical industry. © 2016 The Society for Applied Microbiology.

  5. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia.

    PubMed

    Santiago, Rocío; Alarcón, Borja; de Armas, Roberto; Vicente, Carlos; Legaz, María Estrella

    2012-06-01

    This study describes a method for determining cinnamyl alcohol dehydrogenase activity in sugarcane stems using reverse phase (RP) high-performance liquid chromatography to elucidate their possible lignin origin. Activity is assayed using the reverse mode, the oxidation of hydroxycinnamyl alcohols into hydroxycinnamyl aldehydes. Appearance of the reaction products, coniferaldehyde and sinapaldehyde is determined by measuring absorbance at 340 and 345 nm, respectively. Disappearance of substrates, coniferyl alcohol and sinapyl alcohol is measured at 263 and 273 nm, respectively. Isocratic elution with acetonitrile:acetic acid through an RP Mediterranea sea C18 column is performed. As case examples, we have examined two different cultivars of sugarcane; My 5514 is resistant to smut, whereas B 42231 is susceptible to the pathogen. Inoculation of sugarcane stems elicits lignification and produces significant increases of coniferyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD). Production of lignin increases about 29% in the resistant cultivar and only 13% in the susceptible cultivar after inoculation compared to uninoculated plants. Our results show that the resistance of My 5514 to smut is likely derived, at least in part, to a marked increase of lignin concentration by the activation of CAD and SAD. Copyright © Physiologia Plantarum 2012.

  6. Apigenin inhibits rat neurosteroidogenic 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase.

    PubMed

    Wu, Ying; Li, Lili; Zhou, Songyi; Shen, Qiuxia; Lin, Han; Zhu, Qiqi; Sun, Jianliang; Ge, Ren-Shan

    2017-11-01

    Apigenin, a common flavonoid, has extensive pharmacological activities. Apigenin inhibits some steroid biosynthetic enzymes, suggesting that it may block neurosteroid synthesis. Neurosteroids play many important roles in neurological functions. The objective of the present study is to investigate effects of apigenin on neurosteroidogenic enzymes, 5α-reductase 1 (SRD5A1), 3α-hydroxysteroid dehydrogenase (AKR1C9), and retinol dehydrogenase 2 (RoDH2), in rats. SRD5A1, AKR1C9, and RoDH2 were expressed in COS-1 cells and the effects of apigenin on these enzymes and modes of action were explored using radiolabeled substrates and thin-layer chromatographic separation coupled with radiometry. Apigenin inhibited SRD5A1, AKR1C9, and RoDH2 activities with IC 50 values of 100, 0.891 ± 0.065, and >100 μM, respectively. Apigenin competitively inhibited rat AKR1C9 when its substrate 5α-dihydrotestosterone was used and uncompetitively inhibited the enzyme when cofactor NADPH was used. In conclusion, apigenin is a potent inhibitor of rat AKR1C9, thereby controlling the rate of neurosteroid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...

  8. The COA360: a tool for assessing the cultural competency of healthcare organizations.

    PubMed

    LaVeist, Thomas A; Relosa, Rachel; Sawaya, Nadia

    2008-01-01

    The U.S. Census Bureau projects that by 2050, non-Hispanic whites will be in the numerical minority. This rapid diversification requires healthcare organizations to pay closer attention to cross-cultural issues if they are to meet the healthcare needs of the nation and continue to maintain a high standard of care. Although scorecards and benchmarking are widely used to gauge healthcare organizations' performance in various areas, these tools have been underused in relation to cultural preparedness or initiatives. The likely reason for this is the lack of a validated tool specifically designed to examine cultural competency. Existing validated cultural competency instruments evaluate individuals, not organizations. In this article, we discuss a study to validate the Cultural Competency Organizational Assessment--360 or the COA360, an instrument designed to appraise a healthcare organization's cultural competence. The Office of Minority Health and the Joint Commission have each developed standards for measuring the cultural competency of organizations. The COA360 is designed to assess adherence to both of these sets of standards. For this validation study, we enlisted a panel of national experts. The panel rated each dimension of the COA360, and the combination of items for each of the scale's 14 dimensions was rated above 4.13 (on 5-point scale). Our conclusion points to the validity of the COA360. As such, it is a valuable tool not only for assessing a healthcare organization's cultural readiness but also for benchmarking its progress in addressing cultural and diversity issues.

  9. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration.

    PubMed

    Butterfield, D Allan; Hardas, Sarita S; Lange, Miranda L Bader

    2010-01-01

    Recently, the oxidoreductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has become a subject of interest as more and more studies reveal a surfeit of diverse GAPDH functions, extending beyond traditional aerobic metabolism of glucose. As a result of multiple isoforms and cellular locales, GAPDH is able to come in contact with a variety of small molecules, proteins, membranes, etc., that play important roles in normal and pathologic cell function. Specifically, GAPDH has been shown to interact with neurodegenerative disease-associated proteins, including the amyloid-beta protein precursor (AbetaPP). Studies from our laboratory have shown significant inhibition of GAPDH dehydrogenase activity in Alzheimer's disease (AD) brain due to oxidative modification. Although oxidative stress and damage is a common phenomenon in the AD brain, it would seem that inhibition of glycolytic enzyme activity is merely one avenue in which AD pathology affects neuronal cell development and survival, as oxidative modification can also impart a toxic gain-of-function to many proteins, including GAPDH. In this review, we examine the many functions of GAPDH with respect to AD brain; in particular, the apparent role(s) of GAPDH in AD-related apoptotic cell death is emphasized.

  10. Alterations in the activities of three dehydrogenases in the digestive system of two teleost fishes exposed to mercuric chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, P.K.; Sastry, K.V.

    1981-02-01

    The effect of the 50% lethal concentration and of a sublethal concentration (0.3 mg/liter) of mercuric chloride on the activities of succinic, lactic, and pyruvic dehydrogenases in the digestive system of two teleost fishes, Ophiocephalus punctatus and Heteropneustes fossilis, respectively, has been studied at intervals of 96 h and 7, 15, and 30 days. The results show that dehydrogenases are not affected much by short-term exposure. However, the activities of all three enzymes are inhibited by chronic exposure to mercury and maximum inhibition is observed after 15 days of exposure. Among the different parts of the digestive system, the livermore » is the most affected organ, and of the two fishes, Heteropneustes is more sensitive to mercury treatment.« less

  11. Biological evaluation and 3D-QSAR studies of curcumin analogues as aldehyde dehydrogenase 1 inhibitors.

    PubMed

    Wang, Hui; Du, Zhiyun; Zhang, Changyuan; Tang, Zhikai; He, Yan; Zhang, Qiuyan; Zhao, Jun; Zheng, Xi

    2014-05-16

    Aldehyde dehydrogenase 1 (ALDH1) is reported as a biomarker for identifying some cancer stem cells, and down-regulation or inhibition of the enzyme can be effective in anti-drug resistance and a potent therapeutic for some tumours. In this paper, the inhibitory activity, mechanism mode, molecular docking and 3D-QSAR (three-dimensional quantitative structure activity relationship) of curcumin analogues (CAs) against ALDH1 were studied. Results demonstrated that curcumin and CAs possessed potent inhibitory activity against ALDH1, and the CAs compound with ortho di-hydroxyl groups showed the most potent inhibitory activity. This study indicates that CAs may represent a new class of ALDH1 inhibitor.

  12. [Genetic control of the isocitrate dehydrogenase and shikimate dehydrogenase isoenzyme systems in Sesame (Sesamun indicum L.)].

    PubMed

    Díaz, Antonio J; Layrisse, Alfredo J

    2002-01-01

    Taking into consideration that the ideal manipulation of isozymic markers needs knowledge of their genetic control, the aim of this study was to establish the inheritance and linkage degree of loci that control the expression of two sesame isozyme systems: isocitrate dehydrogenase (IDH) and shikimate dehydrogenase (SKD). The F2 electrophoretic behaviour of IDH and SKD from cultivars Turen x Arawaca cross was evaluated. The results suggest that IDH is controlled by two loci, Idh1 and Idh2 meanwhile SKD by only one, Skd1. The loci Idh1 and Skd1 showed three distinguishable patterns, corresponding to the homocygote genotypes and the heterocygote one, adjusted to a one-character common mendelian segregation 1:2:1. Cosegregation between Idh1 and Skd1 was independent.

  13. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  14. Cyanidin-3-rutinoside increases glucose uptake by activating the PI3K/Akt pathway in 3T3-L1 adipocytes.

    PubMed

    Choi, Kyung Ha; Lee, Hyun Ah; Park, Mi Hwa; Han, Ji-Sook

    2017-09-01

    In this study, the effect of cyanidin-3-rutinoside (C3R) on glucose uptake by 3T3-L1 adipocytes was studied. C3R significantly increased glucose uptake, which was associated with enhanced plasma membrane glucose transporter type 4 (PM-GLUT4) expression in 3T3-L1 adipocytes. The potentiating effect of C3R on glucose uptake and PM-GLUT4 expression was related to enhanced phosphorylation of insulin receptor substrate 1 (IRS-1) and Akt, as well as augmented activation of phosphatidylinositol-3-kinase (PI3K) in the insulin signaling pathway. C3R induced glucose uptake was inhibited only by the PI3K inhibitor, but not by an AMPK inhibitor in 3T3-L1 adipocytes. Therefore, C3R likely up-regulates glucose uptake and PM-GLUT4 expression in 3T3-L1 adipocytes by activating the PI3K/Akt pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Magnetic Activity Dependence of the Electric Drift Below L = 3

    NASA Astrophysics Data System (ADS)

    Lejosne, Solène; Mozer, F. S.

    2018-05-01

    More than 2 years of magnetic and electric field measurements by the Van Allen Probes are analyzed with the objective of determining the average effects of magnetic activity on the electric drift below L = 3. The study finds that an increase in magnetospheric convection leads to a decrease in the magnitude of the azimuthal component of the electric drift, especially in the nightside. The amplitude of the slowdown is a function of L, magnetic local time, and Kp, in a pattern consistent with the storm time dynamics of the ionosphere and thermosphere. To a lesser extent, magnetic activity also alters the average radial component of the electric drift below L = 3. A global picture for the average variations of the electric drift with Kp is provided as a function of L and magnetic local time. It is the first time that the signature of the ionospheric disturbance dynamo is observed in near-equatorial electric drift measurements.

  16. Regulation of chlorogenic acid biosynthesis by hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase in Lonicera japonica.

    PubMed

    Zhang, Jingru; Wu, Minlin; Li, Weidong; Bai, Genben

    2017-12-01

    For many centuries, Lonicera japonica has been used as an effective herb for the treatment of inflammation and swelling because of the presence of bioactive components such as chlorogenic acid (CGA). To clarify the relationship between L. japonica hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) gene expression and CGA content, an HQT eukaryotic expression system was constructed using Gateway cloning. L. japonica callus transformed with HQT was obtained using Agrobacterium tumefaciens-mediated transformation. We found a positive correlation between CGA content, determined by High-Performance Liquid Chromatography (HPLC), and the expression of HQT, analyzed by semi-quantitative RT-PCR. This study demonstrates that the HQT gene positively regulates CGA synthesis and lays the foundation for further study into enhancing efficacious components of medicinal plants. Copyright © 2017. Published by Elsevier Masson SAS.

  17. Enzyme-dependent fluorescence recovery of NADH after photobleaching to assess dehydrogenase activity of isolated perfused hearts

    NASA Astrophysics Data System (ADS)

    Moreno, Angel; Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Kay, Matthew W.

    2017-03-01

    Reduction of NAD+ by dehydrogenase enzymes to form NADH is a key component of cellular metabolism. In cellular preparations and isolated mitochondria suspensions, enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) of NADH has been shown to be an effective approach for measuring the rate of NADH production to assess dehydrogenase enzyme activity. Our objective was to demonstrate how dehydrogenase activity could be assessed within the myocardium of perfused hearts using NADH ED-FRAP. This was accomplished using a combination of high intensity UV pulses to photobleach epicardial NADH. Replenishment of epicardial NADH fluorescence was then imaged using low intensity UV illumination. NADH ED-FRAP parameters were optimized to deliver 23.8 mJ of photobleaching light energy at a pulse width of 6 msec and a duty cycle of 50%. These parameters provided repeatable measurements of NADH production rate during multiple metabolic perturbations, including changes in perfusate temperature, electromechanical uncoupling, and acute ischemia/reperfusion injury. NADH production rate was significantly higher in every perturbation where the energy demand was either higher or uncompromised. We also found that NADH production rate remained significantly impaired after 10 min of reperfusion after global ischemia. Overall, our results indicate that myocardial NADH ED-FRAP is a useful optical non-destructive approach for assessing dehydrogenase activity.

  18. Highly efficient enzymatic synthesis of tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate with a mutant alcohol dehydrogenase of Lactobacillus kefir.

    PubMed

    He, Xiu-Juan; Chen, Shao-Yun; Wu, Jian-Ping; Yang, Li-Rong; Xu, Gang

    2015-11-01

    tert-Butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) is a valuable chiral synthon, which is used for the synthesis of the cholesterol-lowering drugs atorvastatin and rosuvastatin. To date, only the alcohol dehydrogenases from Lactobacillus brevis (LbADH) and Lactobacillus kefir (LkADH) have demonstrated catalytic activity toward the asymmetric reduction of tert-butyl 6-chloro-3,5-dioxohexanoate (CDOH) to (S)-CHOH. Herein, a tetrad mutant of LkADH (LkTADH), A94T/F147L/L199H/A202L, was screened to be more efficient in this bioreduction process, exhibiting a 3.7- and 42-fold improvement in specific activity toward CDOH (1.27 U/mg) over LbADH (0.34 U/mg) and wild-type LkADH (0.03 U/mg), respectively. The molecular basis for the improved catalytic activity of LkTADH toward CDOH was investigated using homology modeling and docking analysis. Two major issues had a significant impact on the biocatalytic efficiency of this process, including (i) the poor aqueous stability of the substrate and (ii) partial substrate inhibition. A fed-batch strategy was successfully developed to address these issues and maintain a suitably low substrate concentration throughout the entire process. Several other parameters were also optimized, including the pH, temperature, NADP(+) concentration and cell loading. A final CDOH concentration of 427 mM (100 g/L) gave (S)-CHOH in 94 % yield and 99.5 % e.e. after a reaction time of 38 h with whole cells expressing LkTADH. The space-time yield and turnover number of NADP(+) in this process were 10.6 mmol/L/h and 16,060 mol/mol, respectively, which were the highest values ever reported. This new approach therefore represents a promising alternative for the efficient synthesis of (S)-CHOH.

  19. L-rhamnose induces browning in 3T3-L1 white adipocytes and activates HIB1B brown adipocytes.

    PubMed

    Choi, Minji; Mukherjee, Sulagna; Kang, Nam Hyeon; Barkat, Jameel Lone; Parray, Hilal Ahmad; Yun, Jong Won

    2018-06-01

    Induction of the brown adipocyte-like phenotype in white adipocytes (browning) is considered as a novel strategy to fight obesity due to the ability of brown adipocytes to increase energy expenditure. Here, we report that L-rhamnose induced browning by elevating expression levels of beige-specific marker genes, including Cd137, Cited1, Tbx1, Prdm16, Tmem26, and Ucp1, in 3T3-L1 adipocytes. Moreover, L-rhamnose markedly elevated expression levels of proteins involved in thermogenesis both in 3T3-L1 white and HIB1B brown adipocytes. L-rhamnose treatment in 3T3-L1 adipocytes also significantly elevated protein levels of p-HSL, p-AMPK, ACOX, and CPT1 as well as reduced levels of ACC, FAS, C/EBPα, and PPARγ, suggesting its possible role in enhancement of lipolysis and lipid catabolism as well as reduced adipogenesis and lipogenesis, respectively. The quick technique of efficient molecular docking provided insight into the strong binding of L-rhamnose to the fat-digesting glycine residue of β 3 -adrenergic receptor (AR), indicating strong involvement of L-rhamnose in fat metabolism. Further examination of the molecular mechanism of L-rhamnose revealed that it induced browning of 3T3-L1 adipocytes via coordination of multiple signaling pathways through β 3 -AR, SIRT1, PKA, and p-38. To the best of our knowledge, this is the first study to demonstrate that L-rhamnose plays multiple modulatory roles in the induction of white fat browning, activation of brown adipocytes, as well as promotion of lipid metabolism, thereby demonstrating its therapeutic potential for treatment of obesity. © 2018 IUBMB Life, 70(6):563-573, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  20. High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots.

    PubMed

    dos Santos, W D; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, O

    2006-01-01

    This study proposes a simple, quick and reliable method for determining the cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) activity in soybean (Glycine max L. Merr.) roots using reversed-phase high performance liquid chromatography (RP-HPLC). The method includes a single extraction of the tissue and conduction of the enzymatic reaction at 30 degrees C with cinnamaldehydes (coniferyl or sinapyl), substrates of CAD. Disappearance of the substrates in the reaction mixture is monitored at 340 nm (for coniferaldehyde) or 345 nm (for sinapaldehyde) by isocratic elution with methanol/acetic acid through a GLC-ODS (M) column. This HPLC technique furnishes a rapid and reliable measure of cinnamaldehyde substrates, and may be used as an alternative tool to analyze CAD activity in enzyme preparation without previous purification.

  1. Genetics Home Reference: long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency Screening, Technology, and Research in Genetics Virginia Department of Health (PDF) Patient Support and Advocacy Resources (4 links) Children Living with Inherited Metabolic Diseases (CLIMB) Children's Mitochondrial ...

  2. Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, AB; Adams, MWW; Kelly, RM

    2014-03-25

    The extremely thermoacidophilic archaeon Metallosphaera sedula (optimum growth temperature, 73 degrees C, pH 2.0) grows chemolithoautotrophically on metal sulfides or molecular hydrogen by employing the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) carbon fixation cycle. This cycle adds two CO2 molecules to acetyl coenzyme A (acetyl-CoA) to generate 4HB, which is then rearranged and cleaved to form two acetyl-CoA molecules. Previous metabolic flux analysis showed that two-thirds of central carbon precursor molecules are derived from succinyl-CoA, which is oxidized to malate and oxaloacetate. The remaining one-third is apparently derived from acetyl-CoA. As such, the steps beyond succinyl-CoA are essential for completing the carbon fixation cyclemore » and for anapleurosis of acetyl-CoA. Here, the final four enzymes of the 3HP/4HB cycle, 4-hydroxybutyrate-CoA ligase (AMP forming) (Msed_0406), 4-hydroxybutyryl-CoA dehydratase (Msed_1321), crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (Msed_0399), and acetoacetyl-CoA beta-ketothiolase (Msed_0656), were produced recombinantly in Escherichia coli, combined in vitro, and shown to convert 4HB to acetyl-CoA. Metabolic pathways connecting CO2 fixation and central metabolism were examined using a gas-intensive bioreactor system in which M. sedula was grown under autotrophic (CO2-limited) and heterotrophic conditions. Transcriptomic analysis revealed the importance of the 3HP/4HB pathway in supplying acetyl-CoA to anabolic pathways generating intermediates in M. sedula metabolism. The results indicated that flux between the succinate and acetyl-CoA branches in the 3HP/4HB pathway is governed by 4-hydroxybutyrate-CoA ligase, possibly regulated posttranslationally by the protein acetyltransferase (Pat)/Sir2-dependent system. Taken together, this work confirms the final four steps of the 3HP/4HB pathway, thereby providing the framework for examining connections between CO2 fixation and central metabolism in M

  3. Glucocorticoids enhance activation of the human type II 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase gene.

    PubMed

    Feltus, F Alex; Cote, Stephanie; Simard, Jacques; Gingras, Sebastien; Kovacs, William J; Nicholson, Wendell E; Clark, Barbara J; Melner, Michael H

    2002-09-01

    Glucocorticoids indirectly alter adrenocortical steroid output through the inhibition of ACTH secretion by the anterior pituitary. However, previous studies suggest that glucocorticoids can directly affect adrenocortical steroid production. Therefore, we have investigated the ability of glucocorticoids to affect transcription of adrenocortical steroid biosynthetic enzymes. One potential target of glucocorticoid action in the adrenal is an enzyme critical for adrenocortical steroid production: 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase (3beta-HSD). Treatment of the adrenocortical cell line (H295R) with the glucocorticoid agonist dexamethasone (DEX) increased cortisol production and 3beta-HSD mRNA levels alone or in conjunction with phorbol ester. This increase in 3beta-HSD mRNA was paralleled by increases in Steroidogenic Acute Regulatory Protein (StAR) mRNA levels. The human type II 3beta-HSD promoter lacks a consensus palindromic glucocorticoid response element (GRE) but does contain a Stat5 response element (Stat5RE) suggesting that glucocorticoids could affect type II 3beta-HSD transcription via interaction with Stat5. Transfection experiments show enhancement of human type II 3beta-HSD promoter activity by coexpression of the glucocorticoid receptor (GR) and Stat5A and treatment with 100nM dexamethasone. Furthermore, removal of the Stat5RE either by truncation of the 5' flanking sequence in the promoter or introduction of point mutations to the Stat5RE abolished the ability of DEX to enhance 3beta-HSD promoter activity. These studies demonstrate the ability of glucocorticoids to directly enhance the expression of an adrenal steroidogenic enzyme gene albeit independent of a consensus palindromic glucocorticoid response element.

  4. Reconstitution of the Escherichia coli pyruvate dehydrogenase complex.

    PubMed Central

    Reed, L J; Pettit, F H; Eley, M H; Hamilton, L; Collins, J H; Oliver, R M

    1975-01-01

    The binding of pyruvate dehydrogenase and dihydrolipoyl dehydrogenase (flavoprotein) to dihydrolipoyl transacetylase, the core enzyme of the E. coli pyruvate dehydrogenase complex [EC 1.2.4.1:pyruvate:lipoate oxidoreductase (decaryboxylating and acceptor-acetylating)], has been studied using sedimentation equilibrium analysis and radioactive enzymes in conjunction with gel filtration chromatography. The results show that the transacetylase, which consists of 24 apparently identical polypeptide chains organized into a cube-like structure, has the potential to bind 24 pyruvate dehydrogenase dimers in the absence of flavoprotein and 24 flavoprotein dimers in the absence of pyruvate dehydrogenase. The results of reconstitution experiments, utilizing binding and activity measurements, indicate that the transacetylase can accommodate a total of only about 12 pyruvate dehydrogenase dimers and six flavoprotein dimers and that this stoichiometry, which is the same as that of the native pyruvate dehydrogenase complex, produces maximum activity. It appears that steric hindrance between the relatively bulky pyruvate dehydrogenase and flavoprotein molecules prevents the transacetylase from binding 24 molecules of each ligand. A structural model for the native and reconstituted pyruvate dehydrogenase complexes is proposed in which the 12 pyruvate dehydrogenase dimers are distributed symmetrically on the 12 edges of the transacetylase cube and the six flavoprotein dimers are distributed in the six faces of the cube. Images PMID:1103138

  5. Cytochemical Localization of Glycolate Dehydrogenase in Mitochondria of Chlamydomonas1

    PubMed Central

    Beezley, Belinda B.; Gruber, Peter J.; Frederick, Sue Ellen

    1976-01-01

    Mildly disrupted cells of Chlamydomonas reinhardi Dangeard were incubated in a reaction medium containing glycolate, ferricyanide, and cupric ions, and then processed for electron microscopy. As a result of the cytochemical treatment, an electron opaque product was deposited specifically in the outer compartment of mitochondria; other cellular components, including microbodies, did not accumulate stain. Incubation with d-lactate yielded similar results, while treatment with l-lactate produced only a weak reaction. Oxamate, which inhibits glycolate dehydrogenase activity in cell-free extracts, also inhibited the cytochemical reaction. These findings demonstrate in situ that glycolate dehydrogenase is localized in mitochondria, and thus corroborate similar conclusions reached on the basis of enzymic studies of isolated algal organelles. Images PMID:16659670

  6. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Tian; Wu, Dong; Ding, Wei

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCRmore » refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.« less

  7. Engineering 7β-Hydroxysteroid Dehydrogenase for Enhanced Ursodeoxycholic Acid Production by Multiobjective Directed Evolution.

    PubMed

    Zheng, Ming-Min; Chen, Ke-Cai; Wang, Ru-Feng; Li, Hao; Li, Chun-Xiu; Xu, Jian-He

    2017-02-15

    Ursodeoxycholic acid (UDCA) is the main active ingredient of natural bear bile powder with multiple pharmacological functions. 7β-Hydroxysteroid dehydrogenase (HSDH) is a key biocatalyst for the synthesis of UDCA. However, all the 7β-HSDHs reported commonly suffer from poor activity and thermostability, resulting in limited productivity of UDCA. In this study, a multiobjective directed evolution (MODE) strategy was proposed and applied to improve the activity, thermostability, and pH optimum of a 7β-HSDH. The best variant (V 3-1 ) showed a specific activity 5.5-fold higher than and a half-life 3-fold longer than those of the wild type. In addition, the pH optimum of the variant was shifted to a weakly alkaline value. In the cascade reaction, the productivity of UDCA with V 3-1 increased to 942 g L -1 day -1 , in contrast to 141 g L -1 day -1 with the wild type. Therefore, this study provides a useful strategy for improving the catalytic efficiency of a key enzyme that significantly facilitated the bioproduction of UDCA.

  8. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers.

    PubMed

    Jenie, S N Aisyiyah; Prieto-Simon, Beatriz; Voelcker, Nicolas H

    2015-12-15

    The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of stress on hepatic 11beta-hydroxysteroid dehydrogenase activity and its influence on carbohydrate metabolism.

    PubMed

    Altuna, María Eugenia; Lelli, Sandra Marcela; San Martín de Viale, Leonor C; Damasco, María Cristina

    2006-10-01

    Stress activates the synthesis and secretion of catecholamines and adrenal glucocorticoids, increasing their circulating levels. In vivo, hepatic 11beta-hydroxysteroid dehydrogenase 1 (HSD1) stimulates the shift of 11-dehydrocorticosterone to corticosterone, enhancing active glucocorticoids at tissue level. We studied the effect of 3 types of stress, 1 induced by bucogastric overload with 200 mmol/L HCl causing metabolic acidosis (HCl), the second induced by bucogastric overload with 0.45% NaCl (NaCl), and the third induced by simulated overload (cannula), on the kinetics of hepatic HSD1 of rats and their influence on the activity of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase, glycemia, and glycogen deposition. Compared with unstressed controls, all types of stress significantly increased HSD1 activity (146% cannula, 130% NaCl, and 253% HCl), phosphoenolpyruvate carboxykinase activity (51% cannula, 48% NaCl, and 86% HCl), and glycemia (29% cannula, 30% NaCl, and 41% HCl), but decreased hepatic glycogen (68% cannula, 68% NaCl, and 78% HCl). Owing to these results, we suggest the following events occur when stress is induced: an increase in hepatic HSD1 activity, augmented active glucocorticoid levels, increased gluconeogenesis, and glycemia. Also involved are the multiple events indirectly related to glucocorticoids, which lead to the depletion of hepatic glycogen deposits, thereby contributing to increased glycemia. This new approach shows that stress increments the activity of hepatic HSD1 and suggests that this enzyme could be involved in the development of the Metabolic Syndrome.

  10. Metabolic Mapping: Quantitative Enzyme Cytochemistry and Histochemistry to Determine the Activity of Dehydrogenases in Cells and Tissues.

    PubMed

    Molenaar, Remco J; Khurshed, Mohammed; Hira, Vashendriya V V; Van Noorden, Cornelis J F

    2018-05-26

    Altered cellular metabolism is a hallmark of many diseases, including cancer, cardiovascular diseases and infection. The metabolic motor units of cells are enzymes and their activity is heavily regulated at many levels, including the transcriptional, mRNA stability, translational, post-translational and functional level. This complex regulation means that conventional quantitative or imaging assays, such as quantitative mRNA experiments, Western Blots and immunohistochemistry, yield incomplete information regarding the ultimate activity of enzymes, their function and/or their subcellular localization. Quantitative enzyme cytochemistry and histochemistry (i.e., metabolic mapping) show in-depth information on in situ enzymatic activity and its kinetics, function and subcellular localization in an almost true-to-nature situation. We describe a protocol to detect the activity of dehydrogenases, which are enzymes that perform redox reactions to reduce cofactors such as NAD(P) + and FAD. Cells and tissue sections are incubated in a medium that is specific for the enzymatic activity of one dehydrogenase. Subsequently, the dehydrogenase that is the subject of investigation performs its enzymatic activity in its subcellular site. In a chemical reaction with the reaction medium, this ultimately generates blue-colored formazan at the site of the dehydrogenase's activity. The formazan's absorbance is therefore a direct measure of the dehydrogenase's activity and can be quantified using monochromatic light microscopy and image analysis. The quantitative aspect of this protocol enables researchers to draw statistical conclusions from these assays. Besides observational studies, this technique can be used for inhibition studies of specific enzymes. In this context, studies benefit from the true-to-nature advantages of metabolic mapping, giving in situ results that may be physiologically more relevant than in vitro enzyme inhibition studies. In all, metabolic mapping is an

  11. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boernke, W. E.; Millard, C. S.; Stevens, P. W.

    1995-09-10

    Malate dehydrogenase and lactate dehydrogenase are members of the structurally and functionally homologous family of 2-ketoacid dehydrogenases. Both enzymes display high specificity for their respective keto substrates, oxaloacetate and pyruvate. Closer analysis of their specificity, however, reveals that the specificity of malate dehydrogenase is much stricter and less malleable than that of lactate dehydrogenase. Site-specific mutagenesis of the two enzymes in an attempt to reverse their specificity has met with contrary results. Conversion of a specific active-site glutamine to arginine in lactate dehydrogenase from Bacillus stearothermophilus generated an enzyme that displayed activity toward oxaloacetate equal to that of the nativemore » enzyme toward pyruvate (H. M. Wilks et al. (1988) Science 242, 1541-1544). We have constructed a series of mutants in the mobile, active site loop of the Escherichia coli malate dehydrogenase that incorporate the complementary change, conversion of arginine 81 to glutamine, to evaluate the role of charge distribution and conformational flexibility within this loop in defining the substrate specificity of these enzymes. Mutants incorporating the change R81Q all had reversed specificity, displaying much higher activity toward pyruvate than to the natural substrate, oxaloacetate. In contrast to the mutated lactate dehydrogenase, these reversed-specificity mutants were much less active than the native enzyme. Secondary mutations within the loop of the E. coli enzyme (A80N, A80P, A80P/M85E/D86T) had either no or only moderately beneficial effects on the activity of the mutant enzyme toward pyruvate. The mutation A80P, which can be expected to reduce the overall flexibility of the loop, modestly improved activity toward pyruvate. The possible physiological relevance of the stringent specificity of malate dehydrogenase was investigated. In normal strains of E. coli, fermentative metabolism was not affected by expression of the

  12. CoCoa: a software tool for estimating the coefficient of coancestry from multilocus genotype data.

    PubMed

    Maenhout, Steven; De Baets, Bernard; Haesaert, Geert

    2009-10-15

    Phenotypic data collected in breeding programs and marker-trait association studies are often analyzed by means of linear mixed models. In these models, the covariance between the genetic background effects of all genotypes under study is modeled by means of pairwise coefficients of coancestry. Several marker-based coancestry estimation procedures allow to estimate this covariance matrix, but generally introduce a certain amount of bias when the examined genotypes are part of a breeding program. CoCoa implements the most commonly used marker-based coancestry estimation procedures and as such, allows to select the best fitting covariance structure for the phenotypic data at hand. This better model fit translates into an increased power and improved type I error control in association studies and an improved accuracy in phenotypic prediction studies. The presented software package also provides an implementation of the new Weighted Alikeness in State (WAIS) estimator for use in hybrid breeding programs. Besides several matrix manipulation tools, CoCoa implements two different bending heuristics, in case the inverse of an ill-conditioned coancestry matrix estimate is needed. The software package CoCoa is freely available at http://webs.hogent.be/cocoa. Source code, manual, binaries for 32 and 64-bit Linux systems and an installer for Microsoft Windows are provided. The core components of CoCoa are written in C++, while the graphical user interface is written in Java.

  13. Functional assignment of gene AAC16202.1 from Rhodobacter capsulatus SB1003: new insights into the bacterial SDR sorbitol dehydrogenases family.

    PubMed

    Sola-Carvajal, Agustín; García-García, María Inmaculada; Sánchez-Carrón, Guiomar; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro

    2012-11-01

    Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with over 60,000 non-redundant sequences in the database, many of which need a correct functional assignment. Among them, the gene AAC16202.1 (NCBI) from Rhodobacter capsulatus SB1003 has been assigned in Uniprot both as a sorbitol dehydrogenase (#D5AUY1) and, as an N-acetyl-d-mannosamine dehydrogenase (#O66112), both enzymes being of biotechnological interest. When the gene was overexpressed in Escherichia coli Rosetta (DE3)pLys, the purified enzyme was not active toward N-acetyl-d-mannosamine, whereas it was active toward d-sorbitol and d-fructose. However, the relative activities toward xylitol and l-iditol (0.45 and 6.9%, respectively) were low compared with that toward d-sorbitol. Thus, the enzyme could be considered sorbitol dehydrogenase (SDH) with very low activity toward xylitol, which could increase its biotechnological interest for determining sorbitol without the unspecific cross-determination of added xylitol in food and pharma compositions. The tetrameric enzyme (120 kDa) showed similar catalytic efficiency (2.2 × 10(3) M(-1) s(-1)) to other sorbitol dehydrogenases for d-sorbitol, with an optimum pH of 9.0 and an optimum temperature of 37 °C. The enzyme was also more thermostable than other reported SDH, ammonium sulfate being the best stabilizer in this respect, increasing the melting temperature (T(m)) up to 52.9 °C. The enzyme can also be considered as a new member of the Zn(2+) independent SDH family since no effect on activity was detected in the presence of divalent cations or chelating agents. Finally, its in silico analysis enabled the specific conserved sequence blocks that are the fingerprints of bacterial sorbitol dehydrogenases and mainly located at C-terminal of the protein, to be determined for the first time. This knowledge will facilitate future data curation of present databases and a better functional assignment of newly described

  14. CYTOKININ OXIDASE/DEHYDROGENASE3 Maintains Cytokinin Homeostasis during Root and Nodule Development in Lotus japonicus1[OPEN

    PubMed Central

    Heckmann, Anne B.; Kelly, Simon

    2016-01-01

    Cytokinins are required for symbiotic nodule development in legumes, and cytokinin signaling responses occur locally in nodule primordia and in developing nodules. Here, we show that the Lotus japonicus Ckx3 cytokinin oxidase/dehydrogenase gene is induced by Nod factor during the early phase of nodule initiation. At the cellular level, pCkx3::YFP reporter-gene studies revealed that the Ckx3 promoter is active during the first cortical cell divisions of the nodule primordium and in growing nodules. Cytokinin measurements in ckx3 mutants confirmed that CKX3 activity negatively regulates root cytokinin levels. Particularly, tZ and DHZ type cytokinins in both inoculated and uninoculated roots were elevated in ckx3 mutants, suggesting that these are targets for degradation by the CKX3 cytokinin oxidase/dehydrogenase. The effect of CKX3 on the positive and negative roles of cytokinin in nodule development, infection and regulation was further clarified using ckx3 insertion mutants. Phenotypic analysis indicated that ckx3 mutants have reduced nodulation, infection thread formation and root growth. We also identify a role for cytokinin in regulating nodulation and nitrogen fixation in response to nitrate as ckx3 phenotypes are exaggerated at increased nitrate levels. Together, these findings show that cytokinin accumulation is tightly regulated during nodulation in order to balance the requirement for cell divisions with negative regulatory effects of cytokinin on infection events and root development. PMID:26644503

  15. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    USDA-ARS?s Scientific Manuscript database

    Objective: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ...

  16. An intact eight-membered water chain in drosophilid alcohol dehydrogenases is essential for optimal enzyme activity.

    PubMed

    Wuxiuer, Yimingjiang; Morgunova, Ekaterina; Cols, Neus; Popov, Alexander; Karshikoff, Andrey; Sylte, Ingebrigt; Gonzàlez-Duarte, Roser; Ladenstein, Rudolf; Winberg, Jan-Olof

    2012-08-01

    All drosophilid alcohol dehydrogenases contain an eight-member water chain connecting the active site with the solvent at the dimer interface. A similar water chain has also been shown to exist in other short-chain dehydrogenase/reductase (SDR) enzymes, including therapeutically important SDRs. The role of this water chain in the enzymatic reaction is unknown, but it has been proposed to be involved in a proton relay system. In the present study, a connecting link in the water chain was removed by mutating Thr114 to Val114 in Scaptodrosophila lebanonensis alcohol dehydrogenase (SlADH). This threonine is conserved in all drosophilid alcohol dehydrogenases but not in other SDRs. X-ray crystallography of the SlADH(T114V) mutant revealed a broken water chain, the overall 3D structure of the binary enzyme-NAD(+) complex was almost identical to the wild-type enzyme (SlADH(wt) ). As for the SlADH(wt) , steady-state kinetic studies revealed that catalysis by the SlADH(T114V) mutant was consistent with a compulsory ordered reaction mechanism where the co-enzyme binds to the free enzyme. The mutation caused a reduction of the k(on) velocity for NAD(+) and its binding strength to the enzyme, as well as the rate of hydride transfer (k) in the ternary enzyme-NAD(+) -alcohol complex. Furthermore, it increased the pK(a) value of the group in the binary enzyme-NAD(+) complex that regulates the k(on) velocity of alcohol and alcohol-competitive inhibitors. Overall, the results indicate that an intact water chain is essential for optimal enzyme activity and participates in a proton relay system during catalysis. © 2012 The Authors Journal compilation © 2012 FEBS.

  17. Importance of Loop L1 Dynamics for Substrate Capture and Catalysis in Pseudomonas aeruginosa d-Arginine Dehydrogenase.

    PubMed

    Ouedraogo, Daniel; Souffrant, Michael; Vasquez, Sheena; Hamelberg, Donald; Gadda, Giovanni

    2017-05-16

    Mobile loops located at the active site entrance in enzymes often participate in conformational changes required to shield the reaction from bulk solvent, to control the access of the substrate to the active site, and to position residues for substrate binding and catalysis. In d-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH), previous crystallographic data suggested that residues 45-47 in the FAD-binding domain and residues 50-56 in the substrate-binding domain in loop L1 could adopt two distinct conformations. In this study, we have used molecular dynamics, kinetics, and fluorescence spectroscopy on the S45A and A46G enzyme variants of PaDADH to investigate the impact of mutations in loop L1 on the catalytic function of the enzyme. Molecular dynamics showed that the mutant enzymes have probabilities of being in open conformations that are higher than that of wild-type PaDADH of loop L1, yielding an increased level of solvent exposure of the active site. In agreement, the flavin fluorescence intensity was ∼2-fold higher in the S45A and A46G enzymes than in wild-type PaDADH, with a 9 nm bathochromic shift of the emission band. In the variant enzymes, the k cat /K m values with d-arginine were ∼13-fold lower than in wild-type PaDADH. Moreover, the pH profiles for the k cat value with d-arginine showed a hollow, consistent with restricted proton movements in catalysis, and no saturation was achieved with the alternate substrate d-leucine in the reductive half-reaction of the variant enzymes. Taken together, the computational and experimental data are consistent with the dynamics of loop L1 being important for substrate capture and catalysis in PaDADH.

  18. In vitro activation of NAD-dependent alcohol dehydrogenases by Nudix hydrolases is more widespread than assumed.

    PubMed

    Ochsner, Andrea M; Müller, Jonas E N; Mora, Carlos A; Vorholt, Julia A

    2014-08-25

    In the Gram-positive methylotroph Bacillus methanolicus, methanol oxidation is catalyzed by an NAD-dependent methanol dehydrogenase (Mdh) that belongs to the type III alcohol dehydrogenase (Adh) family. It was previously shown that the in vitro activity of B. methanolicus Mdh is increased by the endogenous activator protein Act, a Nudix hydrolase. Here we show that this feature is not unique, but more widespread among type III Adhs in combination with Act or other Act-like Nudix hydrolases. In addition, we studied the effect of site directed mutations in the predicted active site of Mdh and two other type III Adhs with regard to activity and activation by Act. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Fluoxetine elevates allopregnanolone in female rat brain but inhibits a steroid microsomal dehydrogenase rather than activating an aldo-keto reductase

    PubMed Central

    Fry, J P; Li, K Y; Devall, A J; Cockcroft, S; Honour, J W; Lovick, T A

    2014-01-01

    Background and Purpose Fluoxetine, a selective serotonin reuptake inhibitor, elevates brain concentrations of the neuroactive progesterone metabolite allopregnanolone, an effect suggested to underlie its use in the treatment of premenstrual dysphoria. One report showed fluoxetine to activate the aldo-keto reductase (AKR) component of 3α-hydroxysteroid dehydrogenase (3α-HSD), which catalyses production of allopregnanolone from 5α-dihydroprogesterone. However, this action was not observed by others. The present study sought to clarify the site of action for fluoxetine in elevating brain allopregnanolone. Experimental Approach Adult male rats and female rats in dioestrus were treated with fluoxetine and their brains assayed for allopregnanolone and its precursors, progesterone and 5α-dihydroprogesterone. Subcellular fractions of rat brain were also used to investigate the actions of fluoxetine on 3α-HSD activity in both the reductive direction, producing allopregnanolone from 5α-dihydroprogesterone, and the reverse oxidative direction. Fluoxetine was also tested on these recombinant enzyme activities expressed in HEK cells. Key Results Short-term treatment with fluoxetine increased brain allopregnanolone concentrations in female, but not male, rats. Enzyme assays on native rat brain fractions and on activities expressed in HEK cells showed fluoxetine did not affect the AKR producing allopregnanolone from 5α-dihydroprogesterone but did inhibit the microsomal dehydrogenase oxidizing allopregnanolone to 5α-dihydroprogesterone. Conclusions and Implications Fluoxetine elevated allopregnanolone in female rat brain by inhibiting its oxidation to 5α-dihydroprogesterone by a microsomal dehydrogenase. This is a novel site of action for fluoxetine, with implications for the development of new agents and/or dosing regimens to raise brain allopregnanolone. PMID:25161074

  20. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios.

    PubMed Central

    Rutter, G A; Denton, R M

    1988-01-01

    1. Toluene-permeabilized rat heart mitochondria have been used to study the regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+, adenine and nicotinamide nucleotides, and to compare the properties of the enzymes in situ, with those in mitochondrial extracts. 2. Although K0.5 values (concn. giving half-maximal effect) for Ca2+ of 2-oxoglutarate dehydrogenase were around 1 microM under all conditions, corresponding values for NAD+-linked isocitrate dehydrogenase were in the range 5-43 microM. 3. For both enzymes, K0.5 values for Ca2+ observed in the presence of ATP were 3-10-fold higher than those in the presence of ADP, with values increasing over the ADP/ATP range 0.0-1.0. 4. 2-Oxoglutarate dehydrogenase was less sensitive to inhibition by NADH when assayed in permeabilized mitochondria than in mitochondrial extracts. Similarly, the Km of NAD+-linked isocitrate dehydrogenase for threo-Ds-isocitrate was lower in permeabilized mitochondria than in extracts under all the conditions investigated. 5. It is concluded that in the intact heart Ca2+ activation of NAD+-linked isocitrate dehydrogenase may not necessarily occur in parallel with that of the other mitochondrial Ca2+-sensitive enzymes, 2-oxoglutarate dehydrogenase and the pyruvate dehydrogenase system. PMID:3421900

  1. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Immunocapture and microplate-based activity and quantity measurement of pyruvate dehydrogenase in human peripheral blood mononuclear cells.

    PubMed

    Liu, Xiaowen; Pervez, Hira; Andersen, Lars W; Uber, Amy; Montissol, Sophia; Patel, Parth; Donnino, Michael W

    2015-01-01

    Pyruvate dehydrogenase (PDH) activity is altered in many human disorders. Current methods require tissue samples and yield inconsistent results. We describe a modified method for measuring PDH activity from isolated human peripheral blood mononuclear cells (PBMCs). RESULTS/METHODOLOGY: We found that PDH activity and quantity can be successfully measured in human PBMCs. Freeze-thaw cycles cannot efficiently disrupt the mitochondrial membrane. Processing time of up to 20 h does not affect PDH activity with proteinase inhibitor addition and a detergent concentration of 3.3% showed maximum yield. Sample protein concentration is correlated to PDH activity and quantity in human PBMCs from healthy subjects. Measuring PDH activity from PBMCs is a novel, easy and less invasive way to further understand the role of PDH in human disease.

  3. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1440 Lactate dehydrogenase test system. (a) Identification. A lactate dehydrogenase test system is a device intended to measure the activity of the enzyme lactate dehydrogenase in serum. Lactate... hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction...

  4. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1420 Isocitric dehydrogenase test system. (a) Identification. An isocitric dehydrogenase test system is a device intended to measure the activity of the enzyme isocitric dehydrogenase in serum... disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary disease...

  5. Analysis of the Mycoplasma bovis lactate dehydrogenase reveals typical enzymatic activity despite the presence of an atypical catalytic site motif.

    PubMed

    Masukagami, Yumiko; Tivendale, Kelly Anne; Browning, Glenn Francis; Sansom, Fiona Margaret

    2018-02-01

    The lactate dehydrogenase (LDH) of Mycoplasma genitalium has been predicted to also act as a malate dehydrogenase (MDH), but there has been no experimental validation of this hypothesized dual function for any mollicute. Our analysis of the metabolite profile of Mycoplasma bovis using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) detected malate, suggesting that there may be MDH activity in M. bovis. To investigate whether the putative l-LDH enzyme of M. bovis has a dual function (MDH and LDH), we performed bioinformatic and functional biochemical analyses. Although the amino acid sequence and predicted structural analysis of M. bovisl-LDH revealed unusual residues within the catalytic site, suggesting that it may have the flexibility to possess a dual function, our biochemical studies using recombinant M. bovis -LDH did not detect any MDH activity. However, we did show that the enzyme has typical LDH activity that could be inhibited by both MDH substrates oxaloacetate (OAA) and malate, suggesting that these substrates may be able to bind to M. bovis LDH. Inhibition of the conversion of pyruvate to lactate by OAA may be one method the mycoplasma cell uses to reduce the potential for accumulation of intracellular lactate.

  6. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum... cirrhosis or acute hepatitis. (b) Classification. Class I (general controls). The device is exempt from the...

  7. Novel strategy for phenyllactic acid biosynthesis from phenylalanine by whole cell recombinant Escherichia coli coexpressing L-phenylalanine oxidase and L-lactate dehydrogenase.

    PubMed

    Zhang, Jianzhi; Li, Xi

    2018-01-01

    To enhance the efficiency of phenyllactic acid (PLA) production from L-phenylalanine (L-Phe) by introducing a novel artificial pathway into Escherichia coli RESULTS: The production of PLA from L-Phe by recombinant E. coli (ldh-lpox) coexpressing L-phenylalanine oxidase and L-lactate dehydrogenase was studied. The new PLA synthesis pathway was confirmed to be efficient in recombinant E. coli. Subsequently, two different biocatalyst processes were carried out and optimized for PLA production. In the whole cell biosynthesis process at high cell density using collected recombinant cells as catalyst, at optimal conditions (L-Phe 6 g/l, pH 7.5, 35 °C, CDW 24.5 g/l and 200 rpm), the recombinant E. coli (ldh-lpox) produced 1.62 g PLA/l with a conversion of 28% from L-Phe. Similarly, during the two-temperature-stage fermentation process in flasks using IPTG-induced cells, the temperature in the second stage was increased to 35 °C to benefit the biocatalyst process, and comparable phenyllactic acid production of 1.47 g/l was obtained from 12 g L-Phe/l. Recombinant E. coli (ldh-lpox) was efficient in PLA production realizing a high titer of several folds compared with studies using L-Phe as substrate.

  8. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of lactate...

  9. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of lactate...

  10. Protein CoAlation and antioxidant function of Coenzyme A in prokaryotic cells.

    PubMed

    Tsuchiya, Yugo; Zhyvoloup, Alexander; Bakovic, Jovana; Thomas, Naam; Yi Kun Yu, Bess; Das, Sayoni; Orengo, Christine; Newell, Clare; Ward, John; Saladino, Giorgio; Comitani, Federico; Gervasio, Francesco L; Malanchuk, Oksana M; Khoruzhenko, Antonina I; Filonenko, Valeriy; Peak-Chew, Sew Yeu; Skehel, Mark; Gout, Ivan

    2018-04-06

    In all living organisms, Coenzyme A (CoA) is an essential cofactor with a unique design allowing it to function as an acyl group carrier and a carbonyl-activating group in diverse biochemical reactions. It is synthesized in a highly conserved process in prokaryotes and eukaryotes that requires pantothenic acid (vitamin B5), cysteine and ATP. CoA and its thioester derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. A novel unconventional function of CoA in redox regulation has been recently discovered in mammalian cells and termed protein CoAlation. Here, we report for the first time that protein CoAlation occurs at a background level in exponentially growing bacteria and is strongly induced in response to oxidizing agents and metabolic stress. Over 12% of S. aureus gene products were shown to be CoAlated in response to diamide-induced stress . In vitro CoAlation of S. aureus glyceraldehyde-3-phosphate dehydrogenase (SaGAPDH) was found to inhibit its enzymatic activity and to protect the catalytic cysteine 151 from overoxidation by hydrogen peroxide (H 2 O 2 ). These findings suggest that in exponentially growing bacteria CoA functions to generate metabolically active thioesters, while it also has the potential to act as a low molecular weight antioxidant in response to oxidative and metabolic stress. ©2018 The Author(s).

  11. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    PubMed

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Efficient synthesis of a (S)-fluoxetine intermediate using carbonyl reductase coupled with glucose dehydrogenase.

    PubMed

    Tang, Yunping; Zhang, Guomei; Wang, Zheng; Liu, Dan; Zhang, Linglu; Zhou, Yafeng; Huang, Ju; Yu, Fangmiao; Yang, Zuisu; Ding, Guofang

    2018-02-01

    (S)-3-chloro-1-phenyl-1-propanol ((S)-CPPO) is an important chiral intermediate predominantly used in the synthesis of the chiral side chain of (S)-fluoxetine. In this study, carbonyl reductase (CBR) from Novosphingobium aromaticivorans was successfully expressed in recombinant E. coli. The enzymatic activity of the recombinant CBR was significantly increased to 1875 U/mL in the fed-batch fermentation in a 10 L fermenter and recombinant CBR was then purified and characterized. By regenerating NADH with glucose dehydrogenase, 100 g/L 3-chloro-1-phenyl-1-propanone (3-CPP) was successfully converted to (S)-CPPO with a conversion of 100% and ee value of 99.6% after 12 h at 30 °C in PBS buffer (pH 7.0), which are the highest reported to date for the bio-production of (S)-CPPO and presented great potential for green production of (S)-CPPO at industrial scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The unique kinetic behavior of the very large NAD-dependent glutamate dehydrogenase from Janthinobacterium lividum.

    PubMed

    Kawakami, Ryushi; Oyama, Masaki; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2010-01-01

    The kinetics of a very large NAD-dependent glutamate dehydrogenase from Janthinobacterium lividum showed positive cooperativity toward alpha-ketoglutarate and NADH, and the Michaelis-Menten type toward ammonium chloride in the absence of the catalytic activator, L-aspartate. An increase in the maximum activity accompanied the decrease in the S(0.5) values for alpha-ketoglutarate and NADH with the addition of L-aspartate, and the kinetic response for alpha-ketoglutarate changed completely to a typical Michaelis-Menten type in the presence of 10 mM L-aspartate.

  14. Disrupting androgen production of Leydig cells by resveratrol via direct inhibition of human and rat 3β-hydroxysteroid dehydrogenase.

    PubMed

    Li, Ling; Chen, Xiaomin; Zhu, Qiqi; Chen, Dongxin; Guo, Jingjing; Yao, Wenwen; Dong, Yaoyao; Wei, Jia; Lian, Qingquan; Ge, Ren-Shan; Yuan, Bo

    2014-04-07

    Resveratrol is a polyphenol produced by several plants. It has been demonstrated that it has anti-inflammatory, antitumor, and anti-diabetic effects in animal models. However, its side effects are generally unclear. In the present study, we reported that resveratrol inhibited luteinizing hormone-stimulated androgen production in rat immature Leydig cells. Further analysis demonstrated that it was a competitive inhibitor of rat and human 3β-hydroxysteroid dehydrogenase with IC₆₀ values of 3.87 ± 0.06 and 8.48 ± 0.04 μM, respectively. The inhibition on 3β-hydroxysteroid dehydrogenase was specific since it did not inhibit another hydroxysteroid dehydrogenase 17β-hydroxysteroid dehydrogenase 3 at the highest concentration (100 μM) tested. In conclusion, resveratrol potentially interferes with androgen biosynthesis of rat Leydig cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Structural characterization of the thermostable Bradyrhizobium japonicumD-sorbitol dehydrogenase.

    PubMed

    Fredslund, Folmer; Otten, Harm; Gemperlein, Sabrina; Poulsen, Jens Christian N; Carius, Yvonne; Kohring, Gert Wieland; Lo Leggio, Leila

    2016-11-01

    Bradyrhizobium japonicum sorbitol dehydrogenase is NADH-dependent and is active at elevated temperatures. The best substrate is D-glucitol (a synonym for D-sorbitol), although L-glucitol is also accepted, giving it particular potential in industrial applications. Crystallization led to a hexagonal crystal form, with crystals diffracting to 2.9 Å resolution. In attempts to phase the data, a molecular-replacement solution based upon PDB entry 4nbu (33% identical in sequence to the target) was found. The solution contained one molecule in the asymmetric unit, but a tetramer similar to that found in other short-chain dehydrogenases, including the search model, could be reconstructed by applying crystallographic symmetry operations. The active site contains electron density consistent with D-glucitol and phosphate, but there was not clear evidence for the binding of NADH. In a search for the features that determine the thermostability of the enzyme, the T m for the orthologue from Rhodobacter sphaeroides, for which the structure was already known, was also determined, and this enzyme proved to be considerably less thermostable. A continuous β-sheet is formed between two monomers in the tetramer of the B. japonicum enzyme, a feature not generally shared by short-chain dehydrogenases, and which may contribute to thermostability, as may an increased Pro/Gly ratio.

  16. Inhibitory effects of Aphanizomenon flos-aquae constituents on human UDP-glucose dehydrogenase activity.

    PubMed

    Scoglio, Stefano; Lo Curcio, Valeria; Catalani, Simona; Palma, Francesco; Battistelli, Serafina; Benedetti, Serena

    2016-12-01

    The purpose of this study was to investigate the in vitro inhibitory effects of the edible microalga Aphanizomenon flos-aquae (AFA) on human UDP-α-d-glucose 6-dehydrogenase (UGDH) activity, a cytosolic enzyme involved both in tumor progression and in phytochemical bioavailability. Both the hydrophilic and ethanolic AFA extracts as well as the constitutive active principles phycocyanin (PC), phycocyanobilin (PCB) and mycosporine-like amino acids (MAAs) were tested. Among AFA components, PCB presented the strongest inhibitory effect on UGDH activity, acting as a competitive inhibitor with respect to UDP-glucose and a non-competitive inhibitor with respect to NAD(+). In preliminary experiments, AFA PCB was also effective in reducing the colony formation capacity of PC-3 prostate cancer cells and FTC-133 thyroid cancer cells. Overall, these findings confirmed that AFA and its active principles are natural compounds with high biological activity. Further studies evaluating the effects of AFA PCB in reducing tumor cell growth and phytochemical glucuronidation are encouraged.

  17. Influence of spaceflight on succinate dehydrogenase activity and soma size of rat ventral horn neurons

    NASA Technical Reports Server (NTRS)

    Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.

    1996-01-01

    Succinate dehydrogenase (SDH) activities and soma cross-sectional areas (CSA) of neurons in the dorsolateral region of the ventral horn at the L5 segmental level of the spinal cord in the rat were determined after 14 days of spaceflight and after 9 days of recovery on earth. The results were compared to those in age-matched ground-based control rats. Spinal cords were quick-frozen, and the SDH activity and CSA of a sample of neurons with a visible nucleus were determined using a digitizer and a computer-assisted image analysis system. An inverse relationship between CSA and SDH activity of neurons was observed in all groups of rats. No change in mean CSA or mean SDH activity or in the size distribution of neurons was observed following spaceflight or recovery. However, there was a selective decrease in the SDH activity of neurons with soma CSA between 500 and 800 microns2 in the flight rats, and this effect persisted for at least 9 days following return to 1 g. It remains to be determined whether the selected population of motoneurons or the specific motor pools affected by spaceflight may be restricted to specific muscles.

  18. Immunocapture and microplate-based activity and quantity measurement of pyruvate dehydrogenase in human peripheral blood mononuclear cells

    PubMed Central

    Liu, Xiaowen; Pervez, Hira; Andersen, Lars W; Uber, Amy; Montissol, Sophia; Patel, Parth; Donnino, Michael W

    2015-01-01

    Background Pyruvate dehydrogenase (PDH) activity is altered in many human disorders. Current methods require tissue samples and yield inconsistent results. We describe a modified method for measuring PDH activity from isolated human peripheral blood mononuclear cells (PBMCs). Results/Methodology We found that PDH activity and quantity can be successfully measured in human PBMCs. Freeze-thaw cycles cannot efficiently disrupt the mitochondrial membrane. Processing time of up to 20 h does not affect PDH activity with proteinase inhibitor addition and a detergent concentration of 3.3% showed maximum yield. Sample protein concentration is correlated to PDH activity and quantity in human PBMCs from healthy subjects. Conclusion Measuring PDH activity from PBMCs is a novel, easy and less invasive way to further understand the role of PDH in human disease. PMID:25826140

  19. 46,XY disorder of sex development due to 17-beta hydroxysteroid dehydrogenase type 3 deficiency: a plea for timely genetic testing.

    PubMed

    Grimbly, Chelsey; Caluseriu, Oana; Metcalfe, Peter; Jetha, Mary M; Rosolowsky, Elizabeth T

    2016-01-01

    17β-hydroxysteroid dehydrogenase type 3 (17βHSD3) deficiency is a rare cause of disorder of sex development (DSD) due to impaired conversion of androstenedione to testosterone. Traditionally, the diagnosis was determined by βHCG-stimulated ratios of testosterone:androstenedione < 0.8. An otherwise phenotypically female infant presented with bilateral inguinal masses and a 46,XY karyotype. βHCG stimulation (1500 IU IM for 2 days) suggested 17βHSD3 deficiency although androstenedione was only minimally stimulated (4.5 nmol/L to 5.4 nmol/L). Expedient genetic testing for the HSD17B3 gene provided the unequivocal diagnosis. We advocate for urgent genetic testing in rare causes of DSD as indeterminate hormone results can delay diagnosis and prolong intervention.

  20. Genomic structure of rat 3alpha-hydroxysteroid/dihydrodiol dehydrogenase (3alpha-HSD/DD, AKR1C9).

    PubMed

    Lin, H K; Hung, C F; Moore, M; Penning, T M

    1999-11-01

    Rat liver 3alpha-hydroxysteroid/dihydrodiol dehydrogenase (3alpha-HSD/DD) is a member of the aldo-keto reductase (AKR) superfamily. It is involved in the inactivation of steroid hormones and the metabolic activation of polycyclic aromatic hydrocarbons (PAH) by converting trans-dihydrodiols into reactive and redox-active o-quinones. The structure of the 5'-flanking region of the gene and factors involved in the constitutive and regulated expression of this gene have been reported [H.-K. Lin, T.M. Penning, Cloning, sequencing, and functional analysis of the 5'-flanking region of the rat 3alpha-hydroxysteroid/dihydrodiol dehydrogenase gene, Cancer Res. 55 (1995) 4105-4113]. We now describe the complete genomic structure of the rat type 1 3alpha-HSD/DD gene. Charon 4A and P1 genomic clones contained at least three rat genes (type 1, type 2 and type 3 3alpha-HSD/DD) each of which encoded for the same open reading frame (ORF) but differed in their exon-intron organization. 5'-RACE confirmed that the type 1 3alpha-HSD/DD gene encodes for the dominant transcript in rat liver and it was the regulation of this gene that was previously studied. The rat type 1 3alpha-HSD/DD gene is 30 kb in length and consists of nine exons and eight introns. Exon 9 encodes +931 to 966 bp of the ORF and the 1292 bp 3'-UTR implicated in mRNA stability. This genomic structure is nearly identical to the homologous human genes, type 1 3alpha-HSD (chlordecone reductase/DD4, AKR1C4), type 2 3alpha-HSD (AKR1C3) and type 3 3alpha-HSD (bile-acid binding protein, AKR1C2) genes. Three different cDNA's containing identical ORFs for 3alpha-HSD have been reported suggesting that all three genes may be expressed in rat liver. Using 5' primers corresponding to the 5'-UTR's of the three different cDNA's only one PCR fragment was obtained and corresponded to the type 1 3alpha-HSD/DD gene. These data suggested that the type 2 and type 3 3alpha-HSD/DD genes are not abundantly expressed in rat liver. It is unknown

  1. Nocturnal activity of 11β-hydroxy steroid dehydrogenase type 1 is increased in type 1 diabetic children.

    PubMed

    Barat, P; Brossaud, J; Lacoste, A; Vautier, V; Nacka, F; Moisan, M-P; Corcuff, J-B

    2013-04-01

    The objective of this study was to investigate low-grade inflammation in children with type 1 diabetes (T1D) and its association with cortisol levels as well as its bioavailability through 11β-hydroxy steroid dehydrogenase type 1 (11β-HSD1) activity. Children with T1D (n=45) and their non-diabetic siblings (n=28) participated in the study. Interleukin-6 (IL-6) and high-sensitivity C-reactive protein (CRPhs) were measured between 1400 and 1800h. Glucocorticoid metabolites were measured in the first morning urine on clinic day and 11β-HSD1 activity was estimated by tetrahydrocortisol/tetrahydrocortisone (THF/THE) ratio. Diabetic patients presented with an increased THF/THE ratio compared with controls (median: 0.68 [range: 0.45-1.18] vs 0.45 [0.27-0.98], respectively; P<10(-3)). There was no difference between diabetic patients and controls for IL-6 (0.6ng/mL [0.6-6.8] vs 0.6 [0.6-2.2], respectively; P=0.43) and CRPhs (0.4mg/L [0-7.4] vs 0.3 [0-8.2]; P=0.26, respectively). When adjusted for age, gender and BMI, the THF/THE ratio was significantly associated with CRPhs (β=0.32, P=0.02) in diabetic patients, but not in controls. Low-grade inflammation assessed by plasma CRPhs and IL-6 concentrations was not detectable in our cohort of T1D children. Nocturnal 11β-HSD1 activity was increased and associated with plasma CRPhs concentration in diabetic patients. These results may be explained by either a direct or inflammation-mediated effect of the relative hepatic lack of insulin due to subcutaneous insulin therapy. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Plasma lactic dehydrogenase activities in men during bed rest with exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Juhos, L. T.; Young, H. L.

    1985-01-01

    Peak oxygen uptake and the activity of lactic dehydrogenase (LDH-T) and its five isoenzymes were measured by spectrophotometer in seven men before, during, and after bed rest and exercise training. Exercise training consisted of isometric leg exercises of 250 kcal/hr for a period of one hour per day. It is found that LDH-T was reduced by 0.05 percent in all three regimens by day 10 of bed rest, and that the decrease occurred at different rates. The earliest reduction in LDH-T activity in the no-exercise regimen was associated with a decrease in peak oxygen uptake of 12.3 percent. It is concluded that isometric (aerobic) muscular strength training appear to maintain skeletal muscle integrity better during bed rest than isotonic exercise training. Reduced hydrostatic pressure during bed rest, however, ultimately counteracts the effects of both moderate isometric and isotonic exercise training, and may result in decreased LDH-T activity.

  3. Participation of glyceraldehyde-3-phosphate dehydrogenase in the regulation of 2,3-diphosphoglycerate level in erythrocytes.

    PubMed

    Fokina, K V; Yazykova, M Y; Danshina, P V; Schmalhausen, E V; Muronetz, V I

    2000-04-01

    Data are presented concerning the possible participation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in regulation of the glycolytic pathway and the level of 2,3-diphosphoglycerate in erythrocytes. Experimental support has been obtained for the hypothesis according to which a mild oxidation of GAPDH must result in acceleration of glycolysis and in decrease in the level of 2, 3-diphosphoglycerate due to the acyl phosphatase activity of the mildly oxidized enzyme. Incubation of erythrocytes in the presence of 1 mM hydrogen peroxide decreases 2,3-diphosphoglycerate concentration and causes accumulation of 3-phosphoglycerate. It is assumed that the acceleration of glycolysis in the presence of oxidative agents described previously by a number of authors could be attributed to the acyl phosphatase activity of GAPDH. A pH-dependent complexing of GAPDH and 3-phosphoglycerate kinase or 2, 3-diphosphoglycerate mutase is found to determine the fate of 1,3-diphosphoglycerate that serves as a substrate for the synthesis of 2,3-diphosphoglycerate as well as for the 3-phosphoglycerate kinase reaction in glycolysis. A withdrawal of the two-enzyme complexes from the erythrocyte lysates using Sepharose-bound anti-GAPDH antibodies prevents the pH-dependent accumulation of the metabolites. The role of GAPDH in the regulation of glycolysis and the level of 2,3-diphosphoglycerate in erythrocytes is discussed.

  4. Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I.

    PubMed

    Sauer, Sven W; Opp, Silvana; Hoffmann, Georg F; Koeller, David M; Okun, Jürgen G; Kölker, Stefan

    2011-01-01

    Glutaric aciduria type I, an inherited deficiency of glutaryl-coenzyme A dehydrogenase localized in the final common catabolic pathway of L-lysine, L-hydroxylysine and L-tryptophan, leads to accumulation of neurotoxic glutaric and 3-hydroxyglutaric acid, as well as non-toxic glutarylcarnitine. Most untreated patients develop irreversible brain damage during infancy that can be prevented in the majority of cases if metabolic treatment with a low L-lysine diet and L-carnitine supplementation is started in the newborn period. The biochemical effect of this treatment remains uncertain, since cerebral concentrations of neurotoxic metabolites can only be determined by invasive techniques. Therefore, we studied the biochemical effect and mechanism of metabolic treatment in glutaryl-coenzyme A dehydrogenase-deficient mice, an animal model with complete loss of glutaryl-coenzyme A dehydrogenase activity, focusing on the tissue-specific changes of neurotoxic metabolites and key enzymes of L-lysine metabolism. Here, we demonstrate that low L-lysine diet, but not L-carnitine supplementation, lowered the concentration of glutaric acid in brain, liver, kidney and serum. L-carnitine supplementation restored the free L-carnitine pool and enhanced the formation of glutarylcarnitine. The effect of low L-lysine diet was amplified by add-on therapy with L-arginine, which we propose to result from competition with L-lysine at system y(+) of the blood-brain barrier and the mitochondrial L-ornithine carriers. L-lysine can be catabolized in the mitochondrial saccharopine or the peroxisomal pipecolate pathway. We detected high activity of mitochondrial 2-aminoadipate semialdehyde synthase, the rate-limiting enzyme of the saccharopine pathway, in the liver, whereas it was absent in the brain. Since we found activity of the subsequent enzymes of L-lysine oxidation, 2-aminoadipate semialdehyde dehydrogenase, 2-aminoadipate aminotransferase and 2-oxoglutarate dehydrogenase complex as well as

  5. Improvement of L(+)-Lactic Acid Production of Rhizopus Oryzae by Low-Energy Ions and Analysis of Its Mechanism

    NASA Astrophysics Data System (ADS)

    Ge, Chunmei; Yang, Yingge; Fan, Yonghong; Li, Wen; Pan, Renrui; Zheng, Zhiming; Yu, Zengliang

    2008-02-01

    The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 1014 ~ 2.08 × 1015 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.

  6. The Enzyme Activity and Substrate Specificity of Two Major Cinnamyl Alcohol Dehydrogenases in Sorghum (Sorghum bicolor), SbCAD2 and SbCAD4.

    PubMed

    Jun, Se-Young; Walker, Alexander M; Kim, Hoon; Ralph, John; Vermerris, Wilfred; Sattler, Scott E; Kang, ChulHee

    2017-08-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step in monolignol biosynthesis, reducing sinapaldehyde, coniferaldehyde, and p -coumaraldehyde to their corresponding alcohols in an NADPH-dependent manner. Because of its terminal location in monolignol biosynthesis, the variation in substrate specificity and activity of CAD can result in significant changes in overall composition and amount of lignin. Our in-depth characterization of two major CAD isoforms, SbCAD2 (Brown midrib 6 [bmr6]) and SbCAD4, in lignifying tissues of sorghum ( Sorghum bicolor ), a strategic plant for generating renewable chemicals and fuels, indicates their similarity in both structure and activity to Arabidopsis ( Arabidopsis thaliana ) CAD5 and Populus tremuloides sinapyl alcohol dehydrogenase, respectively. This first crystal structure of a monocot CAD combined with enzyme kinetic data and a catalytic model supported by site-directed mutagenesis allows full comparison with dicot CADs and elucidates the potential signature sequence for their substrate specificity and activity. The L119W/G301F-SbCAD4 double mutant displayed its substrate preference in the order coniferaldehyde > p -coumaraldehyde > sinapaldehyde, with higher catalytic efficiency than that of both wild-type SbCAD4 and SbCAD2. As SbCAD4 is the only major CAD isoform in bmr6 mutants, replacing SbCAD4 with L119W/G301F-SbCAD4 in bmr6 plants could produce a phenotype that is more amenable to biomass processing. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Isolation of 4-coumarate Co-A ligase gene promoter from loblolly pine (Pinus taeda) and characterization of tissue-specific activity in transgenic tobacco.

    PubMed

    Osakabe, Yuriko; Osakabe, Keishi; Chiang, Vincent L

    2009-01-01

    We characterized promoter activity of a phenylpropanoid biosynthetic gene encoding 4-coumarate Co-A ligase (4CL), Pta4Clalpha, from Pinus taeda. Histochemical- and quantitative assays of GUS expression in the vascular tissue were performed using transgenic tobacco plants expressing promoter-GUS reporters. Deletion analysis of the Pta4Clalpha promoter showed that the region -524 to -252, which has two AC elements, controls the high expression levels in ray-parenchyma cells of older tobacco stems. High activity level of the promoter domain of Pta4CLalpha was also detected in the xylem cells under bending stress. DNA-protein complexes were detected in the reactions of the Pta4CLalpha promoter fragments with the nuclear proteins of xylem of P. taeda. The AC elements in the Pta4CLalpha promoter appeared to have individual roles during xylem development that are activated in a coordinated manner in response to stress in transgenic tobacco.

  8. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30.

    PubMed

    Zhang, Liaoyuan; Xu, Quanming; Peng, Xiaoqian; Xu, Boheng; Wu, Yuehao; Yang, Yulong; Sun, Shujing; Hu, Kaihui; Shen, Yaling

    2014-09-01

    The meso-2,3-butanediol dehydrogenase (meso-BDH) from S. marcescens H30 is responsible for converting acetoin into 2,3-butanediol during sugar fermentation. Inactivation of the meso-BDH encoded by budC gene does not completely abolish 2,3-butanediol production, which suggests that another similar enzyme involved in 2,3-butanediol formation exists in S. marcescens H30. In the present study, a glycerol dehydrogenase (GDH) encoded by gldA gene from S. marcescens H30 was expressed in Escherichia coli BL21(DE3), purified and characterized for its properties. In vitro conversion indicated that the purified GDH could catalyze the interconversion of (3S)-acetoin/meso-2,3-butanediol and (3R)-acetoin/(2R,3R)-2,3-butanediol. (2S,3S)-2,3-Butanediol was not a substrate for the GDH at all. Kinetic parameters of the GDH enzyme showed lower K m value and higher catalytic efficiency for (3S/3R)-acetoin in comparison to those for (2R,3R)-2,3-butanediol and meso-2,3-butanediol, implying its physiological role in favor of 2,3-butanediol formation. Maximum activity for reduction of (3S/3R)-acetoin and oxidations of meso-2,3-butanediol and glycerol was observed at pH 8.0, while it was pH 7.0 for diacetyl reduction. The enzyme exhibited relative high thermotolerance with optimum temperature of 60 °C in the oxidation-reduction reactions. Over 60 % of maximum activity was retained at 70 °C. Additionally, the GDH activity was significantly enhanced for meso-2,3-BD oxidation in the presence of Fe(2+) and for (3S/3R)-acetoin reduction in the presence of Mn(2+), while several cations inhibited its activity, particularly Fe(2+) and Fe(3+) for (3S/3R)-acetoin reduction. The properties provided potential application for single configuration production of acetoin and 2,3-butanediol .

  10. Purification, Characterization, and Cloning of Cinnamyl Alcohol Dehydrogenase in Loblolly Pine (Pinus taeda L.) 1

    PubMed Central

    O'Malley, David M.; Porter, Stephanie; Sederoff, Ronald R.

    1992-01-01

    Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1. 195) has been purified to homogeneity from differentiating xylem tissue and developing seeds of loblolly pine (Pinus taeda L.). The enzyme is a dimer with a native molecular weight of 82,000 and a subunit molecular weight of 44,000, and is the only form of CAD involved in lignification in differentiating xylem. High levels of loblolly pine CAD enzyme were found in nonlignifying seed tissue. Characterization of the enzyme from both seeds and xylem demonstrated that the enzyme is the same in both tissues. The enzyme has a high affinity for coniferaldehyde (Km = 1.7 micromolar) compared with sinapaldehyde (Km in excess of 100 micromolar). Kinetic data strongly suggest that coniferin is a noncompetitive inhibitor of CAD enzyme activity. Protein sequences were obtained for the N-terminus (28 amino acids) and for two other peptides. Degenerate oligonucleotide primers based on the protein sequences were used to amplify by polymerase chain reaction a 1050 base pair DNA fragment from xylem cDNA. Nucleotide sequence from the cloned DNA fragment coded for the N-terminal protein sequence and an internal peptide of CAD. The N-terminal protein sequence has little similarity with the λCAD4 clone isolated from bean (MH Walter, J Grima-Pettenati, C Grand, AM Boudet, CJ Lamb [1988] Proc Natl Acad Sci USA 86:5546-5550), which has homology with malic enzyme. ImagesFigure 2Figure 3 PMID:16668801

  11. Software interface for high-speed readout of particle detectors based on the CoaXPress communication standard

    NASA Astrophysics Data System (ADS)

    Hejtmánek, M.; Neue, G.; Voleš, P.

    2015-06-01

    This article is devoted to the software design and development of a high-speed readout application used for interfacing particle detectors via the CoaXPress communication standard. The CoaXPress provides an asymmetric high-speed serial connection over a single coaxial cable. It uses a widely available 75 Ω BNC standard and can operate in various modes with a data throughput ranging from 1.25 Gbps up to 25 Gbps. Moreover, it supports a low speed uplink with a fixed bit rate of 20.833 Mbps, which can be used to control and upload configuration data to the particle detector. The CoaXPress interface is an upcoming standard in medical imaging, therefore its usage promises long-term compatibility and versatility. This work presents an example of how to develop DAQ system for a pixel detector. For this purpose, a flexible DAQ card was developed using the XILINX Spartan 6 FPGA. The DAQ card is connected to the framegrabber FireBird CXP6 Quad, which is plugged in the PCI Express bus of the standard PC. The data transmission was performed between the FPGA and framegrabber card via the standard coaxial cable in communication mode with a bit rate of 3.125 Gbps. Using the Medipix2 Quad pixel detector, the framerate of 100 fps was achieved. The front-end application makes use of the FireBird framegrabber software development kit and is suitable for data acquisition as well as control of the detector through the registers implemented in the FPGA.

  12. Microbial metabolic activity in soil as measured by dehydrogenase determinations

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1977-01-01

    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  13. [Involvement of hydrogen peroxide in the regulation of coexpression of alternative oxidase and rotenone-insensitive NADH dehydrogenase in tomato leaves and calluses].

    PubMed

    Eprintsev, A T; Mal'tseva, E V; Shatskikh, A S; Popov, V N

    2011-01-01

    The involvement of active oxygen forms in the regulation of the expression of mitochondrial respiratory chain components, which are not related to energy storing, has been in vitro and in vivo studied in Lycopersicum esculentum L. The highest level of transcription of genes encoding alternative oxidase and NADH dehydrogenase has been observed in green tomato leaves. It has been shown that even low H2O2 concentrations activate both aoxlalpha and ndb1 genes, encoding alternative oxidase and external mitochondrial rotenone-insensitive NADH dehydrogenase, respectively. According to our results, in the case of an oxidative stress, alternative oxidase and NADH dehydrogenase are coexpressed in tomato plant tissues, and active oxygen forms serve as the secondary messengers of their coexpression.

  14. l-2',3'-Didehydro-2',3'-dideoxy-3'-fluoronucleosides: synthesis, anti-HIV activity, chemical and enzymatic stability, and mechanism of resistance.

    PubMed

    Chong, Youhoon; Gumina, Giuseppe; Mathew, Judy S; Schinazi, Raymond F; Chu, Chung K

    2003-07-17

    As antiviral nucleosides containing a 2',3'-unsaturated sugar moiety with 2'-fluoro substitution are endowed with increased stabilization of the glycosyl bond, it was of interest to investigate the influence of the fluorine atom at the 3'-position. Various pyrimidine and purine L-3'-fluoro-2',3'-unsaturated nucleosides were synthesized from their precursors, L-3',3'-difluoro-2',3'-dideoxy nucleosides, by elimination of hydrogen fluoride. In the L-3',3'-difluoro-2',3'-dideoxy nucleoside series, cytidine 16 and 5-fluorocytidine 18 analogues showed modest antiviral activity (EC(50) 11.5 and 8.8 microM, respectively) when evaluated against HIV-1 in human peripheral blood mononuclear (PBM) cells. In the 2',3'-unsaturated series, L-3'-fluoro-2',3'-didehydro-2',3'-dideoxycytidine 24 and 5-fluorocytidine 26 showed highly potent antiviral activity (EC(50) 0.089 and 0.018 microM, respectively) without significant cytotoxicity. The guanosine analogue 48 showed only marginal anti-HIV activity with some cytotoxicity (EC(50) 38.5 microM, and IC(50) 17.4, 58.4, 36.5 microM in PBM, CEM, and Vero cells, respectively). The cytidine 24 and 5-fluorocytidine 26 analogues, however, showed significantly decreased antiviral activity against the clinically important lamivudine-resistant variants (HIV-1(M184V)). Molecular modeling studies demonstrated that the 3'-fluoro atom of the L-3'-fluoro-2',3'-unsaturated nucleoside is within the hydrogen bonding distance with the amide backbone of Asp185, which favors the binding of the nucleoside triphosphate to the wild-type RT. This favorable binding mode, however, cannot be maintained when the triphosphate of 3'-fluoro 2',3'-unsaturated nucleoside binds to the active site of M184V RT because the bulky side chain of Val184 occupies the space needed for the nucleotide. The biological results suggest that, in addition to the sugar conformation, the base moiety may also play a role in their interaction with the M184V RT.

  15. Enzymatic activities for lignin monomer intermediates highlight the biosynthetic pathway of syringyl monomers in Robinia pseudoacacia.

    PubMed

    Shigeto, Jun; Ueda, Yukie; Sasaki, Shinya; Fujita, Koki; Tsutsumi, Yuji

    2017-01-01

    Most of the known 4-coumarate:coenzyme A ligase (4CL) isoforms lack CoA-ligation activity for sinapic acid. Therefore, there is some doubt as to whether sinapic acid contributes to sinapyl alcohol biosynthesis. In this study, we characterized the enzyme activity of a protein mixture extracted from the developing xylem of Robinia pseudoacacia. The crude protein mixture contained at least two 4CLs with sinapic acid 4-CoA ligation activity. The crude enzyme preparation displayed negligible sinapaldehyde dehydrogenase activity, but showed ferulic acid 5-hydroxylation activity and 5-hydroxyferulic acid O-methyltransferase activity; these activities were retained in the presence of competitive substrates (coniferaldehyde and 5-hydroxyconiferaldehyde, respectively). 5-Hydroxyferulic acid and sinapic acid accumulated in the developing xylem of R. pseudoacacia, suggesting, in part at least, sinapic acid is a sinapyl alcohol precursor in this species.

  16. Ziram inhibits rat neurosteroidogenic 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase.

    PubMed

    Su, Ying; Li, Huitao; Chen, Xiaomin; Wang, Yiyan; Li, Xiaoheng; Sun, Jianliang; Ge, Ren-Shan

    2018-01-01

    The neurotoxicity of ziram is largely unknown. In this study, we investigated the direct inhibitions of ziram on rat neurosteroid synthetic and metabolizing enzymes, 5α-reductase 1 (SRD5A1), 3α-hydroxysteroid dehydrogenase (AKR1C14), and retinol dehydrogenase 2 (RDH2). Rat SRD5A1, AKR1C14, and RDH2 were cloned and transiently expressed in COS1 cells, and the effects of ziram on these enzymes were measured. Ziram inhibited rat SRD5A1 and AKR1C14 with IC 50 values of 1.556 ± 0.078 and 1.017 ± 0.072 μM, respectively, when 1000 nM steroid substrates were used. Ziram weakly inhibited RDH2 at 100 μM, when androstanediol (1000 nM) was used. Ziram competitively inhibited SRD5A1 and non-competitively inhibited AKR1C14 when steroid substrates were used. Docking study showed that ziram bound to NADPH-binding pocket of AKR1C14. In conclusion, our results demonstrated that ziram inhibited SRD5A1 and AKR1C14 activities, thus possibly interfering with neurosteroid production in rats.

  17. Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis.

    PubMed

    Gu, Sol-A; Jun, Chanha; Joo, Jeong Chan; Kim, Seil; Lee, Seung Hwan; Kim, Yong Hwan

    2014-05-10

    Lactobacillus coryniformis is known to produce d-lactic acid as a dominant fermentation product at a cultivation temperature of approximately 30°C. However, the considerable production of l-lactic acid is observed when the fermentation temperature is greater than 40°C. Because optically pure lactates are synthesized from pyruvate by the catalysis of chiral-specific d- or l-lactate dehydrogenase, the higher thermostability of l-LDHs is assumed to be one of the key factors decreasing the optical purity of d-lactic acid produced from L. coryniformis at high temperature. To verify this hypothesis, two types of d-ldh genes and six types of l-ldh genes based on the genomic information of L. coryniformis were synthesized and expressed in Escherichia coli. Among the LDHs tested, five LDHs showed activity and were used to construct polyclonal antibodies. d-LDH1, l-LDH2, and l-LDH3 were found to be expressed in L. coryniformis by Western blotting analysis. The half-life values (t1/2) of the LDHs at 40°C were estimated to be 10.50, 41.76, and 2311min, and the T50(10) values were 39.50, 39.90, and 58.60°C, respectively. In addition, the Tm values were 36.0, 41.0, and 62.4°C, respectively, which indicates that l-LDH has greater thermostability than d-LDH. The higher thermostability of l-LDHs compared with that of d-LDH1 may be a major reason why the enantiopurity of d-lactic acid is decreased at high fermentation temperatures. The key enzymes characterized will suggest a direction for the design of genetically modified lactic acid bacteria to produce optically pure d-lactic acid. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Ebselen protects against behavioral and biochemical toxicities induced by 3-nitropropionic acid in rats: correlations between motor coordination, reactive species levels, and succinate dehydrogenase activity.

    PubMed

    Wilhelm, Ethel A; Bortolatto, Cristiani F; Jesse, Cristiano R; Luchese, Cristiane

    2014-12-01

    The protective effect of ebselen was investigated against 3-nitropropionic acid (3-NP)-induced behavioral and biochemical toxicities in rats. Ebselen (10 or 25 mg/kg, intragastrically) was administered to rats 30 min before 3-NP (20 mg/kg, intraperitoneally) once a day for a period of 4 days. Locomotor activity, motor coordination, and body weight gain were determined. The striatal content of reactive oxygen species (ROS), reduced glutathione (GSH), ascorbic acid (AA), and protein carbonyl as well as catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) activities was determined 24 h after the last dose of 3-NP. Na(+)/ K(+)-ATPase, succinate dehydrogenase (SDH), and δ-aminolevulinic dehydratase (δ-ALA-D) activities were also determined. The results demonstrated that ebselen at a dose of 25 mg/kg, but not at 10 mg/kg, protected against (1) a decrease in locomotor activity, motor coordination impairment, and body weight loss; (2) striatal oxidative damage, which was characterized by an increase in ROS levels, protein carbonyl content, and GR activity, an inhibition of CAT and GPx activities, and a decrease in GSH levels; and (3) an inhibition of SDH and Na(+)/K(+)-ATPase activities, induced by 3-NP. GST activity and AA levels were not modified by ebselen or 3-NP. Ebselen was not effective against the inhibition of δ-ALA-D activity induced by 3-NP. The results revealed a significant correlation between SDH activity and ROS levels, and SDH activity and latency to fall (rotarod test). The present study highlighted the protective effect of ebselen against 3-NP-induced toxicity in rats.

  19. Malate dehydrogenase of the cytosol. A kinetic investigation of the reaction mechanism and a comparison with lactate dehydrogenase.

    PubMed Central

    Lodola, A; Shore, J D; Parker, D M; Holbrook, J

    1978-01-01

    1. The mechanisms of the reduction of oxaloacetate and of 3-fluoro-oxaloacetate by NADH catalysed by cytoplasmic pig heart malate dehydrogenase (MDH) were investigated. 2. One mol of dimeric enzyme produces 1.7+/-0.4 mol of enzyme-bound NADH when mixed with saturating NAD+ and L-malate at a rate much higher than the subsequent turnover at pH 7.5. 3. Transient measurements of protein and nucleotide fluorescence show that the steady-state complex in the forward direction is MDH-NADH and in the reverse direction MDH-NADH-oxaloacetate. 4. The rate of dissociation of MDH-NADH was measured and is the same as Vmax. in the forward direction at pH 7.5. Both NADH-binding sites are kinetically equivalent. The rate of dissociation varies with pH, as does the equilibrium binding constant for NADH. 5. 3-Fluoro-oxaloacetate is composed of three forms (F1, F2 and S) of which F1 and F2 are immediately substrates for the enzyme. The third form, S, is not a substrate, but when the F forms are used up form S slowly and non-enzymically equilibrates to yield the active substrate forms. S is 2,2-dihydroxy-3-fluorosuccinate. 6. The steady-state compound during the reduction of form F1 is an enzyme form that does not contain NADH, probably MDH-NAD+-fluoromalate. The steady-state compound for form F2 is an enzyme form containing NADH, probably MDH-NADH-fluoro-oxaloacetate. 7. The rate-limiting reaction in the reduction of form F2 shows a deuterium isotope rate ratio of 4 when NADH is replaced by its deuterium analogue, and the rate-limiting reaction is concluded to be hydride transfer. 8. A novel titration was used to show that dimeric cytoplasmic malate dehydrogenase contains two sites that can rapidly reduce the F1 form of 3-fluoro-oxaloacetate. The enzyme shows 'all-of-the-sites' behaviour. 9. Partial mechanisms are proposed to explain the enzyme-catalysed transformations of the natural and the fluoro substrates. These mechanisms are similar to the mechanism of pig heart lactate

  20. Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells

    PubMed Central

    2012-01-01

    Background Hepatic metabolic derangements are key components in the development of fatty liver disease. AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and carnitine palmitoyl transferase 1 (CPT-1) pathway. In this study, cyanidin-3-O-β-glucoside (Cy-3-g), a typical anthocyanin pigment was used to examine its effects on AMPK activation and fatty acid metabolism in human HepG2 hepatocytes. Results Anthocyanin Cy-3-g increased cellular AMPK activity in a calmodulin kinase kinase dependent manner. Furthermore, Cy-3-g substantially induced AMPK downstream target ACC phosphorylation and inactivation, and then decreased malonyl CoA contents, leading to stimulation of CPT-1 expression and significant increase of fatty acid oxidation in HepG2 cells. These effects of Cy-3-g are largely abolished by pharmacological and genetic inhibition of AMPK. Conclusion This study demonstrates that Cy-3-g regulates hepatic lipid homeostasis via an AMPK-dependent signaling pathway. Targeting AMPK activation by anthocyanin may represent a promising approach for the prevention and treatment of obesity-related nonalcoholic fatty liver disease. PMID:22243683

  1. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C.

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases thatmore » includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal

  2. [Changes of protein tyrosine phosphorylation in erythrocyte band 3 glucose-6-phosphate dehydrogenase deficiency].

    PubMed

    Yu, Guoyu; Li, Jialin; Tian, Xingya; Lin, Hong; Wang, Xiaoying

    2002-11-01

    To explore the hemolytic mechanism of glucose-6-phosphate dehydrogenase (G6PD) deficient erythrocytes in the view of phosphorylation of membrane protein. The alternation of membrane protein phosphorylation and the effect of dithiothreitol (DTT) on protein phosphorylation were analysed by Western blot technique. The activity of phosphotyrosine phosphatase (PTPs) was determined by using p-nitrophenyl phosphate as substrate. Tyrosine phosphorylation of band 3 protein was obviously enhanced in G6PD-deficient erythrocytes. The activity of PTPs was low compared to the normal erythrocytes. The level of phosphotyrosine in G6PD-deficient erythrocytes incubated with DTT was almost the same as in those without DTT. The results were consistent with the activity of PTPs. PTPs activity reduction and tyrosine phosphorylation enhancement induced by oxidation in G6PD deficiency play an important role in erythrocytes hemolysis. However, the alternation of thiol group is not the only factor affecting the activity of PTPs in G6PD-deficient erythrocytes.

  3. PhaM is the physiological activator of poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) in Ralstonia eutropha.

    PubMed

    Pfeiffer, Daniel; Jendrossek, Dieter

    2014-01-01

    Poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) is the key enzyme of PHB synthesis in Ralstonia eutropha and other PHB-accumulating bacteria and catalyzes the polymerization of 3-hydroxybutyryl-CoA to PHB. Activity assays of R. eutropha PHB synthase are characterized by the presence of lag phases and by low specific activity. It is assumed that the lag phase is caused by the time necessary to convert the inactive PhaC1 monomer into the active dimeric form by an unknown priming process. The lag phase can be reduced by addition of nonionic detergents such as hecameg [6-O-(N-heptyl-carbamoyl)-methyl-α-D-glucopyranoside], which apparently accelerates the formation of PhaC1 dimers. We identified the PHB granule-associated protein (PGAP) PhaM as the natural primer (activator) of PHB synthase activity. PhaM was recently discovered as a novel type of PGAP with multiple functions in PHB metabolism. Addition of PhaM to PHB synthase assays resulted in immediate polymerization of 3HB coenzyme A with high specific activity and without a significant lag phase. The effect of PhaM on (i) PhaC1 activity, (ii) oligomerization of PhaC1, (iii) complex formation with PhaC1, and (iv) PHB granule formation in vitro and in vivo was shown by cross-linking experiments of purified proteins (PhaM, PhaC1) with glutardialdehyde, by size exclusion chromatography, and by fluorescence microscopic detection of de novo-synthesized PHB granules.

  4. Proteins Differentially Expressed in the Pancreas of Hepatic Alcohol Dehydrogenase-Deficient Deer Mice Fed Ethanol For 3 Months.

    PubMed

    Bhopale, Kamlesh K; Amer, Samir M; Kaphalia, Lata; Soman, Kizhake V; Wiktorowicz, John E; Shakeel Ansari, Ghulam A; Kaphalia, Bhupendra S

    2017-07-01

    The aim of this study was to identify differentially expressed proteins in the pancreatic tissue of hepatic alcohol dehydrogenase-deficient deer mice fed ethanol to understand metabolic basis and mechanism of alcoholic chronic pancreatitis. Mice were fed liquid diet containing 3.5 g% ethanol daily for 3 months, and differentially expressed pancreatic proteins were identified by protein separation using 2-dimensional gel electrophoresis and identification by mass spectrometry. Nineteen differentially expressed proteins were identified by applying criteria established for protein identification in proteomics. An increased abundance was found for ribosome-binding protein 1, 60S ribosomal protein L31-like isoform 1, histone 4, calcium, and adenosine triphosphate (ATP) binding proteins and the proteins involved in antiapoptotic processes and endoplasmic reticulum function, stress, and/or homeostasis. Low abundance was found for endoA cytokeratin, 40S ribosomal protein SA, amylase 2b isoform precursor, serum albumin, and ATP synthase subunit β and the proteins involved in cell motility, structure, and conformation. Chronic ethanol feeding in alcohol dehydrogenase-deficient deer mice differentially expresses pancreatic functional and structural proteins, which can be used to develop biomarker(s) of alcoholic chronic pancreatitis, particularly amylase 2b precursor, and 60 kDa heat shock protein and those involved in ATP synthesis and blood osmotic pressure.

  5. 13-cis-retinoic acid competitively inhibits 3 alpha-hydroxysteroid oxidation by retinol dehydrogenase RoDH-4: a mechanism for its anti-androgenic effects in sebaceous glands?

    PubMed

    Karlsson, Teresa; Vahlquist, Anders; Kedishvili, Natalia; Törmä, Hans

    2003-03-28

    Retinol dehydrogenase-4 (RoDH-4) converts retinol and 13-cis-retinol to corresponding aldehydes in human liver and skin in the presence of NAD(+). RoDH-4 also converts 3 alpha-androstanediol and androsterone into dihydrotestosterone and androstanedione, which may stimulate sebum secretion. This oxidative 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) activity of RoDH-4 is competitively inhibited by retinol and 13-cis-retinol. Here, we further examine the substrate specificity of RoDH-4 and the inhibition of its 3 alpha-HSD activity by retinoids. Recombinant RoDH-4 oxidized 3,4-didehydroretinol-a major form of vitamin A in the skin-to its corresponding aldehyde. 13-cis-retinoic acid (isotretinoin), 3,4-didehydroretinoic acid, and 3,4-didehydroretinol, but not all-trans-retinoic acid or the synthetic retinoids acitretin and adapalene, were potent competitive inhibitors of the oxidative 3 alpha-HSD activity of RoDH-4, i.e., reduced the formation of dihydrotestosterone and androstandione in vitro. Extrapolated to the in vivo situation, this effect might explain the unique sebosuppressive effect of isotretinoin when treating acne.

  6. Adhesion activity of glyceraldehyde-3-phosphate dehydrogenase in a Chinese Streptococcus suis type 2 strain.

    PubMed

    Wang, Kaicheng; Lu, Chengping

    2007-01-01

    A total of 36 streptococcal strains, including seven S. equi ssp.zooepidemicus, two S. suis type 1 (SS1), 24 SS2, two SS9, and one SS7, were tested for glyceraldehyde-3-phosphate dehydrogenase gene (gapdh). Except from non-virulent SS2 strain T1 5, all strains harboured gapdh. The gapdh of Chinese Sichuan SS2 isolate ZY05719 and Jiangsu SS2 isolate HA9801 were sequenced and then compared with published sequences in the GenBank. The comparison revealed a 99.9 % and 99.8 % similarity of ZY05719 and HA9801, respectively, with the published sequence. Adherence assay data demonstrated a significant ((p<0.05)) reduction in adhesion of SS2 in HEp-2 cells pre-incubated with purified GAPDH compared to non pre-incubated controls, suggesting the GAPDH mediates SS2 bacterial adhesion to host cells.

  7. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels.

    PubMed

    Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Akgöl, Sinan; Denizli, Adil

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate-glycidylmethacrylate) [poly(HEMA-GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N'-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA-GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30-50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA-GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA-GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0M NaCI at pH8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS-PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. © 2013 Elsevier B.V. All rights reserved.

  8. Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Mohr, S; Hallak, H; de Boitte, A; Lapetina, E G; Brüne, B

    1999-04-02

    S-Nitrosylation of protein thiol groups by nitric oxide (NO) is a widely recognized protein modification. In this study we show that nitrosonium tetrafluoroborate (BF4NO), a NO+ donor, modified the thiol groups of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by S-nitrosylation and caused enzyme inhibition. The resultant protein-S-nitrosothiol was found to be unstable and to decompose spontaneously, thereby restoring enzyme activity. In contrast, the NO-releasing compound S-nitrosoglutathione (GSNO) promoted S-glutathionylation of a thiol group of GAPDH both in vitro and under cellular conditions. The GSH-mixed protein disulfide formed led to a permanent enzyme inhibition, but upon dithiothreitol addition a functional active GAPDH was recovered. This S-glutathionylation is specific for GSNO because GSH itself was unable to produce protein-mixed disulfides. During cellular nitrosative stress, the production of intracellular GSNO might channel signaling responses to form protein-mixed disulfide that can regulate intracellular function.

  9. Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity.

    PubMed

    Shin, Seoung Woo; Oh, Chang Joo; Kil, In Sup; Park, Jeen-Woo

    2009-04-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.

  10. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling.

    PubMed

    Gao, Sheng; Alarcón, Claudio; Sapkota, Gopal; Rahman, Sadia; Chen, Pan-Yu; Goerner, Nina; Macias, Maria J; Erdjument-Bromage, Hediye; Tempst, Paul; Massagué, Joan

    2009-11-13

    TGF-beta induces phosphorylation of the transcription factors Smad2 and Smad3 at the C terminus as well as at an interdomain linker region. TGF-beta-induced linker phosphorylation marks the activated Smad proteins for proteasome-mediated destruction. Here, we identify Nedd4L as the ubiquitin ligase responsible for this step. Through its WW domain, Nedd4L specifically recognizes a TGF-beta-induced phosphoThr-ProTyr motif in the linker region, resulting in Smad2/3 polyubiquitination and degradation. Nedd4L is not interchangeable with Smurf1, a ubiquitin ligase that targets BMP-activated, linker-phosphorylated Smad1. Nedd4L limits the half-life of TGF-beta-activated Smads and restricts the amplitude and duration of TGF-beta gene responses, and in mouse embryonic stem cells, it limits the induction of mesoendodermal fates by Smad2/3-activating factors. Hierarchical regulation is provided by SGK1, which phosphorylates Nedd4L to prevent binding of Smad2/3. Previously identified as a regulator of renal sodium channels, Nedd4L is shown here to play a broader role as a general modulator of Smad turnover during TGF-beta signal transduction.

  11. l-Lactate metabolism in HEP G2 cell mitochondria due to the l-lactate dehydrogenase determines the occurrence of the lactate/pyruvate shuttle and the appearance of oxaloacetate, malate and citrate outside mitochondria.

    PubMed

    Pizzuto, Roberto; Paventi, Gianluca; Porcile, Carola; Sarnataro, Daniela; Daniele, Aurora; Passarella, Salvatore

    2012-09-01

    As part of an ongoing study of l-lactate metabolism both in normal and in cancer cells, we investigated whether and how l-lactate metabolism occurs in mitochondria of human hepatocellular carcinoma (Hep G2) cells. We found that Hep G2 cell mitochondria (Hep G2-M) possess an l-lactate dehydrogenase (ml-LDH) restricted to the inner mitochondrial compartments as shown by immunological analysis, confocal microscopy and by assaying ml-LDH activity in solubilized mitochondria. Cytosolic and mitochondrial l-LDHs were found to differ from one another in their saturation kinetics. Having shown that l-lactate itself can enter Hep G2 cells, we found that Hep G2-M swell in ammonium l-lactate, but not in ammonium pyruvate solutions, in a manner inhibited by mersalyl, this showing the occurrence of a carrier-mediated l-lactate transport in these mitochondria. Occurrence of the l-lactate/pyruvate shuttle and the appearance outside mitochondria of oxaloacetate, malate and citrate arising from l-lactate uptake and metabolism together with the low oxygen consumption and membrane potential generation are in favor of an anaplerotic role for l-LAC in Hep G2-M. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Salt-induction of betaine aldehyde dehydrogenase mRNA, protein, and enzymatic activity in sugar beet. [Beta vulgaris L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCue, K.F.; Hanson, A.D.

    1991-05-01

    In Chenopodiaceae such as sugar beet (Beta vulgaris L.), glycine betaine (betaine) accumulates in response to drought or salinity stress and functions in the cytoplasm as a compatible osmolyte. The last enzyme in the biosynthetic pathway, betaine aldehyde dehydrogenase (BADH), increases as much as 4-fold in response to rising salinity in the external medium. This increase is accompanied by an increase in both protein and mRNA levels. The steady state increases in BADH were examined at a series of NaCl concentrations from 100 to 500 mM NaCl. BADH protein levels were examined by native PAGE, and by western blot analysismore » using antibodies raised against BADH purified from spinach. mRNA levels were examined by northern plot analysis of total RNA isolated from the leaves and hybridized with a sugar beet BADH cDNA clone. The time course for BADH mRNA induction was determined in a salt shock experiment utilizing 400 mM NaCl added to the external growth medium. Disappearance of BADH was examined in a salt relief experiment using plants step-wise salinized to 500 mM NaCl and then returned to 0 mM NaCl.« less

  13. Plasmodium glyceraldehyde-3-phosphate dehydrogenase: A potential malaria diagnostic target.

    PubMed

    Krause, Robert G E; Hurdayal, Ramona; Choveaux, David; Przyborski, Jude M; Coetzer, Theresa H T; Goldring, J P Dean

    2017-08-01

    Malaria rapid diagnostic tests (RDTs) are immunochromatographic tests detecting Plasmodial histidine-rich protein 2 (HRP2), lactate dehydrogenase (LDH) and aldolase. HRP2 is only expressed by Plasmodium falciparum parasites and the protein is not expressed in several geographic isolates. LDH-based tests lack sensitivity compared to HRP2 tests. This study explored the potential of the Plasmodial glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a new malaria diagnostic biomarker. The P. falciparum and P. yoelii proteins were recombinantly expressed in BL21(DE3) Escherischia coli host cells and affinity purified. Two epitopes (CADGFLLIGEKKVSVFA and CAEKDPSQIPWGKCQV) specific to P. falciparum GAPDH and one common to all mammalian malaria species (CKDDTPIYVMGINH) were identified. Antibodies were raised in chickens against the two recombinant proteins and the three epitopes and affinity purified. The antibodies detected the native protein in parasite lysates as a 38 kDa protein and immunofluorescence verified a parasite cytosolic localization for the native protein. The antibodies suggested a 4-6 fold higher concentration of native PfGAPDH compared to PfLDH in immunoprecipitation and ELISA formats, consistent with published proteomic data. PfGAPDH shows interesting potential as a malaria diagnostic biomarker. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Variants of glycerol dehydrogenase having D-lactate dehydrogenase activity and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qingzhao; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    The present invention provides methods of designing and generating glycerol dehydrogenase (GlyDH) variants that have altered function as compared to a parent polypeptide. The present invention further provides nucleic acids encoding GlyDH polypeptide variants having altered function as compared to the parent polypeptide. Host cells comprising polynucleotides encoding GlyDH variants and methods of producing lactic acids are also provided in various aspects of the invention.

  15. Formate Dehydrogenase of Clostridium thermoaceticum: Incorporation of Selenium-75, and the Effects of Selenite, Molybdate, and Tungstate on the Enzyme

    PubMed Central

    Andreesen, Jan R.; Ljungdahl, Lars G.

    1973-01-01

    The formation of the nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase in Clostridium thermoaceticum is stimulated by the presence of molybdate and selenite in the growth medium. The highest formate dehydrogenase activity was obtained with 2.5 × 10−4 M Na2MoO4 and 5 × 10−5 Na2SeO3. Tungstate but not vanadate could replace molybdate and stimulate the formation of formate dehydrogenase. Tungstate stimulated activity more than molybdate, and in combination with molybdate the stimulation of formation of formate dehydrogenase was additive. Formate dehydrogenase was isolated from cells grown in the presence of Na275SeO2, and a correlation was observed between bound 75Se and enzyme activity. PMID:4147651

  16. Butylated hydroxyanisole alters rat 5α-reductase and 3α-hydroxysteroid dehydrogenase: Implications for influences of neurosteroidogenesis.

    PubMed

    Guo, Jingjing; Li, Lili; Zhou, Songyi; Su, Ying; Li, Xiaoheng; Sun, Jianliang; Ge, Ren-Shan

    2017-07-13

    Butylated hydroxyanisole is a synthetic antioxidant. It may affect the function of the nerve system. The objective of the present study is to investigate the direct effects of butylated hydroxyanisole on rat brain neurosteroidogenic 5α-reductase 1 (SRD5A1), 3α-hydroxysteroid dehydrogenase (AKR1C14), and retinol dehydrogenase 2 (RDH2). Rat SRD5A1, AKR1C14, and RDH2 were cloned and expressed in COS1 cells, and the effects of butylated hydroxyanisole on these enzyme activities were measured. Butylated hydroxyanisole inhibited SRD5A1, AKR1C14, and RDH2 with IC 50 values of 4.731±0.079μM, 5.753±0.073μM, and over 100μM, respectively. Butylated hydroxyanisole is a competitive inhibitor for both SRD5A1 and AKR1C14. Docking analysis shows that butylated hydroxyanisole binds to the dihydrotestosterone-binding site of AKR1C14. In conclusion, butylated hydroxyanisole is a potent inhibitor of SRD5A1 and AKR1C14, thus reducing the formation of active neurosteroids. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Impact of androstane A- and D-ring inversion on 17β-hydroxysteroid dehydrogenase type 3 inhibitory activity, androgenic effect and metabolic stability.

    PubMed

    Cortés-Benítez, Francisco; Roy, Jenny; Maltais, René; Poirier, Donald

    2017-04-01

    17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is a major player in human endocrinology, being one of the most important enzymes involved in testosterone production. To capitalize on the discovery of RM-532-105, a steroidal 17β-HSD3 inhibitor, we explored the effect of its backbone configuration on inhibitory activity, androgenic profile, and metabolic stability. Two modifications that greatly alter the natural shape of steroids, i.e. inversion of the methyl on carbon 13 (13α-CH 3 instead of 13β-CH 3 ) and inversion of the hydrogen on carbon 5 (5β-H instead of 5α-H), were tested after the syntheses in 6 steps of 2 isomeric forms (5α/13α-RM-532-105 (6a) and 5β/13β-RM-532-105 (6b), respectively) of the 17β-HSD3 inhibitor RM-532-105 (5α/13β-configurations). For compound 6b, a cis/trans junction of the A/B rings did not significantly alter the inhibitory activity on 17β-HSD3 (IC 50 =0.15μM) as well as the liver microsomal stability (16.6% of 6b remaining after 1h incubation) compared to RM-532-105 (IC 50 =0.11μM and 14.1% remaining). In contrast, a trans/cis junction of C/D rings reduced the inhibitory activity on 17β-HSD3 (IC 50 =1.09μM) but increased the metabolic stability with 29.4% of compound 6a remaining after incubation. The structural modifications represented by compounds 6a and 6b did not change the non-androgenicity profile of an androsterone derivative such as RM-532-105, but slightly increased its cytotoxic activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Up-regulation of hepatic Acyl CoA: Diacylglycerol acyltransferase-1 (DGAT-1) expression in nephrotic syndrome.

    PubMed

    Vaziri, Nosratola D; Kim, Choong H; Phan, Dennis; Kim, Sara; Liang, Kaihui

    2004-07-01

    Nephrotic syndrome is associated with hypercholesterolemia, hypertriglyceridemia, and marked elevations of plasma low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL). Hypertriglyceridemia in nephrotic syndrome is accompanied by increased hepatic fatty acid synthesis, elevated triglyceride secretion, as well as lipoprotein lipase, VLDL-receptor, and hepatic triglyceride lipase deficiencies, which lead to impaired clearance of triglyceride-rich lipoproteins. Acyl CoA: diacylglycerol acyltransferase (DGAT) is a microsomal enzyme that joins acyl CoA to 1, 2-diacylglycerol to form triglyceride. Two distinct DGATs (DGAT-1 and DGAT2) have recently been identified in the liver and other tissues. The present study tested the hypothesis that the reported increase in hepatic triglyceride secretion in nephrotic syndrome may be caused by up-regulation of DGAT. Male Sprague-Dawley rats were rendered nephrotic by two sequential injections of puromycin aminonucleoside (130 mg/kg on day 1 and 60 mg/kg on day 14) and studied on day 30. Placebo-treated rats served as controls. Hepatic DGAT-1 and DGAT-2 mRNA abundance and enzymatic activity were measured. The nephrotic group exhibited heavy proteinuria, hypoalbuminemia, hypercholesterolemia, hypertriglyceridemia, and marked elevation of VLDL concentration. Hepatic DGAT-1 mRNA, DGAT-1, and total DGAT activity were significantly increased, whereas DGAT-2 mRNA abundance and activity were unchanged in the nephrotic rats compared to the control animals. The functional significance of elevation of DGAT activity was illustrated by the reduction in microsomal free fatty acid concentration in the liver of nephrotic animals. Nephrotic syndrome results in up-regulation of hepatic DGAT-1 expression and activity, which can potentially contribute to the associated hypertriglyceridemia by enhancing triglyceride synthesis. Thus, it appears that both depressed catabolism and increased synthetic capacity contribute to

  19. Dissimilar Deficiency of Glucose-6-Phosphate Dehydrogenase (G-6-PD) among the AFARS and the Somalis of Djibouti

    DTIC Science & Technology

    1991-01-01

    DEFICIENCY OF GLUCOSE - 6 - PHOSPHATE DEHYDROGENASE (G- 6 ...the prevalence of deficient activity of the enzyme glucose - 6 - phosphate dehydrogenase (G- 6 -PD) among - Ces difficiences enzymatiques sant plus particu...Screening for glucose - 6 - 3 - CaosBy W.H. - Hematologic diseases. In : I lunter’s Tropical phosphate dehydrogenase (G- 6 -PD) deficiency by a simple

  20. Cytoplastic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with ATG3 to Negatively Regulate Autophagy and Immunity in Nicotiana benthamiana

    PubMed Central

    Han, Shaojie; Wang, Yan; Zheng, Xiyin; Jia, Qi; Zhao, Jinping; Bai, Fan; Hong, Yiguo; Liu, Yule

    2015-01-01

    Autophagy as a conserved catabolic pathway can respond to reactive oxygen species (ROS) and plays an important role in degrading oxidized proteins in plants under various stress conditions. However, how ROS regulates autophagy in response to oxidative stresses is largely unknown. Here, we show that autophagy-related protein 3 (ATG3) interacts with the cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPCs) to regulate autophagy in Nicotiana benthamiana plants. We found that oxidative stress inhibits the interaction of ATG3 with GAPCs. Silencing of GAPCs significantly activates ATG3-dependent autophagy, while overexpression of GAPCs suppresses autophagy in N. benthamiana plants. Moreover, silencing of GAPCs enhances N gene-mediated cell death and plant resistance against both incompatible pathogens Tobacco mosaic virus and Pseudomonas syringae pv tomato DC3000, as well as compatible pathogen P. syringae pv tabaci. These results indicate that GAPCs have multiple functions in the regulation of autophagy, hypersensitive response, and plant innate immunity. PMID:25829441

  1. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ching-Chu

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0–15 μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis ofmore » 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48 h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. - Highlights: • Andrographolide is a diterpenoid

  2. Regulation of 3β-Hydroxysteroid Dehydrogenase/Δ5-Δ4 Isomerase: A Review

    PubMed Central

    Rasmussen, Martin Krøyer; Ekstrand, Bo; Zamaratskaia, Galia

    2013-01-01

    This review focuses on the expression and regulation of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD), with emphasis on the porcine version. 3β-HSD is often associated with steroidogenesis, but its function in the metabolism of both steroids and xenobiotics is more obscure. Based on currently available literature covering humans, rodents and pigs, this review provides an overview of the present knowledge concerning the regulatory mechanisms for 3β-HSD at all omic levels. The HSD isoenzymes are essential in steroid hormone metabolism, both in the synthesis and degradation of steroids. They display tissue-specific expression and factors influencing their activity, which therefore indicates their tissue-specific responses. 3β-HSD is involved in the synthesis of a number of natural steroid hormones, including progesterone and testosterone, and the hepatic degradation of the pheromone androstenone. In general, a number of signaling and regulatory pathways have been demonstrated to influence 3β-HSD transcription and activity, e.g., JAK-STAT, LH/hCG, ERα, AR, SF-1 and PPARα. The expression and enzymic activity of 3β-HSD are also influenced by external factors, such as dietary composition. Much of the research conducted on porcine 3β-HSD is motivated by its importance for the occurrence of the boar taint phenomenon that results from high concentrations of steroids such as androstenone. This topic is also examined in this review. PMID:24002028

  3. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase.

    PubMed

    Liang, Bo; Zhang, Shu; Lang, Qiaolin; Song, Jianxia; Han, Lihui; Liu, Aihua

    2015-07-16

    A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP(+)-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP(+) involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current-time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM-1 mM and 2-10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N=3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A single arginine residue is required for the interaction of the electron transferring flavoprotein (ETF) with three of its dehydrogenase partners.

    PubMed

    Parker, Antony R

    2003-12-01

    The interaction of several dehydrogenases with the electron transferring flavoprotein (ETF) is a crucial step required for the successful transfer of electrons into the electron transport chain. The exact determinants regarding the interaction of ETF with its dehydrogenase partners are still unknown. Chemical modification of ETF with arginine-specific reagents resulted in the loss, to varying degrees, of activity with medium chain acyl-coenzyme A dehydrogenase (MCAD). The kinetic profiles showed the inactivations followed pseudo-first-order kinetics for all reagents used. For activity with MCAD, maximum inactivation of ETF was accomplished by 2,3-butanedione (4% residual activity after 120 min) and it was shown that modification of one arginine residue was responsible for the inactivation. Almost 100% restoration of this ETF activity was achieved upon incubation with free arginine. However, the same 2,3-butanedione modified ETF only possessed decreased activity with dimethylglycine-(DMGDH, 44%) and sarcosine- (SDH, 27%) dehydrogenases unlike the abolition with MCAD. Full protection of ETF from arginine modification by 2,3-butanedione was achieved using substrate-protected DMGDH, MCAD and SDH respectively. Cross-protection studies of ETF with the three dehydrogenases implied use of the same single arginine residue in the binding of all three dehydrogenases. These results lead us to conclude that this single arginine residue is essential in the binding of the ETF to MCAD, but only contributes partially to the binding of ETF to SDH and DMGDH and thus, the determinants of the dehydrogenase binding sites overlap but are not identical.

  5. The safety of Lipistart, a medium-chain triglyceride based formula, in the dietary treatment of long-chain fatty acid disorders: a phase I study.

    PubMed

    MacDonald, Anita; Webster, Rachel; Whitlock, Matthew; Gerrard, Adam; Daly, Anne; Preece, Mary Anne; Evans, Sharon; Ashmore, Catherine; Chakrapani, Anupam; Vijay, Suresh; Santra, Saikat

    2018-03-28

    Children with long-chain fatty acid β-oxidation disorders (LCFAOD) presenting with clinical symptoms are treated with a specialist infant formula, with medium chain triglyceride (MCT) mainly replacing long chain triglyceride (LCT). It is essential that the safety and efficacy of any new specialist formula designed for LCFAOD be tested in infants and children. In an open-label, 21-day, phase I trial, we studied the safety of a new MCT-based formula (feed 1) in six well-controlled children (three male), aged 7-13 years (median 9 years) with LCFAOD (very long chain acyl CoA dehydrogenase deficiency [VLCADD], n=2; long chain 3-hydroxyacyl CoA dehydrogenase deficiency [LCHADD], n=2; carnitine acyl carnitine translocase deficiency [CACTD], n=2). Feed 1 (Lipistart; Vitaflo) contained 30% energy from MCT, 7.5% LCT and 3% linoleic acid and it was compared with a conventional MCT feed (Monogen; Nutricia) (feed 2) containing 17% energy from MCT, 3% LCT and 1.1% linoleic acid. Subjects consumed feed 2 for 7 days then feed 1 for 7 days and finally resumed feed 2 for 7 days. Vital signs, blood biochemistry, ECG, weight, height, food/feed intake and symptoms were monitored. Five subjects completed the study. Their median daily volume of both feeds was 720 mL (range 500-1900 mL/day). Feed 1 was associated with minimal changes in tolerance, free fatty acids (FFA), acylcarnitines, 3-hydroxybutyrate (3-HB), creatine kinase (CK), blood glucose, liver enzymes and no change in an electrocardiogram (ECG). No child complained of muscle pain or symptoms associated with LCFAOD on either feed. This is the first safety trial reported of an MCT formula specifically designed for infants and children with LCFAOD. In this short-term study, it appeared safe and well tolerated in this challenging group.

  6. Central carbon metabolism in marine bacteria examined with a simplified assay for dehydrogenases.

    PubMed

    Wen, Weiwei; Wang, Shizhen; Zhou, Xiaofen; Fang, Baishan

    2013-06-01

    A simplified assay platform was developed to measure the activities of the key oxidoreductases in central carbon metabolism of various marine bacteria. Based on microplate assay, the platform was low-cost and simplified by unifying the reaction conditions of enzymes including temperature, buffers, and ionic strength. The central carbon metabolism of 16 marine bacteria, involving Pseudomonas, Exiguobacterium, Marinobacter, Citreicella, and Novosphingobium were studied. Six key oxidoreductases of central carbon metabolism, glucose-6-phosphate dehydrogenase, pyruvate dehydrogenase, 2-ketoglutarate dehydrogenase, malate dehydrogenase, malic enzyme, and isocitrate dehydrogenase were investigated by testing their activities in the pathway. High activity of malate dehydrogenase was found in Citreicella marina, and the specific activity achieved 22 U/mg in cell crude extract. The results also suggested that there was a considerable variability on key enzymes' activities of central carbon metabolism in some strains which have close evolutionary relationship while they adapted to the requirements of the niche they (try to) occupy.

  7. Stat5-mediated regulation of the human type II 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene: activation by prolactin.

    PubMed

    Feltus, F A; Groner, B; Melner, M H

    1999-07-01

    Altered PRL levels are associated with infertility in women. Molecular targets at which PRL elicits these effects have yet to be determined. These studies demonstrate transcriptional regulation by PRL of the gene encoding the final enzymatic step in progesterone biosynthesis: 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase (3beta-HSD). A 9/9 match with the consensus Stat5 response element was identified at -110 to -118 in the human Type II 3beta-HSD promoter. 3beta-HSD chloramphenicol acetyltransferase (CAT) reporter constructs containing either an intact or mutated Stat5 element were tested for PRL activation. Expression vectors for Stat5 and the PRL receptor were cotransfected with a -300 --> +45 3beta-HSD CAT reporter construct into HeLa cells, which resulted in a 21-fold increase in reporter activity in the presence of PRL. Promoter activity showed an increased response with a stepwise elevation of transfected Stat5 expression or by treatment with increasing concentrations of PRL (max, 250 ng/ml). This effect was dramatically reduced when the putative Stat5 response element was removed by 5'-deletion of the promoter or by the introduction of a 3-bp mutation into critical nucleotides in the element. Furthermore, 32P-labeled promoter fragments containing the Stat5 element were shifted in electrophoretic mobility shift assay experiments using nuclear extracts from cells treated with PRL, and this complex was supershifted with antibodies to Stat5. These results demonstrate that PRL has the ability to regulate expression of a key human enzyme gene (type II 3beta-HSD) in the progesterone biosynthetic pathway, which is essential for maintaining pregnancy.

  8. Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003.

    PubMed

    Xu, Sha; Wang, Xiaobei; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-10-18

    Production of L-sorbose from D-sorbitol by Gluconobacter oxydans is the first step to produce L-ascorbic acid on industrial scale. The sldhAB gene, which encodes the sorbitol dehydrogenase (SLDH), was overexpressed in an industrial strain G. oxydans WSH-003 with a strong promoter, P tufB . To enhance the mRNA abundance, a series of artificial poly(A/T) tails were added to the 3'-terminal of sldhAB gene. Besides, their role in sldhAB overexpression and their subsequent effects on L-sorbose production were investigated. The mRNA abundance of the sldhAB gene could be enhanced in G. oxydans by suitable poly(A/T) tails. By self-overexpressing the sldhAB gene in G. oxydans WSH-003 with an optimal poly(A/T) tail under the constitutive promoter P tufB , the titer and the productivity of L-sorbose were enhanced by 36.3% and 25.0%, respectively, in a 1-L fermenter. Immobilization of G. oxydans-sldhAB6 cells further improved the L-sorbose titer by 33.7% after 20 days of semi-continuous fed-batch fermentation. The artificial poly(A/T) tails could significantly enhance the mRNA abundance of the sldhAB. Immobilized G. oxydans-sldhAB6 cells could further enlarge the positive effect caused by enhanced mRNA abundance of the sldhAB.

  9. Multiple Animal Studies for Medical Chemical Defense Program in Soldier/ Patient Decontamination and Drug Development on Task Order 84-6: Pyruvate Dehydrogenase System for Determining the Effectiveness of Arsenic Antidotes

    DTIC Science & Technology

    1988-03-11

    adenine dinucleotide FAD = flavin-adenine dinucleotide iipS2 = lipoic acid lip(SH)2 = dihydrolipoic acid CoA = coenzyme A. SHepatic PDH complex activity...tissues has yet to be fully characterized, but it probably involves arsenic binding to the lipoic acid and dithiol moieties of the complex (Fluharty...covalently bound lipoic acid substrate of dihydrolipoyl transacetylase is greater per mole of L and CVAA than for sodium arsenite. This is possible

  10. Pyruvate dehydrogenase complex and lactate dehydrogenase are targets for therapy of acute liver failure.

    PubMed

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-24

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate to the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-antibody, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by gene ontology enrichment analysis. Cell viability was evaluated in cell lines knocked-down for PDHA1 or LDH-A and in cells incubated with the LDH inhibitor galloflavin after treatment with CD95-antibody. We evaluated whether the histone acetyltransferase inhibitor garcinol or galloflavin could reduce liver damage in mice with acute liver failure. Levels and activities of PDHC and LDH were increased in nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-CoA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to damage response. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus, leading to increased nuclear concentrations of

  11. Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase.

    PubMed

    Van Noorden, C J

    1984-01-01

    Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The development of histochemical methods preventing loss or redistribution of the enzyme by using either polyvinyl alcohol as a stabilizer or a semipermeable membrane interposed between tissue section and incubation medium, has lead to progress in the topochemical localization of glucose-6-phosphate dehydrogenase. Optimization of incubation conditions has further increased the precision of histochemical methods. Precise cytochemical methods have been developed either by the use of a polyacrylamide carrier in which individual cells have been incorporated before staining or by including polyvinyl alcohol in the incubation medium. In the present text, these methods for the histochemical and cytochemical localization of glucose-6-phosphate dehydrogenase for light microscopical and electron microscopical purposes are extensively discussed along with immunocytochemical techniques. Moreover, the validity of the staining methods is considered both for the localization of glucose-6-phosphate dehydrogenase activity in cells and tissues and for cytophotometric analysis. Finally, many applications of the methods are reviewed in the fields of functional heterogeneity of tissues, early diagnosis of carcinoma, effects of xenobiotics on cellular metabolism, diagnosis of inherited glucose-6-phosphate dehydrogenase deficiency, analysis of steroid-production in reproductive organs, and quality control of oocytes of mammals. It is concluded that the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase is of highly significant value in the study of diseased tissues. In many cases, the first pathological change is an increase in glucose-6-phosphate dehydrogenase activity

  12. INACTIVATION OF E. COLI PYRUVATE FORMATE-LYASE: ROLE OF AdhE AND SMALL MOLECULES

    PubMed Central

    Nnyepi, Mbako R.; Peng, Yi; Broderick, Joan B.

    2007-01-01

    E. coli AdhE has been reported to harbor three distinct enzymatic activities: alcohol dehydrogenase, acetaldehyde-CoA dehydrogenase, and pyruvate formate-lyase (PFL) deactivase. Herein we report on the cloning, expression, and purification of E. coli AdhE, and the re-investigation of its purported enzymatic activities. While both the alcohol dehydrogenase and acetaldehyde-CoA dehydrogenase activities were readily detectible, we were unable to obtain any evidence for catalytic deactivation of PFL by AdhE, regardless of whether the reported cofactors for deactivation (Fe(II), NAD, and CoA) were present. Our results demonstrate that AdhE is not a PFL deactivating enzyme. We have also examined the potential for deactivation of active PFL by small-molecule thiols. Both β-mercaptoethanol and dithiothreitol deactivate PFL efficiently, with the former providing quite rapid deactivation. PFL deactivated by these thiols can be reactivated, suggesting that this deactivation is non-destructive transfer of an H atom equivalent to quench the glycyl radical. PMID:17280641

  13. GNL3L Inhibits Estrogen Receptor-Related Protein Activities by Competing for Coactivator Binding

    PubMed Central

    Yasumoto, Hiroaki; Meng, Lingjun; Lin, Tao; Zhu, Qubo; Tsai, Robert Y.L.

    2010-01-01

    Summary Guanine-nucleotide binding protein 3-like (GNL3L) is the closest homologue of a stem cell-enriched factor nucleostemin in vertebrates. They share the same yeast orthologue, Grn1p, but only GNL3L can rescue the growth-deficient phenotype in Grn1p-null yeasts. To determine the unique function of GNL3L, we identified estrogen receptor-related protein-γ (ERRγ) as a GNL3L-specific binding protein. GNL3L and ERRγ are coexpressed in the eye, kidney and muscle, and co-reside in the nucleoplasm. The interaction between GNL3L and ERRγ requires the intermediate domain of GNL3L and the AF2-domain of ERRγ. Gain- and loss-of-function experiments show that GNL3L can inhibit the transcriptional activities of ERR genes in a cell-based reporter system, which does not require the nucleolar localization of GNL3L. We further demonstrate that GNL3L is able to reduce the steroid receptor coactivator (SRC) binding and the SRC-mediated transcriptional coactivation of ERRγ. This work reveals a novel mechanism that negatively regulates the transcriptional function of ERRγ by GNL3L through coactivator competition. PMID:17623774

  14. Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. I. Introduction of a six-residue ion-pair network in the hinge region.

    PubMed

    Lebbink, J H; Knapp, S; van der Oost, J; Rice, D; Ladenstein, R; de Vos, W M

    1998-07-10

    Comparison of the recently determined three-dimensional structures of several glutamate dehydrogenases allowed for the identification of a five-residue ion-pair network in the hinge region of Pyrococcus furiosus glutamate dehydrogenase (melting temperature 113 degrees C), that is not present in the homologous glutamate dehydrogenase from Thermotoga maritima (melting temperature 93 degrees C). In order to study the role of this ion-pair network, we introduced it into the T. maritima enzyme using a site-directed mutagenesis approach. The resulting T. maritima glutamate dehydrogenases N97D, G376 K and N97D/G376 K as well as the wild-type enzyme were overproduced in Escherichia coli and subsequently purified. Elucidation of the three-dimensional structure of the double mutant N97D/G376 K at 3.0 A, showed that the designed ion-pair interactions were indeed formed. Moreover, because of interactions with an additional charged residue, a six-residue network is present in this double mutant. Melting temperatures of the mutant enzymes N97D, G376 K and N97D/G376 K, as determined by differential scanning calorimetry, did not differ significantly from that of the wild-type enzyme. Identical transition midpoints in guanidinium chloride-induced denaturation experiments were found for the wild-type and all mutant enzymes. Thermal inactivation at 85 degrees C occured more than twofold faster for all mutant enzymes than for the wild-type glutamate dehydrogenase. At temperatures of 65 degrees C and higher, the wild-type and the three mutant enzymes showed identical specific activities. However, at 58 degrees C the specific activity of N97D/G376 K and G376 K was found to be significantly higher than that of the wild-type and N97D enzymes. These results suggest that the engineered ion-pair interactions in the hinge region do not affect the stability towards temperature or guanidinium chloride-induced denaturation but rather affect the specific activity of the enzyme and the temperature

  15. High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential.

    PubMed

    Sherman, Stephen E; Kuljanin, Miljan; Cooper, Tyler T; Putman, David M; Lajoie, Gilles A; Hess, David A

    2017-06-01

    During culture expansion, multipotent mesenchymal stromal cells (MSCs) differentially express aldehyde dehydrogenase (ALDH), an intracellular detoxification enzyme that protects long-lived cells against oxidative stress. Thus, MSC selection based on ALDH-activity may be used to reduce heterogeneity and distinguish MSC subsets with improved regenerative potency. After expansion of human bone marrow-derived MSCs, cell progeny was purified based on low versus high ALDH-activity (ALDH hi ) by fluorescence-activated cell sorting, and each subset was compared for multipotent stromal and provascular regenerative functions. Both ALDH l ° and ALDH hi MSC subsets demonstrated similar expression of stromal cell (>95% CD73 + , CD90 + , CD105 + ) and pericyte (>95% CD146 + ) surface markers and showed multipotent differentiation into bone, cartilage, and adipose cells in vitro. Conditioned media (CDM) generated by ALDH hi MSCs demonstrated a potent proliferative and prosurvival effect on human microvascular endothelial cells (HMVECs) under serum-free conditions and augmented HMVEC tube-forming capacity in growth factor-reduced matrices. After subcutaneous transplantation within directed in vivo angiogenesis assay implants into immunodeficient mice, ALDH hi MSC or CDM produced by ALDH hi MSC significantly augmented murine vascular cell recruitment and perfused vessel infiltration compared with ALDH l ° MSC. Although both subsets demonstrated strikingly similar mRNA expression patterns, quantitative proteomic analyses performed on subset-specific CDM revealed the ALDH hi MSC subset uniquely secreted multiple proangiogenic cytokines (vascular endothelial growth factor beta, platelet derived growth factor alpha, and angiogenin) and actively produced multiple factors with chemoattractant (transforming growth factor-β, C-X-C motif chemokine ligand 1, 2, and 3 (GRO), C-C motif chemokine ligand 5 (RANTES), monocyte chemotactic protein 1 (MCP-1), interleukin [IL]-6, IL-8) and matrix

  16. Lowering effect of firefly squid powder on triacylglycerol content and glucose-6-phosphate dehydrogenase activity in rat liver.

    PubMed

    Takeuchi, Hiroyuki; Morita, Ritsuko; Shirai, Yoko; Nakagawa, Yoshihisa; Terashima, Teruya; Ushikubo, Shun; Matsuo, Tatsuhiro

    2014-01-01

    Effects of dietary firefly squid on serum and liver lipid levels were investigated. Male Wistar rats were fed a diet containing 5% freeze-dried firefly squid or Japanese flying squid for 2 weeks. There was no significant difference in the liver triacylglycerol level between the control and Japanese flying squid groups, but the rats fed the firefly squid diet had a significantly lower liver triacylglycerol content than those fed the control diet. No significant difference was observed in serum triacylglycerol levels between the control and firefly squid groups. The rats fed the firefly squid had a significantly lower activity of liver glucose-6-phosphate dehydrogenase compared to the rats fed the control diet. There was no significant difference in liver fatty acid synthetase activity among the three groups. Hepatic gene expression and lipogenic enzyme activity were investigated; a DNA microarray showed that the significantly enriched gene ontology category of down-regulated genes in the firefly squid group was "lipid metabolic process". The firefly squid group had lower mRNA level of glucose-6-phosphate dehydrogenase compared to the controls. These results suggest that an intake of firefly squid decreases hepatic triacylglycerol in rats, and the reduction of mRNA level and enzyme activity of glucose-6-phosphate dehydrogenase might be related to the mechanisms.

  17. Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I.

    PubMed

    Sauer, Sven W; Opp, Silvana; Komatsuzaki, Shoko; Blank, Anna-Eva; Mittelbronn, Michel; Burgard, Peter; Koeller, D M; Okun, Jürgen G; Kölker, Stefan

    2015-05-01

    Glutaric aciduria type I is an inherited defect in L-lysine, L-hydroxylysine and L-tryptophan degradation caused by deficiency of glutaryl-CoA dehydrogenase (GCDH). The majority of untreated patients presents with accumulation of neurotoxic metabolites - glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) - and striatal injury. Gcdh(-/-) mice display elevated levels of GA and 3-OH-GA but do not spontaneously develop striatal lesions. L-lysine-enriched diets (appr. 235 mg/d) were suggested to induce a neurological phenotype similar to affected patients. In our hands 93% of mice stressed according to the published protocol remained asymptomatic. To understand the underlying mechanism, we modified their genetic background (F1 C57BL6/Jx129/SvCrl) and increased the daily oral L-lysine supply (235-433 mg). We identified three modulating factors, (1) gender, (2) genetic background, and (3) amount of L-lysine. Male mice displayed higher vulnerability and inbreeding for more than two generations as well as elevating L-lysine supply increased the diet-induced mortality rate (up to 89%). Onset of first symptoms leads to strongly reduced intake of food and, thus, L-lysine suggesting a threshold for toxic metabolite production to induce neurological disease. GA and 3-OH-GA tissue concentrations did not correlate with dietary L-lysine supply but differed between symptomatic and asymptomatic mice. Cerebral activities of glyceraldehyde 3-phosphate dehydrogenase, 2-oxoglutarate dehydrogenase complex, and aconitase were decreased. Symptomatic mice did not develop striatal lesions or intracerebral hemorrhages. We found severe spongiosis in the hippocampus of Gcdh(-/-) mice which was independent of dietary L-lysine supply. In conclusion, the L-lysine-induced pathology in Gcdh(-/-) mice depends on genetic and dietary parameters. Copyright © 2014. Published by Elsevier B.V.

  18. Reactions of monodithiolene tungsten(VI) sulfido complexes with copper(I) in relation to the structure of the active site of carbon monoxide dehydrogenase.

    PubMed

    Groysman, Stanislav; Majumdar, Amit; Zheng, Shao-Liang; Holm, R H

    2010-02-01

    Reactions directed at the synthesis of structural analogues of the active site of molybdenum-containing carbon monoxide dehydrogenase have been investigated utilizing [WO(2)S(bdt)](2-) (1) and [WOS(2)(bdt)](2-) (2) and sterically hindered [Cu(R)L] or [Cu(SSiR'(3))(2)](-) as reactants. All successful reactions of 2 afford the binuclear W(VI)/Cu(I) products [WO(bdt)(mu(2)-S)(2)Cu(L)](2-/-) with L = carbene (3), Ar*S (4), Ar* (7), SSiR(3) (R = Ph (5), Pr(i) (6)). Similarly, [W(bdt)(OSiPh(3))S(2)](-) leads to [W(bdt)(OSiPh(3))(mu(2)-S)(2)Cu(SAr*)](-) (8). These complexes, with apical oxo and basal dithiolato and sulfido coordination (excluding 8), terminal thiolate ligation at Cu(I) (4-6, 8), and W-(mu(2)-S)-Cu bridging, bear a structural resemblance to the enzyme site. Differences include two bridges instead of one and the absence of basal oxo/hydroxo ligation. Complex 8 differs from the others by utilizing apical and basal sulfido ligands in bridge formation. Related reaction systems based on 1 gave 4 in small yield or product mixtures in which the desired monobridged complex [WO(2)(bdt)(mu(2)-S)Cu(R)](2-) was not detected. Mass spectrometric analysis of the reaction system with L = carbene suggests that any monobridged species forms may converted to the dibridged form by disproportionation. In these experiments, the use of W(VI) preserves the structural integrity of Mo(VI), whose analogues of 1 and 2 have not been isolated. (Ar* = 2,6-bis(2,4,6-triisopropylphenyl)phenyl, bdt = benzene-1,2-dithiolate(2-)).

  19. 17β-Hydroxysteroid dehydrogenase 3 deficiency: Three case reports and a systematic review.

    PubMed

    Yang, Zuwei; Ye, Lei; Wang, Wei; Zhao, Yu; Wang, Wencui; Jia, Huiying; Dong, Zhiya; Chen, Yuhong; Wang, Weiqing; Ning, Guang; Sun, Shouyue

    2017-11-01

    17β-Hydroxysteroid dehydrogenase 3 deficiency is a rare autosomal recessive cause of 46, XY disorders of sex development resulting from HSD17B3 gene mutations, however, no case has been reported in East Asia. The aim of this study was to report three Chinese 46, XY females with 17β-HSD3 deficiency in a single center and perform a systematic review of the literature. Clinical examination, endocrine evaluation and HSD17B3 gene sequencing were performed in the three Chinese phenotypically females (two sisters and one unrelated patient). Relevant articles were searched by using the term "HSD17B3" OR "17beta-HSD3 gene" with restrictions on language (English) and species (human) in Pubmed and Embase. All the three phenotypically female subjects showed 46, XY karyotype, inguinal masses, decreased testosterone and increased androstenedione. Two novel homozygous mutations (W284X and c.124_127delTCTT) in HSD17B3 gene were identified. A systematic review found a total of 121 pedigrees/158 patients, with 78.5% (124/158) of patients assigned as females, 15.2% (24/158) from females to males, and 5.1% (8/158) raised as males. The most common mutation was c.277+4C>T (allele frequency: 25/72) for patients from Europe, and R80Q (allele frequency: 21/54) for patients from West Asia. The testicular histology showed normal infantile testicular tissue in 100% (9/9) infantile patients, normal quantity germ cells in 44.4% (8/18) prepubertal patients and 19.0% (4/21) pubertal and adult patients. We reported the first East Asian 17β-hydroxysteroid dehydrogenase 3 deficiency cases. Additional literature reviews found founder effects among patients with different ethnic background and early orchiopexy may benefit fertility in patients assigned as males. These findings may significantly expand the clinical, ethnic and genetic spectrum of 17β-hydroxysteroid dehydrogenase 3 deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Peng-Yeh; Tsai, Chong-Bin; Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCRmore » analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.« less

  1. Design, chemical synthesis and biological evaluation of 3-spiromorpholinone/3-spirocarbamate androsterone derivatives as inhibitors of 17β-hydroxysteroid dehydrogenase type 3.

    PubMed

    Djigoué, Guy Bertrand; Kenmogne, Lucie Carolle; Roy, Jenny; Maltais, René; Poirier, Donald

    2015-09-01

    17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is a key enzyme involved in the biosynthesis of testosterone and dihydrotestosterone. These hormones are known to stimulate androgen-dependent prostate cancer. In order to generate effective inhibitors of androgen biosynthesis without androgenic effect, we synthesized a new family of 3-spiromorpholinone and 3-spirocarbamate androsterone derivatives bearing diversified hydrophobic groups. We also tested their inhibitory activity in a microsomal fraction of 17β-HSD3-containing rat testes, and their androgenic effect on androgen-sensitive LAPC-4 cells. From our first structure-activity relationship (SAR) study, we noted that compound 7e inhibited 17β-HSD3 (77% at 0.1 μM) compared to our reference compound RM-532-105 (76% at 0.1 μM), but exhibited a residual androgenic effect. A library of 7e analogue compounds was next synthesized in order to generate compounds with reduced androgenic activity. In this new SAR study, the sulfonamide compound 7e21 and the carboxamide compound 7e22 inhibited 17β-HSD3 (IC50 = 28 and 88 nM, respectively). These two compounds were not androgenic and not cytotoxic even at the highest concentration tested, but their inhibitory activity decreased in intact LNCaP cells overexpressing 17β-HSD3 (LNCaP[17β-HSD3]). Structural modifications of these two lead compounds could however be tested to produce a second generation of 17β-HSD3 inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mechanism of allosteric inhibition of N-acetyl-L-glutamate synthase by L-arginine.

    PubMed

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2009-02-20

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of l-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by approximately 10 A and decreases its height by approximately 20A(.) AAK dimers move 5A outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by approximately 4 degrees . The NAT domains rotate approximately 109 degrees relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the l-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.

  3. Increasing the Heme-Dependent Respiratory Efficiency of Lactococcus lactis by Inhibition of Lactate Dehydrogenase

    PubMed Central

    Arioli, Stefania; Zambelli, Daniele; Guglielmetti, Simone; De Noni, Ivano; Pedersen, Martin B.; Pedersen, Per Dedenroth; Dal Bello, Fabio

    2013-01-01

    The discovery of heme-induced respiration in Lactococcus lactis has radically improved the industrial processes used for the biomass production of this species. Here, we show that inhibition of the lactate dehydrogenase activity of L. lactis during growth under respiration-permissive conditions can stimulate aerobic respiration, thereby increasing not only growth efficiency but also the robustness of this organism. PMID:23064338

  4. Cloning and sequencing of the cDNA species for mammalian dimeric dihydrodiol dehydrogenases.

    PubMed Central

    Arimitsu, E; Aoki, S; Ishikura, S; Nakanishi, K; Matsuura, K; Hara, A

    1999-01-01

    Cynomolgus and Japanese monkey kidneys, dog and pig livers and rabbit lens contain dimeric dihydrodiol dehydrogenase (EC 1.3.1.20) associated with high carbonyl reductase activity. Here we have isolated cDNA species for the dimeric enzymes by reverse transcriptase-PCR from human intestine in addition to the above five animal tissues. The amino acid sequences deduced from the monkey, pig and dog cDNA species perfectly matched the partial sequences of peptides digested from the respective enzymes of these animal tissues, and active recombinant proteins were expressed in a bacterial system from the monkey and human cDNA species. Northern blot analysis revealed the existence of a single 1.3 kb mRNA species for the enzyme in these animal tissues. The human enzyme shared 94%, 85%, 84% and 82% amino acid identity with the enzymes of the two monkey strains (their sequences were identical), the dog, the pig and the rabbit respectively. The sequences of the primate enzymes consisted of 335 amino acid residues and lacked one amino acid compared with the other animal enzymes. In contrast with previous reports that other types of dihydrodiol dehydrogenase, carbonyl reductases and enzymes with either activity belong to the aldo-keto reductase family or the short-chain dehydrogenase/reductase family, dimeric dihydrodiol dehydrogenase showed no sequence similarity with the members of the two protein families. The dimeric enzyme aligned with low degrees of identity (14-25%) with several prokaryotic proteins, in which 47 residues are strictly or highly conserved. Thus dimeric dihydrodiol dehydrogenase has a primary structure distinct from the previously known mammalian enzymes and is suggested to constitute a novel protein family with the prokaryotic proteins. PMID:10477285

  5. PhaM Is the Physiological Activator of Poly(3-Hydroxybutyrate) (PHB) Synthase (PhaC1) in Ralstonia eutropha

    PubMed Central

    Pfeiffer, Daniel

    2014-01-01

    Poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) is the key enzyme of PHB synthesis in Ralstonia eutropha and other PHB-accumulating bacteria and catalyzes the polymerization of 3-hydroxybutyryl-CoA to PHB. Activity assays of R. eutropha PHB synthase are characterized by the presence of lag phases and by low specific activity. It is assumed that the lag phase is caused by the time necessary to convert the inactive PhaC1 monomer into the active dimeric form by an unknown priming process. The lag phase can be reduced by addition of nonionic detergents such as hecameg [6-O-(N-heptyl-carbamoyl)-methyl-α-d-glucopyranoside], which apparently accelerates the formation of PhaC1 dimers. We identified the PHB granule-associated protein (PGAP) PhaM as the natural primer (activator) of PHB synthase activity. PhaM was recently discovered as a novel type of PGAP with multiple functions in PHB metabolism. Addition of PhaM to PHB synthase assays resulted in immediate polymerization of 3HB coenzyme A with high specific activity and without a significant lag phase. The effect of PhaM on (i) PhaC1 activity, (ii) oligomerization of PhaC1, (iii) complex formation with PhaC1, and (iv) PHB granule formation in vitro and in vivo was shown by cross-linking experiments of purified proteins (PhaM, PhaC1) with glutardialdehyde, by size exclusion chromatography, and by fluorescence microscopic detection of de novo-synthesized PHB granules. PMID:24212577

  6. Characterization of the membrane-bound succinic dehydrogenase of Micrococcus lysodeikticus.

    PubMed

    Pollock, J J; Linder, R; Salton, M R

    1971-07-01

    The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 x g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca(2+) and Mg(2+) exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents.

  7. Crystallization and preliminary X-ray study of a (2R,3R)-2,3-butanediol dehydrogenase from Bacillus coagulans 2-6

    PubMed Central

    Miao, Xiangzhi; Huang, Xianhui; Zhang, Guofang; Zhao, Xiufang; Zhu, Xianming; Dong, Hui

    2013-01-01

    (2R,3R)-2,3-Butanediol dehydrogenase (R,R-BDH) from Bacillus coagulans 2-6 is a zinc-dependent medium-chain alcohol dehydrogenase. Recombinant R,R-BDH with a His6 tag at the C-terminus was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni2+-chelating affinity and size-exclusion chromatography. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K. The crystallization condition consisted of 8%(v/v) Tacsimate pH 4.6, 18%(w/v) polyethylene glycol 3350. The crystal diffracted to 2.8 Å resolution in the orthorhombic space group P212121, with unit-cell parameters a = 88.35, b = 128.73, c = 131.03 Å. PMID:24100567

  8. Crystallization and preliminary X-ray study of a (2R,3R)-2,3-butanediol dehydrogenase from Bacillus coagulans 2-6.

    PubMed

    Miao, Xiangzhi; Huang, Xianhui; Zhang, Guofang; Zhao, Xiufang; Zhu, Xianming; Dong, Hui

    2013-10-01

    (2R,3R)-2,3-Butanediol dehydrogenase (R,R-BDH) from Bacillus coagulans 2-6 is a zinc-dependent medium-chain alcohol dehydrogenase. Recombinant R,R-BDH with a His6 tag at the C-terminus was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni2+-chelating affinity and size-exclusion chromatography. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K. The crystallization condition consisted of 8%(v/v) Tacsimate pH 4.6, 18%(w/v) polyethylene glycol 3350. The crystal diffracted to 2.8 Å resolution in the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=88.35, b=128.73, c=131.03 Å.

  9. High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer

    PubMed Central

    Liu, Shu-Yan; Zheng, Peng-Sheng

    2013-01-01

    High aldehyde dehydrogenase (ALDH) activity characterizes a subpopulation of cells with cancer stem cell (CSC) properties in several malignancies. To clarify whether ALDH can be used as a marker of cervical cancer stem cells (CCSCs), ALDHhigh and ALDHlow cells were sorted from 4 cervical cancer cell lines and 5 primary tumor xenografts and examined for CSC characteristics. Here, we demonstrate that cervical cancer cells with high ALDH activity fulfill the functional criteria for CSCs: (1) ALDHhigh cells, unlike ALDHlow cells, are highly tumorigenic in vivo; (2) ALDHhigh cells can give rise to both ALDHhigh and ALDHlow cells in vitro and in vivo, thereby establishing a cellular hierarchy; and (3) ALDHhigh cells have enhanced self-renewal and differentiation potentials. Additionally, ALDHhigh cervical cancer cells are more resistant to cisplatin treatment than ALDHlow cells. Finally, expression of the stem cell self-renewal-associated transcription factors OCT4, NANOG, KLF4 and BMI1 is elevated in ALDHhigh cervical cancer cells. Taken together, our data indicated that high ALDH activity may represent both a functional marker for CCSCs and a target for novel cervical cancer therapies. PMID:24318570

  10. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea.

    PubMed

    Berg, Ivan A; Kockelkorn, Daniel; Buckel, Wolfgang; Fuchs, Georg

    2007-12-14

    The assimilation of carbon dioxide (CO2) into organic material is quantitatively the most important biosynthetic process. We discovered that an autotrophic member of the archaeal order Sulfolobales, Metallosphaera sedula, fixed CO2 with acetyl-coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase as the key carboxylating enzyme. In this system, one acetyl-CoA and two bicarbonate molecules were reductively converted via 3-hydroxypropionate to succinyl-CoA. This intermediate was reduced to 4-hydroxybutyrate and converted into two acetyl-CoA molecules via 4-hydroxybutyryl-CoA dehydratase. The key genes of this pathway were found not only in Metallosphaera but also in Sulfolobus, Archaeoglobus, and Cenarchaeum species. Moreover, the Global Ocean Sampling database contains half as many 4-hydroxybutyryl-CoA dehydratase sequences as compared with those found for another key photosynthetic CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. This indicates the importance of this enzyme in global carbon cycling.

  11. Mental retardation linked to mutations in the HSD17B10 gene interfering with neurosteroid and isoleucine metabolism

    PubMed Central

    Yang, Song-Yu; He, Xue-Ying; Olpin, Simon E.; Sutton, Vernon R.; McMenamin, Joe; Philipp, Manfred; Denman, Robert B.; Malik, Mazhar

    2009-01-01

    Mutations in the HSD17B10 gene were identified in two previously described mentally retarded males. A point mutation c.776G>C was found from a survivor (SV), whereas a potent mutation, c.419C>T, was identified in another deceased case (SF) with undetectable hydroxysteroid (17β) dehydrogenase 10 (HSD10) activity. Protein levels of mutant HSD10(R130C) in patient SF and HSD10(E249Q) in patient SV were about half that of HSD10 in normal controls. The E249Q mutation appears to affect HSD10 subunit interactions, resulting in an allosteric regulatory enzyme. For catalyzing the oxidation of allopregnanolone by NAD+ the Hill coefficient of the mutant enzyme is ≈1.3. HSD10(E249Q) was unable to catalyze the dehydrogenation of 2-methyl-3-hydroxybutyryl-CoA and the oxidation of allopregnanolone, a positive modulator of the γ-aminobutyric acid type A receptor, at low substrate concentrations. Neurosteroid homeostasis is critical for normal cognitive development, and there is increasing evidence that a blockade of isoleucine catabolism alone does not commonly cause developmental disabilities. The results support the theory that an imbalance in neurosteroid metabolism could be a major cause of the neurological handicap associated with hydroxysteroid (17β) dehydrogenase 10 deficiency. PMID:19706438

  12. l-Valine Production during Growth of Pyruvate Dehydrogenase Complex- Deficient Corynebacterium glutamicum in the Presence of Ethanol or by Inactivation of the Transcriptional Regulator SugR▿

    PubMed Central

    Blombach, Bastian; Arndt, Annette; Auchter, Marc; Eikmanns, Bernhard J.

    2009-01-01

    Pyruvate dehydrogenase complex-deficient strains of Corynebacterium glutamicum produce l-valine from glucose only after depletion of the acetate required for growth. Here we show that inactivation of the DeoR-type transcriptional regulator SugR or replacement of acetate by ethanol already in course of the growth phase results in efficient l-valine production. PMID:19088318

  13. Impaired succinic dehydrogenase activity of rat Purkinje cell mitochondria during aging.

    PubMed

    Fattoretti, P; Bertoni-Freddari, C; Caselli, U; Paoloni, R; Meier-Ruge, W

    1998-03-16

    The perikaryal Purkinje cell mitochondria positive to the copper ferrocyanide histochemical reaction for succinic dehydrogenase (SDH) have been investigated by means of semiautomatic morphometric methods in rats of 3, 12 and 24 months of age. The number of organelles/microm3 of Purkinje cell cytoplasm (Numeric density: Nv), the average mitochondrial volume (V) and the mitochondrial volume fraction (Volume density: Vv) were the ultrastructural parameters taken into account. Nv was significantly higher at 12 than at 3 and 24 months of age. V was significantly decreased at 12 and 24 months of age, but no difference was envisaged between adult and old rats. Vv was significantly decreased in old animals vs. the other age groups. In young and old rats, the percentage of organelles larger than 0.32 microm3 was 13.5 and 11%, respectively, while these enlarged mitochondria accounted for less than 1% in the adult group. Since SDH activity is of critical importance when energy demand is high, the marked decrease of Vv supports an impaired capacity of the old Purkinje cells to match actual energy supply at sustained transmission of the nervous impulse. However, the high percentage of enlarged organelles found in old rats may witness a morphofunctional compensatory response.

  14. Purification and Characterization of Glucose 6-Phosphate Dehydrogenase, 6-Phosphogluconate Dehydrogenase, and Glutathione Reductase from Rat Heart and Inhibition Effects of Furosemide, Digoxin, and Dopamine on the Enzymes Activities.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2016-06-01

    The present study was aimed to investigate characterization and purification of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase from rat heart and the inhibitory effect of three drugs. The purification of the enzymes was performed using 2',5'-ADP sepharose 4B affinity material. The subunit and the natural molecular weights were analyzed by SDS-PAGE and gel filtration. Biochemical characteristics such as the optimum temperature, pH, stable pH, and salt concentration were examined for each enzyme. Types of product inhibition and Ki values with Km and Vmax values of the substrates and coenzymes were determined. According to the obtained Ki and IC50 values, furosemide, digoxin, and dopamine showed inhibitory effect on the enzyme activities at low millimolar concentrations in vitro conditions. Dopamine inhibited the activity of these enzymes as competitive, whereas furosemide and digoxin inhibited the activity of the enzyme as noncompetitive. © 2016 Wiley Periodicals, Inc.

  15. Efficient (3S)-Acetoin and (2S,3S)-2,3-Butanediol Production from meso-2,3-Butanediol Using Whole-Cell Biocatalysis.

    PubMed

    He, Yuanzhi; Chen, Feixue; Sun, Meijing; Gao, Huifang; Guo, Zewang; Lin, Hui; Chen, Jiebo; Jin, Wensong; Yang, Yunlong; Zhang, Liaoyuan; Yuan, Jun

    2018-03-19

    (3 S )-Acetoin and (2 S ,3 S )-2,3-butanediol are important platform chemicals widely applied in the asymmetric synthesis of valuable chiral chemicals. However, their production by fermentative methods is difficult to perform. This study aimed to develop a whole-cell biocatalysis strategy for the production of (3 S )-acetoin and (2 S ,3 S )-2,3-butanediol from meso -2,3-butanediol. First, E. coli co-expressing (2 R ,3 R )-2,3-butanediol dehydrogenase, NADH oxidase and Vitreoscilla hemoglobin was developed for (3 S )-acetoin production from meso -2,3-butanediol. Maximum (3 S )-acetoin concentration of 72.38 g/L with the stereoisomeric purity of 94.65% was achieved at 24 h under optimal conditions. Subsequently, we developed another biocatalyst co-expressing (2 S ,3 S )-2,3-butanediol dehydrogenase and formate dehydrogenase for (2 S ,3 S )-2,3-butanediol production from (3 S )-acetoin. Synchronous catalysis together with two biocatalysts afforded 38.41 g/L of (2 S ,3 S )-butanediol with stereoisomeric purity of 98.03% from 40 g/L meso -2,3-butanediol. These results exhibited the potential for (3 S )-acetoin and (2 S ,3 S )-butanediol production from meso -2,3-butanediol as a substrate via whole-cell biocatalysis.

  16. Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells.

    PubMed

    Wang, Guansong; Qian, Pin; Jackson, Fannie R; Qian, Guisheng; Wu, Guangyu

    2008-01-01

    Xanthine dehydrogenase/oxidase (XDH/XO) is associated with various pathological conditions related to the endothelial injury. However, the molecular mechanism underlying the activation of XDH/XO by hypoxia remains largely unknown. In this report, we determined whether the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) signaling pathway is involved in hypoxia-induced activation of XDH/XO in primary cultures of lung microvascular endothelial cells (LMVEC). We found that hypoxia significantly increased interleukin 6 (IL6) production in a time-dependent manner in LMVEC. Hypoxia also markedly augmented phosphorylation/activation of JAKs (JAK1, JAK2 and JAK3) and the JAK downstream effectors STATs (STAT3 and STAT5). Hypoxia-induced activation of STAT3 was blocked by IL6 antibodies, the JAK inhibitor AG490 and the suppressor of cytokine signaling 3 (SOCS3), implying that hypoxia-promoted IL6 secretion activates the JAK/STAT pathway in LMVEC. Phosphorylation and DNA-binding activity of STAT3 were also inhibited by the p38 MAPK inhibitor SB203580 and the phosphatidylinositol 3-kinase inhibitor LY294002, suggesting that multiple signaling pathways involved in STAT activation by hypoxia. Importantly, hypoxia promoted XDH/XO activation in LMVEC, which was markedly reversed by inhibiting the JAK-STAT pathway using IL6 antibodies, AG490 and SOCS3. These data demonstrated that JAKs, STATs and XDH/XO were sequentially activated by hypoxia. These data provide the first evidence indicating that the JAK-STAT pathway is involved in hypoxia-mediated XDH/XO activation in LMVEC.

  17. An activity transition from NADH dehydrogenase to NADH oxidase during protein denaturation.

    PubMed

    Huston, Scott; Collins, John; Sun, Fangfang; Zhang, Ting; Vaden, Timothy D; Zhang, Y-H Percival; Fu, Jinglin

    2018-05-01

    A decrease in the specific activity of an enzyme is commonly observed when the enzyme is inappropriately handled or is stored over an extended period. Here, we reported a functional transition of an FMN-bound diaphorase (FMN-DI) that happened during the long-term storage process. It was found that FMN-DI did not simply lose its β-nicotinamide adenine diphosphate (NADH) dehydrogenase activity after a long-time storage, but obtained a new enzyme activity of NADH oxidase. Further mechanistic studies suggested that the alteration of the binding strength of an FMN cofactor with a DI protein could be responsible for this functional switch of the enzyme. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  18. 5-Aminosalicylic acid prevents oxidant mediated damage of glyceraldehyde-3-phosphate dehydrogenase in colon epithelial cells

    PubMed Central

    McKenzie, S; Doe, W; Buffinton, G

    1999-01-01

    Background—Reactive oxygen and nitrogen derived species produced by activated neutrophils have been implicated in the damage of mucosal proteins including the inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the active inflammatory lesion in patients with inflammatory bowel disease (IBD). This study investigated the efficacy of currently used IBD therapeutics to prevent injury mediated by reactive oxygen and nitrogen derived species. 
Methods—GAPDH activity of human colon epithelial cells was used as a sensitive indicator of injury produced by reactive oxygen and nitrogen derived species. HCT116 cells (106/ml phosphate buffered saline; 37°C) were incubated in the presence of 5-aminosalicylic acid (5-ASA), 6-mercaptopurine, methylprednisolone, or metronidazole before exposure to H2O2, HOCl, or NO in vitro. HCT116 cell GAPDH enzyme activity was determined by standard procedures. Cell free reactions between 5-ASA and HOCl were analysed by spectrophotometry and fluorimetry to characterise the mechanism of oxidant scavenging. 
Results—GAPDH activity of HCT116 cells was inhibited by the oxidants tested: the concentration that produced 50% inhibition (IC50) was 44.5 (2.1) µM for HOCl, 379.8 (21.3) µM for H2O2, and 685.8 (103.8) µM for NO (means (SEM)). 5-ASA was the only therapeutic compound tested to show efficacy (p<0.05) against HOCl mediated inhibition of enzyme activity; however, it was ineffective against H2O2 and NO mediated inhibition of GAPDH. Methylprednisolone, metronidazole, and the thiol-containing 6-mercaptopurine were ineffective against all oxidants. Studies at ratios of HOCl:5-ASA achievable in the mucosa showed direct scavenging to be the mechanism of protection of GAPDH activity. Mixing 5-ASA and HOCl before addition to the cells resulted in significantly greater protection of GAPDH activity than when HOCl was added to cells preincubated with 5-ASA. The addition of 5-ASA after HOCl exposure did not restore GAPDH activity

  19. Effects of Al(III) and Nano-Al13 Species on Malate Dehydrogenase Activity

    PubMed Central

    Yang, Xiaodi; Cai, Ling; Peng, Yu; Li, Huihui; Chen, Rong Fu; Shen, Ren Fang

    2011-01-01

    The effects of different aluminum species on malate dehydrogenase (MDH) activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT) modified glass carbon electrode (GCE). The results showed that Al(III) and Al13 can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III) and Al13 concentration increase. Our study also found that the effects of Al(III) and Al13 on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules. PMID:22163924

  20. Effects of Al(III) and nano-Al13 species on malate dehydrogenase activity.

    PubMed

    Yang, Xiaodi; Cai, Ling; Peng, Yu; Li, Huihui; Chen, Rong Fu; Shen, Ren Fang

    2011-01-01

    The effects of different aluminum species on malate dehydrogenase (MDH) activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT) modified glass carbon electrode (GCE). The results showed that Al(III) and Al(13) can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III) and Al(13) concentration increase. Our study also found that the effects of Al(III) and Al(13) on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules.

  1. In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase.

    PubMed

    Thillainayagam, Mahalakshmi; Malathi, Kullappan; Ramaiah, Sudha

    2017-11-27

    The structural motifs of chalcones, flavones, and triazoles with varied substitutions have been studied for the antimalarial activity. In this study, 25 novel derivatives of chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage are docked with Plasmodium falciparum dihydroorotate dehydrogenase to establish their inhibitory activity against Plasmodium falciparum. The best binding conformation of the ligands at the catalytic site of dihydroorotate dehydrogenase are selected to characterize the best bound ligand using the best consensus score and the number of hydrogen bond interactions. The ligand namely (2E)-3-(4-{[1-(3-chloro-4-fluorophenyl)-1H-1, 2, 3-triazol-4-yl]methoxy}-3-methoxyphenyl-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one, is one the among the five best docked ligands, which interacts with the protein through nine hydrogen bonds and with a consensus score of five. To refine and confirm the docking study results, the stability of complexes is verified using Molecular Dynamics Simulations, Molecular Mechanics /Poisson-Boltzmann Surface Area free binding energy analysis, and per residue contribution for the binding energy. The study implies that the best docked Plasmodium falciparum dihydroorotate dehydrogenase-ligand complex is having high negative binding energy, most stable, compact, and rigid with nine hydrogen bonds. The study provides insight for the optimization of chalcone and flavone hybrids with 1, 2, 3-triazole linkage as potent inhibitors.

  2. Gene Cloning and Characterization of the Very Large NAD-Dependent l-Glutamate Dehydrogenase from the Psychrophile Janthinobacterium lividum, Isolated from Cold Soil▿

    PubMed Central

    Kawakami, Ryushi; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2007-01-01

    NAD-dependent l-glutamate dehydrogenase (NAD-GDH) activity was detected in cell extract from the psychrophile Janthinobacterium lividum UTB1302, which was isolated from cold soil and purified to homogeneity. The native enzyme (1,065 kDa, determined by gel filtration) is a homohexamer composed of 170-kDa subunits (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Consistent with these findings, gene cloning and sequencing enabled deduction of the amino acid sequence of the subunit, which proved to be comprised of 1,575 amino acids with a combined molecular mass of 169,360 Da. The enzyme from this psychrophile thus appears to belong to the GDH family characterized by very large subunits, like those expressed by Streptomyces clavuligerus and Pseudomonas aeruginosa (about 180 kDa). The entire amino acid sequence of the J. lividum enzyme showed about 40% identity with the sequences from S. clavuligerus and P. aeruginosa enzymes, but the central domains showed higher homology (about 65%). Within the central domain, the residues related to substrate and NAD binding were highly conserved, suggesting that this is the enzyme's catalytic domain. In the presence of NAD, but not in the presence of NADP, this GDH exclusively catalyzed the oxidative deamination of l-glutamate. The stereospecificity of the hydride transfer to NAD was pro-S, which is the same as that of the other known GDHs. Surprisingly, NAD-GDH activity was markedly enhanced by the addition of various amino acids, such as l-aspartate (1,735%) and l-arginine (936%), which strongly suggests that the N- and/or C-terminal domains play regulatory roles and are involved in the activation of the enzyme by these amino acids. PMID:17526698

  3. Gene cloning and characterization of the very large NAD-dependent l-glutamate dehydrogenase from the psychrophile Janthinobacterium lividum, isolated from cold soil.

    PubMed

    Kawakami, Ryushi; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2007-08-01

    NAD-dependent l-glutamate dehydrogenase (NAD-GDH) activity was detected in cell extract from the psychrophile Janthinobacterium lividum UTB1302, which was isolated from cold soil and purified to homogeneity. The native enzyme (1,065 kDa, determined by gel filtration) is a homohexamer composed of 170-kDa subunits (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Consistent with these findings, gene cloning and sequencing enabled deduction of the amino acid sequence of the subunit, which proved to be comprised of 1,575 amino acids with a combined molecular mass of 169,360 Da. The enzyme from this psychrophile thus appears to belong to the GDH family characterized by very large subunits, like those expressed by Streptomyces clavuligerus and Pseudomonas aeruginosa (about 180 kDa). The entire amino acid sequence of the J. lividum enzyme showed about 40% identity with the sequences from S. clavuligerus and P. aeruginosa enzymes, but the central domains showed higher homology (about 65%). Within the central domain, the residues related to substrate and NAD binding were highly conserved, suggesting that this is the enzyme's catalytic domain. In the presence of NAD, but not in the presence of NADP, this GDH exclusively catalyzed the oxidative deamination of l-glutamate. The stereospecificity of the hydride transfer to NAD was pro-S, which is the same as that of the other known GDHs. Surprisingly, NAD-GDH activity was markedly enhanced by the addition of various amino acids, such as l-aspartate (1,735%) and l-arginine (936%), which strongly suggests that the N- and/or C-terminal domains play regulatory roles and are involved in the activation of the enzyme by these amino acids.

  4. DB Dehydrogenase: an online integrated structural database on enzyme dehydrogenase.

    PubMed

    Nandy, Suman Kumar; Bhuyan, Rajabrata; Seal, Alpana

    2012-01-01

    Dehydrogenase enzymes are almost inevitable for metabolic processes. Shortage or malfunctioning of dehydrogenases often leads to several acute diseases like cancers, retinal diseases, diabetes mellitus, Alzheimer, hepatitis B & C etc. With advancement in modern-day research, huge amount of sequential, structural and functional data are generated everyday and widens the gap between structural attributes and its functional understanding. DB Dehydrogenase is an effort to relate the functionalities of dehydrogenase with its structures. It is a completely web-based structural database, covering almost all dehydrogenases [~150 enzyme classes, ~1200 entries from ~160 organisms] whose structures are known. It is created by extracting and integrating various online resources to provide the true and reliable data and implemented by MySQL relational database through user friendly web interfaces using CGI Perl. Flexible search options are there for data extraction and exploration. To summarize, sequence, structure, function of all dehydrogenases in one place along with the necessary option of cross-referencing; this database will be utile for researchers to carry out further work in this field. The database is available for free at http://www.bifku.in/DBD/

  5. Trehalose catabolism enzymes in L3 and L4 larvae of Anisakis simplex.

    PubMed

    Lopieńska-Biernat, E; Zółtowska, K; Rokicki, J

    2007-12-01

    The presence of trehalase and trehalose phosphorylase in L3 and L4 larvae of Anisakis simplex was demonstrated. The activity of trehalase and trehalose phosphorylase in L3 larvae was 6 and 10 times higher, respectively, than in L4 larvae. This suggests that trehalose metabolism is more important for L3 than LA larvae. Trehalases of L3 and L4 differ in their characteristics. The enzyme of L3 was present mainly in the lysosomes and cytosol, whereas in L4 the highest enzyme activity was measured in the lysosomal fraction. Trehalase activity was increased by 29% in L3 and 55% in L4 with the addition of Mg2+ (0.1 mmol). Tris inhibited trehalase in L3 larvae by 42% and in L4 by 25%. The enzymes differed in their reaction to EDTA, CaCl2, ZnCl2, and CH2ICOOH (all 0.1 mmol). High activity of trehalase from L3 larvae was measured within the pH range of 5.0 to 6.5, with an optimum pH of 6.1. The trehalase was a thermally tolerant enzyme from 25 C to 60 C. The enzyme lost half of its activity after preincubation without substrate above 75 C. The paper also discusses the similarities and differences in characteristics of trehalase from A. simplex larvae and presents the comparison to enzymes from other nematodes.

  6. Cloning, sequencing, and expression of the Pseudomonas testosteroni gene encoding 3-oxosteroid delta 1-dehydrogenase.

    PubMed Central

    Plesiat, P; Grandguillot, M; Harayama, S; Vragar, S; Michel-Briand, Y

    1991-01-01

    Pseudomonas testosteroni ATCC 17410 is able to grow on testosterone. This strain was mutagenized by Tn5, and 41 mutants defective in the utilization of testosterone were isolated. One of them, called mutant 06, expressed 3-oxosteroid delta 1- and 3-oxosteroid delta 4-5 alpha-dehydrogenases only at low levels. The DNA region around the Tn5 insertion in mutant 06 was cloned into pUC19, and the 1-kbp EcoRI-BamHI segment neighbor to the Tn5 insertion was used to probe DNA from the wild-type strain. The probe hybridized to a 7.8-kbp SalI fragment. Plasmid pTES5, which is a pUC19 derivative containing this 7.8-kbp SalI fragment, was isolated after the screening by the 1-kbp EcoRI-BamHI probe. This plasmid expressed delta 1-dehydrogenase in Escherichia coli cells. The 2.2-kbp KpnI-KpnI segment of pTES5 was subcloned into pUC18, and pTEK21 was constructed. In E. coli containing the lacIq plasmid pRG1 and pTEK21, the expression of delta 1-dehydrogenase was induced by isopropyl-beta-D-thiogalactopyranoside (IPTG). The induced level was about 40 times higher than the induced level in P. testosteroni. Delta 1-Dehydrogenase synthesized in E. coli was localized in the inner membrane fraction. The minicell experiments showed that a 59-kDa polypeptide was synthesized from pTEK21, and this polypeptide was located in the inner membrane fraction. The complete nucleotide sequence of the 2.2-kbp KpnI-KpnI segment of pTEK21 was determined. An open reading frame which encodes a 62.4-kDa polypeptide and which is preceded by a Shine-Dalgarno-like sequence was identified. The first 44 amino acids of the putative product exhibited significant sequence similarity to the N-terminal sequences of lipoamide dehydrogenases. Images FIG. 4 PMID:1657885

  7. Genetics Home Reference: isobutyryl-CoA dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase deficiency Orphanet: Isobutyryl-CoA dehydrogenase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (3 links) Children's Cardiomyopathy Foundation CLIMB (Children Living with Inherited Metabolic ...

  8. Comparative Studies of Enzymes Related to Serine Metabolism in Higher Plants 1

    PubMed Central

    Cheung, Geoffrey P.; Rosenblum, I. Y.; Sallach, H. J.

    1968-01-01

    The following enzymes related to serine metabolism in higher plants have been investigated: 1) d-3-phosphoglycerate dehydrogenase, 2) phosphohydroxypyruvate:l-glutamate transaminase, 3) d-glycerate dehydrogenase, and 4) hydroxypyruvate:l-alanine transaminase. Comparative studies on the distribution of the 2 dehydrogenases in seeds and leaves from various plants revealed that d-3-phosphoglycerate dehydrogenase is widely distributed in seeds in contrast to d-glycerate dehydrogenase, which is either absent or present at low levels, and that the reverse pattern is observed in green leaves. The levels of activity of the 4 enzymes listed above were followed in different tissues of the developing pea (Pisum sativum, var. Alaska). In the leaf, from the tenth to seventeenth day of germination, the specific activity of d-glycerate dehydrogenase increased markedly and was much higher than d-3-phosphoglycerate dehydrogenase which remained relatively constant during this time period. Etiolation resulted in a decrease in d-glycerate dehydrogenase and an increase in d-3-phosphoglycerate dehydrogenase activities. In apical meristem, on the other hand, the level of d-3-phosphoglycerate dehydrogenase exceeded that of d-glycerate dehydrogenase at all time periods studied. Low and decreasing levels of both dehydrogenases were found in epicotyl and cotyledon. The specific activities of the 2 transaminases remained relatively constant during development in both leaf and apical meristem. In general, however, the levels of phosphohydroxypyruvate:l-glutamate transaminase were comparable to those of d-3-phosphoglycerate dehydrogenase in a given tissue as were those for hydroxypyruvate: l-alanine transaminase and d-glycerate dehydrogenase. PMID:5699148

  9. A novel type of pathogen defense-related cinnamyl alcohol dehydrogenase.

    PubMed

    Logemann, E; Reinold, S; Somssich, I E; Hahlbrock, K

    1997-08-01

    We describe an aromatic alcohol dehydrogenase with properties indicating a novel type of function in the defense response of plants to pathogens. To obtain the enzyme free of contamination with possible isoforms, a parsley (Petroselinum crispum) cDNA comprising the entire coding region of the elicitor-responsive gene, ELI3, was expressed in Escherichia coli. In accord with large amino acid sequence similarities with established cinnamyl and benzyl alcohol dehydrogenases from other plants, the enzyme efficiently reduced various cinnamyl and benzyl aldehydes using NADPH as a co-substrate. Highest substrate affinities were observed for cinnamaldehyde, 4-coumaraldehyde and coniferaldehyde, whereas sinapaldehyde, one of the most efficient substrates of several previously analyzed cinnamyl alcohol dehydrogenases and a characteristic precursor molecule of angiosperm lignin, was not converted. A single form of ELI3 mRNA was strongly and rapidly induced in fungal elicitor-treated parsley cells. These results, together with earlier findings that the ELI3 gene is strongly activated both in elicitor-treated parsley cells and at fungal infection sites in parsley leaves, but not in lignifying tissue, suggest a specific role of this enzyme in pathogen defense-related phenylpropanoid metabolism.

  10. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri.

    PubMed

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K

    2008-02-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0' = -410 mV) with NADH (E0' = -320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0' = -10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.

  11. Role of alcohol dehydrogenase activity and the acetaldehyde in ethanol- induced ethane and pentane production by isolated perfused rat liver.

    PubMed Central

    Müller, A; Sies, H

    1982-01-01

    The volatile hydrocarbons ethane and n-pentane are produced at increased rates by isolated perfused rat liver during the metabolism of acutely ethanol. The effect is half-maximal at 0.5 mM-ethanol, and its is not observed when inhibitors of alcohol dehydrogenase such as 4-methyl- or 4-propyl-pyrazole are also present. Propanol, another substrate for the dehydrogenase, is also active. Increased alkane production can be initiated by adding acetaldehyde in the presence of 4-methyl- or 4-propyl-pyrazole. An antioxidant, cyanidanol, suppresses the ethanol-induced alkane production. The data obtained with the isolated organ demonstrate that products known to arise from the peroxidation of polyunsaturated fatty acids are formed in the presence of ethanol and that the activity of alcohol dehydrogenase is required for the generation of the active radical species. The mere presence of ethanol, e.g. at binding sites of special form(s) of cytochrome P-450, it not sufficient to elicit an increased production of volatile hydrocarbons by rat liver. PMID:6751324

  12. Large plasmaspheric electric fields at L approximately 2 measured by the S3-3 satellite during strong geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Gonzalez, W. D.; Pinto, O., Jr.; Mendes, O., Jr.; Mozer, F. S.

    1986-01-01

    Large plasmaspheric electric fields at L is approximately 2 measured by the S3-3 satellite during strong geomagnetic activity are reported. Since these measurements have amplitudes comparable to those of the local corotation electric field, during such events the plasmasphere is expected to get strongly altered event at such low L-values. Furthermore, those measurements could contribute to the understanding of the physics of the convection/electric field penetration to the low latitude plasmaphere as well as the disturbed dynamo, during strong geomagnetic activity. For this purpose, critical parameters related to geomagnetic activity are also presented for the reported electric field events.

  13. In vitro evaluation of the effect of botanical formulations used in the control of Aedes aegypti L. (Diptera: Culicidae) on liver enzymes.

    PubMed

    Porto, Karla Rejane de Andrade; Motti, Priscilla Rezende; Machado, Alexandre Alves; Roel, Antonia Railda

    2016-01-01

    Dengue fever is a viral disease transmitted by the Aedes aegypti Linn. (1792) (Diptera: Culicidae) mosquito, which is endemic in several regions of Brazil. Alternative methods for the control of the vector include botanical insecticides, which offer advantages such as lower environmental contamination levels and less likelihood of resistant populations. Thus, in this study, the ability of botanical insecticide formulations to inhibit the activity of the liver enzymes serum cholinesterase and malate dehydrogenase was evaluated. Inhibition profiles were assessed using in vitro assays for cholinesterase and malate dehydrogenase activity and quantitated by ultraviolet-visible spectroscopy at 410nm to 340nm. Insecticide products formulated from cashew nutshell liquid [A] and ricinoleic acid [B] showed cholinesterase activity levels of 6.26IU/mL and 6.61IU/mL, respectively, while the control level for cholinesterase was 5-12IU/mL. The products did not affect the level of 0.44IU/mL established for malate dehydrogenase, as the levels produced by [A] and [B] were 0.43IU/mL and 0.45IU/mL, respectively. Our findings show that in vitro testing of the formulated products at concentrations lethal to A. aegypti did not affect the activity of cholinesterase and malate dehydrogenase, indicating the safety of these products.

  14. Effects of Polybrominated Diphenyl Ethers on Rat and Human 11β-Hydroxysteroid Dehydrogenase 1 and 2 Activities.

    PubMed

    Chen, Xiaomin; Dong, Yaoyao; Cao, Shuyan; Li, Xiaoheng; Wang, Zhe; Chen, Ruijie; Ge, Ren-Shan

    2016-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants. PBDEs have been widely used in textiles, flexible polyurethane foams, electronic components, electrical components, and plastics. 11β-Hydroxysteroid dehydrogenases, isoform 1 (HSD11B1) and isoform 2 (HSD11B2), have been demonstrated to be the regulators of local glucocorticoid levels. In this study, the potencies of 4 different PBDEs (BDE-3, BDE-47, BDE-100, and BDE-153) with 1-6 bromine atoms attached in inhibition of rat and human HSD11B1 and HSD11B2 activities were compared to 4-bromobiphenyl (BBP), a structurally similar compound. All 4 PBDEs and BBP did not inhibit rat and human HSD11B1. BDE-3 and BDE-47 potently inhibited rat HSD11B2, and BDE-47 and BDE-153 potently inhibited human HSD11B2, with the half maximal inhibitory concentration values of 12.42, 5.95, 11.97, and 4.41 µmol/l, respectively. All PBDEs noncompetitively inhibited HSD11B2 when a steroid substrate was used. However, PBDEs exerted uncompetitive inhibition when the cofactor NAD+ was used. In conclusion, some PBDEs are selective inhibitors of HSD11B2, possibly causing excessive glucocorticoid action in local tissues. © 2016 S. Karger AG, Basel.

  15. Characterization of the Membrane-Bound Succinic Dehydrogenase of Micrococcus lysodeikticus

    PubMed Central

    Pollock, Jerry J.; Linder, Regina; Salton, Milton R. J.

    1971-01-01

    The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 × g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca2+ and Mg2+ exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents. Images PMID:4327510

  16. Aldehyde dehydrogenase 3A1 protects airway epithelial cells from cigarette smoke-induced DNA damage and cytotoxicity.

    PubMed

    Jang, Jun-Ho; Bruse, Shannon; Liu, Yushi; Duffy, Veronica; Zhang, Chunyu; Oyamada, Nathaniel; Randell, Scott; Matsumoto, Akiko; Thompson, David C; Lin, Yong; Vasiliou, Vasilis; Tesfaigzi, Yohannes; Nyunoya, Toru

    2014-03-01

    Aldehyde dehydrogenase 3A1 (ALDH3A1), an ALDH superfamily member, catalyzes the oxidation of reactive aldehydes, highly toxic components of cigarette smoke (CS). Even so, the role of ALDH3A1 in CS-induced cytotoxicity and DNA damage has not been examined. Among all of the ALDH superfamily members, ALDH3A1 mRNA levels showed the greatest induction in response to CS extract (CSE) exposure of primary human bronchial epithelial cells (HBECs). ALDH3A1 protein accumulation was accompanied by increased ALDH enzymatic activity in CSE-exposed immortalized HBECs. The effects of overexpression or suppression of ALDH3A1 on CSE-induced cytotoxicity and DNA damage (γH2AX) were evaluated in cultured immortalized HBECs. Enforced expression of ALDH3A1 attenuated cytotoxicity and downregulated γH2AX. SiRNA-mediated suppression of ALDH3A1 blocked ALDH enzymatic activity and augmented cytotoxicity in CSE-exposed cells. Our results suggest that the availability of ALDH3A1 is important for cell survival against CSE in HBECs. Published by Elsevier Inc.

  17. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer

    PubMed Central

    Hilborn, Erik; Stål, Olle; Jansson, Agneta

    2017-01-01

    Sex steroid hormones such as estrogens and androgens are involved in the development and differentiation of the breast tissue. The activity and concentration of sex steroids is determined by the availability from the circulation, and on local conversion. This conversion is primarily mediated by aromatase, steroid sulfatase, and 17β-hydroxysteroid dehydrogenases. In postmenopausal women, this is the primary source of estrogens in the breast. Up to 70-80% of all breast cancers express the estrogen receptor-α, responsible for promoting the growth of the tissue. Further, 60-80% express the androgen receptor, which has been shown to have tissue protective effects in estrogen receptor positive breast cancer, and a more ambiguous response in estrogen receptor negative breast cancers. In this review, we summarize the function and clinical relevance in cancer for 17β-hydroxysteroid dehydrogenases 1, which facilitates the reduction of estrone to estradiol, dehydroepiandrosterone to androstendiol and dihydrotestosterone to 3α- and 3β-diol as well as 17β-hydroxysteroid dehydrogenases 2 which mediates the oxidation of estradiol to estrone, testosterone to androstenedione and androstendiol to dehydroepiandrosterone. The expression of 17β-hydroxysteroid dehydrogenases 1 and 2 alone and in combination has been shown to predict patient outcome, and inhibition of 17β-hydroxysteroid dehydrogenases 1 has been proposed to be a prime candidate for inhibition in patients who develop aromatase inhibitor resistance or in combination with aromatase inhibitors as a first line treatment. Here we review the status of inhibitors against 17β-hydroxysteroid dehydrogenases 1. In addition, we review the involvement of 17β-hydroxysteroid dehydrogenases 4, 5, 7, and 14 in breast cancer. PMID:28430630

  18. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer.

    PubMed

    Hilborn, Erik; Stål, Olle; Jansson, Agneta

    2017-05-02

    Sex steroid hormones such as estrogens and androgens are involved in the development and differentiation of the breast tissue. The activity and concentration of sex steroids is determined by the availability from the circulation, and on local conversion. This conversion is primarily mediated by aromatase, steroid sulfatase, and 17β-hydroxysteroid dehydrogenases. In postmenopausal women, this is the primary source of estrogens in the breast. Up to 70-80% of all breast cancers express the estrogen receptor-α, responsible for promoting the growth of the tissue. Further, 60-80% express the androgen receptor, which has been shown to have tissue protective effects in estrogen receptor positive breast cancer, and a more ambiguous response in estrogen receptor negative breast cancers. In this review, we summarize the function and clinical relevance in cancer for 17β-hydroxysteroid dehydrogenases 1, which facilitates the reduction of estrone to estradiol, dehydroepiandrosterone to androstendiol and dihydrotestosterone to 3α- and 3β-diol as well as 17β-hydroxysteroid dehydrogenases 2 which mediates the oxidation of estradiol to estrone, testosterone to androstenedione and androstendiol to dehydroepiandrosterone. The expression of 17β-hydroxysteroid dehydrogenases 1 and 2 alone and in combination has been shown to predict patient outcome, and inhibition of 17β-hydroxysteroid dehydrogenases 1 has been proposed to be a prime candidate for inhibition in patients who develop aromatase inhibitor resistance or in combination with aromatase inhibitors as a first line treatment. Here we review the status of inhibitors against 17β-hydroxysteroid dehydrogenases 1. In addition, we review the involvement of 17β-hydroxysteroid dehydrogenases 4, 5, 7, and 14 in breast cancer.

  19. High-throughput screening for cellobiose dehydrogenases by Prussian Blue in situ formation.

    PubMed

    Vasilchenko, Liliya G; Ludwig, Roland; Yershevich, Olga P; Haltrich, Dietmar; Rabinovich, Mikhail L

    2012-07-01

    Extracellular fungal flavocytochrome cellobiose dehydrogenase (CDH) is a promising enzyme for both bioelectronics and lignocellulose bioconversion. A selective high-throughput screening assay for CDH in the presence of various fungal oxidoreductases was developed. It is based on Prussian Blue (PB) in situ formation in the presence of cellobiose (<0.25 mM), ferric acetate, and ferricyanide. CDH induces PB formation via both reduction of ferricyanide to ferrocyanide reacting with an excess of Fe³⁺ (pathway 1) and reduction of ferric ions to Fe²⁺ reacting with the excess of ferricyanide (pathway 2). Basidiomycetous and ascomycetous CDH formed PB optimally at pH 3.5 and 4.5, respectively. In contrast to the holoenzyme CDH, its FAD-containing dehydrogenase domain lacking the cytochrome domain formed PB only via pathway 1 and was less active than the parent enzyme. The assay can be applied on active growing cultures on agar plates or on fungal culture supernatants in 96-well plates under aerobic conditions. Neither other carbohydrate oxidoreductases (pyranose dehydrogenase, FAD-dependent glucose dehydrogenase, glucose oxidase) nor laccase interfered with CDH activity in this assay. Applicability of the developed assay for the selection of new ascomycetous CDH producers as well as possibility of the controlled synthesis of new PB nanocomposites by CDH are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD+ and retinoic acid

    PubMed Central

    Moretti, Andrea; Li, Jianfeng; Donini, Stefano; Sobol, Robert W.; Rizzi, Menico; Garavaglia, Silvia

    2016-01-01

    The aldehyde dehydrogenase family 1 member A3 (ALDH1A3) catalyzes the oxidation of retinal to the pleiotropic factor retinoic acid using NAD+. The level of ALDHs enzymatic activity has been used as a cancer stem cell marker and seems to correlate with tumour aggressiveness. Elevated ALDH1A3 expression in mesenchymal glioma stem cells highlights the potential of this isozyme as a prognosis marker and drug target. Here we report the first crystal structure of human ALDH1A3 complexed with NAD+ and the product all-trans retinoic acid (REA). The tetrameric ALDH1A3 folds into a three domain-based architecture highly conserved along the ALDHs family. The structural analysis revealed two different and coupled conformations for NAD+ and REA that we propose to represent two snapshots along the catalytic cycle. Indeed, the isoprenic moiety of REA points either toward the active site cysteine, or moves away adopting the product release conformation. Although ALDH1A3 shares high sequence identity with other members of the ALDH1A family, our structural analysis revealed few peculiar residues in the 1A3 isozyme active site. Our data provide information into the ALDH1As catalytic process and can be used for the structure-based design of selective inhibitors of potential medical interest. PMID:27759097

  1. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts

    PubMed Central

    2012-01-01

    Background Arnica montana L. and Artemisia absinthium L. (Asteraceae) are medicinal plants native to temperate regions of Europe, including Romania, traditionally used for treatment of skin wounds, bruises and contusions. In the present study, A. montana and A. absinthium ethanolic extracts were evaluated for their chemical composition, antioxidant activity and protective effect against H2O2-induced oxidative stress in a mouse fibroblast-like NCTC cell line. Results A. absinthium extract showed a higher antioxidant capacity than A. montana extract as Trolox equivalent antioxidant capacity, Oxygen radical absorbance capacity and 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging activity, in correlation with its flavonoids and phenolic acids content. Both plant extracts had significant effects on the growth of NCTC cells in the range of 10–100 mg/L A. montana and 10–500 mg/L A. absinthium. They also protected fibroblast cells against hydrogen peroxide-induced oxidative damage, at the same doses. The best protection was observed in cell pre-treatment with 10 mg/L A. montana and 10–300 mg/L A. absinthium, respectively, as determined by Neutral red and lactate dehydrogenase assays. In addition, cell pre-treatment with plant extracts, at these concentrations, prevented morphological changes induced by hydrogen peroxide. Flow-cytometry analysis showed that pre-treatment with A. montana and A. absinthium extracts restored the proportion of cells in each phase of the cell cycle. Conclusions A. montana and A. absinthium extracts, rich in flavonoids and phenolic acids, showed a good antioxidant activity and cytoprotective effect against oxidative damage in fibroblast-like cells. These results provide scientific support for the traditional use of A. montana and A. absinthium in treatment of skin disorders. PMID:22958433

  2. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1.

    PubMed

    Wu, Tung-Yun; Chen, Chang-Ting; Liu, Jessica Tse-Jin; Bogorad, Igor W; Damoiseaux, Robert; Liao, James C

    2016-06-01

    Methanol utilization by methylotrophic or non-methylotrophic organisms is the first step toward methanol bioconversion to higher carbon-chain chemicals. Methanol oxidation using NAD-dependent methanol dehydrogenase (Mdh) is of particular interest because it uses NAD(+) as the electron carrier. To our knowledge, only a limited number of NAD-dependent Mdhs have been reported. The most studied is the Bacillus methanolicus Mdh, which exhibits low enzyme specificity to methanol and is dependent on an endogenous activator protein (ACT). In this work, we characterized and engineered a group III NAD-dependent alcohol dehydrogenase (Mdh2) from Cupriavidus necator N-1 (previously designated as Ralstonia eutropha). This enzyme is the first NAD-dependent Mdh characterized from a Gram-negative, mesophilic, non-methylotrophic organism with a significant activity towards methanol. Interestingly, unlike previously reported Mdhs, Mdh2 does not require activation by known activators such as B. methanolicus ACT and Escherichia coli Nudix hydrolase NudF, or putative native C. necator activators in the Nudix family under mesophilic conditions. This enzyme exhibited higher or comparable activity and affinity toward methanol relative to the B. methanolicus Mdh with or without ACT in a wide range of temperatures. Furthermore, using directed molecular evolution, we engineered a variant (CT4-1) of Mdh2 that showed a 6-fold higher K cat/K m for methanol and 10-fold lower K cat/K m for n-butanol. Thus, CT4-1 represents an NAD-dependent Mdh with much improved catalytic efficiency and specificity toward methanol compared with the existing NAD-dependent Mdhs with or without ACT activation.

  3. Comparative effects of L-DOPA and velvet bean seed extract on soybean lignification.

    PubMed

    Bido, Graciene de Souza; Silva, Hingrid Ariane da; Bortolo, Tiara da Silva Coelho; Maldonado, Marcos Rodrigues; Marchiosi, Rogério; Dos Santos, Wanderley Dantas; Ferrarese-Filho, Osvaldo

    2018-04-03

    Velvet bean (Mucuna pruriens) is an efficient cover forage that controls weeds, pathogens and nematodes, and the non-protein amino acid L-3,4-dihydroxyphenylalanine (L-DOPA) is its main allelochemical. The effects of 3 g L -1 of an aqueous extract of velvet bean seeds, along with 0.5 mM L-DOPA for comparison, were evaluated in roots, stems and leaves of soybean (Glycine max). The activities of phenylalanine ammonia lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) were determined, along with the lignin content and its monomeric composition. The results revealed similar effects caused by L-DOPA and the aqueous extract. Both treatments reduced PAL and CAD activities, lignin, and lignin monomer contents in roots; PAL and CAD activities in stems, and CAD activity in leaves. These findings provide further evidence that the effects of velvet bean cover forage on root lignification were due to the L-DOPA, its major allelochemical.

  4. Diminished 11β-hydroxysteroid dehydrogenase type 2 activity is associated with decreased weight and weight gain across the first year of life.

    PubMed

    Rogers, Samantha L; Hughes, Beverly A; Jones, Christopher A; Freedman, Lauren; Smart, Katherine; Taylor, Norman; Stewart, Paul M; Shackleton, Cedric H L; Krone, Nils P; Blissett, Jacqueline; Tomlinson, Jeremy W

    2014-05-01

    Low birth weight is associated with adverse metabolic outcome in adulthood. Exposure to glucocorticoid (GC) excess in utero is associated with decreased birth weight, but the prospective longitudinal relationship between GC metabolism and growth has not been examined. We have hypothesized that changes in GC metabolism leading to increased availability may impair growth. This was a prospective, longitudinal study with clinical measurements and 24-hour urinary steroid metabolite analysis at 1, 4, 12, 26, and 52 weeks after delivery in mothers and their babies. The study was conducted with observations and samples collected in the volunteers' own homes. Healthy mothers and newborn babies/infants participated in the study. There were no interventions. Urinary steroid metabolite excretion quantified by gas chromatography/mass spectroscopy across the first year of life in relation to change in weight was measured. The total production of the GC metabolites quantified increased across the first year of life. Markers of 11β-hydroxysteroid dehydrogenase type 1 activity increased from the age of 3 months as did those of 5α-reductase activity. After correcting for confounding variables, low markers of 11β-hydroxysteroid dehydrogenase type 2 activity was associated with reduced absolute weight and decreased weight gain over the first year of life. In the mothers, 5α-reductase activity was low at birth and progressively increased to normal over the first 6 months postpartum. Increased GC exposure as a consequence of reduced 11β-hydroxysteroid dehydrogenase type 2 activity is likely to be a critical determinant of growth in early life. This not only highlights the central role of GCs and their metabolism, but also emphasizes the need for detailed longitudinal analyses.

  5. Role of quinate dehydrogenase in quinic acid metabolism in conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, V.I.; Shein, I.V.

    1986-08-10

    Quinate dehydrogenase was isolated from young needles of the Siberian larch and partially purified by ammonium sulfate fractionation. It was found that in conifers, in contrast to other plants, quinate dehydrogenase is active both with NAD and with NADP. The values of K/sub m/ for quinate and NADP were 1.8 and 0.18 mM. The enzyme exhibits maximum activity at pH 9.0. It was assumed that NADP-dependent quinate dehydrogenase is responsible for quinic acid synthesis. The special features of the organization and regulation of the initial stages of the shikimate pathway in conifers are discussed.

  6. Genetics Home Reference: 17-beta hydroxysteroid dehydrogenase 3 deficiency

    MedlinePlus

    ... some affected individuals may also experience breast enlargement (gynecomastia). Despite having testes, people with this disorder are ... 17-beta-hydroxysteroid oxidoreductase deficiency pseudohermaphroditism, male, with gynecomastia testosterone 17-beta-dehydrogenase deficiency Related Information How ...

  7. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    PubMed

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  8. Effect of different mulch materials on the soil dehydrogenase activity (DHA) in an organic pepper crop

    NASA Astrophysics Data System (ADS)

    Moreno, Marta M.; Peco, Jesús; Campos, Juan; Villena, Jaime; González, Sara; Moreno, Carmen

    2016-04-01

    The use biodegradable materials (biopolymers of different composition and papers) as an alternative to conventional mulches has increased considerably during the last years mainly for environmental reason. In order to assess the effect of these materials on the soil microbial activity during the season of a pepper crop organically grown in Central Spain, the soil dehydrogenase activity (DHA) was measured in laboratory. The mulch materials tested were: 1) black polyethylene (PE, 15 μm); black biopolymers (15 μm): 2) Mater-Bi® (corn starch based), 3) Sphere 4® (potato starch based), 4) Sphere 6® (potato starch based), 5) Bioflex® (polylactic acid based), 6) Ecovio® (polylactic acid based), 7) Mimgreen® (black paper, 85 g/m2). A randomized complete block design with four replications was adopted. The crop was drip irrigated following the water demand of each treatment. Soil samples (5-10 cm depth) under the different mulches were taken at different dates (at the beginning of the crop cycle and at different dates throughout the crop season). Additionally, samples of bare soil in a manual weeding and in an untreated control were taken. The results obtained show the negative effect of black PE on the DHA activity, mainly as result of the higher temperature reached under the mulch and the reduction in the gas interchange between the soil and the atmosphere. The values corresponding to the biodegradable materials were variable, although highlighting the low DHA activity observed under Bioflex®. In general, the uncovered treatments showed higher values than those reached under mulches, especially in the untreated control. Keywords: mulch, biodegradable, biopolymer, paper, dehydrogenase activity (DHA). Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  9. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Test Systems § 862.1565 6-Phosphogluconate dehydrogenase test system. (a) Identification. A 6-phosphogluconate dehydrogenase test system is a device intended to measure the activity of the enzyme 6... are used in the diagnosis and treatment of certain liver diseases (such as hepatitis) and anemias. (b...

  10. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Test Systems § 862.1565 6-Phosphogluconate dehydrogenase test system. (a) Identification. A 6-phosphogluconate dehydrogenase test system is a device intended to measure the activity of the enzyme 6... are used in the diagnosis and treatment of certain liver diseases (such as hepatitis) and anemias. (b...

  11. Activation of the manganese(I) tricarbonyl core by selective variation of bidentate ligands (L,L'-Bid = N,N' and N,O donor atom sets) in fac-[Mn(CO)3(L,L'-Bid)(CH3OH)](n) complexes.

    PubMed

    Twala, T N; Schutte-Smith, M; Roodt, A; Visser, H G

    2015-02-21

    A range of fac-[Mn(CO)3(L,L'-Bid)(H2O)](n) (L,L'-Bid = neutral or monoanionic bidentate ligands with varied L,L' donor atoms, N,N' and N,O, 1,10-phenanthroline, 2,2'-bipyridine, 2-picolinate, 2,4-quinolinate; n = 0, +1) has been synthesized and the methanol substitution has been investigated for the first time. The complexes were characterized by UV/vis, IR and NMR spectroscopy and X-ray crystallographic studies of the compounds fac-[Mn(CO)3(Bipy)(H2O)][CF3SO3] () and fac-[Mn(CO)3(Phen)(H2O)][CF3SO3] () are reported. A two order-of-magnitude of activation for the methanol substitution is induced as manifested by the second order rate constants with (N,N'-Bid) < (N,O-Bid). Forward and reverse rate and stability constants from slow and stopped-flow UV/vis measurements (k1, M(-1) s(-1); k-1, s(-1); K1, M(-1)) for pyridine as entering nucleophile are as follows: fac-[Mn(CO)3(Phen)(CH3OH)](+) (2.39 ± 5) × 10(-3), (1.5 ± 0.3) × 10(-5), 159 ± 32; fac-[Mn(CO)3(2,4-QuinH)(CH3OH)] (4.5 ± 0.2), (4 ± 1) × 10(-2), 113 ± 29. Activation parameters (ΔH, kJ mol(-1); ΔS, J K(-1) mol(-1)) from Eyring plots for entering nucleophiles as indicated are as follows: fac-[Mn(CO)3(Phen)(CH3OH)](+) (bromide ions) 66.7 ± 0.6, -27 ± 2; (pyridine) 80 ± 3, -25 ± 11; fac-[Mn(CO)3(Pico)(CH3OH)] (bromide ions) 68 ± 2, -24 ± 5. A dissociative interchange mechanism is proposed.

  12. EXPRESSION OF THE SPERMATOGENIC CELL-SPECIFIC GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (GAPDS) IN RAT TESTIS

    EPA Science Inventory

    The spermatogenic cell-specific variant of glyceraldehyde 3-phosphate dehydrogenase (GAPDS) has been cloned from a rat testis cDNA library and its pattern of expression determined. A 1417 nucleotide cDNA has been found to encode an enzyme with substantial homology to mouse GAPDS...

  13. The Regulation of Pyruvate Dehydrogenase Activity in Pea Leaf Mitochondria (The Effect of Respiration and Oxidative Phosphorylation).

    PubMed

    Moore, A. L.; Gemel, J.; Randall, D. D.

    1993-12-01

    The regulation of the pea (Pisum sativum) leaf mitochondrial pyruvate dehydrogenase complex by respiratory rate and oxidative phosphorylation has been investigated by measuring the respiratory activity, the redox poise of the quinone pool (Q-pool), and mitochondrial pyruvate dehydrogenase (mtPDC) activity under various metabolic conditions. It was found that, under state 4 conditions, mtPDC activity was unaffected by either the addition of succinate, 2-oxoglutarate, or glycine or the overall respiratory rate and redox poise of the Q-pool but was partially inhibited by NADH due to product inhibition. In the presence of ADP significant inactivation of PDC, which was sensitive to oligomycin, was observed with all substrates, apart from pyruvate, suggesting that inactivation was due to ATP formation. Inactivation of PDC by ADP addition was observed even in the presence of carboxyatractyloside, an inhibitor of the ATP/ADP translocator, suggesting that other mechanisms to facilitate the entry of adenylates, in addition to the adenylate carrier, must exist in plant mitochondria.

  14. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.

    PubMed

    Jantama, Kaemwich; Polyiam, Pattharasedthi; Khunnonkwao, Panwana; Chan, Sitha; Sangproo, Maytawadee; Khor, Kirin; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn

    2015-07-01

    Klebsiella oxytoca KMS005 (∆adhE∆ackA-pta∆ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.5±0.5 g/L with yield of 0.46±0.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.4±4.5 g/L, 0.49±0.02 g/g, 1.20±0.05 g/Lh, and 27.2±1.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. The Hydrogenase Activity of the Molybdenum/Copper-containing Carbon Monoxide Dehydrogenase of Oligotropha carboxidovorans*

    PubMed Central

    Wilcoxen, Jarett; Hille, Russ

    2013-01-01

    The reaction of the air-tolerant CO dehydrogenase from Oligotropha carboxidovorans with H2 has been examined. Like the Ni-Fe CO dehydrogenase, the enzyme can be reduced by H2 with a limiting rate constant of 5.3 s−1 and a dissociation constant Kd of 525 μm; both kred and kred/Kd, reflecting the breakdown of the Michaelis complex and the reaction of free enzyme with free substrate in the low [S] regime, respectively, are largely pH-independent. During the reaction with H2, a new EPR signal arising from the Mo/Cu-containing active site of the enzyme is observed which is distinct from the signal seen when the enzyme is reduced by CO, with greater g anisotropy and larger hyperfine coupling to the active site 63,65Cu. The signal also exhibits hyperfine coupling to at least two solvent-exchangeable protons of bound substrate that are rapidly exchanged with solvent. Proton coupling is also evident in the EPR signal seen with the dithionite-reduced native enzyme, and this coupling is lost in the presence of bicarbonate. We attribute the coupled protons in the dithionite-reduced enzyme to coordinated water at the copper site in the native enzyme and conclude that bicarbonate is able to displace this water from the copper coordination sphere. On the basis of our results, a mechanism for H2 oxidation is proposed which involves initial binding of H2 to the copper of the binuclear center, displacing the bound water, followed by sequential deprotonation through a copper-hydride intermediate to reduce the binuclear center. PMID:24165123

  16. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica

    2010-01-07

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in L-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by L-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with L-arginine bound and in the active R-state complexed with CoA and L-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of L-arginine to the AAKmore » domain induces a global conformational change that increases the diameter of the hexamer by {approx}10 {angstrom} and decreases its height by {approx}20{angstrom}. AAK dimers move 5{angstrom} outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by {approx}4{sup o}. The NAT domains rotate {approx}109{sup o} relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the L-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.« less

  17. Crystal structure of a chimaeric bacterial glutamate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Tânia; Sharkey, Michael A.; Engel, Paul C.

    2016-05-23

    Glutamate dehydrogenases (EC 1.4.1.2–4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P) +as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD +versusNADP +, but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies,more » as shown by the apo structure of glutamate dehydrogenase fromClostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia colienzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP +cofactor from the parentE. colidomain II, although there are subtle differences in catalytic activity.« less

  18. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes

    PubMed Central

    Rumberger, John M.; Arch, Jonathan R.S.

    2014-01-01

    We determined the effect of butyrate and other short-chain fatty acids (SCFA) on rates of lipolysis in 3T3-L1 adipocytes. Prolonged treatment with butyrate (5 mM) increased the rate of lipolysis approximately 2–3-fold. Aminobutyric acid and acetate had little or no effect on lipolysis, however propionate stimulated lipolysis, suggesting that butyrate and propionate act through their shared activity as histone deacetylase (HDAC) inhibitors. Consistent with this, the HDAC inhibitor trichostatin A (1 µM) also stimulated lipolysis to a similar extent as did butyrate. Western blot data suggested that neither mitogen-activated protein kinase (MAPK) activation nor perilipin down-regulation are necessary for SCFA-induced lipolysis. Stimulation of lipolysis with butyrate and trichostatin A was glucose-dependent. Changes in AMP-activated protein kinase (AMPK) phosphorylation mediated by glucose were independent of changes in rates of lipolysis. The glycolytic inhibitor iodoacetate prevented both butyrate- and tumor necrosis factor-alpha-(TNF-α) mediated increases in rates of lipolysis indicating glucose metabolism is required. However, unlike TNF-α– , butyrate-stimulated lipolysis was not associated with increased lactate release or inhibited by activation of pyruvate dehydrogenase (PDH) with dichloroacetate. These data demonstrate an important relationship between lipolytic activity and reported HDAC inhibitory activity of butyrate, other short-chain fatty acids and trichostatin A. Given that HDAC inhibitors are presently being evaluated for the treatment of diabetes and other disorders, more work will be essential to determine if these effects on lipolysis are due to inhibition of HDAC. PMID:25320679

  19. Cloning, sequence, and disruption of the Saccharomyces diastaticus DAR1 gene encoding a glycerol-3-phosphate dehydrogenase.

    PubMed

    Wang, H T; Rahaim, P; Robbins, P; Yocum, R R

    1994-11-01

    The Saccharomyces diastaticus DAR1 gene was cloned by complementation in an Escherichia coli strain auxogrophic for glycerol-3-phosphate. DAR1 encodes an NADH-dependent dihydroxyacetone phosphate reductase (sn-glycerol-3-phosphate dehydrogenase [G3PDase; EC 1.1.1.8]) homologous to several other eukaryotic G3PDases. DAR1 is distinct from GUT2, which encodes a glucose-repressed mitochondrial G3PDase, but is identical to GPD1 from S. cerevisiae, a close relative of S. diastaticus. The level of DAR1-encoded G3PDase was increased about threefold in a medium of high osmolarity. Disruption of DAR1 in a haploid S. cerevisiae was not lethal but led to a decrease in cytoplasmic NADH-dependent G3PDase activity, an increase in osmotic sensitivity, and a 25% reduction in glycerol secretion from cells grown anaerobically on glucose.

  20. OUTCROP-BASED HIGH RESOLUTION GAMMA-RAY CHARACTERIZATION OF ARSENIC-BEARING LITHOFACIES IN THE PERMIAN GARBER SANDSTONE AND WELLINGTON FORMATION, CENTRAL OKLAHOMA AQUIFER (COA). CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    The COA supplies drinking water to a number of municipalities in central Oklahoma. Two major stratigraphic units in the COA, the Garber Sandstone and Wellington Formation, contain naturally occurring arsenic that exceeds government mandated drinking-water standards (EPA, 2001). ...

  1. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice.

    PubMed

    Herrema, Hilde; Derks, Terry G J; van Dijk, Theo H; Bloks, Vincent W; Gerding, Albert; Havinga, Rick; Tietge, Uwe J F; Müller, Michael; Smit, G Peter A; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2008-06-01

    Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD(-/-) mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD(-/-) mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1alpha (Pgc-1alpha) and decreased peroxisome proliferator-activated receptor alpha (Ppar alpha) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD(-/-) mice in both conditions, suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD(-/-) mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD(-/-) mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD(-/-) mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD(-/-) mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD(-/-) mice, was mainly due to enhanced peripheral glucose uptake. Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the

  2. Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10.

    PubMed

    Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y

    2017-10-01

    All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with

  3. PIK3CA mutant tumors depend on oxoglutarate dehydrogenase | Office of Cancer Genomics

    Cancer.gov

    Oncogenic PIK3CA mutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found that PIK3CA mutant cancer cells require PIK3CA but also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH).

  4. Crystallization and preliminary X-ray diffraction analysis of mouse 3(17)α-hydroxysteroid dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Kabbani, Ossama, E-mail: ossama.el-kabbani@vcp.monash.edu.au; Ishikura, Syuhei; Wagner, Armin

    2005-07-01

    Orthorhombic crystals of mouse 3(17)α-hydroxysteroid dehydrogenase were obtained from buffered polyethylene glycol solutions. The crystals diffracted to a resolution of 1.8 Å at the Swiss Light Source beamline X06SA. The 3(17)α-hydroxysteroid dehydrogenase from mouse is involved in the metabolism of oestrogens, androgens, neurosteroids and xenobiotic compounds. The enzyme was crystallized by the hanging-drop vapour-diffusion method in space group P222{sub 1}, with unit-cell parameters a = 84.91, b = 84.90, c = 95.83 Å. The Matthews coefficient (V{sub M}) and the solvent content were 2.21 Å{sup 3} Da{sup −1} and 44.6%, respectively, assuming the presence of two molecules in the asymmetricmore » unit. Diffraction data were collected to a resolution of 1.8 Å at the Swiss Light Source beamline X06SA using a MAR CCD area detector and gave a data set with an overall R{sub merge} of 6.8% and a completeness of 91.1%.« less

  5. Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.

    PubMed

    Roessl, Ulrich; Humi, Sebastian; Leitgeb, Stefan; Nidetzky, Bernd

    2015-09-01

    Freezing constitutes an important unit operation of biotechnological protein production. Effects of freeze-and-thaw (F/T) process parameters on stability and other quality attributes of the protein product are usually not well understood. Here a design of experiments (DoE) approach was used to characterize the F/T behavior of L-lactic dehydrogenase (LDH) in a 700-mL pilot-scale freeze container equipped with internal temperature and pH probes. In 24-hour experiments, target temperature between -10 and -38°C most strongly affected LDH stability whereby enzyme activity was retained best at the highest temperature of -10°C. Cooling profile and liquid fill volume also had significant effects on LDH stability and affected the protein aggregation significantly. Parameters of the thawing phase had a comparably small effect on LDH stability. Experiments in which the standard sodium phosphate buffer was exchanged by Tris-HCl and the non-ionic surfactant Tween 80 was added to the protein solution showed that pH shift during freezing and protein surface exposure were the main factors responsible for LDH instability at the lower freeze temperatures. Collectively, evidence is presented that supports the use of DoE-based systematic analysis at pilot scale in the identification of F/T process parameters critical for protein stability and in the development of suitable process control strategies. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cheap Labor: Myosin fiber type expression and enzyme activity in the forelimb musculature of sloths (Pilosa: Xenarthra).

    PubMed

    Spainhower, Kyle B; Cliffe, Rebecca N; Metz, Allan K; Barkett, Ernest M; Kiraly, Paije M; Thomas, Dylan R; Kennedy, Sarah J; Avey-Arroyo, Judy; Butcher, Michael T

    2018-05-03

    Sloths are canopy-dwelling inhabitants of American neotropical rainforests that exhibit suspensory behaviors. These abilities require both strength and muscular endurance to hang for extended periods of time; however, the skeletal muscle mass of sloths is reduced, thus requiring modifications to muscle architecture and leverage for large joint torque. We hypothesize that intrinsic muscle properties also are modified for fatigue resistance and predict a heterogeneous expression of slow/fast myosin heavy chain (MHC) fibers that utilize oxidative metabolic pathways for economic force production. MHC fiber type distribution and energy metabolism in the forelimb muscles of three-toed ( Bradypus variegatus, N=5) and two-toed ( Choloepus hoffmanni, N=4) sloths were evaluated using SDS-PAGE, immunohistochemistry, and enzyme activity assays. The results partially support our hypothesis by a primary expression of the slow MHC-1 isoform as well as moderate expression of fast MHC-2A fibers, while few hybrid MHC-1/2A fibers were found in both species. MHC-1 fibers were larger in cross-sectional area (CSA) than MHC-2A fibers and comprised the greatest %CSA in each muscle sampled. Enzyme assays showed elevated activity for the anaerobic enzymes creatine kinase (CK) and lactate dehydrogenase (LDH) compared to low activity for aerobic markers citrate synthase (CS) and 3- hydroxyacetyl CoA dehydrogenase (3-HAD). These findings suggest that sloth forelimb muscles may rely heavily on rapid ATP resynthesis pathways, and lactate accumulation may be beneficial. The intrinsic properties observed match well with suspensory requirements, and these modifications may have further evolved in unison with low metabolism and slow movement patterns as means to systemically conserve energy.

  7. Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase.

    PubMed

    Repetto, B; Tzagoloff, A

    1989-06-01

    Nuclear respiratory-defective mutants of Saccharomyces cerevisiae have been screened for lesions in the mitochondrial alpha-ketoglutarate dehydrogenase complex. Strains assigned to complementation group G70 were ascertained to be deficient in enzyme activity due to mutations in the KGD1 gene coding for the alpha-ketoglutarate dehydrogenase component of the complex. The KGD1 gene has been cloned by transformation of a representative kgd1 mutant, C225/U1, with a recombinant plasmid library of wild-type yeast nuclear DNA. Transformants containing the gene on a multicopy plasmid had three- to four-times-higher alpha-ketoglutarate dehydrogenase activity than did wild-type S. cerevisiae. Substitution of the chromosomal copy of KGD1 with a disrupted allele (kgd1::URA3) induced a deficiency in alpha-ketoglutarate dehydrogenase. The sequence of the cloned region of DNA which complements kgd1 mutants was found to have an open reading frame of 3,042 nucleotides capable of coding for a protein of Mw 114,470. The encoded protein had 38% identical residues with the reported sequence of alpha-ketoglutarate dehydrogenase from Escherichia coli. Two lines of evidence indicated that transcription of KGD1 is catabolite repressed. Higher steady-state levels of KGD1 mRNA were detected in wild-type yeast grown on the nonrepressible sugar galactose than in yeast grown on high glucose. Regulation of KGD1 was also studied by fusing different 5'-flanking regions of KGD1 to the lacZ gene of E. coli and measuring the expression of beta-galactosidase in yeast. Transformants harboring a fusion of 693 nucleotides of the 5'-flanking sequence expressed 10 times more beta-galactosidase activity when grown under derepressed conditions. The response to the carbon source was reduced dramatically when the same lacZ fusion was present in a hap2 or hap3 mutant. The promoter element(s) responsible for the regulated expression of KGD1 has been mapped to the -354 to -143 region. This region contained several

  8. Spatial Relation Between Left Atrial Anatomical Contact Areas and Circular Activation in Persistent Atrial Fibrillation.

    PubMed

    Nakahara, Shiro; Yamaguchi, Takanori; Hori, Yuichi; Anjo, Naofumi; Hayashi, Akiko; Kobayashi, Sayuki; Komatsu, Takaaki; Sakai, Yoshihiko; Fukui, Akira; Tsuchiya, Takeshi; Taguchi, Isao

    2016-05-01

    Atrial low-voltage zones (LVZs) may be related to maintenance of atrial fibrillation (AF). The influence of left atrial (LA) contact areas (CoAs) on reentrant or rotor-like sources maintaining AF has not been investigated. Forty patients with persistent AF (PsAF) were analyzed. Three representative CoA regions in the LA (ascending aorta: anterior wall; descending aorta: left inferior pulmonary vein; and vertebrae: posterior wall) were visualized by enhanced CT. Using circular catheters, the LVZs (<0.5 mV) were assessed after restoration of SR, and local activation mapping and frequency domain analyses were performed after induction of AF. Circular activation during AF was visually defined as sites with ≥2 rotations by serial electrograms encompassing >80% of the mean AF cycle length. A pivot was defined as the core of the localized circular activation. Anterior (39/40 patients, 98%), left pulmonary vein antrum (27/40, 68%), and posterior (19/40, 48%) CoAs were identified, and 80% (68/85) of those sites were overlapped by or close (<3 mm) to LVZs. Thirty-six (90%) patients demonstrated circular activation (3.1±1.7 sites/patients) along with significantly higher organized dominant frequencies (6.3 ± 0.5 Hz, regularity-index: 0.26 [0.23-0.41]) within the LA, and the average electrogram amplitude of those pivots was 0.30 mV (0.18-0.52). Of those sites, 55% (66/120) were located at or close to CoA regions. Catheter ablation including of LVZs neighboring CoAs terminated AF in 9 (23%) patients. External anatomical structures contacting the LA may be related to unique conduction properties in diseased myocardium necessary for PsAF maintenance. © 2016 Wiley Periodicals, Inc.

  9. Comparative reactivity of TpRu(L)(NCMe)Ph (L = CO or PMe3): impact of ancillary ligand l on activation of carbon-hydrogen bonds including catalytic hydroarylation and hydrovinylation/oligomerization of ethylene.

    PubMed

    Foley, Nicholas A; Lail, Marty; Lee, John P; Gunnoe, T Brent; Cundari, Thomas R; Petersen, Jeffrey L

    2007-05-30

    Complexes of the type TpRu(L)(NCMe)R [L = CO or PMe3; R = Ph or Me; Tp = hydridotris(pyrazolyl)borate] initiate C-H activation of benzene. Kinetic studies, isotopic labeling, and other experimental evidence suggest that the mechanism of benzene C-H activation involves reversible dissociation of acetonitrile, reversible benzene coordination, and rate-determining C-H activation of coordinated benzene. TpRu(PMe3)(NCMe)Ph initiates C-D activation of C6D6 at rates that are approximately 2-3 times more rapid than that for TpRu(CO)(NCMe)Ph (depending on substrate concentration); however, the catalytic hydrophenylation of ethylene using TpRu(PMe3)(NCMe)Ph is substantially less efficient than catalysis with TpRu(CO)(NCMe)Ph. For TpRu(PMe3)(NCMe)Ph, C-H activation of ethylene, to ultimately produce TpRu(PMe3)(eta3-C4H7), is found to kinetically compete with catalytic ethylene hydrophenylation. In THF solutions containing ethylene, TpRu(PMe3)(NCMe)Ph and TpRu(CO)(NCMe)Ph separately convert to TpRu(L)(eta3-C4H7) (L = PMe3 or CO, respectively) via initial Ru-mediated ethylene C-H activation. Heating mesitylene solutions of TpRu(L)(eta3-C4H7) under ethylene pressure results in the catalytic production of butenes (i.e., ethylene hydrovinylation) and hexenes.

  10. Cucumis melo ssp. Agrestis var. Agrestis Ameliorates High Fat Diet Induced Dyslipidemia in Syrian Golden Hamsters and Inhibits Adipogenesis in 3T3-L1 Adipocytes.

    PubMed

    Shankar, Kripa; Singh, Sumit K; Kumar, Durgesh; Varshney, Salil; Gupta, Abhishek; Rajan, Sujith; Srivastava, Ankita; Beg, Muheeb; Srivastava, Anurag Kumar; Kanojiya, Sanjeev; Mishra, Dipak K; Gaikwad, Anil N

    2015-10-01

    Cucumis melo ssp. agrestis var. agrestis (CMA) is a wild variety of C. melo. This study aimed to explore anti-dyslipidemic and anti-adipogenic potential of CMA. For initial anti-dyslipidemic and antihyperglycemic potential of CMA fruit extract (CMFE), male Syrian golden hamsters were fed a chow or high-fat diet with or without CMFE (100 mg/kg). Further, we did fractionation of this CMFE into two fractions namely; CMA water fraction (CMWF) and CMA hexane fraction (CMHF). Phytochemical screening was done with liquid chromatography-mass spectrometry LC- (MS)/MS and direct analysis in real time-MS to detect active compounds in the fractions. Further, high-fat diet fed dyslipidemic hamsters were treated with CMWF and CMHF at 50 mg/kg for 7 days. Oral administration of CMFE and both fractions (CMWF and CMHF) reduced the total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very low-density lipoprotein-cholesterol levels in high fat diet-fed dyslipidemic hamsters. CMHF also modulated expression of genes involved in lipogenesis, lipid metabolism, and reverse cholesterol transport. Standard biochemical diagnostic tests suggested that neither of fractions causes any toxicity to hamster liver or kidneys. CMFE and CMHF also decreased oil-red-O accumulation in 3T3-L1 adipocytes. Based on these results, it is concluded that CMA possesses anti-dyslipidemic and anti-hyperglycemic activity along with the anti-adipogenic activity. The oral administration of Cucumis melo agrestis fruit extract (CMFE) and its fractions (CMWF and CMHF) improved serum lipid profile in HFD fed dyslipidemic hamsters.CMFE, CMWF and CMHF significantly attenuated body weight gain and eWAT hypertrophy.The CMHF decreased lipogenesis in both liver and adipose tissue.CMFE and CMHF also inhibited adipogenesis in 3T3-L1 adipocytes. Abbreviation used: CMA: Cucumis melo ssp. agrestis var. agrestis, CMFE: CMA fruit extract, CMWF: CMA water fraction, CMHF: CMA hexane fraction, FAS: Fatty acid

  11. Cucumis melo ssp. Agrestis var. Agrestis Ameliorates High Fat Diet Induced Dyslipidemia in Syrian Golden Hamsters and Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Shankar, Kripa; Singh, Sumit K.; Kumar, Durgesh; Varshney, Salil; Gupta, Abhishek; Rajan, Sujith; Srivastava, Ankita; Beg, Muheeb; Srivastava, Anurag Kumar; Kanojiya, Sanjeev; Mishra, Dipak K.; Gaikwad, Anil N.

    2015-01-01

    Background: Cucumis melo ssp. agrestis var. agrestis (CMA) is a wild variety of C. melo. This study aimed to explore anti-dyslipidemic and anti-adipogenic potential of CMA. Materials and Methods: For initial anti-dyslipidemic and antihyperglycemic potential of CMA fruit extract (CMFE), male Syrian golden hamsters were fed a chow or high-fat diet with or without CMFE (100 mg/kg). Further, we did fractionation of this CMFE into two fractions namely; CMA water fraction (CMWF) and CMA hexane fraction (CMHF). Phytochemical screening was done with liquid chromatography-mass spectrometry LC- (MS)/MS and direct analysis in real time-MS to detect active compounds in the fractions. Further, high-fat diet fed dyslipidemic hamsters were treated with CMWF and CMHF at 50 mg/kg for 7 days. Results: Oral administration of CMFE and both fractions (CMWF and CMHF) reduced the total cholesterol, triglycerides, low‐density lipoprotein cholesterol, and very low‐density lipoprotein-cholesterol levels in high fat diet-fed dyslipidemic hamsters. CMHF also modulated expression of genes involved in lipogenesis, lipid metabolism, and reverse cholesterol transport. Standard biochemical diagnostic tests suggested that neither of fractions causes any toxicity to hamster liver or kidneys. CMFE and CMHF also decreased oil-red-O accumulation in 3T3-L1 adipocytes. Conclusion: Based on these results, it is concluded that CMA possesses anti-dyslipidemic and anti-hyperglycemic activity along with the anti-adipogenic activity. SUMMARY The oral administration of Cucumis melo agrestis fruit extract (CMFE) and its fractions (CMWF and CMHF) improved serum lipid profile in HFD fed dyslipidemic hamsters.CMFE, CMWF and CMHF significantly attenuated body weight gain and eWAT hypertrophy.The CMHF decreased lipogenesis in both liver and adipose tissue.CMFE and CMHF also inhibited adipogenesis in 3T3-L1 adipocytes. Abbreviation used: CMA: Cucumis melo ssp. agrestis var. agrestis, CMFE: CMA fruit extract, CMWF

  12. Effect of pentachlorophenol and 2,6-dichloro-4-nitrophenol on the activity of cDNA-expressed human alcohol and aldehyde dehydrogenases.

    PubMed

    Kollock, Ronny; Rost, Katharina; Batke, Monika; Glatt, Hansruedi

    2009-12-15

    Pentachlorophenol (PCP) and 2,6-dichloro-4-nitrophenol (DCNP), potent inhibitors of phenol sulphotransferases, are frequently used in animal studies to elucidate the role of these enzymes in the biotransformation and toxicity of xenobiotics. An unexpected finding with 1-hydroxymethylpyrene--a strong decrease in the excretion of the corresponding carboxylic acid in rats concurrently treated with PCP-led us to suspect that this sulphotransferase inhibitor may also affect alcohol dehydrogenases (ADHs) and/or aldehyde dehydrogenases (ALDHs). Subsequently we investigated the influence of PCP and DCNP on the activity of cDNA-expressed human ADHs and ALDHs. PCP inhibited all four ADHs studied. The inhibition was strong for ADH3 (K(i) 1.4 microM, K(i)' 5.2 microM, mixed-type) and ADH2 (K(i) 3.7 microM, competitive), but moderate for ADH4 (K(i) 81 microM, competitive) and ADH1C (K(i)' 310 microM, uncompetitive). Activities of ALDH2 and ALDH3A1 were unaffected by PCP (used up to a concentration of 1 mM). In contrast, DCNP primarily inhibited ALDH2 (K(i)=K(i)' 7.4 microM, non-competitive), showed moderate competitive inhibition of ADH2 (K(i) 160 microM) and ADH4 (K(i) 710 microM), but did not affect the remaining enzymes (ADH1C, ADH3 and ALDH3A1). The study demonstrates that caution is required when using putative specific enzyme inhibitors in biotransformation studies.

  13. Comparison of the effects of Ca2+, adenine nucleotides and pH on the kinetic properties of mitochondrial NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase from the yeast Saccharomyces cerevisiae and rat heart.

    PubMed Central

    Nichols, B J; Rigoulet, M; Denton, R M

    1994-01-01

    The regulatory properties of NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase in extracts of yeast and rat heart mitochondria were studied under identical conditions. Yeast NAD(+)-isocitrate dehydrogenase exhibits a low K0.5 for isocitrate and is activated by AMP and ADP, but is insensitive to ATP and Ca2+. In contrast, the rat heart NAD(+)-isocitrate dehydrogenase was insensitive to AMP, but was activated by ADP and by Ca2+ in the presence of ADP or ATP. Both yeast and rat heart oxoglutarate dehydrogenase were stimulated by ADP, but only the heart enzyme was activated by Ca2+. All the enzymes studied were activated by decreases in pH, but to differing extents. The effects of Ca2+, adenine nucleotides and pH were through K0.5 for isocitrate or 2-oxoglutarate. These observations are discussed with reference to the deduced amino acid sequences of the constituent subunits of the enzymes, where they are available. PMID:7980405

  14. Palladium alpha-lipoic acid complex formulation enhances activities of Krebs cycle dehydrogenases and respiratory complexes I-IV in the heart of aged rats.

    PubMed

    Sudheesh, N P; Ajith, T A; Janardhanan, K K; Krishnan, C V

    2009-08-01

    Age-related decline in the capacity to withstand stress, such as ischemia and reperfusion, results in congestive heart failure. Though the mechanisms underlying cardiac decay are not clear, age dependent somatic damages to mitochondrial DNA (mtDNA), loss of mitochondrial function, and a resultant increase in oxidative stress in heart muscle cells may be responsible for the increased risk for cardiovascular diseases. The effect of a safe nutritional supplement, POLY-MVA, containing the active ingredient palladium alpha-lipoic acid complex, was evaluated on the activities of the Krebs cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, II, III, and IV in heart mitochondria of aged male albino rats of Wistar strain. Administration of 0.05 ml/kg of POLY-MVA (which is equivalent to 0.38 mg complexed alpha-lipoic acid/kg, p.o), once daily for 30 days, was significantly (p<0.05) effective to enhance the Krebs cycle dehydrogenases, and mitochondrial electron transport chain complexes. The unique electronic and redox properties of palladium alpha-lipoic acid complex appear to be a key to this physiological effectiveness. The results strongly suggest that this formulation might be effective to protect the aging associated risk of cardiovascular and neurodegenerative diseases.

  15. The specific role of plastidial glycolysis in photosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Anoman, Armand Djoro; Flores-Tornero, María; Rosa-Telléz, Sara; Muñoz-Bertomeu, Jesús; Segura, Juan; Ros, Roc

    2016-01-01

    The cellular compartmentalization of metabolic processes is an important feature in plants where the same pathways could be simultaneously active in different compartments. Plant glycolysis occurs in the cytosol and plastids of green and non-green cells in which the requirements of energy and precursors may be completely different. Because of this, the relevance of plastidial glycolysis could be very different depending on the cell type. In the associated study, we investigated the function of plastidial glycolysis in photosynthetic and heterotrophic cells by specifically driving the expression of plastidial glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in a glyceraldehyde-3-phosphate dehydrogenase double mutant background (gapcp1gapcp2). We showed that GAPCp is not functionally significant in photosynthetic cells, while it plays a crucial function in heterotrophic cells. We also showed that (i) GAPCp activity expression in root tips is necessary for primary root growth, (ii) its expression in heterotrophic cells of aerial parts and roots is necessary for plant growth and development, and (iii) GAPCp is an important metabolic connector of carbon and nitrogen metabolism through the phosphorylated pathway of serine biosynthesis (PPSB). We discuss here the role that this pathway could play in the control of plant growth and development.

  16. Purification, Characterization, and Cloning of Cinnamyl Alcohol Dehydrogenase in Loblolly Pine (Pinus taeda L.).

    PubMed

    O'malley, D M; Porter, S; Sederoff, R R

    1992-04-01

    Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1. 195) has been purified to homogeneity from differentiating xylem tissue and developing seeds of loblolly pine (Pinus taeda L.). The enzyme is a dimer with a native molecular weight of 82,000 and a subunit molecular weight of 44,000, and is the only form of CAD involved in lignification in differentiating xylem. High levels of loblolly pine CAD enzyme were found in nonlignifying seed tissue. Characterization of the enzyme from both seeds and xylem demonstrated that the enzyme is the same in both tissues. The enzyme has a high affinity for coniferaldehyde (K(m) = 1.7 micromolar) compared with sinapaldehyde (K(m) in excess of 100 micromolar). Kinetic data strongly suggest that coniferin is a noncompetitive inhibitor of CAD enzyme activity. Protein sequences were obtained for the N-terminus (28 amino acids) and for two other peptides. Degenerate oligonucleotide primers based on the protein sequences were used to amplify by polymerase chain reaction a 1050 base pair DNA fragment from xylem cDNA. Nucleotide sequence from the cloned DNA fragment coded for the N-terminal protein sequence and an internal peptide of CAD. The N-terminal protein sequence has little similarity with the lambdaCAD4 clone isolated from bean (MH Walter, J Grima-Pettenati, C Grand, AM Boudet, CJ Lamb [1988] Proc Natl Acad Sci USA 86:5546-5550), which has homology with malic enzyme.

  17. [Effects of infrasound on activities of 3beta hydroxysteroid dehydrogenase and acid phosphatase of polygonal cells in adrenal cortex zona fasciculate in mice].

    PubMed

    Dang, Wei-min; Wang, Sheng; Tian, Shi-xiu; Chen, Bing; Sun, Fei; Li, Wei; Jiao, Yan; He, Li-hua

    2007-02-01

    To explore the biological effects of infrasound on the polygonal cells in adrenal cortex zona fasciculation in mice. The biological effects of infrasound on the activities of 3beta hydroxysteroid dehydrogenase (3-betaHSDH) and acid phosphatase(ACP) of the polygonal cells in adrenal cortex zona fasciculate were observed when exposure to 8 and 16 Hz infrasound at 80, 90, 100, 110, 120 and 130 dB for 1 day, 7 days and 14 days or 14 days after the exposure. When exposure to 8 Hz infrasound, the enzyme activities of 3-betaHSDH increase as the sound pressure levels increase. Only when the sound pressure levels reach 130 dB, the enzyme activities began to decrease exceptionally. When exposure to 16 Hz, 80 dB infrasound, no significant difference between the treatment and control group in the activities of 3-betaHSDH could be observed, but the injury of the polygonal cells had appeared. When exposure to 16 Hz, 100 dB infrasound, the activities of 3-betaHSDH started to increase. The cell injury still existed. When exposed to 16 Hz, 120 dB infrasound, the local tissue damage represented. Fourteen days after the mice exposure to 8 Hz, 90 dB and 130 dB infrasound for 14 days continuously, the local tissue injury of the adrenal cortex zona fasciculation began to recover at certain extent, but the higher the exposure sound pressure level, the poorer the tissue recovery. The biological effects of infrasound on the polygonal cells in adrenal cortex zona fasciculation response to the frequency of the infrasound are found at certain action strength range, but this characteristic usually is covered by the severe tissue injury. When exposure to infrasound is stopped for a period of time, the local tissue injury of the adrenal cortex zona fasciculation could recovers at certain extent, but the higher the exposure sound pressure level, the more poorer the tissue recovery.

  18. High efficiency preparation and characterization of intact poly(vinyl alcohol) dehydrogenase from Sphingopyxis sp.113P3 in Escherichia coli by inclusion bodies renaturation.

    PubMed

    Jia, Dongxu; Yang, Yu; Peng, Zhengcong; Zhang, Dongxu; Li, Jianghua; Liu, Long; Du, Guocheng; Chen, Jian

    2014-03-01

    Poly(vinyl alcohol) dehydrogenase (PVADH, EC 1.1.99.23) is an enzyme which has potential application in textile industry to degrade the poly(vinyl alcohol) (PVA) in waste water. Previously, a 1,965-bp fragment encoding a PVADH from Sphingopyxis sp. 113P3 was synthesized based on the replacement of the rare codons in Escherichia coli (E. coli). In this work, the deduced mature PVADH (mPVADH) gene of 1,887 bp was amplified by polymerase chain reaction (PCR) and inserted into the site between NcoI and HindIII in pET-32a(+). The constructed recombinant plasmid was transformed into E. coli Rosetta (DE3). In shake flask, the fusion protein of thioredoxin (Trx)-mPVADH was expressed precisely; however, Trx-mPVADH was found to accumulate mainly as inclusion bodies. After isolating, dissolving in buffer containing urea, purification, dialysis renaturation, and digesting with recombinant enterokinase/His (rEK/His), the bioactive mPVADH fragments were obtained with protein concentration of 0.56 g/L and enzymatic activity of 194 U/mL. The K m and V max values for PVA 1799 were 2.33 mg/mL and 15.7 nmol/(min·mg protein), respectively. (1)H-NMR and infrared (IR) spectrum demonstrated that its biological function was oxidizing hydroxyl groups of PVA 1799 to form diketone, and PVA 1799 could be degraded completely by successive treatment with mPVADH and oxidized PVA hydrolase (OPH).

  19. Molecular cloning and expression analysis of the gene encoding proline dehydrogenase from Jatropha curcas L.

    PubMed

    Wang, Haibo; Ao, Pingxing; Yang, Shuanglong; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2015-03-01

    Proline dehydrogenase (ProDH) (EC 1.5.99.8) is a key enzyme in the catabolism of proline. The enzyme JcProDH and its complementary DNA (cDNA) were isolated from Jatropha curcas L., an important woody oil plant used as a raw material for biodiesels. It has been classified as a member of the Pro_dh superfamily based on multiple sequence alignment, phylogenetic characterization, and its role in proline catabolism. Its cDNA is 1674 bp in length with a complete open reading frame of 1485 bp, which encodes a polypeptide chain of 494 amino acids with a predicted molecular mass of 54 kD and a pI of 8.27. Phylogenetic analysis indicated that JcProDH showed high similarity with ProDH from other plants. Reverse transcription PCR (RT-PCR) analysis revealed that JcProDH was especially abundant in the seeds and flowers but scarcely present in the stems, roots, and leaves. In addition, the expression of JcProDH increased in leaves experiencing environmental stress such as cold (5 °C), heat (42 °C), salt (300 mM), and drought (30 % PEG6000). The JcProDH protein was successfully expressed in the yeast strain INVSc1 and showed high enzyme activity in proline catabolism. This result confirmed that the JcProDH gene negatively participated in the stress response.

  20. Biosensor for the enantioselective analysis of the thyroid hormones (+)-3,3',5-triiodo-L-thyronine (T3) and (+)-3,3',5,5'-tetraiodo-L-thyronine (T4).

    PubMed

    Aboul-Enein, Hassan V; Stefan, Raluca-Ioana; Litescu, Simona; Radu, Gabriel Lucian

    2002-01-01

    An amperometric biosensor based on L-aminoacid oxidase is proposed for enantioselective assay of (+)-3,3',5-triiodo-L-thyronine (L-T3) and (+)-3,3',5,5'-tetraiodo-L-thyronine (L-T4), due to the fact that only the L enantiomer has the hormonal activity. The construction of the amperometric biosensor is simple and reproducible. The analytical information obtained from enantioselective analysis are reliable. The RSD <1% assured by using the amperometric biosensors for L enantiomers assay as raw materials, and from tablets, demonstrated their suitability for the analysis of T3 and T4 at ppb concentration levels.

  1. Characterization of new recombinant 3-ketosteroid-Δ1-dehydrogenases for the biotransformation of steroids.

    PubMed

    Wang, Xiaojun; Feng, Jinhui; Zhang, Dalong; Wu, Qiaqing; Zhu, Dunming; Ma, Yanhe

    2017-08-01

    3-Ketosteroid-Δ 1 -dehydrogenases (KstDs [EC 1.3.99.4]) catalyze the Δ 1 -dehydrogenation of steroids and are a class of important enzymes for steroid biotransformations. In this study, we cloned 12 putative KstD-encoding (kstd) genes from both fungal and Gram-positive microorganisms and attempted to overproduce the recombinant proteins in E. coli BL21(DE3). Five successful recombinant enzymes catalyzed the Δ 1 -desaturation of a variety of steroidal compounds such as 4-androstene-3,17-dione (AD), 9α-hydroxy-4-androstene-3,17-dione (9-OH-AD), hydrocortisone, cortisone, and cortexolone. However, the substrate specificity and catalytic efficiency of the enzymes differ depending on their sources. The purified KstD from Mycobacterium smegmatis mc 2 155 (MsKstD1) displayed high catalytic efficiency toward hydrocortisone, progesterone, and 9-OH-AD, where it had the highest affinity (K m 36.9 ± 4.6 μM) toward 9-OH-AD. On the other hand, the KstD from Rhodococcus erythropolis WY 1406 (ReKstD) exhibited high catalytic efficiency toward androst-4,9(11)-diene-3,17-dione (Diene), 21-acetoxy-pregna-4,9(11),16-triene-3,20-dione (Triene), and cortexolone, where in all three cases the K m values (12.3 to 17.8 μM) were 2.5-4-fold lower than that toward hydrocortisone (46.3 μM). For both enzymes, AD was a good substrate although ReKstD had a 3-fold higher affinity than MsKstD1. Reaction conditions were optimized for the biotransformation of AD or hydrocortisone in terms of pH, temperature, and effects of hydrogen peroxide, solvent, and electron acceptor. For the biotransformation of hydrocortisone with 20 g/L wet resting E. coli cells harboring MsKstD1 enzyme, the yield of prednisolone was about 90% within 3 h at the substrate concentration of 6 g/L, demonstrating the application potential of the newly cloned KstDs.

  2. A novel archaeal alanine dehydrogenase homologous to ornithine cyclodeaminase and mu-crystallin.

    PubMed

    Schröder, Imke; Vadas, Alexander; Johnson, Eric; Lim, Sierin; Monbouquette, Harold G

    2004-11-01

    A novel alanine dehydrogenase (AlaDH) showing no significant amino acid sequence homology with previously known bacterial AlaDHs was purified to homogeneity from the soluble fraction of the hyperthermophilic archaeon Archaeoglobus fulgidus. AlaDH catalyzed the reversible, NAD+-dependent deamination of L-alanine to pyruvate and NH4+. NADP(H) did not serve as a coenzyme. The enzyme is a homodimer of 35 kDa per subunit. The Km values for L-alanine, NAD+, pyruvate, NADH, and NH4+ were estimated at 0.71, 0.60, 0.16, 0.02, and 17.3 mM, respectively. The A. fulgidus enzyme exhibited its highest activity at about 82 degrees C (203 U/mg for reductive amination of pyruvate) yet still retained 30% of its maximum activity at 25 degrees C. The thermostability of A. fulgidus AlaDH was increased by more than 10-fold by 1.5 M KCl to a half-life of 55 h at 90 degrees C. At 25 degrees C in the presence of this salt solution, the enzyme was approximately 100% stable for more than 3 months. Closely related A. fulgidus AlaDH homologues were found in other archaea. On the basis of its amino acid sequence, A. fulgidus AlaDH is a member of the ornithine cyclodeaminase-mu-crystallin family of enzymes. Similar to the mu-crystallins, A. fulgidus AlaDH did not exhibit any ornithine cyclodeaminase activity. The recombinant human mu-crystallin was assayed for AlaDH activity, but no activity was detected. The novel A. fulgidus gene encoding AlaDH, AF1665, is designated ala.

  3. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.

    PubMed

    Zhang, Jifeng; Gong, Guangyu; Wang, Xiao; Zhang, Hao; Tian, Weidong

    2015-08-01

    Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH.

  4. Functional characterization of two new members of the caffeoyl CoA O-methyltransferase-like gene family from Vanilla planifolia reveals a new class of plastid-localized O-methyltransferases.

    PubMed

    Widiez, Thomas; Hartman, Thomas G; Dudai, Nativ; Yan, Qing; Lawton, Michael; Havkin-Frenkel, Daphna; Belanger, Faith C

    2011-08-01

    Caffeoyl CoA O-methyltransferases (OMTs) have been characterized from numerous plant species and have been demonstrated to be involved in lignin biosynthesis. Higher plant species are known to have additional caffeoyl CoA OMT-like genes, which have not been well characterized. Here, we identified two new caffeoyl CoA OMT-like genes by screening a cDNA library from specialized hair cells of pods of the orchid Vanilla planifolia. Characterization of the corresponding two enzymes, designated Vp-OMT4 and Vp-OMT5, revealed that in vitro both enzymes preferred as a substrate the flavone tricetin, yet their sequences and phylogenetic relationships to other enzymes are distinct from each other. Quantitative analysis of gene expression indicated a dramatic tissue-specific expression pattern for Vp-OMT4, which was highly expressed in the hair cells of the developing pod, the likely location of vanillin biosynthesis. Although Vp-OMT4 had a lower activity with the proposed vanillin precursor, 3,4-dihydroxybenzaldehyde, than with tricetin, the tissue specificity of expression suggests it may be a candidate for an enzyme involved in vanillin biosynthesis. In contrast, the Vp-OMT5 gene was mainly expressed in leaf tissue and only marginally expressed in pod hair cells. Phylogenetic analysis suggests Vp-OMT5 evolved from a cyanobacterial enzyme and it clustered within a clade in which the sequences from eukaryotic species had predicted chloroplast transit peptides. Transient expression of a GFP-fusion in tobacco demonstrated that Vp-OMT5 was localized in the plastids. This is the first flavonoid OMT demonstrated to be targeted to the plastids.

  5. Cloning, sequence, and disruption of the Saccharomyces diastaticus DAR1 gene encoding a glycerol-3-phosphate dehydrogenase.

    PubMed Central

    Wang, H T; Rahaim, P; Robbins, P; Yocum, R R

    1994-01-01

    The Saccharomyces diastaticus DAR1 gene was cloned by complementation in an Escherichia coli strain auxogrophic for glycerol-3-phosphate. DAR1 encodes an NADH-dependent dihydroxyacetone phosphate reductase (sn-glycerol-3-phosphate dehydrogenase [G3PDase; EC 1.1.1.8]) homologous to several other eukaryotic G3PDases. DAR1 is distinct from GUT2, which encodes a glucose-repressed mitochondrial G3PDase, but is identical to GPD1 from S. cerevisiae, a close relative of S. diastaticus. The level of DAR1-encoded G3PDase was increased about threefold in a medium of high osmolarity. Disruption of DAR1 in a haploid S. cerevisiae was not lethal but led to a decrease in cytoplasmic NADH-dependent G3PDase activity, an increase in osmotic sensitivity, and a 25% reduction in glycerol secretion from cells grown anaerobically on glucose. PMID:7961476

  6. Enzymological Basis for Growth Inhibition by l-Phenylalanine in the Cyanobacterium Synechocystis sp. 29108

    PubMed Central

    Hall, Geraldine C.; Jensen, Roy A.

    1980-01-01

    The pattern of allosteric control in the biosynthetic pathway for aromatic amino acids provides a basis to explain vulnerability to growth inhibition by l-phenylalanine (0.2 mM or greater) in the unicellular cyanobacterium Synechocystis sp. 29108. We attribute growth inhibition to the hypersensitivity of 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase to feedback inhibition by l-phenylalanine. Hyperregulation of this initial enzyme of aromatic biosynthesis depletes the supply of precursors needed for biosynthesis of l-tyrosine and l-tryptophan. Consistent with this mechanism is the total reversal of phenylalanine inhibition by a combination of tyrosine and tryptophan. Inhibited cultures also contained decreased levels of phycocyanin pigments, a characteristic previously correlated with amino acid starvation in cyanobacteria. l-Phenylalanine is a potent noncompetitive inhibitor (with both substrates) of 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase, whereas l-tyrosine is a very weak inhibitor. Prephenate dehydratase also displays allosteric sensitivity to phenylalanine (inhibition) and to tyrosine (activation). Both 2-fluoro and 4-fluoro derivatives of phenylalanine were potent analog antimetabolites, and these were used in addition to l-phenylalanine as selective agents for resistant mutants. Mutants were isolated which excreted both phenylalanine and tyrosine, the consequence of an altered 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase no longer sensitive to feedback inhibition. Simultaneous insensitivity to l-tyrosine suggests that l-tyrosine acts as a weak analog mimic of l-phenylalanine at a common binding site. Prephenate dehydratase in the regulatory mutants was unaltered. Surprisingly, in view of the lack of regulation in the tyrosine branchlet of the pathway, such mutants excrete more phenylalanine than tyrosine, indicating that l-tyrosine activation dominates l-phenylalanine inhibition of prephenate dehydratase in vivo. In mutant Phe r19 the

  7. Biocatalysis of a Paclitaxel Analogue: Conversion of Baccatin III to N-Debenzoyl-N-(2-furoyl)paclitaxel and Characterization of an Amino Phenylpropanoyl CoA Transferase.

    PubMed

    Thornburg, Chelsea K; Walter, Tyler; Walker, Kevin D

    2017-11-07

    In this study, we demonstrate an enzyme cascade reaction using a benzoate CoA ligase (BadA), a modified nonribosomal peptide synthase (PheAT), a phenylpropanoyltransferase (BAPT), and a benzoyltransferase (NDTNBT) to produce an anticancer paclitaxel analogue and its precursor from the commercially available biosynthetic intermediate baccatin III. BAPT and NDTNBT are acyltransferases on the biosynthetic pathway to the antineoplastic drug paclitaxel in Taxus plants. For this study, we addressed the recalcitrant expression of BAPT by expressing it as a soluble maltose binding protein fusion (MBP-BAPT). Further, the preparative-scale in vitro biocatalysis of phenylisoserinyl CoA using PheAT enabled thorough kinetic analysis of MBP-BAPT, for the first time, with the cosubstrate baccatin III. The turnover rate of MBP-BAPT was calculated for the product N-debenzoylpaclitaxel, a key intermediate to various bioactive paclitaxel analogues. MBP-BAPT also converted, albeit more slowly, 10-deacetylbaccatin III to N-deacyldocetaxel, a precursor of the pharmaceutical docetaxel. With PheAT available to make phenylisoserinyl CoA and kinetic characterization of MBP-BAPT, we used Michaelis-Menten parameters of the four enzymes to adjust catalyst and substrate loads in a 200-μL one-pot reaction. This multienzyme network produced a paclitaxel analogue N-debenzoyl-N-(2-furoyl)paclitaxel (230 ng) that is more cytotoxic than paclitaxel against certain macrophage cell types. Also in this pilot reaction, the versatile N-debenzoylpaclitaxel intermediate was made at an amount 20-fold greater than the N-(2-furoyl) product. This reaction network has great potential for optimization to scale-up production and is attractive in its regioselective O- and N-acylation steps that remove protecting group manipulations used in paclitaxel analogue synthesis.

  8. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of L-lactate dehydrogenase and its H171C mutant from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanfeng; Gao, Xiaoli

    2012-08-31

    L-Lactate dehydrogenase (LDH) is an important enzyme involved in the last step of glycolysis that catalyzes the reversible conversion of pyruvate to L-lactate with the simultaneous oxidation of NADH to NAD{sup +}. In this study, wild-type LDH from Bacillus subtilis (BsLDH-WT) and the H171C mutant (BsLDH-H171C) were expressed in Escherichia coli and purified to near-homogeneity. BsLDH-WT was crystallized in the presence of fructose 1,6-bisphosphate (FBP) and NAD{sup +} and the crystal diffracted to 2.38 {angstrom} resolution. The crystal belonged to space group P3, with unit-cell parameters a = b = 171.04, c = 96.27 {angstrom}. BsLDH-H171C was also crystallized asmore » the apoenzyme and in complex with NAD{sup +}, and data sets were collected to 2.20 and 2.49 {angstrom} resolution, respectively. Both BsLDH-H171C crystals belonged to space group P3, with unit-cell parameters a = b = 133.41, c = 99.34 {angstrom} and a = b = 133.43, c = 99.09 {angstrom}, respectively. Tetramers were observed in the asymmetric units of all three crystals.« less

  9. Betaine aldehyde dehydrogenase isozymes of spinach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase inmore » salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.« less

  10. Cofactor-Dependent Aldose Dehydrogenase of Rhodopseudomonas spheroides

    PubMed Central

    Niederpruem, Donald J.; Doudoroff, Michael

    1965-01-01

    Niederpruem, Donald J. (University of California, Berkeley), and Michael Doudoroff. Cofactor-dependent aldose dehydrogenase of Rhodopseudomonas spheroides. J. Bacteriol. 89:697–705. 1965.—Particulate enzyme preparations of cell extracts of Rhodopseudomonas spheroides possess constitutive dehydrogenase and oxidase activities for aldose sugars, reduced nicotinamide adenine dinucleotide (NADH2), and succinate. The dehydrogenation of aldoses requires an unidentified cofactor which is not required for the oxidation of succinate nor of NADH2. The cofactor is present in the particulate fraction of aerobic cells, but is unavailable to the enzyme system. It can be liberated by boiling or by treatment with salts at high concentration. The cofactor also appears in the soluble fraction of aerobic cells, but only after exponential growth has ceased. Extracts of cells grown anaerobically in the light possess the apoenzyme, but not the cofactor, for aldose oxidation. Cofactor activity was found in extracts of Bacterium anitratum (= Moraxella sp.) but not in Escherichia coli, Pseudomonas fluorescens, yeast, or mouse liver. In 0.075 m tris(hydroxymethyl)aminomethane-phosphoric acid buffer (pH 7.3), the oxidation of NADH2 was stimulated and succinoxidase was inhibited by high salt concentrations. PMID:14273648

  11. Expression of catalase, alcohol dehydrogenase, and malate dehydrogenase in rot grains upon fungicide use on maize hybrids grown at different spacings.

    PubMed

    Kluge, E R; Mendes, M C; Faria, M V; Santos, H O; Santos, L A; Sandini, I E

    2017-04-20

    In this study, we evaluated the fungicide effect on the incidence of rot grains and expression of catalase (CAT), alcohol dehydrogenase (ADH), and malate dehydrogenase (MDH) enzymes in commercial maize hybrids grown with conventional and reduced spacing in Guarapuava, PR, Brazil. The experiment was designed in random blocks with a 3 × 8-factorial scheme, totaling 24 treatments. The first factor constituted three levels, the first with foliar fungicide application [150.0 g/L trifloxystrobin (15.0%, w/v) + 175.0 g/L prothioconazole (17.5%, w/v)] at a dose of 0.4 L/ha at V8-stage eight expanded leaves and the second with an application of 0.5 L/ha at VT-tasseling and check (no fungicide application) stage. The second factor comprised eight maize hybrids that were divided into two groups, complex (AG 9045PRO, AG 8041PRO, DKB245PRO2, and 2B707PW) and susceptible (P 32R48H, DKB390PRO, P 30F53H, and P 30R50H), according to their reaction to the causative fungus, totaling 72 plots at each site in the crop of 2013/2014. The percentage of rot grains and the expression of CAT, ADH, and MDH were evaluated for each hybrid. The percentage of rot grains was influenced by the hybrid and fungicide used. The (trifloxystrobin + prothioconazole) reduced the incidence of rot grains, with relatively higher reduction in the hybrids considered susceptible. The higher expression of CAT enzyme was related to the higher incidence of rot grains because of grain deterioration, depending on the hybrids evaluated. A higher expression of ADH and MDH enzymes was observed in the maize hybrids belonging to the group considered tolerant.

  12. Postdate pregnancy: changes of placental/membranes 11β-hydroxysteroid dehydrogenase mRNA and activity.

    PubMed

    Novembri, R; Voltolini, C; Torricelli, M; Severi, F M; Marcolongo, P; Benedetti, A; Challis, J R; Petraglia, F

    2013-11-01

    11β-Hydroxysteroid dehydrogenase 1 and 2 (11β-HSD1 and 11β-HSD2) are involved in the complex mechanism of human parturition. The present study examined mRNA expression and activity of membrane 11β-HSD1 and placental 11β-HSD2 in postdate pregnancies according to response of labor induction. In comparison to postdate women who had spontaneous delivery or after induction the non-responders showed significantly low c and high 11β-HSD2 expression and activity These data suggest that disrupted expression and activity of 11β-HSDs may occur in some postdate pregnancies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Platyphylloside Isolated From Betula platyphylla Inhibit Adipocyte Differentiation and Induce Lipolysis Via Regulating Adipokines Including PPARγ in 3T3-L1 Cells

    PubMed Central

    Lee, Mina; Sung, Sang Hyun

    2016-01-01

    Background: Obesity causes or aggravates many health problems, both independently and in association with several pathological disorders, including Type II diabetes, hypertension, atherosclerosis, and cancer. Therefore, we screened small compounds isolated from natural products for the development of anti-obesity drugs. Objective: The purpose of this study was to investigate the anti-adipogenic activities of platyphylloside, diarylheptanoid isolated from Betula platyphylla, which was selected based on the screening using 3T3-L1 cells. Materials and Methods: To evaluate the inhibition of adipocyte differentiation and lipolysis, lipid contents of BPP on were measured using Oil Red O staining in 3T3-L1 cells. The mRNA and protein expression levels of various adipokines were measured by Quantitative real-time PCR and Western blotting analysis, respectively. Results: Platyphylloside showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 cells and suppressed adipocyte differentiation even in the presence of troglitazone, a PPARγ agonist. Platyphylloside might suppress adipocyte differentiation through PPARγ, C/EBPα, and SREBP1-induced adipogenesis, which is synergistically associated with downstream adipocyte-specific gene promoters such as aP2, FAS, SCD-1, LPL, and Adiponectin. In addition, platyphylloside affected lipolysis by down-regulating perilipin and HSL and up-regulating TNFα. Conclusion: Taken together, the results reveal that platyphylloside has anti-adipogenic activity and highlight its potential in the prevention and treatment of obesity. SUMMARY The extract of B. platyphylla bark and its isolate, BPP, had anti-adipogenic activity in 3T3-L1 cells via suppression of adipocyte differentiation from preadipocytes.Treatment with BPP significantly down-regulated the expression of PPARγ, C/EBP, C/EBPβ, C/EBPδ, SREBP1c, SCD-1, FAS, aP2 and LPL.BPP induced a lipolytic response in mature adipocytes via up-regulation krof TNFá and down

  14. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.

    PubMed

    Thapa, Dharendra; Zhang, Manling; Manning, Janet R; Guimarães, Danielle A; Stoner, Michael W; O'Doherty, Robert M; Shiva, Sruti; Scott, Iain

    2017-08-01

    Lysine acetylation is a reversible posttranslational modification and is particularly important in the regulation of mitochondrial metabolic enzymes. Acetylation uses acetyl-CoA derived from fuel metabolism as a cofactor, thereby linking nutrition to metabolic activity. In the present study, we investigated how mitochondrial acetylation status in the heart is controlled by food intake and how these changes affect mitochondrial metabolism. We found that there was a significant increase in cardiac mitochondrial protein acetylation in mice fed a long-term high-fat diet and that this change correlated with an increase in the abundance of the mitochondrial acetyltransferase-related protein GCN5L1. We showed that the acetylation status of several mitochondrial fatty acid oxidation enzymes (long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, and hydroxyacyl-CoA dehydrogenase) and a pyruvate oxidation enzyme (pyruvate dehydrogenase) was significantly upregulated in high-fat diet-fed mice and that the increase in long-chain and short-chain acyl-CoA dehydrogenase acetylation correlated with increased enzymatic activity. Finally, we demonstrated that the acetylation of mitochondrial fatty acid oxidation proteins was decreased after GCN5L1 knockdown and that the reduced acetylation led to diminished fatty acid oxidation in cultured H9C2 cells. These data indicate that lysine acetylation promotes fatty acid oxidation in the heart and that this modification is regulated in part by the activity of GCN5L1. NEW & NOTEWORTHY Recent research has shown that acetylation of mitochondrial fatty acid oxidation enzymes has greatly contrasting effects on their activity in different tissues. Here, we provide new evidence that acetylation of cardiac mitochondrial fatty acid oxidation enzymes by GCN5L1 significantly upregulates their activity in diet-induced obese mice. Copyright © 2017 the American Physiological Society.

  15. Novel chiral tool, (R)-2-octanol dehydrogenase, from Pichia finlandica: purification, gene cloning, and application for optically active α-haloalcohols.

    PubMed

    Yamamoto, Hiroaki; Kudoh, Masatake

    2013-09-01

    A novel enantioselective alcohol dehydrogenase, (R)-2-octanol dehydrogenase (PfODH), was discovered among methylotrophic microorganisms. The enzyme was purified from Pichia finlandica and characterized. The molecular mass of the enzyme was estimated to be 83,000 and 30,000 by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The enzyme was an NAD(+)-dependent secondary alcohol dehydrogenase and showed a strict enantioselectivity, very broad substrate specificity, and high tolerance to SH reagents. A gene-encoding PfODH was cloned and sequenced. The gene consisted of 765 nucleotides, coding polypeptides of 254 amino acids. The gene was singly expressed and coexpressed together with a formate dehydrogenase as an NADH regenerator in an Escherichia coli. Ethyl (S)-4-chloro-3-hydroxybutanoate and (S)-2-chloro-1-phenylethanol were synthesized using a whole-cell biocatalyst in more than 99 % optical purity.

  16. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane.

    PubMed

    McAnulty, Michael J; Poosarla, Venkata Giridhar; Li, Jine; Soo, Valerie W C; Zhu, Fayin; Wood, Thomas K

    2017-04-01

    We previously demonstrated anaerobic conversion of the greenhouse gas methane into acetate using an engineered archaeon that produces methyl-coenzyme M reductase (Mcr) from unculturable microorganisms from a microbial mat in the Black Sea to create the first culturable prokaryote that reverses methanogenesis and grows anaerobically on methane. In this work, we further engineered the same host with the goal of converting methane into butanol. Instead, we discovered a process for converting methane to a secreted valuable product, L-lactate, with sufficient optical purity for synthesizing the biodegradable plastic poly-lactic acid. We determined that the 3-hydroxybutyryl-CoA dehydrogenase (Hbd) from Clostridium acetobutylicum is responsible for lactate production. This work demonstrates the first metabolic engineering of a methanogen with a synthetic pathway; in effect, we produce a novel product (lactate) from a novel substrate (methane) by cloning the three genes for Mcr and one for Hbd. We further demonstrate the utility of anaerobic methane conversion with an increased lactate yield compared to aerobic methane conversion to lactate. Biotechnol. Bioeng. 2017;114: 852-861. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Variola virus E3L Zα domain, but not its Z-DNA binding activity, is required for PKR inhibition.

    PubMed

    Thakur, Meghna; Seo, Eun Joo; Dever, Thomas E

    2014-02-01

    Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.

  18. Role of BkdR, a Transcriptional Activator of the SigL-Dependent Isoleucine and Valine Degradation Pathway in Bacillus subtilis

    PubMed Central

    Debarbouille, Michel; Gardan, Rozenn; Arnaud, Maryvonne; Rapoport, George

    1999-01-01

    A new gene, bkdR (formerly called yqiR), encoding a regulator with a central (catalytic) domain was found in Bacillus subtilis. This gene controls the utilization of isoleucine and valine as sole nitrogen sources. Seven genes, previously called yqiS, yqiT, yqiU, yqiV, bfmBAA, bfmBAB, and bfmBB and now referred to as ptb, bcd, buk, lpd, bkdA1, bkdA2, and bkdB, are located downstream from the bkdR gene in B. subtilis. The products of these genes are similar to phosphate butyryl coenzyme A transferase, leucine dehydrogenase, butyrate kinase, and four components of the branched-chain keto acid dehydrogenase complex: E3 (dihydrolipoamide dehydrogenase), E1α (dehydrogenase), E1β (decarboxylase), and E2 (dihydrolipoamide acyltransferase). Isoleucine and valine utilization was abolished in bcd and bkdR null mutants of B. subtilis. The seven genes appear to be organized as an operon, bkd, transcribed from a −12, −24 promoter. The expression of the bkd operon was induced by the presence of isoleucine or valine in the growth medium and depended upon the presence of the sigma factor SigL, a member of the sigma 54 family. Transcription of this operon was abolished in strains containing a null mutation in the regulatory gene bkdR. Deletion analysis showed that upstream activating sequences are involved in the expression of the bkd operon and are probably the target of bkdR. Transcription of the bkd operon is also negatively controlled by CodY, a global regulator of gene expression in response to nutritional conditions. PMID:10094682

  19. Identification of a dehydrogenase acting on D-2-hydroxyglutarate

    PubMed Central

    2004-01-01

    Extracts of frozen rat liver were found to catalyse the formation of 3H2O from DL-2-hydroxy[2-3H]glutarate. Three peaks of enzyme activities were observed on separation by chromatography on DEAE-Sepharose. The first and second peaks corresponded to an enzyme acting on L-2-hydroxyglutarate and the third peak corresponded to an enzyme acting on D-2-hydroxyglutarate, as indicated by competitive inhibition of the detritiation of the racemic radioactive compound by the unlabelled L- and D-isomers respectively. The enzyme acting on the D-form was further characterized. It was independent of NAD or NADP and it converted D-2-hydroxyglutarate into α-ketoglutarate, transferring electrons to artificial electron acceptors. It also oxidized D-lactate, D-malate and meso-tartrate and was stimulated by Zn2+, Co2+ and Mn2+, but not by Mg2+ or Ca2+. Subcellular fractionation indicated that it was present in the mitochondrial fraction. The enzyme was further purified by chromatography on Blue Trisacryl and phenyl-Sepharose, up to a stage where only a few bands were still visible by SDS/ PAGE. Among the four candidate polypeptides that were identified by MS, one corresponded to a predicted mitochondrial protein homologous with FAD-dependent D-lactate dehydrogenase. The corresponding human protein was expressed in HEK-293 cells and it was shown to catalyse the detritiation of DL-2-hydroxy[2-3H]glutarate with similar properties as the purified rat enzyme. PMID:15070399

  20. Identification of a dehydrogenase acting on D-2-hydroxyglutarate.

    PubMed

    Achouri, Younes; Noël, Gaëtane; Vertommen, Didier; Rider, Mark H; Veiga-Da-Cunha, Maria; Van Schaftingen, Emile

    2004-07-01

    Extracts of frozen rat liver were found to catalyse the formation of 3H2O from DL-2-hydroxy[2-3H]glutarate. Three peaks of enzyme activities were observed on separation by chromatography on DEAE-Sepharose. The first and second peaks corresponded to an enzyme acting on L-2-hydroxyglutarate and the third peak corresponded to an enzyme acting on D-2-hydroxyglutarate, as indicated by competitive inhibition of the detritiation of the racemic radioactive compound by the unlabelled L- and D-isomers respectively. The enzyme acting on the D-form was further characterized. It was independent of NAD or NADP and it converted D-2-hydroxyglutarate into a-ketoglutarate, transferring electrons to artificial electron acceptors. It also oxidized D-lactate, D-malate and meso-tartrate and was stimulated by Zn2+, Co2+ and Mn2+, but not by Mg2+ or Ca2+. Subcellular fractionation indicated that it was present in the mitochondrial fraction. The enzyme was further purified by chromatography on Blue Trisacryl and phenyl-Sepharose, up to a stage where only a few bands were still visible by SDS/PAGE. Among the four candidate polypeptides that were identified by MS, one corresponded to a predicted mitochondrial protein homologous with FAD-dependent D-lactate dehydrogenase. The corresponding human protein was expressed in HEK-293 cells and it was shown to catalyse the detritiation of DL-2-hydroxy[2-3H]glutarate with similar properties as the purified rat enzyme.

  1. Structural and kinetic studies of a novel nerol dehydrogenase from Persicaria minor, a nerol-specific enzyme for citral biosynthesis.

    PubMed

    Tan, Cheng Seng; Hassan, Maizom; Mohamed Hussein, Zeti Azura; Ismail, Ismanizan; Ho, Kok Lian; Ng, Chyan Leong; Zainal, Zamri

    2018-02-01

    Geraniol degradation pathway has long been elucidated in microorganisms through bioconversion studies, yet weakly characterised in plants; enzyme with specific nerol-oxidising activity has not been reported. A novel cDNA encodes nerol dehydrogenase (PmNeDH) was isolated from Persicaria minor. The recombinant PmNeDH (rPmNeDH) is a homodimeric enzyme that belongs to MDR (medium-chain dehydrogenases/reductases) superfamily that catalyses the first oxidative step of geraniol degradation pathway in citral biosynthesis. Kinetic analysis revealed that rPmNeDH has a high specificity for allylic primary alcohols with backbone ≤10 carbons. rPmNeDH has ∼3 fold higher affinity towards nerol (cis-3,7-dimethyl-2,6-octadien-1-ol) than its trans-isomer, geraniol. To our knowledge, this is the first alcohol dehydrogenase with higher preference towards nerol, suggesting that nerol can be effective substrate for citral biosynthesis in P. minor. The rPmNeDH crystal structure (1.54 Å) showed high similarity with enzyme structures from MDR superfamily. Structure guided mutation was conducted to describe the relationships between substrate specificity and residue substitutions in the active site. Kinetics analyses of wild-type rPmNeDH and several active site mutants demonstrated that the substrate specificity of rPmNeDH can be altered by changing any selected active site residues (Asp 280 , Leu 294 and Ala 303 ). Interestingly, the L294F, A303F and A303G mutants were able to revamp the substrate preference towards geraniol. Furthermore, mutant that exhibited a broader substrate range was also obtained. This study demonstrates that P. minor may have evolved to contain enzyme that optimally recognise cis-configured nerol as substrate. rPmNeDH structure provides new insights into the substrate specificity and active site plasticity in MDR superfamily. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Phenylbutyrate Therapy for Pyruvate Dehydrogenase Complex Deficiency and Lactic Acidosis

    PubMed Central

    Ferriero, Rosa; Manco, Giuseppe; Lamantea, Eleonora; Nusco, Edoardo; Ferrante, Mariella I.; Sordino, Paolo; Stacpoole, Peter W.; Lee, Brendan; Zeviani, Massimo; Brunetti-Pierri, Nicola

    2014-01-01

    Lactic acidosis is a build-up of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57B6/L wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noam631 zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis. PMID:23467562

  3. Scaling of oxidative and glycolytic enzymes in mammals.

    PubMed

    Emmett, B; Hochachka, P W

    1981-09-01

    The catalytic activities of several oxidative and glycolytic enzymes were determined in the gastrocnemius muscle of 10 mammalian species differing in body weight by nearly 6 orders of magnitude. When expressed in terms of units gm-1, the activities of enzymes functioning in oxidative metabolism (citrate synthase, beta-hydroxybutyrylCoA dehydrogenase, and malate dehydrogenase) decrease as body weight increases. Log-log plots (activity gm-1 vs body mass) yield straight lines with negative slopes that are less than the allometric exponent (-0.25) typically observed for basal metabolic rates. Since the amount of power a muscle can generate depends upon the catalytic potential of its enzyme machinery (the higher the catalytic potential the higher the maximum rate of energy generation), these data predict that the scope for aerobic activity in large mammals should be greater than in small mammals if nothing else becomes limiting, a result in fact recently obtained by Taylor et al. (Respir. Physiol., 1981). In contrast to the scaling of oxidative enzymes, the activities of enzymes functioning in anaerobic glycogenolysis (glycogen phosphorylase, pyruvate kinase, and lactate dehydrogenase) increase as body size increases. Log-log plots (activity gm-1 vs body mass) display a positive slope indicating that the larger the animal the higher the glycolytic potential of its skeletal muscles. This unexpected result may indicate higher relative power costs for burst type locomotion in larger mammals, which is in fact observed in within-species studies of man. However, the scaling of anaerobic muscle power has not been closely assessed in between-species comparisons of mammals varying greatly in body size.

  4. Comparative genomics and proteomics of vertebrate diacylglycerol acyltransferase (DGAT), acyl CoA wax alcohol acyltransferase (AWAT) and monoacylglycerol acyltransferase (MGAT).

    PubMed

    Holmes, Roger S

    2010-03-01

    BLAT (BLAST-Like Alignment Tool) analyses of the opossum (Monodelphis domestica) and zebrafish (Danio rerio) genomes were undertaken using amino acid sequences of the acylglycerol acyltransferase (AGAT) superfamily. Evidence is reported for 8 opossum monoacylglycerol acyltransferase-like (MGAT) (E.C. 2.3.1.22) and diacylglycerol acyltransferase-like (DGAT) (E.C. 2.3.1.20) genes and proteins, including DGAT1, DGAT2, DGAT2L6 (DGAT2-like protein 6), AWAT1 (acyl CoA wax alcohol acyltransferase 1), AWAT2, MGAT1, MGAT2 and MGAT3. Three of these genes (AWAT1, AWAT2 and DGAT2L6) are closely localized on the opossum X chromosome. Evidence is also reported for six zebrafish MGAT- and DGAT-like genes, including two DGAT1-like genes, as well as DGAT2-, MGAT1-, MGAT2- and MGAT3-like genes and proteins. Predicted primary, secondary and transmembrane structures for the opossum and zebrafish MGAT-, AWAT- and DGAT-like subunits and the intron-exon boundaries for genes encoding these enzymes showed a high degree of similarity with other members of the AGAT superfamily, which play major roles in triacylglyceride (DGAT), diacylglyceride (MGAT) and wax ester (AWAT) biosynthesis. Alignments of predicted opossum, zebrafish and other vertebrate DGAT1, DGAT2, other DGAT2-like and MGAT-like amino acid sequences with known human and mouse enzymes demonstrated conservation of residues which are likely to play key roles in catalysis, lipid binding or in maintaining structure. Phylogeny studies of the human, mouse, opossum, zebrafish and pufferfish MGAT- and DGAT-like enzymes indicated that the common ancestors for these genes predated the appearance of bony fish during vertebrate evolution whereas the AWAT- and DGAT2L6-like genes may have appeared more recently prior to the appearance of marsupial and eutherian mammals. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    PubMed

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Spaceflight exposure effects on transcription, activity, and localization of alcohol dehydrogenase in the roots of Arabidopsis thaliana.

    PubMed Central

    Porterfield, D M; Matthews, S W; Daugherty, C J; Musgrave, M E

    1997-01-01

    Although considerable research and speculation have been directed toward understanding a plant's perception of gravity and the resulting gravitropic responses, little is known about the role of gravity-dependent physical processes in normal physiological function. These studies were conducted to determine whether the roots of plants exposed to spaceflight conditions may be experiencing hypoxia. Arabidopsis thaliana (L.) Heynh. plants were grown in agar medium during 6 or 11 d of spaceflight exposure on shuttle missions STS-54 (CHROMEX-03) and STS-68 (CHROMEX-05), respectively. The analysis included measurement of agar redox potential and root alcohol dehydrogenase (ADH) activity, localization, and expression. ADH activity increased by 89% as a result of spaceflight exposure for both CHROMEX-03 and -05 experiments, and ADH RNase protection assays revealed a 136% increase in ADH mRNA. The increase in ADH activity associated with the spaceflight roots was realized by a 28% decrease in oxygen availability in a ground-based study; however, no reduction in redox potential was observed in measurements of the spaceflight bulk agar. Spaceflight exposure appears to effect a hypoxic response in the roots of agar-grown plants that may be caused by changes in gravity-mediated fluid and/or gas behavior. PMID:9085569

  7. Spaceflight exposure effects on transcription, activity, and localization of alcohol dehydrogenase in the roots of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Matthews, S. W.; Daugherty, C. J.; Musgrave, M. E.

    1997-01-01

    Although considerable research and speculation have been directed toward understanding a plant's perception of gravity and the resulting gravitropic responses, little is known about the role of gravity-dependent physical processes in normal physiological function. These studies were conducted to determine whether the roots of plants exposed to spaceflight conditions may be experiencing hypoxia. Arabidopsis thaliana (L.) Heynh. plants were grown in agar medium during 6 or 11 d of spaceflight exposure on shuttle missions STS-54 (CHROMEX-03) and STS-68 (CHROMEX-05), respectively. The analysis included measurement of agar redox potential and root alcohol dehydrogenase (ADH) activity, localization, and expression. ADH activity increased by 89% as a result of spaceflight exposure for both CHROMEX-03 and -05 experiments, and ADH RNase protection assays revealed a 136% increase in ADH mRNA. The increase in ADH activity associated with the spaceflight roots was realized by a 28% decrease in oxygen availability in a ground-based study; however, no reduction in redox potential was observed in measurements of the spaceflight bulk agar. Spaceflight exposure appears to effect a hypoxic response in the roots of agar-grown plants that may be caused by changes in gravity-mediated fluid and/or gas behavior.

  8. Geraniol and Geranial Dehydrogenases Induced in Anaerobic Monoterpene Degradation by Castellaniella defragrans

    PubMed Central

    Lüddeke, Frauke; Wülfing, Annika; Timke, Markus; Germer, Frauke; Weber, Johanna; Dikfidan, Aytac; Rahnfeld, Tobias; Linder, Dietmar; Meyerdierks, Anke

    2012-01-01

    Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (kcat/Km = 2.02 × 106 M−1 s−1), followed by geraniol (kcat/Km = 1.57 × 106 M−1 s−1). Apparent Km values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid. PMID:22286981

  9. Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans.

    PubMed

    Lüddeke, Frauke; Wülfing, Annika; Timke, Markus; Germer, Frauke; Weber, Johanna; Dikfidan, Aytac; Rahnfeld, Tobias; Linder, Dietmar; Meyerdierks, Anke; Harder, Jens

    2012-04-01

    Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (k(cat)/K(m) = 2.02 × 10(6) M(-1) s(-1)), followed by geraniol (k(cat)/K(m) = 1.57 × 10(6) M(-1) s(-1)). Apparent K(m) values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid.

  10. Leukocyte glutamate dehydrogenase activity in patients with degenerative neurological disorders.

    PubMed Central

    Aubby, D; Saggu, H K; Jenner, P; Quinn, N P; Harding, A E; Marsden, C D

    1988-01-01

    Leukocyte glutamate dehydrogenase (GDH) activity was measured in 39 normal subjects, 32 neurological controls, 66 patients with progressive ataxic disorders, 32 with multiple system atrophy, 40 with Parkinson's disease, eight with Steele-Richardson-Olszewski syndrome, eight with juvenile Parkinsonism and four with the dystonia-Parkinsonism syndrome. GDH activity was reproducible to within 10% in leukocyte pellets stored at -70 degrees C for up to 9 months, and did not vary with sex or age in control subjects. There was marked variation in the relative proportions of heat stable and heat labile forms of GDH between control subjects and on repeated assay in the same subject. Total leukocyte GDH activity was similar in normal subjects and neurological controls. Mean total GDH activity was reduced in all patient groups by between 15 to 29% compared with controls. Fourteen patients had total GDH activity below 50% of the control mean, but low values were not specific for any one disease (five had ataxic disorders, four Parkinson's disease, three multiple system atrophy, one juvenile Parkinsonism, and one dystonia-Parkinsonism). The heat labile fraction of GDH represented about 20% of total activity in control subjects, and 27% in the patients with reduced total GDH activity. Thus low GDH activity was not disease-specific in this study, and the heat-labile GDH fraction was not selectively affected. "Reduced" leucocyte GDH activity in some patients may represent no more than the lower end of a normal distribution. PMID:3204397

  11. Inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine dinucleotide in the presence or absence of calcium ion and effect of adenosine 5'-diphosphate on reduced nicotinamide adenine dinucleotide inhibition.

    PubMed

    Lawlis, V B; Roche, T E

    1981-04-28

    Micromolar Ca2+ markedly reduces NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex [Lawlis, V. B., & Roche, T. E. (1980) Mol. Cell. Biochem. 32, 147-152]. Product inhibition patterns from initial velocity studies conducted at less than 10(-9) M or at 1.5 X 10(-5) M Ca2+ with NAD+, CoA, or alpha-ketoglutarate as the variable substrate showed that NADH was a noncompetitive inhibitor with respect to each of these substrates, except at high NAD+ concentrations, where reciprocal plots were nonlinear and the inhibition pattern for NADH vs. NAD+ changed from a noncompetitive to a competitive pattern. From slope and intercept replots, 2-fold to 12-fold higher inhibition constants were estimated for inhibition by NADH vs. the various substrates in the presence of 1.5 X 10(-5) M Ca2+ than for inhibition at less than 10(-9) M Ca2+. These inhibition patterns and the lack of an effect of Ca2+ on the inhibition of the dihydrolipoyl dehydrogenase component suggested that Ca2+-modulated NADH inhibition occurs at an allosteric site with competitive binding at the site by high levels of NAD+. Decarboxylation of alpha-keto[1-14C]glutarate by the resolved alpha-ketoglutarate dehydrogenase component was investigated in the presence of 5.0 mM glyoxylate which served as an efficient acceptor. NADH (0.2 mM) or 1.0 mM ATP inhibited the partial reaction whereas 15 muM Ca2+, 1.0 mM ADP, or 10 mM NAD+ stimulated the partial reaction and reduced NADH inhibition of this reaction. Thus these effectors alter the activity of the alpha-ketoglutarate dehydrogenase complex by binding at allosteric sites on the alpha-ketoglutarate dehydrogenase component. Inhibition by NADH over a wide range of NADH/NAD+ ratios was measured under conditions in which the level of alpha-ketoglutarate was adjusted to give matching control activities at less than 10(-9) M Ca2+ or 1.5 X 10(-5) M Ca2+ in either the presence or the absence of 1.6 mM ADP. These studies establish that both Ca2+ and ADP

  12. Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri▿ †

    PubMed Central

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K.

    2008-01-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0′ = −410 mV) with NADH (E0′ = −320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0′ = −10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper. PMID:17993531

  13. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.

    PubMed

    Bomati, Erin K; Noel, Joseph P

    2005-05-01

    We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.

  14. Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase.

    PubMed

    Guo, Kunde; Lukacik, Petra; Papagrigoriou, Evangelos; Meier, Marc; Lee, Wen Hwa; Adamski, Jerzy; Oppermann, Udo

    2006-04-14

    Human DHRS6 is a previously uncharacterized member of the short chain dehydrogenases/reductase family and displays significant homologies to bacterial hydroxybutyrate dehydrogenases. Substrate screening reveals sole NAD(+)-dependent conversion of (R)-hydroxybutyrate to acetoacetate with K(m) values of about 10 mm, consistent with plasma levels of circulating ketone bodies in situations of starvation or ketoacidosis. The structure of human DHRS6 was determined at a resolution of 1.8 A in complex with NAD(H) and reveals a tetrameric organization with a short chain dehydrogenases/reductase-typical folding pattern. A highly conserved triad of Arg residues ("triple R" motif consisting of Arg(144), Arg(188), and Arg(205)) was found to bind a sulfate molecule at the active site. Docking analysis of R-beta-hydroxybutyrate into the active site reveals an experimentally consistent model of substrate carboxylate binding and catalytically competent orientation. GFP reporter gene analysis reveals a cytosolic localization upon transfection into mammalian cells. These data establish DHRS6 as a novel, cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from its well characterized mitochondrial type 1 counterpart. The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis.

  15. L-Carnitine suppresses oleic acid-induced membrane permeability transition of mitochondria.

    PubMed

    Oyanagi, Eri; Yano, Hiromi; Kato, Yasuko; Fujita, Hirofumi; Utsumi, Kozo; Sasaki, Junzo

    2008-10-01

    Membrane permeability transition (MPT) of mitochondria has an important role in apoptosis of various cells. The classic type of MPT is characterized by increased Ca(2+) transport, membrane depolarization, swelling, and sensitivity to cyclosporin A. In this study, we investigated whether L-carnitine suppresses oleic acid-induced MPT using isolated mitochondria from rat liver. Oleic acid-induced MPT in isolated mitochondria, inhibited endogenous respiration, caused membrane depolarization, and increased large amplitude swelling, and cytochrome c (Cyt. c) release from mitochondria. L-Carnitine was indispensable to beta-oxidation of oleic acid in the mitochondria, and this reaction required ATP and coenzyme A (CoA). In the presence of ATP and CoA, L-carnitine stimulated oleic acid oxidation and suppressed the oleic acid-induced depolarization, swelling, and Cyt. c release. L-Carnitine also contributed to maintaining mitochondrial function, which was decreased by the generation of free fatty acids with the passage of time after isolation. These results suggest that L-carnitine acts to maintain mitochondrial function and suppresses oleic acid-mediated MPT through acceleration of beta-oxidation. Copyright (c) 2008 John Wiley & Sons, Ltd.

  16. Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents.

    PubMed

    Mohr, S; Stamler, J S; Brüne, B

    1994-07-18

    Previous studies have suggested that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) undergoes covalent modification of an active site thiol by a NO.-induced [32P]NAD(+)-dependent mechanism. However, the efficacy of GAPDH modification induced by various NO donors was found to be independent of spontaneous rates of NO. release. To further test the validity of this mechanism, we studied the effects of nitrosonium tertrafluoroborate (BF4NO), a strong NO+ donor. BF4NO potently induces GAPDH labeling by the radioactive nucleotide. In this case, the addition of thiol significantly attenuates enzyme modification by competing for the NO moiety in the formation of RS-NO. Peroxynitrite (ONOO-) also induces GAPDH modification in the presence of thiol, consistent with the notion that this species can transfer NO+ (or NO2+) through the intermediacy of RS-NO. However, the efficiency of this reaction is limited by ONOO- -induced oxidation of protein SH groups at the active site. ONOO- generation appears to account for the modification of GAPDH by SIN-1. Thus, S-nitrosylation of the active site thiol is a prequisite for subsequent post-translational modification with NAD+, and emphasizes the role of NO+ transfer in the initial step of this pathway. Our findings thus provide a uniform mechanism by which nitric oxide and related NO donors initiate non-enzymatic ADP-ribosylation (like) reactions. In biological systems, endogenous RS-NO are likely to support the NO group transfer to thiol-containing proteins.

  17. Yeast peroxisomal multifunctional enzyme: (3R)-hydroxyacyl-CoA dehydrogenase domains A and B are required for optimal growth on oleic acid.

    PubMed

    Qin, Y M; Marttila, M S; Haapalainen, A M; Siivari, K M; Glumoff, T; Hiltunen, J K

    1999-10-01

    The yeast peroxisomal (3R)-hydroxyacyl-CoA dehydrogenase/2-enoyl-CoA hydratase 2 (multifunctional enzyme type 2; MFE-2) has two N-terminal domains belonging to the short chain alcohol dehydrogenase/reductase superfamily. To investigate the physiological roles of these domains, here called A and B, Saccharomyces cerevisiae fox-2 cells (devoid of Sc MFE-2) were taken as a model system. Gly(16) and Gly(329) of the S. cerevisiae A and B domains, corresponding to Gly(16), which is mutated in the human MFE-2 deficiency, were mutated to serine and cloned into the yeast expression plasmid pYE352. In oleic acid medium, fox-2 cells transformed with pYE352:: ScMFE-2(aDelta) and pYE352::ScMFE-2(bDelta) grew slower than cells transformed with pYE352::ScMFE-2, whereas cells transformed with pYE352::ScMFE-2(aDeltabDelta) failed to grow. Candida tropicalis MFE-2 with a deleted hydratase 2 domain (Ct MFE- 2(h2Delta)) and mutational variants of the A and B domains (Ct MFE- 2(h2DeltaaDelta), Ct MFE- 2(h2DeltabDelta), and Ct MFE- 2(h2DeltaaDeltabDelta)) were overexpressed and characterized. All proteins were dimers with similar secondary structure elements. Both wild type domains were enzymatically active, with the B domain showing the highest activity with short chain and the A domain with medium and long chain (3R)-hydroxyacyl-CoA substrates. The data show that the dehydrogenase domains of yeast MFE-2 have different substrate specificities required to allow the yeast to propagate optimally on fatty acids as the carbon source.

  18. Synthesis of L-threo-3,4-dihydroxyphenylserine (L-threo-DOPS) with thermostabilized low-specific L-threonine aldolase from Streptomyces coelicolor A3(2).

    PubMed

    Balk, Sang-Ho; Yoshioka, Hideki; Yukawa, Hideaki; Harayama, Shigeaki

    2007-05-01

    Stability-enhanced mutants, H44, 11-94, 5A2-84, and F8, of L-threonine aldolase (L-TA) from Streptomyces coelicolor A3(2) (SCO1085) were isolated by an error-prone PCR followed by a high-throughput screening. Each of these mutant, had a single amino acid substitution: H177Y in the H44 mutant, A169T in the 11-94 mutant, D104N in the 5A2-84 mutant and Fl81 in the F8 mutant. The residual L-TA activity of the wild-type L-TA after a heat treatment for 20 min at 60 degrees C was only 10.6%. However, those in the stability-enhanced mutants were 85.7% for the H44 mutant, 58.6% for the F8 mutant, 62.1% for the 5A2-84 mutant, and 67.6% for the 11-94 mutant. Although the half-life of the wild-type L-TA at 63 degrees C was 1.3 min, those of the mutant L-TAs were longer: 14.6 min for the H44 mutant, 3.7 min for the 11-94 mutant, 5.8 min for the 5A2-84 mutant, and 5.0 min for the F8 mutant. The specific activity did not change in most of the mutants, but it was decreased by 45% in the case of mutant F8. When the aldol condensation of glycine and 3,4-dihydroxybenzaldehyde was studied by using whole cells of Escherichia coli containing the wild-type L-TA gene, L-threo-3,4-dihydroxyphenylserine (L.-threo-DOPS) was successfully synthesized with a yield of 2.0 mg/ml after 20 repeated batch reactions for 100 h. However, the L-threo-DOPS synthesizing activity of the enzyme decreased with increased cycles of the batch reactions. Compared with the wild-type L-TA, H44 L-TA kept its L-threo-DOPS synthesizing activity almost constant during the 20 repeated batch reactions for 100 h, yielding 4.0 mg/ml of L-threo-DOPS. This result showed that H44 L-TA is more effective than the wild-type L-TA for the mass production of L-threo-DOPS.

  19. CYTOCHEMICAL LOCALIZATION OF TWO GLYCOLYTIC DEHYDROGENASES IN WHITE SKELETAL MUSCLE

    PubMed Central

    Fahimi, H. Dariush; Karnovsky, Morris J.

    1966-01-01

    The cytochemical localization, by conventional methods, of lactate and glyceraldehyde-3-phosphate dehydrogenases is limited, firstly, by the solubility of these enzymes in aqueous media and, secondly, by the dependence of the final electron flow from reduced nicotinamide-adenine dinucleotide (NADH) to the tetrazolium on tissue diaphorase activity: localization is therefore that of the diaphorase, which in rabbit adductor magnus is mitochondrial. NADH has been found to have great affinity to bind in the sarcoplasmic reticulum, and, therefore, if it is generated freely in the incubation media containing 2,2',5,5'-tetra-p-nitrophenyl-3,3'-(3,3'-dimethoxy-4,4'-phenylene)-ditetrazolium chloride (TNBT) and N-methyl phenazonium methyl sulfate (PMS), it can bind there and cause a false staining. Since such a production of NADH can readily occur in the incubation media for glycolytic dehydrogenases due to diffusion of these soluble enzymes from tissue sections, the prevention of enzyme solubilization is extremely important. Fixation in formaldehyde prevented such enzyme diffusion, while at the same time sufficient activity persisted to allow for adequate staining. The incubation media contained PMS, so that the staining system was largely independent of tissue diaphorase activity. Application of these methods to adductor magnus of rabbit revealed by light microscopy, for both enzymes, a fine network which was shown by electron microscopy to represent staining of the sarcoplasmic reticulum. Mitochondria also reacted. These findings add further support for the notion that the sarcoplasmic reticulum is probably involved in glycolytic activity. PMID:4288329

  20. Monolignol biosynthesis in microsomal preparations from lignifying stems of alfalfa (Medicago sativa L.).

    PubMed

    Guo, Dianjing; Chen, Fang; Dixon, Richard A

    2002-11-01

    Microsomal preparations from lignifying stems of alfalfa (Medicago sativa L.) contained coniferaldehyde 5-hydroxylase activity and immunodetectable caffeic acid 3-O-methyltransferase (COMT), and catalyzed the S-adenosyl L-methionine (SAM) dependent methylation of caffeic acid, caffeyl aldehyde and caffeyl alcohol. When supplied with NADPH and SAM, the microsomes converted caffeyl aldehyde to coniferaldehyde, 5-hydroxyconiferaldehyde, and traces of sinapaldehyde. Coniferaldehyde was a better precursor of sinapaldehyde than was 5-hydroxyconiferaldehyde. The alfalfa microsomes could not metabolize 4-coumaric acid, 4-coumaraldehyde, 4-coumaroyl CoA, or ferulic acid. No metabolism of monolignol precursors was observed in microsomal preparations from transgenic alfalfa down-regulated in COMT expression. In most microsomal preparations, the level of the metabolic conversions was independent of added recombinant COMT. Taken together, the data provide only limited support for the concept of metabolic channeling in the biosynthesis of S monolignols via coniferaldehyde.

  1. Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases: Synthesis, Structure–Activity Relationship, and Selective Antitumor Activity

    PubMed Central

    2015-01-01

    Mutations of isocitrate dehydrogenase 1 (IDH1) are frequently found in certain cancers such as glioma. Different from the wild-type (WT) IDH1, the mutant enzymes catalyze the reduction of α-ketoglutaric acid to d-2-hydroxyglutaric acid (D2HG), leading to cancer initiation. Several 1-hydroxypyridin-2-one compounds were identified to be inhibitors of IDH1(R132H). A total of 61 derivatives were synthesized, and their structure–activity relationships were investigated. Potent IDH1(R132H) inhibitors were identified with Ki values as low as 140 nM, while they possess weak or no activity against WT IDH1. Activities of selected compounds against IDH1(R132C) were found to be correlated with their inhibitory activities against IDH1(R132H), as well as cellular production of D2HG, with R2 of 0.83 and 0.73, respectively. Several inhibitors were found to be permeable through the blood–brain barrier in a cell-based model assay and exhibit potent and selective activity (EC50 = 0.26–1.8 μM) against glioma cells with the IDH1 R132H mutation. PMID:25271760

  2. In vitro optimization of non-small cell lung cancer activity with troxacitabine, L-1,3-dioxolane-cytidine, prodrugs.

    PubMed

    Radi, Marco; Adema, Auke D; Daft, Jonathan R; Cho, Jong H; Hoebe, Eveline K; Alexander, Lou-Ella M M; Peters, Godefridus J; Chu, Chung K

    2007-05-03

    l-1,3-Dioxolane-cytidine, a potent anticancer agent against leukemia, has limited efficacy against solid tumors, perhaps due to its hydrophilicity. Herein, a library of prodrugs were synthesized to optimize in vitro antitumor activity against non-small cell lung cancer. N4-Substituted fatty acid amide prodrugs of 10-16 carbon chain length demonstrated significantly improved antitumor activity over l-1,3-dioxolane-cytidine. These in vitro results suggest that the in vivo therapeutic efficacy of l-1,3-dioxolane-cytidine against solid tumors may be improved with prodrug strategies.

  3. Properties of a Purified Halophilic Malic Dehydrogenase

    PubMed Central

    Holmes, P. K.; Halvorson, H. Orin

    1965-01-01

    Holmes, P. K. (University of Illinois, Urbana), and H. Orin Halvorson. Properties of a purified halophilic malic dehydrogenase. J. Bacteriol. 90:316–326. 1965.—The malic dehydrogenase (MDH) from Halobacterium salinarium required high concentrations of monovalent ions for stability and activity. Studies of inactivation rates at different salt concentrations suggested that approximately 25% NaCl (w/v) is required to stabilize MDH. From 50 to 100% reactivation, depending on the salt concentration present during inactivation, could occur in 2.5 to 5 m NaCl or KCl. The optimal salt concentration for activity of MDH was a function of the pH, and ranged from 1 to 3 m NaCl or KCl. The effect of salt concentration on the pH-activity curves occurred chiefly below pH 7.0. Inactivation of MDH with heat or thiol reagents showed that the enzyme was more labile in the state induced by absence of salt. The activation of MDH by salts was attributed to a decreased rate of dissociation of MDH and reduced nicotinamide adenine dinucleotide (NADH2). The inactivation of the enzyme in the absence of salt could be largely prevented by the presence of NADH2. The S20.w of MDH decreased threefold at low salt concentrations. The enzyme was assumed to be in its native compact configuration only in the presence of a high concentration of salt. PMID:14329442

  4. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    PubMed

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  5. Molecular Structure of the Pyruvate Dehydrogenase Complex from Escherichia coli K-12

    PubMed Central

    Vogel, Otto; Hoehn, Barbara; Henning, Ulf

    1972-01-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 × 106. All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This “excess” component is bound differently than are the eight dimers in the core complex. Images PMID:4556465

  6. Growth Stasis by Accumulated l-α-Glycerophosphate in Escherichia coli

    PubMed Central

    Cozzarelli, N. R.; Koch, J. P.; Hayashi, S.; Lin, E. C. C.

    1965-01-01

    Cozzarelli, N. R. (Harvard Medical School, Boston, Mass.), J. P. Koch, S. Hayashi, and E. C. C. Lin. Growth stasis by accumulated l-α-glycerophosphate in Escherichia coli. J. Bacteriol. 90:1325–1329.1965.—Cells of Escherichia coli K-12 can grow on either glycerol or l-α-glycerophosphate as the sole source of carbon and energy. The first step in the dissimilation of glycerol requires a kinase, and the initial process of utilization of l-α-glycerophosphate involves an active transport system. In either case, intracellular l-α-glycerophosphate is an intermediate whose further metabolism depends upon a dehydrogenase. When this enzyme is lost by mutation, the cells not only fail to grow on glycerol or l-α-glycerophosphate, but are subject to growth inhibition in the presence of either compound. Resistance to inhibition by glycerol can be achieved by the loss of glycerol kinase. Such cells are still susceptible to growth inhibition by l-α-glycerophosphate. Similarly, in dehydrogenase-deficient cells, immunity to exogenous l-α-glycerophosphate can be achieved by genetic blocking of the active transport system. Such cells are still sensitive to free glycerol in the growth medium. Reversal of inhibition by glycerol or l-α-glycerophosphate in cells lacking the dehydrogenase can also be brought about by the addition of glucose. Glucose achieves this effect without recourse to catabolite repression. Our results suggest that growth stasis associated with the over-accumulation of l-α-glycerophosphate is due to interference with other cellular processes by competition with physiological substrates rather than to depletion of cellular stores of adenosine triphosphate or inorganic phosphate. PMID:5321485

  7. Calcium regulates glutamate dehydrogenase and poly-γ-glutamic acid synthesis in Bacillus natto.

    PubMed

    Meng, Yonghong; Dong, Guiru; Zhang, Chen; Ren, Yuanyuan; Qu, Yuling; Chen, Weifeng

    2016-04-01

    To study the effect of Ca(2+) on glutamate dehydrogenase (GDH) and its role in poly-γ-glutamic acid (γ-PGA) synthesis in Bacillus natto HSF 1410. When the concentration of Ca(2+) varied from 0 to 0.1 g/l in the growth medium of B. natto HSF 1410, γ-PGA production increased from 6.8 to 9.7 g/l, while GDH specific activity and NH4Cl consumption improved from 183 to 295 U/mg and from 0.65 to 0.77 g/l, respectively. GDH with α-ketoglutarate as substrate primarily used NADPH as coenzyme with a K m of 0.08 mM. GDH was responsible for the synthesis of endogenous glutamate. The specific activity of GDH remained essentially unchanged in the presence of CaCl2 (0.05-0.2 g/l) in vitro. However, the specific activity of GDH and its expression was significantly increased by CaCl2 in vivo. Therefore, the regulation of GDH and PGA synthesis by Ca(2+) is an intracellular process. Calcium regulation may be an effective approach for producing γ-PGA on an industrial scale.

  8. Original 2-(3-Alkoxy-1H-pyrazol-1-yl)azines Inhibitors of Human Dihydroorotate Dehydrogenase (DHODH)

    PubMed Central

    2016-01-01

    Following our discovery of human dihydroorotate dehydrogenase (DHODH) inhibition by 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidine derivatives as well as 2-(4-benzyl-3-ethoxy-5-methyl-1H-pyrazol-1-yl)-5-methylpyridine, we describe here the syntheses and evaluation of an array of azine-bearing analogues. As in our previous report, the structure–activity study of this series of human DHODH inhibitors was based on a phenotypic assay measuring measles virus replication. Among other inhibitors, this round of syntheses and biological evaluation iteration led to the highly active 5-cyclopropyl-2-(4-(2,6-difluorophenoxy)-3-isopropoxy-5-methyl-1H-pyrazol-1-yl)-3-fluoropyridine. Inhibition of DHODH by this compound was confirmed in an array of in vitro assays, including enzymatic tests and cell-based assays for viral replication and cellular growth. This molecule was found to be more active than the known inhibitors of DHODH, brequinar and teriflunomide, thus opening perspectives for its use as a tool or for the design of an original series of immunosuppressive agent. Moreover, because other series of inhibitors of human DHODH have been found to also affect Plasmodium falciparum DHODH, all the compounds were assayed for their effect on P. falciparum growth. However, the modest in vitro inhibition solely observed for two compounds did not correlate with their inhibition of P. falciparum DHODH. PMID:26079043

  9. Sequence of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Nicotiana plumbaginifolia and phylogenetic origin of the gene family.

    PubMed

    Habenicht, A; Quesada, A; Cerff, R

    1997-10-01

    A cDNA-library has been constructed from Nicotiana plumbaginifolia seedlings, and the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GapN, EC 1.2.1.9) was isolated by plaque hybridization using the cDNA from pea as a heterologous probe. The cDNA comprises the entire GapN coding region. A putative polyadenylation signal is identified. Phylogenetic analysis based on the deduced amino acid sequences revealed that the GapN gene family represents a separate ancient branch within the aldehyde dehydrogenase superfamily. It can be shown that the GapN gene family and other distinct branches of the superfamily have its phylogenetic origin before the separation of primary life-forms. This further demonstrates that already very early in evolution, a broad diversification of the aldehyde dehydrogenases led to the formation of the superfamily.

  10. Evidence for the identity and some comparative properties of alpha-ketoglutarate and 2-keto-4-hydroxyglutarate dehydrogenase activity.

    PubMed

    Gupta, S C; Dekker, E E

    1980-02-10

    Enzyme preparations of pig heart and Escherichia coli are shown to catalyze a NAD+- and CoASH-dependent oxidation of 2-keto-4-hydroxyglutarate. Several independent lines of evidence support the conclusion that this hydroxyketo acid is a substrate for the well known alpha-ketoglutarate dehydrogenase complex of the citric acid cycle. The evidence includes (a) a constant ratio of specific activity values for the two substrates through several steps of purification, (b) identical elution profiles from a calcium phosphate gel-cellulose column and a constant ratio of specific activity toward the two substrates throughout the activity peak, (c) identical inactivation curves in controlled heat denaturation studies, (d) the same pH activity curves, (e) no effect on the oxidation of either keto acid by repeated freezing and thawing of dehydrogenase preparations, and (f) the same activity pattern when the E. coli complex is distributed into several fractions by sucrose density gradient centrifugation. Additionally, the same cofactors are required for maximal activity and glyoxylate inhibits the oxidation of either substrate noncompetitively. Ferricyanide-linked oxidation of 2-keto-4-hydroxyglutarate yields malate as the product and a 1:2:1 stoichiometric relationship is obtained between the amount of hydroxyketo acid oxidized, ferricyanide reduced, and malate formed.

  11. Discovery of an acidic, thermostable and highly NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929

    USDA-ARS?s Scientific Manuscript database

    Objectives: To identify a robust NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929 (LbFDH) with unique biochemical properties. Results: A new NADP+ dependent formate dehydrogenase gene (fdh) was cloned from genomic DNA of L. buchneri NRRL B-30929. The recombinant constru...

  12. Is the alkaline tide a signal to activate metabolic or ionoregulatory enzymes in the dogfish shark (Squalus acanthias)?

    PubMed

    Wood, Chris M; Kajimura, Makiko; Mommsen, Thomas P; Walsh, Patrick J

    2008-01-01

    Experimental metabolic alkalosis is known to stimulate whole-animal urea production and active ion secretion by the rectal gland in the dogfish shark. Furthermore, recent evidence indicates that a marked alkaline tide (systemic metabolic alkalosis) follows feeding in this species and that the activities of the enzymes of the ornithine-urea cycle (OUC) for urea synthesis in skeletal muscle and liver and of energy metabolism and ion transport in the rectal gland are increased at this time. We therefore evaluated whether alkalosis and/or NaCl/volume loading (which also occurs with feeding) could serve as a signal for activation of these enzymes independent of nutrient loading. Fasted dogfish were infused for 20 h with either 500 mmol L(-1) NaHCO3 (alkalosis + volume expansion) or 500 mmol L(-1) NaCl (volume expansion alone), both isosmotic to dogfish plasma, at a rate of 3 mL kg(-1) h(-1). NaHCO3 infusion progressively raised arterial pH to 8.28 (control = 7.85) and plasma [HCO3-] to 20.8 mmol L(-1) (control = 4.5 mmol L(-1)) at 20 h, with unchanged arterial P(CO2), whereas NaCl/volume loading had no effect on blood acid-base status. Rectal gland Na+,K+-ATPase activity was increased 50% by NaCl loading and more than 100% by NaHCO3 loading, indicating stimulatory effects of both volume expansion and alkalosis. Rectal gland lactate dehydrogenase activity was elevated 25% by both treatments, indicating volume expansion effects only, whereas neither treatment increased the activities of the aerobic enzymes citrate synthase, NADP-isocitrate dehydrogenase, or the ketone body-utilizing enzyme beta-hydroxybutyrate dehydrogenase in the rectal gland or liver. The activity of ornithine-citrulline transcarbamoylase in skeletal muscle was doubled by NaHCO3 infusion, but neither treatment altered the activities of other OUC-related enzymes (glutamine synthetase, carbamoylphosphate synthetase III). We conclude that both the alkaline tide and salt loading/volume expansion act as

  13. Hydrogen Sulfide Regulates the Cytosolic/Nuclear Partitioning of Glyceraldehyde-3-Phosphate Dehydrogenase by Enhancing its Nuclear Localization.

    PubMed

    Aroca, Angeles; Schneider, Markus; Scheibe, Renate; Gotor, Cecilia; Romero, Luis C

    2017-06-01

    Hydrogen sulfide is an important signaling molecule comparable with nitric oxide and hydrogen peroxide in plants. The underlying mechanism of its action is unknown, although it has been proposed to be S-sulfhydration. This post-translational modification converts the thiol groups of cysteines within proteins to persulfides, resulting in functional changes of the proteins. In Arabidopsis thaliana, S-sulfhydrated proteins have been identified, including the cytosolic isoforms of glyceraldehyde-3-phosphate dehydrogenase GapC1 and GapC2. In this work, we studied the regulation of sulfide on the subcellular localization of these proteins using two different approaches. We generated GapC1-green fluorescent protein (GFP) and GapC2-GFP transgenic plants in both the wild type and the des1 mutant defective in the l-cysteine desulfhydrase DES1, responsible for the generation of sulfide in the cytosol. The GFP signal was detected in the cytoplasm and the nucleus of epidermal cells, although with reduced nuclear localization in des1 compared with the wild type, and exogenous sulfide treatment resulted in similar signals in nuclei in both backgrounds. The second approach consisted of the immunoblot analysis of the GapC endogenous proteins in enriched nuclear and cytosolic protein extracts, and similar results were obtained. A significant reduction in the total amount of GapC in des1 in comparison with the wild type was determined and exogenous sulfide significantly increased the protein levels in the nuclei in both plants, with a stronger response in the wild type. Moreover, the presence of an S-sulfhydrated cysteine residue on GapC1 was demonstrated by mass spectrometry. We conclude that sulfide enhances the nuclear localization of glyceraldehyde-3-phosphate dehydrogenase. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes

    PubMed Central

    Sewell, Holly L.; Kaster, Anne-Kristin

    2017-01-01

    ABSTRACT The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi. 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi. We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylum Chloroflexi (DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of

  15. Can HMG Co-A reductase inhibitors (“statins”) slow the progression of age-related macular degeneration? The Age-Related Maculopathy Statin Study (ARMSS)

    PubMed Central

    Guymer, Robyn H; Dimitrov, Peter N; Varsamidis, Mary; Lim, Lyndell L; Baird, Paul N; Vingrys, Algis J; Robman, Luba

    2008-01-01

    Age-related macular degeneration (AMD) is responsible for the majority of visual impairment in the Western world. The role of cholesterol-lowering medications, HMG Co-A reductase inhibitors or statins, in reducing the risk of AMD or of delaying its progression has not been fully investigated. A 3-year prospective randomized controlled trial of 40 mg simvastatin per day compared to placebo in subjects at high risk of AMD progression is described. This paper outlines the primary aims of the Age-Related Maculopathy Statin Study (ARMSS), and the methodology involved. Standardized clinical grading of macular photographs and comparison of serial macular digital photographs, using the International grading scheme, form the basis for assessment of primary study outcomes. In addition, macular function is assessed at each visit with detailed psychophysical measurements of rod and cone function. Information collected in this study will assist in the assessment of the potential value of HMG Co-A reductase inhibitors (statins) in reducing the risk of AMD progression. PMID:18982929

  16. Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6{sub 5}22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported.

  17. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells.

    PubMed

    Bollella, Paolo; Gorton, Lo; Antiochia, Riccarda

    2018-04-24

    Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.

  18. Structural and Kinetic Basis for Substrate Selectivity in Populus tremuloides Sinapyl Alcohol Dehydrogenase

    PubMed Central

    Bomati, Erin K.; Noel, Joseph P.

    2005-01-01

    We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities. PMID:15829607

  19. Regulation of Rat Hepatic L-Pyruvate Kinase Promoter Composition and Activity by Glucose, n-3 Polyunsaturated Fatty Acids, and Peroxisome Proliferator-activated Receptor-α Agonist*S

    PubMed Central

    Xu, Jinghua; Christian, Barbara; Jump, Donald B.

    2009-01-01

    Carbohydrate regulatory element-binding protein (ChREBP), MAX-like factor X(MLX), and hepatic nuclear factor-4α (HNF-4α)are key transcription factors involved in the glucose-mediated induction of hepatic L-type pyruvate kinase (L-PK) gene transcription. n-3 polyunsaturated fatty acids (PUFA) and WY14643 (peroxisome proliferator-activated receptor α (PPARα) agonist) interfere with glucose-stimulated L-PK gene transcription in vivo and in rat primary hepatocytes. Feeding rats a diet containing n-3 PUFA or WY14643 suppressed hepatic mRNAL-PK but did not suppress hepatic ChREBP or HNF-4α nuclear abundance. Hepatic MLX nuclear abundance, however, was suppressed by n-3 PUFA but not WY14643. In rat primary hepatocytes, glucose-stimulated accumulation of mRNALPK and L-PK promoter activity correlated with increased ChREBP nuclear abundance. This treatment also increased L-PK promoter occupancy by RNA polymerase II (RNA pol II), acetylated histone H3 (Ac-H3), and acetylated histone H4 (Ac-H4) but did not significantly impact L-PK promoter occupancy by ChREBP or HNF-4α. Inhibition of L-PK promoter activity by n-3 PUFA correlated with suppressed RNA pol II, Ac-H3, and Ac-H4 occupancy on the L-PK promoter. Although n-3 PUFA transiently suppressed ChREBP and MLX nuclear abundance, this treatment did not impact ChREBP-LPK promoter interaction. HNF4α-LPK promoter interaction was transiently suppressed by n-3 PUFA. Inhibition of L-PK promoter activity by WY14643 correlated with a transient decline in ChREBP nuclear abundance and decreased Ac-H4 interaction with the L-PK promoter. WY14643, however, had no impact on MLX nuclear abundance or HNF4α-LPK promoter interaction. Although overexpressed ChREBP or HNF-4α did not relieve n-3 PUFA suppression of L-PK gene expression, overexpressed MLX fully abrogated n-3 PUFA suppression of L-PK promoter activity and mRNAL-PK abundance. Overexpressed ChREBP, but not MLX, relieved the WY14643 inhibition of L-PK. In conclusion, n-3 PUFA

  20. Hepatic CREB3L3 controls whole-body energy homeostasis and improves obesity and diabetes.

    PubMed

    Nakagawa, Yoshimi; Satoh, Aoi; Yabe, Sachiko; Furusawa, Mika; Tokushige, Naoko; Tezuka, Hitomi; Mikami, Motoki; Iwata, Wakiko; Shingyouchi, Akiko; Matsuzaka, Takashi; Kiwata, Shiori; Fujimoto, Yuri; Shimizu, Hidehisa; Danno, Hirosuke; Yamamoto, Takashi; Ishii, Kiyoaki; Karasawa, Tadayoshi; Takeuchi, Yoshinori; Iwasaki, Hitoshi; Shimada, Masako; Kawakami, Yasushi; Urayama, Osamu; Sone, Hirohito; Takekoshi, Kazuhiro; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2014-12-01

    Transcriptional regulation of metabolic genes in the liver is the key to maintaining systemic energy homeostasis during starvation. The membrane-bound transcription factor cAMP-responsive element-binding protein 3-like 3 (CREB3L3) has been reported to be activated during fasting and to regulate triglyceride metabolism. Here, we show that CREB3L3 confers a wide spectrum of metabolic responses to starvation in vivo. Adenoviral and transgenic overexpression of nuclear CREB3L3 induced systemic lipolysis, hepatic ketogenesis, and insulin sensitivity with increased energy expenditure, leading to marked reduction in body weight, plasma lipid levels, and glucose levels. CREB3L3 overexpression activated gene expression levels and plasma levels of antidiabetic hormones, including fibroblast growth factor 21 and IGF-binding protein 2. Amelioration of diabetes by hepatic activation of CREB3L3 was also observed in several types of diabetic obese mice. Nuclear CREB3L3 mutually activates the peroxisome proliferator-activated receptor (PPAR) α promoter in an autoloop fashion and is crucial for the ligand transactivation of PPARα by interacting with its transcriptional regulator, peroxisome proliferator-activated receptor gamma coactivator-1α. CREB3L3 directly and indirectly controls fibroblast growth factor 21 expression and its plasma level, which contributes at least partially to the catabolic effects of CREB3L3 on systemic energy homeostasis in the entire body. Therefore, CREB3L3 is a therapeutic target for obesity and diabetes.