Sample records for l-alanine difracao multipla

  1. d-Alanine Oxidase from Escherichia coli: Localization and Induction by l-Alanine

    PubMed Central

    Raunio, R. P.; Jenkins, W. T.

    1973-01-01

    Dialyzed membranes of Escherichia coli prepared by an ethylenediaminetetraacetic acid-lysozyme method catalyze the oxidation of both l-alanine and d-alanine. The specific activities for the oxidations of both d-alanine and l-alanine are increased fivefold when the cells are grown in the presence of either l-alanine or dl-alanine, but are increased only slightly when grown in the presence of d-alanine. In the dl-alanine-induced system, the specific activities for the oxidations of some other d-amino acids are also raised. dl-alanine also induces two other alanine catabolizing enzymes, alanine dehydrogenase and alanine-glutamate aminotransferase which are found in the “soluble” fraction of lysozyme-treated cells. The oxidations of both l-alanine and d-alanine were associated with the membranes of induced cells. After the membranes were disintegrated by sonic treatment, both l-alanine and d-alanine oxidation catalysts sedimented in a sucrose density gradient together with d-lactate and l-lactate dehydrogenases, apparently as a single multienzyme complex. PMID:4146872

  2. Mechanism of d-Cycloserine Action: Transport Systems for d-Alanine, d-Cycloserine, l-Alanine, and Glycine1

    PubMed Central

    Wargel, Robert J.; Shadur, Craig A.; Neuhaus, Francis C.

    1970-01-01

    The accumulation of d-alanine, l-alanine, glycine, and d-cycloserine in Escherichia coli was found to be mediated by at least two transport systems. The systems for d-alanine and glycine are related, and are separate from that involved in the accumulation of l-alanine. d-Cycloserine appears to be primarily transported by the d-alanine-glycine system. The accumulation of d-alanine, glycine, and d-cycloserine was characterized by two line segments in the Lineweaver-Burk analysis, whereas the accumulation of l-alanine was characterized by a single line segment. d-Cycloserine was an effective inhibitor of glycine and d-alanine accumulation, and l-cycloserine was an effective inhibitor of l-alanine transport. The systems were further differentiated by effects of azide, enhancement under various growth conditions, and additional inhibitor studies. Since the primary access of d-cycloserine in E. coli is via the d-alanine-glycine system, glycine might be expected to be a better antagonist of d-cycloserine inhibition than l-alanine. Glycine and d-alanine at 10−5m antagonized the effect of d-cycloserine in E. coli, whereas this concentration of l-alanine had no effect. PMID:4919992

  3. Effect of various alanine analogues on the L-alanine-adding enzyme from Escherichia coli.

    PubMed

    Liger, D; Blanot, D; van Heijenoort, J

    1991-05-01

    An extract from Escherichia coli containing the L-alanine-adding enzyme with a high specific activity was prepared. Several compounds structurally related to L-alanine were tested as inhibitors of this activity. Intact amino and carboxyl groups were necessary for an interaction with the enzyme. Certain halogenated (haloalanines) or unsaturated (L-vinylglycine, L-propargylglycine, 3-cyano-L-alanine) amino acids were good inhibitors. Radioactive glycine, serine and 1-aminoethylphosphonic acid were tested as substrates. Whereas glycine or L-serine gave rise to the formation of the corresponding nucleotide product, no synthesis of UDP-N-acetylmuramyl-L-1-aminoethylphosphonic acid could be detected.

  4. Impact of charged amino acid substitution in the transmembrane domain of L-alanine exporter, AlaE, of Escherichia coli on the L-alanine export.

    PubMed

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-01-01

    The Escherichia coli alaE gene encodes the L-alanine exporter, AlaE, that catalyzes active export of L-alanine using proton electrochemical potential. The transporter comprises only 149 amino acid residues and four predicted transmembrane domains (TMs), which contain three charged amino acid residues. The AlaE-deficient L-alanine non-metabolizing cells (ΔalaE cells) appeared hypersusceptible to L-alanyl-L-alanine showing a minimum inhibitory concentration (MIC) of 2.5 µg/ml for the dipeptide due to a toxic accumulation of L-alanine. To elucidate the mechanism by which AlaE exports L-alanine, we replaced charged amino acid residues in the TMs, glutamic acid-30 (TM-I), arginine-45 (TM-II), and aspartic acid-84 (TM-III) with their respective charge-conserved amino acid or a net neutral cysteine. The ΔalaE cells producing R45K or R45C appeared hypersusceptible to the dipeptide, indicating that arginine-45 is essential for AlaE activity. MIC of the dipeptide in the ΔalaE cells expressing E30D and E30C was 156 µg/ml and >10,000 µg/ml, respectively, thereby suggesting that a negative charge at this position is not essential. The ΔalaE cells expressing D84E or D84C showed an MIC >10,000 and 78 µg/ml, respectively, implying that a negative charge is required at this position. These results were generally consistent with that of the L-alanine accumulation experiments in intact cells. We therefore concluded that charged amino acid residues (R45 and D84) in the AlaE transmembrane domain play a pivotal role in L-alanine export. Replacement of three cysteine residues at C22, C28 (both in TM-I), and C135 (C-terminal region) with alanine showed only a marginal effect on L-alanine export.

  5. Enzymatic determination of carbon-14 labeled L-alanine in biological samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serra, F.; Palou, A.; Pons, A.

    A method for determination of L-alanine-specific radioactivity in biological samples is presented. This method is based on the specific enzymatic transformation of L-alanine to pyruvic acid hydrazone catalyzed by the enzyme L-alanine dehydrogenase, formation of the pyruvic acid 2,4-dinitrophenylhydrazone derivative, and quantitative trapping in Amberlite XAD-7 columns, followed by radioactivity counting of the lipophilic eluate. No interferences from other UC-labeled materials such as D-glucose, glycerol, L-lactate, L-serine, L-glutamate, L-phenylalanine, glycine, L-leucine, and L-arginine were observed. This inexpensive and high-speed method is applicable to the simultaneous determination of L-alanine-specific radioactivity for a large number of samples.

  6. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE PAGES

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; ...

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  7. Role of L-alanine for redox self-sufficient amination of alcohols.

    PubMed

    Klatte, Stephanie; Wendisch, Volker F

    2015-01-23

    In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578-5585, 2014), and the role of L-alanine for efficient amine functionalization of 1,10-decanediol to 1,10-diaminodecane were analyzed. The enzymes of the cascade for amine functionalization of alcohols were characterized in vitro to find optimal conditions for an efficient process. Transaminase from Chromobacterium violaceum, TaCv, showed three-fold higher catalytic efficiency than transaminase from Vibrio fluvialis, TaVf, and improved production at 37°C. At 42°C, TaCv was more active, which matched thermostable alcohol dehydrogenase and alanine dehydrogenase and improved the 1,10-diaminodecane production rate four-fold. To study the role of L-alanine in the whole cell biotransformation, the L-alanine concentration was varied and 1,10.diaminodecane formation tested with constant 10 mM 1,10- decanediol and 100 mM NH4Cl. Only 5.6% diamine product were observed without added L-alanine. L-alanine concentrations equimolar to that of the alcohol enabled for 94% product formation but higher L-alanine concentrations allowed for 100% product formation. L-alanine was consumed by the E. coli biocatalyst, presumably due to pyruvate catabolism since up to 16 mM acetate accumulated. Biotransformation employing E. coli strain YYC202/pTrc99a-ald-adh-ta Cv, which is unable to catabolize pyruvate, resulted in conversion with a selectivity of 42 mol-%. Biotransformation with E. coli strains only lacking pyruvate oxidase PoxB showed similar reduced amination of 1,10-decanediol indicating that oxidative decarboxylation of pyruvate to acetate by PoxB is primarily

  8. Prolonged continuous intravenous infusion of the dipeptide L-alanine- L-glutamine significantly increases plasma glutamine and alanine without elevating brain glutamate in patients with severe traumatic brain injury

    PubMed Central

    2014-01-01

    Introduction Low plasma glutamine levels are associated with worse clinical outcome. Intravenous glutamine infusion dose- dependently increases plasma glutamine levels, thereby correcting hypoglutaminemia. Glutamine may be transformed to glutamate which might limit its application at a higher dose in patients with severe traumatic brain injury (TBI). To date, the optimal glutamine dose required to normalize plasma glutamine levels without increasing plasma and cerebral glutamate has not yet been defined. Methods Changes in plasma and cerebral glutamine, alanine, and glutamate as well as indirect signs of metabolic impairment reflected by increased intracranial pressure (ICP), lactate, lactate-to-pyruvate ratio, electroencephalogram (EEG) activity were determined before, during, and after continuous intravenous infusion of 0.75 g L-alanine-L-glutamine which was given either for 24 hours (group 1, n = 6) or 5 days (group 2, n = 6) in addition to regular enteral nutrition. Lab values including nitrogen balance, urea and ammonia were determined daily. Results Continuous L-alanine-L-glutamine infusion significantly increased plasma and cerebral glutamine as well as alanine levels, being mostly sustained during the 5 day infusion phase (plasma glutamine: from 295 ± 62 to 500 ± 145 μmol/ l; brain glutamine: from 183 ± 188 to 549 ± 120 μmol/ l; plasma alanine: from 327 ± 91 to 622 ± 182 μmol/ l; brain alanine: from 48 ± 55 to 89 ± 129 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test). Plasma glutamate remained unchanged and cerebral glutamate was decreased without any signs of cerebral impairment. Urea and ammonia were significantly increased within normal limits without signs of organ dysfunction (urea: from 2.7 ± 1.6 to 5.5 ± 1.5 mmol/ l; ammonia: from 12 ± 6.3 to 26 ± 8.3 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test). Conclusions High dose L-alanine-L-glutamine infusion (0

  9. Kinetic and crystallographic studies of Escherichia coli UDP-N-acetylmuramate:L-alanine ligase.

    PubMed Central

    Emanuele, J. J.; Jin, H.; Jacobson, B. L.; Chang, C. Y.; Einspahr, H. M.; Villafranca, J. J.

    1996-01-01

    Uridine diphosphate-N-acetylmuramate:L-alanine ligase (EC 6.3.2.8, UNAM:L-Ala ligase or MurC gene product) catalyzes the ATP-dependent ligation of the first amino acid to the sugar moiety of the peptidoglycan precursor. This is an essential step in cell wall biosynthesis for both gram-positive and gram-negative bacteria. Optimal assay conditions for initial velocity studies have been established. Steady-state assays were carried out to determine the effect of various parameters on enzyme activity. Factors studies included: cation specificity, ionic strength, buffer composition and pH. At 37 degrees C and pH 8.0, kcat was equal to 980 +/- 40 min-1, while K(m) values for ATP, UNAM, and L-alanine were, 130 +/- 10, 44 +/- 3, and 48 +/- 6 microM, respectively. Of the metals tested only Mn, Mg, and Co were able to support activity. Sodium chloride, potassium chloride, ammonium chloride, and ammonium sulfate had no effect on activity up to 75 mM levels. The enzyme, in appropriate buffer, was stable enough to be assayed over the pH range of 5.6 to 10.1. pH profiles of Vmax/K(m) for the three substrates and of Vmax were obtained. Crystallization experiments with the enzyme produced two crystal forms. One of these has been characterized by X-ray diffraction as monoclinic, space group C2, with cell dimensions a = 189.6, b = 92.1, c = 75.2 A, beta = 105 degrees, and two 54 kDa molecules per asymmetric unit. It was discovered that the enzyme will hydrolyze ATP in the absence of L-alanine. This L-alanine independent activity is dependent upon the concentrations of both ATP and UNAM; kcat for this activity is less than 4% of the biosynthetic activity measured in the presence of saturating levels of L-alanine. Numerous L-alanine analogs tested were shown to stimulate ATP hydrolysis. A number of these L-alanine analogs produced novel products as accessed by HPLC and mass spectral analysis. All of the L-alanine analogs tested as inhibitors were competitive versus L-alanine. PMID

  10. l-Alanine Auxotrophy of Lactobacillus johnsonii as Demonstrated by Physiological, Genomic, and Gene Complementation Approaches

    PubMed Central

    van der Kaaij, Hengameh; Desiere, Frank; Mollet, Beat; Germond, Jacques-Edouard

    2004-01-01

    Using a chemically defined medium without l-alanine, Lactobacillus johnsonii was demonstrated to be strictly auxotrophic for that amino acid. A comparative genetic analysis showed that all known genes involved in l-alanine biosynthesis are absent from the genome of L. johnsonii. This auxotrophy was complemented by heterologous expression of the Bacillus subtilis l-alanine dehydrogenase. PMID:15006820

  11. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    PubMed Central

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine. PMID:11073931

  12. Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase

    PubMed Central

    Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi

    2001-01-01

    Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmol/min/mg, respectively. The enzyme is almost specific to alanine, but l-serine and l-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of l-alanine, respectively. S. pombe uses d-alanine as a sole nitrogen source, but deletion of the alr1+ gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for l-alanine coupled with racemization plays a major role in the catabolism of d-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses l-alanine but not d-alanine as a sole nitrogen source. Moreover, d-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1+ gene enabled S. cerevisiae to grow efficiently on d-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of d-alanine. PMID:11244061

  13. Interaction of L-alanyl-L-valine and L-valyl-L-alanine with organic vapors: thermal stability of clathrates, sorption capacity and the change in the morphology of dipeptide films.

    PubMed

    Ziganshin, Marat A; Gubina, Nadezhda S; Gerasimov, Alexander V; Gorbatchuk, Valery V; Ziganshina, Sufia A; Chuklanov, Anton P; Bukharaev, Anastas A

    2015-08-21

    The strong effect of the amino acid sequence in L-alanyl-L-valine and L-valyl-L-alanine on their sorption properties toward organic compounds and water, and the thermal stability of the inclusion compounds of these dipeptides have been found. Generally, L-valyl-L-alanine has a greater sorption capacity for the studied compounds, but the thermal stability of the L-alanyl-L-valine clathrates is higher. Unusual selectivity of L-valyl-L-alanine for vapors of few chloroalkanes was observed. The correlation between the change in the surface morphology of thin film of dipeptides and stoichiometry of their clathrates with organic compounds was found. This discovery may be used to predict the influence of vapors on the morphology of films of short-chain oligopeptides.

  14. Compound-specific nitrogen isotope analysis of D-alanine, L-alanine, and valine: application of diastereomer separation to delta15N and microbial peptidoglycan studies.

    PubMed

    Takano, Yoshinori; Chikaraishi, Yoshito; Ogawa, Nanako O; Kitazato, Hiroshi; Ohkouchi, Naohiko

    2009-01-01

    We have developed an analytical method to determine the compound-specific nitrogen isotope compositions of individual amino acid enantiomers using gas chromatography/combustion/isotope ratio mass spectrometry. A novel derivatization of amino acid diastereomers by optically active (R)-(-)-2-butanol or (S)-(+)-2-butanol offers two advantages for nitrogen isotope analysis. First, chromatographic chiral separation can be achieved without the use of chiral stationary-phase columns. Second, the elution order of these compounds on the chromatogram can be switched by a designated esterification reaction. We applied the method to the compound-specific nitrogen isotope analysis of D- and L-alanine in a peptidoglycan derived from the cell walls of cultured bacteria (Firmicutes and Actinobacteria; Enterococcus faecalis, Staphylococcus aureus, Staphylococcus staphylolyticus, Lactobacillus acidophilus, Bacillus subtilis, Micrococcus luteus, and Streptomyces sp.), natural whole bacterial cells (Bacillus subtilis var. natto), (pseudo)-peptidoglycan from archaea (Methanobacterium sp.), and cell wall from eukaryota (Saccharomyces cerevisiae). We observed statistically significant differences in nitrogen isotopic compositions; e.g., delta15N ( per thousand vs air) in Staphylococcus staphylolyticus for d-alanine (19.2 +/- 0.5 per thousand, n = 4) and L-alanine (21.3 +/- 0.8 per thousand, n = 4) and in Bacillus subtilis for D-alanine (6.2 +/- 0.2 per thousand, n = 3) and L-alanine (8.2 +/- 0.4 per thousand, n = 3). These results suggest that enzymatic reaction pathways, including the alanine racemase reaction, produce a nitrogen isotopic difference in amino acid enantiomers, resulting in 15N-depleted D-alanine. This method is expected to facilitate compound-specific nitrogen isotope studies of amino acid stereoisomers.

  15. Synthesis and characterization of poly(L-alanine)-block-poly(ethylene glycol) monomethyl ether as amphiphilic biodegradable co-polymers.

    PubMed

    Zhang, Guolin; Ma, Jianbiao; Li, Yanhong; Wang, Yinong

    2003-01-01

    Di-block co-polymers of poly(L-alanine) with poly(ethylene glycol) monomethyl ether (MPEG) were synthesized as amphiphilic biodegradable co-polymers. The ring-opening polymerization of N-carboxy-L-alanine anhydride (NCA) in dichloromethane was initiated by amino-terminated poly(ethylene glycol) monomethyl ether (MPEG-NH2, M(n) = 2000) to afford poly(L-alanine)-block-MPEG. The weight ratio of two blocks in the co-polymers could be altered by adjusting the feeding ratio of NCA to MPEG-NH2. Their chemical structures were characterized on the basis of infrared spectrometry and nuclear magnetic resonance. According to circular dichroism measurement, the poly(L-alanine) chain on the co-polymers in an aqueous medium had a alpha-helix conformation. Two melting points from MPEG block and poly(L-alanine), respectively, could be observed in differential scanning calorimetry curves of the co-polymers, suggesting that a micro-domain phase separation appeared in their bulky states. The co-polymers could take up some water and the capacity was dependent on the ratio of poly(L-alanine) block to MPEG. Such co-polymers might be useful in drug-delivery systems and other biomedical applications.

  16. Study of the overproduced uridine-diphosphate-N-acetylmuramate:L-alanine ligase from Escherichia coli.

    PubMed

    Liger, D; Masson, A; Blanot, D; van Heijenoort, J; Parquet, C

    1996-01-01

    The UDP-N-acetylmuramate:L-alanine ligase of Escherichia coli is responsible for the addition of the first amino acid of the peptide moiety in the assembly of the monomer unit of peptidoglycan. It catalyzes the formation of the amide bond between UDP-N-acetylmuramic acid (UDP-MurNAc) and L-alanine. The UDP-MurNAc-L-alanine ligase was overproduced 2000-fold in a strain harboring a recombinant plasmid (pAM1005) with the murC gene under the control of the inducible promoter trc. The murC gene product appears as a 50-kDa protein accounting for ca. 50% of total cell proteins. A two-step purification led to 1 g of a homogeneous protein from an 8-liter culture. The N-terminal sequence of the purified protein correlated with the nucleotide sequence of the gene. The stability of the enzymatic activity is strictly dependent on the presence of 2-mercaptoethanol. The K(m) values for substrates UDP-N-acetylmuramic acid, L-alanine, and ATP were estimated; 100, 20, and 450 microM, respectively. The specificity of the enzyme for its substrates was investigated with various analogues. Preliminary experiments attempting to elucidate the enzymatic mechanism were consistent with the formation of an acylphosphate intermediate.

  17. Staphylococcus aureus MurC participates in L-alanine recognition via histidine 343, a conserved motif in the shallow hydrophobic pocket.

    PubMed

    Kurokawa, Kenji; Nishida, Satoshi; Ishibashi, Mihoko; Mizumura, Hikaru; Ueno, Kohji; Yutsudo, Takashi; Maki, Hideki; Murakami, Kazuhisa; Sekimizu, Kazuhisa

    2008-03-01

    UDP-N-acetylmuramic acid:L-alanine ligase that is encoded by the murC gene, is indispensable for bacterial peptidoglycan biosynthesis and an important target for the development of antibacterial agents. Structure of MurC ligase with substrates has been described, however, little validation via studying the effects of mutations on the structure of MurC has been performed. In this study, we carried out a functional in vitro and in vivo characterization of Staphylococcus aureus MurCH343Y protein that has a temperature-sensitive mutation of a conserved residue in the predicted shallow hydrophobic pocket that holds a short L-alanine side chain. Purified H343Y and wild-type MurC had K(m) values for L-alanine of 3.2 and 0.44 mM, respectively, whereas there was no significant difference in their K(m) values for ATP and UDP-N-acetylmuramic acid, suggesting the specific alteration of L-alanine recognition in MurCH343Y protein. In a synthetic medium that excluded L-alanine, S. aureus murCH343Y mutant cells showed an allele-specific slow growth phenotype that was suppressed by addition of L-alanine. These results suggest that His343 of S. aureus MurC is essential for high-affinity binding to L-alanine both in vitro and in vivo and provide experimental evidence supporting the structural information of MurC ligase.

  18. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise.

    PubMed

    Leite, Jaqueline Santos Moreira; Raizel, Raquel; Hypólito, Thaís Menezes; Rosa, Thiago Dos Santos; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p < 0.05). The results presented herein demonstrate that l-glutamine supplemented with l-alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.

  19. The catalytic effect of L- and D-histidine on alanine and lysine peptide formation.

    PubMed

    Fitz, Daniel; Jakschitz, Thomas; Rode, Bernd M

    2008-12-01

    A starting phase of chemical evolution on our ancient Earth around 4 billion years ago was the formation of amino acids and their combination to peptides and proteins. The salt-induced peptide formation (SIPF) reaction has been shown to be appropriate for this condensation reaction under moderate and plausible primitive Earth conditions, forming short peptides from amino acids in aqueous solution containing sodium chloride and Cu(II) ions. In this paper we report results about the formation of dialanine and dilysine from their monomers in this reaction. The catalytic influence of l- and d-histidine dramatically increases dialanine yields when starting from lower alanine concentrations, but also dilysine formation is markedly boosted by these catalysts. Attention is paid to measurable preferences for one enantiomeric form of alanine and lysine in the SIPF reaction. Alanine, especially, shows stereospecific behaviour, mostly in favour of the l-form.

  20. Genetic Mapping of a Mutant Defective in d, l-Alanine Racemase in Bacillus subtilis 168

    PubMed Central

    Dul, Michael J.; Young, Frank E.

    1973-01-01

    Genetic analysis of a d-alanine requiring mutant (dal) of Bacillus subtilis reveals that the gene that codes for d,l-alanine racemase is linked to purB. The order of genes in this region of the chromosome is purB, pig, tsi, dal. Thus there are at least two clusters of genes that regulate cell wall biosynthesis in B. subtilis. PMID:4199510

  1. Experimental determination of the carboxylate oxygen electric-field-gradient and chemical shielding tensors in L-alanine and L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Asanuma, Miwako; Honda, Hisashi; Nemoto, Takahiro; Yamazaki, Toshio; Hirota, Hiroshi

    2007-10-01

    We report a solid-state 17O NMR study of the 17O electric-field-gradient (EFG) and chemical shielding (CS) tensors for each carboxylate group in polycrystalline L-alanine and L-phenylalanine. The magic angle spinning (MAS) and stationary 17O NMR spectra of these compounds were obtained at 9.4, 14.1, and 16.4 T. Analyzes of these 17O NMR spectra yielded reliable experimental NMR parameters including 17O CS tensor components, 17O quadrupole coupling parameters, and the relative orientations between the 17O CS and EFG tensors. The extensive quantum chemical calculations at both the restricted Hartree-Fock and density-functional theories were carried out with various basis sets to evaluate the quality of quantum chemical calculations for the 17O NMR tensors in L-alanine. For 17O CS tensors, the calculations at the B3LYP/D95 ∗∗ level could reasonably reproduce 17O CS tensors, but they still showed some discrepancies in the δ11 components by approximately 36 ppm. For 17O EFG calculations, it was advantageous to use calibrated Q value to give acceptable CQ values. The calculated results also demonstrated that not only complete intermolecular hydrogen-bonding networks to target oxygen in L-alanine, but also intermolecular interactions around the NH3+ group were significant to reproduce the 17O NMR tensors.

  2. Alanine increases blood pressure during hypotension

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Maher, T. J.; Wurtman, R. J.

    1990-01-01

    The effect of L-alanine administration on blood pressure (BP) during haemorrhagic shock was investigated using anesthetized rats whose left carotid arteries were cannulated for BP measurement, blood removal, and drug administration. It was found that L-alanine, in doses of 10, 25, 50, 100, and 200 mg/kg, increased the systolic BP of hypotensive rats by 38 to 80 percent (while 100 mg/kg pyruvate increased BP by only 9.4 mmhg, not significantly different from saline). The results suggest that L-alanine might influence cardiovascular function.

  3. Ultra-Rapid Crystallization of L-alanine Using Monomode Microwaves, Indium Tin Oxide and Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    PubMed

    Lansiquot, Carisse; Boone-Kukoyi, Zainab; Shortt, Raquel; Thompson, Nishone; Ajifa, Hillary; Kioko, Bridgit; Constance, Edward Ned; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2017-01-01

    The use of indium tin oxide (ITO) and focused monomode microwave heating for the ultra-rapid crystallization of L-alanine (a model amino acid) is reported. Commercially available ITO dots (< 5 mm) attached to blank poly(methyl)methacrylate (PMMA, 5 cm in diameter with 21-well silicon isolators: referred to as the iCrystal plates) were found to withstand prolonged microwave heating during crystallization experiments. Crystallization of L-alanine was performed at room temperature (a control experiment), with the use of two microwave sources: a 2.45 GHz conventional microwave (900 W, power level 1, a control experiment) and 8 GHz (20 W) solid state, monomode microwave source with an applicator tip that focuses the microwave field to a 5-mm cavity. Initial appearance of L-alanine crystals and on iCrystal plates with ITO dots took 47 ± 2.9 min, 12 ± 7.6 min and 1.5 ± 0.5 min at room temperature, using a conventional microwave and focused monomode microwave heating, respectively. Complete evaporation of the solvent using the focused microwaves was achieved in 3.2 ± 0.5 min, which is ~52-fold and ~172-fold faster than that observed at room temperature and using conventional microwave heating, respectively. The size and number of L-alanine crystals was dependent on the type of the 21-well iCrystal plates and the microwave heating method: 33 crystals of 585 ± 137 μm in size at room temperature > 37 crystals of 542 ± 100 μm in size with conventional microwave heating > 331 crystals of 311 ± 190 μm in size with focused monomode microwave. FTIR, optical microscopy and powder X-ray diffraction analysis showed that the chemical composition and crystallinity of the L-alanine crystals did not change when exposed to microwave heating and ITO surfaces. In addition, theoretical simulations for the binding of L-alanine molecules to ITO and other metals showed the predicted nature of hydrogen bonds formed between L-alanine and these surfaces.

  4. Ultra-Rapid Crystallization of L-alanine Using Monomode Microwaves, Indium Tin Oxide and Metal-Assisted and Microwave-Accelerated Evaporative Crystallization

    PubMed Central

    Lansiquot, Carisse; Boone-Kukoyi, Zainab; Shortt, Raquel; Thompson, Nishone; Ajifa, Hillary; Kioko, Bridgit; Constance, Edward Ned; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2018-01-01

    The use of indium tin oxide (ITO) and focused monomode microwave heating for the ultra-rapid crystallization of L-alanine (a model amino acid) is reported. Commercially available ITO dots (< 5 mm) attached to blank poly(methyl)methacrylate (PMMA, 5 cm in diameter with 21-well silicon isolators: referred to as the iCrystal plates) were found to withstand prolonged microwave heating during crystallization experiments. Crystallization of L-alanine was performed at room temperature (a control experiment), with the use of two microwave sources: a 2.45 GHz conventional microwave (900 W, power level 1, a control experiment) and 8 GHz (20 W) solid state, monomode microwave source with an applicator tip that focuses the microwave field to a 5-mm cavity. Initial appearance of L-alanine crystals and on iCrystal plates with ITO dots took 47 ± 2.9 min, 12 ± 7.6 min and 1.5 ± 0.5 min at room temperature, using a conventional microwave and focused monomode microwave heating, respectively. Complete evaporation of the solvent using the focused microwaves was achieved in 3.2 ± 0.5 min, which is ~52-fold and ~172-fold faster than that observed at room temperature and using conventional microwave heating, respectively. The size and number of L-alanine crystals was dependent on the type of the 21-well iCrystal plates and the microwave heating method: 33 crystals of 585 ± 137 μm in size at room temperature > 37 crystals of 542 ± 100 μm in size with conventional microwave heating > 331 crystals of 311 ± 190 μm in size with focused monomode microwave. FTIR, optical microscopy and powder X-ray diffraction analysis showed that the chemical composition and crystallinity of the L-alanine crystals did not change when exposed to microwave heating and ITO surfaces. In addition, theoretical simulations for the binding of L-alanine molecules to ITO and other metals showed the predicted nature of hydrogen bonds formed between L-alanine and these surfaces. PMID:29657884

  5. Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material L-alanine (NMIJ CRM 6011-a).

    PubMed

    Itoh, Nobuyasu; Sato, Ayako; Yamazaki, Taichi; Numata, Masahiko; Takatsu, Akiko

    2013-01-01

    The carbon, hydrogen, and nitrogen (CHN) contents of alanine and their uncertainties were estimated using a CHN analyzer and the certified reference material (CRM) L-alanine. The CHN contents and their uncertainties, as measured using the single-point calibration method, were 40.36 ± 0.20% for C, 7.86 ± 0.13% for H, and 15.66 ± 0.09% for N; the results obtained using the bracket calibration method were also comparable. The method described in this study is reasonable, convenient, and meets the general requirement of having uncertainties ≤ 0.4%.

  6. Expression of the alaE gene is positively regulated by the global regulator Lrp in response to intracellular accumulation of l-alanine in Escherichia coli.

    PubMed

    Ihara, Kohei; Sato, Kazuki; Hori, Hatsuhiro; Makino, Yumiko; Shigenobu, Shuji; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-04-01

    The alaE gene in Escherichia coli encodes an l-alanine exporter that catalyzes the active export of l-alanine using proton electrochemical potential. In our previous study, alaE expression was shown to increase in the presence of l-alanyl-l-alanine (Ala-Ala). In this study, the global regulator leucine-responsive regulatory protein (Lrp) was identified as an activator of the alaE gene. A promoter less β-galactosidase gene was fused to an alaE upstream region (240 nucleotides). Cells that were lacZ-deficient and harbored this reporter plasmid showed significant induction of β-galactosidase activity (approximately 17-fold) in the presence of 6 mM l-alanine, l-leucine, and Ala-Ala. However, a reporter plasmid possessing a smaller alaE upstream region (180 nucleotides) yielded transformants with strikingly low enzyme activity under the same conditions. In contrast, lrp-deficient cells showed almost no β-galactosidase induction, indicating that Lrp positively regulates alaE expression. We next performed an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay using purified hexahistidine-tagged Lrp (Lrp-His). Consequently, we found that Lrp-His binds to the alaE upstream region spanning nucleotide -161 to -83 with a physiologically relevant affinity (apparent K D , 288.7 ± 83.8 nM). Furthermore, the binding affinity of Lrp-His toward its cis-element was increased by l-alanine and l-leucine, but not by Ala-Ala and d-alanine. Based on these results, we concluded that the gene expression of the alaE is regulated by Lrp in response to intracellular levels of l-alanine, which eventually leads to intracellular homeostasis of l-alanine concentrations. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Mechanical stability analysis of the protein L immunoglobulin-binding domain by full alanine screening using molecular dynamics simulations.

    PubMed

    Glyakina, Anna V; Likhachev, Ilya V; Balabaev, Nikolay K; Galzitskaya, Oxana V

    2015-03-01

    This article is the first to study the mechanical properties of the immunoglobulin-binding domain of protein L (referred to as protein L) and its mutants at the atomic level. In the structure of protein L, each amino acid residue (except for alanines and glycines) was replaced sequentially by alanine. Thus, 49 mutants of protein L were obtained. The proteins were stretched at their termini at constant velocity using molecular dynamics simulations in water, i.e. by forced unfolding. 19 out of 49 mutations resulted in a large decrease of mechanical protein stability. These amino acids were affecting either the secondary structure (11 mutations) or loop structures (8 mutations) of protein L. Analysis of mechanical unfolding of the generated protein that has the same topology as protein L but consists of only alanines and glycines allows us to suggest that the mechanical stability of proteins, and specifically protein L, is determined by interactions between certain amino acid residues, although the unfolding pathway depends on the protein topology. This insight can now be used to modulate the mechanical properties of proteins and their unfolding pathways in the desired direction for using them in various biochips, biosensors and biomaterials for medicine, industry, and household purposes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 21 CFR 172.540 - DL-Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Agents and Related Substances § 172.540 DL-Alanine. DL-Alanine (a racemic mixture of D- and L-alanine; CAS Reg. No. 302-72-7) may be safely used as a flavor enhancer for sweeteners in pickling mixtures at a level not to exceed 1 percent of the pickling spice that is added to the pickling brine. [56 FR...

  9. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    PubMed

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.

  10. Structures of an alanine racemase from Bacillus anthracis (BA0252) in the presence and absence of (R)-1-aminoethylphosphonic acid (l-Ala-P)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Au, Kinfai; Ren, Jingshan; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN

    2008-05-01

    Structures of BA0252, an alanine racemase from B. anthracis, in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) and determined by X-ray crystallography to resolutions of 2.1 and 1.47 Å, respectively, are described. Bacillus anthracis, the causative agent of anthrax, has been targeted by the Oxford Protein Production Facility to validate high-throughput protocols within the Structural Proteomics in Europe project. As part of this work, the structures of an alanine racemase (BA0252) in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) have determined by X-ray crystallo@@graphy to resolutions of 2.1 and 1.47 Å, respectively. Difficulties inmore » crystallizing this protein were overcome by the use of reductive methylation. Alanine racemase has attracted much interest as a possible target for anti-anthrax drugs: not only is d-alanine a vital component of the bacterial cell wall, but recent studies also indicate that alanine racemase, which is accessible in the exosporium, plays a key role in inhibition of germination in B. anthracis. These structures confirm the binding mode of l-Ala-P but suggest an unexpected mechanism of inhibition of alanine racemase by this compound and could provide a basis for the design of improved alanine racemase inhibitors with potential as anti-anthrax therapies.« less

  11. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise.

    PubMed

    Raizel, Raquel; Leite, Jaqueline Santos Moreira; Hypólito, Thaís Menezes; Coqueiro, Audrey Yule; Newsholme, Philip; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.

  12. Experimental and computational thermochemical study of α-alanine (DL) and β-alanine.

    PubMed

    da Silva, Manuel A V Ribeiro; da Silva, Maria das Dores M C Ribeiro; Santos, Ana Filipa L O M; Roux, Maria Victoria; Foces-Foces, Concepción; Notario, Rafael; Guzmán-Mejía, Ramón; Juaristi, Eusebio

    2010-12-16

    This paper reports an experimental and theoretical study of the gas phase standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of α-alanine (DL) and β-alanine. The standard (p° = 0.1 MPa) molar enthalpies of formation of crystalline α-alanine (DL) and β-alanine were calculated from the standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and H2O(l), measured by static-bomb combustion calorimetry at T = 298.15 K. The vapor pressures of both amino acids were measured as function of temperature by the Knudsen effusion mass-loss technique. The standard molar enthalpies of sublimation at T = 298.15 K was derived from the Clausius−Clapeyron equation. The experimental values were used to calculate the standard (p° = 0.1 MPa) enthalpy of formation of α-alanine (DL) and β-alanine in the gaseous phase, Δ(f)H(m)°(g), as −426.3 ± 2.9 and −421.2 ± 1.9 kJ·mol(−1), respectively. Standard ab initio molecular orbital calculations at the G3 level were performed. Enthalpies of formation, using atomization reactions, were calculated and compared with experimental data. Detailed inspections of the molecular and electronic structures of the compounds studied were carried out.

  13. 1H NMR determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental and biological samples.

    PubMed

    Moura, Sidnei; Ultramari, Mariah de Almeida; de Paula, Daniela Mendes Louzada; Yonamine, Mauricio; Pinto, Ernani

    2009-04-01

    A nuclear magnetic resonance (1H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by 1H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 microg/mL. Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples.

  14. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faraci, W.S.; Walsh, C.T.

    1988-05-03

    Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L ..-->.. D and D..-->.. L directions for all three enzymes to assess the degree to which abstraction of the ..cap alpha..-proton or protonation of substratemore » PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of ..cap alpha..-/sup 3/H from substrate to product and solvent exchange/substrate conversion experiments in /sup 3/H/sub 2/O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis.« less

  15. Piezoelectric and pyroelectric properties of DL-alanine and L-lysine amino-acid polymer nanofibres

    NASA Astrophysics Data System (ADS)

    de Matos Gomes, Etelvina; Viseu, Teresa; Belsley, Michael; Almeida, Bernardo; Costa, Maria Margarida R.; Rodrigues, Vitor H.; Isakov, Dmitry

    2018-04-01

    The piezoelectric and pyroelectric properties of electrospun polyethylene oxide nanofibres embedded with polar amino acids DL-alanine and L-lysine hemihydrate are reported. A high pyroelectric coefficient of 150 μC m‑2 K‑1 was measured for L-lysine hemihydrate and piezoelectric current densities up to 7 μA m‑2 were obtained for the nanofibres. The study reveals a potential for polymer amino-acid nanofibres to be used as biocompatible energy harvesters for autonomous circuit applications like in implantable electronics.

  16. Over-production, purification and properties of the uridine-diphosphate-N-acetylmuramate:L-alanine ligase from Escherichia coli.

    PubMed

    Liger, D; Masson, A; Blanot, D; van Heijenoort, J; Parquet, C

    1995-05-15

    The UDP-N-acetylmuramate:L-alanine ligase of Escherichia coli was over-produced in strains harbouring recombinant plasmids bearing the murC gene under the control of the lac or trc promoter. Plasmid pAM1005, in which the promoter and ribosome-binding site region of murC were removed and in which the gene was directly under the control of promoter trc, led to a 2000-fold amplification of the L-alanine-adding activity after induction by isopropyl-thio-beta-D-galactopyranoside. The murC gene product was visualized as a 50-kDa protein accounting for approximately 50% of the cell protein. A two-step purification led to 1 g of a homogeneous protein from an 18-1 culture. The N-terminal sequence of the purified protein correlated with the nucleotide sequence of the murC gene. The presence of 2-mercaptoethanol and glycerol was essential for the stability of the enzyme. The Km values for UDP-N-acetylmuramic acid, L-alanine and ATP/Mg2+ were estimated at 100, 20 and 450 microM, respectively. Under the optimal in vitro conditions a turnover number of 928 min-1 was calculated and a copy number/cell of 600 could be roughly estimated. The specificity of the enzyme for its substrates was investigated with various analogues. The enzyme also catalysed the reverse reaction.

  17. Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline L-alanine

    NASA Astrophysics Data System (ADS)

    Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.

    2008-01-01

    A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.

  18. Alanine infusion during hypoglycaemia partly supports cognitive performance in healthy human subjects.

    PubMed

    Evans, M L; Hopkins, D; Macdonald, I A; Amiel, S A

    2004-05-01

    To investigate the potential for the non-glucose metabolic substrate alanine to support brain function during glucose deprivation in man. Seven healthy men were studied on two occasions using a hyperinsulinaemic glucose clamp to lower arterialized plasma glucose to 2.5 mmol/l, in the presence of either 2 mmol/kg/h alanine infusion or saline, measuring counter-regulatory hormonal responses, symptoms generated and cognitive function with a mini-battery of tests sensitive to hypoglycaemia. Alanine infusion elevated plasma alanine (peak value 1481 +/- 1260 vs. 138 +/- 32 micro mol/l, P = 0.02 alanine vs. saline) and lactate (peak value 3.09 +/- 0.14 vs. 2.05 +/- 0.12 mmol/l, P = 0.02). Cognitive function assessed by the Stroop word and colour subtests deteriorated less with alanine than saline (P < 0.01 for both). Other cognitive function tests deteriorated equally and counter-regulatory hormones rose equally during hypoglycaemia in both studies (P > 0.34) except for increased glucagon with alanine (peak 260 +/- 53 vs. 91 + 8 ng/l, P = 0.03). There was no significant effect of alanine on either autonomic or neuroglycopenic symptom scores. Some, but not all, aspects of cognitive performance may be supported by an alanine infusion during hypoglycaemia. It is not clear whether alanine supports brain function directly or via increased availability of lactate. These data contribute to the growing evidence that regional metabolic differences exist in the brain's ability to use non-glucose fuels during hypoglycaemia.

  19. New Poly(amide-imide)/Nanocomposites Reinforced Silicate Nanoparticles Based on N-pyromellitimido-L-phenyl Alanine Containing Ether Moieties

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Shabanian, Meisam; Dadfar, Ehsan

    2012-02-01

    A series of Poly(amide-imide)/montmorillonite nanocomposites containing N-pyromellitimido-L-phenyl alanine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-pyromellitimido-L-phenyl alanine 3 with 4,4'-diamino diphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PAI matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.

  20. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling.

    PubMed

    Engskog, Mikael K R; Ersson, Lisa; Haglöf, Jakob; Arvidsson, Torbjörn; Pettersson, Curt; Brittebo, Eva

    2017-05-01

    β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

  1. Influence of the composition of aqueous dimethylsulfoxide solvent on thermodynamics of complexing between 18-crown-6-ether and D,L-alanine

    NASA Astrophysics Data System (ADS)

    Usacheva, T. R.; Kuzmina, I. A.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.

    2012-07-01

    Standard thermodynamic parameters (log K o, Δr H o, TΔr S o) of complexing 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-dimethysulfoxide (H2O-DMSO) solvents are calculated on the basis of calorimetric titration results. A rise in the DMSO concentration in mixed solvent is found to increase stability and increase the exothermicity of the formation of [Ala-18C6] molecular complex. Changes in the reaction energetic are shown to be determined by changes in the solvation state of 18C6 that is the characteristic of the reactions of molecular complex formation between 18C6 and D,L-alanine or glycine in water-organic solvents.

  2. Photochemical redox reactions of copper(II)-alanine complexes in aqueous solutions.

    PubMed

    Lin, Chen-Jui; Hsu, Chao-Sheng; Wang, Po-Yen; Lin, Yi-Liang; Lo, Yu-Shiu; Wu, Chien-Hou

    2014-05-19

    The photochemical redox reactions of Cu(II)/alanine complexes have been studied in deaerated solutions over an extensive range of pH, Cu(II) concentration, and alanine concentration. Under irradiation, the ligand-to-metal charge transfer results in the reduction of Cu(II) to Cu(I) and the concomitant oxidation of alanine, which produces ammonia and acetaldehyde. Molar absorptivities and quantum yields of photoproducts for Cu(II)/alanine complexes at 313 nm are characterized mainly with the equilibrium Cu(II) speciation where the presence of simultaneously existing Cu(II) species is taken into account. By applying regression analysis, individual Cu(I) quantum yields are determined to be 0.094 ± 0.014 for the 1:1 complex (CuL) and 0.064 ± 0.012 for the 1:2 complex (CuL2). Individual quantum yields of ammonia are 0.055 ± 0.007 for CuL and 0.036 ± 0.005 for CuL2. Individual quantum yields of acetaldehyde are 0.030 ± 0.007 for CuL and 0.024 ± 0.007 for CuL2. CuL always has larger quantum yields than CuL2, which can be attributed to the Cu(II) stabilizing effect of the second ligand. For both CuL and CuL2, the individual quantum yields of Cu(I), ammonia, and acetaldehyde are in the ratio of 1.8:1:0.7. A reaction mechanism for the formation of the observed photoproducts is proposed.

  3. Self-Assembly, Supramolecular Organization, and Phase Behavior of L-Alanine Alkyl Esters (n = 9-18) and Characterization of Equimolar L-Alanine Lauryl Ester/Lauryl Sulfate Catanionic Complex.

    PubMed

    Sivaramakrishna, D; Swamy, Musti J

    2015-09-08

    A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms

  4. Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid.

    PubMed

    Cox, Paul Alan; Banack, Sandra Anne; Murch, Susan J; Rasmussen, Ulla; Tien, Georgia; Bidigare, Robert Richard; Metcalf, James S; Morrison, Louise F; Codd, Geoffrey A; Bergman, Birgitta

    2005-04-05

    Cyanobacteria can generate molecules hazardous to human health, but production of the known cyanotoxins is taxonomically sporadic. For example, members of a few genera produce hepatotoxic microcystins, whereas production of hepatotoxic nodularins appears to be limited to a single genus. Production of known neurotoxins has also been considered phylogenetically unpredictable. We report here that a single neurotoxin, beta-N-methylamino-L-alanine, may be produced by all known groups of cyanobacteria, including cyanobacterial symbionts and free-living cyanobacteria. The ubiquity of cyanobacteria in terrestrial, as well as freshwater, brackish, and marine environments, suggests a potential for wide-spread human exposure.

  5. Diverse taxa of cyanobacteria produce β-N-methylamino-l-alanine, a neurotoxic amino acid

    PubMed Central

    Cox, Paul Alan; Banack, Sandra Anne; Murch, Susan J.; Rasmussen, Ulla; Tien, Georgia; Bidigare, Robert Richard; Metcalf, James S.; Morrison, Louise F.; Codd, Geoffrey A.; Bergman, Birgitta

    2005-01-01

    Cyanobacteria can generate molecules hazardous to human health, but production of the known cyanotoxins is taxonomically sporadic. For example, members of a few genera produce hepatotoxic microcystins, whereas production of hepatotoxic nodularins appears to be limited to a single genus. Production of known neurotoxins has also been considered phylogenetically unpredictable. We report here that a single neurotoxin, β-N-methylamino-l-alanine, may be produced by all known groups of cyanobacteria, including cyanobacterial symbionts and free-living cyanobacteria. The ubiquity of cyanobacteria in terrestrial, as well as freshwater, brackish, and marine environments, suggests a potential for wide-spread human exposure. PMID:15809446

  6. [Establishing biological reference intervals of alanine transaminase for clinical laboratory stored database].

    PubMed

    Guo, Wei; Song, Binbin; Shen, Junfei; Wu, Jiong; Zhang, Chunyan; Wang, Beili; Pan, Baishen

    2015-08-25

    To establish an indirect reference interval based on the test results of alanine aminotransferase stored in a laboratory information system. All alanine aminotransferase results were included for outpatients and physical examinations that were stored in the laboratory information system of Zhongshan Hospital during 2014. The original data were transformed using a Box-Cox transformation to obtain an approximate normal distribution. Outliers were identified and omitted using the Chauvenet and Tukey methods. The indirect reference intervals were obtained by simultaneously applying nonparametric and Hoffmann methods. The reference change value was selected to determine the statistical significance of the observed differences between the calculated and published reference intervals. The indirect reference intervals for alanine aminotransferase of all groups were 12 to 41 U/L (male, outpatient), 12 to 48 U/L (male, physical examination), 9 to 32 U/L (female, outpatient), and 8 to 35 U/L (female, physical examination), respectively. The absolute differences when compared with the direct results were all smaller than the reference change value of alanine aminotransferase. The Box-Cox transformation combined with the Hoffmann and Tukey methods is a simple and reliable technique that should be promoted and used by clinical laboratories.

  7. Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae.

    PubMed

    Mol, Clifford D; Brooun, Alexei; Dougan, Douglas R; Hilgers, Mark T; Tari, Leslie W; Wijnands, Robert A; Knuth, Mark W; McRee, Duncan E; Swanson, Ronald V

    2003-07-01

    UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.

  8. Ruthenium-Nitrosyl Complexes with Glycine, l-Alanine, l-Valine, l-Proline, d-Proline, l-Serine, l-Threonine, and l-Tyrosine: Synthesis, X-ray Diffraction Structures, Spectroscopic and Electrochemical Properties, and Antiproliferative Activity

    PubMed Central

    2014-01-01

    The reactions of [Ru(NO)Cl5]2– with glycine (Gly), l-alanine (l-Ala), l-valine (l-Val), l-proline (l-Pro), d-proline (d-Pro), l-serine (l-Ser), l-threonine (l-Thr), and l-tyrosine (l-Tyr) in n-butanol or n-propanol afforded eight new complexes (1–8) of the general formula [RuCl3(AA–H)(NO)]−, where AA = Gly, l-Ala, l-Val, l-Pro, d-Pro, l-Ser, l-Thr, and l-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), 1H NMR, UV–visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA–H)(NO)], as was also recently reported for osmium analogues with Gly, l-Pro, and d-Pro (see Z. Anorg. Allg. Chem.2013, 639, 1590–1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  9. Excess of L-Alanine in Amino Acids Synthesized in a Plasma Torch Generated by a Hypervelocity Meteorite Impact Reproduced in the Laboratory

    NASA Technical Reports Server (NTRS)

    Managadze, George G.; Engle, Michael H.; Getty, Stephanie A.; Wurz, Peter; Brinckerhoff, William B.; Shokolov, Anatoly; Sholin, Gennady; Terent'ev, Sergey A.; Chumikov, Alexander E.; Skalkin, Alexander S

    2016-01-01

    We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

  10. Crystal Structures of Active Fully Assembled Substrate- and Product-Bound Complexes of UDP-N-Acetylmuramic Acid:l-Alanine Ligase (MurC) from Haemophilus influenzae

    PubMed Central

    Mol, Clifford D.; Brooun, Alexei; Dougan, Douglas R.; Hilgers, Mark T.; Tari, Leslie W.; Wijnands, Robert A.; Knuth, Mark W.; McRee, Duncan E.; Swanson, Ronald V.

    2003-01-01

    UDP-N-acetylmuramic acid:l-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg2+ and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-l-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn2+ have been determined to 1.85- and 1.7-Å resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the γ-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates. PMID:12837790

  11. Stereoselective aminoacylation of a dinucleoside monophosphate by the imidazolides of DL-alanine and N-(tert-butoxycarbonyl)-DL-alanine

    NASA Technical Reports Server (NTRS)

    Profy, A. T.; Usher, D. A.

    1984-01-01

    The aminoacylation of diinosine monophosphate was studied experimentally. When the acylating agent was the imidazolide of N-(tert-butoxycarbonyl)-DL-alanine, a 40 percent enantiomeric excess of the isomer was incorporated at the 2' site and the positions of equilibrium for the reversible 2'-3' migration reaction differed for the D and L enantiomers. The reactivity of the nucleoside hydroxyl groups was found to decrease on the order 2'(3') less than internal 2' and less than 5', and the extent of the reaction was affected by the concentration of the imidazole buffer. Reaction of IpI with imidazolide of unprotected DL-alanine, by contrast, led to an excess of the D isomer at the internal 2' site. Finally, reaction with the N-carboxy anhydride of DL-alanine occurred without stereoselection. These results are found to be relevant to the study of the evolution of optical chemical activity and the origin of genetically directed protein synthesis.

  12. A Critical Review of the Postulated Role of the Cyanobacterial Metabolite, Beta-N-Methylamino-L-Alanine (BMAA) in Neurodegenerative Disease in Humans

    EPA Science Inventory

    The compound BMAA (β-N-methylamino-L-alanine) has been hypothesized to play a significant role in four serious neurological diseases in humans: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, parkinsonism, and dementia that occur...

  13. L-alanine-glyoxylate aminotransferase II of rat kidney and liver mitochondria possesses cysteine S-conjugate beta-lyase activity: a contributing factor to the nephrotoxicity/hepatotoxicity of halogenated alkenes?

    PubMed Central

    Cooper, Arthur J L; Krasnikov, Boris F; Okuno, Etsuo; Jeitner, Thomas M

    2003-01-01

    Several halogenated alkenes are metabolized in part to cysteine S-conjugates, which are mitochondrial toxicants of kidney and, to a lesser extent, other organs. Toxicity is due to cysteine S-conjugate beta-lyases, which convert the cysteine S-conjugate into pyruvate, ammonia and a reactive sulphur-containing fragment. A section of the human population is exposed to halogenated alkenes. To understand the health effects of such exposure, it is important to identify cysteine S-conjugate beta-lyases that contribute to mitochondrial damage. Mitochondrial aspartate aminotransferase [Cooper, Bruschi, Iriarte and Martinez-Carrion (2002) Biochem. J. 368, 253-261] and mitochondrial branched-chain aminotransferase [Cooper, Bruschi, Conway and Hutson (2003) Biochem. Pharmacol. 65, 181-192] exhibit beta-lyase activity toward S -(1,2-dichlorovinyl)-L-cysteine (the cysteine S-conjugate of trichloroethylene) and S -(1,1,2,2-tetrafluoroethyl)-L-cysteine (the cysteine S-conjugate of tetrafluoroethylene). Turnover leads to eventual inactivation of these enzymes. Here we report that mitochondrial L-alanine-glyoxylate aminotransferase II, which, in the rat, is most active in kidney, catalyses cysteine S-conjugate beta-lyase reactions with S -(1,1,2,2-tetrafluoroethyl)-L-cysteine, S -(1,2-dichlorovinyl)-L-cysteine and S -(benzothiazolyl-L-cysteine); turnover leads to inactivation. Previous workers showed that the reactive-sulphur-containing fragment released from S -(1,1,2,2-tetrafluoroethyl)-L-cysteine and S -(1,2-dichlorovinyl)-L-cysteine is toxic by acting as a thioacylating agent - particularly of lysine residues in nearby proteins. Toxicity, however, may also involve 'self-inactivation' of key enzymes. The present findings suggest that alanine-glyoxylate aminotransferase II may be an important factor in the well-established targeting of rat kidney mitochondria by toxic halogenated cysteine S-conjugates. Previous reports suggest that alanine-glyoxylate aminotransferase II is absent

  14. Cyanobacterial Neurotoxin β-N-Methylamino-L-alanine (BMAA) in Shark Fins

    PubMed Central

    Mondo, Kiyo; Hammerschlag, Neil; Basile, Margaret; Pablo, John; Banack, Sandra A.; Mash, Deborah C.

    2012-01-01

    Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA. PMID:22412816

  15. How similar is the electronic structures of β-lactam and alanine?

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhojyoti; Ahmed, Marawan; Wang, Feng

    2016-02-01

    The C1s spectra of β-lactam i.e. 2-azetidinone (C3H5NO), a drug and L-alanine (C3H7NO2), an amino acid, exhibit striking similarities, which may be responsible for the competition between 2-azetidinone and the alanyl-alanine moiety in biochemistry. The present study is to reveal the degree of similarities and differences between their electronic structures of the two model molecular pairs. It is found that the similarities in C1s and inner valence binding energy spectra are due to their bonding connections but other properties such as ring structure (in 2-azetidinone) and chiral carbon (alanine) can be very different. Further, the inner valence region of ionization potential greater than 18 eV for 2-azetidinone and alanine is also significantly similar. Finally the strained lactam ring exhibits more chemical reactivity measured at all non-hydrogen atoms by Fukui functions with respect to alanine.

  16. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans

    EPA Science Inventory

    The compound BMAA (β-N-methylamino-L-alanine) has been hypothesized to play a significant role in four serious neurological diseases in humans: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, parkinsonism, and dementia that occur glob...

  17. [Effects of ß-alanine supplementation on athletic performance].

    PubMed

    Domínguez, Raúl; Hernández Lougedo, Juan; Maté-Muñoz, José Luis; Garnacho-Castaño, Manuel Vicente

    2014-10-06

    Carnosine, dipeptide formed by amino acids ß-alanine and L-histidine, has important physiological functions among which its antioxidant and related memory and learning. However, in connection with the exercise, the most important functions would be associated with muscle contractility, improving calcium sensitivity in muscle fibers, and the regulatory function of pH. Thus, it is proposed that carnosine is the major intracellular buffer, but could contribute to 7-10% in buffer or buffer capacity. Since carnosine synthesis seems to be limited by the availability of ß-alanine supplementation with this compound has been gaining increasing popularity among the athlete population. Therefore, the objective of this study literature review was to examine all those research works have shown the effect of ß-alanine supplementation on athletic performance. Moreover, it also has attempted to establish a specific dosage that maximizing the potential benefits, minimize paresthesia, the main side effect presented in response to supplementation. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. β-alanine Supplementation Fails to Increase Peak Aerobic Power or Ventilatory Threshold in Aerobically Trained Males.

    PubMed

    Greer, Beau Kjerulf; Katalinas, Matthew E; Shaholli, Danielle M; Gallo, Paul M

    2016-01-01

    The purpose of the present study was to determine the effect of 30 days of β-alanine supplementation on peak aerobic power and ventilatory threshold (VT) in aerobically fit males. Fourteen males (28.8 ± 9.8 yrs) were assigned to either a β-alanine (SUPP) or placebo (PLAC) group; groups were matched for VT as it was the primary outcome measure. β-alanine supplementation consisted of 3 g/day for 7 days, and 6 g/day for the remaining 23 days. Before and after the supplementation period, subjects performed a continuous, graded cycle ergometry test to determine VO2 peak and VT. Metabolic data were analyzed using a 2 × 2 ANOVA with repeated measures. Thirty days of β-alanine supplementation (SUPP) did not increase VO2 peak (4.05 ± 0.6 vs. 4.14 ± 0.6 L/min) as compared to the placebo (PLAC) group (3.88 ± 0.2 vs. 3.97 ± 0.2 L/min) (p > .05). VT did not significantly improve in either the SUPP (3.21 ± 0.5 vs. 3.33 ± 0.5 L/min) or PLAC (3.19 ± 0.1 vs. 3.20 ± 0.1 L/min) group (p > .05). In conclusion, 30 days of β-alanine supplementation had no effect on VO2 peak or VT in aerobically trained athletes.

  19. Discriminatory value of alanine aminotransferase for diabetes prediction: the Insulin Resistance Atherosclerosis Study.

    PubMed

    Lorenzo, C; Hanley, A J; Rewers, M J; Haffner, S M

    2016-03-01

    To examine the incremental usefulness of adding alanine aminotransferase to established risk factors for predicting future diabetes. The study population of the Insulin Resistance Atherosclerosis Study included 724 people aged 40-69 years. We excluded people who had excessive alcohol intake or were treated with lipid-lowering agents. Incident diabetes was assessed after a mean follow-up period of 5.2 years. Alanine aminotransferase had a non-linear relationship with incident diabetes (Wald chi-squared test, P < 0.001; P for linearity = 0.005) independent of demographic variables, family history of diabetes, BMI and fasting glucose; therefore, we used Youden's J statistic to dichotomize alanine aminotransferase [threshold ≥ 0.43 μkat/L ( ≥ 26 IU/l)]. Dichotomized alanine aminotransferase increased the area under the receiver-operating characteristic curve (0.805 vs. 0.823; P = 0.007) of a model that included demographic variables, family history of diabetes, BMI and fasting glucose as independent variables. The net reclassification improvement was 9.6% (95% CI 1.8-17.4; P = 0.016), and the integrated discrimination improvement was 0.031 (95% CI 0.011-0.050; P = 0.002). Dichotomized alanine aminotransferase reclassified a net of 9.6% of individuals more appropriately. Alanine aminotransferase may be useful for classifying individuals who are at risk of future diabetes after accounting for the effect of other risk factors, including family history, adiposity and plasma glucose. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  20. In Quest of the Alanine R3 Radical: Multivariate EPR Spectral Analyses of X-Irradiated Alanine in the Solid State.

    PubMed

    Jåstad, Eirik O; Torheim, Turid; Villeneuve, Kathleen M; Kvaal, Knut; Hole, Eli O; Sagstuen, Einar; Malinen, Eirik; Futsaether, Cecilia M

    2017-09-28

    The amino acid l-α-alanine is the most commonly used material for solid-state electron paramagnetic resonance (EPR) dosimetry, due to the formation of highly stable radicals upon irradiation, with yields proportional to the radiation dose. Two major alanine radical components designated R1 and R2 have previously been uniquely characterized from EPR and electron-nuclear double resonance (ENDOR) studies as well as from quantum chemical calculations. There is also convincing experimental evidence of a third minor radical component R3, and a tentative radical structure has been suggested, even though no well-defined spectral signature has been observed experimentally. In the present study, temperature dependent EPR spectra of X-ray irradiated polycrystalline alanine were analyzed using five multivariate methods in further attempts to understand the composite nature of the alanine dosimeter EPR spectrum. Principal component analysis (PCA), maximum likelihood common factor analysis (MLCFA), independent component analysis (ICA), self-modeling mixture analysis (SMA), and multivariate curve resolution (MCR) were used to extract pure radical spectra and their fractional contributions from the experimental EPR spectra. All methods yielded spectral estimates resembling the established R1 spectrum. Furthermore, SMA and MCR consistently predicted both the established R2 spectrum and the shape of the R3 spectrum. The predicted shape of the R3 spectrum corresponded well with the proposed tentative spectrum derived from spectrum simulations. Thus, results from two independent multivariate data analysis techniques strongly support the previous evidence that three radicals are indeed present in irradiated alanine samples.

  1. Pore Diameter Dependence and Segmental Dynamics of Poly-Z-L-lysine and Poly-L-alanine Confined in 1D Nanocylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Tuncel, Eylul; Suzuki, Yasuhito; Iossifidis, Agathaggelos; Steinhart, Martin; Butt, Hans-Jurgen; Floudas, George; Duran, Hatice

    Structure formation, thermodynamic stability, phase and dynamic behaviors of polypeptides are strongly affected by confinement. Since understanding the changes in these behaviors will allow their rational design as functional devices with tunable properties, herein we investigated Poly-Z-L-lysine (PZLL) and Poly-L-alanine (PAla) homopolypeptides confined in nanoporous alumina containing aligned cylindrical nanopores as a function of pore size by differential scanning calorimetry (DSC), Fourier Transform Infrared Spectroscopy, Solid-state NMR, X-ray diffraction, Dielectric spectroscopy(DS). Bulk PZLL exhibits a glass transition temperature (Tg) at about 301K while PZLL nanorods showed slightly lower Tg (294K). The dynamic investigation by DS also revealed a decrease (4K) in Tg between bulk and PZLL nanorods. DS is a very sensitive probe of the local and global secondary structure relaxation through the large dipole to study effect of confinement. The results revealed that the local segmental dynamics, associated with broken hydrogen bonds, and segmental dynamics speed-up on confinement.

  2. Role of beta-alanine supplementation on muscle carnosine and exercise performance.

    PubMed

    Artioli, Guilherme Giannini; Gualano, Bruno; Smith, Abbie; Stout, Jeffrey; Lancha, Antonio Herbert

    2010-06-01

    In this narrative review, we present and discuss the current knowledge available on carnosine and beta-alanine metabolism as well as the effects of beta-alanine supplementation on exercise performance. Intramuscular acidosis has been attributed to be one of the main causes of fatigue during intense exercise. Carnosine has been shown to play a significant role in muscle pH regulation. Carnosine is synthesized in skeletal muscle from the amino acids l-histidine and beta-alanine. The rate-limiting factor of carnosine synthesis is beta-alanine availability. Supplementation with beta-alanine has been shown to increase muscle carnosine content and therefore total muscle buffer capacity, with the potential to elicit improvements in physical performance during high-intensity exercise. Studies on beta-alanine supplementation and exercise performance have demonstrated improvements in performance during multiple bouts of high-intensity exercise and in single bouts of exercise lasting more than 60 s. Similarly, beta-alanine supplementation has been shown to delay the onset of neuromuscular fatigue. Although beta-alanine does not improve maximal strength or VO2max, some aspects of endurance performance, such as anaerobic threshold and time to exhaustion, can be enhanced. Symptoms of paresthesia may be observed if a single dose higher than 800 mg is ingested. The symptoms, however, are transient and related to the increase in plasma concentration. They can be prevented by using controlled release capsules and smaller dosing strategies. No important side effect was related to the use of this amino acid so far. In conclusion, beta-alanine supplementation seems to be a safe nutritional strategy capable of improving high-intensity anaerobic performance.

  3. Characterization of Lactobacillus salivarius alanine racemase: short-chain carboxylate-activation and the role of A131.

    PubMed

    Kobayashi, Jyumpei; Yukimoto, Jotaro; Shimizu, Yasuhiro; Ohmori, Taketo; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa

    2015-01-01

    Many strains of lactic acid bacteria produce high concentrations of d-amino acids. Among them, Lactobacillus salivarius UCC 118 produces d-alanine at a relative concentration much greater than 50 % of the total d, l-alanine (100d/d, l-alanine). We characterized the L. salivarius alanine racemase (ALR) likely responsible for this d-alanine production and found that the enzyme was activated by carboxylates, which is an unique characteristic among ALRs. In addition, alignment of the amino acid sequences of several ALRs revealed that A131 of L. salivarius ALR is likely involved in the activation. To confirm that finding, an L. salivarius ALR variant with an A131K (ALR(A131K)) substitution was prepared, and its properties were compared with those of ALR. The activity of ALR(A131K) was about three times greater than that of ALR. In addition, whereas L. salivarius ALR was strongly activated by low concentrations (e.g., 1 mM) of short chain carboxylates, and was inhibited at higher concentrations (e.g., 10 mM), ALR(A131K) was clearly inhibited at all carboxylate concentrations tested (1-40 mM). Acetate also increased the stability of ALR such that maximum activity was observed at 35 °C and pH 8.0 without acetate, but at 50 °C in the presence of 1 mM acetate. On the other hand, maximum ALR(A131K) activity was observed at 45 °C and around pH 9.0 with or without acetate. It thus appears that A131 mediates the activation and stabilization of L. salivarius ALR by short chain carboxylates.

  4. Energetics of the molecular interactions of L-alanine and L-serine with xylitol, D-sorbitol, and D-mannitol in aqueous solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.

    2013-04-01

    Integral enthalpies of dissolution Δsol H m of L-alanine and L-serine are measured via the calorimetry of dissolution in aqueous solutions of xylitol, D-sorbitol, and D-mannitol. Standard enthalpies of dissolution (Δsol H ○) and the transfer (Δtr H ○) of amino acids from water to binary solvent are calculated from the experimental data. Using the McMillan-Mayer theory, enthalpy coefficients of pairwise interactions h xy of amino acids with molecules of polyols are calculated that are negative. The obtained results are discussed within the theory of the prevalence of different types of interactions in mixed solutions and the effect of the structural features of interacting biomolecules on the thermochemical parameters of dissolution of amino acids.

  5. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136(T).

    PubMed

    Naqvi, Kubra F; Patin, Delphine; Wheatley, Matthew S; Savka, Michael A; Dobson, Renwick C J; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/C Vs ) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44-46°C. Its apparent K m values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum.

  6. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136T

    PubMed Central

    Naqvi, Kubra F.; Patin, Delphine; Wheatley, Matthew S.; Savka, Michael A.; Dobson, Renwick C. J.; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O.

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44–46°C. Its apparent Km values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum. PMID:27047475

  7. L-β-N-methylamino-l-alanine (BMAA) nitrosation generates a cytotoxic DNA damaging alkylating agent: An unexplored mechanism for neurodegenerative disease.

    PubMed

    Potjewyd, G; Day, P J; Shangula, S; Margison, G P; Povey, A C

    2017-03-01

    L-β-N-methylamino-l-alanine (BMAA) is a non-proteinic amino acid, that is neurotoxic in vitro and in animals, and is implicated in the causation of amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS-PDC) on Guam. Given that natural amino acids can be N-nitrosated to form toxic alkylating agents and the structural similarity of BMAA to other amino acids, our hypothesis was that N-nitrosation of BMAA might result in a toxic alkylating agent, providing a novel mechanistic hypothesis for BMAA action. We have chemically nitrosated BMAA with sodium nitrite to produce nitrosated BMAA (N-BMAA) which was shown to react with the alkyl-trapping agent, 4-(p-nitrobenzyl)pyridine, cause DNA strand breaks in vitro and was toxic to the human neuroblastoma cell line SH-SY5Y under conditions in which BMAA itself was minimally toxic. Our results indicate that N-BMAA is an alkylating agent and toxin suggesting a plausible and previously unrecognised mechanism for the neurotoxic effects of BMAA. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans.

    PubMed

    Wei, Yuan; Qiu, Wei; Zhou, Xue-Dong; Zheng, Xin; Zhang, Ke-Ke; Wang, Shi-Da; Li, Yu-Qing; Cheng, Lei; Li, Ji-Yao; Xu, Xin; Li, Ming-Yun

    2016-12-16

    D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial cell wall synthesis. Alanine racemase (Alr) is a unique enzyme that interconverts L-alanine and D-alanine in most bacteria, making this enzyme a potential target for antimicrobial drug development. Streptococcus mutans is a major causative factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Alr in S. mutans. We constructed alr mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that alr deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 μg·mL -1 ) was required for the optimal growth of the alr mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the alr mutant strain. We also determined the compromised competitiveness of the alr mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonii), demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of alr to the growth and competitiveness of S. mutans, Alr may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.

  9. d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans.

    PubMed

    Qiu, W; Zheng, X; Wei, Y; Zhou, X; Zhang, K; Wang, S; Cheng, L; Li, Y; Ren, B; Xu, X; Li, Y; Li, M

    2016-10-01

    Part of the d-alanine (d-Ala) metabolic pathway in bacteria involves the conversion of l-alanine to d-Ala by alanine racemase and the formation of d-alanyl-d-alanine by d-alanine-d-alanine ligase, the product of which is involved in cell wall peptidoglycan synthesis. At present, drugs that target the metabolic pathway of d-Ala are already in clinical use - e.g. d-cycloserine (DCS) is used as an antibiotic against Mycobacterium tuberculosis. Streptococcus mutans is the main cariogenic bacterium in the oral cavity. Its d-Ala metabolism-associated enzymes alanine racemase and d-alanine-d-alanine ligase are encoded by the genes smu.1834 and smu.599, respectively, which may be potential targets for inhibitors. In this study, the addition of DCS blocked the d-Ala metabolic pathway in S. mutans, leading to bacterial cell wall defects, significant inhibition of bacterial growth and biofilm formation, and reductions in extracellular polysaccharide production and bacterial adhesion. However, the exogenous addition of d-Ala could reverse the inhibitory effect of DCS. Through the means of drug regulation, our study demonstrated, for the first time, the importance of d-Ala metabolism in the survival and biofilm formation of S. mutans. If the growth of S. mutans can be specifically inhibited by designing drugs that target d-Ala metabolism, then this may serve as a potential new treatment for dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Hydrogen bonds in crystalline D-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.

    Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.

  11. Hydrogen bonds in crystalline D-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    DOE PAGES

    Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.; ...

    2018-01-01

    Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.

  12. Absolute linearity measurements on a gold-black-coated deuterated L-alanine-doped triglycine sulfate pyroelectric detector.

    PubMed

    Theocharous, E

    2008-07-20

    The nonlinearity characteristics of a commercially available deuterated L-alanine-doped triglycine sulfate (DLATGS) pyroelectric detector were experimentally investigated at high levels of illumination using the National Physical Laboratory detector linearity characterization facility. The detector was shown to exhibit a superlinear response at high levels of illumination. Moreover, the linearity factor was shown to depend on the area of the spot on the detector active area being illuminated, i.e., the incident irradiance. Possible reasons for the observed behavior are proposed and discussed. The temperature coefficient of the response of the DLATGS pyroelectric detector was measured and found to be higher than +2.5% degrees C(-1). This large and positive temperature coefficient of response is the most likely cause of the superlinear behavior of the DLATGS pyroelectric detector.

  13. Protein association of β-N-methylamino-L-alanine in Triticum aestivum via irrigation.

    PubMed

    Contardo-Jara, Valeska; Schwanemann, Torsten; Esterhuizen-Londt, Maranda; Pflugmacher, Stephan

    2018-04-01

    Bioaccumulation of several cyanotoxins has been observed in numerous food webs. More recently, the neurotoxic, non-proteinogenic amino acid β-N-methylamino-L-alanine (BMAA) was shown to biomagnify in marine food webs. It was thus necessary to assess whether a human exposure risk via a terrestrial food source could exist. As shown for other cyanotoxins, spray irrigation of crop plants with cyanobacterial bloom-contaminated surface water poses the risk of toxin transfer into edible plant parts. Therefore, in the present study, we evaluated a possible transfer of BMAA via spray irrigation into the seeds of one of the world's most widely cultivated crop plants, Triticum aestivum. Wheat plants were irrigated with water containing 10 µg L -1 BMAA until they reached maturity and seed-bearing stage (205 days). Several morphological characteristics, such as germination rate, number of roots per seedling, length of primary root and cotyledon, and diameter of the stems were evaluated to assess the effects of chronic exposure. After 205 days, BMAA bioaccumulation was quantified in roots, shoots, and mature seeds of T. aestivum. No adverse morphology effects were observed and no free intracellular BMAA was detected in any of the exposed plants. However, in mature seeds, protein-associated BMAA was detected at 217 ± 150 ng g FW -1 ; significantly more than in roots and shoots. This result demonstrates the unexpected bioaccumulation of a hydrophilic compound and highlights the demand to specify in addition to limit values for drinking water, tolerable daily intake rates for the cyanobacterial-neurotoxin BMAA.

  14. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm{sup 3} solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10more » cm{sup 2} field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and

  15. Computation of energy interaction parameters as well as electric dipole intensity parameters for the absorption spectral study of the interaction of Pr(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents

    NASA Astrophysics Data System (ADS)

    Moaienla, T.; Singh, Th. David; Singh, N. Rajmuhon; Devi, M. Indira

    2009-10-01

    Studying the absorption difference and comparative absorption spectra of the interaction of Pr(III) and Nd(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents, various energy interaction parameters like Slater-Condon ( FK), Racah ( Ek), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding ( b1/2), percentage-covalency ( δ) have been evaluated applying partial and multiple regression analysis. The values of oscillator strength ( P) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been computed. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( P) and Tλ values reveal the mode of binding with different ligands.

  16. The environmental neurotoxin β-N-methylamino-l-alanine (l-BMAA) is deposited into birds' eggs.

    PubMed

    Andersson, Marie; Karlsson, Oskar; Brandt, Ingvar

    2018-01-01

    The neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disorders. BMAA is also a known developmental neurotoxin and research indicates that the sources of human and wildlife exposure may be more diverse than previously anticipated. The aim of the present study was therefore to examine whether BMAA can be transferred into birds' eggs. Egg laying quail were dosed with 14 C-labeled BMAA. The distribution of radioactivity in the birds and their laid eggs was then examined at different time points by autoradiography and phosphoimaging analysis. To evaluate the metabolic stability of the BMAA molecule, the distribution of 14 C-methyl- and 14 C-carboxyl-labeled BMAA were compared. The results revealed a pronounced incorporation of radioactivity in the eggs, predominantly in the yolk but also in the albumen. Imaging analysis showed that the concentrations of radioactivity in the liver decreased about seven times between the 24h and the 72h time points, while the concentrations in egg yolk remained largely unchanged. At 72h the egg yolk contained about five times the concentration of radioactivity in the liver. Both BMAA preparations gave rise to similar distribution pattern in the bird tissues and in the eggs, indicating metabolic stability of the labeled groups. The demonstrated deposition into eggs warrants studies of BMAAs effects on bird development. Moreover, birds' eggs may be a source of human BMAA exposure, provided that the laying birds are exposed to BMAA via their diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. R76 in transmembrane domain 3 of the aspartate:alanine transporter AspT is involved in substrate transport.

    PubMed

    Suzuki, Satomi; Nanatani, Kei; Abe, Keietsu

    2016-01-01

    The L-aspartate:L-alanine antiporter of Tetragenococcus halophilus (AspT) possesses an arginine residue (R76) within the GxxxG motif in the central part of transmembrane domain 3 (TM3)-a residue that has been estimated to transport function. In this study, we carried out amino acid substitutions of R76 and used proteoliposome reconstitution for analyzing the transport function of each substitution. Both l-aspartate and l-alanine transport assays showed that R76K has higher activity than the AspT-WT (R76), whereas R76D and R76E have lower activity than the AspT-WT. These results suggest that R76 is involved in AspT substrate transport.

  18. β-Alanine supplementation and military performance.

    PubMed

    Hoffman, Jay R; Stout, Jeffrey R; Harris, Roger C; Moran, Daniel S

    2015-12-01

    During sustained high-intensity military training or simulated combat exercises, significant decreases in physical performance measures are often seen. The use of dietary supplements is becoming increasingly popular among military personnel, with more than half of the US soldiers deployed or garrisoned reported to using dietary supplements. β-Alanine is a popular supplement used primarily by strength and power athletes to enhance performance, as well as training aimed at improving muscle growth, strength and power. However, there is limited research examining the efficacy of β-alanine in soldiers conducting operationally relevant tasks. The gains brought about by β-alanine use by selected competitive athletes appears to be relevant also for certain physiological demands common to military personnel during part of their training program. Medical and health personnel within the military are expected to extrapolate and implement relevant knowledge and doctrine from research performed on other population groups. The evidence supporting the use of β-alanine in competitive and recreational athletic populations suggests that similar benefits would also be observed among tactical athletes. However, recent studies in military personnel have provided direct evidence supporting the use of β-alanine supplementation for enhancing combat-specific performance. This appears to be most relevant for high-intensity activities lasting 60-300 s. Further, limited evidence has recently been presented suggesting that β-alanine supplementation may enhance cognitive function and promote resiliency during highly stressful situations.

  19. Alanine scan of core positions in ubiquitin reveals links between dynamics, stability, and function

    PubMed Central

    Lee, Shirley Y.; Pullen, Lester; Virgil, Daniel J.; Castañeda, Carlos A.; Abeykoon, Dulith; Bolon, Daniel N. A.; Fushman, David

    2014-01-01

    Mutations at solvent inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. The two null mutants (I30A and L43A) were both less stable to temperature-induced unfolding in vitro than wild-type, but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to wild-type. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high molecular weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high molecular weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation. PMID:24361330

  20. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous proteinmore » was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.« less

  1. β-methylamino-L-alanine (BMAA) is not found in the brains of patients with confirmed Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Meneely, Julie P.; Chevallier, Olivier P.; Graham, Stewart; Greer, Brett; Green, Brian D.; Elliott, Christopher T.

    2016-11-01

    Controversy surrounds the proposed hypothesis that exposure to β-methylamino-L-alanine (BMAA) could play a role in various neurodegenerative conditions including Alzheimer’s disease (AD). Here we present the results of the most comprehensive scientific study on BMAA detection ever undertaken on brain samples from patients pathologically confirmed to have suffered from AD, and those from healthy volunteers. Following the full validation of a highly accurate and sensitive mass spectrometric method, no trace of BMAA was detected in the diseased brain or in the control specimens. This contradicts the findings of other reports and calls into question the significance of this compound in neurodegenerative disease. We have attempted to explain the potential causes of misidentification of BMAA in these studies.

  2. Effect of chronic hypo and hypervitaminosis C on the brush border enzymes and the intestinal uptake of glucose and alanine.

    PubMed

    Mahmood, A; Chauhan, V P; Lyall, V; Sarkar, A K

    1979-08-15

    Brush border sucrase and alkaline phosphatase activities are considerably enhanced in the intestine of ascorbic acid deficient guinea-pigs. Similar increase in the uptake of D-glucose and L-alanine also occurs in chronic vitamin C deficiency. However the permeability of D-glucose and L-alanine in the intestine of animals fed with large doses of vitamin C is severely depressed, with a reduction in the levels of sucrase and alkaline phosphatase activities.

  3. Occurrence of β-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans

    PubMed Central

    Arnich, Nathalie; Maignien, Thomas; Biré, Ronel

    2018-01-01

    The neurotoxin β-N-methylamino-l-alanine (BMAA), a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC). The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB), β-amino-N-methyl-alanine (BAMA) and N-(2-aminoethyl) glycine (AEG). This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations. PMID:29443939

  4. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    PubMed Central

    Pey, Angel L.; Albert, Armando; Salido, Eduardo

    2013-01-01

    Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis. PMID:23956997

  5. Environmental modulation of microcystin and β-N-methylamino-L-alanine as a function of nitrogen availability.

    PubMed

    Scott, L L; Downing, S; Phelan, R R; Downing, T G

    2014-09-01

    The most significant modulators of the cyanotoxins microcystin and β-N-methylamino-L-alanine in laboratory cyanobacterial cultures are the concentration of growth-medium combined nitrogen and nitrogen uptake rate. The lack of field studies that support these observations led us to investigate the cellular content of these cyanotoxins in cyanobacterial bloom material isolated from a freshwater impoundment and to compare these to the combined nitrogen availability. We established that these toxins typically occur in an inverse relationship in nature and that their presence is mainly dependent on the environmental combined nitrogen concentration, with cellular microcystin present at exogenous combined nitrogen concentrations of 29 μM and higher and cellular BMAA correlating negatively with exogenous nitrogen at concentrations below 40 μM. Furthermore, opposing nutrient and light gradients that form in dense cyanobacterial blooms may result in both microcystin and BMAA being present at a single sampling site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The orphan germinant receptor protein GerXAO (but not GerX3b) is essential for L-alanine induced germination in Clostridium botulinum Group II.

    PubMed

    Brunt, Jason; Carter, Andrew T; Pye, Hannah V; Peck, Michael W

    2018-05-04

    Clostridium botulinum is an anaerobic spore forming bacterium that produces the potent botulinum neurotoxin that causes a severe and fatal neuro-paralytic disease of humans and animals (botulism). C. botulinum Group II is a psychrotrophic saccharolytic bacterium that forms spores of moderate heat resistance and is a particular hazard in minimally heated chilled foods. Spore germination is a fundamental process that allows the spore to transition to a vegetative cell and typically involves a germinant receptor (GR) that responds to environmental signals. Analysis of C. botulinum Group II genomes shows they contain a single GR cluster (gerX3b), and an additional single gerA subunit (gerXAO). Spores of C. botulinum Group II strain Eklund 17B germinated in response to the addition of L-alanine, but did not germinate following the addition of exogenous Ca 2+ -DPA. Insertional inactivation experiments in this strain unexpectedly revealed that the orphan GR GerXAO is essential for L-alanine stimulated germination. GerX3bA and GerX3bC affected the germination rate but were unable to induce germination in the absence of GerXAO. No role could be identified for GerX3bB. This is the first study to identify the functional germination receptor of C. botulinum Group II.

  7. Antimicrobial susceptibility testing of a clinical isolate of vancomycin-dependent enterococcus using D-alanine-D-alanine as a growth supplement.

    PubMed

    Sng, L H; Cornish, N; Knapp, C C; Ludwig, M D; Hall, G S; Washington, J A

    1998-04-01

    Bacteremia due to a vancomycin-dependent enterococcus (VDE) occurred during long-term vancomycin therapy in a renal transplant recipient with underlying pancreatitis and a vancomycin-resistant enterococcal (VRE) wound infection and bacteremia. The VDE was isolated from blood during vancomycin therapy and grew only in the presence of vancomycin and D-alanine-D-alanine (DADA), a substance required for cell-wall synthesis. Colonies beyond the periphery of growth of the VDE around a vancomycin disk contained vancomycin-independent revertant mutants after 48 hours of incubation. Pulsed-field gel electrophoresis of the VDE, revertant mutant, the initial blood culture isolate of VRE, and an autopsy isolate showed that the four strains were identical. Antimicrobial susceptibility testing was performed using standard macrobroth and microbroth dilution methods. DADA was used as a growth supplement for macrobroth dilution susceptibility testing of the VDE isolate. Minimum inhibitory concentrations (MICs) were similar for the VRE isolate and the VDE revertant, which were both resistant to ampicillin, high-level gentamicin, ciprofloxacin, imipenem, vancomycin, and daptomycin, and were susceptible to fusidic acid, high-level streptomycin, rifampin, and a quinupristin-dalfopristin combination. The MICs of teicoplanin were 2 microg/mL or less and 16 microg/mL for the clinical VRE isolate and the VDE revertant, respectively. The autopsy isolate was resistant to all antimicrobials tested and showed a fourfold increase in MICs for quinupristin-dalfopristin compared with that of the original blood isolate. The VDE was susceptible to all drugs tested except vancomycin.

  8. Biochemical characterization of an inhibitor of Escherichia coli UDP-N-acetylmuramyl-l-alanine ligase.

    PubMed

    Ehmann, David E; Demeritt, Julie E; Hull, Kenneth G; Fisher, Stewart L

    2004-05-06

    UDP-N-acetylmuramyl-l-alanine ligase (MurC) is an essential bacterial enzyme involved in peptidoglycan biosynthesis and a target for the discovery of novel antibacterial agents. As a result of a high-throughput screen (HTS) against a chemical library for inhibitors of MurC, a series of benzofuran acyl-sulfonamides was identified as potential leads. One of these compounds, Compound A, inhibited Escherichia coli MurC with an IC(50) of 2.3 microM. Compound A exhibited time-dependent, partially reversible inhibition of E. coli MurC. Kinetic studies revealed a mode of inhibition consistent with the compound acting competitively with the MurC substrates ATP and UDP-N-acetyl-muramic acid (UNAM) with a K(i) of 4.5 microM against ATP and 6.3 microM against UNAM. Fluorescence binding experiments yielded a K(d) of 3.1 microM for the compound binding to MurC. Compound A also exhibited high-affinity binding to bovine serum albumin (BSA) as evidenced by a severe reduction in MurC inhibition upon addition of BSA. This finding is consistent with the high lipophilicity of the compound. Advancement of this compound series for further drug development will require reduction of albumin binding.

  9. Novel alanines bearing a heteroaromatic side chain: synthesis and studies on fluorescent chemosensing of metal cations with biological relevance.

    PubMed

    Ferreira, Rosa Cristina M; Raposo, Maria Manuela M; Costa, Susana P G

    2018-06-01

    A family of novel thienylbenzoxazol-5-yl-L-alanines, consisting of an alanine core bearing a benzoxazole at the side chain with a thiophene ring at position 2, substituted with different (hetero)aryl substituents, was synthesised to study the tuning of the photophysical and chemosensory properties of the resulting compounds. These novel heterocyclic alanines 3a-f and a series of structurally related bis-thienylbenzoxazolyl-alanines 3g-j were evaluated for the first time in the recognition of selected metal cations with environmental, medicinal and analytical interest such as Co 2+ , Cu 2+ , Zn 2+ and Ni 2+ , in acetonitrile solution, with the heterocycles at the side chain acting simultaneously as the coordinating and reporting units, via fluorescence changes. This behaviour can be explained by the involvement of the electron donor heteroatoms in the recognition event, through complexation of the metal cations. The spectrofluorimetric titrations showed that thienylbenzoxazolyl-alanines 3a-j and 4a,b were non-selective fluorimetric chemosensors for the above-mentioned cations, with the best results being obtained for the interaction of Cu 2+ with bis-alanine 3j and deprotected alanines 4a,b. The encouraging photophysical and metal ion sensing properties of these thienylbenzoxazolyl-alanines suggest that they can be used to obtain bioinspired fluorescent reporters for metal ion such as peptides/proteins with chemosensory/probing ability.

  10. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174.

    PubMed

    Arias, C A; Weisner, J; Blackburn, J M; Reynolds, P E

    2000-07-01

    Vancomycin resistance in Enterococcus gallinarum results from the production of UDP-MurNAc-pentapeptide[D-Ser]. VanT, a membrane-bound serine racemase, is one of three proteins essential for this resistance. To investigate the selectivity of racemization of L-Ser or L-Ala by VanT, a strain of Escherichia coli TKL-10 that requires D-Ala for growth at 42 degrees C was used as host for transformation experiments using plasmids containing the full-length vanT from Ent. gallinarum or the alanine racemase gene (alr) of Bacillus stearothermophilus: both plasmids were able to complement E. coli TKL-10 at 42 degrees C. No alanine or serine racemase activities were detected in the host strain E. coli TKL-10 grown at 30, 34 or 37 degrees C. Serine and alanine racemase activities were found almost exclusively (96%) in the membrane fraction of E. coli TKL-10/pCA4(vanT): the alanine racemase activity of VanT was 14% of the serine racemase activity in both E. coli TKL-10/pCA4(vanT) and E. coli XL-1 Blue/pCA4(vanT). Alanine racemase activity was present mainly (95%) in the cytoplasmic fraction of E. coli TKL-10/pJW40(alr), with a trace (1.6%) of serine racemase activity. Additionally, DNA encoding the soluble domain of VanT was cloned and expressed in E. coli M15 as a His-tagged polypeptide and purified: this polypeptide also exhibited both serine and alanine racemase activities; the latter was approximately 18% of the serine racemase activity, similar to that of the full-length, membrane-bound enzyme. N-terminal sequencing of the purified His-tagged polypeptide revealed a single amino acid sequence, indicating that the formation of heterodimers between subunits of His-tagged C-VanT and endogenous alanine racemases from E. coli was unlikely. The authors conclude that the membrane-bound serine racemase VanT also has alanine racemase activity but is able to racemize serine more efficiently than alanine, and that the cytoplasmic domain is responsible for the racemase activity.

  11. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    PubMed Central

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  12. Purification and characterization of l,(l/d)-aminopeptidase from Guinea pig serum.

    PubMed

    Krstanović, Marina; Brgles, Marija; Halassy, Beata; Frkanec, Ruza; Vrdoljak, Anto; Branović, Karmen; Tomasić, Jelka; Benedetti, Fabio

    2006-01-01

    Mammalian sera contain enzymes that catalyze the hydrolytic degradation of peptidoglycans and molecules of related structure and are relevant for the metabolism of peptidoglycans. We now report on a novel L,(L/D)-aminopeptidase found in human and mammalian sera. The enzyme hydrolyses the pentapeptide L-Ala-D-iso-Gln-meso-DAP(omegaNH(2))-D-Ala-D-Ala yielding the free L-alanine and the respective tetrapeptide (K(M) 18 mM). L,(L/D)-aminopeptidase from guinea pig serum was highly purified in four chromatographic steps, up to 700-fold. Molecular weight of the enzyme was estimated by HPLC to be approximately 175,000. The configuration of alanine obtained by hydrolysis of the pentapeptide was determined by oxidation with L-amino acid oxidase. The amino acids sequence in the respective tetrapeptide was deduced from the results of mass spectrometry. The novel L,(L/D)-aminopeptidase also hydrolyzed alanine-4-nitroanilide (K(M)=0.6 mM) and several peptides comprising L-amino acids. Peptides containing D-amino acid at the amino end and L-Asp-L-Asp were not the substrates for this enzyme. The purified enzyme also exhibited enkephalin degrading activity, hydrolyzing enkephalins comprising L,L- and L,D-peptide bonds. The enzyme was inhibited strongly by metal chelating agents, bestatin and amastatin.

  13. [Effects of ß-alanine supplementation on wingate tests in university female footballers].

    PubMed

    Rodríguez Rodríguez, Fernando; Delgado Ormeño, Alex; Rivera Lobos, Patricio; Tapia Aranda, Víctor; Cristi-Montero, Carlos

    2014-11-01

    Football is a sport that develops actions intermittent high-intensity exercise using the anaerobic pathway, for that reason, the muscle fatigue would produce primarily by increasing acidosis. Carnosine, which is formed from L-histidine, ß-alanine, has proven to produce an effect "buffer" of acidosis. To determine the effect of ß-alanine supplementation, on three successive Wingate tests and compare the average power, maximum power and lactate blood in selected female college soccer. We evaluated 10 football players who were three Wingate, 5 min rest between each sprint, determining the average power, maximum and lactate at the end of each test, then consumed 2,4 gr/day of ß-alanine for 30 days and repeated the tests. The control group (n=8) performed the same tests, but without consuming the supplement. Monark cycle ergometer was used (Ergomedic 874E) and to measure lactate the Lactate Pro 2. The group with supplementation significantly improved mean power difference from the control group. The maximum power improved only in the first sprint unlike the control group and Lactate did not differ. The evidence shows that the ß-alanine improves performance on tests of more than 30 second long, but in our study improves average power and peak power even when performing consecutive sprint, being able to emulate the reality of the football game. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  14. EPR study of gamma-irradiated N-methyl-L-alanine, DL-2-methyl glutamic acid hemihydrate and Di-leucine hydrochloride in solid state

    NASA Astrophysics Data System (ADS)

    Sütçü, Kerem; Osmanoğlu, Y. Emre

    2017-12-01

    In this study, it was aimed to investigate ɣ-irradiated powders of N-methyl-L-alanine (NMLA), DL-2-methyl glutamic acid hemihydrate (DL2MGAH), and Di-leucine hydrochloride (DLHCl) at room temperature by electron paramagnetic resonance spectroscopy. After the γ-irradiation the samples indicated the existence of the CH3ĊNHCH3COOH, HOOCCH3NH2CĊHCH2COOH·1/2H2O and (CH3)2ĊCH2CH NHCOOHCOCH (NH2HCl) CH2CH (CH3)2 radicals, respectively. The spectral parameters of the radicals were determined. The results were compared with the earlier studies and discussed accordingly.

  15. A novel archaeal alanine dehydrogenase homologous to ornithine cyclodeaminase and mu-crystallin.

    PubMed

    Schröder, Imke; Vadas, Alexander; Johnson, Eric; Lim, Sierin; Monbouquette, Harold G

    2004-11-01

    A novel alanine dehydrogenase (AlaDH) showing no significant amino acid sequence homology with previously known bacterial AlaDHs was purified to homogeneity from the soluble fraction of the hyperthermophilic archaeon Archaeoglobus fulgidus. AlaDH catalyzed the reversible, NAD+-dependent deamination of L-alanine to pyruvate and NH4+. NADP(H) did not serve as a coenzyme. The enzyme is a homodimer of 35 kDa per subunit. The Km values for L-alanine, NAD+, pyruvate, NADH, and NH4+ were estimated at 0.71, 0.60, 0.16, 0.02, and 17.3 mM, respectively. The A. fulgidus enzyme exhibited its highest activity at about 82 degrees C (203 U/mg for reductive amination of pyruvate) yet still retained 30% of its maximum activity at 25 degrees C. The thermostability of A. fulgidus AlaDH was increased by more than 10-fold by 1.5 M KCl to a half-life of 55 h at 90 degrees C. At 25 degrees C in the presence of this salt solution, the enzyme was approximately 100% stable for more than 3 months. Closely related A. fulgidus AlaDH homologues were found in other archaea. On the basis of its amino acid sequence, A. fulgidus AlaDH is a member of the ornithine cyclodeaminase-mu-crystallin family of enzymes. Similar to the mu-crystallins, A. fulgidus AlaDH did not exhibit any ornithine cyclodeaminase activity. The recombinant human mu-crystallin was assayed for AlaDH activity, but no activity was detected. The novel A. fulgidus gene encoding AlaDH, AF1665, is designated ala.

  16. Difference in the structures of alanine tri- and tetra-peptides with antiparallel β-sheet assessed by X-ray diffraction, solid-state NMR and chemical shift calculations by GIPAW.

    PubMed

    Asakura, Tetsuo; Yazawa, Koji; Horiguchi, Kumiko; Suzuki, Furitsu; Nishiyama, Yusuke; Nishimura, Katsuyuki; Kaji, Hironori

    2014-01-01

    Alanine oligomers provide a key structure for silk fibers from spider and wild silkworms.We report on structural analysis of L-alanyl-L-alanyl-L-alanyl-L-alanine (Ala)4 with anti-parallel (AP) β-structures using X-ray and solid-state NMR. All of the Ala residues in the (Ala)4 are in equivalent positions, whereas for alanine trimer (Ala)3 there are two alternative locations in a unit cell as reported previously (Fawcett and Camerman, Acta Cryst., 1975, 31, 658-665). (Ala)4 with AP β-structure is more stable than AP-(Ala)3 due to formation of the stronger hydrogen bonds. The intermolecular structure of (Ala)4 is also different from polyalanine fiber structure, indicating that the interchain arrangement of AP β-structure changes with increasing alanine sequencelength. Furthermore the precise (1)H positions, which are usually inaccesible by X-ray diffraction method, are determined by high resolution (1)H solid state NMR combined with the chemical shift calculations by the gauge-including projector augmented wave method. Copyright © 2013 Wiley Periodicals, Inc.

  17. Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    PubMed

    Deva, Taru; Baker, Edward N; Squire, Christopher J; Smith, Clyde A

    2006-12-01

    The bacterial cell wall provides essential protection from the external environment and confers strength and rigidity to counteract internal osmotic pressure. Without this layer the cell would be easily ruptured and it is for this reason that biosynthetic pathways leading to the formation of peptidoglycan have for many years been a prime target for effective antibiotics. Central to this pathway are four similar ligase enzymes which add peptide groups to glycan moieties. As part of a program to better understand the structure-function relationships in these four enzymes, the crystal structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC) has been determined to 2.6 A resolution. The structure was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and refined to a crystallographic R factor of 0.212 (R(free) = 0.259). The enzyme has a modular multi-domain structure very similar to those of other members of the mur family of ATP-dependent amide-bond ligases. Detailed comparison of these four enzymes shows that considerable conformational changes are possible. These changes, together with the recruitment of two different N-terminal domains, allow this family of enzymes to bind a substrate which is identical at one end and at the other has the growing peptide tail which will ultimately become part of the rigid bacterial cell wall. Comparison of the E. coli and Haemophilus influenzae structures and analysis of the sequences of known MurC enzymes indicate the presence of a ;dimerization' motif in almost 50% of the MurC enzymes and points to a highly conserved loop in domain 3 that may play a key role in amino-acid ligand specificity.

  18. Performance effects of acute β-alanine induced paresthesia in competitive cyclists.

    PubMed

    Bellinger, Phillip M; Minahan, Clare L

    2016-01-01

    β-alanine is a common ingredient in supplements consumed by athletes. Indeed, athletes may believe that the β-alanine induced paresthesia, experienced shortly after ingestion, is associated with its ergogenic effect despite no scientific mechanism supporting this notion. The present study examined changes in cycling performance under conditions of β-alanine induced paresthesia. Eight competitive cyclists (VO2max = 61.8 ± 4.2 mL·kg·min(-1)) performed three practices, one baseline and four experimental trials. The experimental trials comprised a 1-km cycling time trial under four conditions with varying information (i.e., athlete informed β-alanine or placebo) and supplement content (athlete received β-alanine or placebo) delivered to the cyclist: informed β-alanine/received β-alanine, informed placebo/received β-alanine, informed β-alanine/received placebo and informed placebo/received placebo. Questionnaires were undertaken exploring the cyclists' experience of the effects of the experimental conditions. A possibly likely increase in mean power was associated with conditions in which β-alanine was administered (±95% CL: 2.2% ± 4.0%), but these results were inconclusive for performance enhancement (p = 0.32, effect size = 0.18, smallest worthwhile change = 56% beneficial). A possibly harmful effect was observed when cyclists were correctly informed that they had ingested a placebo (-1.0% ± 1.9%). Questionnaire data suggested that β-alanine ingestion resulted in evident sensory side effects and six cyclists reported placebo effects. Acute ingestion of β-alanine is not associated with improved 1-km TT performance in competitive cyclists. These findings are in contrast to the athlete's "belief" as cyclists reported improved energy and the ability to sustain a higher power output under conditions of β-alanine induced paresthesia.

  19. Synthesis and characterization of new nanocomposites films using alanine-Cu-functionalized graphene oxide as nanofiller and PVA as polymeric matrix for improving of their properties

    NASA Astrophysics Data System (ADS)

    Abdolmaleki, Amir; Mallakpour, Shadpour; Karshenas, Azam

    2017-09-01

    In the synthesis of polymer-graphene nanocomposites, for improving properties of nanocomposites, two factors dispersion and strong interfacial interactions between graphene and the polymer, are essential. In the present work, poly(vinyl alcohol) PVA/GO-Cu-alanine nanocomposite films were manufactured using concentrations 0, 1, 3 and 5 wt% of GO-Cu-alanine in water solution. For this purpose, L-alanine amino acid was located on the surface and edges of GO through copper(II) ion as a coordinating function. Then, flexible PVA/GO-Cu-alanine nanocomposite films were fabricated using GO-Cu-alanine as filler and PVA as matrix. Due to the existence of affective interaction between GO-Cu-alanine and PVA matrix, the acquired PVA/GO-Cu-alanine nanocomposites demonstrated great thermal and mechanical properties. Properties of manufactured materials were characterized by Fourier transform infrared, X-ray photoelectron spectroscopies (XPS), X-ray diffraction (XRD), Thermal gravimetric analysis, elemental analysis, field emission scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy (EDX).

  20. EPR/alanine dosimetry for two therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.

  1. Oxygenated N-Acyl Alanine Methyl Esters (NAMEs) from the Marine Bacterium Roseovarius tolerans EL-164.

    PubMed

    Bruns, Hilke; Herrmann, Jennifer; Müller, Rolf; Wang, Hui; Wagner Döbler, Irene; Schulz, Stefan

    2018-01-26

    The marine bacterium Roseovarius tolerans EL-164 (Rhodobacteraceae) can produce unique N-acylalanine methyl esters (NAMEs) besides strucutrally related N-acylhomoserine lactones (AHLs), bacterial signaling compounds widespread in the Rhodobacteraceae. The structures of two unprecedented NAMEs carrying a rare terminally oxidized acyl chain are reported here. The compounds (Z)-N-16-hydroxyhexadec-9-enoyl-l-alanine methyl ester (Z9-16-OH-C16:1-NAME, 3) and (Z)-N-15-carboxypentadec-9-enoyl-l-alanine methyl ester (16COOH-C16:1-NAME, 4) were isolated, and the structures were determined by NMR and MS experiments. Both compounds were synthesized to prove assignments and to test their biological activity. Finally, non-natural, structurally related Z9-3-OH-C16:1-NAME (18) was synthesized to investigate the mass spectroscopy of structurally related NAMEs. Compound 3 showed moderate antibacterial activity against microorganisms such as Bacillus, Streptococcus, Micrococcus, or Mucor strains. In contrast to AHLs, quorum-sensing or quorum-quenching activity was not observed.

  2. Low alanine aminotransferase levels and higher number of cardiovascular events in people with Type 2 diabetes: analysis of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study.

    PubMed

    Williams, K H; Sullivan, D R; Veillard, A S; O'Brien, R; George, J; Jenkins, A J; Young, S; Ehnholm, C; Duffield, A; Twigg, S M; Keech, A C

    2016-03-01

    To determine whether alanine aminotransferase or gamma-glutamyltransferase levels, as markers of liver health and non-alcoholic fatty liver disease, might predict cardiovascular events in people with Type 2 diabetes. Data from the Fenofibrate Intervention and Event Lowering in Diabetes study were analysed to examine the relationship between liver enzymes and incident cardiovascular events (non-fatal myocardial infarction, stroke, coronary and other cardiovascular death, coronary or carotid revascularization) over 5 years. Alanine aminotransferase measure had a linear inverse relationship with the first cardiovascular event occurring in participants during the study period. After adjustment, for every 1 sd higher baseline alanine aminotransferase measure (13.2 U/l), the risk of a cardiovascular event was 7% lower (95% CI 4-13; P = 0.02). Participants with alanine aminotransferase levels below and above the reference range 8-41 U/l for women and 9-59 U/l for men, had hazard ratios for a cardiovascular event of 1.86 (95% CI 1.12-3.09) and 0.65 (95% CI 0.49-0.87), respectively (P = 0.001). No relationship was found for gamma-glutamyltransferase. The data may indicate that in people with Type 2 diabetes, which is associated with higher alanine aminotransferase levels because of prevalent non-alcoholic fatty liver disease, a low alanine aminotransferase level is a marker of hepatic or systemic frailty rather than health. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  3. Structure of the Mycobacterium tuberculosis D-Alanine:D-Alanine Ligase, a Target of the Antituberculosis Drug D-Cycloserine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruning, John B.; Murillo, Ana C.; Chacon, Ofelia

    D-Alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 {angstrom}. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoinedmore » by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC{sub 50}) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.« less

  4. Dose response of alanine detectors irradiated with carbon ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Rochus; Jaekel, Oliver; Palmans, Hugo

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type when irradiated with ion beams. The purpose of this study is to investigate the response behavior of the alanine detector in clinical carbon ion beams and compare the results to model predictions. Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track structure based alanine response model developed by Hansen andmore » Olsen has been implemented in the Monte Carlo code FLUKA and calculations were compared to experimental results. Results: Calculations of the relative effectiveness deviate less than 5% from the measured values for monoenergetic beams. Measured depth-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasimonoenergetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties of the detector geometry implemented in the Monte Carlo simulations.« less

  5. Role of Intramolecular Aromatic π-π Interactions in the Self-Assembly of Di-l-Phenylalanine Dipeptide Driven by Intermolecular Interactions: Effect of Alanine Substitution.

    PubMed

    Reddy, Samala Murali Mohan; Shanmugam, Ganesh

    2016-09-19

    Although the role of intermolecular aromatic π-π interactions in the self-assembly of di-l-phenylalanine (l-Phe-l-Phe, FF), a peptide that is known for hierarchical structure, is well established, the influence of intramolecular π-π interactions on the morphology of the self-assembled structure of FF has not been studied. Herein, the role of intramolecular aromatic π-π interactions is investigated for FF and analogous alanine (Ala)-containing dipeptides, namely, l-Phe-l-Ala (FA) and l-Ala-l-Phe (AF). The results reveal that these dipeptides not only form self-assemblies, but also exhibit remarkable differences in structural morphology. The morphological differences between FF and the analogues indicate the importance of intramolecular π-π interactions, and the structural difference between FA and AF demonstrates the crucial role of the nature of intramolecular side-chain interactions (aromatic-aliphatic or aliphatic-aromatic), in addition to intermolecular interactions, in deciding the final morphology of the self-assembled structure. The current results emphasise that intramolecular aromatic π-π interaction may not be essential to induce self-assembly in smaller peptides, and π (aromatic)-alkyl or alkyl-π (aromatic) interactions may be sufficient. This work also illustrates the versatility of aromatic and a combination of aromatic and aliphatic residues in dipeptides in the formation of structurally diverse self-assembled structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy.

    PubMed

    Escalera-Fanjul, Ximena; Campero-Basaldua, Carlos; Colón, Maritrini; González, James; Márquez, Dariel; González, Alicia

    2017-01-01

    Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, Sc Alt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1 , alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display Lk Alt1 and Kl Alt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that Kl Alt1 and Lk Alt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that Sc Alt2 conserves 64% identity with

  7. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy

    PubMed Central

    Escalera-Fanjul, Ximena; Campero-Basaldua, Carlos; Colón, Maritrini; González, James; Márquez, Dariel; González, Alicia

    2017-01-01

    Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, ScAlt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1, alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display LkAlt1 and KlAlt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that KlAlt1 and LkAlt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that ScAlt2 conserves 64% identity with LkAlt1

  8. Purification, crystallization and preliminary X-ray analysis of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).

    PubMed

    Deva, Taru; Pryor, KellyAnn D; Leiting, Barbara; Baker, Edward N; Smith, Clyde A

    2003-08-01

    UDP-N-acetylmuramoyl:L-alanine ligase (MurC) is involved in the pathway leading from UDP-N-glucosamine to the UDP-N-acetylmuramoyl:pentapeptide unit, which is the building block for the peptidoglycan layer found in all bacterial cell walls. The pathways leading to the biosynthesis of the peptidoglycan layer are important targets for the development of novel antibiotics, since animal cells do not contain these pathways. MurC is the first of four similar ATP-dependent amide-bond ligases which share primary and tertiary structural similarities. The crystal structures of three of these have been determined by X-ray crystallography, giving insights into the binding of the carbohydrate substrate and the ATP. Diffraction-quality crystals of the enzyme MurC have been obtained in both native and selenomethionine forms and X-ray diffraction data have been collected at the Se edge at a synchrotron source. The crystals are orthorhombic, with unit-cell parameters a = 73.9, b = 93.6, c = 176.8 A, and diffraction has been observed to 2.6 A resolution.

  9. D-alanine carboxypeptidase activity of Micrococcus lysodeikticus released into the protoplasting medium.

    PubMed

    Linder, R; Salton, M R

    1975-06-16

    Conversion of whole cells of Micrococcus lysodeikticus to protoplasts allowed the release of a soluble form of a D-alanine carboxypeptidase into the protoplasting medium. The enzyme cleaves the terminal D-alanine from the radioactively labelled UDP-N-acetylmuramyl-pentapeptide containing L-lysine as the diamino acid. However, the enzyme is only minimally active in this fraction so that it had to be enriched and partially purified before its properties could be studied. Chromatography on carboxymethyl-Sephadex removed the lysozyme used in the protoplasting of the cells. The material which was unadsorbed to the column was applied to an affinity chromatography column of Ampicillin-Sepharose. Most of the contaminating protein was washed from the column while the D-alanine carboxypeptidase adhered to the resin and could be eluted with 0.5 M Tris-HCl buffer pH 8.6. Some of the properties of the enzymic activity were studied using this preparation. The enzyme was activated by Mg2+ ions with a broad optimum from 15--35 mM. It was maximally active when NaCl at a concentrations of 0.06--0.08 M was added to the assay, and the pH curve was biphasic with an alkaline optimum. The Km for substrate was found to be 0.118 mM. Enzymic activity was completely inhibited by low concentrations of Ampicillin and penicillin G.

  10. Nepenthes insignis uses a C2-portion of the carbon skeleton of L-alanine acquired via its carnivorous organs, to build up the allelochemical plumbagin.

    PubMed

    Rischer, Heiko; Hamm, Andreas; Bringmann, Gerhard

    2002-03-01

    Tropical pitcher plants (Nepenthes) catch animals in their specialized cup-shaped leaves, digest the prey by secreting enzymes, and actively take up the resulting compounds. The benefit of this behaviour is the ability to grow and compete in nutrient-poor habitats. Our present in vitro study shows that not only the nitrogen of alanine fed to the carnivorous organs is used by the plant but that in addition intact C2-units derived from C-2 and C-3 of stable isotope labelled L-alanine serve as building blocks, here exemplarily for the synthesis of the secondary metabolite plumbagin, a potent allelochemical. This result adds a new facet to the benefit of carnivory for plants. The availability of plumbagin by a de novo synthesis probably enhances the plants' fitness in their defence against phytophagous and pathogenic organisms. A missing specific uptake or CoA activation mechanism might be the reason that acetate fed to the pitchers was not incorporated into the naphthoquinone plumbagin. The dihydronaphthoquinone glucosides rossoliside and plumbaside A, here isolated for the first time from Nepenthes, by contrast, showed no incorporation after feeding of any of the two precursors, suggesting these compounds to be storage forms with probably very low turnover rates.

  11. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  12. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  13. Synthesis and characterization of new polyamides derived from alanine and valine derivatives

    PubMed Central

    2012-01-01

    Background Many efforts have been recently devoted to design, investigate and synthesize biocompatible, biodegradable polymers for applications in medicine for either the fabrication of biodegradable devices or as drug delivery systems. Many of them consist of condensation of polymers having incorporated peptide linkages susceptible to enzymatic cleavage. Polyamides (PAs) containing α-amino acid residues such as L-leucine, L-alanine and L-phenylalanine have been reported as biodegradable materials. Furthermore, polyamides (PAs) derived from C10 and C14 dicarboxylic acids and amide-diamines derived from 1,6-hexanediamine or 1,12-dodecanediamine and L-phenylalanine, L-valyl-L-phenylalanine or L-phenylalanyl-L-valine residues have been reported as biocompatible polymers. We have previously described the synthesis and thermal properties of a new type of polyamides-containing amino acids based on eight new symmetric meta-oriented protected diamines derived from coupling of amino acids namely; Fomc-glycine, Fmoc-alanine, Fomc-valine and Fomc-leucine with m-phenylene diamine or 2,6-diaminopyridine. Results revealed that incorporation of pyridine onto the polymeric backbone of all series decreases the thermal stability. Here we describe another family of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of the polymers. Results We report here the preparation of a new type of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of polymers. The thermal properties of the polymers were evaluated by different techniques. Results revealed that structure-thermal property correlation based on

  14. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals.

    PubMed

    Rose, A S J Lucia; Selvarajan, P; Perumal, S

    2011-10-15

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm×12 mm×8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Nitrogen starvation of cyanobacteria results in the production of β-N-methylamino-L-alanine.

    PubMed

    Downing, S; Banack, S A; Metcalf, J S; Cox, P A; Downing, T G

    2011-08-01

    β-N-Methylamino-L-alanine, an unusual amino acid implicated in neurodegenerative disease, has been detected in cultures of nearly all genera of environmentally ubiquitous cyanobacteria tested. The compound is present within cyanobacterial cells in free and protein-associated forms, with large variations occurring in the concentration of these pools between species as well as within single strains. With a lack of knowledge and supporting data on the regulation of BMAA production and the role of this compound in cyanobacteria, the association between BMAA and cyanobacteria is still subject to debate. In this study we investigated the biosynthesis of BMAA in axenic non-diazotrophic cyanobacterial cultures using the stable isotope ¹⁵N. Nitrogen starvation of nutritionally replete cells resulted in an increase in free cellular ¹⁵N BMAA suggesting that BMAA may be the result of catabolism to provide nitrogen or that BMAA is synthesised to serve a functional role in the cell in response to nitrogen deprivation. The addition of NO₃⁻ and NH₄⁺ to the culture medium following starvation resulted in a decrease of free cellular BMAA without a corresponding increase in the protein-associated fraction. The use of ammonia as a nitrogen source resulted in a more rapid reduction of BMAA when compared to nitrate. This study provides the first data regarding the regulation of intracellular BMAA concentrations in cyanobacteria with results conclusively showing the production of ¹⁵N BMAA by an axenic cyanobacterial culture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Effects of Monovalent Cations on the Sodium-Alanine Interaction in Rabbit Ileum

    PubMed Central

    Frizzell, Raymond A.; Schultz, Stanley G.

    1970-01-01

    H, K, Rb, and Li inhibit Na-dependent alanine influx across the brush border of rabbit ileum. Kinetic analysis indicates that H and K behave as competitive inhibitors of influx so that increasing the concentration of H or K in the mucosal solution is kinetically indistinguishable from decreasing the Na concentration. In addition the coupling between alanine and Na influxes is markedly reduced at pH 2.5. With the exception of H and Li, none of these monovalent cations significantly affects carrier-mediated alanine influx in the absence of Na indicating that their inhibitory effects are largely restricted to the Na-dependent fraction of influx. Increasing H concentration from 0.03 to 3 mM does not affect influx in the absence of Na but markedly inhibits influx in the presence of Na. Li significantly enhances alanine influx in the absence of Na. Ag, UO2, and La also inhibit the Na-dependent fraction of alanine influx. These findings suggest that anionic groups having a pKa of approximately 4 are involved in the interaction between Na and the alanine-carrier complex; present evidence implicates carboxylate groups however, phosphoryl residues cannot be ruled out. The previously proposed kinetic model for the Na-alanine interaction has been extended to accommodate these effects of H and other monovalent cations. The mechanistic and physiological implications of these findings are discussed. PMID:5507092

  17. EPR parameters of L-α-alanine radicals in aqueous solution: a first-principles study

    NASA Astrophysics Data System (ADS)

    Janbazi, Mehdi; T. Azar, Yavar; Ziaie, Farhood

    2018-07-01

    EPR (electron paramagnetic resonance) response for a wide range of possible alanine radicals has been analysed employing quantum chemical methods. The strong correlation between geometry and EPR parameter structure of these radicals has been shown in this research work. Significant solvent effect on EPR parameters has been shown employing both explicit and implicit solvent models. In a relatively good agreement with the experiment, stable conformation of these radicals in acidic and basic conditions was determined, and a new conformation was suggested based on possible proton transfer in the intermediate pH range. The employed methodology along with experimental results may be used for the characterisation of different radiation-induced amino acid radicals.

  18. Ergogenic Effects of β-Alanine and Carnosine: Proposed Future Research to Quantify Their Efficacy

    PubMed Central

    Caruso, John; Charles, Jessica; Unruh, Kayla; Giebel, Rachel; Learmonth, Lexis; Potter, William

    2012-01-01

    β-alanine is an amino acid that, when combined with histidine, forms the dipeptide carnosine within skeletal muscle. Carnosine and β-alanine each have multiple purposes within the human body; this review focuses on their roles as ergogenic aids to exercise performance and suggests how to best quantify the former’s merits as a buffer. Carnosine normally makes a small contribution to a cell’s total buffer capacity; yet β-alanine supplementation raises intracellular carnosine concentrations that in turn improve a muscle’s ability to buffer protons. Numerous studies assessed the impact of oral β-alanine intake on muscle carnosine levels and exercise performance. β-alanine may best act as an ergogenic aid when metabolic acidosis is the primary factor for compromised exercise performance. Blood lactate kinetics, whereby the concentration of the metabolite is measured as it enters and leaves the vasculature over time, affords the best opportunity to assess the merits of β-alanine supplementation’s ergogenic effect. Optimal β-alanine dosages have not been determined for persons of different ages, genders and nutritional/health conditions. Doses as high as 6.4 g day−1, for ten weeks have been administered to healthy subjects. Paraesthesia is to date the only side effect from oral β-alanine ingestion. The severity and duration of paraesthesia episodes are dose-dependent. It may be unwise for persons with a history of paraesthesia to ingest β-alanine. As for any supplement, caution should be exercised with β-alanine supplementation. PMID:22852051

  19. Enhanced poly(3-hydroxypropionate) production via β-alanine pathway in recombinant Escherichia coli

    PubMed Central

    Lacmata, Stephen Tamekou; Kuiate, Jules-Roger; Ding, Yamei; Xian, Mo; Liu, Huizhou; Boudjeko, Thaddée; Feng, Xinjun; Zhao, Guang

    2017-01-01

    Poly(3-hydroxypropionate) (P3HP) is a thermoplastic with great compostability and biocompatibility, and can be produced through several biosynthetic pathways, in which the glycerol pathway achieved the highest P3HP production. However, exogenous supply of vitamin B12 was required to maintain the activity of glycerol dehydratase, resulting in high production cost. To avoid the addition of VB12, we have previously constructed a P3HP biosynthetic route with β-alanine as intermediate, and the present study aimed to improve the P3HP production of this pathway. L-aspartate decarboxylase PanD was found to be the rate-limiting enzyme in the β-alanine pathway firstly. To improve the pathway efficiency, PanD was screened from four different sources (Escherichia coli, Bacillus subtilis, Pseudomonas fluorescens, and Corynebacterium glutamicum). And PanD from C. glutamicum was found to have the highest activity, the P3HP production was improved in flask cultivation with this enzyme. To further improve the production, the host strain was screened and the culture condition was optimized. Under optimal conditions, production and content of P3HP reached to 10.2 g/L and 39.1% (wt/wt [cell dry weight]) in an aerobic fed-batch fermentation. To date, this is the highest P3HP production without VB12. PMID:28253372

  20. Changes in alanine turnover rate due to nutritional and genetic obesity in the rat.

    PubMed

    Yebras, M; Salvadó, J; Arola, L; Remesar, X; Segués, T

    1994-08-01

    The changes in alanine turnover were determined in Zucker rats, which were either genetically obese (fa/fa) or rendered obese by dietary treatment (cafeteria fed). The whole body rate of alanine turnover was higher in genetically obese rats than in rats in which obesity was induced by diet (cafeteria). This is possibly due to variations in the rate of the amino acid incorporation into proteins, since the rate of whole body alanine degradation is the same for both groups. Thus, the different pattern followed by alanine turnover rate in these types of obese animals reflects the differences in the nitrogen economy of these animals, pointing to a higher alanine utilization in the genetically obese animals and a conservative management of alanine in the cafeteria-fed animals.

  1. Topology of AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, determined by site-directed fluorescence labeling.

    PubMed

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C; Abe, Keietsu

    2007-10-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of L-aspartate (Asp) with release of L-alanine (Ala) and CO(2). The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an L-aspartate-beta-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity.

  2. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA) in the Marine Benthic Ecosystem.

    PubMed

    Li, Aifeng; Song, Jialiang; Hu, Yang; Deng, Longji; Ding, Ling; Li, Meihui

    2016-11-04

    The neurotoxin β- N -methylamino-l-alanine (BMAA) has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and Alzheimer's disease (AD). We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB) and N -2(aminoethyl)glycine (AEG) in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer) method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma , Solen strictus , and Mytilus coruscus . The top three concentrations of free-form BMAA (0.99~3.97 μg·g -1 wet weight) were detected in N. didyma . DAB was universally detected in most of the mollusk samples (53/68) with no species-specific or regional differences (0.051~2.65 μg·g -1 wet weight). No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.

  3. Potential for dietary exposure to β-N-methylamino-L-alanine and microcystin from a freshwater system.

    PubMed

    Scott, Laura L; Downing, Simoné; Downing, Tim

    2018-06-18

    The suggested link between β-N-methylamino-L-alanine (BMAA) and the onset of neurodegenerative diseases and the detection of this cyanotoxin in aquatic organisms has prompted research into the potential human exposure risk associated with sourcing food items from eutrophied water bodies worldwide. The Hartbeespoort Dam reservoir in the North West province of South Africa has persistent cyanobacterial blooms and is used extensively by anglers, many of whom consume their catch. The commercial sale of fish species harvested from this reservoir as part of a recent biomanipulative remediation strategy may pose an additional hazard. BMAA and Microcystins (MC) were detected in fish sourced from this reservoir. BMAA levels of up to 1630 ng g -1 dry weight and MC concentrations of up to 29.44 ng g -1 dry weight were detected in fish sourced during an extensive bloom episode, with a clear correlation between the total amount of BMAA detected in the fish muscle tissue and their relative position in the Hartbeespoort Dam reservoir food web. Interestingly, fish sourced from this reservoir in winter when dense cyanobacterial blooms were lacking contained BMAA levels of up to 3055 ng g -1 dry weight. We also comment on the observed seasonal variations of BMAA levels in phytoplankton and fish sourced from this water body as well as the potential exposure risks associated with harvesting food items from this reservoir. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Specific immune response genes of the guinea pig. II. Relationship between the poly-L-lysine gene and the genes controlling immune responsiveness to copolymers of L-glutamic acid and L-alanine and L-glutamic acid and L-tyrosine in random-bred Hartley guinea pigs.

    PubMed

    Bluestein, H G; Green, I; Benacerraf, B

    1971-08-01

    The ability of guinea pigs to make immune responses to GA, a linear random copolymer of L-glutamic acid and L-alanine, GT, a random linear copolymer of L-glutamic acid and L-tyrosine, and PLL, a linear homopolymer of L-lysine, is controlled by different autosomal dominant genes specific for each of those polymers. We have investigated the relationship between the PLL gene and the GA and GT immune response genes by simultaneously immunizing random-bred Hartley strain guinea pigs with GA and PLL, GT and PLL, or GA and GT. In most Hartley guinea pigs the ability to respond immunologically to GA and to PLL is inherited together; that is, most animals responding to GA respond to PLL and vice versa. However, a few animals respond to either GA or to PLL but not both, demonstrating that the GA and PLL immune response genes are not identical but linked in most Hartley animals. Conversely, when simultaneously immunized with GT and PLL, most Hartley guinea pigs respond to either PLL or GT but not both, indicating that GT and PLL responsiveness tends to segregate away from each other. Thus, the GT and PLL immune response genes also are not inherited independently but, rather, behave as alleles or pseudoalleles. Similar results are observed when Hartley guinea pigs are simultaneously immunized with GA and GT. The ability to respond to GA segregates away from the ability to respond to GT. Our studies demonstrated that the specific immune response genes thus far identified in guinea pigs controlling the ability to respond to GA, GT, and PLL, respectively, are found on the same chromosome. In most Hartley animals, the GA and PLL immune response genes are often linked, i.e. occur on the same chromosome strand, and tend to behave as alleles or pseudoalleles to the GT immune response gene.

  5. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  6. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  7. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  8. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  9. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  10. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine.

    PubMed

    Borodina, Irina; Kildegaard, Kanchana R; Jensen, Niels B; Blicher, Thomas H; Maury, Jérôme; Sherstyk, Svetlana; Schneider, Konstantin; Lamosa, Pedro; Herrgård, Markus J; Rosenstand, Inger; Öberg, Fredrik; Forster, Jochen; Nielsen, Jens

    2015-01-01

    Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics. With the objective of developing Saccharomyces cerevisiae as an efficient cell factory for high-level production of 3HP, we identified the β-alanine biosynthetic route as the most economically attractive according to the metabolic modeling. We engineered and optimized a synthetic pathway for de novo biosynthesis of β-alanine and its subsequent conversion into 3HP using a novel β-alanine-pyruvate aminotransferase discovered in Bacillus cereus. The final strain produced 3HP at a titer of 13.7±0.3gL(-1) with a 0.14±0.0C-molC-mol(-1) yield on glucose in 80h in controlled fed-batch fermentation in mineral medium at pH 5, and this work therefore lays the basis for developing a process for biological 3HP production. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Abdominal obesity validates the association between elevated alanine aminotransferase and newly diagnosed diabetes mellitus.

    PubMed

    Yueh, Chen-Yu; Yang, Yao-Hsu; Sung, Yi-Ting; Lee, Li-Wen

    2014-01-01

    To examine how elevated alanine aminotransferase (ALT) could be associated with newly diagnosed diabetes mellitus. We conducted a cross-sectional analysis on a mass health examination. The odds ratios (ORs) for diabetes mellitus and newly diagnosed diabetes mellitus were compared between people with and without abdominal obesity, together with and without elevated ALT levels. 5499 people were included in this study. Two hundred fifty two (4.6%) fulfilled the diagnosis of diabetes mellitus with 178 (3.2%) undiagnosed before. Metabolic syndrome was vigorously associated with diabetes mellitus and newly diagnosed diabetes mellitus (12.4% vs. 1.4% and 9.0% vs. 0.9%), but elevated ALT alone was not. However, coexisting with obesity, elevated ALTs were robustly associated with diabetes mellitus and newly diagnosed diabetes mellitus. For the incidence of newly diagnosed diabetes mellitus, in comparison to non-obese people with normal ALT (1.7%, OR = 1), obese people especially with elevated ALT levels had significantly higher ORs (obese with ALT ≤ 40 U/L: 4.7%, OR 1.73, 95% CI 1.08-2.77, P 0.023; ALT 41-80 U/L: 6.8%, OR 2.06, 95% CI 1.20-3.55, P 0.009; ALT 81-120 U/L: 8.8%, OR 3.07, 95% CI 1.38-6.84, P 0.006; ALT > 120 U/L: 18.2%, OR 7.44, 95% CI 3.04-18.18, P < 0.001). Abdominal obesity validates the association between elevated alanine aminotransferase and diabetes mellitus and newly diagnosed diabetes mellitus. People with abdominal obesity, especially with coexisting elevated ALT levels should be screened for undiagnosed diabetes mellitus.

  12. Including thermal disorder of hydrogen bonding to describe the vibrational circular dichroism spectrum of zwitterionic L-alanine in water.

    PubMed

    Orestes, Ednilsom; Bistafa, Carlos; Rivelino, Roberto; Canuto, Sylvio

    2015-05-28

    The vibrational circular dichroism (VCD) spectrum of l-alanine amino acid in aqueous solution in ambient conditions has been studied. The emphasis has been placed on the inclusion of the thermal disorder of the solute-solvent hydrogen bonds that characterize the aqueous solution condition. A combined and sequential use of molecular mechanics and quantum mechanics was adopted. To calculate the average VCD spectrum, the DFT B3LYP/6-311++G(d,p) level of calculation was employed, over one-hundred configurations composed of the solute plus all water molecules making hydrogen bonds with the solute. Simplified considerations including only four explicit solvent molecules and the polarizable continuum model were also made for comparison. Considering the large number of vibration frequencies with only limited experimental results a direct comparison is presented, when possible, and in addition a statistical analysis of the calculated values was performed. The results are found to be in line with the experiment, leading to the conclusion that including thermal disorder may improve the agreement of the vibrational frequencies with experimental results, but the thermal effects may be of greater value in the calculations of the rotational strengths.

  13. Alanine transaminase level in a healthy population in Morocco.

    PubMed

    Laouina, A; Abouyoub, A; Soulaymani, A; Alami, R

    2012-03-01

    A little is known about the prevalence of elevated alanine transaminase in a Moroccan healthy population. Our aim was to search for the upper limit of normal alanine transaminase in the blood donors and then to apply the upper limit of normal alanine found in the population so as to assess the prevalence of subjects with abnormal transaminase level. We then, investigated for factors associated with increased level of transaminase in our population. This study was carried out on 14071 blood donors, (74.1% of men and 25.9% female) aged between 18 to 60 years, randomly chosen. Serum transaminase activity was measured using on IEMS Reader, Labsystems. Hepatitis B and C were performed by ELISA. The upper limit of normal transaminase found were 64 for men and 52 for women. Consequently, 2.08% blood donors had an abnormal level of transaminase. Follow up results revealed that drug was the first cause of elevated transaminase in our cohort followed by diet and alcohol consumption. One seroconversion for hepatitis C was identified. In conclusion, this study showed that even though there is an evident lack of efficiency in using alanine aminotransferase testing qualifying blood donors in our country, preventing viral potential transmission through transfusions was possible.

  14. Topology of AspT, the Aspartate:Alanine Antiporter of Tetragenococcus halophilus, Determined by Site-Directed Fluorescence Labeling▿ †

    PubMed Central

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C.; Abe, Keietsu

    2007-01-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of l-aspartate (Asp) with release of l-alanine (Ala) and CO2. The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an l-aspartate-β-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity. PMID:17660287

  15. ESR/Alanine gamma-dosimetry in the 10-30 Gy range.

    PubMed

    Fainstein, C; Winkler, E; Saravi, M

    2000-05-01

    We report Alanine Dosimeter preparation, procedures for using the ESR/Dosimetry method, and the resulting calibration curve for gamma-irradiation in the range from 10-30 Gy. We use calibration curve to measure the irradiation dose in gamma-irradiation of human blood, as required in Blood Transfusion Therapy. The ESR/Alanine results are compared against those obtained using the thermoluminescent dosimetry (TLD) method.

  16. Eating a healthy lunch improves serum alanine aminotransferase activity.

    PubMed

    Iwamoto, Masako; Yagi, Kaori; Yazumi, Kayoko; Komine, Airi; Shirouchi, Bungo; Sato, Masao

    2013-09-14

    Nutritional guidance and diet control play important roles in the treatment of obesity and non-alcoholic fatty liver. However, in Japan, nutritional guidance is difficult to provide in practice. Therefore, we evaluated the effects of providing the 'once-a-day' intervention of a healthy lunch on various metabolic parameters. For a 1-month preparatory period, 10 subjects generally consumed the lunches that were provided by the worksite cafeteria. This was followed by a 1-week washout period, after which, the subjects consumed healthy, low-calorie, well-balanced lunches for a 1-month test period. After the preparatory and test periods, blood samples were obtained from all subjects. The serum levels of indices relevant to metabolic syndrome and fatty liver were measured. Serum alanine aminotransferase activity significantly decreased by 20.3% after the healthy intervention. However, the indices of metabolic syndrome did not significantly change. Analysis of the relationship between serum alanine aminotransferase activity and nutrient content indicated that the improvement of serum alanine aminotransferase status was due to the higher vegetable content and lower animal-source protein of the meals provided. In summary, the 'once-a-day' intervention of providing a healthy lunch improved serum alanine aminotransferase status. A diet high in vegetables and low in animal-based protein is important in maintaining a healthy condition.

  17. Radiolysis of alanine adsorbed in a clay mineral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role againstmore » external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.« less

  18. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae

    PubMed Central

    De Benedetti, Stefania; Bühl, Henrike; Gaballah, Ahmed; Klöckner, Anna; Otten, Christian; Schneider, Tanja; Sahl, Hans-Georg; Henrichfreise, Beate

    2014-01-01

    For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly. D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L-alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin. PMID:24616885

  19. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae.

    PubMed

    De Benedetti, Stefania; Bühl, Henrike; Gaballah, Ahmed; Klöckner, Anna; Otten, Christian; Schneider, Tanja; Sahl, Hans-Georg; Henrichfreise, Beate

    2014-01-01

    For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly. D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L-alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.

  20. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han,Q.; Robinson, H.; Gao, Y.

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from themore » mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.« less

  1. End-to-end tests using alanine dosimetry in scanned proton beams

    NASA Astrophysics Data System (ADS)

    Carlino, A.; Gouldstone, C.; Kragl, G.; Traneus, E.; Marrale, M.; Vatnitsky, S.; Stock, M.; Palmans, H.

    2018-03-01

    This paper describes end-to-end test procedures as the last fundamental step of medical commissioning before starting clinical operation of the MedAustron synchrotron-based pencil beam scanning (PBS) therapy facility with protons. One in-house homogeneous phantom and two anthropomorphic heterogeneous (head and pelvis) phantoms were used for end-to-end tests at MedAustron. The phantoms were equipped with alanine detectors, radiochromic films and ionization chambers. The correction for the ‘quenching’ effect of alanine pellets was implemented in the Monte Carlo platform of the evaluation version of RayStation TPS. During the end-to-end tests, the phantoms were transferred through the workflow like real patients to simulate the entire clinical workflow: immobilization, imaging, treatment planning and dose delivery. Different clinical scenarios of increasing complexity were simulated: delivery of a single beam, two oblique beams without and with range shifter. In addition to the dose comparison in the plastic phantoms the dose obtained from alanine pellet readings was compared with the dose determined with the Farmer ionization chamber in water. A consistent systematic deviation of about 2% was found between alanine dosimetry and the ionization chamber dosimetry in water and plastic materials. Acceptable agreement of planned and delivered doses was observed together with consistent and reproducible results of the end-to-end testing performed with different dosimetric techniques (alanine detectors, ionization chambers and EBT3 radiochromic films). The results confirmed the adequate implementation and integration of the new PBS technology at MedAustron. This work demonstrates that alanine pellets are suitable detectors for end-to-end tests in proton beam therapy and the developed procedures with customized anthropomorphic phantoms can be used to support implementation of PBS technology in clinical practice.

  2. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity.

    PubMed Central

    Gojković, Z; Sandrini, M P; Piskur, J

    2001-01-01

    beta-Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamyl-beta-alanine as the sole nitrogen source and exhibits diminished beta-alanine synthase activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has no pyrimidine catabolic pathway, it enabled growth on N-carbamyl-beta-alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta-alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial N-carbamyl amidohydrolases. All three beta-alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta-alanine, but not by uracil. This work establishes S. kluyveri as a model organism for studying pyrimidine degradation and beta-alanine production in eukaryotes. PMID:11454750

  3. Partial alanine scan of mast cell degranulating peptide (MCD): importance of the histidine- and arginine residues.

    PubMed

    Buku, Angeliki; Mendlowitz, Milton; Condie, Barry A; Price, Joseph A

    2004-06-01

    The influence of the two histidine and two arginine residues of mast cell degranulating peptide (MCD) in activity and binding was studied by replacing these amino acids in the MCD sequence with L-alanine. Their histamine releasing activity was determined on rat peritoneal mast cells. Their binding affinity to the FcepsilonRIalpha binding subunit of the human mast cell receptor protein, was carried out using fluorescence polarization. The histamine assay showed that replacement of His13 by Ala o ccurred without loss of activity compared with the activity of MCD. Alanine substitutions for Arg7 and His8 resulted in an approximately 40 fold increase, and for Arg16 in a 14-fold increase in histamine-releasing activity of MCD. The binding affinities of the analogs were tested by competitive displacement of bound fluorescent MCD peptide from the FcepsilonRIalpha binding protein of the mast cell receptor by the Ala analogs using fluorescence polarization. The analogs Ala8 (for His) and Ala16 (for Arg) showed the same binding affinities as MCD, whereas analog Ala7 (for Arg) and analog Ala13 (for His) showed slightly better binding affinity than the parent compound. This study showed that the introduction of alanine residues in these positions resulted in MCD agonists of diverse potency. These findings will be useful in further MCD structure-activity studies.

  4. The electron transport mechanism in ester and its influence on bioactivity in the anticancer drug N-(6-ferrocenyl-2-naphthoyl)-L-alanine-glycine ethyl ester(FNLAGEE)

    NASA Astrophysics Data System (ADS)

    Sudhi, Geethu; Rajina, S. R.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Binoy, J.

    2018-05-01

    The reactivity of ester group plays key role in inducing bioactivity of many ferrocenyl biconjugated compounds. The ester reactivity can be explained, based on electron transport mechanism using vibrational spectroscopy, aided by DFT simulation. The FT IR and FT Raman spectral measurements have been carried out for N-(6-ferrocenyl-2-naphthoyl)-L-alanine-glycine ethyl ester (FNLAGEE) and the optimized geometry and vibrational spectra have been computed using DFT method, at B3LYP/LANL2DZ level of theory. The cis conformation of ester and electron transport mechanism, thus analyzed, has been correlated to the geometry and the spectral characteristics of ester. To investigate the bioactivity and binding interactions of the molecule, molecular docking simulations and UV-Vis absorption studies of FNLAGEE with BSA and DNA has been performed.

  5. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okle, Oliver, E-mail: oliver.okle@uni-konstanz.de; Rath, Lisa; Galizia, C. Giovanni

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically availablemore » to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.« less

  6. Lack of Effect of Sodium Benzoate at Reported Clinical Therapeutic Concentration on d-Alanine Metabolism in Dogs.

    PubMed

    Popiolek, Michael; Tierney, Brendan; Steyn, Stefanus J; DeVivo, Michael

    2018-06-19

    Cognitive decline and psychosis have been hypothesized to be mediated by N-methyl-d-aspartate receptor (NMDAR) hypofunction. Consistent with this hypothesis, chronic treatment with d-alanine, a coagonist at the glycine site of the NMDAR, leads to an improvement of positive and cognitive symptoms in schizophrenic patients. d-alanine is oxidized by d-amino acid oxidase (DAAO); thus, an inhibitor of DAAO would be expected to enhance d-alanine levels and likewise lead to desirable clinical outcomes. Sodium benzoate, on the basis of d-amino acid inhibition, was observed to display beneficial clinical effects in schizophrenic and Alzheimer's patients. However, in the clinical pilot studies using sodium benzoate, d-amino acids were not quantified to verify that sodium benzoate's efficacy was mediated through DAAO inhibition. In this study, d-alanine content was monitored in cerebral spinal fluid (CSF) of dogs treated with daily injections of d-alanine (30 mg/kg) alone and in combination with sodium benzoate (30 mg/kg) for seven consecutive days. We reasoned that the cerebral spinal fluid d-alanine quantity is reflective of the brain d-alanine levels and it would increase as a consequence of DAAO inhibition with sodium benzoate. We found that d-alanine treatment lead to maximal concentration of 7.51 μM CSF d-alanine level; however, coadministration of sodium benzoate and d-alanine did not change CSF d-alanine level beyond that of d-alanine treatment alone. As a consequence, we conclude that clinical efficacy associated with chronic administration of sodium benzoate in schizophrenic and Alzheimer's patients is likely not mediated through inhibition of DAAO.

  7. Ability of L-canavanine to support nitrogen metabolism in the jack bean, Canavalia ensiformis (L. ) DC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, G.A.; Berge, M.A.; Ozinskas, A.J.

    The ability of L-canavanine, a nonprotein amino acid of certain leguminous plants, to support the nitrogen metabolism of jack bean, Canavalia ensiformis (Leguminosae), was assessed by administration of L-(guanidino-N{sup 3}-{sup 15}N)arginine, L-(guanidinooxy-N{sup 3}-{sup 15}N)canavanine, or L-(guanidinooxy-N{sup 1}-{sup 15}N)canavanine into the cotyledons of 9-day-old plants. A strikingly similar pattern of {sup 15}N assimilation into de novo synthesized amino and imino acids resulted from feeding L-(guanidino-N{sup 3}-{sup 15}N)arginine and L-(guanidinooxy-N{sup 3}-{sup 15}N)canavanine. Glutamic acid plus glutamine and alanine were the most heavily labeled of the detected compounds. Some transfer of {sup 15}N from L-(gluanidino-N{sup 3}-{sup 15}N)arginine to canavanine was noted. This maymore » occur by a transamidination reaction between L-canaline and L-arginine. L-(guanidinooxy-N{sup 1}-{sup 15}N)Canavanine also supported amino and imino acid biosynthesis in this plant, but much more alanine and less glutamic acid and glutamine were labeled. These experiments provide substantive experimental evidence for the long-reputed hypothesis that canavanine functions as a nitrogen-storing metabolite.« less

  8. A novel C-S lyase from the latex-producing plant Taraxacum brevicorniculatum displays alanine aminotransferase and l-cystine lyase activity.

    PubMed

    Munt, Oliver; Prüfer, Dirk; Schulze Gronover, Christian

    2013-01-01

    We isolated a novel pyridoxal-5-phosphate-dependent l-cystine lyase from the dandelion Taraxacum brevicorniculatum. Real time qPCR analysis showed that C-S lyase from Taraxacum brevicorniculatum (TbCSL) mRNA is expressed in all plant tissues, although at relatively low levels in the latex and pedicel. The 1251 bp TbCSL cDNA encodes a protein with a calculated molecular mass of 46,127 kDa. It is homologous to tyrosine and alanine aminotransferases (AlaATs) as well as to an Arabidopsis thaliana carbon-sulfur lyase (C-S lyase) (SUR1), which has a role in glucosinolate metabolism. TbCSL displayed in vitrol-cystine lyase and AlaAT activities of 4 and 19nkatmg(-1) protein, respectively. However, we detected no in vitro tyrosine aminotransferase (TyrAT) activity and RNAi knockdown of the enzyme had no effect on phenotype, showing that TbCSL substrates might be channeled into redundant pathways. TbCSL is in vivo localized in the cytosol and functions as a C-S lyase or an aminotransferase in planta, but the purified enzyme converts at least two substrates specifically, and can thus be utilized for further in vitro applications. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis.

    PubMed

    Banack, Sandra Anne; Caller, Tracie; Henegan, Patricia; Haney, James; Murby, Amanda; Metcalf, James S; Powell, James; Cox, Paul Alan; Stommel, Elijah

    2015-01-29

    A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association.

  10. The effect of β-N-methylamino-L-alanine (BMAA) on oxidative stress response enzymes of the macrophyte Ceratophyllum demersum.

    PubMed

    Esterhuizen-Londt, M; Pflugmacher, S; Downing, T G

    2011-04-01

    Cyanobacteria are known to produce bioactive secondary metabolites such as hepatotoxins, cytotoxins and neurotoxins. The newly recognized neurotoxin β-N-methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid found in the majority of cyanobacterial genera tested. Evidence that exists for implication of BMAA in neurodegenerative disorders relies on bioaccumulation and biomagnification from symbiotic cyanobacteria. Uptake and accumulation of free BMAA by various non-symbiotic organisms, including aquatic macrophytes, has been documented but to date limited evidence of ecotoxicology exists. We therefore investigated the effect of BMAA on the oxidative stress responses of the macrophyte, Ceratophyllum demersum. Markers for oxidative stress in this study are the antioxidative enzymes superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase and glutathione reductase. We found that BMAA had an inhibitory effect on all the oxidative stress response enzymes tested in plants exposed to BMAA. However enzymes not related to oxidative stress response were not affected by BMAA in in vitro experiments. Binding studies in the presence of BMAA showed reduced enzyme specific activity over time compared to the control. This study shows that BMAA causes oxidative stress indirectly as it inhibits antioxidant enzymes required to combat reactive oxygen species that cause damage to cells. Further investigations are required to fully understand the inhibitory effect of BMAA on these enzymes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Four Weeks of β-alanine Supplementation Improves High-Intensity Game Activities in Water Polo.

    PubMed

    Brisola, Gabriel Motta Pinheiro; de Souza Malta, Elvis; Santiago, Paulo Roberto Pereira; Vieira, Luiz Henrique Palucci; Zagatto, Alessandro Moura

    2018-04-13

    The present study aimed to investigate whether four weeks of β-alanine supplementation improves total distance covered, distance covered and time spent in different speed zones, and sprint numbers during a simulated water polo game. The study design was double-blind, parallel and placebo controlled. Eleven male water polo players participated in the study, divided randomly into two homogeneous groups (placebo and β-alanine groups). The participants performed a simulated water polo game before and after the supplementation period (4 weeks). Participants received 4.8g∙day -1 of dextrose or β-alanine on the first ten days and 6.4g∙day -1 on the final 18 days. Only the β-alanine group presented a significant improvement in total sprint numbers compared to the pre-supplementation moment (PRE=7.8±5.2a.u.; POST=20.2±7.8a.u.; p=.002). Furthermore, β-alanine supplementation presented a likely beneficial effect on improving total distance covered (83%) and total time spent (81%) in zone 4 of speed (i.e., speed≥1.8m∙s -1 ). There was no significant interaction effect (group×time) for any variable. To conclude, four weeks of β-alanine supplementation can slightly improve sprint numbers and had a likely beneficial effect on improving distance covered and time spent in zone 4 of speed in a water polo simulated game.

  12. Implementation of alanine/EPR as transfer dosimetry system in a radiotherapy audit programme in Belgium.

    PubMed

    Schaeken, B; Cuypers, R; Lelie, S; Schroeyers, W; Schreurs, S; Janssens, H; Verellen, D

    2011-04-01

    A measurement procedure based on alanine/electron paramagnetic resonance (EPR) dosimetry was implemented successfully providing simple, stable, and accurate dose-to-water (D(w)) measurements. The correspondence between alanine and ionization chamber measurements in reference conditions was excellent. Alanine/EMR dosimetry might be a valuable alternative to thermoluminescent (TLD) and ionization chamber based measuring procedures in radiotherapy audits. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. dbAMEPNI: a database of alanine mutagenic effects for protein–nucleic acid interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ling; Xiong, Yi; Gao, Hongyun

    Protein–nucleic acid interactions play essential roles in various biological activities such as gene regulation, transcription, DNA repair and DNA packaging. Understanding the effects of amino acid substitutions on protein–nucleic acid binding affinities can help elucidate the molecular mechanism of protein–nucleic acid recognition. Until now, no comprehensive and updated database of quantitative binding data on alanine mutagenic effects for protein–nucleic acid interactions is publicly accessible. Thus, we developed a new database of Alanine Mutagenic Effects for Protein-Nucleic Acid Interactions (dbAMEPNI). dbAMEPNI is a manually curated, literature-derived database, comprising over 577 alanine mutagenic data with experimentally determined binding affinities for protein–nucleic acidmore » complexes. Here, it contains several important parameters, such as dissociation constant (Kd), Gibbs free energy change (ΔΔG), experimental conditions and structural parameters of mutant residues. In addition, the database provides an extended dataset of 282 single alanine mutations with only qualitative data (or descriptive effects) of thermodynamic information.« less

  14. Different β-alanine dimeric forms in trifluoromethanesulfonic acid salts. XRD and vibrational studies.

    PubMed

    Wołoszyn, Łukasz; Ilczyszyn, Maria M

    2018-03-15

    Two new crystalline salts: β-alaninium trifluoromethanesulfonate (β-AlaOTf) and bis(β-alanine) trifluoromethanesulfonate (β-2AlaOTf) were obtained. The former one contains diprotonated β-alanine dimer, the latter one monoprotonated β-alanine dimer. Both compounds were studied by single crystal XRD, vibrational (IR and Raman) spectroscopy and calorimetric method. The quantum-mechanical calculations (DFT/B3LYP/6-311++G(2d,2p)) for the diprotonated dimer were carried out. The β-AlaOTf salt crystallizes in the P1¯ space group of triclinic system (Z=2), the β-2AlaOTf in the P2 1 /m space group of monoclinic system (Z=2). The vibrational data for the studied compounds are discussed in relation to their crystal structure, and provide insight into the character of hydrogen bonds and β-alanine protonation. The studied crystals do not exhibit phase transitions in the solid state. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. dbAMEPNI: a database of alanine mutagenic effects for protein–nucleic acid interactions

    DOE PAGES

    Liu, Ling; Xiong, Yi; Gao, Hongyun; ...

    2018-04-02

    Protein–nucleic acid interactions play essential roles in various biological activities such as gene regulation, transcription, DNA repair and DNA packaging. Understanding the effects of amino acid substitutions on protein–nucleic acid binding affinities can help elucidate the molecular mechanism of protein–nucleic acid recognition. Until now, no comprehensive and updated database of quantitative binding data on alanine mutagenic effects for protein–nucleic acid interactions is publicly accessible. Thus, we developed a new database of Alanine Mutagenic Effects for Protein-Nucleic Acid Interactions (dbAMEPNI). dbAMEPNI is a manually curated, literature-derived database, comprising over 577 alanine mutagenic data with experimentally determined binding affinities for protein–nucleic acidmore » complexes. Here, it contains several important parameters, such as dissociation constant (Kd), Gibbs free energy change (ΔΔG), experimental conditions and structural parameters of mutant residues. In addition, the database provides an extended dataset of 282 single alanine mutations with only qualitative data (or descriptive effects) of thermodynamic information.« less

  16. Combined use of l-alanine tert butyl ester lactate and trimethyl-β-cyclodextrin for the enantiomeric separations of 2-arylpropionic acids nonsteroidal anti-inflammatory drugs.

    PubMed

    Mavroudi, Maria C; Kapnissi-Christodoulou, Constantina P

    2015-10-01

    In this study, a new CE method, employing a binary system of trimethyl-β-CD (TM-β-CD) and a chiral amino acid ester-based ionic liquid (AAIL), was developed for the chiral separation of seven 2-arylpropionic acid nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the enantioseparation of ibuprofen, ketoprofen, carprofen, indoprofen, flurbiprofen, naproxen, and fenoprofen was improved significantly by supporting the BGE with the chiral AAIL l-alanine tert butyl ester lactate (l-AlaC4 Lac). Parameters, such as concentrations of TM-β-CD and l-AlaC4 Lac, and buffer pH, were systematically examined in order to optimize the chiral separation of each NSAID. It was observed that the addition of the AAIL into the BGE improved both resolution and efficiency significantly. After optimization of separation conditions, baseline separation (Rs >1.5) of five of the analytes was achieved in less than 11 min, while the resolution of ibuprofen and flurbiprofen was approximately 1.2. The optimized enantioseparation conditions for all analytes involve a BGE of 5 mM sodium acetate/acetic acid (pH 5.0), an applied voltage of 30 kV, and a temperature of 20°C. In addition, the results obtained by computing the %-RSD values of the EOF and the two enantiomer peaks, demonstrated excellent run-to-run, batch-to-batch, and day-to-day reproducibilities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry

    PubMed Central

    2014-01-01

    Over the last decade the amino acid beta-N-methylamino-L-alanine (BMAA) has come under intense scrutiny. International laboratory and epidemiological research continues to support the hypothesis that environmental exposure to BMAA (e.g., through dietary practices, water supply) can promote the risk of various neurodegenerative diseases. A wide variety of cyanobacteria spp. have previously been reported to produce BMAA, with production levels dependent upon species, strain and environmental conditions. Since spirulina (Arthrospira spp.) is a member of the cyanobacteria phylum frequently consumed via dietary supplements, the presence of BMAA in such products may have public health implications. In the current work, we have analyzed ten spirulina-containing samples for the presence of BMAA; six pure spirulina samples from two separate raw materials suppliers, and four commercially-available multi-ingredient products containing 1.45 g of spirulina per 8.5 g serving. Because of controversy surrounding the measurement of BMAA, we have used two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods: one based on reversed phase LC (RPLC) with derivatization and the other based on hydrophilic interaction LC (HILIC). Potential matrix effects were corrected for by internal standardization using a stable isotope labeled BMAA standard. BMAA was not detected at low limits of detection (80 ng/g dry weight) in any of these product samples. Although these results are reassuring, BMAA analyses should be conducted on a wider sample selection and, perhaps, as part of ongoing spirulina production quality control testing and specifications. PMID:25120905

  18. Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry.

    PubMed

    McCarron, Pearse; Logan, Alan C; Giddings, Sabrina D; Quilliam, Michael A

    2014-01-01

    Over the last decade the amino acid beta-N-methylamino-L-alanine (BMAA) has come under intense scrutiny. International laboratory and epidemiological research continues to support the hypothesis that environmental exposure to BMAA (e.g., through dietary practices, water supply) can promote the risk of various neurodegenerative diseases. A wide variety of cyanobacteria spp. have previously been reported to produce BMAA, with production levels dependent upon species, strain and environmental conditions. Since spirulina (Arthrospira spp.) is a member of the cyanobacteria phylum frequently consumed via dietary supplements, the presence of BMAA in such products may have public health implications. In the current work, we have analyzed ten spirulina-containing samples for the presence of BMAA; six pure spirulina samples from two separate raw materials suppliers, and four commercially-available multi-ingredient products containing 1.45 g of spirulina per 8.5 g serving. Because of controversy surrounding the measurement of BMAA, we have used two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods: one based on reversed phase LC (RPLC) with derivatization and the other based on hydrophilic interaction LC (HILIC). Potential matrix effects were corrected for by internal standardization using a stable isotope labeled BMAA standard. BMAA was not detected at low limits of detection (80 ng/g dry weight) in any of these product samples. Although these results are reassuring, BMAA analyses should be conducted on a wider sample selection and, perhaps, as part of ongoing spirulina production quality control testing and specifications.

  19. Eradication of methicillin resistant S. aureus biofilm by the combined use of fosfomycin and β-chloro-L-alanine.

    PubMed

    Akbari-Ayezloy, Elham; Hosseini-Jazani, Nima; Yousefi, Saber; Habibi, Nazanin

    2017-02-01

    Biofilm formation is an important virulence factor for methicillin-resistant Staphylococcus aureus (MRSA). Fosfomycin is a borad-spectrum antibiotic with inhibitory effects on biofilm production and β-Chloro-L-alanine (β-CLA) is an amino acid analog. The aim of this study was to determine effect of the combination of fosfomycin and β-CLA on biofilm production by MRSA isolates. Also, the clonal relatedness of the isolates was evaluated. To determine the ability of biofilm production by 42 MRSA isolates, microtiter plate method was used. Antibacterial activities of fosfomycin and β-CLA were investigated by determining MICs and MBCs. Antibiofilm activities were measured in the presence of sub-MIC concentrations of fosfomycin, β-CLA or a combination of both. RAPD-PCR was used for investigating the clonal relationship between isolates by the two specific primers. 21.4% of isolates were strong and 5% were moderate biofilm producers. The effect of fosfomycin plus β-CLA treatment on biofilm production was significantly different from non-treated, fosfomycin and β-CLA groups (p=0.00, 0.004 and 0.000 respectively). RAPD-PCR analysis revealed that the RAPD1 primer had more discriminatory power. The Sizes of RAPD-PCR bands ranged from 150 bp to 1500 bp and the number of bands varied from 1 to 13. Clonal relatedness of isolates showed that the majority of biofilm producing isolates had identical pattern and only three isolates showed more than 80% similarity. The combination of fosfomycin and β-CLA could be introduced as an excellent mixture for eradication of MRSA biofilms in vitro.

  20. Co-occurrence of beta-N-methylamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990-2004.

    PubMed

    Metcalf, James S; Banack, Sandra Anne; Lindsay, Jaime; Morrison, Louise F; Cox, Paul Alan; Codd, Geoffrey A

    2008-03-01

    The neurotoxic amino acid, beta-N-methylamino-L-alanine, was found to be present in all of 12 analysed samples of cyanobacterial blooms, scums and mats, which had been collected in seven years between 1990 and 2004 inclusive and stored at -20 degrees C. BMAA identification was by high performance liquid chromatography with fluorescence detection and by triple quadrapole mass spectrometry after derivatization. The samples originated from 11 freshwater lakes and 1 brackish waterbody, used either for drinking water, recreation, or both. BMAA was present at between 8 and 287 microg g(-1) cyanobacterial dry weight and was present as both the free amino acid and associated with precipitated proteins. Ten of the samples contained additional cyanotoxins (including microcystins, anatoxin-a, nodularin and saxitoxin) at the time of sample collection. Five of the samples were associated with animal deaths, attributable at the time of sample collection, to microcystins, nodularin or anatoxin-a. The data demonstrate the presence of BMAA by high performance liquid chromatography and mass spectrometry in a diverse range of cyanobacterial bloom samples from high resource waterbodies. Furthermore, samples collected over several years shows that BMAA can co-occur with other known cyanotoxins in such waterbodies. Health risk assessment of cyanobacterial BMAA in waterbodies is suggested.

  1. Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues.

    PubMed

    McClean, Stephen; Beggs, Louise B; Welch, Robert W

    2014-03-01

    This study evaluated four food-derived peptides with known antihypertensive activities for antimicrobial activity against pathogenic microorganisms, and assessed structure-function relationships using alanine analogues. The peptides (EVSLNSGYY, barley; PGTAVFK, soybean; TTMPLW, α-casein; VHLPP, α-zein) and the six alanine substitution peptides of PGTAVFK were synthesised, characterised and evaluated for antimicrobial activity using the bacteria, Escherichia coli, Staphylococcus aureus, and Micrococcus luteus and the yeast, Candida albicans. The peptides TTMPLW and PGTAVFK inhibited growth of all four microorganisms tested, with activities of a similar order of magnitude to ampicillin and ethanol controls. EVSLNSGYY inhibited the growth of the bacteria, but VHLPP showed no antimicrobial activity. The alanine analogue, PGAAVFK showed the highest overall antimicrobial activity and PGTAVFA showed no activity; overall, the activities of the analogues were consistent with their structures. Some peptides with antihypertensive activity also show antimicrobial activity, suggesting that food-derived peptides may exert beneficial effects via a number of mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria.

    PubMed

    Peng, Bo; Su, Yu-Bin; Li, Hui; Han, Yi; Guo, Chang; Tian, Yao-Mei; Peng, Xuan-Xian

    2015-02-03

    Multidrug-resistant bacteria are an increasingly serious threat to human and animal health. However, novel drugs that can manage infections by multidrug-resistant bacteria have proved elusive. Here we show that glucose and alanine abundances are greatly suppressed in kanamycin-resistant Edwardsiella tarda by GC-MS-based metabolomics. Exogenous alanine or glucose restores susceptibility of multidrug-resistant E. tarda to killing by kanamycin, demonstrating an approach to killing multidrug-resistant bacteria. The mechanism underlying this approach is that exogenous glucose or alanine promotes the TCA cycle by substrate activation, which in turn increases production of NADH and proton motive force and stimulates uptake of antibiotic. Similar results are obtained with other Gram-negative bacteria (Vibrio parahaemolyticus, Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacterium (Staphylococcus aureus), and the results are also reproduced in a mouse model for urinary tract infection. This study establishes a functional metabolomics-based strategy to manage infection by antibiotic-resistant bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Muscle Carnosine Concentration with the Co-Ingestion of Carbohydrate with β-alanine in Male Rats.

    PubMed

    Naderi, Alireza; Sadeghi, Mehdi; Sarshin, Amir; Imanipour, Vahid; Nazeri, Seyed Ali; Farkhayi, Fatemeh; Willems, Mark E T

    2017-07-04

    Muscle carnosine is an intracellular buffer. The intake of β-alanine, combined with carbohydrate and protein, enhanced carnosine loading in human muscle. The aim of the present study was to examine if muscle carnosine loading was enhanced by β-alanine intake and co-ingestion of glucose in male rats. Thirty-six male rats were divided into three groups and supplemented for four weeks: β-alanine (βA group, 1.8% β-alanine in drinking water), β-alanine and glucose (βAGL group, 1.8% β-alanine and 5% glucose in drinking water), and control (C group, drinking water). During the supplementation period, rats were exercised (20 m·min -1 , 10 min·day -1 , 4 days·week -1 for 4 weeks). Muscle carnosine concentration was quantified in soleus (n = 12) and rectus femoris (n = 6) muscles using high-performance liquid chromatography. In soleus muscle, carnosine concentration was 2.24 ± 1.10, 6.12 ± 1.08, and 6.93 ± 2.56 mmol/kg dw for control, βA, and βAGL, respectively. In rectus femoris, carnosine concentration was 2.26 ± 1.31, 7.90 ± 1.66, and 8.59 ± 2.33 mmol/kg dw for control, βA, and βAGL respectively. In each muscle, βA and βAGL resulted in similar carnosine increases compared to the control. In conclusion, β-alanine intake for four weeks, either alone or with glucose co-ingestion, equally increased muscle carnosine content. It appears that the potential insulin response to fluid glucose intake does not affect muscle carnosine loading in male rats.

  4. Identification and elucidation of in vivo function of two alanine racemases from Pseudomonas putida KT2440.

    PubMed

    Duque, Estrella; Daddaoua, Abdelali; Cordero, Baldo F; De la Torre, Jesús; Antonia Molina-Henares, Maria; Ramos, Juan-Luis

    2017-10-01

    The genome of Pseudomonas putida KT2440 contains two open reading frames (ORFs), PP_3722 and PP_5269, that encode proteins with a Pyridoxal phosphate binding motif and a high similarity to alanine racemases. Alanine racemases play a key role in the biosynthesis of D-alanine, a crucial amino acid in the peptidoglycan layer. For these ORFs, we generated single and double mutants and found that inactivation of PP_5269 resulted in D-alanine auxotrophy, while inactivation of PP_3722 did not. Furthermore, as expected, the PP_3722/PP_5269 double mutant was a strict auxotroph for D-alanine. These results indicate that PP_5269 is an alr allele and that it is the essential alanine racemase in P. putida. We observed that the PP_5269 mutant grew very slowly, while the double PP_5269/PP_3722 mutant did not grow at all. This suggests that PP_3722 may replace PP_5269 in vivo. In fact, when the ORF encoding PP_3772 was cloned into a wide host range expression vector, ORF PP_3722 successfully complemented P. putida PP_5269 mutants. We purified both proteins to homogeneity and while they exhibit similar K M values, the V max of PP_5269 is fourfold higher than that of PP_3722. Here, we propose that PP_5269 and PP_3722 encode functional alanine racemases and that these genes be named alr-1 and alr-2 respectively. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. UPLC-ESI-MS/MS method for the quantitative measurement of aliphatic diamines, trimethylamine N-oxide, and β-methylamino-l-alanine in human urine.

    PubMed

    Bhandari, Deepak; Bowman, Brett A; Patel, Anish B; Chambers, David M; De Jesús, Víctor R; Blount, Benjamin C

    2018-04-15

    This work describes a quantitative high-throughput analytical method for the simultaneous measurement of small aliphatic nitrogenous biomarkers, i.e., 1,6-hexamethylenediamine (HDA), isophoronediamine (IPDA), β-methylamino-l-alanine (BMAA), and trimethylamine N-oxide (TMAO), in human urine. Urinary aliphatic diamines, HDA and IPDA, are potential biomarkers of environmental exposure to their corresponding diisocyanates. Urinary BMAA forms as a result of human exposure to blue-green algae contaminated food. And, TMAO is excreted in urine due to the consumption of carnitine- and choline-rich diets. These urinary biomarkers represent classes of small aliphatic nitrogen-containing compounds (N-compounds) that have a high aqueous solubility, low logP, and/or high basic pK a . Because of the highly polar characteristics, analysis of these compounds in complex sample matrices is often challenging. We report on the development of ion-pairing chemistry based ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method for the simultaneous measurement of these biomarkers in human urine. Chromatographic separation was optimized using heptafluorobutyric acid-(HFBA-) based mobile phase and a reversed-phase C18 column. All four analytes were baseline separated within 2.6 min with an overall run time of 5 min per sample injection. Sample preparation involved 4 h of acid hydrolysis followed by automated solid phase extraction (SPE) performed using strong cation exchange sorbent bed with 7 N ammonia solution in methanol as eluent. Limits of detection ranged from 0.05 ng/mL to 1.60 ng/mL. The inter-day and intra-day accuracy were within 10%, and reproducibility within 15%. The method is accurate, fast, and well-suited for biomonitoring studies within targeted groups, as well as larger population-based studies such as the U. S. National Health and Nutrition Examination Survey (NHANES). Published by Elsevier B.V.

  6. A periplasmic D-alanyl-D-alanine dipeptidase in the gram-negative bacterium Salmonella enterica.

    PubMed

    Hilbert, F; García-del Portillo, F; Groisman, E A

    1999-04-01

    The VanX protein is a D-alanyl-D-alanine (D-Ala-D-Ala) dipeptidase essential for resistance to the glycopeptide antibiotic vancomycin. While this enzymatic activity has been typically associated with vancomycin- and teicoplainin-resistant enterococci, we now report the identification of a D-Ala-D-Ala dipeptidase in the gram-negative species Salmonella enterica. The Salmonella enzyme is only 36% identical to VanX but exhibits a similar substrate specificity: it hydrolyzes D-Ala-D-Ala, DL-Ala-DL-Phe, and D-Ala-Gly but not the tripeptides D-Ala-D-Ala-D-Ala and DL-Ala-DL-Lys-Gly or the dipeptides L-Ala-L-Ala, N-acetyl-D-Ala-D-Ala, and L-Leu-Pro. The Salmonella dipeptidase gene, designated pcgL, appears to have been acquired by horizontal gene transfer because pcgL-hybridizing sequences were not detected in related bacterial species and the G+C content of the pcgL-containing region (41%) is much lower than the overall G+C content of the Salmonella chromosome (52%). In contrast to wild-type Salmonella, a pcgL mutant was unable to use D-Ala-D-Ala as a sole carbon source. The pcgL gene conferred D-Ala-D-Ala dipeptidase activity upon Escherichia coli K-12 but did not allow growth on D-Ala-D-Ala. The PcgL protein localizes to the periplasmic space of Salmonella, suggesting that this dipeptidase participates in peptidoglycan metabolism.

  7. Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages.

    PubMed

    Zhang, Lei; Xue, Hong; Gao, Changlu; Carr, Louisa; Wang, Jinnan; Chu, Baocheng; Jiang, Shaoyi

    2010-09-01

    Multifunctional magnetic nanoparticles (MNPs) modified by a zwitterionic polymer (pCBMA-DOPA(2)) containing one poly(carboxybetaine methacrylate) (pCBMA) chain and two 3,4-dihydroxyphenyl-L-alanine (DOPA) residue groups were developed. Results showed that MNPs modified by pCBMA were not only stable in complex media, but also provided abundant functional groups for ligand immobilization. The pCBMA-DOPA(2) MNPs had a hydrodynamic particle size of about 130 nm, a strong saturation magnetization of 110.2 emu/g Fe and a high transverse relaxivity of 428 mM(-1)s(-1). Long-term stability in phosphate-buffered saline (PBS) and 10% NaCl solution was achieved for over six months. Compared to MNPs coated with dextran, pCBMA-DOPA(2) MNPs presented better stability in 100% human blood serum at 37 degrees C. Macrophage cell uptake studies revealed that the uptake ratio of pCBMA-DOPA(2) MNPs was much lower than that of dextran MNPs. Furthermore, quantitative analysis results showed that after pCBMA-DOPA(2) MNPs were conjugated with a targeting RGD peptide, uptake by human umbilical vein endothelial cell (HUVEC) was notably increased, which was further visualized by magnetic resonance imaging (MRI). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. The Association of Alanine Aminotransferase in Early Pregnancy with Gestational Diabetes.

    PubMed

    Yarrington, Christina D; Cantonwine, David E; Seely, Ellen W; McElrath, Thomas F; Zera, Chloe A

    2016-06-01

    Elevated alanine amino transferase, attributed to nonalcoholic fatty liver, is associated with later development of type 2 diabetes mellitus. We sought to determine whether maternal ALT values are associated with subsequent development of gestational diabetes. We performed a nested case-control study utilizing prospectively banked serum samples collected in early gestation. We excluded women with known diabetes, liver disease, or alcohol use. We included 83 cases of gestational diabetes mellitus (GDM) and 247 controls matched for prepregnancy body-mass index (BMI) and compared ALT values. We then performed a conditional logistic regression to model the adjusted odds of GDM in women with ALT ≥19 U/L, stratified by prepregnancy BMI. The median (interquartile range) ALT in cases was 15 (12, 19) IU/L compared to 13 (11, 18) IU/L in controls (P = 0.07). Among women with a prepregnancy BMI <30 kg/m(2), ALT ≥19 U/L was associated with a fourfold increased odds of GDM (adjusted odds ratio [aOR] 4.56 [1.45, 14.27]), while there was no such association among obese women (aOR 0.36 [0.11, 1.20]). Similarly, each unit increase in log-transformed ALT was associated with a threefold increased odds of GDM in nonobese (aOR 3.15 [1.04,9.54]), but not obese (aOR 3.15 [0.30,3.15]) women. The association of high normal ALT and later GDM in nonobese women may reflect the role of hepatic insulin resistance and visceral obesity.

  9. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    PubMed

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.

  10. Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial.

    PubMed

    Smith, Abbie E; Walter, Ashley A; Graef, Jennifer L; Kendall, Kristina L; Moon, Jordan R; Lockwood, Christopher M; Fukuda, David H; Beck, Travis W; Cramer, Joel T; Stout, Jeffrey R

    2009-02-11

    Intermittent bouts of high-intensity exercise result in diminished stores of energy substrates, followed by an accumulation of metabolites, promoting chronic physiological adaptations. In addition, beta-alanine has been accepted has an effective physiological hydrogen ion (H+) buffer. Concurrent high-intensity interval training (HIIT) and beta-alanine supplementation may result in greater adaptations than HIIT alone. The purpose of the current study was to evaluate the effects of combining beta-alanine supplementation with high-intensity interval training (HIIT) on endurance performance and aerobic metabolism in recreationally active college-aged men. Forty-six men (Age: 22.2 +/- 2.7 yrs; Ht: 178.1 +/- 7.4 cm; Wt: 78.7 +/- 11.9; VO2peak: 3.3 +/- 0.59 l.min-1) were assessed for peak O2 utilization (VO2peak), time to fatigue (VO2TTE), ventilatory threshold (VT), and total work done at 110% of pre-training VO2peak (TWD). In a double-blind fashion, all subjects were randomly assigned into one either a placebo (PL - 16.5 g dextrose powder per packet; n = 18) or beta-alanine (BA - 1.5 g beta-alanine plus 15 g dextrose powder per packet; n = 18) group. All subjects supplemented four times per day (total of 6 g/day) for the first 21-days, followed by two times per day (3 g/day) for the subsequent 21 days, and engaged in a total of six weeks of HIIT training consisting of 5-6 bouts of a 2:1 minute cycling work to rest ratio. Significant improvements in VO2peak, VO2TTE, and TWD after three weeks of training were displayed (p < 0.05). Increases in VO2peak, VO2TTE, TWD and lean body mass were only significant for the BA group after the second three weeks of training. The use of HIIT to induce significant aerobic improvements is effective and efficient. Chronic BA supplementation may further enhance HIIT, improving endurance performance and lean body mass.

  11. Probing alanine transaminase catalysis with hyperpolarized 13CD3-pyruvate

    NASA Astrophysics Data System (ADS)

    Barb, A. W.; Hekmatyar, S. K.; Glushka, J. N.; Prestegard, J. H.

    2013-03-01

    Hyperpolarized metabolites offer a tremendous sensitivity advantage (>104 fold) when measuring flux and enzyme activity in living tissues by magnetic resonance methods. These sensitivity gains can also be applied to mechanistic studies that impose time and metabolite concentration limitations. Here we explore the use of hyperpolarization by dissolution dynamic nuclear polarization (DNP) in mechanistic studies of alanine transaminase (ALT), a well-established biomarker of liver disease and cancer that converts pyruvate to alanine using glutamate as a nitrogen donor. A specific deuterated, 13C-enriched analog of pyruvic acid, 13C3D3-pyruvic acid, is demonstrated to have advantages in terms of detection by both direct 13C observation and indirect observation through methyl protons introduced by ALT-catalyzed H-D exchange. Exchange on injecting hyperpolarized 13C3D3-pyruvate into ALT dissolved in buffered 1H2O, combined with an experimental approach to measure proton incorporation, provided information on mechanistic details of transaminase action on a 1.5 s timescale. ALT introduced, on average, 0.8 new protons into the methyl group of the alanine produced, indicating the presence of an off-pathway enamine intermediate. The opportunities for exploiting mechanism-dependent molecular signatures as well as indirect detection of hyperpolarized 13C3-pyruvate and products in imaging applications are discussed.

  12. Unusual Nonterrestrial L-proteinogenic Amino Acid excesses in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Hilts, Robert W.; Herd, D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography with fluorescence detection and time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approximately 43-59%) of the alpha-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha hydrogen protein amino acid, was found to be nearly racemic (D much approximately L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and 1)- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the L-excesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals. Amplification of a small initial L-enantiomer excess during aqueous alteration on the meteorite parent body could have led to the large L-enrichments observed for aspartic acid and other conglomerate amino acids in Tagish Lake. The detection of non terrestrial L-proteinogenic amino acid excesses in the Tagish Lake meteorite provides support for the hypothesis that significant enantiomeric enrichments for some amino acids could form by abiotic processes prior to the emergence of life.

  13. The crystal structure of the D-alanine-D-alanine ligase from Acinetobacter baumannii suggests a flexible conformational change in the central domain before nucleotide binding.

    PubMed

    Huynh, Kim-Hung; Hong, Myoung-ki; Lee, Clarice; Tran, Huyen-Thi; Lee, Sang Hee; Ahn, Yeh-Jin; Cha, Sun-Shin; Kang, Lin-Woo

    2015-11-01

    Acinetobacter baumannii, which is emerging as a multidrug-resistant nosocomial pathogen, causes a number of diseases, including pneumonia, bacteremia, meningitis, and skin infections. With ATP hydrolysis, the D-alanine-D-alanine ligase (DDL) catalyzes the synthesis of D-alanyl-D-alanine, which is an essential component of bacterial peptidoglycan. In this study, we determined the crystal structure of DDL from A. baumannii (AbDDL) at a resolution of 2.2 Å. The asymmetric unit contained six protomers of AbDDL. Five protomers had a closed conformation in the central domain, while one protomer had an open conformation in the central domain. The central domain with an open conformation did not interact with crystallographic symmetry-related protomers and the conformational change of the central domain was not due to crystal packing. The central domain of AbDDL can have an ensemble of the open and closed conformations before the binding of substrate ATP. The conformational change of the central domain is important for the catalytic activity and the detail information will be useful for the development of inhibitors against AbDDL and putative antibacterial agents against A. baumannii. The AbDDL structure was compared with that of other DDLs that were in complex with potent inhibitors and the catalytic activity of AbDDL was confirmed using enzyme kinetics assays.

  14. Enhancing the supply of oxaloacetate for L-glutamate production by pyc overexpression in different Corynebacterium glutamicum.

    PubMed

    Guo, Xuan; Wang, Jing; Xie, Xixian; Xu, Qingyang; Zhang, Chenglin; Chen, Ning

    2013-06-01

    During L-glutamate production, phosphoenolpyruvate carboxylase and pyruvate carboxylase (PCx) play important roles in supplying oxaloacetate to the tricarboxylic acid cycle. To explore the significance of PCx for L-glutamate overproduction, the pyc gene encoding PCx was amplified in Corynebacterium glutamicum GDK-9 triggered by biotin limitation and CN1021 triggered by a temperature shock, respectively. In the fed-batch cultures, GDK-9pXMJ19pyc exhibited 7.4 % lower L-alanine excretion and no improved L-glutamate production. In contrast, CN1021pXMJ19pyc finally exhibited 13 % lower L-alanine excretion and identical L-glutamate production, however, 8.5 % higher L-glutamate production was detected during a short period of the fermentation. It was indicated that pyc overexpression in L-glutamate producer strains, especially CN1021, increased the supply of oxaloacetate for L-glutamate synthesis and decreased byproduct excretion at the pyruvate node.

  15. beta-Alanine elevates dopamine levels in the rat nucleus accumbens: antagonism by strychnine.

    PubMed

    Ericson, Mia; Clarke, Rhona B C; Chau, PeiPei; Adermark, Louise; Söderpalm, Bo

    2010-04-01

    Glycine receptors (GlyRs) in the nucleus accumbens (nAc) have recently been suggested to be involved in the reinforcing and dopamine-elevating properties of ethanol via a neuronal circuitry involving the VTA. Apart from ethanol, both glycine and taurine have the ability to modulate dopamine output via GlyRs in the same brain region. In the present study, we wanted to explore whether yet another endogenous ligand for the GlyR, beta-alanine, had similar effects. To this end, we monitored dopamine in the nAc by means of in vivo microdialysis and found that local perfusion of beta-alanine increased dopamine output. In line with previous observations investigating ethanol, glycine and taurine, the competitive GlyR antagonist strychnine completely blocked the dopamine elevation. The present results suggest that beta-alanine has the ability to modulate dopamine levels in the nAc via strychnine-sensitive GlyRs, and are consistent with previous studies suggesting the importance of this receptor for modulating dopamine output.

  16. Quantitative Analysis of Solid-State Homonuclear Correlation Spectra of Antiparallel β-Sheet Alanine Tetramers.

    PubMed

    Naito, Akira; Okushita, Keiko; Nishimura, Katsuyuki; Boutis, Gregory S; Aoki, Akihiro; Asakura, Tetsuo

    2018-03-15

    Poly-l-alanine (PLA) sequences are a key element in the structure of the crystalline domains of spider dragline silks, wild silkworm silks, antifreeze proteins, and amyloids. To date, no atomic-level structures of antiparallel (AP)-PLA longer than Ala 4 have been reported using the single-crystal X-ray diffraction analysis. In this work, dipolar-assisted rotational resonance solid-state NMR spectra were observed to determine the effective internuclear distances of 13 C uniformly labeled alanine tetramer with antiparallel (AP) β-sheet structure whose atomic coordinates are determined from the X-ray crystallographic analysis. Initial build-up rates, R j, k , were obtained from the build-up curves of the cross peaks by considering the internuclear distances arising in the master equation. Subsequently, experimentally obtained effective internuclear distances, r eff j, k (obs), were compared with the calculated r eff j, k (calc) values obtained from the X-ray crystallographic data. Fairly good correlation between r eff j, k (obs) and r eff j, k (calc) was obtained in the range of 1.0-6.0 Å, with the standard deviation of 0.244 Å, without considering the zero-quantum line-shape functions. It was further noted that the internuclear distances of intermolecular contributions provide details relating to the molecular packing in solid-state samples. Thus, the present data agree well with AP-β-sheet packing but do not agree with P-β-sheet packing.

  17. Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: An overview.

    PubMed

    Oppici, Elisa; Montioli, Riccardo; Cellini, Barbara

    2015-09-01

    Liver peroxisomal alanine:glyoxylate aminotransferase (AGT) (EC 2.6.1.44) catalyses the conversion of l-alanine and glyoxylate to pyruvate and glycine, a reaction that allows glyoxylate detoxification. Inherited mutations on the AGXT gene encoding AGT lead to Primary Hyperoxaluria Type I (PH1), a rare disorder characterized by the deposition of calcium oxalate crystals primarily in the urinary tract. Here we describe the results obtained on the biochemical features of AGT as well as on the molecular and cellular effects of polymorphic and pathogenic mutations. A complex scenario on the molecular pathogenesis of PH1 emerges in which the co-inheritance of polymorphic changes and the condition of homozygosis or compound heterozygosis are two important factors that determine the enzymatic phenotype of PH1 patients. All the reported data represent relevant steps toward the understanding of genotype/phenotype correlations, the prediction of the response of the patients to the available therapies, and the development of new therapeutic approaches. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Beta-Alanine Supplementation Improves Throwing Velocities in Repeated Sprint Ability and 200-m Swimming Performance in Young Water Polo Players.

    PubMed

    Claus, Gabriel Machado; Redkva, Paulo Eduardo; Brisola, Gabriel Mota Pinheiro; Malta, Elvis Sousa; de Araujo Bonetti de Poli, Rodrigo; Miyagi, Willian Eiji; Zagatto, Alessandro Moura

    2017-05-01

    The purpose of this study was to investigate the effects of beta-alanine supplementation on specific tests for water polo. Fifteen young water polo players (16 ± 2 years) underwent a 200-m swimming performance, repeated-sprint ability test (RSA) with free throw (shooting), and 30-s maximal tethered eggbeater kicks. Participants were randomly allocated into two groups (placebo × beta-alanine) and supplemented with 6.4g∙day -1 of beta-alanine or a placebo for six weeks. The mean and total RSA times, the magnitude based inference analysis showed a likely beneficial effect for beta-alanine supplementation (both). The ball velocity measured in the throwing performance after each sprint in the RSA presented a very like beneficial inference in the beta-alanine group for mean (96.4%) and percentage decrement of ball velocity (92.5%, likely beneficial). Furthermore, the percentage change for mean ball velocity was different between groups (beta-alanine=+2.5% and placebo=-3.5%; p = .034). In the 30-s maximal tethered eggbeater kicks the placebo group presented decreased peak force, mean force, and fatigue index, while the beta-alanine group maintained performance in mean force (44.1%, possibly beneficial), only presenting decreases in peak force. The 200-m swimming performance showed a possibly beneficial effect (68.7%). Six weeks of beta-alanine supplementation was effective for improving ball velocity shooting in the RSA, maintaining performance in the 30-s test, and providing possibly beneficial effects in the 200-m swimming performance.

  19. Attenuation of intestinal ischemia-reperfusion-injury by β-alanine: a potentially glycine-receptor mediated effect.

    PubMed

    Brencher, Lisa; Verhaegh, Rabea; Kirsch, Michael

    2017-05-01

    Acute mesenteric ischemia is often caused by embolization of the mesenteric arterial circulation. Coherent intestinal injury due to ischemia and following reperfusion get visible on macroscopic and histologic level. In previous studies, application of glycine caused an ameliorated intestinal damage after ischemia-reperfusion in rats. Because we speculated that glycine acted here as a signal molecule, we investigated whether the glycine-receptor agonist β-alanine evokes the same beneficial effect in intestinal ischemia-reperfusion. β-alanine (10, 30, and 100 mg/kg) was administered intravenously. Ischemia/reperfusion of the small intestine was initiated by occluding and reopening the superior mesenteric artery in rats. After 90 min of ischemia and 120 min of reperfusion, the intestine was analyzed with regard to macroscopic and histologic tissue damage, the activity of the saccharase, and accumulation of macrophages. In addition, systemic parameters and metabolic ones (e.g., acid-base balance, electrolytes, and blood glucose) were measured at certain points in time. All three dosages of β-alanine did not change systemic parameters but prevent from hyponatremia during the period of reperfusion. Most importantly, application of 100-mg β-alanine clearly diminished intestinal tissue damage, getting visible on macroscopic and histologic level. In addition, I/R-mediated decrease of saccharase activity and accumulation of macrophages in the small intestine were ameliorated. The present study demonstrated that β-alanine was a potent agent to ameliorate I/R-induced injury of the small intestine. Due to its diminishing effect on the accumulation of macrophages, β-alanine is strongly expected to mediate its beneficial effect via glycine receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Blood-brain barrier (BBB) toxicity and permeability assessment after L-(4-¹⁰Boronophenyl)alanine, a conventional B-containing drug for boron neutron capture therapy, using an in vitro BBB model.

    PubMed

    Roda, E; Nion, S; Bernocchi, G; Coccini, T

    2014-10-02

    Since brain tumours are the primary candidates for treatment by Boron Neutron Capture Therapy, one major challenge in the selective drug delivery to CNS is the crossing of the blood-brain barrier (BBB). The present pilot study investigated (i) the transport of a conventional B-containing product (i.e., L-(4-(10)Boronophenyl)alanine, L-(10)BPA), already used in medicine but still not fully characterized regarding its CNS interactions, as well as (ii) the effects of the L-(10)BPA on the BBB integrity using an in vitro model, consisting of brain capillary endothelial cells co-cultured with glial cells, closely mimicking the in vivo conditions. The multi-step experimental strategy (i.e. Integrity test, Filter study, Transport assay) checked L-(10)BPA toxicity at 80 µg Boron equivalent/ml, and its ability to cross the BBB, additionally by characterizing the cytoskeletal and TJ's proteins by immunocytochemistry and immunoblotting. In conclusion, a lack of toxic effects of L-(10)BPA was demonstrated, nevertheless accompanied by cellular stress phenomena (e.g. vimentin expression modification), paralleled by a low permeability coefficient (0.39 ± 0.01 × 10(-3)cm min(-1)), corroborating the scarce probability that L-(10)BPA would reach therapeutically effective cerebral concentration. These findings emphasized the need for novel strategies aimed at optimizing boron delivery to brain tumours, trying to ameliorate the compound uptake or developing new targeted products suitable to safely and effectively treat head cancer. Thus, the use of in vitro BBB model for screening studies may provide a useful early safety assessment for new effective compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Enrichment of Non-Terrestrial L-Proteinogenic Amino Acids by Aqueous Alteration on the Tagish Lake Meteorite Parent Body

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Herd, Christopher D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography fluorescence detection time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approx. 43 to 59%) of the a-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha-hydrogen protein amino acid, was found to be nearly racemic (D approx. L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and D- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the Lexcesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals.

  2. (L)-Valine production with minimization of by-products' synthesis in Corynebacterium glutamicum and Brevibacterium flavum.

    PubMed

    Hou, Xiaohu; Chen, Xinde; Zhang, Yue; Qian, He; Zhang, Weiguo

    2012-12-01

    Corynebacterium glutamicum ATCC13032 and Brevibacterium flavum JV16 were engineered for L-valine production by over-expressing ilvEBN ( r ) C genes at 31 °C in 72 h fermentation. Different strategies were carried out to reduce the by-products' accumulation in L-valine fermentation and also to increase the availability of precursor for L-valine biosynthesis. The native promoter of ilvA of C. glutamicum was replaced with a weak promoter MPilvA (P-ilvAM1CG) to reduce the biosynthetic rate of L-isoleucine. Effect of different relative dissolved oxygen on L-valine production and by-products' formation was recorded, indicating that 15 % saturation may be the most appropriate relative dissolved oxygen for L-valine fermentation with almost no L-lactic acid and L-glutamate formed. To minimize L-alanine accumulation, alaT and/or avtA was inactivated in C. glutamicum and B. flavum, respectively. Compared to high concentration of L-alanine accumulated by alaT inactivated strains harboring ilvEBN ( r ) C genes, L-alanine concentration was reduced to 0.18 g/L by C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN ( r ) C, and 0.22 g/L by B. flavum JV16avtA::Cm pDXW-8-ilvEBN ( r ) C. Meanwhile, L-valine production and conversion efficiency were enhanced to 31.15 g/L and 0.173 g/g by C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN ( r ) C, 38.82 g/L and 0.252 g/g by B. flavum JV16avtA::Cm pDXW-8-ilvEBN ( r ) C. This study provides combined strategies to improve L-valine yield by minimization of by-products' production.

  3. Racemic resolution of some DL-amino acids using Aspergillus fumigatus L-amino acid oxidase.

    PubMed

    Singh, Susmita; Gogoi, Binod K; Bezbaruah, Rajib L

    2011-07-01

    The ability of Aspergillus fumigatus L-amino acid oxidase (L-aao) to cause the resolution of racemic mixtures of DL-amino acids was investigated with DL-alanine, DL-phenylalanine, DL-tyrosine, and DL-aspartic acid. A chiral column, Crownpak CR+ was used for the analysis of the amino acids. The enzyme was able to cause the resolution of the three DL-amino acids resulting in the production of optically pure D-alanine (100% resolution), D-phenylalanine (80.2%), and D-tyrosine (84.1%), respectively. The optically pure D-amino acids have many uses and thus can be exploited industrially. This is the first report of the use of A. fumigatus L: -amino acid oxidase for racemic resolution of DL-amino acids.

  4. The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, T., E-mail: schmito@uni-mainz.de; Bassler, N.; Blaickner, M.

    Purpose: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Methods: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particlemore » spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a {sup 60}Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes FLUKA and MCNP. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen and Olsen alanine response model. Results: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields

  5. β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis.

    PubMed

    Saunders, Bryan; Elliott-Sale, Kirsty; Artioli, Guilherme G; Swinton, Paul A; Dolan, Eimear; Roschel, Hamilton; Sale, Craig; Gualano, Bruno

    2017-04-01

    To conduct a systematic review and meta-analysis of the evidence on the effects of β-alanine supplementation on exercise capacity and performance. This study was designed in accordance with PRISMA guidelines. A 3-level mixed effects model was employed to model effect sizes and account for dependencies within data. 3 databases (PubMed, Google Scholar, Web of Science) were searched using a number of terms ('β-alanine' and 'Beta-alanine' combined with 'supplementation', 'exercise', 'training', 'athlete', 'performance' and 'carnosine'). Inclusion/exclusion criteria limited articles to double-blinded, placebo-controlled studies investigating the effects of β-alanine supplementation on an exercise measure. All healthy participant populations were considered, while supplementation protocols were restricted to chronic ingestion. Cross-over designs were excluded due to the long washout period for skeletal muscle carnosine following supplementation. A single outcome measure was extracted for each exercise protocol and converted to effect sizes for meta-analyses. 40 individual studies employing 65 different exercise protocols and totalling 70 exercise measures in 1461 participants were included in the analyses. A significant overall effect size of 0.18 (95% CI 0.08 to 0.28) was shown. Meta-regression demonstrated that exercise duration significantly (p=0.004) moderated effect sizes. Subgroup analyses also identified the type of exercise as a significant (p=0.013) moderator of effect sizes within an exercise time frame of 0.5-10 min with greater effect sizes for exercise capacity (0.4998 (95% CI 0.246 to 0.753)) versus performance (0.1078 (95% CI -0.201 to 0.416)). There was no moderating effect of training status (p=0.559), intermittent or continuous exercise (p=0.436) or total amount of β-alanine ingested (p=0.438). Co-supplementation with sodium bicarbonate resulted in the largest effect size when compared with placebo (0.43 (95% CI 0.22 to 0.64)). β-alanine had a

  6. Disease progression in Chinese chronic hepatitis C patients with persistently normal alanine aminotransaminase levels.

    PubMed

    Hui, C-K; Zhang, H-Y; Shek, T; Yao, H; Yueng, Y-H; Leung, K-W; Lai, S-T; Lai, J-Y; Leung, N; Lau, G K

    2007-06-01

    Although chronic hepatitis C virus-infected patients with persistently normal alanine aminotransaminase levels usually have mild liver disease, disease progression can still occur. However, it is uncertain which group of patients is at risk of disease progression. To examine the severity of liver disease on liver biopsy in Chinese patients with persistently normal alanine aminotransaminase levels, and their disease progression over time. Eighty-two patients with persistently normal alanine aminotransaminase levels were followed up longitudinally. The median time of follow-up was 8.1 years. Forty-seven of the 82 patients (57.3%) had a second liver biopsy. At the time of analysis, six of the 82 patients (7.3%) developed decompensated liver cirrhosis. Patients with an initial fibrosis stage F2 or F3 [6/23 (26.1%) vs. 0/59 (0%), P < 0.0001] or inflammatory grade A2 or A3 [5/40 (12.5%) vs. 1/42 (2.4%), P = 0.04] were more likely to develop decompensated liver cirrhosis. On multivariate analysis, initial fibrosis stage F2 or F3 was independently associated with progression to decompensated liver cirrhosis (relative risk 2.3, 95% confidence interval 0.03-2.5, P = 0.02). Chinese chronic hepatitis C virus patients with persistently normal alanine aminotransaminase levels with moderate to severe fibrosis at initial evaluation are more likely to develop decompensated liver cirrhosis.

  7. l-Valine Production with Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum▿

    PubMed Central

    Blombach, Bastian; Schreiner, Mark E.; Holátko, Jiří; Bartek, Tobias; Oldiges, Marco; Eikmanns, Bernhard J.

    2007-01-01

    Corynebacterium glutamicum was engineered for the production of l-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the l-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum ΔaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, l-alanine, and l-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum ΔaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and l-alanine towards l-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum ΔaceE(pJC4ilvBNCE) produced up to 210 mM l-valine with a volumetric productivity of 10.0 mM h−1 (1.17 g l−1 h−1) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose. PMID:17293513

  8. Liquid chromatographic determination of the cyanobacterial toxin beta-n-methylamino-L-alanine in algae food supplements, freshwater fish, and bottled water.

    PubMed

    Scott, Peter M; Niedzwiadek, Barbara; Rawn, Dorothea F K; Lau, Ben P-Y

    2009-08-01

    Beta-N-Methylamino-L-alanine (BMAA) is a neurotoxin originally found in cycad seeds and now known to be produced by many species of freshwater and marine cyanobacteria. We developed a method for its determination in blue-green algae (BGA) food supplements, freshwater fish, and bottled water by using a strong cation-exchange, solid-phase extraction column for cleanup after 0.3 M trichloroacetic acid extraction of BGA supplements and fish. Bottled water was applied directly onto the solid-phase extraction column. For analysis of carbonated water, sonication and pH adjustment to 1.5 were needed. To determine protein-bound BMAA, the protein pellet left after extraction of the BGA supplement and fish was hydrolyzed by boiling with 6 M hydrochloric acid; BMAA was cleaned up on a C18 column and a strong cation-exchange, solid-phase extraction column. Determination of BMAA was by liquid chromatography of the fluorescent derivative formed with 9-fluorenylmethyl chloroformate. The method was validated by recovery experiments using spiking levels of 1.0 to 10 microg/g for BGA supplements, 0.5 to 5.0 microg/g for fish, and 0.002 microg/g for bottled water; mean recoveries were in the range of 67 to 89% for BGA supplements and fish, and 59 to 92% for bottled water. Recoveries of BMAA from spiked extracts of hydrolyzed protein from BGA supplements and fish ranged from 66 to 83%. The cleanup developed provides a useful method for surveying foods and supplements for BMAA and protein-bound BMAA.

  9. Influence of l-pyroglutamic acid on the color formation process of non-enzymatic browning reactions.

    PubMed

    Wegener, Steffen; Kaufmann, Martin; Kroh, Lothar W

    2017-10-01

    Heating aqueous d-glucose model reactions with l-glutamine and l-alanine yielded similar colored solutions. However, size-exclusion chromatography (SEC) revealed that both non-enzymatic browning reactions proceeded differently. Due to a fast occurring cyclization of l-glutamine to pyroglutamic acid, the typical amino-carbonyl reaction was slowed down. However, l-glutamine and l-alanine model reactions showed the same browning index. Closer investigations could prove that l-pyroglutamic acid was able to influence non-enzymatic browning reactions. SEC analyses of d-glucose model reactions with and without l-pyroglutamic acid revealed an increase of low molecular colored compounds in the presence of l-pyroglutamic acid. Polarimetric measurements showed a doubling of d-glucose mutarotation velocity and HPLC analyses of d-fructose formation during thermal treatment indicated a tripling of aldose-ketose transformation in the presence of l-pyroglutamic acid, which are signs of a faster proceeding non-enzymatic browning process. 2-Pyrrolidone showed no such behavior, thus the additional carboxylic group should be responsible for the observed effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Deficiency in L-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12.

    PubMed

    Zhang, Xiao; El-Hajj, Ziad W; Newman, Elaine

    2010-10-01

    Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes L-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S L-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of L-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C(1) units and interferes with cell wall synthesis. We suggest that at high concentrations, L-serine decreases synthesis of UDP-N-acetylmuramate-L-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high L-serine is overcome in several ways: by a large concentration of L-alanine, by overproducing MurC together with a low concentration of L-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.

  11. Presence of the neurotoxic amino acids beta-N-methylamino-L-alanine (BMAA) and 2,4-diamino-butyric acid (DAB) in shallow springs from the Gobi Desert.

    PubMed

    Craighead, Derek; Metcalf, James S; Banack, Sandra A; Amgalan, Luvsanjamba; Reynolds, Harry V; Batmunkh, Mijiddorj

    2009-01-01

    The Gobi Desert in Mongolia, home to the critically endangered Gobi bear (Ursus arctos isabellinus), has few water resources for the animals that inhabit this environment. The majority of these water resources are shallow, small bodies of water, from approximately 30 cm to 3 m in diameter. Due to the harsh nature of the Gobi Desert environment, such pools of water are crucial resources for wildlife inhabiting the area and little information is currently available on the presence of organisms, including cyanobacteria, and the toxins they produce within these waters. Drinking water sources and small pools within the Gobi Desert were sampled on two separate occasions in October 2008 and April-May 2009. Samples were assessed for the presence of cyanobacteria; subsamples were taken for the analysis of beta-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB). According to LC-MS/MS analyses, both of these neurotoxic amino acids were present in both years and BMAA was present when cyanobacteria were major components of the pools. The results indicate that assessment of cyanotoxins to organisms that live in desert environments is warranted.

  12. Retention of the cyanobacterial neurotoxin beta-N-methylamino-l-alanine in melanin and neuromelanin-containing cells--a possible link between Parkinson-dementia complex and pigmentary retinopathy.

    PubMed

    Karlsson, Oskar; Berg, Cecilia; Brittebo, Eva B; Lindquist, Nils Gunnar

    2009-02-01

    beta-N-methylamino-l-alanine (BMAA), a neurotoxic amino acid produced by cyanobacteria, has been suggested to be involved in the etiology of a neurodegenerative disease complex which includes Parkinson-dementia complex (PDC). In PDC, neuromelanin-containing neurons in substantia nigra are degenerated. Many PDC patients also have an uncommon pigmentary retinopathy. The aim of this study was to investigate the distribution of (3)H-BMAA in mice and frogs, with emphasis on pigment-containing tissues. Using autoradiography, a distinct retention of (3)H-BMAA was observed in melanin-containing tissues such as the eye and neuromelanin-containing neurons in frog brain. Analysis of the binding of (3)H-BMAA to Sepia melanin in vitro demonstrated two apparent binding sites. In vitro-studies with synthetic melanin revealed a stronger interaction of (3)H-BMAA with melanin during synthesis than the binding to preformed melanin. Long-term exposure to BMAA may lead to bioaccumulation in melanin- and neuromelanin-containing cells causing high intracellular levels, and potentially changed melanin characteristics via incorporation of BMAA into the melanin polymer. Interaction of BMAA with melanin may be a possible link between PDC and pigmentary retinopathy.

  13. The effects of beta alanine plus creatine administration on performance during repeated bouts of supramaximal exercise in sedentary men.

    PubMed

    Okudan, N; Belviranli, M; Pepe, H; Gökbel, H

    2015-11-01

    The aim of this study was to investigate the effects of beta alanine and/or creatine supplementation on performance during repeated bouts of supramaximal exercise in sedentary men. Forty-four untrained healthy men (aged 20-22 years, weight: 68-72 kg, height: 174-178 cm) participated in the present study. After performing the Wingate Test (WAnT) for three times in the baseline exercise session, the subjects were assigned to one of four treatment groups randomly: 1) placebo (P; 10 g maltodextrose); 2) creatine (Cr; 5 g creatine plus 5 g maltodextrose); 3) beta-alanine (β-ALA; 1,6 g beta alanine plus 8,4 g maltodextrose); and 4) beta-alanine plus creatine (β-ALA+Cr; 1,6 g beta alanine plus 5 g creatine plus 3,4 g maltodextrose). Participants were given the supplements orally twice a day for 22 consecutive days, then four times a day for the following 6 days. After 28 days, the second exercise session was applied during which peak power (PP) and mean power (MP) were measured and fatigue index (FI) was calculated. PP and MP decreased and FI increased in all groups during exercise before and after the treatment. During the postsupplementation session PP2 and PP3 increased in creatine supplemented group (from 642.7±148.6 to 825.1±205.2 in PP2 and from 522.9±117.5 to 683.0±148.0 in PP3, respectively). However, MP increased in β-ALA+Cr during the postsupplementation compared to presupplementation in all exercise sessions (from 586.2±55.4 to 620.6±49.6 in MP1, from 418.1±37.2 to 478.3±30.3 in MP2 and from 362.0±41.3 to 399.1±3 in MP3, respectively). FI did not change with beta alanine and beta alanine plus creatine supplementation during the postsupplementation exercise session. Beta-alanine and beta alanine plus creatine supplementations have strong performance enhancing effect by increasing mean power and delaying fatigue Index during the repeated WAnT.

  14. Fluorenone based fluorescent probe for selective "turn-on" detection of pyrophosphate and alanine

    NASA Astrophysics Data System (ADS)

    Daniel Thangadurai, T.; Nithya, I.; Manjubaashini, N.; Bhuvanesh, N.; Bharathi, G.; Nandhakumar, R.; Nataraj, D.

    2018-06-01

    To sense biologically important entities with different size and dimensions, a fluorenone based fluorescent receptor was designed and synthesized. Probe 1 displayed a distinct fluorescence enhancement emission at 565 nm for pyrophosphate and 530 nm for alanine in polar solvent. The fluorescence titration experiments confirm 1:1 stoichiometric ratio with high-binding constant and very low limit of detection (LoD) values. Receptor 1 showed a highly selective and sensitive recognition to HP2O73 - and to alanine over other competitive anions and amino acids. In addition, the fluorescence lifetime measurement and reversible binding study results support the practical importance of 1.

  15. Alanine scan of the peptide antibiotic feglymycin: assessment of amino acid side chains contributing to antimicrobial activity.

    PubMed

    Hänchen, Anne; Rausch, Saskia; Landmann, Benjamin; Toti, Luigi; Nusser, Antje; Süssmuth, Roderich D

    2013-03-18

    The antibiotic feglymycin is a linear 13-mer peptide synthesized by the bacterium Streptomyces sp. DSM 11171. It mainly consists of the nonproteinogenic amino acids 4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine. An alanine scan of feglymycin was performed by solution-phase peptide synthesis in order to assess the significance of individual amino acid side chains for biological activity. Hence, 13 peptides were synthesized from di- and tripeptide building blocks, and subsequently tested for antibacterial activity against Staphylococcus aureus strains. Furthermore we tested the inhibition of peptidoglycan biosynthesis enzymes MurA and MurC, which are inhibited by feglymycin. Whereas the antibacterial activity is significantly based on the three amino acids D-Hpg1, L-Hpg5, and L-Phe12, the inhibitory activity against MurA and MurC depends mainly on L-Asp13. The difference in the position dependence for antibacterial activity and enzyme inhibition suggests multiple molecular targets in the modes of action of feglymycin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thermal Condensation of Glycine and Alanine on Metal Ferrite Surface: Primitive Peptide Bond Formation Scenario.

    PubMed

    Iqubal, Md Asif; Sharma, Rachana; Jheeta, Sohan; Kamaluddin

    2017-03-27

    The amino acid condensation reaction on a heterogeneous mineral surface has been regarded as one of the important pathways for peptide bond formation. Keeping this in view, we have studied the oligomerization of the simple amino acids, glycine and alanine, on nickel ferrite (NiFe₂O₄), cobalt ferrite (CoFe₂O₄), copper ferrite (CuFe₂O₄), zinc ferrite (ZnFe₂O₄), and manganese ferrite (MnFe₂O₄) nanoparticles surfaces, in the temperature range from 50-120 °C for 1-35 days, without applying any wetting/drying cycles. Among the metal ferrites tested for their catalytic activity, NiFe₂O₄ produced the highest yield of products by oligomerizing glycine to the trimer level and alanine to the dimer level, whereas MnFe₂O₄ was the least efficient catalyst, producing the lowest yield of products, as well as shorter oligomers of amino acids under the same set of experimental conditions. It produced primarily diketopiperazine (Ala) with a trace amount of alanine dimer from alanine condensation, while glycine was oligomerized to the dimer level. The trend in product formation is in accordance with the surface area of the minerals used. A temperature as low as 50 °C can even favor peptide bond formation in the present study, which is important in the sense that the condensation process is highly feasible without any sort of localized heat that may originate from volcanoes or hydrothermal vents. However, at a high temperature of 120 °C, anhydrides of glycine and alanine formation are favored, while the optimum temperature for the highest yield of product formation was found to be 90 °C.

  17. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  18. Ammonia assimilation and synthesis of alanine, aspartate, and glutamate in Methanosarcina barkeri and Methanobacterium thermoautotrophicum.

    PubMed Central

    Kenealy, W R; Thompson, T E; Schubert, K R; Zeikus, J G

    1982-01-01

    The mechanism of ammonia assimilation in Methanosarcina barkeri and Methanobacterium thermoautotrophicum was documented by analysis of enzyme activities, 13NH3 incorporation studies, and comparison of growth and enzyme activity levels in continuous culture. Glutamate accounted for 65 and 52% of the total amino acids in the soluble pools of M. barkeri and M. thermoautotrophicum. Both organisms contained significant activities of glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase, and glutamate pyruvate transaminase. Hydrogen-reduced deazaflavin-factor 420 or flavin mononucleotide but not NAD, NADP, or ferredoxin was used as the electron donor for glutamate synthase in M. barkeri. Glutamate dehydrogenase activity was not detected in either organism, but alanine dehydrogenase activity was present in M. thermoautotrophicum. The in vivo activity of the glutamine synthetase was verified in M. thermoautotrophicum by analysis of 13NH3 incorporation into glutamine, glutamate, and alanine. Alanine dehydrogenase and glutamine synthetase activity varied in response to [NH4+] when M. thermoautotrophicum was cultured in a chemostat with cysteine as the sulfur source. Alanine dehydrogenase activity and growth yield (grams of cells/mole of methane) were highest when the organism was cultured with excess ammonia, whereas growth yield was lower and glutamine synthetase was maximal when ammonia was limiting. PMID:6122678

  19. Factors associated with elevated serum alanine aminotransferase in patients with type 1 diabetes mellitus.

    PubMed

    Hatanaka, S A; Silva, N O; Colombo, B S; Correa, C G; Alcaire, B P; Coral, M H; Schiavon, L L; Narciso-Schiavon, J L

    2015-09-01

    Metabolic syndrome and type 2 diabetes are associated with insulin resistance and hepatic steatosis, which are common causes of alanine aminotransferase (ALT) elevation. This study aims to identify variables associated with altered ALT in type 1 diabetic (DM1) subjects. A cross-sectional study conducted in the outpatient endocrinology clinic of a university hospital. Patients with DM1 were seen between December 2012 and September 2013; clinical variables were collected from medical records. Fifty-six patients were included aged 27 ± 10.1 years; 60.7% were men. The study subjects exhibited an average ALT of 36.7 ± 10.3 U/L (median = 35 U/L) and their average Body Mass Index (BMI) was 23.8 ± 3.8 kg/m2. When comparing individuals with elevated ALT > 35 U/L (N. = 27) with those ALT ≤ 35 U/L (N. = 29), we found that individuals with ALT values > 35 U/L showed a higher proportion of men (77.8% vs. 44.8%, P = 0.012) and a higher mean age (30.2 ± 12.3 vs. 24.6 ± 6.9 years, P = 0.046). When new ALT reference values were applied (19 U/L for women and 30 U/L for men), five individuals had normal ALT values. Individuals with elevated ALT had higher BMI (24.3 vs. 20.9; P = 0.036), fasting glucose (194.8 ± 101.2 vs. 123.6 ± 42.0 mg/dL; P = 0.013) and higher HbA1c (9.9 ± 2.8 vs. 7.8 ± 0.7%; P < 0.001) levels. In Pearson correlation analysis, ALT values ​correlated with HbA1c (r = 0.285; P = 0.033). In patients with DM1, elevated ALT values ​​are associated with BMI, fasting glucose and HbA1c.

  20. SU-E-T-608: Perturbation Corrections for Alanine Dosimeters in Different Phantom Materials in High-Energy Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigts-Rhetz, P von; Czarnecki, D; Anton, M

    Purpose: Alanine dosimeters are often used for in-vivo dosimetry purposes in radiation therapy. In a Monte Carlo study the influence of 20 different surrounding/phantom materials for alanine dosimeters was investigated. The investigations were performed in high-energy photon beams, covering the whole range from {sup 60}Co up to 25 MV-X. The aim of the study is the introduction of a perturbation correction k{sub env} for alanine dosimeters accounting for the environmental material. Methods: The influence of different surrounding materials on the response of alanine dosimeters was investigated with Monte Carlo simulations using the EGSnrc code. The photon source was adapted withmore » BEAMnrc to a {sup 60}Co unit and an Elekta (E{sub nom}=6, 10, 25 MV-X) linear accelerator. Different tissue-equivalent materials ranging from cortical bone to lung were investigated. In addition to available phantom materials, some material compositions were taken and scaled to different electron densities. The depth of the alanine detectors within the different phantom materials corresponds to 5 cm depth in water, i.e. the depth is scaled according to the electron density (n{sub e}/n{sub e,w}) of the corresponding phantom material. The dose was scored within the detector volume once for an alanine/paraffin mixture and once for a liquid water voxel. The relative response, the ratio of the absorbed dose to alanine to the absorbed dose to water, was calculated and compared to the corresponding ratio under reference conditions. Results: For each beam quality the relative response r and the correction factor for the environment kenv was calculated. k{sub env}=0.9991+0.0049 *((n{sub e}/n{sub e,w})−0.7659){sup 3} Conclusion: A perturbation correction factor k{sub env} accounting for the phantom environment has been introduced. The response of the alanine dosimeter can be considered independent of the surrounding material for relative electron densities (n{sub e}/n{sub e,w}) between 1 and

  1. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase.

    PubMed

    Santana, A; Salido, E; Torres, A; Shapiro, L J

    2003-06-10

    Primary hyperoxaluria type 1 (PH1) is an inborn error of metabolism resulting from a deficiency of alanine:glyoxylate aminotransferase (AGXT; EC 2.6.1.44). Most of the PH1 alleles detected in the Canary Islands carry the Ile-244 --> Thr (I244T) mutation in the AGXT gene, with 14 of 16 patients homozygous for this mutation. Four polymorphisms within AGXT and regional microsatellites also were shared in their haplotypes (AGXT*LTM), consistent with a founder effect. The consequences of these amino acid changes were investigated. Although I244T alone did not affect AGXT activity or subcellular localization, when present in the same protein molecule as Leu-11 --> Pro (L11P), it resulted in loss of enzymatic activity in soluble cell extracts. Like its normal counterpart, the AGXT*LTM protein was present in the peroxisomes but it was insoluble in detergent-free buffers. The polymorphism L11P behaved as an intragenic modifier of the I244T mutation, with the resulting protein undergoing stable interaction with molecular chaperones and aggregation. This aggregation was temperature-sensitive. AGXT*LTM expressed in Escherichia coli, as a GST-fusion protein, and in insect cells could be purified and retained enzymatic activity. Among various chemical chaperones tested in cell culture, betaine substantially improved the solubility of the mutant protein and the enzymatic activity in cell lysates. In summary, I244T, the second most common mutation responsible for PH1, is a protein conformational disease that may benefit from new therapies with pharmacological chaperones or small molecules to minimize protein aggregation.

  2. Deficiency in l-Serine Deaminase Interferes with One-Carbon Metabolism and Cell Wall Synthesis in Escherichia coli K-12▿

    PubMed Central

    Zhang, Xiao; El-Hajj, Ziad W.; Newman, Elaine

    2010-01-01

    Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes l-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S l-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of l-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C1 units and interferes with cell wall synthesis. We suggest that at high concentrations, l-serine decreases synthesis of UDP-N-acetylmuramate-l-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high l-serine is overcome in several ways: by a large concentration of l-alanine, by overproducing MurC together with a low concentration of l-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide. PMID:20729359

  3. β-alanine supplementation improves tactical performance but not cognitive function in combat soldiers

    PubMed Central

    2014-01-01

    Background There are no known studies that have examined β-alanine supplementation in military personnel. Considering the physiological and potential neurological effects that have been reported during sustained military operations, it appears that β-alanine supplementation may have a potential benefit in maintaining physical and cognitive performance during high-intensity military activity under stressful conditions. The purpose of this study was to examine the effect of 28 days of β-alanine ingestion in military personnel while fatigued on physical and cognitive performance. Methods Twenty soldiers (20.1 ± 0.9 years) from an elite combat unit were randomly assigned to either a β-alanine (BA) or placebo (PL) group. Soldiers were involved in advanced military training, including combat skill development, navigational training, self-defense/hand-to-hand combat and conditioning. All participants performed a 4-km run, 5-countermovement jumps using a linear position transducer, 120-m sprint, a 10-shot shooting protocol with assault rifle, including overcoming a misfire, and a 2-min serial subtraction test to assess cognitive function before (Pre) and after (Post) 28 days of supplementation. Results The training routine resulted in significant increases in 4-km run time for both groups, but no between group differences were seen (p = 0.597). Peak jump power at Post was greater for BA than PL (p = 0.034), while mean jump power for BA at Post was 10.2% greater (p = 0.139) than PL. BA had a significantly greater (p = 0.012) number of shots on target at Post (8.2 ± 1.0) than PL (6.5 ± 2.1), and their target engagement speed at Post was also significantly faster (p = 0.039). No difference in serial subtraction performance was seen between the groups (p = 0.844). Conclusion Results of this study indicate that 4-weeks of β-alanine ingestion in young, healthy soldiers did not impact cognitive performance, but did enhance power

  4. Thermal Condensation of Glycine and Alanine on Metal Ferrite Surface: Primitive Peptide Bond Formation Scenario

    PubMed Central

    Iqubal, Md. Asif; Sharma, Rachana; Jheeta, Sohan; Kamaluddin

    2017-01-01

    The amino acid condensation reaction on a heterogeneous mineral surface has been regarded as one of the important pathways for peptide bond formation. Keeping this in view, we have studied the oligomerization of the simple amino acids, glycine and alanine, on nickel ferrite (NiFe2O4), cobalt ferrite (CoFe2O4), copper ferrite (CuFe2O4), zinc ferrite (ZnFe2O4), and manganese ferrite (MnFe2O4) nanoparticles surfaces, in the temperature range from 50–120 °C for 1–35 days, without applying any wetting/drying cycles. Among the metal ferrites tested for their catalytic activity, NiFe2O4 produced the highest yield of products by oligomerizing glycine to the trimer level and alanine to the dimer level, whereas MnFe2O4 was the least efficient catalyst, producing the lowest yield of products, as well as shorter oligomers of amino acids under the same set of experimental conditions. It produced primarily diketopiperazine (Ala) with a trace amount of alanine dimer from alanine condensation, while glycine was oligomerized to the dimer level. The trend in product formation is in accordance with the surface area of the minerals used. A temperature as low as 50 °C can even favor peptide bond formation in the present study, which is important in the sense that the condensation process is highly feasible without any sort of localized heat that may originate from volcanoes or hydrothermal vents. However, at a high temperature of 120 °C, anhydrides of glycine and alanine formation are favored, while the optimum temperature for the highest yield of product formation was found to be 90 °C. PMID:28346388

  5. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean [Chanhassen, MN; Liao, Hans H [Eden Prairie, MN; Gort, Steven John [Apple Valley, MN; Selifonova, Olga V [Plymouth, MN

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  6. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  7. Effects of Beta-Alanine Supplementation on Brain Homocarnosine/Carnosine Signal and Cognitive Function: An Exploratory Study

    PubMed Central

    Hobson, Ruth M; Artioli, Guilherme G.; Otaduy, Maria C.; Roschel, Hamilton; Robertson, Jacques; Martin, Daniel; S. Painelli, Vitor; Harris, Roger C.; Gualano, Bruno

    2015-01-01

    Objectives Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P<0.05), although there was no effect (P>0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists. PMID:25875297

  8. Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study.

    PubMed

    Solis, Marina Yazigi; Cooper, Simon; Hobson, Ruth M; Artioli, Guilherme G; Otaduy, Maria C; Roschel, Hamilton; Robertson, Jacques; Martin, Daniel; S Painelli, Vitor; Harris, Roger C; Gualano, Bruno; Sale, Craig

    2015-01-01

    Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d(-1) on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P < 0.05), although there was no effect (P>0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. 28 d of beta-alanine supplementation at 6.4 g d(-1) appeared not to influence brain homocarnosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists.

  9. Naturally Inspired Peptide Leads: Alanine Scanning Reveals an Actin‐Targeting Thiazole Analogue of Bisebromoamide

    PubMed Central

    Johnston, Heather J.; Boys, Sarah K.; Makda, Ashraff; Carragher, Neil O.

    2016-01-01

    Abstract Systematic alanine scanning of the linear peptide bisebromoamide (BBA), isolated from a marine cyanobacterium, was enabled by solid‐phase peptide synthesis of thiazole analogues. The analogues have comparable cytotoxicity (nanomolar) to that of BBA, and cellular morphology assays indicated that they target the actin cytoskeleton. Pathway inhibition in human colon tumour (HCT116) cells was explored by reverse phase protein array (RPPA) analysis, which showed a dose‐dependent response in IRS‐1 expression. Alanine scanning reveals a structural dependence to the cytotoxicity, actin targeting and pathway inhibition, and allows a new readily synthesised lead to be proposed. PMID:27304907

  10. Primary hyperoxaluria type 1 in the Canary Islands: A conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase

    PubMed Central

    Santana, A.; Salido, E.; Torres, A.; Shapiro, L. J.

    2003-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of metabolism resulting from a deficiency of alanine:glyoxylate aminotransferase (AGXT; EC 2.6.1.44). Most of the PH1 alleles detected in the Canary Islands carry the Ile-244 → Thr (I244T) mutation in the AGXT gene, with 14 of 16 patients homozygous for this mutation. Four polymorphisms within AGXT and regional microsatellites also were shared in their haplotypes (AGXT*LTM), consistent with a founder effect. The consequences of these amino acid changes were investigated. Although I244T alone did not affect AGXT activity or subcellular localization, when present in the same protein molecule as Leu-11 → Pro (L11P), it resulted in loss of enzymatic activity in soluble cell extracts. Like its normal counterpart, the AGXT*LTM protein was present in the peroxisomes but it was insoluble in detergent-free buffers. The polymorphism L11P behaved as an intragenic modifier of the I244T mutation, with the resulting protein undergoing stable interaction with molecular chaperones and aggregation. This aggregation was temperature-sensitive. AGXT*LTM expressed in Escherichia coli, as a GST-fusion protein, and in insect cells could be purified and retained enzymatic activity. Among various chemical chaperones tested in cell culture, betaine substantially improved the solubility of the mutant protein and the enzymatic activity in cell lysates. In summary, I244T, the second most common mutation responsible for PH1, is a protein conformational disease that may benefit from new therapies with pharmacological chaperones or small molecules to minimize protein aggregation. PMID:12777626

  11. Effects of 4 Weeks of β-Alanine Supplementation on Swim-Performance Parameters in Water Polo Players.

    PubMed

    Brisola, Gabriel Motta Pinheiro; Milioni, Fabio; Papoti, Marcelo; Zagatto, Alessandro Moura

    2017-08-01

    In water polo, several high-intensity efforts are performed, leading to the fatigue process due to accumulation of hydrogen ions, and thus β-alanine supplementation could be an efficient strategy to increase the intramuscular acid buffer. Purpose To investigate whether 4 wk of β-alanine supplementation enhances parameters related to water polo performance. Methods Twenty-two highly trained male water polo players of national level were randomly assigned to receive 28 d of either β-alanine or a placebo (4.8 g/d of the supplement in the first 10 d and 6.4 g/d in the final 18 d). The participants performed 30-s maximal tethered swimming (30TS), 200-m swimming (P200m), and 30-s crossbar jumps (30CJ) before and after the supplementation period. Results The β-alanine group presented significant increases in 30TS for mean force (P = .04; Δ = 30.5% ± 40.4%) and integral of force (P = .05; Δ = 28.0% ± 38.0%), as well as P200m (P = .05; Δ = -2.2% ± 2.6%), while the placebo group did not significantly differ for mean force (P = .13; Δ = 24.1% ± 33.7%), integral of force (P = .12; Δ = 24.3% ± 35.1%), or P200m (P = .10; Δ = -1.6% ± 3.8%). However, there was no significant group effect for any variable, and the magnitude-based-inference analysis showed unclear outcomes between groups (Cohen d ± 95%CL mean force = 0.16 ± 0.83, integral of force = 0.12 ± 0.84, and P200m = 0.05 ± 0.30). For 30CJ the results were similar, with improvements in both groups (placebo, Δ = 14.9% ± 14.1%; β-alanine, Δ = 16.9% ± 18.5%) but with no significant interaction effect between groups and an unclear effect (0.14 ± 0.75). Conclusion Four weeks of β-alanine supplementation does not substantially improve performance of 30TS, P200m, or 30CJ in highly trained water polo athletes compared with a control group.

  12. [Alanine aminotransferase (ALAT, GPT): a reevaluation of exclusion limits for blood donors].

    PubMed

    Grunenberg, R; Banik, N; Krüger, J

    1995-06-01

    The screening policy of alanine aminotransferase (ALT) testing in blood donors was reassessed. The cutoff value for ALT levels according to German guidelines has always been controversial. In this study the activity and distribution of ALT in a blood donor population were reevaluated and new exclusion levels were defined. 5,706 blood donors were tested for ALT activities with the Reflotron system at 37 degrees C. Donors with ALT levels > 51 IU/l were deferred, a detailed physical examination and additional serologic and biochemical testing were done. ALT values of blood donors were transformed in logarithmic values in order to get a Gaussian distribution. The mean transformed value +/- SD was calculated with 1.24 +/- 0.14 for females and with 1.35 +/- 0.16 for males, corresponding to mean values of ALT activity of 17.6 and 22.5 IU/l, respectively. Exclusion levels of > 33.4 IU/l for female and > 46.7 IU/l for male blood donors (geometric mean +2.0 SD) predict a loss of donations of 2.8 and 2.7%, respectively, cutoff values of > 39.1 or > 56.1 IU/l (geometric mean +2.5 SD) a loss of 1.8 and 1.4%, respectively. The most likely causes of elevated ALT levels in 166 of our donors included daily alcohol use (82), infections with/without antibiotic medication (29), therapy with hepatotoxic drugs (8), strenuous exercises (5), bodybuilding complemented by anabolic steroids (2), acute infections with HCV (1), HBV (1) and CMV (1), alcohol/drug abuse and detection of HCV antibodies (1). ALT screening is still considered a useful indicator of risk donors despite its nonspecificity and limited predictive value. The selection of the appropriate cutoff value has always been disputed. The present exclusion level of > 45 IU/l (25 degrees C), analogous to > 81.8 IU/l (37 degrees C), does not even take into account such a variable as sex. The cutoff value above 4.5 SD of the geometric mean for females and above 3.5 SD for males seems to be of limited medical and practical value.

  13. GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2014-11-01

    GMXPBSA 2.0 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes. GMXPBSA 2.0 is flexible and can easily be customized to specific needs. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.0 performs different comparative analysis, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complexes trajectories, allowing the study the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS and the Poisson-Boltzmann equation solver APBS. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the calculation by dividing frames across the available processors. The program is freely available under the GPL license.

  14. Association between alanine aminotransferase and intracerebral hemorrhage in East Asian populations.

    PubMed

    Kim, Hyeon Chang; Oh, Sun Min; Pan, Wen-Harn; Ueshima, Hirotsugu; Gu, Dongfeng; Chuang, Shao-Yuan; Fujiyoshi, Akira; Li, Ying; Zhao, Liancheng; Suh, Il

    2013-01-01

    Intracerebral hemorrhage (ICH) and chronic liver disease are relatively common in East Asian countries. However, the relationship between the two diseases is unclear. Thus, we investigated the association between serum alanine aminotransferase (ALT) levels and ICH risk in East Asian populations. The East Asian Network for Stroke Prevention enrolled 279,982 participants with ALT measurements from four cohort studies in Korea, Taiwan, Japan and mainland China. Among them, 1,324 ICH events and 493 ICH deaths were observed. Cox's proportional hazard regression analysis was performed in each cohort to estimate the hazard ratio (HR) after adjusting for age, blood pressure, diabetes, total cholesterol, smoking and alcohol intake. Combined HRs were then estimated using pooled analyses with fixed-effects models. The multivariate-adjusted pooled HRs (with 95% confidence interval, CI) for ICH incidence per 10 IU/l increments of ALT were 1.04 (1.03-1.04) in men and 1.01 (0.98-1.04) in women. Corresponding HRs for ICH mortality were 1.04 (1.02-1.05) in men and 1.04 (1.00-1.08) in women. The pooled HRs for ICH incidence in participants with ALT levels greater than or equal to 50 IU/l compared to those with levels less than 20 IU/l were 1.74 (1.41-2.16) in men and 1.60 (1.06-2.40) in women. The corresponding HRs for ICH mortality were 1.72 (1.21-2.44) in men and 1.63 (0.79-3.36) in women. An elevated ALT level was independently and significantly associated with an increased risk of ICH in East Asian men, but the association was less prominent in women. © 2013 S. Karger AG, Basel.

  15. Assessing microbial utilization of free versus sorbed Alanine by using position-specific 13C labeling and 13C-PLFA analysis

    NASA Astrophysics Data System (ADS)

    Herschbach, Jennifer; Apostel, Carolin; Spielvogel, Sandra; Kuzyakov, Yakov; Dippold, Michaela

    2016-04-01

    Microbial utilization is a key transformation process of soil organic matter (SOM). Sorption of low molecular weight organic substances (LMWOS) to soil mineral surfaces blocks or delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil science, combined with 13C-phospholipid fatty acid (PLFA) analysis, to assess microbial utilization of sorbed and non-sorbed Alanine in soil. Alanine has various functional groups enabling different sorption mechanisms via its positive charge (e.g. to clay minerals by cation exchange), as well as via its negative charge (e.g. to iron oxides by ligand exchange). To assess changes in the transformation pathways caused by sorption, we added uniformly and position-specifically 13C and 14C labeled Alanine to the Ap of a loamy Luvisol in a short-term (10 days) incubation experiment. To allow for sorption of the tracer solution to an aliquot of this soil, microbial activity was minimized in this subsample by sterilizing the soil by γ-radiation. After shaking, the remaining solutions were filtered and the non-sorbed Alanine was removed with Millipore water and then added to non-sterilized soil. For the free Alanine treatment, solutions with Alanine of similar amount and isotopic composition were prepared, added to the soil and incubated as well. The respired CO2 was trapped in NaOH and its 14C-activity was determined at increasing times intervals. Microbial utilization of Alanine's individual C positions was evaluated in distinct microbial groups classified by 13C-PLFA analysis. Sorption to soil minerals delayed respiration to CO2 and reduced initial respiration rate by 80%. Irrespective of sorption, the highest amount was respired from the carboxylic position (C-1), whereas the amino-bound (C-2) and the methylic position (C-3) were preferentially incorporated into PLFA of microorganisms due to the

  16. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  17. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  18. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  19. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  20. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  1. Enzymatic production of L-alanyl-L-glutamine by recombinant E. coli expressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis.

    PubMed

    Hirao, Yoshinori; Mihara, Yasuhiro; Kira, Ikuo; Abe, Isao; Yokozeki, Kenzo

    2013-01-01

    An enzymatic production method for synthesizing L-alanyl-L-glutamine (Ala-Gln) from L-alanine methyl ester hydrochloride (AlaOMe) and L-glutamine (Gln) was developed in this study. The cultivation conditions for an Escherichia coli strain overexpressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis AJ 2458 (SAET) and reaction conditions for Ala-Gln production were optimized. A high cell density culture broth prepared by fed-batch cultivation showed 440 units/mL of Ala-Gln-producing activity. In addition, an Ala-Gln-producing reaction using intact E. coli cells overexpressing SAET under optimum conditions was conducted. A total Ala-Gln yield of 69.7 g/L was produced in 40 min. The molar yield was 67% against both AlaOMe and Gln.

  2. Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli.

    PubMed

    Bouhss, A; Mengin-Lecreulx, D; Blanot, D; van Heijenoort, J; Parquet, C

    1997-09-30

    The comparison of the amino acid sequences of 20 cytoplasmic peptidoglycan synthetases (MurC, MurD, MurE, MurF, and Mpl) from various bacterial organisms has allowed us to detect common invariants: seven amino acids and the ATP-binding consensus sequence GXXGKT/S all at the same position in the alignment. The Mur synthetases thus appeared as a well-defined class of closely functionally related proteins. The conservation of a constant backbone length between certain invariants suggested common structural motifs. Among the other enzymes catalyzing a peptide bond formation driven by ATP hydrolysis to ADP and Pi, only folylpoly-gamma-l-glutamate synthetases presented the same common conserved amino acid residues, except for the most N-terminal invariant D50. Site-directed mutageneses were carried out to replace the K130, E174, H199, N293, N296, R327, and D351 residues by alanine in the MurC protein from Escherichia coli taken as model. For this purpose, plasmid pAM1005 was used as template, MurC being highly overproduced in this genetic setting. Analysis of the Vmax values of the mutated proteins suggested that residues K130, E174, and D351 are essential for the catalytic process whereas residues H199, N293, N296, and R327 were not. Mutations K130A, H199A, N293A, N296A, and R327A led to important variations of the Km values for one or more substrates, thereby indicating that these residues are involved in the structure of the active site and suggesting that the binding order of the substrates could be ATP, UDP-MurNAc, and alanine. The various mutated murC plasmids were tested for their effects on the growth, cell morphology, and peptidoglycan cell content of a murC thermosensitive strain at 42 degrees C. The observed effects (complementation, altered morphology, and reduced peptidoglycan content) paralleled more or less the decreased values of the MurC activity of each mutant.

  3. The effect of a high protein diet on leucine and alanine turnover in acid maltase deficiency.

    PubMed Central

    Umpleby, A M; Trend, P S; Chubb, D; Conaglen, J V; Williams, C D; Hesp, R; Scobie, I N; Wiles, C M; Spencer, G; Sönksen, P H

    1989-01-01

    Leucine and alanine production rate was measured in 5 patients with acid maltase deficiency in the postabsorptive state, following 6 months on a normal diet with placebo and 6 months on an isocaloric high protein diet (16-22% protein). Whole body leucine production rate, a measure of protein degradation, expressed in terms of lean body mass was significantly greater than in five control subjects. Following the high protein diet, leucine production rate was decreased in four of the five patients but this was not statistically significant. Alanine production rate expressed in terms of lean body mass was significantly greater than in control subjects. After the high protein diet, alanine production rate and concentration were significantly decreased (p less than 0.05). There were no significant improvements in any of the clinically relevant variables measured in these patients. It is possible that a larger increase in protein intake over a longer time period may have a clinical effect. PMID:2507747

  4. In Vivo d-Serine Hetero-Exchange through Alanine-Serine-Cysteine (ASC) Transporters Detected by Microelectrode Biosensors

    PubMed Central

    2013-01-01

    d-Serine, a co-agonist of N-methyl d-aspartate (NMDA) receptors, has been implicated in neurological and psychiatric disorders such as cerebral ischemia, lateral amyotrophic sclerosis, or schizophrenia. d-Serine signaling represents an important pharmacological target for treating these diseases; however, the biochemical mechanisms controlling extracellular d-serine levels in vivo are still unclear. d-Serine heteroexchange through small neutral amino acid transporters has been shown in cell cultures and brain slices and could provide a biochemical mechanism for the control of d-serine extracellular concentration in vivo. Alternatively, exocytotic d-serine release has also been proposed. In this study, the dynamics of d-serine release and clearance were explored in vivo on a second-by-second time scale using microelectrode biosensors. The rate of d-serine clearance in the rat frontal cortex after a microionophoretic injection revealed a transporter-mediated uptake mechanism. d-Serine uptake was blocked by small neutral l-amino acids, implicating alanine-serine-cysteine (ASC) transporters, in particular high affinity Asc-1 and low affinity ASCT2 transporters. Interestingly, changes in alanine, serine, or threonine levels resulted in d-serine release through ASC transporters. Asc-1, but not ASCT2, appeared to release d-serine in response to changes in amino acid concentrations. Finally, neuronal silencing by tetrodotoxin increased d-serine extracellular concentration by an ASC-transporter-dependent mechanism. Together, these results indicate that d-serine heteroexchange through ASC transporters is present in vivo and may constitute a key component in the regulation of d-serine extracellular concentration. PMID:23581544

  5. VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers.

    PubMed

    Tia, Maurice; Cunha de Miranda, Barbara; Daly, Steven; Gaie-Levrel, François; Garcia, Gustavo A; Nahon, Laurent; Powis, Ivan

    2014-04-17

    The valence shell photoionization of the simplest proteinaceous chiral amino acid, alanine, is investigated over the vacuum ultraviolet region from its ionization threshold up to 18 eV. Tunable and variable polarization synchrotron radiation was coupled to a double imaging photoelectron/photoion coincidence (i(2)PEPICO) spectrometer to produce mass-selected threshold photoelectron spectra and derive the state-selected fragmentation channels. The photoelectron circular dichroism (PECD), an orbital-sensitive, conformer-dependent chiroptical effect, was also recorded at various photon energies and compared to continuum multiple scattering calculations. Two complementary vaporization methods-aerosol thermodesorption and a resistively heated sample oven coupled to an adiabatic expansion-were applied to promote pure enantiomers of alanine into the gas phase, yielding neutral alanine with different internal energy distributions. A comparison of the photoelectron spectroscopy, fragmentation, and dichroism measured for each of the vaporization methods was rationalized in terms of internal energy and conformer populations and supported by theoretical calculations. The analytical potential of the so-called PECD-PICO detection technique-where the electron spectroscopy and circular dichroism can be obtained as a function of mass and ion translational energy-is underlined and applied to characterize the origin of the various species found in the experimental mass spectra. Finally, the PECD findings are discussed within an astrochemical context, and possible implications regarding the origin of biomolecular asymmetry are identified.

  6. Thermodynamics of DL-alanine solvation in water-dimethylsulfoxide mixtures at 298.15 K

    NASA Astrophysics Data System (ADS)

    Roy, S.; Mahali, K.; Mondal, S.; Dolui, B. K.

    2015-04-01

    In this study we mainly discuss the transfer Gibbs free energy Δ G {/t 0}( i) and Δ S {/t 0}( i)entropy of DL-alanine at 298.15 K and consequently the involved chemical transfer free energy (Δ G {/t,ch 0}( i)) and entropy ( TΔ S {/t,ch 0}( i)) in aqueous mixtures of dimethylsulfoxide are discussed to clarify the solvation chemistry of DL-alanine. For the evaluation of these energy terms, solubility of this amino acid has been measured by formol titrimetry at five equidistant temperatures i.e., from 288.15 to 308.15 K in different composition of this mixed solvent system. The various solvent parameters as well as thermodynamic parameters like molar volume, density, dipole moment and solvent diameter of this solvent system have also been reported here. The chemical effects of the transfer Gibbs energies (Δ G {/t,ch 0}( i)) and entropies of transfer ( TΔ S {/t,ch 0}( i)) have been obtained after elimination of cavity effect and dipole-dipole interaction effects from the total transfer energies. Here the chemical contribution of transfer energetics of DL-alanine is mainly guided by the composite effects of increased dispersion interaction, basicity effect and decreased acidity, hydrogen bonding effects, hydrophilic hydration and hydrophobic hydration of aqueous DMSO mixtures as compared to that of reference solvent, water.

  7. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    PubMed

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-09-05

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  8. A highly stable l-alanine-based mono(aquated) Mn(ii) complex as a T1-weighted MRI contrast agent.

    PubMed

    Khannam, Mahmuda; Weyhermüller, Thomas; Goswami, Upashi; Mukherjee, Chandan

    2017-08-08

    The synthesized lithium (S)-6,6'-(1-carboxyethylazanediyl)bis(methylene)dipicolinate (Li 3 cbda) is a new chiral, alanine-based ligand bearing two picolinate functionalities. The trianionic form of the ligand [(cbda) 3- ] constitutes a seven-coordinate, water-soluble, pentagonal bipyramidal Mn(ii) complex (1). The structural analysis reveals the presence of a water coordinating site in the complex. The complex is thermodynamically very stable, and the stability is not affected by the presence of physiological anions (HCO 3 - , PO 4 3- , and F - ). The pH of the medium exerts a small effect on the stability of the complex. The r 1 relaxivity of 3.02 mM -1 s -1 is exhibited by the complex at 1.41 T, pH ∼7.4, and 25 °C. Phantom images obtained via a clinical MRI BRIVO MR355 system established concentration-dependent signal enhancement by the complex. The cytotoxicity test confirmed complex 1 as a biocompatible potential T 1 -weighted MRI contrast agent.

  9. Analysis of alanine aminotransferase in various organs of soybean (Glycine max) and in dependence of different nitrogen fertilisers during hypoxic stress.

    PubMed

    Rocha, Marcio; Sodek, Ladaslav; Licausi, Francesco; Hameed, Muhammad Waqar; Dornelas, Marcelo Carnier; van Dongen, Joost T

    2010-10-01

    Alanine aminotransferase (AlaAT) catalyses the reversible conversion of pyruvate and glutamate into alanine and oxoglutarate. In soybean, two subclasses were identified, each represented by two highly similar members. To investigate the role of AlaAT during hypoxic stress in soybean, changes in transcript level of both subclasses were analysed together with the enzyme activity and alanine content of the tissue. Moreover, the dependency of AlaAT activity and gene expression was investigated in relation to the source of nitrogen supplied to the plants. Using semi-quantitative PCR, GmAlaAT genes were determined to be highest expressed in roots and nodules. Under normal growth conditions, enzyme activity of AlaAT was detected in all organs tested, with lowest activity in the roots. Upon waterlogging-induced hypoxia, AlaAT activity increased strongly. Concomitantly, alanine accumulated. During re-oxygenation, AlaAT activity remained high, but the transcript level and the alanine content decreased. Our results show a role for AlaAT in the catabolism of alanine during the initial period of re-oxygenation following hypoxia. GmAlaAT also responded to nitrogen availability in the solution during waterlogging. Ammonium as nitrogen source induced both gene expression and enzyme activity of AlaAT more than when nitrate was supplied in the nutrient solution. The work presented here indicates that AlaAT might not only be important during hypoxia, but also during the recovery phase after waterlogging, when oxygen is available to the tissue again.

  10. Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum: III. Alanine Is the Product of Anaerobic Ammonium Assimilation.

    PubMed

    Vanlerberghe, G C; Joy, K W; Turpin, D H

    1991-02-01

    We have determined the flow of (15)N into free amino acids of the N-limited green alga Selenastrum minutum (Naeg.) Collins after addition of (15)NH(4) (+) to aerobic or anaerobic cells. Under aerobic conditions, only a small proportion of the N assimilated was retained in the free amino acid pool. However, under anaerobic conditions almost all assimilated NH(4) (+) accumulates in alanine. This is a unique feature of anaerobic NH(4) (+) assimilation. The pathway of carbon flow to alanine results in the production of ATP and reductant which matches exactly the requirements of NH(4) (+) assimilation. Alanine synthesis is therefore an excellent strategy to maintain energy and redox balance during anaerobic NH(4) (+) assimilation.

  11. Modifiable clinical and lifestyle factors are associated with elevated alanine aminotransferase levels in newly diagnosed type 2 diabetes patients: results from the nationwide DD2 study.

    PubMed

    Mor, Anil; Svensson, Elisabeth; Rungby, Jørgen; Ulrichsen, Sinna Pilgaard; Berencsi, Klara; Nielsen, Jens Steen; Stidsen, Jacob Volmer; Friborg, Søren; Brandslund, Ivan; Christiansen, Jens Sandahl; Beck-Nielsen, Henning; Sørensen, Henrik Toft; Thomsen, Reimar Wernich

    2014-11-01

    Current literature lacks data on markers of non-alcoholic fatty liver disease (NAFLD) in newly diagnosed type 2 diabetes mellitus (T2DM) patients. We therefore, conducted a cross-sectional study to examine modifiable clinical and lifestyle factors associated with elevated alanine aminotransferase (ALT) levels as a marker of NAFLD in new T2DM patients. Alanine aminotransferase levels were measured in 1026 incident T2DM patients enrolled in the nationwide Danish Centre for Strategic Research in Type 2 Diabetes (DD2) cohort. We examined prevalence of elevated ALT (>38 IU/L for women and >50 IU/L for men) and calculated prevalence ratios associated with clinical and lifestyle factors using Poisson regression. We examined the association with other biomarkers by linear regression. The median value of ALT was 24 IU/L (interquartile range: 18-32 IU/L) in women and 30 IU/L (interquartile range: 22-41 IU/L) in men. Elevated ALT was found in 16% of incident T2DM patients. The risk of elevated ALT was increased in patients who were <40 years old at diabetes debut [adjusted prevalence ratio (aPR): 1.96, 95% confidence interval (CI): 1.15-3.33], in those with alcohol overuse (>14/>21 drinks per week for women/men) (aPR: 1.60, 95% CI: 1.03-2.50), and in those with no regular physical activity (aPR: 1.42, 95% CI: 1.04-1.93). Obesity and metabolic syndrome per se showed no association with elevated ALT when adjusted for other markers, whereas we found positive associations of ALT with increased C-peptide (β = 0.14, 95% CI: 0.06-0.21) and fasting blood glucose (β = 0.07, 95% CI: 0.03-0.11). Among newly diagnosed T2DM patients, several modifiable clinical and lifestyle factors are independent markers of elevated ALT levels. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph

    PubMed Central

    2012-01-01

    Background Our previous studies suggest silkworms can be used as model animals instead of mammals in pharmacologic studies to develop novel therapeutic medicines. We examined the usefulness of the silkworm larvae Bombyx mori as an animal model for evaluating tissue injury induced by various cytotoxic drugs. Drugs that induce hepatotoxic effects in mammals were injected into the silkworm hemocoel, and alanine aminotransferase (ALT) activity was measured in the hemolymph 1 day later. Results Injection of CCl4 into the hemocoel led to an increase in ALT activity. The increase in ALT activity was attenuated by pretreatment with N-acetyl-L-cysteine. Injection of benzoic acid derivatives, ferric sulfate, sodium valproate, tetracycline, amiodarone hydrochloride, methyldopa, ketoconazole, pemoline (Betanamin), N-nitroso-fenfluramine, and D-galactosamine also increased ALT activity. Conclusions These findings indicate that silkworms are useful for evaluating the effects of chemicals that induce tissue injury in mammals. PMID:23137391

  13. Oral supplementations with L-glutamine or L-alanyl-L-glutamine do not change metabolic alterations induced by long-term high-fat diet in the B6.129F2/J mouse model of insulin resistance.

    PubMed

    Bock, Patricia Martins; Krause, Mauricio; Schroeder, Helena Trevisan; Hahn, Gabriela Fernandes; Takahashi, Hilton Kenji; Schöler, Cinthia Maria; Nicoletti, Graziella; Neto, Luiz Domingos Zavarize; Rodrigues, Maria Inês Lavina; Bruxel, Maciel Alencar; Homem de Bittencourt, Paulo Ivo

    2016-01-01

    In this work, we aimed to investigate the effects of long-term supplementations with L-glutamine or L-alanyl-L-glutamine in the high-fat diet (HFD)-fed B6.129SF2/J mouse model over insulin sensitivity response and signaling, oxidative stress markers, metabolism and HSP70 expression. Mice were fed in a standard low-fat diet (STA) or a HFD for 20 weeks. In the 21th week, mice from the HFD group were allocated in five groups and supplemented for additional 8 weeks with different amino acids: HFD control group (HFD-Con), HFD + dipeptide L-alanyl-L-glutamine group (HFD-Dip), HFD + L-alanine group (HFD-Ala), HFD + L-glutamine group (HFD-Gln), or the HFD + L-alanine + L-glutamine (in their free forms) group (HFD-Ala + Gln). HFD induced higher body weight, fat pad, fasted glucose, and total cholesterol in comparison with STA group. Amino acid supplementations did not induce any modifications in these parameters. Although insulin tolerance tests indicated insulin resistance in all HFD groups, amino acid supplementations did not improve insulin sensitivity in the present model. There were also no significant differences in the immunocontents of insulin receptor, Akt, and Toll-like receptor-4. Notably, total 70 kDa heat shock protein (HSP72 + HSP73) contents in the liver was markedly increased in HFD-Con group as compared to STA group, which might suggest that insulin resistance is only in the beginning. Apparently, B6.129SF2/J mice are more resistant to the harmful effects of HFD through a mechanism that may include gut adaptation, reducing the absorption of nutrients, including amino acids, which may explain the lack of improvements in our intervention.

  14. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice.

    PubMed

    Horvath, Deanna M; Murphy, Robyn M; Mollica, Janelle P; Hayes, Alan; Goodman, Craig A

    2016-11-01

    This study investigated the effect of taurine and β-alanine supplementation on muscle function and muscle taurine transporter (TauT) protein expression in mdx mice. Wild-type (WT) and mdx mice (5 months) were supplemented with taurine or β-alanine for 4 weeks, after which in vitro contractile properties, fatigue resistance and force recovery, and the expression of the TauT protein and proteins involved in excitation-contraction (E-C) coupling were examined in fast-twitch muscle. There was no difference in basal TauT protein expression or basal taurine content between mdx than WT muscle. Supplementation with taurine and β-alanine increased and reduced taurine content, respectively, in muscle from WT and mdx mice but had no effect of TauT protein. Taurine supplementation reduced body and muscle mass, and enhanced fatigue resistance and force recovery in mdx muscle. β-Alanine supplementation enhanced fatigue resistance in WT and mdx muscle. There was no difference in the basal expression of key E-C coupling proteins [ryanodine receptor 1 (RyR1), dihydropyridine receptor (DHPR), sarco(endo)plasmic reticulum Ca 2+ -ATPase 1 (SERCA1) or calsequestrin 1 (CSQ1)] between WT and mdx mice, and the expression of these proteins was not altered by taurine or β-alanine supplementation. These findings suggest that TauT protein expression is relatively insensitive to changes in muscle taurine content in WT and mdx mice, and that taurine and β-alanine supplementation may be viable therapeutic strategies to improve fatigue resistance of dystrophic skeletal muscle.

  15. Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players.

    PubMed

    Hoffman, Jay R; Ratamess, Nicholas A; Faigenbaum, Avery D; Ross, Ryan; Kang, Jie; Stout, Jeffrey R; Wise, John A

    2008-01-01

    The purpose of this study was to examine the effect of 30 days of beta-alanine supplementation in collegiate football players on anaerobic performance measures. Subjects were randomly divided into a supplement (beta-alanine group [BA], 4.5 g x d(-1) of beta-alanine) or placebo (placebo group [P], 4.5 g x d(-1) of maltodextrin) group. Supplementation began 3 weeks before preseason football training camp and continued for an additional 9 days during camp. Performance measures included a 60-second Wingate anaerobic power test and 3 line drills (200-yd shuttle runs with a 2-minute rest between sprints) assessed on day 1 of training camp. Training logs recorded resistance training volumes, and subjects completed questionnaires on subjective feelings of soreness, fatigue, and practice intensity. No difference was seen in fatigue rate in the line drill, but a trend (P = .07) was observed for a lower fatigue rate for BA compared with P during the Wingate anaerobic power test. A significantly higher training volume was seen for BA in the bench press exercise, and a trend (P = .09) for a greater training volume was seen for all resistance exercise sessions. In addition, subjective feelings of fatigue were significantly lower for BA than P. In conclusion, despite a trend toward lower fatigue rates during 60 seconds of maximal exercise, 3 weeks of beta-alanine supplementation did not result in significant improvements in fatigue rates during high-intensity anaerobic exercise. However, higher training volumes and lower subjective feelings of fatigue in BA indicated that as duration of supplementation continued, the efficacy of beta-alanine supplementation in highly trained athletes became apparent.

  16. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans

    USGS Publications Warehouse

    Chernoff, Neil; Hill, D. J.; Diggs, D. L.; Faison, B. D.; Francis, B. M.; Lang, J. R.; Larue, M. M.; Le, T.-T.; Loftin, Keith A.; Lugo, J. N.; Schmid, J. E.; Winnik, W. W.

    2017-01-01

    The compound BMAA (β-N-methylamino-L-alanine) has been postulated to play a significant role in four serious neurological human diseases: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, Parkinsonism, and dementia that occur globally. ALS/PDC with symptoms of all three diseases first came to the attention of the scientific community during and after World War II. It was initially associated with cycad flour used for food because BMAA is a product of symbiotic cycad root-dwelling cyanobacteria. Human consumption of flying foxes that fed on cycad seeds was later suggested as a source of BMAA on Guam and a cause of ALS/PDC. Subsequently, the hypothesis was expanded to include a causative role for BMAA in other neurodegenerative diseases including Alzheimer’s disease (AD) through exposures attributed to proximity to freshwaters and/or consumption of seafood due to its purported production by most species of cyanobacteria. The hypothesis that BMAA is the critical factor in the genesis of these neurodegenerative diseases received considerable attention in the medical, scientific, and public arenas. This review examines the history of ALS/PDC and the BMAA-human disease hypotheses; similarities and differences between ALS/PDC and the other diseases with similar symptomologies; the relationship of ALS/PDC to other similar diseases, studies of BMAA-mediated effects in lab animals, inconsistencies and data gaps in the hypothesis; and other compounds and agents that were suggested as the cause of ALS/PDC on Guam. The review concludes that the hypothesis of a causal BMAA neurodegenerative disease relationship is not supported by existing data.

  17. Intramolecular interactions of L-phenylalanine revealed by inner shell chemical shift

    NASA Astrophysics Data System (ADS)

    Ganesan, Aravindhan; Wang, Feng

    2009-07-01

    Intramolecular interactions of the functional groups, carboxylic acid, amino, and phenyl in L-phenylalanine have been revealed through inner shell chemical shift. The chemical shift and electronic structures are studied using its derivatives, 2-phenethylamine (PEA) and 3-phenylpropionic acid (PPA), through substitutions of the functional groups on the chiral carbon Cα, i.e., carboxylic acid (-COOH) and amino (-NH2) groups. Inner shell ionization spectra of L-phenylalanine are simulated using density functional theory based B3LYP/TZVP and LB94/et-pVQZ models, which achieve excellent agreement with the most recently available synchrotron sourced x-ray photoemission spectroscopy of L-phenylalanine (Elettra, Italy). The present study reveals insight into behavior of the peptide bond (CO-NH) through chemical shift of the C1-Cα-Cβ(-Cγ) chain and intramolecular interactions with phenyl. It is found that the chemical shift of the carbonyl C1(=O) site exhibits an apparently redshift (smaller energy) when interacting with the phenyl aromatic group. Removal of the amino group (-NH2) from L-phenylalanine (which forms PPA) brings this energy on C1 close to that in L-alanine (δ <0.01 eV). Chemical environment of Cα and Cβ exhibits more significant differences in L-alanine than in the aromatic species, indicating that the phenyl group indeed affects the peptide bond in the amino acid fragment. No direct evidences are found that the carbonyl acid and amino group interact with the phenyl ring through conventional hydrogen bonds.

  18. Anaerobic metabolism in the N-limited green alga Selenastrum minutum. 3. Alanine is the product of anaerobic ammonium assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanlerberghe, G.C.; Turpin, D.H.; Joy, K.W.

    The authors have determined the flow of {sup 15}N into free amino acids of the N-limited green alga Selenastrum minutum (Naeg.) Collins after addition of {sup 15}NH{sub 4}{sup +} to aerobic or anaerobic cells. Under aerobic conditions, only a small proportion of the N assimilated was retained in the free amino acid pool. However, under anaerobic conditions almost all assimilated NH{sub 4}{sup +} accumulates in alanine. This is a unique feature of anaerobic NH{sub 4}{sup +} assimilation. The pathway of carbon flow to alanine results in the production of ATP and reductant which matches exactly the requirements of NH{sub 4}{supmore » +} assimilation. Alanine synthesis is therefore an excellent strategy to maintain energy and redox balance during anaerobic NH{sub 4}{sup +} assimilation.« less

  19. Adsorption differences between low coverage enantiomers of alanine on the chiral Cu{421}R surface.

    PubMed

    Gladys, Michael J; Han, Jeong Woo; Pedersen, Therese S; Tadich, Anton; O'Donnell, Kane M; Thomsen, Lars

    2017-05-31

    Chiral separation using heterogeneous methods has long been sought after. Chiral metal surfaces have the potential to make it possible to model these systems using small amino acids, the building blocks for proteins. A comparison of submonolayer concentrations of alanine enantiomers adsorbed onto Cu{421} R has revealed a large geometrical differences between the two molecules as compared to the saturated coverage. Large differences were observed in HR-XPS and NEXAFS and complemented by theoretical DFT calculations. At approximately one third of a monolayer a comparison of the C1s XPS signal showed a shift in the methyl group of more than 300 meV indicating that the two enantiomers are in different chemical environments. NEXAFS spectroscopy confirmed the XPS variations and showed large differences in the orientation of the adsorbed molecules. Our DFT results show that the l-enantiomer is energetically the most stable in the {311} microfacet configuration. In contrast to the full monolayer coverage, these lower coverages showed enhanced selectivity.

  20. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins

    PubMed Central

    Perez, Romel B.; Tischer, Alexander; Auton, Matthew; Whitten, Steven T.

    2014-01-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins, mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline and alanine to glycine substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (Rh) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the glycine substitutions decreased polyproline II (PPII) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in Rh were not associated with folding. The experiments showed that changes in local PPII structure cause changes in Rh that are variable and that depend on the intrinsic chain propensities of proline and alanine residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed proline and alanine effects on the structures of intrinsically disordered proteins. PMID:25244701

  1. Dietary L-lysine prevents arterial calcification in adenine-induced uremic rats.

    PubMed

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Isaka, Yoshitaka; Rakugi, Hiromi

    2014-09-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. Copyright © 2014 by the American Society of Nephrology.

  2. Dietary l-Lysine Prevents Arterial Calcification in Adenine-Induced Uremic Rats

    PubMed Central

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Rakugi, Hiromi

    2014-01-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. PMID:24652795

  3. Aspergillus niger PA2: a novel strain for extracellular biotransformation of L-tyrosine into L-DOPA.

    PubMed

    Agarwal, Pragati; Pareek, Nidhi; Dubey, Swati; Singh, Jyoti; Singh, R P

    2016-05-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine), an amino acid derivative is the most widely used drug of choice for the treatment of Parkinson's disease and other neurologic injuries. The present study deals with the elevated biochemical transformation of L-tyrosine to L-DOPA by Aspergillus niger PA2, a potent tyrosinase producer, isolated from decomposed food wastes. This appears to be the first report on A. niger as a notable extracellular tyrosinase producer. The extracellular tyrosinase activity produced remarkably higher levels of L-DOPA, i.e. 2.44 mg mL(-1) when the media was supplemented with 5 mg mL(-1) L-tyrosine. The optimum pH for tyrosinase production was 6.0, with the maximal L-DOPA production at the same pH. The product thus produced was analyzed by thin-layer chromatography, UV spectroscopy, high-performance liquid chromatography and Fourier transform infrared spectroscopy, that had denoted this to be L-DOPA. Kinetic parameters viz. Y p/s, Q s and Q p had further indicated the notable levels of production. Thus, Aspergillus niger PA2 could be a promising resource and may be further exploited for large-scale production of L-DOPA.

  4. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  5. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice.

    PubMed

    Vallejo, Julian; Spence, Madoka; Cheng, An-Lin; Brotto, Leticia; Edens, Neile K; Garvey, Sean M; Brotto, Marco

    2016-01-01

    There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice.

  6. A highly active and negatively charged Streptococcus pyogenes lysin with a rare D-alanyl-L-alanine endopeptidase activity protects mice against streptococcal bacteremia.

    PubMed

    Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W; Fischetti, Vincent A

    2014-06-01

    Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. A Highly Active and Negatively Charged Streptococcus pyogenes Lysin with a Rare d-Alanyl-l-Alanine Endopeptidase Activity Protects Mice against Streptococcal Bacteremia

    PubMed Central

    Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W.

    2014-01-01

    Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. PMID:24637688

  8. Effects of Plyometric Training and Beta-Alanine Supplementation on Maximal-Intensity Exercise and Endurance in Female Soccer Players.

    PubMed

    Rosas, Fabián; Ramírez-Campillo, Rodrigo; Martínez, Cristian; Caniuqueo, Alexis; Cañas-Jamet, Rodrigo; McCrudden, Emma; Meylan, Cesar; Moran, Jason; Nakamura, Fábio Y; Pereira, Lucas A; Loturco, Irineu; Diaz, Daniela; Izquierdo, Mikel

    2017-09-01

    Plyometric training and beta-alanine supplementation are common among soccer players, although its combined use had never been tested. Therefore, a randomized, double-blind, placebo-controlled trial was conducted to compare the effects of a plyometric training program, with or without beta-alanine supplementation, on maximal-intensity and endurance performance in female soccer players during an in-season training period. Athletes (23.7 ± 2.4 years) were assigned to either a plyometric training group receiving a placebo (PLACEBO, n = 8), a plyometric training group receiving beta-alanine supplementation (BA, n = 8), or a control group receiving placebo without following a plyometric training program (CONTROL, n = 9). Athletes were evaluated for single and repeated jumps and sprints, endurance, and change-of-direction speed performance before and after the intervention. Both plyometric training groups improved in explosive jumping (ES = 0.27 to 1.0), sprinting (ES = 0.31 to 0.78), repeated sprinting (ES = 0.39 to 0.91), 60 s repeated jumping (ES = 0.32 to 0.45), endurance (ES = 0.35 to 0.37), and change-of-direction speed performance (ES = 0.36 to 0.58), whereas no significant changes were observed for the CONTROL group. Nevertheless, compared to the CONTROL group, only the BA group showed greater improvements in endurance, repeated sprinting and repeated jumping performances. It was concluded that beta-alanine supplementation during plyometric training may add further adaptive changes related to endurance, repeated sprinting and jumping ability.

  9. Effects of Plyometric Training and Beta-Alanine Supplementation on Maximal-Intensity Exercise and Endurance in Female Soccer Players

    PubMed Central

    Rosas, Fabián; Ramírez-Campillo, Rodrigo; Martínez, Cristian; Cañas-Jamet, Rodrigo; McCrudden, Emma; Meylan, Cesar; Moran, Jason; Nakamura, Fábio Y.; Pereira, Lucas A.; Loturco, Irineu; Diaz, Daniela; Izquierdo, Mikel

    2017-01-01

    Abstract Plyometric training and beta-alanine supplementation are common among soccer players, although its combined use had never been tested. Therefore, a randomized, double-blind, placebo-controlled trial was conducted to compare the effects of a plyometric training program, with or without beta-alanine supplementation, on maximal-intensity and endurance performance in female soccer players during an in-season training period. Athletes (23.7 ± 2.4 years) were assigned to either a plyometric training group receiving a placebo (PLACEBO, n = 8), a plyometric training group receiving beta-alanine supplementation (BA, n = 8), or a control group receiving placebo without following a plyometric training program (CONTROL, n = 9). Athletes were evaluated for single and repeated jumps and sprints, endurance, and change-of-direction speed performance before and after the intervention. Both plyometric training groups improved in explosive jumping (ES = 0.27 to 1.0), sprinting (ES = 0.31 to 0.78), repeated sprinting (ES = 0.39 to 0.91), 60 s repeated jumping (ES = 0.32 to 0.45), endurance (ES = 0.35 to 0.37), and change-of-direction speed performance (ES = 0.36 to 0.58), whereas no significant changes were observed for the CONTROL group. Nevertheless, compared to the CONTROL group, only the BA group showed greater improvements in endurance, repeated sprinting and repeated jumping performances. It was concluded that beta-alanine supplementation during plyometric training may add further adaptive changes related to endurance, repeated sprinting and jumping ability. PMID:28828081

  10. In vivo assessment of intracellular redox state in rat liver using hyperpolarized [1-13 C]Alanine.

    PubMed

    Park, Jae Mo; Khemtong, Chalermchai; Liu, Shie-Chau; Hurd, Ralph E; Spielman, Daniel M

    2017-05-01

    The intracellular lactate to pyruvate concentration ratio is a commonly used tissue assay biomarker of redox, being proportional to free cytosolic [NADH]/[NAD + ]. In this study, we assessed the use of hyperpolarized [1- 13 C]alanine and the subsequent detection of the intracellular products of [1- 13 C]pyruvate and [1- 13 C]lactate as a useful substrate for assessing redox levels in the liver in vivo. Animal experiments were conducted to measure in vivo metabolism at baseline and after ethanol infusion. A solution of 80-mM hyperpolarized [1- 13 C]alanine was injected intravenously at baseline (n = 8) and 45 min after ethanol infusion (n = 4), immediately followed by the dynamic acquisition of 13 C MRS spectra. In vivo rat liver spectra showed peaks from [1- 13 C] alanine and the products of [1- 13 C]lactate, [1- 13 C]pyruvate, and 13 C-bicarbonate. A significantly increased 13 C-lactate/ 13 C-pyruvate ratio was observed after ethanol infusion (8.46 ± 0.58 at baseline versus 13.58 ± 0.69 after ethanol infusion; P < 0.001) consistent with the increased NADH produced by liver metabolism of ethanol to acetaldehyde and then acetate. A decrease in 13 C-bicarbonate production was also noted, potentially reflecting ethanol-induced mitochondrial redox changes. A method to measure in vivo tissue redox using hyperpolarized [1- 13 C]alanine is presented, with the validity of the proposed 13 C-pyruvate/ 13 C-lactate metric tested using an ethanol challenge to alter liver redox state. Magn Reson Med 77:1741-1748, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase.

    PubMed

    Peña, Pamela A; Quach, Truyen; Sato, Shirley; Ge, Zhengxiang; Nersesian, Natalya; Dweikat, Ismail M; Soundararajan, Madhavan; Clemente, Tom

    2017-12-01

    The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.

  12. β-Alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro

    PubMed Central

    Mori, Masahiro; Gähwiler, Beat H; Gerber, Urs

    2002-01-01

    Electrophysiological and pharmacological properties of glycine receptors were characterized in hippocampal organotypic slice cultures. In the presence of ionotropic glutamate and GABAB receptor antagonists, pressure-application of glycine onto CA3 pyramidal cells induced a current associated with increased chloride conductance, which was inhibited by strychnine. Similar chloride currents could also be induced with β-alanine or taurine. Whole-cell glycine responses were significantly greater in CA3 pyramidal cells than in CA1 pyramidal cells and dentate granule cells, while responses to GABA were similar among these three cell types. Although these results demonstrate the presence of functional glycine receptors in the hippocampus, no evidence for their activation during synaptic stimulation was found. Gabazine, a selective GABAA receptor antagonist, totally blocked evoked IPSCs in CA3 pyramidal cells. Glycine receptor activation is not dependent on transporter-controlled levels of extracellular glycine, as no chloride current was observed in response to sarcosine, an inhibitor of glycine transporters. In contrast, application of guanidinoethanesulfonic acid, an uptake inhibitor of β-alanine and taurine, induced strychnine-sensitive chloride current in the presence of gabazine. These data indicate that modulation of transporters for the endogenous amino acids, β-alanine and taurine, can regulate tonic activation of glycine receptors, which may function in maintenance of inhibitory tone in the hippocampus. PMID:11850512

  13. Characterization of a Thermostable d-Stereospecific Alanine Amidase from Brevibacillus borstelensis BCS-1

    PubMed Central

    Baek, Dae Heoun; Kwon, Seok-Joon; Hong, Seung-Pyo; Kwak, Mi-Sun; Lee, Mi-Hwa; Song, Jae Jun; Lee, Seung-Goo; Yoon, Ki-Hong; Sung, Moon-Hee

    2003-01-01

    A gene encoding a new thermostable d-stereospecific alanine amidase from the thermophile Brevibacillus borstelensis BCS-1 was cloned and sequenced. The molecular mass of the purified enzyme was estimated to be 199 kDa after gel filtration chromatography and about 30 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the enzyme could be composed of a hexamer with identical subunits. The purified enzyme exhibited strong amidase activity towards d-amino acid-containing aromatic, aliphatic, and branched amino acid amides yet exhibited no enzyme activity towards l-amino acid amides, d-amino acid-containing peptides, and NH2-terminally protected amino acid amides. The optimum temperature and pH for the enzyme activity were 85°C and 9.0, respectively. The enzyme remained stable within a broad pH range from 7.0 to 10.0. The enzyme was inhibited by dithiothreitol, 2-mercaptoethanol, and EDTA yet was strongly activated by Co2+ and Mn2+. The kcat/Km for d-alaninamide was measured as 544.4 ± 5.5 mM−1 min−1 at 50°C with 1 mM Co2+. PMID:12571020

  14. Large-scale population analysis reveals an extremely low threshold for "non-healthy" alanine aminotransferase that predicts diabetes mellitus.

    PubMed

    Shlomai, Amir; Kariv, Revital; Leshno, Moshe; Beth-or, Anat; Sheinberg, Bracha; Halpern, Zamir

    2010-10-01

    Serum alanine aminotransferase (ALT) is commonly used to detect liver damage. Recent studies indicate that ALT levels at the upper range of normal limits are predictors of adverse outcomes, especially diabetes mellitus (DM) and the metabolic syndrome. The aim of our study was to define the ALT threshold for both men and women that may predict the onset of DM. We analyzed a large Health Maintenance Organization cohort of 157 308 healthy subjects with no evidence of liver disease and with baseline ALT levels ≤ 120 U/L, and identified those who developed DM within 6 years. Overall, an elevated baseline serum ALT value was significantly associated with the development of DM, with an odds ratio of 3.3 when comparing the higher and the lower quartiles of the whole study population. A subgroup analysis revealed that baseline ALT values higher than 10 U/L among women and 22 U/L among men were already significantly associated with an increased risk for DM for any increment in ALT level. Notably, ALT values higher than ∼55 U/L were associated with increased risk for DM that was relatively constant for any increment in ALT. Higher baseline ALT levels were stronger predictors for DM as compared with age, triglycerides and cholesterol levels. Our study implies that ALT values higher than 10 U/L and 22 U/L for women and men, respectively, may predict DM. We suggest redefining ALT values as either 'normal' or 'healthy', with the later reflecting much lower values, above which an individual is at increased risk for DM. © 2010 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  15. Ultraviolet radiation induces stress in etiolated Landoltia punctata, as evidenced by the presence of alanine, a universal stress signal: a ¹⁵N NMR study.

    PubMed

    Monselise, E B-I; Levkovitz, A; Kost, D

    2015-01-01

    Analysis with (15) N NMR revealed that alanine, a universal cellular stress signal, accumulates in etiolated duckweed plants exposed to 15-min pulsed UV light, but not in the absence of UV irradiation. The addition of 10 mm vitamin C, a radical scavenger, reduced alanine levels to zero, indicating the involvement of free radicals. Free D-alanine was detected in (15) N NMR analysis of the chiral amino acid content, using D-tartaric acid as solvent. The accumulation of D-alanine under stress conditions presents a new perspective on the biochemical processes taking place in prokaryote and eukaryote cells. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping.

    PubMed

    Guo, Cunlan; Yu, Xi; Refaely-Abramson, Sivan; Sepunaru, Lior; Bendikov, Tatyana; Pecht, Israel; Kronik, Leeor; Vilan, Ayelet; Sheves, Mordechai; Cahen, David

    2016-09-27

    Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a self-assembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailor-made "building block" peptides.

  17. Six weeks of β-alanine supplementation did not enhance repeated-sprint ability or technical performances in young elite basketball players.

    PubMed

    Milioni, Fabio; Redkva, Paulo E; Barbieri, Fabio A; Zagatto, Alessandro M

    2017-06-01

    Supplementation with β-alanine plays an important role as a precursor of carnosine, the most effective intramuscular buffer, and has been seen as a potential ergogenic aid, especially for high-intensity modalities such as basketball. Thus, the aim of the present study was to investigate the effects of 6 weeks of β-alanine supplementation on repeated sprint ability (RSA) and technical performances in young elite Brazilian basketball players. In total, 27 young basketball players (17±1 years) were randomized into a β-alanine group (Gβ - 6.4 g day -1 of β-alanine) and a placebo group (GP - 6.4 g day -1 of dextrose). Before and after the supplementation period the athletes performed a RSA test composed of ten 30 m sprints with two 180° changes of direction interspaced by 30 s of recovery. During the recovery period (i.e., after the sprints) the athletes performed a countermovement jump (CMJ) and a set of three free throws. After 48 h they performed a Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1). Both groups increased the distance covered in the Yo-Yo IR1 after the supplementation period ( p = 0.001). On the other hand, both groups presented impairment in RSA time-performance (total time, best time, and mean time, p ≤ 0.04), while no significant changes were observed for technical task performances (i.e., CMJ and free throws) ( p ≥ 0.07). No between-group interactions were observed for any variable measured ( p ≥ 0.31). Thus, 6 weeks of β-alanine supplementation did not improve RSA or technical performances in young elite basketball players.

  18. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.

    PubMed

    Hasegawa, Satoshi; Suda, Masako; Uematsu, Kimio; Natsuma, Yumi; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki; Yukawa, Hideaki

    2013-02-01

    We previously demonstrated efficient L-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the L-valine yield. Eliminating these by-products therefore was deemed key to improving theL-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and L-valine production dropped considerably due to the severely elevated intracellular NADH/NAD(+) ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher L-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM L-valine at a yield of 88% mol mol of glucose(-1) after 24 h under oxygen deprivation, a vastly improved yield over our previous best.

  19. Engineering of Corynebacterium glutamicum for High-Yield l-Valine Production under Oxygen Deprivation Conditions

    PubMed Central

    Hasegawa, Satoshi; Suda, Masako; Uematsu, Kimio; Natsuma, Yumi; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki

    2013-01-01

    We previously demonstrated efficient l-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the l-valine yield. Eliminating these by-products therefore was deemed key to improving the l-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and l-valine production dropped considerably due to the severely elevated intracellular NADH/NAD+ ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher l-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM l-valine at a yield of 88% mol mol of glucose−1 after 24 h under oxygen deprivation, a vastly improved yield over our previous best. PMID:23241971

  20. SU-E-T-799: Verification of a Simultaneous Treatment of Multiple Brain Metastases Using VMAT Technique by a Composite Alanine-Gel Dosimeter Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavoni, J; Silveira, M; Filho, O Baffa

    Purpose: This work presents an end-to-end test using a Gel-Alanine phantom to validate the three-dimensional (3D) dose distribution (DD) delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. Methods: Three cylindrical phantons containing MAGIC-f gel dosimeter were used to measure the 3D DD of a VMAT treatment, the first two were filled with the gel dosimeter (Gel 1 and 2) and the third one was filled with gel and 12 alanine dosimeters distributed along it (Gel 3). Gels 1 and 3 were irradiated and gel 2 was used to map the magnetic resonance imagemore » (MRI) scanner field inomogeneities. A CT scan of gel 3 was used for the VMAT treatment planning and 5 alanine pellets were chosen as lesions, around them a PTV was grown and different dose prescriptions were assigned for each one, varying from 5 to 9Gy. Before treatment, the plan was approved in a QA based on an ionization chamber absolute dose measurement, a radiochromic film planar dose measurement and a portal dosimetry per field verification; and also the phantons positioning were verified by ExacTrac 6D correction and OBI kV Cone Beam CT. The gels were irradiated, the MRIs were acquired 24 hours after irradiation and finally, the alanine dosimeters were analysed in a X-band Electron Spin Resonance spectrometer. Results: The association of the two detectors enabled the 3D dose evaluation by gel and punctually inside target volumes by alanine. In the gamma analyses (3%/3mm) comparing the 5 PTVs’ central images DD with TPS expected DD more than 95% of the points were approved. The alanine absolute dose measurements were in agreement with TPS by less than 5%. Conclusion: The gel-alanine phantom enabled the dosimetric validation of multiple brain metastases treatment using VMAT, being an almost ideal tool for this application. This work is partially supported by FAPESP.« less

  1. Crystallization and preliminary X-ray data analysis of β-alanine synthase from Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundgren, Stina; Andersen, Birgit; Piškur, Jure

    2007-10-01

    β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine. Crystals of the recombinant enzyme from D. melanogaster belong to space group C2. Diffraction data to 3.3 Å resolution were collected and analyzed. β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine, which represents the main clearance route for the widely used anticancer drug 5-fluorouracil. Crystals of the recombinant enzyme from Drosophila melanogaster, which is closely related to the human enzyme, were obtained by the hanging-drop vapour-diffusion method. They diffracted to 3.3 Å at a synchrotron-radiation source, belong tomore » space group C2 (unit-cell parameters a = 278.9, b = 95.0, c = 199.3 Å, β = 125.8°) and contain 8–10 molecules per asymmetric unit.« less

  2. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice

    PubMed Central

    Vallejo, Julian; Spence, Madoka; Cheng, An-Lin; Brotto, Leticia; Edens, Neile K.; Garvey, Sean M.; Brotto, Marco

    2016-01-01

    There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice. PMID

  3. Transferability of ASTM/NIST alanine-polyethylene recipe at ISS. American Society for Testing and Materials/National Institute for Standards and Technology. Istituto Superiore de Sanita

    PubMed

    De Angelis C; Fattibene; Onori; Petetti; Bartolotta; Sansone Santamaria A

    2000-05-01

    Alanine-polyethylene solid state dosimeters were prepared at Istituto Superiore di Sanita (ISS) following the recipe proposed by National Institute of Standards and Technology (NIST) with the goal of testing its transferability. Dosimeters were prepared using 95% alanine and 5% polyethylene, by weight. They are rugged and of increased sensitivity, repeatability and reproducibility as respect to the ISS alanine-paraffin pellets. Reproducibility of about 1% was obtained at 10 Gy and at 3 Gy if one single pellet or a stack of five dosimeters were used, respectively.

  4. Alanyl-glutamine and glutamine plus alanine supplements improve skeletal redox status in trained rats: involvement of heat shock protein pathways.

    PubMed

    Petry, Eder Ricardo; Cruzat, Vinicius Fernandes; Heck, Thiago Gomes; Leite, Jaqueline Santos Moreira; Homem de Bittencourt, Paulo Ivo; Tirapegui, Julio

    2014-01-17

    We hypothesized that oral l-glutamine supplementations could attenuate muscle damage and oxidative stress, mediated by glutathione (GSH) in high-intensity aerobic exercise by increasing the 70-kDa heat shock proteins (HSP70) and heat shock factor 1 (HSF1). Adult male Wistar rats were 8-week trained (60-min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were supplemented with either l-alanyl-l-glutamine dipeptide (1.5 g/kg, DIP) or a solution containing the amino acids l-glutamine (1g/kg) and l-alanine (0.67 g/kg) in their free form (GLN+ALA) or water (controls). Plasma from both DIP- and GLN+ALA-treated animals showed higher l-glutamine concentrations and reduced ammonium, malondialdehyde, myoglobin and creatine kinase activity. In the soleus and gastrocnemius muscle of both supplemented groups, l-glutamine and GSH contents were increased and GSH disulfide (GSSG) to GSH ratio was attenuated (p<0.001). In the soleus muscle, cytosolic and nuclear HSP70 and HSF1 were increased by DIP supplementation. GLN+ALA group exhibited higher HSP70 (only in the nucleus) and HSF1 (cytosol and nucleus). In the gastrocnemius muscle, both supplementations were able to increase cytosolic HSP70 and cytosolic and nuclear HSF1. In trained rats, oral supplementation with DIP or GLN+ALA solution increased the expression of muscle HSP70, favored muscle l-glutamine/GSH status and improved redox defenses, which attenuate markers of muscle damage, thus improving the beneficial effects of high-intensity exercise training. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Characterization of lipoteichoic acid structures from three probiotic Bacillus strains: involvement of D-alanine in their biological activity.

    PubMed

    Villéger, Romain; Saad, Naima; Grenier, Karine; Falourd, Xavier; Foucat, Loïc; Urdaci, Maria C; Bressollier, Philippe; Ouk, Tan-Sothea

    2014-10-01

    Probiotics represent a potential strategy to influence the host's immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with D-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure-activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove D-alanine. The molecular structure of native and modified LTAs was determined by (1)H NMR and GC-MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their D-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on D-alanine substitutions. D-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use.

  6. Gamma-glutamyltransferase, alanine transaminase and aspartate transaminase levels and the diagnosis of gestational diabetes mellitus.

    PubMed

    Tan, Peng Chiong; Aziz, Ainul Zahaniah; Ismail, Ikram Shah; Omar, Siti Zawiah

    2012-10-01

    To evaluate gamma-glutamyltransferase (GGT), alanine transaminases (ALT) and aspartate transaminases (AST) levels and prevalent gestational diabetes mellitus (GDM). Random plasma glucose, GGT, ALT and AST and the 50-g glucose challenge test were done on antenatal women followed by diagnostic 3-point 75-g oral glucose tolerance test within two weeks. GDM was diagnosed by ADA (2011) criteria. The GDM rate was 12.2% (319/2610). Mean GGT level was higher in GDM women, 18 ± 12 vs. 16 ± 11 IU/L; P=0.03. The risk for GDM was higher for women in the highest GGT quartile band compared to the lowest: RR 1.35 95%CI 1.0-1.8; P=0.04. However, after adjustment for confounders, GGT was no longer associated with GDM. There was no correlation between ALT and AST levels and GDM. Liver transaminases do not predict GDM in contrast to type 2 diabetes. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. Assessing Environmental Exposure to β-N-Methylamino-L-Alanine (BMAA) in Complex Sample Matrices: a Comparison of the Three Most Popular LC-MS/MS Methods.

    PubMed

    Baker, Teesha C; Tymm, Fiona J M; Murch, Susan J

    2018-01-01

    β-N-Methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid produced by cyanobacteria, accumulated through natural food webs, found in mammalian brain tissues. Recent evidence indicates an association between BMAA and neurological disease. The accurate detection and quantification of BMAA in food and environmental samples are critical to understanding BMAA metabolism and limiting human exposure. To date, there have been more than 78 reports on BMAA in cyanobacteria and human samples, but different methods give conflicting data and divergent interpretations in the literature. The current work was designed to determine whether orthogonal chromatography and mass spectrometry methods give consistent data interpretation from a single sample matrix using the three most common analytical methods. The methods were recreated as precisely as possible from the literature with optimization of the mass spectrometry parameters specific to the instrument. Four sample matrices, cyanobacteria, human brain, blue crab, and Spirulina, were analyzed as 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives, propyl chloroformate (PCF) derivatives separated by reverse phase chromatography, or underivatized extracts separated by HILIC chromatography. The three methods agreed on positive detection of BMAA in cyanobacteria and no detected BMAA in the sample of human brain matrix. Interpretation was less clear for a sample of blue crab which was strongly positive for BMAA by AQC and PCF but negative by HILIC and for four spirulina raw materials that were negative by PCF but positive by AQC and HILIC. Together, these data demonstrate that the methods gave different results and that the choices in interpretation of the methods determined whether BMAA was detected. Failure to detect BMAA cannot be considered proof of absence.

  8. Selection of tRNA(Asp) amber suppressor mutants having alanine, arginine, glutamine, and lysine identity.

    PubMed Central

    Martin, F; Reinbolt, J; Dirheimer, G; Gangloff, J; Eriani, G

    1996-01-01

    Elements that confer identity to a tRNA in the cellular environment, where all aminoacyl-tRNA synthetases are competing for substrates, may be delineated by in vivo experiments using suppressor tRNAs. Here we describe the selection of active Escherichia coli tRNAAsp amber mutants and analyze their identity. Starting from a library containing randomly mutated tRNA(CUA)Asp genes, we isolated four amber suppressors presenting either lysine, alanine, or glutamine activity. Two of them, presenting mainly alanine or lysine activity, were further submitted to a second round of mutagenesis selection in order to improve their efficiency of suppression. Eleven suppressors were isolated, each containing two or three mutations. Ten presented identities of the two parental mutants, whereas one had switched from lysine to arginine identity. Analysis of the different mutants revealed (or confirmed for some nucleotides) their role as positive and/or negative determinants in AlaRS, LysRS, and ArgRS recognition. More generally, it appears that tRNAAsp presents identity characteristics closely related to those of tRNALys, as well as a structural basis for acquiring alanine or arginine identity upon moderate mutational changes; these consist of addition or suppression of the corresponding positive or negative determinants, as well as tertiary interactions. Failure to isolate aspartic acid-inserting suppressors is probably due to elimination of the important G34 identity element and its replacement by an antideterminant when changing the anticodon of the tRNAAsp to the CUA triplet. PMID:8809018

  9. Cardiorespiratory Fitness, Waist Circumference and Alanine Aminotransferase in Youth

    PubMed Central

    Trilk, Jennifer L.; Ortaglia, Andrew; Blair, Steven N.; Bottai, Matteo; Church, Timothy S.; Pate, Russell R.

    2012-01-01

    Non-alcoholic fatty liver disease (NAFLD) is considered the liver component of the metabolic syndrome and is strongly associated with cardiometabolic diseases. In adults, cardiorespiratory fitness (CRF) is inversely associated with alanine aminotransferase (ALT), a blood biomarker for NAFLD. However, information regarding these associations is scarce for youth. Purpose To examine associations between CRF, waist circumference (WC) and ALT in youth. Methods Data were obtained from youth (n=2844, 12-19 years) in the National Health and Nutrition Examination Survey (NHANES) 2001-2004. CRF was dichotomized into youth FITNESSGRAM® categories of “low” and “adequate” CRF. Logistic and quantile regression were used for a comprehensive analysis of associations, and variables with previously-reported associations with ALT were a priori included in the models. Results Results from logistic regression suggested that youth with low CRF had 1.5 times the odds of having an ALT>30 than youth with adequate CRF, although the association was not statistically significant (P=0.09). However, quantile regression demonstrated that youth with low CRF had statistically significantly higher ALT (+1.04, +1.05, and +2.57 U/L) at the upper end of the ALT distribution (80th, 85th, and 90th percentiles, respectively) than youth with adequate CRF. For every 1-cm increase in WC, the odds of having an ALT>30 increased by 1.06 (P<0.001), and the strength of this association increased across the ALT distribution. Conclusions Future studies should examine whether interventions to improve CRF can decrease hepatic fat and liver enzyme concentrations in youth with ALT ≥80th percentile or in youth diagnosed with NAFLD. PMID:23190589

  10. The role of metal ions in chemical evolution - Polymerization of alanine and glycine in a cation-exchanged clay environment

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Levi, N.

    1979-01-01

    The effect of the exchangeable cation on the condensation of glycine and alanine was investigated using a series of homoionic bentonites. A cycling procedure of drying, warming and wetting was employed. Peptide bond formation was observed, and the effectiveness of metal ions to catalyze the condensation was Cu(2+) greater than Ni(2) approximately equals Zn(2+) greater than Na(+). Glycine showed 6% of the monomer incorporated into oligomers with the largest detected being the pentamer. Alanine showed less peptide bond formation (a maximum of 2%) and only the dimer was observed.

  11. Determination of the D and L isomers of some protein amino acids present in soils

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Cheng, C.-N.; Cronin, S. E.

    1977-01-01

    The D and L isomers of some protein amino acids present in soils were measured by using a gas chromatographic technique. The results of two processing procedures were compared to determine the better method. Results of the comparison indicated that the determination of D and L percentages requires amino acid purification if one is to obtain accurate data. It was found that very significant amounts of D-alanine, D-aspartic acid, and D-glutamic acid were present in the contemporary soils studied. Valine, isoleucine, leucine, proline, and phenylalanine generally contained only a trace to very small amounts of the D isomer. It is probable that the D-amino acids from the alanine, aspartic, and glutamic acids are contributed to the soil primarily via microorganisms. The finding of very significant quantities of some D-amino acids (about 5-16%) in present-day soils may alert some investigators of geological sediments to a possible problem in using amino acid racemization as an age-dating technique.

  12. Correlation between liver cell necrosis and circulating alanine aminotransferase after ischaemia/reperfusion injuries in the rat liver.

    PubMed

    Knudsen, Anders R; Andersen, Kasper J; Hamilton-Dutoit, Stephen; Nyengaard, Jens R; Mortensen, Frank V

    2016-04-01

    Circulating liver enzymes such as alanine transaminase are often used as markers of hepatocellular damage. Ischaemia/reperfusion (I/R) injury is an inevitable consequence of prolonged liver ischaemia. The aim of this study was to examine the correlation between liver enzymes and volume of liver cell necrosis after ischaemia/reperfusion injuries, using design-unbiased stereological methods. Forty-seven male Wistar rats were subjected to 1 h of partial liver ischaemia, followed by either 4 or 24 h of reperfusion. Within each group, one-third of animals were subjected to ischaemic preconditioning and one-third to ischaemic postconditioning. At the end of reperfusion, blood and liver samples were collected for analysis. The volume of necrotic liver tissue was subsequently correlated to circulating markers of I/R injury. Correlation between histological findings and circulating markers was performed using Pearson's correlation coefficient. Alanine transferase peaked after 4 h of reperfusion; however, at this time-point, only mild necrosis was observed, with a Pearson's correlation coefficient of 0.663 (P = 0.001). After 24 h of reperfusion, alanine aminotransferase was found to be highly correlated to the degree of hepatocellular necrosis R = 0.836 (P = 0.000). Furthermore, alkaline phosphatase (R = 0.806) and α-2-macroglobulin (R = 0.655) levels were also correlated with the degree of necrosis. We show for the first time that there is a close correlation between the volume of hepatocellular necrosis and alanine aminotransferase levels in a model of I/R injury. This is especially apparent after 24 h of reperfusion. Similarly, increased levels of alkaline phosphatase and α-2-macroglobulin are correlated to the volume of liver necrosis. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  13. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney.

    PubMed

    Dennis, V W; Brazy, P C

    1978-08-01

    Interactions among the transport systems involved with sodium, bicarbonate, glucose, phosphate, and alanine absorption in isolated segments of the rabbit proximal convoluted tubule were examined with radioisotopic techniques to measure glucose, phosphate, and fluid absorption rates. The composition of the perfusate and bath varied from normal, physiological fluids to fluids deficient in a single solute. The deletion of glucose from the perfusate increased the lumen-to-bath flux of phosphate from 5.51 +/- 1.15 to 8.32 +/- 1.34 pmol/mm-min (P less than 0.01). Similar changes occurred when glucose transport was inhibited by phlorizin 10 micron in the perfusate, The deletion of alanine from the perfusate increased the lumen-to-bath flux of phosphate from 6.55 +/- 1.08 to 9.00 +/- 1.30 pmol/mm-min (P less than 0.01) but did not affect glucose transport significantly, 80.1 +/- 10.1 vs. 72.5 +/- 5.4 pmol/mm-min. Replacement of intraluminal sodium with choline, elimination of potassium from the bath, and removal of bicarbonate from the lumen and bath each reduced glucose, phosphate, and fluid absorption. These data indicate that the proximal absorptive processes for glucose and for phosphate include elements that are dependent upon some function of sodium transport. Additionally, the effects on phosphate transport of deleting glucose or alanine occur independent of any changes in net sodium transport and are opposite the effects of deleting bicarbonate. These differences may relate to the observations that the transport of glucose and alanine is electrogenic while that of bicarbonate is not. Regardless of possible mechanisms, the data demonstrate that important changes in the absorption rates of different solutes handled significantly by the proximal convoluted tubule may occur in response to changes in specific components of proximal sodium transport.

  14. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney.

    PubMed Central

    Dennis, V W; Brazy, P C

    1978-01-01

    Interactions among the transport systems involved with sodium, bicarbonate, glucose, phosphate, and alanine absorption in isolated segments of the rabbit proximal convoluted tubule were examined with radioisotopic techniques to measure glucose, phosphate, and fluid absorption rates. The composition of the perfusate and bath varied from normal, physiological fluids to fluids deficient in a single solute. The deletion of glucose from the perfusate increased the lumen-to-bath flux of phosphate from 5.51 +/- 1.15 to 8.32 +/- 1.34 pmol/mm-min (P less than 0.01). Similar changes occurred when glucose transport was inhibited by phlorizin 10 micron in the perfusate, The deletion of alanine from the perfusate increased the lumen-to-bath flux of phosphate from 6.55 +/- 1.08 to 9.00 +/- 1.30 pmol/mm-min (P less than 0.01) but did not affect glucose transport significantly, 80.1 +/- 10.1 vs. 72.5 +/- 5.4 pmol/mm-min. Replacement of intraluminal sodium with choline, elimination of potassium from the bath, and removal of bicarbonate from the lumen and bath each reduced glucose, phosphate, and fluid absorption. These data indicate that the proximal absorptive processes for glucose and for phosphate include elements that are dependent upon some function of sodium transport. Additionally, the effects on phosphate transport of deleting glucose or alanine occur independent of any changes in net sodium transport and are opposite the effects of deleting bicarbonate. These differences may relate to the observations that the transport of glucose and alanine is electrogenic while that of bicarbonate is not. Regardless of possible mechanisms, the data demonstrate that important changes in the absorption rates of different solutes handled significantly by the proximal convoluted tubule may occur in response to changes in specific components of proximal sodium transport. PMID:670399

  15. Construction of Escherichia coli strains producing L-serine from glucose.

    PubMed

    Li, Yu; Chen, Gu-Kui; Tong, Xin-Wei; Zhang, Hui-Tu; Liu, Xiao-Guang; Liu, Yi-Han; Lu, Fu-Ping

    2012-08-01

    L-Serine is usually produced from glycine. We have genetically engineered Escherichia coli to produce L-serine from glucose intracellularly. D-3-Phosphoglycerate dehydrogenase (PGDH, EC 1.1.1.95) in E. coli catalyzes the first committed step in L-serine formation but is inhibited by L-serine. To overcome this feedback inhibition, both the His(344) and Asn(346) residues of PGDH were converted to alanine and the mutated PGDH (PGDH(dr)) became insensitive to L-serine. However, overexpression of PGDH(dr) gave no significant increase of L-serine accumulation but, when L-serine deaminase genes (sdaA, sdaB and tdcG) were deleted, serine accumulated: (1) deletion of sdaA gave up to 0.03 mmol L-serine/g; (2) deletion of both sdaA and sdaB accumulated L-serine up to 0.09 mmol/g; and (3) deletion of sdaA, sdaB and tdcG gave up to 0.13 mmol L-serine/g cell dry wt.

  16. Evaluation of alanine as a reference dosimeter for therapy level dose comparisons in megavoltage electron beams

    NASA Astrophysics Data System (ADS)

    McEwen, Malcolm; Sharpe, Peter; Vörös, Sándor

    2015-04-01

    When comparing absorbed dose standards from different laboratories (e.g. National Measurement Institutes, NMIs, for Key or Supplementary comparisons) it is rarely possible to carry out a direct comparison of primary standard instruments, and therefore some form of transfer detector is required. Historically, air-filled, unsealed ionization chambers have been used because of the long history of using these instruments, very good stability over many years, and ease of transport. However, the use of ion chambers for therapy-level comparisons is not without its problems. Findings from recent investigations suggest that ion chambers are prone to non-random variations, they are not completely robust to standard courier practices, and failure at any step in a comparison can render all measurements potentially useless. An alternative approach is to identify a transfer system that is insensitive to some of these concerns—effectively a dosimeter that is inexpensive, simple to use, robust, but with sufficient precision and of a size relevant to the disseminated quantity in question. The alanine dosimetry system has been successfully used in a number of situations as an audit dosimeter and therefore the purpose of this investigation was to determine whether alanine could also be used as the transfer detector for dosimetric comparisons, which require a lower value for the measurement uncertainty. A measurement protocol was developed for comparing primary standards of absorbed dose to water in high-energy electron beams using alanine pellets irradiated in a water-equivalent plastic phantom. A trial comparison has been carried out between three NMIs and has indicated that alanine is a suitable alternative to ion chambers, with the system used achieving a precision of 0.1%. Although the focus of the evaluation was on the performance of the dosimeter, the comparison results are encouraging, showing agreement at the level of the combined uncertainties (~0.6%). Based on this

  17. Transplastomic expression of bacterial L-aspartate-alpha-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress.

    PubMed

    Fouad, W M; Altpeter, F

    2009-10-01

    Metabolic engineering for beta-alanine over-production in plants is expected to enhance environmental stress tolerance. The Escherichia coli L-aspartate-alpha-decarboxylase (AspDC) encoded by the panD gene, catalyzes the decarboxylation of L-aspartate to generate beta-alanine and carbon dioxide. The constitutive E. coli panD expression cassette was co-introduced with the constitutive, selectable aadA expression cassette into the chloroplast genome of tobacco via biolistic gene transfer and homologous recombination. Site specific integration of the E. coli panD expression cassette into the chloroplast genome and generation of homotransplastomic plants were confirmed by PCR and Southern blot analysis, respectively, following plant regeneration and germination of seedlings on selective media. PanD expression was verified by assays based on transcript detection and in vitro enzyme activity. The AspDC activities in transplastomic plants expressing panD were drastically increased by high-temperature stress. beta-Alanine accumulated in transplastomic plants at levels four times higher than in wildtype plants. Analysis of chlorophyll fluorescence on plants subjected to severe heat stress at 45 degrees C under light verified that photosystem II (PSII) in transgenic plants had higher thermotolerance than in wildtype plants. The CO(2) assimilation of transplastomic plants expressing panD was more tolerant to high temperature stress than that of wildtype plants, resulting in the production of 30-40% more above ground biomass than wildtype control. The results presented indicate that chloroplast engineering of the beta-alanine pathway by over-expression of the E. coli panD enhances thermotolerance of photosynthesis and biomass production following high temperature stress.

  18. GMXPBSA 2.1: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2015-01-01

    GMXPBSA 2.1 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes [R.T. Bradshaw et al., Protein Eng. Des. Sel. 24 (2011) 197-207]. GMXPBSA 2.1 is flexible and can easily be customized to specific needs and it is an improvement of the previous GMXPBSA 2.0 [C. Paissoni et al., Comput. Phys. Commun. (2014), 185, 2920-2929]. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.1 performs different comparative analyses, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complex trajectories, allowing the study of the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS [S. Pronk et al., Bioinformatics 29 (2013) 845-854] and the Poisson-Boltzmann equation solver APBS [N.A. Baker et al., Proc. Natl. Acad. Sci. U.S.A 98 (2001) 10037-10041]. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the

  19. Kinetic enantioselectivity of a protonated bis(diamido)-bridged basket resorcin[4]arene towards alanine peptides.

    PubMed

    Fraschetti, C; Montagna, M; Crestoni, M E; Calcaterra, A; Aiello, F; Santi, L; Filippi, A

    2017-02-01

    Efficient enantiodiscrimination of some alanine-containing di- and tri-peptides by using chiral protonated bis(diamido)-bridged basket resorcin[4]arenes depends on several factors, including the basicity of the amino acid residues at the C- and N-termini of the peptide.

  20. The pH dependence of the allosteric response of human liver pyruvate kinase to fructose-1,6-bisphosphate, ATP, and alanine

    PubMed Central

    Fenton, Aron W.; Hutchinson, Myra

    2009-01-01

    The allosteric regulation of human liver pyruvate kinase (hL-PYK) by fructose-1,6-bisphosphate (Fru-1,6-BP; activator), ATP (inhibitor) and alanine (Ala; inhibitor) was monitored over a pH range from 6.5 to 8.0 at 37°C. As a function of increasing pH, hL-PYK's affinity for the substrate phosphoenolpyruvate (PEP), and for Fru-1,6-BP decreases, while affinities for ATP and Ala slightly increases. At pH 6.5, Fru-1,6-BP and ATP elicit only small allosteric impacts on PEP affinity. As pH increases, Fru-1,6-BP and ATP elicit greater allosteric responses, but the response to Ala is relatively constant. Since the magnitudes of the allosteric coupling for ATP and for Ala inhibition are different and the pH dependences of these magnitudes are not similar, these inhibitors likely elicit their responses using different molecular mechanisms. In addition, our results fail to support a general correlation between pH dependent changes in effector affinity and pH dependent changes in the corresponding allosteric response. PMID:19467627

  1. Ab initio conformational analysis of N-formyl ?-alanine amide including electron correlation

    NASA Astrophysics Data System (ADS)

    Yu, Ching-Hsing; Norman, Mya A.; Schäfer, Lothar; Ramek, Michael; Peeters, Anik; van Alsenoy, Christian

    2001-06-01

    The conformational properties of N-formyl L-alanine amide (ALA) were investigated using RMP2/6-311G∗∗ ab initio gradient geometry optimization. One hundred forty four structures of ALA were optimized at 30° grid points in its φ(N-C(α)), ψ(C(α)-C‧) conformational space. Using cubic spline functions, the grid structures were then used to construct analytical representations of complete surfaces, in φ,ψ-space, of bond lengths, bond angles, torsional sensitivity and electrostatic atomic charges. Analyses show that, in agreement with previous studies, the right-handed helical conformation, αR, is not a local energy minimum of the potential energy surface of ALA. Comparisons with protein crystallographic data show that the characteristic differences between geometrical trends in dipeptides and proteins, previously found for ab initio dipeptide structures obtained without electron correlation, are also found in the electron-correlated geometries. In contrast to generally accepted features of force fields used in empirical molecular modeling, partial atomic charges obtained by the CHELPG method are found to be not constant, but to vary significantly throughout the φ,ψ-space. By comparing RHF and MP2 structures, the effects of dispersion forces on ALA were studied, revealing molecular contractions for those conformations, in which small adjustments of torsional angles entail large changes in non-bonded distances.

  2. Overview on the biotechnological production of L-DOPA.

    PubMed

    Min, Kyoungseon; Park, Kyungmoon; Park, Don-Hee; Yoo, Young Je

    2015-01-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine) has been widely used as a drug for Parkinson's disease caused by deficiency of the neurotransmitter dopamine. Since Monsanto developed the commercial process for L-DOPA synthesis for the first time, most of currently supplied L-DOPA has been produced by the asymmetric method, especially asymmetric hydrogenation. However, the asymmetric synthesis shows critical limitations such as a poor conversion rate and a low enantioselectivity. Accordingly, alternative biotechnological approaches have been researched for overcoming the shortcomings: microbial fermentation using microorganisms with tyrosinase, tyrosine phenol-lyase, or p-hydroxyphenylacetate 3-hydroxylase activity and enzymatic conversion by immobilized tyrosinase. Actually, Ajinomoto Co. Ltd commercialized Erwinia herbicola fermentation to produce L-DOPA from catechol. In addition, the electroenzymatic conversion system was recently introduced as a newly emerging scheme. In this review, we aim to not only overview the biotechnological L-DOPA production methods, but also to briefly compare and analyze their advantages and drawbacks. Furthermore, we suggest the future potential of biotechnological L-DOPA production as an industrial process.

  3. Elevated alanine aminotransferase (ALT) in the deceased donor: impact on early post-transplant liver allograft function.

    PubMed

    Mangus, Richard S; Fridell, Jonathan A; Kubal, Chandrashekhar A; Davis, Jason P; Tector, A Joseph

    2015-02-01

    Serum alanine aminotransferase (ALT) levels are frequently elevated with liver injury and such elevations are common in deceased organ donors. The impact of this injury on early liver allograft function has not been well described. This study analyses the immediate function and 1-year graft and patient survival for liver allografts stratified by peak serum ALT levels in the deceased donor. The on-site organ procurement records for 1348 consecutive deceased liver donors were reviewed (2001–2011). Serum ALT was categorized into three study groups: normal/mild elevation, 0–499 μ/L; moderate elevation, 500–999 μ/L (>10× upper limit of normal) and severe elevation, ≥1000 μ/L (>20× upper limit of normal). Outcomes included early graft function and graft loss, and 1-year graft and patient survival. Distribution of subjects included: normal/mild, 1259 (93%); moderate, 34 (3%) and severe, 55 (4%). Risk of 30-day graft loss for the three study groups was: 72 (6%), 3 (9%) and 3 (6%) (P = 0.74). Graft and patient survival at 1 year for the three groups was: normal/mild, 1031 (87%), 1048 (88%); moderate, 31 (91%), 31 (91%) and severe, 43 (88%), 44 (90%) (P = 0.71, 0.79). Cox proportional hazards modelling of survival while controlling for donor age and recipient model for end-stage liver disease score (MELD) demonstrates no statistically significant difference among the three study groups. This study demonstrates clinical equivalence in early graft function and 1-year graft and patient survival for donor livers with varying peak levels of serum ALT. These donor allografts may, therefore, be utilized successfully.

  4. Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques

    PubMed Central

    Huang, Xing-Jiu; Choi, Yang-Kyu; Im, Hyung-Soon; Yarimaga, Oktay; Yoon, Euisik; Kim, Hak-Sung

    2006-01-01

    The levels of aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) in serum can help people diagnose body tissues especially the heart and the liver are injured or not. This article provides a comprehensive review of research activities that concentrate on AST/GOT and ALT/GPT detection techniques due to their clinical importance. The detection techniques include colorimetric, spectrophotometric, chemiluminescence, chromatography, fluorescence and UV absorbance, radiochemical, and electrochemical techniques. We devote the most attention on experimental principle. In some methods a few representative devices and important conclusions are presented.

  5. L-Cysteine enhances nutrient absorption via a cystathionine-β-synthase-derived H2 S pathway in rodent jejunum.

    PubMed

    Xiao, Ailin; Li, Jing; Liu, Tianjian; Liu, Zhuxi; Wei, Chuanfei; Xu, Xiaomeng; Li, Qin; Li, Jingxin

    2016-05-01

    Hydrogen sulphide (H2 S) is generated endogenously from L-cysteine (L-Cys) by the enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). In addition, L-Cys is commonly used as a precursor in the food and pharmaceutical industries. The aim of the present study is to determine whether L-Cys regulates intestinal nutrient transport. To that end, the presence of CBS and CSE in the jejunum epithelium was assessed by immunohistochemistry, Western blotting and the methylene blue assay. In addition, in vivo L-Cys (100 mg/kg, administered immediately after the glucose load) significantly increased blood glucose levels 30 min after the oral administration of glucose to mice. This effect of L-Cys was completely blocked by amino-oxyacetic acid (AOA; 50 mg/kg; administered at the same time as L-Cys) an inhibitor of CBS. Measurements of the short-circuit current (Isc) in the rat jejunum epithelium revealed that L-Cys (1 mmol/L; 6 min before the administration of L-alanine) enhances Na(+)-coupled L-alanine or glucose transport, and that this effect is inhibited by AOA (1 mmol/L;10 min before the administration of L-Cys), but not D,L-propargylglycine (PAG;1 mmol/L; 10 min before the administration of L-Cys), a CSE inhibitor. Notably, L-Cys-evoked enhancement of nutrient transport was alleviated by glibenclamide (Gli;0.1 mmol/L; 10 min before the administration of L-Cys), a K(+) channel blocker. Together, the data indicate that L-Cys enhances jejunal nutrient transport, suggesting a new approach to future treatment of nutrition-related maladies, including a range of serious health consequences linked to undernutrition. © 2016 John Wiley & Sons Australia, Ltd.

  6. Folding and Function of a T4 Lysozyme Containing 10 Consecutive Alanines Illustrate the Redundancy of Information in an Amino Acid Sequence

    NASA Astrophysics Data System (ADS)

    Heinz, Dirk W.; Baase, Walt A.; Matthews, Brian W.

    1992-05-01

    Single and multiple Xaa -> Ala substitutions were constructed in the α-helix comprising residues 39-50 in bacteriophage T4 lysozyme. The variant with alanines at 10 consecutive positions (A40-49) folds normally and has activity essentially the same as wild type, although it is less stable. The crystal structure of this polyalanine mutant displays no significant change in the main-chain atoms of the helix when compared with the wild-type structure. The individual substitutions of the solvent-exposed residues Asn-40, Ser-44, and Glu-45 with alanine tend to increase the thermostability of the protein, whereas replacements of the buried or partially buried residues Lys-43 and Leu-46 are destabilizing. The melting temperature of the lysozyme in which Lys-43 and Leu-46 are retained and positions 40, 44, 45, 47, and 48 are substituted with alanine (i.e., A40-42/44-45/47-49) is increased by 3.1^circC relative to wild type at pH 3.0, but reduced by 1.6^circC at pH 6.7. In the case of the charged amino acids Glu-45 and Lys-48, the changes in melting temperature indicate that the putative salt bridge between these two residues contributes essentially nothing to the stability of the protein. The results clearly demonstrate that there is considerable redundancy in the sequence information in the polypeptide chain; not every amino acid is essential for folding. Also, further evidence is provided that the replacement of fully solvent-exposed residues within α-helices with alanines may be a general way to increase protein stability. The general approach may permit a simplification of the protein folding problem by retaining only amino acids proven to be essential for folding and replacing the remainder with alanine.

  7. Amino Acid Isotopic Trophic Enrichment in Mesozooplankton: Is Alanine a Better Predictor of Protistan Grazer Steps?

    NASA Astrophysics Data System (ADS)

    Decima, M.; Landry, M. R.; Bradley, C. J.; Fogel, M. L.

    2016-02-01

    Food-web studies within marine environments are increasingly reliant upon results from compound-specific isotope analysis of amino acids (CSIA-AA). The approach is advantageous because it allows consumer trophic positions to be estimated without sampling the dynamic primary producers. The baseline signal in the source AA phenylalanine is preserved, and a constant enrichment in glutamic acid at each trophic step is assumed, regardless of consumer type or diet. However, a number of recent studies challenge the assumption of universal and invariant isotopic fractionation of glutamic acid for all trophic levels, as well as its specific applicability to the main grazers in the ocean: the protistan microzooplankton. We present results from both laboratory and field studies that further explore this issue. Experiments include six 2-stage chemostats, using two different microzooplankton-phytoplankton pairs and one copepod-phytoplankton pair, and one 3-stage experiment using a copepod-microzooplankton-phytoplankton chain. We confirm previous observations of negligible fractionation of glutamic acid in protistan consumers when nutrients are limiting. In contrast, a consistent trophic enrichment effect was observed for alanine, with increasing δ15N values by trophic level for both metazoan and protistan consumers. A re-analysis of published CSIA-AA data of zooplankton species show that an index using alanine and phenylalanine gives trophic level estimates closer to expected given current understanding of the linkages within microbial food webs. Our results examine the details of isotopic fractionation of alanine within defined food chains and generally support its potential use as a trophic level indicator that includes the protistan contribution to mesozooplankton diet.

  8. Structures and ice-binding faces of the alanine-rich type I antifreeze proteins.

    PubMed

    Patel, Shruti N; Graether, Steffen P

    2010-04-01

    Antifreeze proteins (AFPs) protect cold-blooded organisms from the damage caused by freezing through their ability to inhibit ice growth. The type I AFP family, found in several fish species, contains proteins that have a high alanine content (>60% of the sequence) and structures that are almost all alpha-helical. We examine the structure of the type I AFP isoforms HPLC6 from winter flounder, shorthorn sculpin 3, and the winter flounder hyperactive type I AFP. The HPLC6 isoform structure consists of a single alpha-helix that is 37 residues long, whereas the shorthorn sculpin 3 isoform consists of two helical regions separated by a kink. The high-resolution structure of the hyperactive type I AFP has yet to be determined, but circular dichroism data and analytical ultracentrifugation suggest that the 195 residue protein is a side-by-side dimer of two alpha-helices. The alanine-rich ice-binding faces of HPLC6 and hyperactive type I AFP are discussed, and we propose that the ice-binding face of the shorthorn sculpin 3 AFP contains Ala14, Ala19, and Ala25. We also propose that the denaturation of hyperactive type I AFP at room temperature is explained by the stabilization of the dimerization interface through hydrogen bonds.

  9. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.

    PubMed

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  10. Crystal structure and confirmation of the alanine:glyoxylate aminotransferase activity of the YFL030w yeast protein.

    PubMed

    Meyer, Philippe; Liger, Dominique; Leulliot, Nicolas; Quevillon-Cheruel, Sophie; Zhou, Cong-Zhao; Borel, Franck; Ferrer, Jean-Luc; Poupon, Anne; Janin, Joël; van Tilbeurgh, Herman

    2005-12-01

    We have determined the three-dimensional crystal structure of the protein encoded by the open reading frame YFL030w from Saccharomyces cerevisiae to a resolution of 2.6 A using single wavelength anomalous diffraction. YFL030w is a 385 amino-acid protein with sequence similarity to the aminotransferase family. The structure of the protein reveals a homodimer adopting the fold-type I of pyridoxal 5'-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure. The protein shows close structural resemblance with the human alanine:glyoxylate aminotransferase (EC 2.6.1.44), an enzyme involved in the hereditary kidney stone disease primary hyperoxaluria type 1. In this paper we show that YFL030w codes for an alanine:glyoxylate aminotransferase, highly specific for its amino donor and acceptor substrates.

  11. Orally administered L-arginine and glycine are highly effective against acid reflux esophagitis in rats

    PubMed Central

    Nagahama, Kenji; Nishio, Hikaru; Yamato, Masanori; Takeuchi, Koji

    2012-01-01

    Summary Background Reflux esophagitis is caused mainly by excessive exposure of the mucosa to gastric contents. In the present study, we examined the effect of several amino acids on acid reflux esophagitis in rats. Material/Methods After 18 h of fasting, acid reflux esophagitis was induced by ligating both the pylorus and the transitional region between the forestomach and the corpus under ether anesthesia, and the animals were killed 4 h later. The severity of esophagitis was reduced by the oral administration of omeprazole, a proton pump inhibitor, or pepstatin, a specific pepsin inhibitor. Results The development of esophageal lesions was dose-dependently prevented by L-arginine and glycine, given intragastrically (i.g.) after the ligation, with complete inhibition obtained at 250 mg/kg and 750 mg/kg, respectively, and these effects were not influenced by the prior s.c. administration of indomethacin or L-NAME. By contrast, both L-alanine and L-glutamine given i.g. after the ligation aggravated these lesions in a dose-dependent manner. These amino acids had no effect on acid secretion but increased the pH of the gastric contents to 1.8~2.3 due to their buffering action. Conclusions The results confirmed an essential role for acid and pepsin in the pathogenesis of acid reflux esophagitis in the rat model and further suggested that various amino acids affect the severity of esophagitis in different ways, due to yet unidentified mechanisms; L-alanine and L-glutamine exert a deleterious effect on the esophagitis, while L-arginine and glycine are highly protective, independent of endogenous prostaglandins and nitric oxide. PMID:22207112

  12. Beta-alanine supplementation improves isometric, but not isotonic or isokinetic strength endurance in recreationally strength-trained young men.

    PubMed

    Bassinello, Diogo; de Salles Painelli, Vitor; Dolan, Eimear; Lixandrão, Manoel; Cajueiro, Monique; de Capitani, Mariana; Saunders, Bryan; Sale, Craig; Artioli, Guilherme G; Gualano, Bruno; Roschel, Hamilton

    2018-06-15

    β-Alanine (BA) supplementation may be ergogenic during high-intensity exercise, primarily due to the buffering of hydrogen cations, although the effects of beta-alanine supplementation on strength endurance are equivocal. The aim of the study was to determine the effects of 4 weeks of beta-alanine supplementation on skeletal muscle endurance using a battery of performance tests. This study employed a parallel group, repeated measures, randomised, double-blinded and placebo-controlled design. Twenty recreationally strength-trained healthy males completed tests of isotonic strength endurance (repeated bench and leg press), along with tests of isometric and isokinetic endurance conducted using an isokinetic dynamometer. Tests were performed before and after a 4 week intervention, comprising an intake of 6.4 g day -1 of BA (n = 9) or placebo (maltodextrin, n = 11). Time-to-exhaustion during the isometric endurance test improved by ~ 17% in the BA group (p < 0.01), while PL remained unchanged. No significant within-group differences (p > 0.1) were shown for any of the performance variables in the isokinetic test (peak torque, fatigue index, total work) nor for the total number of repetitions performed in the isotonic endurance tests (leg or bench press). Four weeks of BA supplementation (6.4 g day -1 ) improved isometric, but not isokinetic or isotonic endurance performance.

  13. Complex association of serum alanine aminotransferase with the risk of future cardiovascular disease in type 2 diabetes.

    PubMed

    Afarideh, Mohsen; Aryan, Zahra; Ghajar, Alireza; Noshad, Sina; Nakhjavani, Manouchehr; Baber, Usman; Mechanick, Jeffrey I; Esteghamati, Alireza

    2016-11-01

    We aimed to determine the prospective association between baseline serum levels of alanine aminotransferase (ALT) and the incident cardiovascular disease (CVD) in people with type 2 diabetes. In an open cohort setting, people with type 2 diabetes were followed for their first ever CVD presentation from 1995 to 2015. Statistical methods included Cox regression analysis for reporting of hazard ratios (HRs), artificial neural network modelings, and risk reclassification analyses. We found a nearly constant CVD hazard with baseline serum ALT levels below the 30 IU/L mark, whereas baseline serum ALT levels ≥ 30 IU/L remained an independent predictor of lower CVD rates in patients with type 2 diabetes in the final multivariate Cox proportional hazards regression model (HR: 0.204, 95%CI [0.060-0.689], p for trend value = 0.006). Age, male gender and fasting plasma insulin levels independently predicted baseline serum ALT ≥ 30 IU/L among the population cohort. Augmentation of serum ALT into the weighted Framingham risk score resulted in a considerable net reclassification improvement (NRI) of coronary heart disease (CHD) risk prediction in the study population (NRI = 9.05% (8.01%-10.22%), p value < 0.05). Serum ALT could successfully reclassify about 9% of the population with type 2 diabetes across the CHD-affected and CHD-free categories. Overall, our findings demonstrate a complex and nonlinear relationship for the risk of future CVD by baseline serum ALT levels in patients with type 2 diabetes. Further studies are warranted to confirm whether this complex association could be translated into a clearly visible U or J-shaped figure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. High performance microbiological transformation of L-tyrosine to L-dopa by Yarrowia lipolytica NRRL-143

    PubMed Central

    Ali, Sikander; Shultz, Jeffry L; Ikram-ul-Haq

    2007-01-01

    Background The 3,4-dihydroxy phenyl L-alanine (L-dopa) is a drug of choice for Parkinson's disease, controlling changes in energy metabolism enzymes of the myocardium following neurogenic injury. Aspergillus oryzae is commonly used for L-dopa production; however, potential improvements in ease of handling, growth rate and environmental impact have led to an interest in exploiting alternative yeasts. The two important elements required for L-dopa production are intracellular tyrosinases (thus pre-grown yeast cells are required for the transformation of L-tyrosine to L-dopa) and L-ascorbate, which acts as a reducing agent. Results Pre-grown cells of Yarrowia lipolytica NRRL-143 were used for the microbiological transformation of L-tyrosine to L-dopa. Different diatomite concentrations (0.5–3.0 mg/ml) were added to the acidic (pH 3.5) reaction mixture. Maximum L-dopa biosynthesis (2.96 mg/ml L-dopa from 2.68 mg/ml L-tyrosine) was obtained when 2.0 mg/ml diatomite was added 15 min after the start of the reaction. After optimizing reaction time (30 min), and yeast cell concentration (2.5 mg/ml), an overall 12.5 fold higher L-dopa production rate was observed when compared to the control. Significant enhancements in Yp/s, Qs and qs over the control were observed. Conclusion Diatomite (2.0 mg/ml) addition 15 min after reaction commencement improved microbiological transformation of L-tyrosine to L-dopa (3.48 mg/ml; p ≤ 0.05) by Y. lipolytica NRRL-143. A 35% higher substrate conversion rate was achieved when compared to the control. PMID:17705832

  15. Effect of taurine on the concentrations of glutamate, GABA, glutamine and alanine in the rat striatum and hippocampus.

    PubMed

    Molchanova, Svetlana M; Oja, Simos S; Saransaari, Pirjo

    2007-01-01

    Taurine, a non-protein amino acid, acts as an osmoregulator and inhibitory neuromodulator in the brain. Here we studied the effects of intraperitoneal injections of taurine on the concentrations of glutamate and GABA, and their precursors, glutamine and alanine, in the rat striatum and hippocampus. Injections of 0.25, 0.5 and 1 g/kg taurine led to a gradual increase in taurine tissue concentrations in both hippocampus and striatum. Glutamate and GABA also increased in the hippocampus, but not in the striatum. Glutamine increased and alanine decreased markedly in both brain structures. The results corroborate the neuromodulatory role of taurine in the brain. Taurine administration results in an imbalance in inhibitory and excitatory neurotransmission in the glutamatergic (hippocampus) and GABAergic (striatum) brain structures, affecting more markedly the neurotransmitter precursors.

  16. Utility of the FIB-4 Index for hepatocarcinogenesis in hepatitis C virus carriers with normal alanine aminotransferase levels.

    PubMed

    Ito, T; Kumada, T; Toyoda, H; Tada, T; Kiriyama, S; Tanikawa, M; Hisanaga, Y; Kanamori, A; Kitabatake, S

    2015-10-01

    The FIB-4 index is a simple formula using age, aspartate aminotransferase, alanine aminotransferase (ALT) and platelet count to evaluate liver fibrosis. We investigated the ability of the FIB-4 index for hepatocarcinogenesis in hepatitis C virus (HCV) carriers with normal ALT levels. A total of 516 patients with ALT levels persistently at or below 40 IU/L during an observation period of over 3 years were included. Factors associated with the development of HCC were determined. Hepatocellular carcinoma (HCC) developed in 60 of 516 patients (11.6%). The incidence rate of HCC at 5 and 10 years was 2.6% and 17.6%, respectively. When patients were categorized according to the FIB-4 index as ≤ 2.0 (n = 226), >2.0 and ≤ 4.0 (n = 169), and > 4.0 (n = 121), the cumulative incidence of HCC at 5 years was 0.5%, 1.3% and 8.0%, respectively, and 2.8%, 25.6% and 37.1% at 10 years, respectively. Patients with FIB-4 index >4.0 were at the highest risk (P < 0.001). Factors that were significantly associated with HCC in the multivariate analysis were FIB-4 index >2.0 (hazard ratio (HR), 7.690), FIB-4 index >4.0 (HR, 8.991), α-fetoprotein (AFP) >5 ng/mL (HR, 2.742), AFP >10 ng/mL (HR, 4.915) and total bilirubin >1.2 mg/dL (HR, 2.142). A scoring system for hepatocarcinogenesis that combines the FIB-4 index and AFP predicted patient outcomes with excellent discriminative ability. The FIB-4 index is strongly associated with the risk of HCC in HCV carriers with normal ALT levels. © 2015 John Wiley & Sons Ltd.

  17. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production.

    PubMed

    Chen, Cheng; Li, Yanyan; Hu, Jinyu; Dong, Xunyan; Wang, Xiaoyuan

    2015-05-01

    In this study, an L-valine-producing strain was developed from Corynebacterium glutamicum ATCC13869 through deletion of the three genes aceE, alaT and ilvA combined with the overexpression of six genes ilvB, ilvN, ilvC, lrp1, brnF and brnE. Overexpression of lrp1 alone increased L-valine production by 16-fold. Deletion of the aceE, alaT and ilvA increased L-valine production by 44-fold. Overexpression of the six genes ilvB, ilvN, ilvC, lrp1, brnE and brnF in the triple deletion mutant WCC003 further increased L-valine production. The strain WCC003/pJYW-4-ilvBNC1-lrp1-brnFE produced 243mM L-valine in flask cultivation and 437mM (51g/L) L-valine in fed-batch fermentation and lacked detectable amino-acid byproduct such as l-alanine and l-isoleucine that are usually found in the fermentation of L-valine-producing C. glutamicum. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Structural and Functional Importance of Transmembrane Domain 3 (TM3) in the Aspartate:Alanine Antiporter AspT: Topology and Function of the Residues of TM3 and Oligomerization of AspT▿

    PubMed Central

    Nanatani, Kei; Maloney, Peter C.; Abe, Keietsu

    2009-01-01

    AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrate translocation pathway that includes the binding site for the substrates. To elucidate the role of TM3 in the transport process, we carried out cysteine-scanning mutagenesis. The substitutions of tyrosine 75 and serine 84 had the strongest inhibitory effects on transport (initial rates of l-aspartate transport were below 15% of the rate for cysteine-less AspT). Considerable but less-marked effects were observed upon the replacement of methionine 70, phenylalanine 71, glycine 74, arginine 76, serine 83, and methionine 85 (initial rates between 15% and 30% of the rate for cysteine-less AspT). Introduced cysteine residues at the cytoplasmic half of TM3 could be labeled with Oregon green maleimide (OGM), whereas cysteines close to the periplasmic half (residues 64 to 75) were not labeled. These results suggest that TM3 has a hydrophobic core on the periplasmic half and that hydrophilic residues on the cytoplasmic half of TM3 participate in the formation of an aqueous cavity in membranes. Furthermore, the presence of l-aspartate protected the cysteine introduced at glycine 62 against a reaction with OGM. In contrast, l-aspartate stimulated the reactivity of the cysteine introduced at proline 79 with OGM. These results demonstrate that TM3 undergoes l-aspartate-induced conformational alterations. In addition, nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and a glutaraldehyde cross-linking assay suggest that functional AspT forms homo-oligomers as a

  19. Structural and functional importance of transmembrane domain 3 (TM3) in the aspartate:alanine antiporter AspT: topology and function of the residues of TM3 and oligomerization of AspT.

    PubMed

    Nanatani, Kei; Maloney, Peter C; Abe, Keietsu

    2009-04-01

    AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrate translocation pathway that includes the binding site for the substrates. To elucidate the role of TM3 in the transport process, we carried out cysteine-scanning mutagenesis. The substitutions of tyrosine 75 and serine 84 had the strongest inhibitory effects on transport (initial rates of l-aspartate transport were below 15% of the rate for cysteine-less AspT). Considerable but less-marked effects were observed upon the replacement of methionine 70, phenylalanine 71, glycine 74, arginine 76, serine 83, and methionine 85 (initial rates between 15% and 30% of the rate for cysteine-less AspT). Introduced cysteine residues at the cytoplasmic half of TM3 could be labeled with Oregon green maleimide (OGM), whereas cysteines close to the periplasmic half (residues 64 to 75) were not labeled. These results suggest that TM3 has a hydrophobic core on the periplasmic half and that hydrophilic residues on the cytoplasmic half of TM3 participate in the formation of an aqueous cavity in membranes. Furthermore, the presence of l-aspartate protected the cysteine introduced at glycine 62 against a reaction with OGM. In contrast, l-aspartate stimulated the reactivity of the cysteine introduced at proline 79 with OGM. These results demonstrate that TM3 undergoes l-aspartate-induced conformational alterations. In addition, nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and a glutaraldehyde cross-linking assay suggest that functional AspT forms homo-oligomers as a

  20. Understanding the antimicrobial properties/activity of an 11-residue Lys homopeptide by alanine and proline scan.

    PubMed

    Carvajal-Rondanelli, P; Aróstica, M; Álvarez, C A; Ojeda, C; Albericio, F; Aguilar, L F; Marshall, S H; Guzmán, F

    2018-05-01

    Previous work demonstrated that lysine homopeptides adopt a polyproline II (PPII) structure. Lysine homopeptides with odd number of residues, especially with 11 residues (K11), were capable of inhibiting the growth of a broader spectrum of bacteria than those with an even number. Confocal studies also determined that K11 was able to localize exclusively in the bacterial membrane, leading to cell death. In this work, the mechanism of action of this peptide was further analyzed focused on examining the structural changes in bacterial membrane induced by K11, and in K11 itself when interacting with bacterial membrane lipids. Moreover, alanine and proline scans were performed for K11 to identify relevant positions in structure conformation and antibacterial activity. To do so, circular dichroism spectroscopy (CD) was conducted in saline phosphate buffer (PBS) and in lipidic vesicles, using large unilamellar vesicles (LUV), composed of 2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) or bacterial membrane lipid. Antimicrobial activity of K11 and their analogs was evaluated in Gram-positive and Gram-negative bacterial strains. The scanning electron microscopy (SEM) micrographs of Staphylococcus aureus ATCC 25923 exposed to the Lys homopeptide at MIC concentration showed blisters and bubbles formed on the bacterial surface, suggesting that K11 exerts its action by destabilizing the bacterial membrane. CD analysis revealed a remarkably enhanced PPII structure of K11 when replacing some of its central residues by proline in PBS. However, when such peptide analogs were confronted with either DMPG-LUV or membrane lipid extract-LUV, the tendency to form PPII structure was severely weakened. On the contrary, K11 peptide showed a remarkably enhanced PPII structure in the presence of DMPG-LUV. Antibacterial tests revealed that K11 was able to inhibit all tested bacteria with an MIC value of 5 µM, while proline and alanine analogs have a reduced activity on Listeria

  1. Precision and sensitivity of the measurement of 15N enrichment in D-alanine from bacterial cell walls using positive/negative ion mass spectrometry

    NASA Technical Reports Server (NTRS)

    Tunlid, A.; Odham, G.; Findlay, R. H.; White, D. C.

    1985-01-01

    Sensitive detection of cellular components from specific groups of microbes can be utilized as 'signatures' in the examination of microbial consortia from soils, sediments or biofilms. Utilizing capillary gas chromatography/mass spectrometry and stereospecific derivatizing agents, D-alanine, a component localized in the prokaryotic (bacterial) cell wall, can be detected reproducibly. Enrichments of D-[15N]alanine determined in E. coli grown with [15N]ammonia can be determined with precision at 1.0 atom%. Chemical ionization with methane gas and the detection of negative ions (M - HF)- and (M - F or M + H - HF)- formed from the heptafluorobutyryl D-2 butanol ester of D-alanine allowed as little as 8 pg (90 fmol) to be detected reproducibly. This method can be utilized to define the metabolic activity in terms of 15N incorporation at the level of 10(3)-10(4) cells, as a function of the 15N-14N ratio.

  2. Lattice dynamical and dielectric properties of L-amino acids

    NASA Astrophysics Data System (ADS)

    Tulip, P. R.; Clark, S. J.

    2006-08-01

    We present the results of ab initio calculations of the lattice dynamical and dielectric properties of the L-amino acids L-alanine, L-leucine, and L-isoleucine. Normal-mode frequencies and dielectric permittivity tensors are obtained using density-functional perturbation theory implemented within the plane-wave pseudopotential approximation. IR spectra are calculated and are used to analyze the effects of intermolecular interactions and zwitterionization upon the lattice dynamics. It is found that vibronic modes associated with the carboxy and amino functional groups undergo modification from their free-molecule values due to the presence of hydrogen bonds. The role of macroscopic electric fields set up by zone-center normal modes in the lattice dynamics is investigated by analysis of the Born effective charge. Calculated permittivity tensors are found to be greater than would be obtained by a naive use of the isolated molecular values, indicating the role of intermolecular interactions in increasing molecular polarizability.

  3. Enzymatic preparation of. cap alpha. - and. beta. -deuterated or tritiated amino acids with l-methionine. gamma. -lyase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esaki, N.; Sawada, S.; Tanaka, H.

    L-Methionine ..gamma..-lyase catalyzes the exchange of ..cap alpha..- and ..beta..-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium or tritium of solvents. The rate of ..cap alpha..-hydrogen exchange with deuterium was about 40 times faster than that of the elimination reactions. The deuterium and tritium were exchanged also with the ..cap alpha..- and ..beta..-hydrogens of the straight-chain amino acids which do not undergo the elimination: L-alanine, L-..cap alpha..-aminobutyrate, L-norvaline, and L-norleucine. No exchange occurs for the D-isomers, acidic L-amino acids, basic L-amino acids, and branched-chain L-amino acids, although ..cap alpha..-hydrogen of glycine, L-trypotophan, and L-phenylalanine is exchanged slowly. These enzymatic hydrogen-exchange reactionsmore » facilitate specific labeling of the L-amino acids with deuterium and tritium.« less

  4. Structure of GroEL in Complex with an Early Folding Intermediate of Alanine Glyoxylate Aminotransferase*

    PubMed Central

    Albert, Armando; Yunta, Cristina; Arranz, Rocío; Peña, Álvaro; Salido, Eduardo; Valpuesta, José María; Martín-Benito, Jaime

    2010-01-01

    Primary hyperoxaluria type 1 is a rare autosomal recessive disease caused by mutations in the alanine glyoxylate aminotransferase gene (AGXT). We have previously shown that P11L and I340M polymorphisms together with I244T mutation (AGXT-LTM) represent a conformational disease that could be amenable to pharmacological intervention. Thus, the study of the folding mechanism of AGXT is crucial to understand the molecular basis of the disease. Here, we provide biochemical and structural data showing that AGXT-LTM is able to form non-native folding intermediates. The three-dimensional structure of a complex between the bacterial chaperonin GroEL and a folding intermediate of AGXT-LTM mutant has been solved by cryoelectron microscopy. The electron density map shows the protein substrate in a non-native extended conformation that crosses the GroEL central cavity. Addition of ATP to the complex induces conformational changes on the chaperonin and the internalization of the protein substrate into the folding cavity. The structure provides a three-dimensional picture of an in vivo early ATP-dependent step of the folding reaction cycle of the chaperonin and supports a GroEL functional model in which the chaperonin promotes folding of the AGXT-LTM mutant protein through forced unfolding mechanism. PMID:20056599

  5. Structure of GroEL in complex with an early folding intermediate of alanine glyoxylate aminotransferase.

    PubMed

    Albert, Armando; Yunta, Cristina; Arranz, Rocío; Peña, Alvaro; Salido, Eduardo; Valpuesta, José María; Martín-Benito, Jaime

    2010-02-26

    Primary hyperoxaluria type 1 is a rare autosomal recessive disease caused by mutations in the alanine glyoxylate aminotransferase gene (AGXT). We have previously shown that P11L and I340M polymorphisms together with I244T mutation (AGXT-LTM) represent a conformational disease that could be amenable to pharmacological intervention. Thus, the study of the folding mechanism of AGXT is crucial to understand the molecular basis of the disease. Here, we provide biochemical and structural data showing that AGXT-LTM is able to form non-native folding intermediates. The three-dimensional structure of a complex between the bacterial chaperonin GroEL and a folding intermediate of AGXT-LTM mutant has been solved by cryoelectron microscopy. The electron density map shows the protein substrate in a non-native extended conformation that crosses the GroEL central cavity. Addition of ATP to the complex induces conformational changes on the chaperonin and the internalization of the protein substrate into the folding cavity. The structure provides a three-dimensional picture of an in vivo early ATP-dependent step of the folding reaction cycle of the chaperonin and supports a GroEL functional model in which the chaperonin promotes folding of the AGXT-LTM mutant protein through forced unfolding mechanism.

  6. Autoantibodies in infectious mononucleosis have specificity for the glycine-alanine repeating region of the Epstein-Barr virus nuclear antigen

    PubMed Central

    1987-01-01

    Viruses have been postulated to be involved in the induction of autoantibodies by: autoimmunization with tissue proteins released by virally induced tissue damage; immunization with virally encoded antigens bearing molecular similarities to normal tissue proteins; or nonspecific (polyclonal) B cell stimulation by the infection. Infectious mononucleosis (IM) is an experiment of nature that provides the opportunity for examining these possibilities. We show here that IgM antibodies produced in this disease react with at least nine normal tissue proteins, in addition to the virally encoded Epstein-Barr nuclear antigen (EBNA-1). The antibodies are generated to configurations in the glycine-alanine repeat region of EBNA-1 and are crossreactive with the normal tissue proteins through similar configurations, as demonstrated by the effectiveness of a synthetic glycine-alanine peptide in inhibiting the reactions. The antibodies are absent in preillness sera and gradually disappear over a period of months after illness, being replaced by IgG anti-EBNA-1 antibodies that do not crossreact with the normal tissue proteins but that are still inhibited by the glycine-alanine peptide. These findings are most easily explained by either a molecular mimicry model of IgM autoantibody production or by the polyclonal activation of a germline gene for a crossreactive antibody. It also indicates a selection of highly specific, non-crossreactive anti-EBNA-1 antibodies during IgM to IgG isotype switching. PMID:2435830

  7. Echinococcus granulosus (Cestoda): uptake of L-amino acids by secondary hydatid cysts.

    PubMed

    Jeffs, S A; Arme, C

    1988-02-01

    The uptake of cycloleucine, L-proline, L-alanine and L-threonine by secondary hydatid cysts of Echinococcus granulosus (U.K. horse strain 3-8 mm in diameter, derived from Balb/c mice infected 300-400 days previously) occurs by passive diffusion into the cyst wall (laminated layer plus germinal layer) and by mediated mechanisms into the fluid-filled interior. The maximal concentrations of these compounds are achieved after incubation for 2 h in vitro and approach those in vivo. Kt and Vmax values describing the uptake of these compounds are given. The flux rates for these compounds are extremely slow compared to those obtained with the protoscolex. A rationale for standardizing the experimental method for uptake studies with hydatid cysts is described.

  8. Brain oxygen utilization is unchanged by hypoglycemia in normal humans: lactate, alanine, and leucine uptake are not sufficient to offset energy deficit.

    PubMed

    Lubow, Jeffrey M; Piñón, Ivan G; Avogaro, Angelo; Cobelli, Claudio; Treeson, David M; Mandeville, Katherine A; Toffolo, Gianna; Boyle, Patrick J

    2006-01-01

    During hypoglycemia, substrates other than glucose have been suggested to serve as alternate neural fuels. We evaluated brain uptake of endogenously produced lactate, alanine, and leucine at euglycemia and during insulin-induced hypoglycemia in 17 normal subjects. Cross-brain arteriovenous differences for plasma glucose, lactate, alanine, leucine, and oxygen content were quantitated. Cerebral blood flow (CBF) was measured by Fick methodology using N(2)O as the dilution indicator gas. Substrate uptake was measured as the product of CBF and the arteriovenous concentration difference. As arterial glucose concentration fell, cerebral oxygen utilization and CBF remained unchanged. Brain glucose uptake (BGU) decreased from 36.3+/-2.6 to 26.6+/-2.1 micromol.100 g of brain(-1).min(-1) (P<0.001), equivalent to a drop in ATP of 291 micromol.100 g(-1).min(-1). Arterial lactate rose (P<0.001), whereas arterial alanine and leucine fell (P<0.009 and P<0.001, respectively). Brain lactate uptake (BLU) increased from a net release of -1.8+/- 0.6 to a net uptake of 2.5+/-1.2 micromol.100 g(-1).min(-1) (P<0.001), equivalent to an increase in ATP of 74 micromol.100 g(-1).min(-1). Brain leucine uptake decreased from 7.1+/-1.2 to 2.5 +/- 0.5 micromol.100 g(-1).min(-1) (P<0.001), and brain alanine uptake trended downward (P<0.08). We conclude that the ATP generated from the physiological increase in BLU during hypoglycemia accounts for no more than 25% of the brain glucose energy deficit.

  9. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-01

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the Cdbnd O bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  10. Molecular Determinants for Functional Differences between Alanine-Serine-Cysteine Transporter 1 and Other Glutamate Transporter Family Members*

    PubMed Central

    Scopelliti, Amanda J.; Ryan, Renae M.; Vandenberg, Robert J.

    2013-01-01

    The ASCTs (alanine, serine, and cysteine transporters) belong to the solute carrier family 1 (SLC1), which also includes the human glutamate transporters (excitatory amino acid transporters, EAATs) and the prokaryotic aspartate transporter GltPh. Despite the high degree of amino acid sequence identity between family members, ASCTs function quite differently from the EAATs and GltPh. The aim of this study was to mutate ASCT1 to generate a transporter with functional properties of the EAATs and GltPh, to further our understanding of the structural basis for the different transport mechanisms of the SLC1 family. We have identified three key residues involved in determining differences between ASCT1, the EAATs and GltPh. ASCT1 transporters containing the mutations A382T, T459R, and Q386E were expressed in Xenopus laevis oocytes, and their transport and anion channel functions were investigated. A382T and T459R altered the substrate selectivity of ASCT1 to allow the transport of acidic amino acids, particularly l-aspartate. The combination of A382T and T459R within ASCT1 generates a transporter with a similar profile to that of GltPh, with preference for l-aspartate over l-glutamate. Interestingly, the amplitude of the anion conductance activated by the acidic amino acids does not correlate with rates of transport, highlighting the distinction between these two processes. Q386E impaired the ability of ASCT1 to bind acidic amino acids at pH 5.5; however, this was reversed by the additional mutation A382T. We propose that these residues differences in TM7 and TM8 combine to determine differences in substrate selectivity between members of the SLC1 family. PMID:23393130

  11. Ethnobotanical, phytochemical and toxicological studies of Xanthium strumarium L.

    PubMed

    Islam, Mohammad Rashedul; Uddin, Mohammad Zashim; Rahman, Mohammad Sharifur; Tutul, Ershad; Rahman, Mohammed Zakiur; Hassan, Md Abul; Faiz, M A; Hossain, Moazzem; Hussain, Maleeha; Rashid, Mohammad Abdur

    2009-12-01

    The present study describes the ethnobotanical, phytochemical, and toxicological evaluations of Xanthium strumarium L. growing in Bangladesh. In toxicity evaluation on rats, the methanol extract of seedlings showed mortality, while both seedling and mature plant extracts raised the serum alanine transaminase and aspartate transaminase values and produced significant abnormalities in the histopathology of liver and kidney of rats. On the other hand, the aqueous soluble fraction of methanol extract of mature plant (LC50 = 0.352 microg/mL) and methanol crude extract of seedlings (LC50 = 0.656 microg/mL) demonstrated significant toxicity in the brine shrimp lethality bioassay. A total of four compounds were purified and characterized as stigmasterol (1), 11-hydroxy-11-carboxy-4-oxo-1(5),2(Z)-xanthadien-12,8-olide (2), daucosterol (3) and lasidiol-10-anisate (4). The present study suggests that X. strumarium is toxic to animal.

  12. Simultaneous analysis of D-alanine, D-aspartic acid, and D-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues.

    PubMed

    Karakawa, Sachise; Shimbo, Kazutaka; Yamada, Naoyuki; Mizukoshi, Toshimi; Miyano, Hiroshi; Mita, Masashi; Lindner, Wolfgang; Hamase, Kenji

    2015-11-10

    A highly sensitive and selective chiral LC-MS/MS method for D-alanine, D-aspartic acid and D-serine has been developed using the precolumn derivatization reagents, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ-Tag) or p-N,N,N-trimethylammonioanilyl N'-hydroxysuccinimidyl carbamate iodide (TAHS). The thus N-tagged enantiomers of the derivatized amino acids were nicely separated within 20min using the cinchona alkaloid-based zwittterionic ion-exchange type enantioselective column, Chiralpak ZWIX(+). The selected reaction monitoring was applied for detecting the target d-amino acids in biological matrices. By using the present chiral LC-MS/MS method, the three d-amino acids and their l-forms could be simultaneously determined in the range of 0.1-500nmol/mL. Finally, the technique was successfully applied to rat plasma and tissue samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Conformational Changes of the Alanine Dipeptide in Water-Ethanol Binary Mixtures.

    PubMed

    Almeida, Glauco G; Cordeiro, João M M; Martín, M Elena; Aguilar, Manuel A

    2016-04-12

    Experimental work developed in the last years has evidenced the capacity of alcohols and polyalcohols to modify the energy landscape of peptides and proteins. However, the mechanism underlying this effect is not clear. Taking as a model system the alanine dipeptide (AD) we perform a QM/MM study in water, ethanol, and a 40-60% in volume water-ethanol mixture. The AD molecule was described at the MP2/aug-cc-pVDZ level. In polar solution, only αR and PPII conformers contribute in an appreciable way to the conformational equilibrium. The final in solution αR-PPII free energy difference is determined from the interplay between the internal energy of the dipeptide and the solute-solvent interaction free energy. Internal energy favors the formation of PPII, whereas, on the contrary, solute-solvent interaction is favorable to αR, so any factor that decreases the solute-solvent interaction free energy will increase the PPII population. The addition of ethanol increases the stability of the PPII conformer. Our results point to the presence of preferential solvation in this system, the composition of the first solvation shell in the binary mixture being dominated by water molecules. Remarkably, this fact does not affect the differential conformational stability that is controlled by long-range interactions. From the analysis of solvent density maps it is concluded that, in the water-ethanol mixture, ethanol molecules are more likely found around the alanine side chain and the carbonyl group, but while in PPII ethanol molecules interact mainly with the carbonyl group of the N-terminal end, in C5 the interaction is with the carbonyl group of the C-terminal end. In αR, ethanol interacts with both carbonyl groups.

  14. L-glutamine supplementations enhance liver glutamine-glutathione axis and heat shock factor-1 expression in endurance-exercise trained rats.

    PubMed

    Petry, Éder Ricardo; Cruzat, Vinicius Fernandes; Heck, Thiago Gomes; Homem de Bittencourt, Paulo Ivo; Tirapegui, Julio

    2015-04-01

    Liver L-glutamine is an important vehicle for the transport of ammonia and intermediary metabolism of amino acids between tissues, particularly under catabolic situations, such as high-intensity exercise. Hence, the aim of this study was to investigate the effects of oral supplementations with L-glutamine in its free or dipeptide forms (with L-alanine) on liver glutamine-glutathione (GSH) axis, and 70 kDa heat shock proteins (HSP70)/heat shock transcription factor 1 (HSF1) expressions. Adult male Wistar rats were 8-week trained (60 min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were daily supplemented with 1 g of L-glutamine/kg body weight per day in either l-alanyl-L-glutamine dipeptide (DIP) form or a solution containing L-glutamine and l-alanine in their free forms (GLN+ALA) or water (controls). Exercise training increased cytosolic and nuclear HSF1 and HSP70 expression, as compared with sedentary animals. However, both DIP and GLN+ALA supplements enhanced HSF1 expression (in both cytosolic and nuclear fractions) in relation to exercised controls. Interestingly, HSF1 rises were not followed by enhanced HSP70 expression. DIP and GLN+ALA supplements increased plasma glutamine concentrations (by 62% and 59%, respectively) and glutamine to glutamate plasma ratio in relation to trained controls. This was in parallel with a decrease in plasma ammonium levels. Supplementations increased liver GSH (by 90%), attenuating the glutathione disulfide (GSSG) to GSH ratio, suggesting a redox state protection. In conclusion, oral administration with DIP and GLN+ALA supplements in endurance-trained rats improve liver glutamine-GSH axis and modulate HSF1 pathway.

  15. A Single Glycine-Alanine Exchange Directs Ligand Specificity of the Elephant Progestin Receptor

    PubMed Central

    Wierer, Michael; Schrey, Anna K.; Kühne, Ronald; Ulbrich, Susanne E.

    2012-01-01

    The primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD), we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems. PMID:23209719

  16. The GABA uptake inhibitor beta-alanine reduces pilocarpine-induced tremor and increases extracellular GABA in substantia nigra pars reticulata as measured by microdialysis.

    PubMed

    Ishiwari, Keita; Mingote, Susana; Correa, Merce; Trevitt, Jennifer T; Carlson, Brian B; Salamone, John D

    2004-12-30

    Substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia that receives GABAergic projections from neostriatum and globus pallidus. Previous research has shown that local pharmacological manipulations of GABA in SNr can influence tremulous jaw movements in rats. Tremulous jaw movements are defined as rapid vertical deflections of the lower jaw that resemble chewing but are not directed at a particular stimulus, and evidence indicates that these movements share many characteristics with parkinsonian tremor in humans. In order to investigate the role of GABA in motor functions related to tremor, the present study tested the GABA uptake blocker beta-alanine for its ability to reduce pilocarpine-induced tremulous jaw movements. In a parallel experiment, the effect of an active dose of beta-alanine on dialysate levels of GABA in SNr was assessed using microdialysis methods. GABA levels in dialysis samples were measured using high performance liquid chromatography with electrochemical detection. beta-Alanine (250-500 mg/kg) significantly reduced tremulous jaw movements induced by pilocarpine (4.0 mg/kg). Moreover, systemic administration of beta-alanine at a dose that reduced tremulous jaw movements (500 mg/kg) resulted in a substantial increase in extracellular levels of GABA in SNr compared to the pre-injection baseline. Thus, the present results are consistent with the hypothesis that GABAergic tone in SNr plays a role in the regulation of tremulous jaw movements. This research may lead to a better understanding of how parkinsonian symptoms are modulated by SNr GABA mechanisms.

  17. Saccharomyces cerevisiae Differential Functionalization of Presumed ScALT1 and ScALT2 Alanine Transaminases Has Been Driven by Diversification of Pyridoxal Phosphate Interactions

    PubMed Central

    Rojas-Ortega, Erendira; Aguirre-López, Beatriz; Reyes-Vivas, Horacio; González-Andrade, Martín; Campero-Basaldúa, Jose C.; Pardo, Juan P.; González, Alicia

    2018-01-01

    Saccharomyces cerevisiae arose from an interspecies hybridization (allopolyploidiza-tion), followed by Whole Genome Duplication. Diversification analysis of ScAlt1/ScAlt2 indicated that while ScAlt1 is an alanine transaminase, ScAlt2 lost this activity, constituting an example in which one of the members of the gene pair lacks the apparent ancestral physiological role. This paper analyzes structural organization and pyridoxal phosphate (PLP) binding properties of ScAlt1 and ScAlt2 indicating functional diversification could have determined loss of ScAlt2 alanine transaminase activity and thus its role in alanine metabolism. It was found that ScAlt1 and ScAlt2 are dimeric enzymes harboring 67% identity and intact conservation of the catalytic residues, with very similar structures. However, tertiary structure analysis indicated that ScAlt2 has a more open conformation than that of ScAlt1 so that under physiological conditions, while PLP interaction with ScAlt1 allows the formation of two tautomeric PLP isomers (enolimine and ketoenamine) ScAlt2 preferentially forms the ketoenamine PLP tautomer, indicating a modified polarity of the active sites which affect the interaction of PLP with these proteins, that could result in lack of alanine transaminase activity in ScAlt2. The fact that ScAlt2 forms a catalytically active Schiff base with PLP and its position in an independent clade in “sensu strictu” yeasts suggests this protein has a yet undiscovered physiological function. PMID:29867852

  18. Thiadiazolidinones: A New Class of Alanine Racemase Inhibitors with Antimicrobial Activity against Methicillin- Resistant S. aureus

    PubMed Central

    Ciustea, Mihai; Mootien, Sara; Rosato, Adriana E.; Perez, Oriana; Cirillo, Pier; Yeung, Kacheong R.; Ledizet, Michel; Cynamon, Michael H.; Aristoff, Paul A.; Koski, Raymond A.; Kaplan, Paul A.; Anthony, Karen G.

    2012-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a human pathogen and a major cause of hospital-acquired infections. New antibacterial agents that have not been compromised by bacterial resistance are needed to treat MRSA-related infections. We chose the S. aureus cell wall synthesis enzyme, alanine racemase (Alr) as the target for a high-throughput screening effort to obtain novel enzyme inhibitors, which inhibit bacterial growth. Among the ‘hits’ identified was a thiadiazolidinone with chemical properties attractive for lead development. This study evaluated the mode of action, antimicrobial activities, and mammalian cell cytotoxicity of the thiadiazolidinone family in order to assess its potential for development as a therapeutic agent against MRSA. The thiadiazolidones inhibited Alr activity with 50% inhibitory concentrations (IC50) ranging from 0. 36 – 6. 4 μM, and they appear to inhibit the enzyme irreversibly. The series inhibited the growth of S. aureus, including MRSA strains, with minimal inhibitory concentrations (MICs) ranging from 6. 25–100 μg/mL. The antimicrobial activity showed selectivity against Gram-positive bacteria and fungi, but not Gram-negative bacteria. The series inhibited human HeLa cell proliferation. Lead development centering on the thiadiazolidinone series would require additional medicinal chemistry efforts to enhance the antibacterial activity and minimize mammalian cell toxicity. PMID:22146584

  19. Studies on the in vitro and in vivo hydrolysis and intramolecular aminolysis of L-aspartyl-l-phenylalanine methyl ester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouvette, R.E.

    The disposition and metabolism of L-aspartyl-L-(/sup 14/C-phenyl) alanine methyl ester (/sup 14/C-APM) was studied in male Sprague-Dawley rats after a single intragastric injection. Plasma levels of /sup 14/C-activity increased slowly within the first four hours after a 5 ..mu..Ci dose. Within 2 hours after injection 90% of the /sup 14/C-activity observed in the plasma was incorporated into precipitated proteins. HPLC analysis of the deproteinated plasma showed the /sup 14/C-activity present to be in the form of phenylalanine Disposition studies of /sup 14/C-APM 4 hours after a single intragastric dose showed the highest organs of /sup 14/C-accumulation to be the blood,more » liver, stomach, and small intestine. The molecular form of the /sup 14/C-activity in the tissues was not determined.« less

  20. The thermodynamic parameters of the step dissociation of L-phenylalanyl in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Emel'Yanov, A. V.; Krutova, O. N.; Gorboletova, G. G.

    2007-10-01

    The heats of interaction of L-phenylalanine with solutions of nitric acid and potassium and lithium hydroxides were determined calorimetrically at 288.15, 298.15, and 308.15 K and solution ionic strengths of 0.5, 0.75, and 1.0 in the presence of LiNO3 and KNO3. The standard thermodynamic characteristics (Δr H°, Δr G°, Δr S°, and Δ C {/p °} of acid-base interactions in aqueous solutions of L-phenylalanine were calculated. The influence of the concentration of background electrolytes and temperature on the heats of dissociation of L-phenylalanine was considered. A comparative analysis of the standard thermodynamic characteristics of step dissociation of L-phenylalanine and alanine was performed in terms of the modern concepts of the structure and physicochemical properties of these compounds and their solutions.

  1. NAD(+)-aminoaldehyde dehydrogenase candidates for 4-aminobutyrate (GABA) and β-alanine production during terminal oxidation of polyamines in apple fruit.

    PubMed

    Zarei, Adel; Trobacher, Christopher P; Shelp, Barry J

    2015-09-14

    The last step of polyamine catabolism involves the oxidation of 3-aminopropanal or 4-aminobutanal via aminoaldehyde dehydrogenase. In this study, two apple (Malus x domestica) AMADH genes were selected (MdAMADH1 and MdAMADH2) as candidates for encoding 4-aminobutanal dehydrogenase activity. Maximal activity and catalytic efficiency were obtained with NAD(+) and 3-aminopropanal, followed by 4-aminobutanal, at pH 9.8. NAD(+) reduction was accompanied by the production of GABA and β-alanine, respectively, when 4-aminobutanal and 3-aminopropanal were utilized as substrates. MdAMADH2 was peroxisomal and MdAMADH1 cytosolic. These findings shed light on the potential role of apple AMADHs in 4-aminobutyrate and β-alanine production. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. The Effect of gadolinium on the ESR response of alanine and ammonium tartrate exposed to thermal neutrons.

    PubMed

    Marrale, Maurizio; Brai, Maria; Gennaro, Gaetano; Bartolotta, Antonio; D'Oca, Maria Cristina

    2008-02-01

    Many efforts have been made to develop neutron capture therapy (NCT) for cancer treatment. Among the challenges in using NCT is the characterization of the features of the mixed radiation field and of its components. In this study, we examined the enhancement of the ESR response of pellets of alanine and ammonium tartrate with gadolinium oxide exposed to a thermal neutron beam. In particular, the ESR response of these dosimeters as a function of the gadolinium content inside the dosimeter was analyzed. We found that the addition of gadolinium improves the sensitivity of both alanine and ammonium tartrate. However, the use of gadolinium reduces or abolishes tissue equivalence because of its high atomic number (Z(Gd) = 64). Therefore, it is necessary to find the optimum compromise between the sensitivity to thermal neutrons and the reduction of tissue equivalence. Our analysis showed that a low concentration of gadolinium oxide (of the order of 5% of the total mass of the dosimeter) can enhance the thermal neutron sensitivity more than 13 times with an insignificant reduction of tissue equivalence.

  3. Potential transfer of neurotoxic amino acid β-N-methylamino-alanine (BMAA) from mother to infant during breast-feeding: Predictions from human cell lines.

    PubMed

    Andersson, Marie; Ersson, Lisa; Brandt, Ingvar; Bergström, Ulrika

    2017-04-01

    β-N-methylamino-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria, diatoms and dinoflagellates. BMAA has potential to biomagnify in a terrestrial food chain, and to bioaccumulate in fish and shellfish. We have reported that administration of [ 14 C]l-BMAA to lactating mice and rats results in a mother to off-spring transfer via the milk. A preferential enantiomer-specific uptake of [ 14 C]l-BMAA has also been demonstrated in differentiated murine mammary epithelium HC11 cells. These findings, together with neurotoxic effects of BMAA demonstrated both in vitro and in vivo, highlight the need to determine whether such transfer could also occur in humans. Here, we used four cell lines of human origin to examine and compare the transport of the two BMAA enantiomers in vitro. The uptake patterns of [ 14 C]l- and [ 14 C]d-BMAA in the human mammary MCF7 cell line were in agreement with the results in murine HC11 cells, suggesting a potential secretion of BMAA into human breast milk. The permeability coefficients for both [ 14 C]l- and [ 14 C]d-BMAA over monolayers of human intestinal Caco2 cells supported an efficient absorption from the human intestine. As a final step, transport experiments confirmed that [ 14 C]l-and [ 14 C]d-BMAA can be taken up by human SHSY5Y neuroblastoma cells and even more efficiently by human U343 glioblastoma cells. In competition experiments with various amino acids, the ASCT2 specific inhibitor benzylserine was the most effective inhibitor of [ 14 C]l-BMAA uptake tested here. Altogether, our results suggest that BMAA can be transferred from an exposed mother, via the milk, to the brain of the nursed infant. Copyright © 2017. Published by Elsevier Inc.

  4. Understanding the structural and energetic basis of PD-1 and monoclonal antibodies bound to PD-L1: A molecular modeling perspective.

    PubMed

    Shi, Danfeng; Zhou, Shuangyan; Liu, Xuewei; Zhao, Chenxi; Liu, Huanxiang; Yao, Xiaojun

    2018-03-01

    The inhibitors blocking the interaction between programmed cell death protein 1(PD-1) and programmed death-ligand 1(PD-L1) can activate the immune response of T cell and eliminate cancer cells. The crystallographic studies have provided structural insights of the interactive interfaces between PD-L1 and its protein ligands. However, the hotspot residues on PD-L1 as well as structural and energetic basis for different protein ligands still need to be further investigated. Molecular modeling methods including molecular dynamics simulation, per-residue free energy decomposition, virtual alanine scanning mutagenesis and residue-residue contact analysis were used to qualitatively and quantitatively analyze the interactions between PD-L1 and different protein ligands. The results of virtual alanine scanning mutagenesis suggest that Y56, Q66, M115, D122, Y123, R125 are the hotspot residues on PD-L1. The residue-residue contact analysis further shows that PD-1 interacts with PD-L1 mainly by F and G strands while monoclonal antibodies like avelumab and BMS-936559 mainly interact with PD-L1 by CDR2 and CDR3 loops of the heavy chain. A structurally similar β-hairpin peptide with 13 or 14 residues was extracted from each protein ligand and these β-hairpin peptides were found tightly binding to the putative hotspot residues on PD-L1. This study recognizes the hotspot residues on PD-L1 and uncovers the common structural and energetic basis of different protein ligands binding to PD-L1. These results will be valuable for the design of small molecule or peptide inhibitors targeting on PD-L1. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pyruvate cycling and implications for regulation of gluconeogenesis in the insect, Manduca sexta L.

    PubMed

    Thompson, S N

    2000-08-11

    Pyruvate cycling was examined in the insect Manduca sexta L. (2-(13)C)pyruvate was injected into 5th instar larvae maintained on a semisynthetic high sucrose, low sucrose, or sucrose-free diet. Pyruvate cycling and gluconeogenesis were determined from the distribution of (13)C in blood metabolites, including trehalose, the blood sugar of insects, and alanine. Pyruvate cycling was evident from the (13)C enrichment of alanine C3, synthesized by transamination of pyruvate following carboxylation to oxaloacetate and cycling through phosphoenolpyruvate. Based on the relative (13)C enrichments of alanine C2 and C3, insects maintained on the high sucrose diet displayed higher levels of cycling than insects on the other diets. Insects on all the diets, when subsequently starved, displayed low levels of cycling. Gluconeogenesis was evident in insects on sucrose-free or low sucrose diets from the selective (13)C enrichment in trehalose. The level of gluconeogenesis relative to glycolysis was indicated by the (13)C enrichment of trehalose C6 and alanine C3, both enrichments metabolically derived in the same manner. Insects starved after maintenance on the sucrose-free or low sucrose diets remained glucogenic. Insects on the high sucrose diet were not glucogenic, and subsequent starvation did not induce gluconeogenesis. The results indicate that pyruvate kinase plays a critical role in regulating the gluconeogenic/glycolytic balance, and that inhibition of pyruvate kinase is a principal regulatory event during induction of de novo trehalose synthesis. Gluconeogenesis failed to maintain homeostatic levels of blood trehalose, supporting the conclusion that blood sugar level may be important for mediating nutrient intake. Possible factors involved in the regulation of gluconeogenesis in insects are discussed. Copyright 2000 Academic Press.

  6. Calibration of helical tomotherapy machine using EPR/alanine dosimetry.

    PubMed

    Perichon, Nicolas; Garcia, Tristan; François, Pascal; Lourenço, Valérie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-01

    Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10 x 10 cm2 square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40 x 5 cm2 defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) 60Co-gamma-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference 60Co-gamma-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS calculations and alanine measured dose values was then

  7. Dietary L-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus.

    PubMed

    Ren, Wenkai; Luo, Wei; Wu, Miaomiao; Liu, Gang; Yu, Xinglong; Fang, Jun; Li, Teijun; Yin, Yulong; Wu, Guoyao

    2013-09-01

    Porcine circovirus type 2 (PCV2) causes reproductive failure in swine. As glutamine can enhance immune function in animals, this study was conducted with mice to test the hypothesis that dietary glutamine supplementation will improve pregnancy outcome in PCV2-infected dams. Beginning on day 0 of gestation, mice were fed a standard diet supplemented with 1.0% L-glutamine or 1.22% L-alanine (isonitrogenous control). All mice were infected with PCV2 (2000 TCID50) on day 10 of gestation. On day 17 of gestation, six mice from each group were euthanized to obtain maternal tissues and fetuses for hematology and histopathology tests. The remaining mice continued to receive their respective diets supplemented with 1.0% L-glutamine or 1.22% L-alanine through lactation. The PCV2 virus was present in maternal samples (serum and lung) of most mice in the control group but was not detected in the glutamine-supplemented mice. Dietary glutamine supplementation reduced abortion, decreased fetal deaths, and enhanced neonatal survival. The glutamine treatment also reduced concentrations of interleukin-6, while increasing concentrations of tumor necrosis factor-α and C-reactive protein, in the maternal serum of mice. Furthermore, glutamine supplementation attenuated microscopic lesions in maternal tissues (lung, spleen, and liver). Collectively, these results indicate that dietary glutamine supplementation is beneficial for ameliorating reproductive failure in virus-infected mice. The findings support the notion that gestating dams require adequate amounts of dietary glutamine for the optimal survival and growth of embryos, fetuses, and neonates, and have important implications for nutritional support of mammals (including swine and humans) during gestation and lactation.

  8. Integrating diffusion maps with umbrella sampling: Application to alanine dipeptide

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.; Kevrekidis, Ioannis G.

    2011-04-01

    Nonlinear dimensionality reduction techniques can be applied to molecular simulation trajectories to systematically extract a small number of variables with which to parametrize the important dynamical motions of the system. For molecular systems exhibiting free energy barriers exceeding a few kBT, inadequate sampling of the barrier regions between stable or metastable basins can lead to a poor global characterization of the free energy landscape. We present an adaptation of a nonlinear dimensionality reduction technique known as the diffusion map that extends its applicability to biased umbrella sampling simulation trajectories in which restraining potentials are employed to drive the system into high free energy regions and improve sampling of phase space. We then propose a bootstrapped approach to iteratively discover good low-dimensional parametrizations by interleaving successive rounds of umbrella sampling and diffusion mapping, and we illustrate the technique through a study of alanine dipeptide in explicit solvent.

  9. Alanine rich peptide from Populus trichocarpa inhibit growth of Staphylococcus aureus via targetting its extracellular domain of Sensor Histidine Kinase YycGex protein.

    PubMed

    Al Akeel, Raid; Mateen, Ayesha; Syed, Rabbani; Alqahtani, Mohammed S; Alqahtani, Ali S

    2018-05-22

    Due to growing concern towards microbial resistance, ongoing search for developing novel bioactive compounds such as peptides is on rise. The aim of this study was to evaluate antimicrobial effect of Populus trichocarpa extract, chemically identify the active peptide fraction and finds its target in Staphylococcus aureus. In this study the active fraction of P. trichocarpa crude extract was purified and characterized using MS/MS. This peptide PT13 antimicrobial activity was confirmed by in-vitro agar based disk diffusion and in-vivo infection model of G. mellonella. The proteomic expression analysis of S. aureus under influence of PT13 was studied using LTQ-Orbitrap-MS in-solution digestion and identity of target protein was acquired with their quantified expression using label-free approach of Progenesis QI software. Docking study was performed with peptide PT13 and its target YycG protein using CABS-dock. The active fraction PT13 sequence was identified as KVPVAAAAAAAAAVVASSMVVAAAK, with 25 amino acid including 13 alanine having M/Z 2194.2469. PT13 was uniformly inhibited growth S. aureus SA91 and MIC was determined 16 μg/mL for SA91 S. aureus strain. Sensor histidine kinase (YycG) was most significant target found differentially expressed under influence of PT13. G. mellonella larvae were killed rapidly due to S aureus infection, whereas death in protected group was insignificant in compare to control. The docking models showed ten docking models with RMSD value 1.89 for cluster 1 and RMSD value 3.95 for cluster 2 which is predicted to be high quality model. Alanine rich peptide could be useful in constructing as antimicrobial peptide for targeting extracellular Domain of Sensor Histidine Kinase YycG from S. aureus used in the study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Crystal structure of the S187F variant of human liver alanine: Aminotransferase associated with primary hyperoxaluria type I and its functional implications

    PubMed Central

    Oppici, Elisa; Fodor, Krisztian; Paiardini, Alessandro; Williams, Chris; Voltattorni, Carla Borri; Wilmanns, Matthias; Cellini, Barbara

    2013-01-01

    The substitution of Ser187, a residue located far from the active site of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), by Phe gives rise to a variant associated with primary hyperoxaluria type I. Unexpectedly, previous studies revealed that the recombinant form of S187F exhibits a remarkable loss of catalytic activity, an increased pyridoxal 5′-phosphate (PLP) binding affinity and a different coenzyme binding mode compared with normal AGT. To shed light on the structural elements responsible for these defects, we solved the crystal structure of the variant to a resolution of 2.9 Å. Although the overall conformation of the variant is similar to that of normal AGT, we noticed: (i) a displacement of the PLP-binding Lys209 and Val185, located on the re and si side of PLP, respectively, and (ii) slight conformational changes of other active site residues, in particular Trp108, the base stacking residue with the pyridine cofactor moiety. This active site perturbation results in a mispositioning of the AGT-pyridoxamine 5′-phosphate (PMP) complex and of the external aldimine, as predicted by molecular modeling studies. Taken together, both predicted and observed movements caused by the S187F mutation are consistent with the following functional properties of the variant: (i) a 300- to 500-fold decrease in both the rate constant of L-alanine half-transamination and the kcat of the overall transamination, (ii) a different PMP binding mode and affinity, and (iii) a different microenvironment of the external aldimine. Proposals for the treatment of patients bearing S187F mutation are discussed on the basis of these results. Proteins 2013; 81:1457–1465. © 2013 Wiley Periodicals, Inc. PMID:23589421

  11. Recurrent truncating mutations in alanine-glyoxylate aminotransferase gene in two South Indian families with primary hyperoxaluria type 1 causing later onset end-stage kidney disease

    PubMed Central

    Dutta, A. K.; Paulose, B. K.; Danda, S.; Alexander, S.; Tamilarasi, V.; Omprakash, S.

    2016-01-01

    Primary hyperoxaluria type 1 is an autosomal recessive inborn error of metabolism due to liver-specific peroxisomal enzyme alanine-glyoxylate transaminase deficiency. Here, we describe two unrelated patients who were diagnosed to have primary hyperoxaluria. Homozygous c.445_452delGTGCTGCT (p.L151Nfs*14) (Transcript ID: ENST00000307503; human genome assembly GRCh38.p2) (HGMD ID CD073567) mutation was detected in both the patients and the parents were found to be heterozygous carriers. Our patients developed end-stage renal disease at 23 years and 35 years of age. However, in the largest series published from OxalEurope cohort, the median age of end-stage renal disease for null mutations carriers was 9.9 years, which is much earlier than our cases. Our patients had slower progressions as compared to three unrelated patients from North India and Pakistan, who had homozygous c.302T>C (p.L101P) (HGMD ID CM093792) mutation in exon 2. Further, patients need to be studied to find out if c.445_452delGTGCTGCT mutation represents a founder mutation in Southern India. PMID:27512303

  12. H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esaki, N.; Nakayama, T.; Sawada, S.

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. Formore » L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically.« less

  13. Combination of amino acids reduces pigmentation in B16F0 melanoma cells.

    PubMed

    Ishikawa, Masago; Kawase, Ichiro; Ishii, Fumio

    2007-04-01

    Amino acids, the building blocks of proteins, play significant roles in numerous physiological events in mammals. As the effects of amino acids on melanogenesis have yet to be demonstrated, the present study was conducted to identify whether amino acids, in particular alanine, glycine, isoleucine and leucine, influence melanogenesis in B16F0 melanoma cells. Glycine and L-isoleucine, but not D-isoleucine, reduced melanogenesis in a concentration-dependent manner without any morphological changes in B16F0 melanoma cells. L-Alanine and L-leucine, but not D-alanine and D-leucine, also reduced melanogenesis without any morphological changes in B16F0 melanoma cells. However these amino acids did not show a concentration-dependency. Combination of L-alanine and the other amino acids, particularly 4 amino acids combination, had an additive effect on the inhibition of melanogenesis compared with single treatment of L-alanine. None of the amino acids affected the activity of tyrosinase, a key enzyme in melanogenesis. These results suggest that L-alanine, glycine, L-isoleucine and L-leucine, but not the D-form amino acids, have a hypopigmenting effect in B16F0 melanoma cells, and that these effects are not due to the inhibition of tyrosinase activity. Combination of these 4 amino acids had the additive effect on hypopigmentation that was as similar as that of kojic acid.

  14. Mass Spectrometric Analysis of l-Cysteine Metabolism: Physiological Role and Fate of l-Cysteine in the Enteric Protozoan Parasite Entamoeba histolytica

    PubMed Central

    Jeelani, Ghulam; Sato, Dan; Soga, Tomoyoshi; Watanabe, Haruo

    2014-01-01

    ABSTRACT l-Cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins, l-cysteine has important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such as Entamoeba histolytica, l-cysteine has been implicated in growth, attachment, survival, and protection from oxidative stress. However, a specific role of this amino acid or related metabolic intermediates is not well understood. In this study, using stable-isotope-labeled l-cysteine and capillary electrophoresis-time of flight mass spectrometry, we investigated the metabolism of l-cysteine in E. histolytica. [U-13C3, 15N]l-cysteine was rapidly metabolized into three unknown metabolites, besides l-cystine and l-alanine. These metabolites were identified as thiazolidine-4-carboxylic acid (T4C), 2-methyl thiazolidine-4-carboxylic acid (MT4C), and 2-ethyl-thiazolidine-4-carboxylic acid (ET4C), the condensation products of l-cysteine with aldehydes. We demonstrated that these 2-(R)-thiazolidine-4-carboxylic acids serve for storage of l-cysteine. Liberation of l-cysteine occurred when T4C was incubated with amebic lysates, suggesting enzymatic degradation of these l-cysteine derivatives. Furthermore, T4C and MT4C significantly enhanced trophozoite growth and reduced intracellular reactive oxygen species (ROS) levels when it was added to cultures, suggesting that 2-(R)-thiazolidine-4-carboxylic acids are involved in the defense against oxidative stress. PMID:25370494

  15. Rotational isomers of N-(β-phenylpropionyl)alanine ethyl dithioester: a Raman spectroscopic and MO study

    NASA Astrophysics Data System (ADS)

    Fausto, R.; Teixeira-Dias, J. J. C.; Tonge, P. J.; Carey, P. R.

    1994-07-01

    Raman spectra of N-(β-phenylpropionyl)alanine ethyl dithioester (C 6H 5CH 2CH 2C(O)NHCH(CH 3)C(S)SC 2H 5) in CCl 4 and CH 3CN solutions were measured as a function of temperature and the enthalpy differences (Δ H) between rotational isomers differing by internal rotation around the NHCH(CH 3) and CH(CH 3)C(S) bonds (forms A, B and C 5) were evaluated from relative band intensities. The spectroscopic results are consistent with a greater thermodynamical stability of the B-type conformer, where the N and S (thiol) atoms are in close contact. In addition, a comparison of the measured Δ H(A-B) for the present molecules with previously reported values for a series of similar glycine-based ethyl dithioesters shows that the presence of the extra CH 3 group at the α-carbon atom leads to a stabilization of the B-type conformer relative to the A-type form in the alanine-based dithioester. Semiempirical AM1 molecular orbital calculations were also performed on the title molecule and on its glycine analogue, N(β-phenylpropionyl)glycine ethyl dithioester. In general terms, the results of these calculations agree with the experimental findings, thus providing good theoretical support for the experimental data.

  16. In silico analysis of L-asparaginase from different source organisms.

    PubMed

    Dwivedi, Vivek Dhar; Mishra, Sarad Kumar

    2014-06-01

    L-asparaginases are widely distributed enzymes among plants, fungi and bacteria. This enzyme catalyzes the conversion of l-asparagine to l-aspartate and ammonia and to a lesser extent the formation of l-glutamate from l-glutamine. In the present study, forty-five full-length amino acid sequences of L-asparaginases from bacteria, fungi and plants were collected and subjected to multiple sequence alignment (MSA), domain identification, discovering individual amino acid composition, and phylogenetic tree construction. MSA revealed that two glycine residues were identically found in all analyzed species, two glycine residues were also identically found in all the fungal and bacterial sources and three glycine residues were identically found in all plant and bacterial sources while no residue was identically found in plant and fungal L-asparaginases. Two major sequence clusters were constructed by phylogenetic analysis. One cluster contains eleven species of fungi, twelve species of bacteria, and one species of plant, whereas the other one contains fourteen species of plant, four species of fungi and three species bacteria. The amino acid composition result revealed that the average frequency of amino acid alanine is 10.77 percent that is very high in comparison to other amino acids in all analyzed species.

  17. Acidic-basic properties of three alanine-based peptides containing acidic and basic side chains: comparison between theory and experiment.

    PubMed

    Makowska, Joanna; Bagińska, Katarzyna; Liwo, Adam; Chmurzyński, Lech; Scheraga, Harold A

    2008-01-01

    The purpose of this work was to evaluate the effect of the nature of the ionizable end groups, and the solvent, on their acid-base properties in alanine-based peptides. Hence, the acid-base properties of three alanine-based peptides: Ac-KK-(A)(7)-KK-NH(2) (KAK), Ac-OO-(A)(7)-DD-NH(2) (OAD), Ac-KK-(A)(7)-EE-NH(2) (KAE), where A, D, E, K, and O denote alanine, aspartic acid, glutamic acid, lysine, and ornithine, respectively, were determined in water and in methanol by potentiometry. With the availability of these data, the ability of two theoretical methods to simulate pH-metric titration of those peptides was assessed: (i) the electrostatically driven Monte Carlo method with the ECEPP/3 force field and the Poisson-Boltzmann approach to compute solvation energy (EDMC/PB/pH), and (ii) the molecular dynamics method with the AMBER force field and the Generalized Born model (MD/GB/pH). For OAD and KAE, pK(a1) and pK(a2) correspond to the acidic side chains. For all three compounds in both solvents, the pK(a1) value is remarkably lower than the pK(a) of a compound modeling the respective isolated side chain, which can be explained by the influence of the electrostatic field from positively charged ornithine or lysine side chains. The experimental titration curves are reproduced well by the MD/GB/pH approach, the agreement being better if restraints derived from NMR measurements are incorporated in the conformational search. Poorer agreement is achieved by the EDMC/PB/pH method.

  18. Alanine aminotransferase and mortality in patients with type 2 diabetes (ZODIAC-38).

    PubMed

    Deetman, Petronella E; Alkhalaf, Alaa; Landman, Gijs W D; Groenier, Klaas H; Kootstra-Ros, Jenny E; Navis, Gerjan; Bilo, Henk J G; Kleefstra, Nanne; Bakker, Stephan J L

    2015-08-01

    Combined data suggest a bimodal association of alanine aminotransferase (ALT) with mortality in the general population. Little is known about the association of ALT with mortality in patients with type 2 diabetes. We therefore investigated the association of ALT with all-cause, cardiovascular and noncardiovascular mortality in patients with type 2 diabetes. A prospective study was performed in patients with type 2 diabetes, treated in primary care, participating in the Zwolle Outpatient Diabetes project Integrating Available Care (ZODIAC) study. Cox regression analyses were performed to determine the associations of log2 -transformed baseline ALT with all-cause, cardiovascular and noncardiovascular mortality. In 1187 patients with type 2 diabetes (67 ± 12 years, 45% female), ALT levels were 11 (8-16) U/L. During median follow-up for 11.1 (6.1-14.0) years, 553 (47%) patients died, with 238 (20%) attributable to cardiovascular causes. Overall, ALT was inversely associated with all-cause mortality (hazard ratio [HR] 0.81; 95% confidence interval [CI] 0.72-0.92), independently of potential confounders. This was less attributable to cardiovascular mortality (HR 0.87; 95% CI 0.72-1.05), than to noncardiovascular mortality (HR 0.77; 95% CI 0.65-0.90). Despite the overall inverse association of ALT with mortality, it appeared that a bimodal association with all-cause mortality was present with increasing risk for levels of ALT above normal (P = 0.003). In patients with type 2 diabetes, low levels of ALT are associated with an increased risk of all-cause mortality, in particular noncardiovascular mortality, compared to normal levels of ALT, while risk again starts to increase when levels are above normal. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  19. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins.

    PubMed

    Perez, Romel B; Tischer, Alexander; Auton, Matthew; Whitten, Steven T

    2014-12-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs. © 2014 Wiley Periodicals, Inc.

  20. Promoter scanning of the Human COX-2 gene with 8-ring polyamides: unexpected weakening of polyamide-DNA binding and selectivity by replacing an internal N-Me-pyrrole with β-alanine

    PubMed Central

    Aston, Karl; Ramos, Joseph P.; Koeller, Kevin J.; Nanjunda, Rupesh; He, Gaofei

    2012-01-01

    Rules for polyamide DNA recognition have proved invaluable for the design of sequence-selective DNA-binding agents in cell-free systems. However, these rules are not fully transferrable to predicting activity in cells, tissues or animals, and additional refinements to our understanding of DNA recognition would help biomedical studies. Similar complexities are encountered when using internal β-alanines as polyamide building blocks in place of N-methyl pyrrole; β-alanines were introduced in polyamide designs to maintain good hydrogen bonding registry with the target DNA, especially for long polyamides or those with several GC bp (P.B. Dervan, A.R. Urbach, Essays Contemp. Chem. (2001) 327–339). Thus, to clarify important subtleties of molecular recognition, we studied the effects of replacing a single pyrrole with β-alanine in 8-ring polyamides designed against the Ets-1 transcription factor. Replacement of a single internal N-methylpyrrole with β-alanine to generate a β/Im pairing in two 8-ring polyamides causes a decrease in DNA binding affinity by two orders of magnitude and decreases DNA binding selectivity, contrary to expectations based on the literature. Measurements were made by fluorescence spectroscopy, quantitative DNA footprinting and surface plasmon resonance, with these vastly different techniques showing excellent agreement. Furthermore, results were validated for a range of DNA substrates from small hairpins to long dsDNA sequences. Docking studies helped show that β-alanine does not make efficient hydrophobic contacts with the rest of the polyamide or nearby DNA, in contrast to pyrrole. These results help refine design principles and expectations for polyamide-DNA recognition. PMID:23023196

  1. [Alanine dehydrogenase of the cyanobacterium Plectonema boryanum in the early period of cyanophage LPP-3 development].

    PubMed

    Perepelitsa, S I; Koltukova, N V; Mendzhul, M I

    1995-01-01

    It has been studied how reproduction of LPP-3 in Plectonema boryanum cells influences the alanine dehydrogenase activity. It has been found that immediately after the virus adsorption the enzyme activity falls by 50% and the anabolic reaction is blocked. Physicochemical properties of the enzyme vary as well. An infected cell has one isoenzyme-octamer with pl 9.1-9.2, pH-optimum by action 9-10, molecular weight about 27 kDa.

  2. Use of the alr gene as a food-grade selection marker in lactic acid bacteria.

    PubMed

    Bron, Peter A; Benchimol, Marcos G; Lambert, Jolanda; Palumbo, Emmanuelle; Deghorain, Marie; Delcour, Jean; De Vos, Willem M; Kleerebezem, Michiel; Hols, Pascal

    2002-11-01

    Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of D-alanine and L-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection markers in a heterologous complementation approach. Since isogenic mutants of both species carrying an alr deletion (Deltaalr) showed auxotrophy for D-alanine, plasmids carrying a heterologous alr were constructed and could be selected, since they complemented D-alanine auxotrophy in the L. plantarum Deltaalr and L. lactis Deltaalr strains. Selection was found to be highly stringent, and plasmids were stably maintained over 200 generations of culturing. Moreover, the plasmids carrying the heterologous alr genes could be stably maintained in wild-type strains of L. plantarum and L. lactis by selection for resistance to D-cycloserine, a competitive inhibitor of Alr (600 and 200 micro g/ml, respectively). In addition, a plasmid carrying the L. plantarum alr gene under control of the regulated nisA promoter was constructed to demonstrate that D-cycloserine resistance of L. lactis is linearly correlated to the alr expression level. Finally, the L. lactis alr gene controlled by the nisA promoter, together with the nisin-regulatory genes nisRK, were integrated into the chromosome of L. plantarum Deltaalr. The resulting strain could grow in the absence of D-alanine only when expression of the alr gene was induced with nisin.

  3. Characterization of free and alginate-polylysine-alginate microencapsulated Erwinia herbicola for the conversion of ammonia, pyruvate, and phenol into L-tyrosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd-George, I.; Chang, T.M.S.

    1995-12-20

    The whole cell tyrosine phenol-lyase activity of Erwinia herbicola was microencapsulated. The authors studied the use of this for the conversion of ammonia and pyruvate along with phenol or catechol, respectively, into L-tyrosine or dihydroxyphenyl-L-alanine (L-dopa). The reactions are relevant to the development of new methods for the production of L-tyrosine and L-dopa. The growth of E. herbicola at temperatures from 22 C to 32 C is stable, since at these temperatures the cells grow up to the stationary phase and remain there for at least 10 h. At 37 C the cells grow rapidly, but they also enter themore » death phase rapidly. There is only limited growth of E. herbicola at 42 C. Whole cells of E. herbicola were encapsulated within alginate-polylysine-alginate microcapsules (916 {+-} 100 {micro}m, mean {+-} std. dev.). The TPL activity of the cells catalyzed the production of L-tyrosine or dihydroxyphenol-L-alanine (L-dopa) from ammonia, pyruvate, and phenol or catechol, respectively. In the production of tyrosine, an integrated equation based on an ordered ter-uni rapid equilibrium mechanism can be used to find the kinetic parameters of TPL. In an adequately stirred system, the apparent values of the kinetic parameters of whole cell TPL are equal whether the cells are free or encapsulated. The apparent K{sub M} of tyrosine varies with the amount of whole cells in the system, ranging from 0.2 to 0.3 mM. The apparent K{sub M} for phenol is 0.5 mM. The apparent K{sub M} values for pyruvate and ammonia are an order of magnitude greater for whole cells than they are for the cell free enzyme.« less

  4. Underexpression of the Na+-dependent neutral amino acid transporter ASCT2 in the spontaneously hypertensive rat kidney.

    PubMed

    Pinho, Maria João; Pinto, Vanda; Serrão, Maria Paula; Jose, Pedro A; Soares-da-Silva, Patrício

    2007-07-01

    This study examined the inward transport of l-[(14)C]alanine, an ASCT2 preferential substrate, in monolayers of immortalized renal proximal tubular epithelial (PTE) cells from Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. The expression of ASCT2 in WKY and SHR PTE cells and kidney cortices from WKY and SHR was also evaluated. l-[(14)C]alanine uptake was highly dependent on extracellular Na(+). Replacement of NaCl by LiCl or choline chloride abolished transport activity in SHR and WKY PTE cells. In the presence of the system L inhibitor BCH, Na(+)-dependent l-alanine uptake in WKY and SHR PTE cells was inhibited by alanine, serine, and cysteine, which is consistent with amino acid transport through ASCT2. The saturable component of Na(+)-dependent l-alanine transport under V(max) conditions in SHR PTE cells was one-half of that in WKY PTE cells, with similar K(m) values. Differences in magnitude of Na(+)-dependent l-alanine uptake through ASCT2 between WKY and SHR PTE cells correlated positively with differences in ASCT2 protein expression, this being more abundant in WKY PTE cells. Abundance of ASCT2 transcript and protein in kidney cortices of SHR rats was also lower than that in normotensive WKY rats. In conclusion, immortalized SHR and WKY PTE cells take up l-alanine mainly through a high-affinity Na(+)-dependent amino acid transporter, with functional features of ASCT2 transport. The activity and expression of the ASCT2 transporter were considerably lower in the SHR cells.

  5. Potential transfer of neurotoxic amino acid β-N-methylamino-alanine (BMAA) from mother to infant during breast-feeding: Predictions from human cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Marie

    β-N-methylamino-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria, diatoms and dinoflagellates. BMAA has potential to biomagnify in a terrestrial food chain, and to bioaccumulate in fish and shellfish. We have reported that administration of [{sup 14}C]L-BMAA to lactating mice and rats results in a mother to off-spring transfer via the milk. A preferential enantiomer-specific uptake of [{sup 14}C]L-BMAA has also been demonstrated in differentiated murine mammary epithelium HC11 cells. These findings, together with neurotoxic effects of BMAA demonstrated both in vitro and in vivo, highlight the need to determine whether such transfer could also occur in humans. Here,more » we used four cell lines of human origin to examine and compare the transport of the two BMAA enantiomers in vitro. The uptake patterns of [{sup 14}C]L- and [{sup 14}C]D-BMAA in the human mammary MCF7 cell line were in agreement with the results in murine HC11 cells, suggesting a potential secretion of BMAA into human breast milk. The permeability coefficients for both [{sup 14}C]L- and [{sup 14}C]D-BMAA over monolayers of human intestinal Caco2 cells supported an efficient absorption from the human intestine. As a final step, transport experiments confirmed that [{sup 14}C]L-and [{sup 14}C]D-BMAA can be taken up by human SHSY5Y neuroblastoma cells and even more efficiently by human U343 glioblastoma cells. In competition experiments with various amino acids, the ASCT2 specific inhibitor benzylserine was the most effective inhibitor of [{sup 14}C]L-BMAA uptake tested here. Altogether, our results suggest that BMAA can be transferred from an exposed mother, via the milk, to the brain of the nursed infant. - Highlights: • Transport of BMAA in human intestinal, mammary and CNS cell lines was examined. • The transport of L-BMAA over intestinal cell monolayers was unidirectional. • Enantiomer-selective uptake of L-BMAA in breast, neuron and glia cells was evident.

  6. Determination of ammonium ion using a reagentless amperometric biosensor based on immobilized alanine dehydrogenase.

    PubMed

    Tan, Ling Ling; Musa, Ahmad; Lee, Yook Heng

    2011-01-01

    The use of the enzyme alanine dehydrogenase (AlaDH) for the determination of ammonium ion (NH(4)(+)) usually requires the addition of pyruvate substrate and reduced nicotinamide adenine dinucleotide (NADH) simultaneously to effect the reaction. This addition of reagents is inconvenient when an enzyme biosensor based on AlaDH is used. To resolve the problem, a novel reagentless amperometric biosensor using a stacked methacrylic membrane system coated onto a screen-printed carbon paste electrode (SPE) for NH(4)(+) ion determination is described. A mixture of pyruvate and NADH was immobilized in low molecular weight poly(2-hydroxyethyl methacrylate) (pHEMA) membrane, which was then deposited over a photocured pHEMA membrane (photoHEMA) containing alanine dehydrogenase (AlaDH) enzyme. Due to the enzymatic reaction of AlaDH and the pyruvate substrate, NH(4)(+) was consumed in the process and thus the signal from the electrocatalytic oxidation of NADH at an applied potential of +0.55 V was proportional to the NH(4)(+) ion concentration under optimal conditions. The stacked methacrylate membranes responded rapidly and linearly to changes in NH(4)(+) ion concentrations between 10-100 mM, with a detection limit of 0.18 mM NH(4)(+) ion. The reproducibility of the amperometrical NH(4)(+) biosensor yielded low relative standard deviations between 1.4-4.9%. The stacked membrane biosensor has been successfully applied to the determination of NH(4)(+) ion in spiked river water samples without pretreatment. A good correlation was found between the analytical results for NH(4)(+) obtained from the biosensor and the Nessler spectrophotometric method.

  7. Asymmetric synthesis of [2,3-(13)C(2),(15)N]-4-benzyloxy-5,6-diphenyl-2,3,5,6-tetrahydro-4H-oxazine-2-one via lipase TL-mediated kinetic resolution of benzoin: general procedure for the synthesis of [2,3-(13)C(2),(15)N]-L-alanine.

    PubMed

    Aoyagi, Y; Iijima, A; Williams, R M

    2001-11-30

    Lipase TL-mediated kinetic resolution of benzoin proceeded to give the corresponding optically pure (R)-benzoin (R)-1. On the other hand, (S)-benzoin O-acetate (S)-7 could be hydrolyzed without epimerization to give (S)-benzoin (S)-1 under alkaline conditions. Furthermore, both enantiomers of benzoin (1) were converted to [(15)N]-(1R,2S)- and (1S,2R)- 2-amino-1,2-diphenylethanol (3a and 3b), respectively, according to the procedure reported previously. [2,3-(13)C(2),(15)N]-(5S,6R)-4-benzyloxy-5,6-diphenyl-2,3,5,6-tetrahydro-4H-oxazine-2-one (10) was synthesized from ethyl [1,2-(13)C(2)]bromoacetate and (1R,2S)-2-amino-1,2-diphenylethanol (3b) in three steps. Finally, [2,3-(13)C(2),(15)N]-L-alanine (12) was prepared via alkylation of the lactone 10 and hydrogenation of the alkylated product 11.

  8. Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling.

    PubMed

    McCommis, Kyle S; Chen, Zhouji; Fu, Xiaorong; McDonald, William G; Colca, Jerry R; Kletzien, Rolf F; Burgess, Shawn C; Finck, Brian N

    2015-10-06

    Pyruvate transport across the inner mitochondrial membrane is believed to be a prerequisite for gluconeogenesis in hepatocytes, which is important for the maintenance of normoglycemia during prolonged food deprivation but also contributes to hyperglycemia in diabetes. To determine the requirement for mitochondrial pyruvate import in gluconeogenesis, mice with liver-specific deletion of mitochondrial pyruvate carrier 2 (LS-Mpc2(-/-)) were generated. Loss of MPC2 impaired, but did not completely abolish, hepatocyte conversion of labeled pyruvate to TCA cycle intermediates and glucose. Unbiased metabolomic analyses of livers from fasted LS-Mpc2(-/-) mice suggested that alterations in amino acid metabolism, including pyruvate-alanine cycling, might compensate for the loss of MPC2. Indeed, inhibition of pyruvate-alanine transamination further reduced mitochondrial pyruvate metabolism and glucose production by LS-Mpc2(-/-) hepatocytes. These data demonstrate an important role for MPC2 in controlling hepatic gluconeogenesis and illuminate a compensatory mechanism for circumventing a block in mitochondrial pyruvate import. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. (2R,1'S,2'R)- and (2S,1'S,2'R)-3-[2-Mono(di,tri)fluoromethylcyclopropyl]alanines and their incorporation into hormaomycin analogues

    PubMed Central

    Kozhushkov, Sergei I; Yufit, Dmitrii S; Grosse, Christian; Kaiser, Marcel

    2014-01-01

    Summary Efficient and scalable syntheses of enantiomerically pure (2R,1'S,2'R)- and (2S,1'S,2'R)-3-[2-mono(di,tri)fluoromethylcyclopropyl]alanines 9a–c, as well as allo-D-threonine (4) and (2S,3R)-β-methylphenylalanine (3), using the Belokon' approach with (S)- and (R)-2-[(N-benzylprolyl)amino]benzophenone [(S)- and (R)-10] as reusable chiral auxiliaries have been developed. Three new fluoromethyl analogues of the naturally occurring octadepsipeptide hormaomycin (1) with (fluoromethylcyclopropyl)alanine moieties have been synthesized and subjected to preliminary tests of their antibiotic activity. PMID:25550751

  10. Effects of water-alcohol binary solvents on the thermochemical characteristics of L-tryptophane dissolution at 298.15 K

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Smirnov, V. I.

    2013-01-01

    The enthalpies of L-tryptophane solution in water-methanol, water-ethanol, water-1-propanol, and water-2-propanol mixtures at alcohol concentrations of x 2 = 0-0.4 mole fractions were measured by calorimetry. The standard enthalpies of L-tryptophane solution (Δsol H ∘) and transfer (Δtr H ∘) from water to the binary solvent were calculated. The influence of the composition of the water-alcohol mixture and the structure and properties of L-tryptophane on the enthalpy characteristics of the latter was considered. The enthalpy coefficients of pair interactions ( h xy ) of L-tryptophane with alcohol molecules were calculated. The coefficients were positive and increased in the series: methanol (MeOH), ethanol (EtOH), 1-propanol (1-PrOH), and 2-propanol (2-PrOH). The solution and transfer enthalpies of L-tryptophane were compared with those of aliphatic amino acids (glycine, L-threonine, DL-alanine, L-valine, and L-phenylalanine) in similar binary solvents.

  11. Loss of Mitochondrial Pyruvate Carrier 2 in Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling

    PubMed Central

    McCommis, Kyle S.; Chen, Zhouji; Fu, Xiaorong; McDonald, William G.; Colca, Jerry R.; Kletzien, Rolf F.; Burgess, Shawn C.; Finck, Brian N.

    2015-01-01

    SUMMARY Pyruvate transport across the inner mitochondrial membrane is believed to be a prerequisite step for gluconeogenesis in hepatocytes, which is important for maintenance of normoglycemia during prolonged food deprivation, but also contributes to hyperglycemia in diabetes. To determine the requirement for mitochondrial pyruvate import in gluconeogenesis, mice with liver-specific deletion of mitochondrial pyruvate carrier 2 (LS-Mpc2−/−) were generated. Loss of MPC2 impaired, but did not completely abolish, hepatocyte pyruvate metabolism, labelled pyruvate conversion to TCA cycle intermediates and glucose, and glucose production from pyruvate. Unbiased metabolomic analyses of livers from fasted LS-Mpc2−/− mice suggested that alterations in amino acid metabolism, including pyruvate-alanine cycling, might compensate for loss of MPC2. Indeed, inhibition of pyruvate-alanine transamination further reduced mitochondrial pyruvate metabolism and glucose production by LS-Mpc2−/− hepatocytes. These data demonstrate an important role for MPC2 in controlling hepatic gluconeogenesis and illuminate a compensatory mechanism for circumventing a block in mitochondrial pyruvate import. PMID:26344101

  12. Development and validation of a rapid, selective, and sensitive LC-MS/MS method for simultaneous determination of D- and L-amino acids in human serum: application to the study of hepatocellular carcinoma.

    PubMed

    Han, Minlu; Xie, Mengyu; Han, Jun; Yuan, Daoyi; Yang, Tian; Xie, Ying

    2018-04-01

    A validated liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of D- and L-amino acids in human serum. Under the optimum conditions, except for DL-proline, L-glutamine, and D-lysine, the enantioseparation of the other 19 enantiomeric pairs of proteinogenic amino acids and nonchiral glycine was achieved with a CROWNPAK CR-I(+) chiral column within 13 min. The lower limits of quantitation for L-amino acids (including glycine) and D-amino acids were 5-56.25 μM and 0.625-500 nM, respectively, in human serum. The intraday precision and interday precision for all the analytes were less than 15%, and the accuracy ranged from -12.84% to 12.37% at three quality control levels. The proposed method, exhibiting high rapidity, enantioresolution, and sensitivity, was successfully applied to the quantification of D- and L-amino acid levels in serum from hepatocellular carcinoma patients and healthy individuals. The serum concentrations of L-arginine, L-isoleucine, L-aspartate, L-tryptophan, L-alanine, L-methionine, L-serine, glycine, L-valine, L-leucine, L-phenylalanine, L-threonine, D-isoleucine, D-alanine, D-glutamate, D-glutamine, D-methionine, and D-threonine were significantly reduced in the hepatocellular carcinoma patients compared with the healthy individuals (P < 0.01). D-Glutamate and D-glutamine were identified as the most downregulated serum markers (fold change greater than 1.5), which deserves further attention in hepatocellular carcinoma research. Graphical abstract Simultaneous determination of D- and L-amino acids in human serum from hepatocellular carcinoma patients and healthy individuals. AA amino acid, HCC hepatocellular carcinoma, LC liquid chromatography, MS/MS tandem mass spectrometry, NC normal control, TIC total ion chromatogram.

  13. Elevated alanine aminotransferase is associated with metabolic syndrome but not consistently associated with impaired fasting glucose or type 2 diabetes mellitus.

    PubMed

    Yueh, Chen-Yu; Chen, Jung-Hsiang; Lee, Li-Wen; Lu, Cheng-Wei; Parekh, Bhavin; Chi, Ching-Chi

    2011-10-01

    Abnormally elevated alanine aminotransferase (ALT) of nonspecific causes is a common outpatient problem. Without considering ethnicity, several studies had suggested that it was associated with insulin resistance (IR). To investigate whether nonspecific elevated ALT in Taiwanese population could reflect a likely underlying IR and was associated with impaired fasting glucose or type 2 diabetes mellitus (IFG/T2DM). The health examination profiles of 1313 Taiwanese were investigated cross-sectionally. The prevalence and odds ratios (ORs) for IFG/T2DM and metabolic abnormalities in relation to elevated ALT were analyzed. Subjects with metabolic syndrome (MS) all had IFG/T2DM. The elevated ALT significantly correlated with MS and IFG/T2DM (i.e., 19.9-29.2% vs. 7.8% for MS, and 27.0-31.5% vs. 16.1% for IFG/T2DM). However, after excluding MS and adjustment for age and sex, the elevated ALT alone was not consistently associated with IFG/T2DM (36 < ALT ≤ 80 IU/L with OR 0.97, 95% CI 0.58-1.61; 80 < ALT ≤ 120 IU/L with OR 0.55, 95% CI 0.13-2.37; none with ALT > 120 had IFG). In a cross-sectional analysis of Taiwanese industrial employees, elevated ALT associated with MS, but in subjects who did not meet MS criteria, elevated ALT by itself did not associate with IFG/T2DM. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. The snakehead Channa asiatica accumulates alanine during aerial exposure, but is incapable of sustaining locomotory activities on land through partial amino acid catabolism.

    PubMed

    Chew, Shit F; Wong, Mei Y; Tam, Wai L; Ip, Yuen K

    2003-02-01

    The freshwater snakehead Channa asiatica is an obligatory air-breather that resides in slow-flowing streams and in crevices near riverbanks in Southern China. In its natural habitat, it may encounter bouts of aerial exposure during the dry seasons. In the laboratory, the ammonia excretion rate of C. asiatica exposed to terrestrial conditions in a 12 h:12 h dark:light regime was one quarter that of the submerged control. Consequently, the ammonia contents in the muscle, liver and plasma increased significantly, and C. asiatica was able to tolerate quite high levels of ammonia in its tissues. Urea was not the major product of ammonia detoxification in C. asiatica, which apparently did not possess a functioning ornithine urea cycle. Rather, alanine increased fourfold to 12.6 micromol g(-1) in the muscle after 48 h of aerial exposure. This is the highest level known in adult teleosts exposed to air or an ammonia-loading situation. The accumulated alanine could account for 70% of the deficit in ammonia excretion during this period, indicating that partial amino acid catabolism had occurred. This would allow the utilization of certain amino acids as energy sources and, at the same time, maintain the new steady state levels of ammonia in various tissues, preventing them from rising further. There was a reduction in the aminating activity of glutamate dehydrogenase from the muscle and liver of specimens exposed to terrestrial conditions. Such a phenomenon has not been reported before and could, presumably, facilitate the entry of alpha-ketoglutarate into the Krebs cycle instead of its amination to glutamate, as has been suggested elsewhere. However, in contrast to mudskippers, C. asiatica was apparently unable to reduce the rates of proteolysis and amino acid catabolism, because the reduction in nitrogenous excretion during 48 h of aerial exposure was completely balanced by nitrogenous accumulation in the body. Alanine accumulation also occurred in specimens exposed to

  15. Forced swimming and imipramine modify plasma and brain amino acid concentrations in mice.

    PubMed

    Murakami, Tatsuro; Yamane, Haruka; Tomonaga, Shozo; Furuse, Mitsuhiro

    2009-01-05

    The relationships between monoamine metabolism and forced swimming or antidepressants have been well studied, however information is lacking regarding amino acid metabolism under these conditions. Therefore, the aim of the present study was to investigate the effects of forced swimming and imipramine on amino acid concentrations in plasma, the cerebral cortex and the hypothalamus in mice. Forced swimming caused cerebral cortex concentrations of L-glutamine, L-alanine, and taurine to be increased, while imipramine treatment caused decreased concentrations of L-glutamate, L-alanine, L-tyrosine, L-methionine, and L-ornithine. In the hypothalamus, forced swimming decreased the concentration of L-serine while imipramine treatment caused increased concentration of beta-alanine. Forced swimming caused increased plasma concentration of taurine, while concentrations of L-serine, L-asparagine, L-glutamine and beta-alanine were decreased. Imipramine treatment caused increased plasma concentration of all amino acid, except for L-aspartate and taurine. In conclusion, forced swimming and imipramine treatment modify central and peripheral amino acid metabolism. These results may aid in the identification of amino acids that have antidepressant-like effects, or may help to refine the dosages of antidepressant drugs.

  16. Amino acid content and nectar choice by forager honeybees (Apis mellifera L.).

    PubMed

    Bertazzini, Michele; Medrzycki, Piotr; Bortolotti, Laura; Maistrello, Lara; Forlani, Giuseppe

    2010-06-01

    Dual choice feeding tests were performed to determine a preference of forager honeybees for specific amino acids. Artificial nectar containing proline was preferred over those containing only sugars. Nectar containing alanine was preferred on the first day, but preference was no longer significant thereafter. On the contrary, a negative response was found for serine. When the bees were given the choice between two nectars enriched with different compounds, proline was preferred above both alanine and serine, and alanine above serine.

  17. Enzymatic biosensor based on entrapment of d-amino acid oxidase on gold nanofilm/MWCNTs nanocomposite modified glassy carbon electrode by sol-gel network: Analytical applications for d-alanine in human serum.

    PubMed

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2017-05-01

    Sensing and determination of d-alanine is studied by using an enzymatic biosensor which was constructed on the basis of d-amino acid oxidase (DAAO) immobilization by sol-gel film onto glassy carbon electrode surface modified with nanocomposite of gold nanofilm (Au-NF) and multiwalled carbon nanotubes (MWCNTs). The Au-NF/MWCNT nanocomposite was prepared by applying the potentiostatic technique for electrodeposition of Au-NF on the MWCNT immobilized on glassy carbon electrode surface. The modified electrode is investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), linear sweep voltammetry (LSV) and cyclic voltammetry(CV) techniques. The linear sweep voltammetry was used for determination of d-alanine and the results showed an excellent linear relationship between biosensor response and d-alanine concentration ranging from 0.25μM to 4.5μM with correction coefficient of 0.999 (n=20). Detection limit for the fabricated sensor was calculated about 20nM (for S/N=3) and sensitivity was about 56.1μAμM -1 cm -2 . The developed biosensor exhibited rapid and accurate response to d-alanine, a good stability (4 weeks) and an average recovery of 98.9% in human serum samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Prevalence and predictors of alanine aminotransferase elevation among normal weight, overweight and obese youth in Mexico.

    PubMed

    Purcell, Maura; Flores, Yvonne N; Zhang, Zuo-Feng; Denova-Gutiérrez, Edgar; Salmeron, Jorge

    2013-09-01

    This study aimed to determine the prevalence of and risk factors associated with elevated alanine aminotransferase (ALT) levels among a sample of normal weight, overweight and obese youth from two urban populations in Central Mexico. Baseline data from 1262 youth aged 8-19 years who participated in the Mexican Health Worker Cohort Study from March 2004 to April 2006 were reviewed, including 680 girls and 582 boys, with a total of 83 participants with elevated ALT level (>40 U/L). Information was obtained from self-administered questionnaires, anthropometric results and clinical measurements. Associations of interest were examined using multivariate logistic regression models. A total of 3.8% of girls and 9.8% of boys had elevated ALT levels. Elevated ALT was observed in 28.9% of the obese and 14.2% of the overweight participants. Metabolic syndrome (MS) occurred in 6.1% of the study population and those with MS had a high percentage of elevated ALT (14.5% of girls and 40.0% of boys, respectively). Abdominal obesity and insulin resistance were also associated with a greater risk of elevated ALT. Obesity and certain metabolic risk factors are important predictors for elevated ALT. Screening for ALT levels in obese youth could help to identify those at risk and reduce the possibility of future liver diseases. © 2013 Wiley Publishing Asia Pty Ltd and Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine.

  19. Porcine alanine transaminase after liver allo-and xenotransplantation.

    PubMed

    Ekser, Burcin; Gridelli, Bruno; Cooper, David K C

    2012-01-01

    Aspartate transaminase (AST) and alanine transaminase (ALT) are measured following liver transplantation as indicators of hepatocellular injury. During a series of orthotopic liver allo-and xenotransplants, we observed that there was an increase in AST in all cases. The anticipated concomitant rise in ALT did not occur when a wild-type (WT) pig was the source of the liver graft, but did occur when a baboon or a genetically engineered (α1,3-galactosyltransferase gene-knockout [GTKO]) pig was the source of the graft. We hypothesized that the cience of Galα1,3Gal in GTKO pig livers may render pig hepatocytes similar to human and baboon hepatocytes in their response to hepatocellular injury. Reviewing the literature, after WT pig liver allotransplantation or xenotransplantation, in the majority of reports, although changes in AST were reported, no mention was made of changes in ALT, suggesting that there was no change in ALT. However, Ramirez et al. reported two cases of liver xenotransplants from hCD55 pigs, following which there were increases in both AST and ALT, suggesting that it is not simply the cience of expression of Galα1,3Gal that is the cause. We acknowledge that our observation is based on a small number of experiments, but we believe it is worth recording. © 2012 John Wiley & Sons A/S.

  20. Porcine alanine transaminase after liver allo-and xenotransplantation

    PubMed Central

    Ekser, Burcin; Gridelli, Bruno; Cooper, David K.C.

    2013-01-01

    Aspartate transaminase (AST) and alanine transaminase (ALT) are measured following liver transplantation as indicators of hepatocellular injury. During a series of orthotopic liver allo-and xenotransplants, we observed that there was an increase in AST in all cases. The anticipated concomitant rise in ALT did not occur when a wild-type (WT) pig was the source of the liver graft, but did occur when a baboon or a genetically engineered (α1,3-galactosyltransferase gene-knockout [GTKO]) pig was the source of the graft. We hypothesized that the cience of Galα1,3 Gal in GTKO pig livers may render pig hepatocytes similar to human and baboon hepatocytes in their response to hepatocellular injury. Reviewing the literature, after WT pig liver allotransplantation or xenotransplantation, in the majority of reports, although changes in AST were reported, no mention was made of changes in ALT, suggesting that there was no change in ALT. However, Ramirez et al. reported two cases of liver xenotransplants from hCD55 pigs, following which there were increases in both AST and ALT, suggesting that it is not simply the cience of expression of Galα1,3 Gal that is the cause. We acknowledge that our observation is based on a small number of experiments, but we believe it is worth recording. PMID:22360753

  1. Alanine/EPR dosimetry applied to the verification of a total body irradiation protocol and treatment planning dose calculation using a humanoid phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeken, B.; Lelie, S.; Meijnders, P.

    2010-12-15

    Purpose: To avoid complications in total body irradiation (TBI), it is important to achieve a homogeneous dose distribution throughout the body and to deliver a correct dose to the lung which is an organ at risk. The purpose of this work was to validate the TBI dose protocol and to check the accuracy of the 3D dose calculations of the treatment planning system. Methods: Dosimetry based on alanine/electron paramagnetic resonance (EPR) was used to measure dose at numerous locations within an anthropomorphic phantom (Alderson) that was irradiated in a clinical TBI beam setup. The alanine EPR dosimetry system was calibratedmore » against water calorimetry in a Co-60 beam and the absorbed dose was determined by the use of ''dose-normalized amplitudes'' A{sub D}. The dose rate of the TBI beam was checked against a Farmer ionization chamber. The phantom measurements were compared to 3D dose calculations from a treatment planning system (Pinnacle) modeled for standard dose calculations. Results: Alanine dosimetry allowed accurate measurements which were in accordance with ionization chamber measurements. The combined relative standard measurement uncertainty in the Alderson phantom was U{sub r}(A{sub D})=0.6%. The humanoid phantom was irradiated to a reference dose of 10 Gy, limiting the lung dose to 7.5 Gy. The ratio of the average measured dose midplane in the craniocaudal direction to the reference dose was 1.001 with a spread of {+-}4.7% (1 sd). Dose to the lung was measured in 26 locations and found, in average, 1.8% lower than expected. Lung dose was homogeneous in the ventral-dorsal direction but a dose gradient of 0.10 Gy cm{sup -1} was observed in the craniocaudal direction midline within the lung lobe. 3D dose calculations (Pinnacle) were found, in average, 2% lower compared to dose measurements on the body axis and 3% lower for the lungs. Conclusions: The alanine/EPR dosimetry system allowed accurate dose measurements which enabled the authors to validate

  2. Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1985-01-01

    The formation of alanine (ala) form C(14)-glyceraldehyde and ammonium phosphate in the presence or absence of a thiol is reported. At ambient temperature, ala synthesis was six times more rapid in the presence of 3-mercaptopropionic acid than in its absence (0.6 and 0.1 percent, respectively, after 60 days). Similarly, the presence of another thiol, N-acetylcysteinate, increased the production of ala, as well as of lactate. The reaction pathway of thiol-catalyzed synthesis of ala, with the lactic acid formed in a bypath, is suggested. In this, dehydration of glyceraldehyde is followed by the formation of hemithioacetal. In the presence of ammonia, an imine is formed, which eventually yields ala. This pathway is consistent with the observation that the rate ratio of ala/lactate remains constant throughout the process. The fact that the reaction takes place under anaerobic conditions in the presence of H2O and with the low concentrations of simple substrates and catalysts makes it an attractive model prebiotic reaction in the process of molecular evolution.

  3. Acquisition and Assimilation of Nitrogen as Peptide-Bound and D-Enantiomers of Amino Acids by Wheat

    PubMed Central

    Hill, Paul W.; Quilliam, Richard S.; DeLuca, Thomas H.; Farrar, John; Farrell, Mark; Roberts, Paula; Newsham, Kevin K.; Hopkins, David W.; Bardgett, Richard D.; Jones, David L.

    2011-01-01

    Nitrogen is a key regulator of primary productivity in many terrestrial ecosystems. Historically, only inorganic N (NH4 + and NO3 -) and L-amino acids have been considered to be important to the N nutrition of terrestrial plants. However, amino acids are also present in soil as small peptides and in D-enantiomeric form. We compared the uptake and assimilation of N as free amino acid and short homopeptide in both L- and D-enantiomeric forms. Sterile roots of wheat (Triticum aestivum L.) plants were exposed to solutions containing either 14C-labelled L-alanine, D-alanine, L-trialanine or D-trialanine at a concentration likely to be found in soil solution (10 µM). Over 5 h, plants took up L-alanine, D-alanine and L-trialanine at rates of 0.9±0.3, 0.3±0.06 and 0.3±0.04 µmol g−1 root DW h−1, respectively. The rate of N uptake as L-trialanine was the same as that as L-alanine. Plants lost ca.60% of amino acid C taken up in respiration, regardless of the enantiomeric form, but more (ca.80%) of the L-trialanine C than amino acid C was respired. When supplied in solutions of mixed N form, N uptake as D-alanine was ca.5-fold faster than as NO3 -, but slower than as L-alanine, L-trialanine and NH4 +. Plants showed a limited capacity to take up D-trialanine (0.04±0.03 µmol g−1 root DW h−1), but did not appear to be able to metabolise it. We conclude that wheat is able to utilise L-peptide and D-amino acid N at rates comparable to those of N forms of acknowledged importance, namely L-amino acids and inorganic N. This is true even when solutes are supplied at realistic soil concentrations and when other forms of N are available. We suggest that it may be necessary to reconsider which forms of soil N are important in the terrestrial N cycle. PMID:21541281

  4. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.

    PubMed

    Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia

    2015-11-01

    Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Oral supplementations with free and dipeptide forms of L-glutamine in endotoxemic mice: effects on muscle glutamine-glutathione axis and heat shock proteins.

    PubMed

    Cruzat, Vinicius F; Pantaleão, Lucas C; Donato, José; de Bittencourt, Paulo Ivo Homem; Tirapegui, Julio

    2014-03-01

    Sepsis is a leading cause of death in intensive care units worldwide. Low availability of glutamine contributes to the catabolic state of sepsis. L-Glutamine supplementation has antioxidant properties and modulates the expression of heat shock proteins (HSPs). This study investigated the effects of oral supplementation with L-glutamine plus L-alanine (GLN+ALA), both in the free form and L-alanyl-L-glutamine dipeptide (DIP), on glutamine-glutathione (GSH) axis and HSPs expression in endotoxemic mice. B6.129F2/J mice were subjected to endotoxemia (lipopolysaccharides from Escherichia coli, 5 mg.kg(-1), LPS group) and orally supplemented for 48 h with either L-glutamine (1 g.kg(-1)) plus L-alanine (0.61 g.kg(-1)) (GLN+ALA-LPS group) or 1.49 g.kg(-1) of DIP (DIP-LPS group). Endotoxemia reduced plasma and muscle glutamine concentrations [relative to CTRL group] which were restored in both GLN+ALA-LPS and DIP-LPS groups (P<.05). In supplemented groups were re-established GSH content and intracellular redox status (GSSG/GSH ratio) in circulating erythrocytes and muscle. Thiobarbituric acid reactive substance was 4-fold in LPS treated mice relative to the untreated CTRL group, and plasma TNF-α and IL-1β levels were attenuated by the supplements. Heat shock proteins 27, 70 and 90 (protein and mRNA) were elevated in the LPS group and were returned to basal levels (relative to CTRL group) in both GLN+ALA-LPS and DIP-LPS groups. Supplementations to endotoxemic mice resulted in up-regulation of GSH reductase, GSH peroxidase and glutamate cysteine ligase mRNA expression in muscle. In conclusion, oral supplementations with GLN+ALA or DIP are effective in reversing the conditions of LPS-induced deleterious impact on glutamine-GSH axis in mice under endotoxemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Lac-L-TTA, a novel lactose-based amino acid-sugar conjugate for anti-metastatic applications.

    PubMed

    Roviello, Giovanni N; Iannitti, Roberta; Palumbo, Rosanna; Simonyan, Hayarpi; Vicidomini, Caterina; Roviello, Valentina

    2017-08-01

    Here we describe the synthesis, chromatographic purification, MS and NMR characterization of a new lactosyl-derivative, i.e. a lactosyl thiophenyl-substituted triazolyl-thione L-alanine (Lac-L-TTA). This amino acid-sugar conjugate was prepared by solution synthesis in analogy to the natural fructosyl-amino acids. Furthermore, we investigated the inhibition of PC-3 prostate cancer cell colony formation by this lactose derivative in comparison with the less polar fructose-based derivative, Fru-L-TTA. This let us to compare the properties of the artificial derivative, object of the present work, with the monosaccharide-based counterpart and to obtain a preliminary information on the influence of polarity on such biological activity. A significantly higher anticancer effect of Lac-L-TTA with respect to the fructose analogue emerged from our study suggesting that the anti-metastatic potential of fructosyl-amino acids can be enhanced by increasing the polarity of the compounds, for example by introducing disaccharide moieties in place of fructose.

  7. Identification of myristoylated alanine-rich C kinase substrate (MARCKS) in astrocytes.

    PubMed

    Vitkovic, Ljubisa; Aloyo, Vincent J; Maeda, Shigeru; Benzil, Deborha L; Bressler, Joseph P; Hilt, Dana C

    2005-01-01

    We have characterized membrane-associated substrates of Ca2+-dependent kinases in primary rat astrocytes by in vitro phosphorylation, 2-dimensional gel electrophoresis and autoradiography. The most prominent among these were three acidic, protein kinase C (PKC) substrates. These are important because they likely transduce cytokine and other neuro-immune modulatory signals mediated by PKC. We now show that one of these phosphoproteins is myristoylated alanine-rich PKC kinase substrate (MARCKS) or phosphomyristin C. The identity was corroborated by one- and 2- dimensional immunoblotting with an MARCKS-specific polyclonal antibody. Exposing primary astrocytes to phorbol 12-myristate 13-acetate stimulated phosphorylation of this protein. The level of MARCKS appeared inversely proportional to the proliferative potential of astrocytes because it was lower in spontaneously transformed as compared to passaged or confluent cells. These data are consistent with previous reports and indicate that one of three major acidic membrane-associated PKC substrates in astrocytes is MARCKS. Thus, MARCKS is likely near-proximal transducer of PKC-mediated signals in astrocytes.

  8. Enzymatic properties of the glycine D-alanine [corrected] aminopeptidase of Aspergillus oryzae and its activity profiles in liquid-cultured mycelia and solid-state rice culture (rice koji).

    PubMed

    Marui, Junichiro; Matsushita-Morita, Mayumi; Tada, Sawaki; Hattori, Ryota; Suzuki, Satoshi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei; Takeuchi, Michio; Kusumoto, Ken-Ichi

    2012-01-01

    The gdaA gene encoding S12 family glycine-D-alanine aminopeptidase (GdaA) was found in the industrial fungus Aspergillus oryzae. GdaA shares 43% amino acid sequence identity with the D-aminopeptidase of the Gram-negative bacterium Ochrobactrum anthropi. GdaA purified from an A. oryzae gdaA-overexpressing strain exhibited high D-stereospecificity and efficiently released N-terminal glycine and D-alanine of substrates in a highly specific manner. The optimum pH and temperature were 8 to 9 and 40°C, respectively. This enzyme was stable under alkaline conditions at pH 8 to 11 and relatively resistant to acidic conditions until pH 5.0. The chelating reagent EDTA, serine protease inhibitors such as AEBSF, benzamidine, TPCK, and TLCK, and the thiol enzyme inhibitor PCMB inhibited the enzyme. The aminopeptidase inhibitor bestatin did not affect the activity. GdaA was largely responsible for intracellular glycine and D-alanine aminopeptidase activities in A. oryzae during stationary-phase growth in liquid media. In addition, the activity increased in response to the depletion of nitrogen or carbon sources in the growth media, although the GdaA-independent glycine aminopeptidase activity highly increased simultaneously. Aminopeptidases of A. oryzae attract attention because the enzymatic release of a variety of amino acids and peptides is important for the enhancement of the palatability of fermented foods. GdaA activity was found in extracts of a solid-state rice culture of A. oryzae (rice koji), which is widely used as a starter culture for Japanese traditional fermented foods, and was largely responsible for the glycine and D-alanine aminopeptidase activity detected at a pH range of 6 to 9.

  9. Feasibility study of entrance and exit dose measurements at the contra lateral breast with alanine/electron spin resonance dosimetry in volumetric modulated radiotherapy of breast cancer

    NASA Astrophysics Data System (ADS)

    Wagner, Daniela M.; Hüttenrauch, Petra; Anton, Mathias; von Voigts-Rhetz, Philip; Zink, Klemens; Wolff, Hendrik A.

    2017-07-01

    The Physikalisch-Technische Bundesanstalt has established a secondary standard measurement system for the dose to water, D W, based on alanine/ESR (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The aim of this study was to test the established measurement system for the out-of-field measurements of inpatients with breast cancer. A set of five alanine pellets were affixed to the skin of each patient at the contra lateral breast beginning at the sternum and extending over the mammilla to the distal surface. During 28 fractions with 2.2 Gy per fraction, the accumulated dose was measured in four patients. A cone beam computer tomography (CBCT) scan was generated for setup purposes before every treatment. The reference CT dataset was registered rigidly and deformably to the CBCT dataset for 28 fractions. To take the actual alanine pellet position into account, the dose distribution was calculated for every fraction using the Acuros XB algorithm. The results of the ESR measurements were compared to the calculated doses. The maximum dose measured at the sternum was 19.9 Gy  ±  0.4 Gy, decreasing to 6.8 Gy  ±  0.2 Gy at the mammilla and 4.5 Gy  ±  0.1 Gy at the distal surface of the contra lateral breast. The absolute differences between the calculated and measured doses ranged from  -1.9 Gy to 0.9 Gy. No systematic error could be seen. It was possible to achieve a combined standard uncertainty of 1.63% for D W  =  5 Gy for the measured dose. The alanine/ESR method is feasible for in vivo measurements.

  10. Impact of ion binding on poly-L-lysine (un)folding energy landscape and kinetics.

    PubMed

    Xiong, Kan; Asher, Sanford A

    2012-06-21

    We utilize T-jump UV resonance Raman spectroscopy (UVRR) to study the impact of ion binding on the equilibrium energy landscape and on (un)folding kinetics of poly-L-lysine (PLL). We observe that the relaxation rates of the folded conformations (including π-helix (bulge), pure α-helix, and turns) of PLL are slower than those of short alanine-based peptides. The PLL pure α-helix folding time is similar to that of short alanine-based peptides. We for the first time have directly observed that turn conformations are α-helix and π-helix (bulge) unfolding intermediates. ClO(4)(-) binding to the Lys side chain -NH(3)(+) groups and the peptide backbone slows the α-helix unfolding rate compared to that in pure water, but little impacts the folding rate, resulting in an increased α-helix stability. ClO(4)(-) binding significantly increases the PLL unfolding activation barrier but little impacts the folding barrier. Thus, the PLL folding coordinate(s) differs from the unfolding coordinate(s). The-π helix (bulge) unfolding and folding coordinates do not directly go through the α-helix energy well. Our results clearly demonstrate that PLL (un)folding is not a two-state process.

  11. Alanine scanning of the rabies virus glycoprotein antigenic site III using recombinant rabies virus: implication for post-exposure treatment.

    PubMed

    Papaneri, Amy B; Wirblich, Christoph; Marissen, Wilfred E; Schnell, Matthias J

    2013-12-02

    The safety and availability of the human polyclonal sera that is currently utilized for post-exposure treatment (PET) of rabies virus (RABV) infection remain a concern. Recombinant monoclonal antibodies have been postulated as suitable alternatives by WHO. To this extent, CL184, the RABV human antibody combination comprising monoclonal antibodies (mAbs) CR57 and CR4098, has been developed and has delivered promising clinical data to support its use for RABV PET. For this fully human IgG1 cocktail, mAbs CR57 and CR4098 are produced in the PER.C6 human cell line and combined in equal amounts in the final product. During preclinical evaluation, CR57 was shown to bind to antigenic site I whereas CR4098 neutralization was influenced by a mutation of position 336 (N336) located within antigenic site III. Here, alanine scanning was used to analyze the influence of mutations within the potential binding site for CR4098, antigenic site III, in order to evaluate the possibility of mutated rabies viruses escaping neutralization. For this approach, twenty flanking amino acids (10 upstream and 10 downstream) of the RABV glycoprotein (G) asparagine (N336) were exchanged to alanine (or serine, if already alanine) by site-directed mutagenesis. Analysis of G expression revealed four of the twenty mutant Gs to be non-functional, as shown by their lack of cell surface expression, which is a requirement for the production of infectious RABV. Therefore, these mutants were excluded from further study. The remaining sixteen mutants were introduced in an infectious clone of RABV, and recombinant RABVs (rRABVs) were recovered and utilized for in vitro neutralization assays. All of the viruses were effectively neutralized by CR4098 as well as by CR57, indicating that single amino acid exchanges in this region does not affect the broad neutralizing capability of the CL184 mAb combination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Glycine and alanine synthesis from formaldehyde and hydroxylamine in the field of ultrasound waves.

    PubMed

    Sokolskaya, A

    1976-08-01

    High intensity ultrasound waves coupled with other form of energy obviously were initiators of pre-biochemical reactions; these reactions occurred in the water masses of the primordial Earth. Essential biological substances like formaldehyde, ammonia, hydrocyanic acid, and amino acids compounds similar to carbohydrates by their properties were synthesized in the field of ultrasound waves in model experiments. The main partners of these reactions are water and gases of reductional atomosphere: hydrogen, carbon monoxide, methane, nitrogen and argon. Formation of amino acids takes place in aqueous solutions of formaldehyde and hydroxylamine. The sonication yielded alanine and glycine, 2.0 X 10(-7) and 1.8 X 10(-7) molecules per 100 eV respectively.

  13. Enzymatic synthesis of 3-O-α-maltosyl-l-ascorbate using an engineered cyclodextrin glucanotransferase.

    PubMed

    Ahn, Hee-Jeong; Li, Chao; Cho, Hye-Bin; Park, Sunghoon; Chang, Pahn-Shick; Kim, Young-Wan

    2015-02-15

    A mutant derived from a cyclodextrin glucantransferase with an alanine residue as its acid/base catalyst residue (CGT-E284A) catalyzed regioselective glycosylation at 3-OH of l-ascorbic acid using α-maltosyl fluoride (αG2F) and l-ascorbic acid as the donor and acceptor, respectively, yielding 3-O-α-maltosyl-l-ascorbate (AA3αG2). The optimum conditions were determined by high-performance liquid chromatography analysis with 20mM αG2F and 40mM l-ascorbic acid as the substrates at pH 7.5 and 25°C with 1mg/ml of the enzyme for 24h. Calcium ions bound in CGT-E284A played an important role in the transglycosylation. CGT-E284A exhibited typical saturation kinetic behaviour for αG2F at a fixed acceptor concentration (40mM), and substrate inhibition by l-ascorbic acid was observed at high l-ascorbic acid concentrations (>60mM). AA3αG2 was isolated from a preparative scale reaction with a yield of 29%, and it showed extremely high stability under oxidative conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Dipeptide transport and hydrolysis in isolated loops of rat small intestine: effects of stereospecificity.

    PubMed Central

    Lister, N; Sykes, A P; Bailey, P D; Boyd, C A; Bronk, J R

    1995-01-01

    1. Isolated jejunal loops of rat small intestine were perfused by a single pass of bicarbonate Krebs-Ringer solution containing either D- or L-phenylalanine or one of eight dipeptides formed from D- or L-alanine plus D- or L-phenylalanine. 2. At 0.5 mM L-phenylalanyl-L-alanine increased serosal phenylalanine appearance to forty times the control rate giving a value similar to that found with 0.5 mM free L-phenylalanine. No serosal dipeptide could be detected. 3. Perfusions with the two mixed dipeptides with N-terminal D-amino acids (D-alanyl-L-phenylalanine and D-phenylalanyl-L-alanine) gave rise to the appearance of intact dipeptides in the serosal secretions although there were substantial differences in their rates of absorption and subsequent hydrolysis. 4. L-Alanyl-D-phenylalanine was absorbed from the lumen three to five times as fast as L-phenylalanyl-D-alanine. At 1 mM L-alanyl-D-phenylalanine transferred D-phenylalanine across the epithelial layer at more than seven times the rate found with the same concentration of the free D-amino acid. 5. Perfusions with D-alanyl-D-phenylalanine or D-phenylalanyl-D-alanine showed that these two dipeptides are poor substrates for both transport and hydrolysis by the rat small intestine. 6. Analysis of mucosal tissue extracts after perfusion with the two mixed dipeptides with N-terminal D-amino acids revealed that both dipeptides were accumulated within the mucosa and suggested that exit across the basolateral membrane was rate limiting for transepithelial dipeptide transport. Images Figure 5 PMID:7602518

  15. Design of composite microparticle systems based on pectin and waste material of propolis for modified l-alanyl-l-glutamine release and with immunostimulant activity.

    PubMed

    Villa Nova, Mônica; Ratti, Bianca A; Herculano, Leandro S; Bittencourt, Paulo R S; Novello, Cláudio R; Bazotte, Roberto Barbosa; Lautenschlager, Sueli de Oliveira Silva; Bruschi, Marcos Luciano

    2017-12-12

    Catabolic conditions like acquired immunodeficiency syndrome, cancer, and burn can cause immunosuppression. Amino acids such as alanine and glutamine are essential for the activity of the immune system. Propolis is immunostimulant and the waste of propolis extraction has been reused with technological and therapeutic purposes. Therefore, this study describes the association of propolis byproduct extract (BPE) with pectin to prepare spray-dried microparticles containing the dipeptide l-alanyl-l-glutamine as stimulant systems of neutrophils. The use of a factorial design allowed selecting the best formulation, which was characterized by morphology, size, and entrapment efficiency analyses. In addition, the systems were characterized by thermal and X-ray diffraction analysis, Fourier-transform infrared spectroscopy, in vitro drug release, and in vitro cytotoxicity and stimulation test of neutrophils. Small well-structured microparticles with good entrapment efficiency values were achieved. Thermal stability of formulation was observed, and it was proved that pectin, BPE and l-alanyl-l-glutamine were dispersed throughout the matrix. The drug was released from the microparticles during 24 h governed by swelling and diffusion. The drug-loaded formulations showed a significant stimulating effect on neutrophils. These structures could increase the activity of immune cells, and other in vitro and in vivo studies should be performed in the future.

  16. HIIT Augments Muscle Carnosine in the Absence of Dietary Beta-Alanine Intake.

    PubMed

    Salles Painelli, Vitor de; Nemezio, Kleiner Márcio; Jéssica, Ana; Franchi, Mariana; Andrade, Isabel; Riani, Luiz Augusto; Saunders, Bryan; Sale, Craig; Harris, Roger Charles; Gualano, Bruno; Artioli, Guilherme Giannini

    2018-06-21

    Cross-sectional studies suggest that training can increase muscle carnosine (MCarn), although longitudinal studies have failed to confirm this. A lack of control for dietary β-alanine intake or muscle fibre type shifting may have hampered their conclusions. The purpose of the present study was to investigate the effects of high-intensity interval training (HIIT) on MCarn. Twenty vegetarian men were randomly assigned to a control (CON; n=10) or HIIT (n=10) group. HIIT was carried out on a cycle ergometer for 12 weeks, with progressive volume (6-12 series) and intensity (140-170% lactate threshold [LT]). MCarn was quantified in whole-muscle and individual fibres; expression of selected genes (CARNS, CNDP2, ABAT, TauT and PAT1) and muscle buffering capacity in vitro (βmin vitro) were also determined. Exercise tests were performed to evaluate total work done (TWD), VO2max, ventilatory thresholds (VT) and LT. TWD, VT, LT, VO2max and βmin vitro were improved in the HIIT group (all P<0.05), but not in CON (p>0.05). MCarn (in mmol·kg dry muscle) increased in the HIIT (15.8±5.7 to 20.6±5.3; p=0.012) but not the CON group (14.3±5.3 to 15.0±4.9; p=0.99). In type I fibres, MCarn increased in the HIIT (from 14.4±5.9 to 16.8±7.6; p=0.047) but not the CON group (from 14.0±5.5 to 14.9±5.4; p=0.99). In type IIa fibres, MCarn increased in the HIIT group (from 18.8±6.1 to 20.5±6.4; p=0.067) but not the CON group (from 19.7±4.5 to 18.8±4.4; p=0.37). No changes in gene expression were shown. In the absence of any dietary intake of β-alanine, HIIT increased MCarn content. The contribution of increased MCarn to the total increase in βmin vitro appears to be small.

  17. Prebiotic Peptide (Amide) Bond Synthesis Accelerated by Glycerol and Bicarbonate Under Neutral to Alkaline Dry-Down Conditions

    NASA Astrophysics Data System (ADS)

    Forsythe, J. G.; Weber, A. L.

    2017-07-01

    We report a new process for robust peptide bond synthesis in the pH 6–10 range that involves dry-down heating of amino acids in the presence of glycerol and bicarbonate (substrates: L-alanine, L-2-aminobutyric acid, β-alanine, isoserine).

  18. Four of the Most Common Mutations in Primary Hyperoxaluria Type 1 Unmask the Cryptic Mitochondrial Targeting Sequence of Alanine:glyoxylate Aminotransferase Encoded by the Polymorphic Minor Allele*

    PubMed Central

    Fargue, Sonia; Lewin, Jackie; Rumsby, Gill; Danpure, Christopher J.

    2013-01-01

    The gene encoding the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT, EC. 2.6.1.44) exists as two common polymorphic variants termed the “major” and “minor” alleles. The P11L amino acid replacement encoded by the minor allele creates a hidden N-terminal mitochondrial targeting sequence, the unmasking of which occurs in the hereditary calcium oxalate kidney stone disease primary hyperoxaluria type 1 (PH1). This unmasking is due to the additional presence of a common disease-specific G170R mutation, which is encoded by about one third of PH1 alleles. The P11L and G170R replacements interact synergistically to reroute AGT to the mitochondria where it cannot fulfill its metabolic role (i.e. glyoxylate detoxification) effectively. In the present study, we have reinvestigated the consequences of the interaction between P11L and G170R in stably transformed CHO cells and have studied for the first time whether a similar synergism exists between P11L and three other mutations that segregate with the minor allele (i.e. I244T, F152I, and G41R). Our investigations show that the latter three mutants are all able to unmask the cryptic P11L-generated mitochondrial targeting sequence and, as a result, all are mistargeted to the mitochondria. However, whereas the G170R, I244T, and F152I mutants are able to form dimers and are catalytically active, the G41R mutant aggregates and is inactive. These studies open up the possibility that all PH1 mutations, which segregate with the minor allele, might also lead to the peroxisome-to-mitochondrion mistargeting of AGT, a suggestion that has important implications for the development of treatment strategies for PH1. PMID:23229545

  19. Membrane transport of amino acid enantiomers in protoscoleces of Echinococcus granulosus (Cestoda).

    PubMed

    Allen, J T; Arme, C

    1991-02-01

    Protoscoleces of Echinococcus granulosus absorb both L- and D-alanine. Concentration ratios exceed 1 with values for D-alanine exceeding those for the L-isomer, suggesting that both are absorbed by active mechanisms. Uptake of both isomers involves both diffusion and carrier-mediated components. Values for the diffusion component (Kd) for L- and D-alanine were 0.21 and 0.38 nmol mg-1 protein/1.5 min mM-1 respectively, and values for Kt, the transport constants, 0.17 mM and 0.21 mM respectively. Uptake of both isomers was inhibited competitively by a number of other amino acids.

  20. Influence of functional groups on the C α-C β chain of L-phenylalanine and its derivatives

    NASA Astrophysics Data System (ADS)

    Ganesan, Aravindhan; Brunger, Michael; Wang, Feng

    2010-07-01

    L-phenylalanine ( L-phe) consists of three different functional groups, i.e., phenyl, carboxyl (-COOH) and amino (-NH 2), joining through the C α-C β bridge. Substitution of these groups produces 2-phenethylamine (PEA) and 3-phenylpropionic acid (PPA). Electronic structures of L-phe, PEA and PPA together with smaller "fragments" L-alanine and benzene were determined using density functional theory (DFT), from which core and valence shell ionization spectra were simulated. Comparison of the spectra reveals that core shell ionization energies clearly indicate that the carbon bridge is significantly affected by their functional group substitutions particularly at the C α site. In the valence space, quite unexpectedly, the frontier orbitals are concentrated on the benzene group although some energy splitting is observed. The orbitals which significantly affect the C α-C β carbon backbone are from the inner valence shell in the ionization energy region of 20-26 eV of the molecules.

  1. New estradiol-linked nitrosoureas: can the pharmacokinetic properties help to explain the pharmacodynamic activities?

    PubMed

    Betsch, B; Berger, M R; Spiegelhalder, B; Eisenbrand, G; Schmähl, D

    1989-01-01

    The pharmacokinetics of 1-(2-chloroethyl)-1-nitrosocarbamoyl-L-alanine-estradiol-17-ester (CNC-alanine-estradiol-17-ester) a new estradiol-linked anticancer drug and the unlinked DNA-crosslinking agent 1-(2-chloroethyl)-1-nitrosocarbamoyl-L-alanine (CNC-alanine) have been studied in methylnitrosourea-induced female Sprague-Dawley rats after equimolar intravenous and oral administration. In comparison with the unlinked single agent, the CNC-alanine-estradiol-17-ester showed a 3-fold longer halflife in plasma and a three times larger volume of distribution. The distribution after intravenous administration was nearly three times faster. The absorption after peroral administration was likewise two times faster. The bioavailability of the estradiol-linked drug was determined to be 52%. After application of CNC-alanine-estradiol-17-ester the cytostatic metabolite CNC-alanine was found, indicating the cleavage of the ester bond. CNC-alanine generated from CNC-alanine-estradiol-17-ester showed a 50% longer halflife than when applied directly. The results indicate that linking 2-chloroethyl-nitrosoureas to estradiol can result in new anticancer agents with modified properties in comparison to the unlinked single agent. The higher antineoplastic activity of the hormone-linked drug can mainly be attributed to differences in the pharmacokinetic behaviour.

  2. ENDOR-Induced EPR of Disordered Systems: Application to X-Irradiated Alanine.

    PubMed

    Kusakovskij, Jevgenij; Maes, Kwinten; Callens, Freddy; Vrielinck, Henk

    2018-02-15

    The electron paramagnetic resonance (EPR) spectra of radiation-induced radicals in organic solids are generally composed of multiple components that largely overlap due to their similar weak g anisotropy and a large number of hyperfine (HF) interactions. Such properties make these systems difficult to study using standard cw EPR spectroscopy even in single crystals. Electron-nuclear double-resonance (ENDOR) spectroscopy is a powerful and widely used complementary technique. In particular, ENDOR-induced EPR (EIE) experiments are useful for separating the overlapping contributions. In the present work, these techniques were employed to study the EPR spectrum of stable radicals in X-irradiated alanine, which is widely used in dosimetric applications. The principal values of all major proton HF interactions of the dominant radicals were determined by analyzing the magnetic field dependence of the ENDOR spectrum at 50 K, where the rotation of methyl groups is frozen. Accurate simulations of the EPR spectrum were performed after the major components were separated using an EIE analysis. As a result, new evidence in favor of the model of the second dominant radical was obtained.

  3. L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum.

    PubMed

    Zhu, Qinjian; Zhang, Xiaomei; Luo, Yuchang; Guo, Wen; Xu, Guoqiang; Shi, Jinsong; Xu, Zhenghong

    2015-02-01

    The direct fermentative production of L-serine by Corynebacterium glutamicum from sugars is attractive. However, superfluous by-product accumulation and low L-serine productivity limit its industrial production on large scale. This study aimed to investigate metabolic and bioprocess engineering strategies towards eliminating by-products as well as increasing L-serine productivity. Deletion of alaT and avtA encoding the transaminases and introduction of an attenuated mutant of acetohydroxyacid synthase (AHAS) increased both L-serine production level (26.23 g/L) and its productivity (0.27 g/L/h). Compared to the parent strain, the by-products L-alanine and L-valine accumulation in the resulting strain were reduced by 87 % (from 9.80 to 1.23 g/L) and 60 % (from 6.54 to 2.63 g/L), respectively. The modification decreased the metabolic flow towards the branched-chain amino acids (BCAAs) and induced to shift it towards L-serine production. Meanwhile, it was found that corn steep liquor (CSL) could stimulate cell growth and increase sucrose consumption rate as well as L-serine productivity. With addition of 2 g/L CSL, the resulting strain showed a significant improvement in the sucrose consumption rate (72 %) and the L-serine productivity (67 %). In fed-batch fermentation, 42.62 g/L of L-serine accumulation was achieved with a productivity of 0.44 g/L/h and yield of 0.21 g/g sucrose, which was the highest production of L-serine from sugars to date. The results demonstrated that combined metabolic and bioprocess engineering strategies could minimize by-product accumulation and improve L-serine productivity.

  4. Statistically optimized biotransformation protocol for continuous production of L-DOPA using Mucuna monosperma callus culture.

    PubMed

    Inamdar, Shrirang Appasaheb; Surwase, Shripad Nagnath; Jadhav, Shekhar Bhagwan; Bapat, Vishwas Anant; Jadhav, Jyoti Prafull

    2013-01-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine), a modified amino acid, is an expansively used drug for the Parkinson's disease treatment. In the present study, optimization of nutritional parameters influencing L-DOPA production was attempted using the response surface methodology (RSM) from Mucuna monosperma callus. Optimization of the four factors was carried out using the Box-Behnken design. The optimized levels of factors predicted by the model include tyrosine 0.894 g l(-1), pH 4.99, ascorbic acid 31.62 mg l(-1)and copper sulphate 23.92 mg l(-1), which resulted in highest L-DOPA yield of 0.309 g l(-1). The optimization of medium using RSM resulted in a 3.45-fold increase in the yield of L-DOPA. The ANOVA analysis showed a significant R (2) value (0.9912), model F-value (112.465) and probability (0.0001), with insignificant lack of fit. Optimized medium was used in the laboratory scale column reactor for continuous production of L-DOPA. Uninterrupted flow column exhibited maximum L-DOPA production rate of 200 mg L(-1) h(-1) which is one of the highest values ever reported using plant as a biotransformation source. L-DOPA production was confirmed by HPTLC and HPLC analysis. This study demonstrates the synthesis of L- DOPA using Mucuna monosperma callus using a laboratory scale column reactor.

  5. Protein linear indices of the 'macromolecular pseudograph alpha-carbon atom adjacency matrix' in bioinformatics. Part 1: prediction of protein stability effects of a complete set of alanine substitutions in Arc repressor.

    PubMed

    Marrero-Ponce, Yovani; Medina-Marrero, Ricardo; Castillo-Garit, Juan A; Romero-Zaldivar, Vicente; Torrens, Francisco; Castro, Eduardo A

    2005-04-15

    A novel approach to bio-macromolecular design from a linear algebra point of view is introduced. A protein's total (whole protein) and local (one or more amino acid) linear indices are a new set of bio-macromolecular descriptors of relevance to protein QSAR/QSPR studies. These amino-acid level biochemical descriptors are based on the calculation of linear maps on Rn[f k(xmi):Rn-->Rn] in canonical basis. These bio-macromolecular indices are calculated from the kth power of the macromolecular pseudograph alpha-carbon atom adjacency matrix. Total linear indices are linear functional on Rn. That is, the kth total linear indices are linear maps from Rn to the scalar R[f k(xm):Rn-->R]. Thus, the kth total linear indices are calculated by summing the amino-acid linear indices of all amino acids in the protein molecule. A study of the protein stability effects for a complete set of alanine substitutions in the Arc repressor illustrates this approach. A quantitative model that discriminates near wild-type stability alanine mutants from the reduced-stability ones in a training series was obtained. This model permitted the correct classification of 97.56% (40/41) and 91.67% (11/12) of proteins in the training and test set, respectively. It shows a high Matthews correlation coefficient (MCC=0.952) for the training set and an MCC=0.837 for the external prediction set. Additionally, canonical regression analysis corroborated the statistical quality of the classification model (Rcanc=0.824). This analysis was also used to compute biological stability canonical scores for each Arc alanine mutant. On the other hand, the linear piecewise regression model compared favorably with respect to the linear regression one on predicting the melting temperature (tm) of the Arc alanine mutants. The linear model explains almost 81% of the variance of the experimental tm (R=0.90 and s=4.29) and the LOO press statistics evidenced its predictive ability (q2=0.72 and scv=4.79). Moreover, the

  6. Associations of White Blood Cell Count,Alanine Aminotransferase,and Aspartate Aminotransferase in the First Trimester withGestational Diabetes Mellitus.

    PubMed

    Zhao, Li-li; Li, Wei; Ping, Fan; Ma, Liang-kun; Nie, Min

    2016-06-10

    Objective To explore the associations of white blood cell (WBC) count,alanine aminotransferase (ALT),and aspartate aminotransferase(AST) in the first trimester of pregnancy with gestational diabetes mellitus (GDM). Methods Totally 725 GDM women and 935 women who remained euglycemic throughout pregnancy were enrolled in this study. Pre-pregnancy weight/height were recorded. WBC,ALT,and AST levels were detected between 8 and 12 weeks of pregnancy.At 24 to 28 weeks of pregnancy,the glucose and insulin levels were measured. The WBC,ALT,and AST levels were compared between two groups,and the associations of WBC,ALT,and AST levels with the blood glucose and insulin levels were retrospectively analyzed. Meanwhile,the potential associations of those factors with the occurrence of GDM were analzyed. Results WBC count [9.41(8.15,10.84)?10(9)/L vs. 9.04 (7.64,10.37)?10(9)/L,P=1.0?10(-5)] and ALT levels [18.00(12.00,30.00)U/L vs. 16.00 (11.00,26.00)U/L,P=0.004] in the first trimester of pregnancy were significantly increased in GDM subjects than in normal glucose tolerance(NGT)subjects;however,the AST level showed no significant difference between these two groups [41.00 (26.00,43.00)U/L vs. 41.00 (23.00,43.00)U/L,P=0.588]. Logistic regression analysis illustrated that elevated WBC count was an independent risk factor for GDM after adjustment for age,pre-pregnancy body mass index,blood pressure,and family history of diabetes(OR=1.119,P=0.001). The ROC curve revealed that threshold of WBC count was 7.965?10(9)/L(AUC=0.566,P=1?10(-5)),which had a sensitivity of 79.4% and a specificity of 31.3%. Multivariate linear regression analysis showed that homeostasis model assessment of insulin resistance was positively correlated with WBC count(B=0.051,P=0.022,R(2)=0.083);1-hour blood glucose after oral 50 grams of sugar (B=0.044,P=0.001,R(2)=0.044) and fasting plasma true insulin(B=0.214,P=0.032,R(2)=0.066) were positively correlated with WBC count;1-hour true insulin after 100 grams

  7. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria.

    PubMed

    Martino, P Di; Fursy, R; Bret, L; Sundararaju, B; Phillips, R S

    2003-07-01

    We demonstrated previously that genetic inactivation of tryptophanase is responsible for a dramatic decrease in biofilm formation in the laboratory strain Escherichia coli S17-1. In the present study, we tested whether the biochemical inhibition of tryptophanase, with the competitive inhibitor oxindolyl-L-alanine, could affect polystyrene colonization by E. coli and other indole-producing bacteria. Oxindolyl-L-alanine inhibits, in a dose-dependent manner, indole production and biofilm formation by strain S17-1 grown in Luria-Bertani (LB) medium. Supplementation with indole at physiologically relevant concentrations restores biofilm formation by strain S17-1 in the presence of oxindolyl-L-alanine and by mutant strain E. coli 3714 (S17-1 tnaA::Tn5) in LB medium. Oxindolyl-L-alanine also inhibits the adherence of S17-1 cells to polystyrene for a 3-h incubation time, but mutant strain 3714 cells are unaffected. At 0.5 mg/mL, oxindolyl-L-alanine exhibits inhibitory activity against biofilm formation in LB medium and in synthetic urine for several clinical isolates of E. coli, Klebsiella oxytoca, Citrobacter koseri, Providencia stuartii, and Morganella morganii but has no affect on indole-negative Klebsiella pneumoniae strains. In conclusion, these data suggest that indole, produced by the action of tryptophanase, is involved in polystyrene colonization by several indole-producing bacterial species. Indole may act as a signalling molecule to regulate the expression of adhesion and biofilm-promoting factors.

  8. Antifungal properties of peptidomimetics with an arginine-[β-(2,5,7-tri-tert-butylindol-3-yl)alanine]-arginine motif against Saccharomyces cerevisiae and Zygosaccharomyces bailii.

    PubMed

    Larsen, Camilla Eggert; Larsen, Camilla Josephine; Franzyk, Henrik; Regenberg, Birgitte

    2015-05-01

    Due to increased occurrence of infections and food spoilage caused by yeast, there is an unmet need for new antifungal agents. The arginine-β-(2,5,7-tri-tert-butylindol-3-yl) alanine-arginine (R-Tbt-R) motif was previously proved useful in the design of an antifungal tripeptide. Here, an array of peptidomimetics based on this motif was investigated for antifungal and hemolytic activity. The five most promising modified tetrapeptide analogues ( 6: and 9-12: contain an additional C-terminal hydrophobic residue, and these were found to exhibit antifungal activity against Saccharomyces cerevisiae (MIC 6 and 12 μg mL(-1)) and Zygosaccharomyces bailii (MIC 6-25 μg mL(-1)). Four compounds ( 6: and 9-11: , had limited hemolytic activity (<10% hemolysis at 8 × MIC). Determination of their killing kinetics revealed that compound 9: displayed fungicidal effect. Testing against cells from an S. cerevisiae deletion mutant library indicated that interaction with yeast-specific fungal sphingolipids, most likely constitutes a crucial step in the mode of action. Interestingly, a lack of activity of peptidomimetics 6: and 9-11: towards Candida spp. was shown to be due to degradation or sequestering by the yeast. Due to their ultrashort nature, antifungal activity and low toxicity, the four compounds may have potential as leads for novel preservatives. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.

    PubMed Central

    Heyne, R I; de Vrij, W; Crielaard, W; Konings, W N

    1991-01-01

    Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism. PMID:1670936

  10. Spectroscopic analyses on interaction of o-Vanillin- D-Phenylalanine, o-Vanillin- L-Tyrosine and o-Vanillin- L-Levodopa Schiff Bases with bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin- D-Phenylalanine (o-VDP), o-Vanillin- L-Tyrosine (o-VLT) and o-Vanillin- L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant ( Kq), apparent quenching constant ( Ksv), effective binding constant ( KA) and corresponding dissociation constant ( KD) as well as binding site number ( n) were obtained. In addition, the binding distance ( r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA > o-VLT-BSA > o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues.

  11. [Model antigens and their significance for occupational dermatology].

    PubMed

    Schwartze, G; Lübbe, D; Wozniak, K D

    1989-07-01

    By means of epicutaneous tests we studied the contact hypersensitivity to DNP-amino acids in individuals sensitized to dinitrochlorobenzene (DNCB). We found a high incidence of positive skin responses to DNP-glycine, di-DNP-L-cystine, and DNP-L-alpha-alanine, but only in some cases DNP-beta-alanine induced skin reactivity. The results are discussed both in connection with the influence of varying molecular sizes and chemical structure on the immunological reactivity and the possibility to develop a beta-alanine containing protective ointment against protein-reactive haptens.

  12. A study of combined filtration and adsorption on nylon-based dye-affinity membranes: separation of recombinant L-alanine dehydrogenase from crude fermentation broth.

    PubMed

    Weissenborn, M; Hutter, B; Singh, M; Beeskow, T C; Anspach, F B

    1997-04-01

    Dextran, hydroxyethylcellulose (HEC), and poly(vinyl alcohol) PVA were covalently linked to bisoxirane-activated nylon membranes. Cibacron Blue F3G-A was immobilized on to these membranes to yield a dye-affinity membrane. The hydrodynamic permeability of affinity membranes was reduced to approximately 50% of that of the original Nylon membrane due to extension of polymer coils into flow-through pores. Adsorption of pre-purified human serum albumin (HSA) and malate dehydrogenase (MDH) displayed highest maximum binding capacities on HEC-coated dye-ligand-affinity membranes, ranging from (163 micrograms/cm2 for HSA to 316 micrograms/cm2 for MDH. The protein recovery of HSA was 100% on dextran-coated membranes compared with 70% on PVA-coated membranes, whereas almost 100% recovery was found for MDH, independent of the polymer. Application of crude supernatant from recombinant Escherichia coli yielded purification factors of 7.4, 8.9 and 11.2 for recombinant alanine dehydrogenase from Mycobacterium tuberculosis for HEC-, dextran- and PVA-coated membranes respectively. Dynamic capacities decreased remarkably to approximately 3 micrograms/cm2 due to co-adsorption of host proteins. The presence of cell debris caused only a slight decrease of purification factors, but a dramatic decrease of the permeability of affinity membranes due to development of a particle layer in front of the membranes. Although enzyme recoveries were up to 90% using cell-free supernatant, more than 50% of the product was lost due to polarization, concentration and rejection at particle layers when using crude homogenates. In order to further improve this integrated downstream process, sophisticated membrane techniques are required by which the formation of a filter cake is circumvented. Further refinement of polymer-coated membranes would not help one to avoid this problem.

  13. Higher Ratio of Serum Alpha-Fetoprotein Could Predict Outcomes in Patients with Hepatitis B Virus-Associated Hepatocellular Carcinoma and Normal Alanine Aminotransferase

    PubMed Central

    Park, Joong-Won

    2016-01-01

    Background The role of serum alpha-fetoprotein (AFP) levels in the surveillance and diagnosis of hepatocellular carcinoma (HCC) is controversial. The aim of this study was to investigate the value of serially measured serum AFP levels in HCC progression or recurrence after initial treatment. Methods A total of 722 consecutive patients newly diagnosed with HCC and treated at the National Cancer Center, Korea, between January 2004 and December 2009 were enrolled. The AFP ratios between 4–8 weeks post-treatment and those at the time of HCC progression or recurrence were obtained. Multivariate logistic regression analysis was performed to correlate the post-treatment AFP ratios with the presence of HCC progression or recurrence. Results The etiology of HCC was related to chronic hepatitis B virus (HBV) infection in 562 patients (77.8%), chronic hepatitis C virus (HCV) infection in 74 (10.2%), and non-viral cause in 86 (11.9%). There was a significant decrease in serum AFP levels from the baseline to 4 to 8 weeks after treatment (median AFP, 319.6 ng/mL vs. 49.6 ng/mL; p< 0.001). Multivariate analysis showed that an AFP ratio > 1.0 was an independently associated with HCC progression or recurrence. Among the different causes of HCC analyzed, this association was significant only for HCC related to chronic hepatitis B (p< 0.001) and non-viral causes (p<0.05), and limited only to patients who had normal alanine aminotransferase (ALT) levels. Conclusion Serial measurements of serum AFP ratios could be helpful in detecting progression or recurrence in treated patients with HBV-HCC and normal ALT. PMID:27304617

  14. Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair.

    PubMed

    Liu, He; Cheng, Yilong; Chen, Jinjin; Chang, Fei; Wang, Jincheng; Ding, Jianxun; Chen, Xuesi

    2018-06-01

    Biophysical properties of the desired biomimetic scaffolds, such as porosity and elasticity, have been proven associated with the efficacy of cartilage regeneration. In this work, the copolymers of poly(l-alanine)-block-poly(ethylene glycol)-block-poly(l-alanine) (PA-PEG-PA) and poly(l-alanine-co-l-phenylalanine)-block-poly(ethylene glycol)-block-poly(l-alanine-co-l-phenylalanine) (PAF-PEG-PAF) with different ratios of alanine to phenylalanine were synthesized. The introduction of a hydrophobic amino acid, i.e., phenylalanine, into polyalanine-based thermosensitive hydrogel led to the enhanced gelation behaviors and upregulated mechanical properties. Moreover, the increase of phenylalanine content resulted in the enlarged pore size and enhanced mechanical strength of PAF-PEG-PAF thermogel, followed by the regeneration of hyaline-like cartilage with reduced fibrous tissue formation in vivo. The findings indicated the great potential of thermosensitive polypeptide hydrogels in cartilage tissue engineering. Articular cartilage defect has limited self-repair ability due to the lack of blood supply and innervation, which may lead to knee osteoarthritis afterwards. Injectable hydrogels are demonstrated possessing outstanding properties as biomimetic scaffolds in cartilage tissue engineering, while the effect of biophysical properties on the efficacy of cartilage regeneration has not been revealed. Herein, the poly(ethylene glycol)-polypeptide triblock copolymers with different ratios of alanine to phenylalanine were synthesized. The sol-to-gel transition temperature and the critical gelation concentration decreased as the increased amount of phenylalanine unit, resulting in the enlarged pore size and enhanced mechanical strength. These features lead to better regeneration of hyaline-like cartilage with reduced fibrous tissue formation, indicating great potential of thermosensitive polypeptide hydrogels for efficient cartilage repair. Copyright © 2018 Acta Materialia Inc

  15. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases

    PubMed Central

    Meziane-Cherif, Djalal; Stogios, Peter J.; Evdokimova, Elena; Egorova, Olga

    2015-01-01

    ABSTRACT Vancomycin resistance in Gram-positive bacteria results from the replacement of the d-alanyl–d-alanine target of peptidoglycan precursors with d-alanyl–d-lactate or d-alanyl–d-serine (d-Ala-d-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of d-Ala-d-Ser-terminating precursors by converting l-Ser to d-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in l-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5′-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the l-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against l-Ser versus l-Ala implied that this enzyme relies on its membrane-bound domain for l-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. PMID:26265719

  16. Structural and functional adaptation of vancomycin resistance VanT serine racemases

    DOE PAGES

    Meziane-Cherif, Djalal; Stogios, Peter J.; Evdokimova, Elena; ...

    2015-08-11

    Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl–D-alanine target of peptidoglycan precursors with D-alanyl–D-lactate or D-alanyl–D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanT G from VanG-type resistant Enterococcus faecalis BM4518more » was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanT G and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn 696 which are responsible for theL-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanT G against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of D-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria.« less

  17. With no lysine L-WNK1 isoforms are negative regulators of the K+-Cl- cotransporters.

    PubMed

    Mercado, Adriana; de Los Heros, Paola; Melo, Zesergio; Chávez-Canales, María; Murillo-de-Ozores, Adrián R; Moreno, Erika; Bazúa-Valenti, Silvana; Vázquez, Norma; Hadchouel, Juliette; Gamba, Gerardo

    2016-07-01

    The K(+)-Cl(-) cotransporters (KCC1-KCC4) encompass a branch of the SLC12 family of electroneutral cation-coupled chloride cotransporters that translocate ions out of the cell to regulate various factors, including cell volume and intracellular chloride concentration, among others. L-WNK1 is an ubiquitously expressed kinase that is activated in response to osmotic stress and intracellular chloride depletion, and it is implicated in two distinct hereditary syndromes: the renal disease pseudohypoaldosteronism type II (PHAII) and the neurological disease hereditary sensory neuropathy 2 (HSN2). The effect of L-WNK1 on KCC activity is unknown. Using Xenopus laevis oocytes and HEK-293 cells, we show that the activation of KCCs by cell swelling was prevented by L-WNK1 coexpression. In contrast, the activity of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 was remarkably increased with L-WNK1 coexpression. The negative effect of L-WNK1 on the KCCs is kinase dependent. Elimination of the STE20 proline-alanine rich kinase (SPAK)/oxidative stress-responsive kinase (OSR1) binding site or the HQ motif required for the WNK-WNK interaction prevented the effect of L-WNK1 on KCCs, suggesting a required interaction between L-WNK1 molecules and SPAK. Together, our data support that NKCC1 and KCCs are coordinately regulated by L-WNK1 isoforms. Copyright © 2016 the American Physiological Society.

  18. With no lysine L-WNK1 isoforms are negative regulators of the K+-Cl− cotransporters

    PubMed Central

    Mercado, Adriana; de los Heros, Paola; Melo, Zesergio; Chávez-Canales, María; Murillo-de-Ozores, Adrián R.; Moreno, Erika; Bazúa-Valenti, Silvana; Vázquez, Norma; Hadchouel, Juliette

    2016-01-01

    The K+-Cl− cotransporters (KCC1-KCC4) encompass a branch of the SLC12 family of electroneutral cation-coupled chloride cotransporters that translocate ions out of the cell to regulate various factors, including cell volume and intracellular chloride concentration, among others. L-WNK1 is an ubiquitously expressed kinase that is activated in response to osmotic stress and intracellular chloride depletion, and it is implicated in two distinct hereditary syndromes: the renal disease pseudohypoaldosteronism type II (PHAII) and the neurological disease hereditary sensory neuropathy 2 (HSN2). The effect of L-WNK1 on KCC activity is unknown. Using Xenopus laevis oocytes and HEK-293 cells, we show that the activation of KCCs by cell swelling was prevented by L-WNK1 coexpression. In contrast, the activity of the Na+-K+-2Cl− cotransporter NKCC1 was remarkably increased with L-WNK1 coexpression. The negative effect of L-WNK1 on the KCCs is kinase dependent. Elimination of the STE20 proline-alanine rich kinase (SPAK)/oxidative stress-responsive kinase (OSR1) binding site or the HQ motif required for the WNK-WNK interaction prevented the effect of L-WNK1 on KCCs, suggesting a required interaction between L-WNK1 molecules and SPAK. Together, our data support that NKCC1 and KCCs are coordinately regulated by L-WNK1 isoforms. PMID:27170636

  19. Evaluation of 13CO2 breath tests for the detection of fructose malabsorption.

    PubMed

    Hoekstra, J H; van den Aker, J H; Kneepkens, C M; Stellaard, F; Geypens, B; Ghoos, Y F

    1996-03-01

    Breath hydrogen (H2) studies have made clear that small intestinal absorption of fructose is limited, especially in toddlers. Malabsorption of fructose may be a cause of recurrent abdominal pain and chronic nonspecific diarrhea (toddler's diarrhea). Fructose absorption is facilitated by equimolar doses of glucose and, as we have found, amino acids (especially L-alanine); the mechanism underlying this effect remains unclear. To study fructose absorption in a more direct way, we combined breath H2 studies with breath 13CO2 studies. Gastric emptying was studied by using L-glycine-1-13C in 4 children from 12.1 to 16.0 years of age. After 25 gm of fructose and 27.5 gm of glucose, when given together, gastric emptying was significantly (p<0.05) slower than with either sugar alone. In a second series of experiments, 5 children from 12.0 to 15.9 years of age were tested with 25 gm of fructose, alone and with equimolar doses of glucose and L-alanine, and 4 younger children from 3.1 to 6.1 years of age were tested with 2 gm/kg (max 37.5 gm) fructose, alone or with an equimolar dose of L-alanine. All fructose solutions were enriched with 15 mg of D-fructose-13C-6. In all 9 children, fructose was malabsorbed as judged by breath H2 increases > or = 20 ppm, and the addition of glucose or L-alanine resulted in significantly lower breath H2 increases (p < or = 0.005 for glucose, p < or = 0.001 for alanine). In contrast, the addition of alanine or glucose did not change the pattern of breath 13CO2 excretion in the 5 older children, whereas in the 4 younger children (with relatively higher doses), L-alanine addition resulted in significantly lower increases in breath 13CO2. In the latter group, for each time point, breath H2 and 13CO2 concentrations after fructose were compared with those after fructose plus L-alanine; in 20 out of 24 points, both H2 and 13CO2 were higher after fructose. These results suggest that 13CO2 not only originated from the oxidation of absorbed substrate

  20. Staphylococcus aureus Peptidoglycan Stem Packing by Rotational-Echo Double Resonance NMR Spectroscopy

    PubMed Central

    Kim, Sung Joon; Singh, Manmilan; Preobrazhenskaya, Maria; Schaefer, Jacob

    2013-01-01

    Staphylococcus aureus grown in the presence of an alanine-racemase inhibitor was labeled with D-[1-13C]alanine and L-[15N]alanine to characterize some details of the peptidoglycan tertiary structure. Rotational-echo double-resonance NMR of intact whole cells was used to measure internuclear distances between 13C and 15N of labeled amino acids incorporated in the peptidoglycan, and from those labels to 19F of a glycopeptide drug specifically bound to the peptidoglycan. The observed 13C-15N average distance of 4.1 to 4.4 Å between D- and L-alanines in nearest-neighbor peptide stems is consistent with a local, tightly packed, parallel-stem architecture for a repeating structural motif within the peptidoglycan of S. aureus. PMID:23617832

  1. Asymmetric adsorption by quartz - A model for the prebiotic origin of optical activity

    NASA Technical Reports Server (NTRS)

    Bonner, W. M.; Kavasmaneck, P. R.; Martin, F. S.; Flores, J. J.

    1975-01-01

    One mechanism previously proposed for the abiotic accumulation of molecules of one chirality in nature is asymmetric adsorption on the chiral surfaces of optically active quartz crystals. Earlier literature in this field is reviewed, with the conclusion that previous investigations of this phenomenon, using optical rotation criteria, have afforded ambiguous results. We now have studied the adsorption of radioactive D- and L-alanine on powdered d- and l-quartz, using change in radioactivity level as a criterion for both gross and differential adsorption, d-Quartz preferentially adsorbed D-alanine from anhydrous dimethyl-formamide solution, and l-quartz L-alanine. The differential adsorption varied between 1.0 and 1.8%. The implications of these observations are discussed from the viewpoint of early chemical evolution and the origin of optically active organic compounds in nature.

  2. Structural and electronic properties of L-amino acids

    NASA Astrophysics Data System (ADS)

    Tulip, P. R.; Clark, S. J.

    2005-05-01

    The structural and electronic properties of four L-amino acids alanine, leucine, isoleucine, and valine have been investigated using density functional theory (DFT) and the generalized gradient approximation. Within the crystals, it is found that the constituent molecules adopt zwitterionic configurations, in agreement with experimental work. Lattice constants are found to be in good agreement with experimentally determined values, although certain discrepancies do exist due to the description of van der Waals interactions. We find that these materials possess wide DFT band gaps in the region of 5 eV, with electrons highly localized to the constituent molecules. It is found that the main mechanisms behind crystal formation are dipolar interactions and hydrogen bonding of a primarily electrostatic character, in agreement with current biochemical understanding of these systems. The electronic structure suggests that the amine and carboxy functional groups are dominant in determining band structure.

  3. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.

    PubMed

    Meziane-Cherif, Djalal; Stogios, Peter J; Evdokimova, Elena; Egorova, Olga; Savchenko, Alexei; Courvalin, Patrice

    2015-08-11

    Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl-D-alanine target of peptidoglycan precursors with D-alanyl-D-lactate or D-alanyl-D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the L-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. Vancomycin is one of the drugs of last resort against Gram-positive antibiotic-resistant pathogens. However, bacteria have evolved a sophisticated mechanism which remodels the drug target, the D-alanine ending precursors in cell wall

  4. Substituting leucine for alanine-86 in the tether region of the iron-sulfur protein of the cytochrome bc1 complex affects the mobility of the [2Fe2S] domain.

    PubMed

    Ghosh, M; Wang, Y; Ebert, C E; Vadlamuri, S; Beattie, D S

    2001-01-16

    Mutating three conserved alanine residues in the tether region of the iron-sulfur protein of the yeast cytochrome bc(1) complex resulted in 22-56% decreases in enzymatic activity [Obungu et al. (2000) Biochim. Biophys. Acta 1457, 36-44]. The activity of the cytochrome bc(1) complex isolated from A86L was decreased 60% compared to the wild-type without loss of heme or protein and without changes in the 2Fe2S cluster or proton-pumping ability. The activity of the bc(1) complex from mutant A92R was identical to the wild-type, while loss of both heme and activity was observed in the bc(1) complex isolated from mutant A90I. Computer simulations indicated that neither mutation A86L nor mutation A92R affects the alpha-helical backbone in the tether region; however, the side chain of the leucine substituted for Ala-86 interacts with the side chain of Leu-89. The Arrhenius plot for mutant A86L was apparently biphasic with a transition observed at 17-19 degrees C and an activation energy of 279.9 kJ/mol below 17 degrees C and 125.1 kJ/mol above 17 degrees C. The initial rate of cytochrome c(1) reduction was lowered 33% in mutant A86L; however, the initial rate of cytochrome b reduction was unaffected, suggesting that movement of the tether region of the iron-sulfur protein is necessary for maximum rates of enzymatic activity. Substituting a leucine for Ala-86 impedes the unwinding of the alpha-helix and hence movement of the tether.

  5. Molecular and chiral analyses of some protein amino acid derivatives in the Murchison and Murray meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Cooper, George W.

    2001-07-01

    The varied organic suite extracted from the Murchison meteorite contains several amino acids that are common to the biosphere. Some of these have been found to be non-racemic, but the indigenous nature of their L-enantiomeric excesses has been subject to debate in view of possible terrestrial contamination. We have investigated two amino acids of common terrestrial and meteoritic occurrence, alanine and glutamic acid, and assessed their indigenous enantiomeric ratios in the Murchison and Murray meteorites through the ratios of some of their derivatives. Analyzed were: N-acetyl alanine, ??imino propioacetic acid, N-acetyl glutamic acid and pyroglutamic acid. Both alanine derivatives were found to be racemic, while those of glutamic acid showed L-enantiomeric excesses varying from 16% to 47.2% for pyroglutamic acid, and from 8.6% to 41% for N-acetyl glutamic acid. The ?13C was determined for the two enantiomers of Murchison pyroglutamic acid both before and after acid hydrolysis of the lactam to glutamic acid. The values of +27.7 (D-pyro), +10.0 (L-pyro), +32.2 (D-glu) and +14.6 (L-glu) were obtained. The racemic nature of alanine derivatives strongly suggests that alanine itself, as indigenous to the meteorite, is racemic. The explanation of the L-enantiomeric excesses found for glutamic acid derivatives is less direct; however, the variability of the enantiomeric ratios for these compounds and the distinctly lower ?13C values determined for pyroglutamic L-enantiomer point to a terrestrial contamination, possibly dating to the time of fall.

  6. The influence of various cations on the catalytic properties of clays. [polymerization of alanine adenylate

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1978-01-01

    The polymerization of alanine adenylate in the presence of the sodium form of various clays was studied, and hectorite was found to cause more polymerization than nontronite and montmorillonite (in that order) although the differences were not great. The effect on polymerization of presaturating montmorillonite with different cations was determined. Hectorite, with increased basicity of the interspatial planes, allows polymerization of lysine, which montmorillonite does not. The general trend is that, for the same amino acid, higher degrees of polymerization are obtained when the cation in the octahedral lattice of the clay is divalent rather than trivalent. With the exchangeable cations the order is reversed, for a reason that is explained. The main role of clays in the polymerization mechanism of amino acids is concentration and neutralization of charges.

  7. L-carnosine enhanced reproductive potential of the Saccharomyces cerevisiae yeast growing on medium containing glucose as a source of carbon.

    PubMed

    Kwolek-Mirek, Magdalena; Molon, Mateusz; Kaszycki, Pawel; Zadrag-Tecza, Renata

    2016-08-01

    Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine, which occurs in vertebrates, including humans. It has a number of favorable properties including buffering, chelating, antioxidant, anti-glycation and anti-aging activities. In our study we used the Saccharomyces cerevisiae yeast as a model organism to examine the impact of L-carnosine on the cell lifespan. We demonstrated that L-carnosine slowed down the growth and decreased the metabolic activity of cells as well as prolonged their generation time. On the other hand, it allowed for enhancement of the yeast reproductive potential and extended its reproductive lifespan. These changes may be a result of the reduced mitochondrial membrane potential and decreased ATP content in the yeast cells. However, due to reduction of the post-reproductive lifespan, L-carnosine did not have an influence on the total lifespan of yeast. In conclusion, L-carnosine does not extend the total lifespan of S. cerevisiae but rather it increases the yeast's reproductive capacity by increasing the number of daughter cells produced.

  8. Diastereoselective synthesis of furanose and pyranose substituted glycine and alanine derivatives via proline-catalyzed asymmetric α-amination of aldehydes.

    PubMed

    Petakamsetty, Ramu; Ansari, Anas; Ramapanicker, Ramesh

    2016-11-29

    A concise organocatalytic route toward the synthesis of furanose and pyranose substituted glycine and alanine derivatives is reported. These compounds are core structural units of some of the naturally available antibiotics and antifungal agents. Proline-catalyzed asymmetric α-amination of aldehydes derived from sugars is used as the key reaction to synthesize twelve sugar amino acid derivatives. The asymmetric transformations proceeded in good yields and with good to excellent diastereoselectivity. The application of the synthesized amino acids is demonstrated by synthesizing a tripeptide containing one of them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Resolution and isolation of enantiomers of (±)-isoxsuprine using thin silica gel layers impregnated with L-glutamic acid, comparison of separation of its diastereomers prepared with chiral derivatizing reagents having L-amino acids as chiral auxiliaries.

    PubMed

    Bhushan, Ravi; Nagar, Hariom

    2015-03-01

    Thin silica gel layers impregnated with optically pure l-glutamic acid were used for direct resolution of enantiomers of (±)-isoxsuprine in their native form. Three chiral derivatizing reagents, based on DFDNB moiety, were synthesized having l-alanine, l-valine and S-benzyl-l-cysteine as chiral auxiliaries. These were used to prepare diastereomers under microwave irradiation and conventional heating. The diastereomers were separated by reversed-phase high-performance liquid chromatography on a C18 column with detection at 340 nm using gradient elution with mobile phase containing aqueous trifluoroacetic acid and acetonitrile in different compositions and by thin-layer chromatography (TLC) on reversed phase (RP) C18 plates. Diastereomers prepared with enantiomerically pure (+)-isoxsuprine were used as standards for the determination of the elution order of diastereomers of (±)-isoxsuprine. The elution order in the experimental study of RP-TLC and RP-HPLC supported the developed optimized structures of diastereomers based on density functional theory. The limit of detection was 0.1-0.09 µg/mL in TLC while it was in the range of 22-23 pg/mL in HPLC and 11-13 ng/mL in RP-TLC for each enantiomer. The conditions of derivatization and chromatographic separation were optimized. The method was validated for accuracy, precision, limit of detection and limit of quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Bacillus ciccensis sp. nov., isolated from maize (Zea mays L.) seeds.

    PubMed

    Liu, Yang; Li, Nannan; Eom, Mi Kyung; Schumann, Peter; Zhang, Xin; Cao, Yanhua; Ge, Yuanyuan; Xiao, Ming; Zhao, Jiuran; Cheng, Chi; Kim, Song-Gun

    2017-11-01

    Two Gram-stain-positive bacterial strains, designated as 5L6 T and 6L6, isolated from seeds of hybrid maize (Zea mays L., Jingke 968) were investigated using a polyphasic taxonomic approach. The cells were aerobic, motile, endospore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were recognized as a species of the genus Bacillus, to which the five closest neighbours are Bacillus solani FJAT-18043 T (99.8 % similarity), Bacillus horneckiae DSM 23495 T (97.7 %), Bacillus eiseniae A1-2 T (97.4 %), Bacillus kochii WCC 4582 T (97.1 %) and Bacillus purgationiresistens DS22 T (97.0 %). The DNA G+C content of strain 5L6 T was 37.4 mol%. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was MK-7 and the major fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, iso-C14 : 0, anteiso-C17 : 0 and C16 : 1 ω7c alcohol. The cell-wall peptidoglycan contained ornithine, serine, aspartic acid, glutamic acid and alanine while diaminopimelic acid could not be detected. Strains 5L6 T and 6L6 were clearly distinguished from the type strains of related validly named species using phylogenetic analysis, DNA-DNA hybridization, fatty acid analysis, peptidoglycan analysis and comparison of a range of physiological and biochemical characteristics. The genotypic and phenotypic data show that strains 5L6 T and 6L6 represent a novel species of the genus Bacillus, for which the name Bacillusciccensis sp. nov. is proposed. The type strain is 5L6 T (=KCTC 33663 T =CICC 23855 T =DSM 104513 T ).

  11. Formation of [b3 - 1 + cat]+ ions from metal-cationized tetrapeptides containing beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid residues.

    PubMed

    Osburn, Sandra M; Ochola, Sila O; Talaty, Erach R; Van Stipdonk, Michael J

    2008-11-01

    The presence and position of a single beta-alanine (betaA), gamma-aminobutyric acid (gammaABu) or epsilon-aminocaproic acid (Cap) residue has been shown to have a significant influence on the formation of b(n)+ and y(n)+ product ions from a series of model, protonated peptides. In this study, we examined the effect of the same residues on the formation of analogous [b3 - 1 + cat]+ products from metal (Li+, Na+ and Ag+)-cationized peptides. The larger amino acids suppress formation of b3+ from protonated peptides with general sequence AAXG (where X = beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid), presumably because of the prohibitive effect of larger cyclic intermediates in the 'oxazolone' pathway. However, abundant [b3 - 1 + cat]+ products are generated from metal-cationized versions of AAXG. Using a group of deuterium-labeled and exchanged peptides, we found that formation of [b3 - 1 + cat]+ involves transfer of either amide or alpha-carbon position H atoms, and the tendency to transfer the atom from the alpha-carbon position increases with the size of the amino acid in position X. To account for the transfer of the H atom, a mechanism involving formation of a ketene product as [b3 - 1 + cat]+ is proposed.

  12. Synthesis and characterization of novel chiral ionic liquids and investigation of their enantiomeric recognition properties.

    PubMed

    Bwambok, David K; Marwani, Hadi M; Fernand, Vivian E; Fakayode, Sayo O; Lowry, Mark; Negulescu, Ioan; Strongin, Robert M; Warner, Isiah M

    2008-02-01

    We report the synthesis and characterization of amino acid ester based chiral ionic liquids, derived from L- and D-alanine tert butyl ester chloride. The synthesis was accomplished via an anion metathesis reaction between commercially available L- and D-alanine tert butyl ester chloride using a variety of counterions such as lithium bis (trifluoromethane) sulfonimide, silver nitrate, silver lactate, and silver tetrafluoroborate. Both enantiomeric forms were obtained as confirmed by bands of opposite sign in the circular dichroism spectra. The L- and D-alanine tert butyl ester bis (trifluoromethane) sulfonimide were obtained as liquids at room temperature and intriguingly exhibited the highest thermal stability (up to 263 degrees C). In addition, the ionic liquids demonstrated enantiomeric recognition ability as evidenced by splitting of racemic Mosher's sodium salt signal using a liquid state (19)F nuclear magnetic resonance (NMR) and fluorescence spectroscopy. The L- and D-alanine tert butyl ester chloride resulted in solid salts with nitrate, lactate, and tetrafluoroborate anions. This illustrates the previously observed tunability of ionic liquid synthesis, resulting in ionic liquids of varying properties as a function of varying the anion.

  13. Redox self-sufficient whole cell biotransformation for amination of alcohols.

    PubMed

    Klatte, Stephanie; Wendisch, Volker F

    2014-10-15

    Whole cell biotransformation is an upcoming tool to replace common chemical routes for functionalization and modification of desired molecules. In the approach presented here the production of various non-natural (di)amines was realized using the designed whole cell biocatalyst Escherichia coli W3110/pTrc99A-ald-adh-ta with plasmid-borne overexpression of genes for an l-alanine dehydrogenase, an alcohol dehydrogenase and a transaminase. Cascading alcohol oxidation with l-alanine dependent transamination and l-alanine dehydrogenase allowed for redox self-sufficient conversion of alcohols to the corresponding amines. The supplementation of the corresponding (di)alcohol precursors as well as amino group donor l-alanine and ammonium chloride were sufficient for amination and redox cofactor recycling in a resting buffer system. The addition of the transaminase cofactor pyridoxal-phosphate and the alcohol dehydrogenase cofactor NAD(+) was not necessary to obtain complete conversion. Secondary and cyclic alcohols, for example, 2-hexanol and cyclohexanol were not aminated. However, efficient redox self-sufficient amination of aliphatic and aromatic (di)alcohols in vivo was achieved with 1-hexanol, 1,10-decanediol and benzylalcohol being aminated best. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Reversible uptake of molecular oxygen by heteroligand Co(II)-L-α-amino acid-imidazole systems: equilibrium models at full mass balance.

    PubMed

    Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander

    2017-09-19

    The paper examines Co(II)-amino acid-imidazole systems (where amino acid = L-α-amino acid: alanine, asparagine, histidine) which, when in aqueous solutions, activate and reversibly take up dioxygen, while maintaining the structural scheme of the heme group (imidazole as axial ligand and O 2 uptake at the sixth, trans position) thus imitating natural respiratory pigments such as myoglobin and hemoglobin. The oxygenated reaction shows higher reversibility than for Co(II)-amac systems with analogous amino acids without imidazole. Unlike previous investigations of the heteroligand Co(II)-amino acid-imidazole systems, the present study accurately calculates all equilibrium forms present in solution and determines the [Formula: see text]equilibrium constants without using any simplified approximations. The equilibrium concentrations of Co(II), amino acid, imidazole and the formed complex species were calculated using constant data obtained for analogous systems under oxygen-free conditions. Pehametric and volumetric (oxygenation) studies allowed the stoichiometry of O 2 uptake reaction and coordination mode of the central ion in the forming oxygen adduct to be determined. The values of dioxygen uptake equilibrium constants [Formula: see text] were evaluated by applying the full mass balance equations. Investigations of oxygenation of the Co(II)-amino acid-imidazole systems indicated that dioxygen uptake proceeds along with a rise in pH to 9-10. The percentage of reversibility noted after acidification of the solution to the initial pH ranged within ca 30-60% for alanine, 40-70% for asparagine and 50-90% for histidine, with a rising tendency along with the increasing share of amino acid in the Co(II): amino acid: imidazole ratio. Calculations of the share of the free Co(II) ion as well as of the particular complex species existing in solution beside the oxygen adduct (regarding dioxygen bound both reversibly and irreversibly) indicated quite significant values for the

  15. Effect of different concentrations of dl-isoleucine, dl-valine, and dl-alanine on growth and sporulation in Fusarium oxysporum f. udum (Butl.) Sn. et H.

    PubMed

    Prasad, M; Chaudhary, S K

    1977-01-01

    D1-alanine and dl-valine, when added as an extra nitrogen for fortifying the already present inorganic nitrogen source, actually acted as growth retardant for F. oxysporum f. udum (Butl.) Sn. et H. Sporulation of microconidia was indifferently affected by these two amino acids. DI-valine stimulated microconidial formation in young cultures only. In both young and old cultures the lowest concentration of dl-valine depressed macronidial sporulation. In old cultures the lowest concentration of valine stimulated chlamydospore differentiation rapidly, higher concentrations being less effective. D1-alanine, as an additional nitrogen source, depressed both macro- and microconidal sporulation. It did not even invigorate chlamydospore formation. D1-isoleucine, on the other hand, belongs to the category of growth promoters and profuse and stimulative sporulators of macro- and microconidia. This pathogen needs very specific and preferential doses of the three amino acids, if these are used as a booster in addition to the already present nitrogen source. The response, both in terms of mycelial growth and sporulation of the three spore forms, was also conditioned by the age of the culture.

  16. Spectroscopic analyses on interaction of o-Vanillin-D-Phenylalanine, o-Vanillin-L-Tyrosine and o-Vanillin-L-Levodopa Schiff Bases with bovine serum albumin (BSA).

    PubMed

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin-D-Phenylalanine (o-VDP), o-Vanillin-L-Tyrosine (o-VLT) and o-Vanillin-L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant (K(q)), apparent quenching constant (K(sv)), effective binding constant (K(A)) and corresponding dissociation constant (K(D)) as well as binding site number (n) were obtained. In addition, the binding distance (r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA>o-VLT-BSA>o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Meal and beta-alanine coingestion enhances muscle carnosine loading.

    PubMed

    Stegen, Sanne; Blancquaert, Laura; Everaert, Inge; Bex, Tine; Taes, Youri; Calders, Patrick; Achten, Eric; Derave, Wim

    2013-08-01

    Beta-alanine (BA) is a popular ergogenic supplement because it can induce muscle carnosine loading. We hypothesize that, by analogy with creatine supplementation, 1) an inverse relationship between urinary excretion and muscle loading is present, and 2) the latter is stimulated by carbohydrate- and protein-induced insulin action. In study A, the effect of a 5-wk slow-release BA (SRBA) supplementation (4.8 g · d(-1)) on whole body BA retention was determined in seven men. We further determined whether the coingestion of carbohydrates and proteins with SRBA would improve retention. In study B (34 subjects), we explored the effect of meal timing on muscle carnosine loading (3.2 g · d(-1) during 6-7 wk). One group received pure BA (PBA) in between the meals; the other received PBA at the start of the meals, to explore the effect of meal-induced insulin release. Further, we compared with a third group receiving SRBA at the start of the meals. Orally ingested SRBA has a very high whole body retention (97%-98%) that is not declining throughout the 5-wk supplementation period, nor is it influenced by the coingestion of macronutrients. Thus, a very small portion (1%-2%) is lost through urinary excretion, and equally only a small portion is incorporated into muscle carnosine (≈ 3%), indicating that most ingested BA is metabolized (possibly through oxidation). Second, in soleus muscles, the efficiency of carnosine loading is significantly higher when PBA is coingested with a meal (+64%) compared with in between the meals (+41%), suggesting that insulin stimulates muscle carnosine loading. Finally, the chronic supplementation of SRBA versus PBA seems equally effective.

  18. Consequences of missense mutations for dimerization and turnover of alanine:glyoxylate aminotransferase: study of a spectrum of mutations.

    PubMed

    Coulter-Mackie, M B; Lian, Q

    2006-12-01

    Alanine:glyoxylate aminotransferase (AGT) is a liver peroxisomal enzyme, deficiency of which results in primary hyperoxaluria type 1 (PH1). More than 65 PH1-related mutations are now documented in the AGT gene (AGXT), of which about 50% are missense. We have generated a spectrum of 15 missense changes including the most common PH1 mutation, G170R, and expressed them on the appropriate background of the major or minor allele, in an Escherichia coli overexpression system and in a rabbit reticulocyte transcription/translation system. We have investigated their effects on enzyme activity, dimerization, aggregation, and turnover. The effect of pyridoxal phosphate (PLP) on dimerization and stability was also investigated. Although all 15 mutant AGTs were expressed as intact proteins in E. coli, only three: G41R and G41V on the major allele, and the common mutation G170R, resulted in significant amounts of enzymatic activity. Dimerization failure was a frequent observation (13/15) except for G41V and D183N. Dimerization was poor with S187F but was substantially improved with PLP. Proteasome-mediated protein degradation was observed for all the mutations except G41R on the major allele, G41V, D183N, G170R, and S218L. Increases in the stability of the mutant enzymes in the presence of PLP were small; however, G41R on the minor allele showed a direct relationship between its half life and the concentration of PLP. The minor allele AGT product and many of the mutants were subject to a limited non-proteasomal proteolytic cleavage when ATP was depleted.

  19. Opposite associations between alanine aminotransferase and γ-glutamyl transferase levels and all-cause mortality in type 2 diabetes: Analysis of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study.

    PubMed

    Williams, Kathryn H; Sullivan, David R; Nicholson, Geoffrey C; George, Jacob; Jenkins, Alicia J; Januszewski, Andrzej S; Gebski, Val J; Manning, Patrick; Tan, Yong Mong; Donoghoe, Mark W; Ehnholm, Christian; Young, Simon; O'Brien, Richard; Buizen, Luke; Twigg, Stephen M; Keech, Anthony C

    2016-05-01

    Reported associations between liver enzymes and mortality may not hold true in type 2 diabetes, owing to a high prevalence of non-alcoholic fatty liver disease, which has been linked to cardiovascular disease and mortality in its own right. Our study aimed to determine whether alanine aminotransferase (ALT) or γ-glutamyl transferase (GGT) levels predict mortality in type 2 diabetes, and to examine possible mechanisms. Data from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study were analyzed to examine the relationship between liver enzymes and all-cause and cause-specific mortality over 5years. Over 5years, 679 (6.9%) individuals died. After adjustment, for every standard deviation increase in ALT (13.2U/L), the HR for death on study was 0.85 (95% CI 0.78-0.93), p<0.001. Conversely, GGT >70U/L, compared with GGT ≤70U/L, had HR 1.82 (1.48-2.24), p<0.001. For cause-specific mortality, lower ALT was associated with a higher risk of cardiovascular death only, whereas GGT >70U/L was associated with higher risks of death due to cardiovascular disease, cancer and non-cancer/non-cardiovascular causes. The relationship for ALT persisted after adjustment for indirect measures of frailty but was attenuated by elevated hsCRP. As in the general population, ALT has a negative, and GGT a positive, correlation with mortality in type 2 diabetes when ALT is less than two times the upper limit of normal. The relationship for ALT appears specific for death due to cardiovascular disease. Links of low ALT with frailty, as a potential mechanism for relationships seen, were neither supported nor conclusively refuted by our analysis and other factors are also likely to be important in those with type 2 diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Recombinant Expression of a Genome-encoded N-acetylmuramoyl-L-alanine Amidase that Synergistically Lyses Listeria monocytogenes Biofilms with a Protease

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes plays a significant role in human food-borne disease caused by eating food contaminated with the bacterium and although incidence is low it is a leading cause of life-threatening, bacterial food-borne disease in humans. L. monocytogenes serotypes 1/2a and 4b can form mixed-cu...

  1. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine.

    PubMed

    Leke, Renata; Bak, Lasse K; Anker, Malene; Melø, Torun M; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Ott, Peter; Portela, Luis V; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2011-04-01

    Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme. Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important for ammonia detoxification as a supplement to formation of glutamine.

  2. The effect of additives on red cell 2,3 diphosphoglycerate levels in CPDA preservatives.

    PubMed

    Vora, S; West, C; Beutler, E

    1989-01-01

    Forty-two chemical substances, chosen because they might influence red cell metabolism, were screened for effect on red cell adenosine triphosphate and 2,3 diphosphoglycerate (2,3 DPG) levels during storage in CPD or CPDA-1 at 4 degrees C. Of these substances, six appeared on initial screening to increase 2,3 DPG levels during storage; on repeated examination, four compounds, i.e., oxalate, glyoxalate, ethyl oxaloacetate, and L-phenylalanyl-L-alanine, consistently increased 2,3 DPG levels during storage. It was shown that glyoxalate was converted rapidly to oxalate in blood, presumably through the lactate dehydrogenase reaction. Ethyl oxaloacetate is known to hydrolyze, giving rise to oxalate. Thus, the effect of both glyoxalate and ethyl oxaloacetate can be explained by the formation of oxalate, a compound already known to increase 2,3 DPG levels. The effect of L-phenylalanyl-L-alanine remains to be explained, but it may be hydrolyzed to L-alanine and L-phenylalanine, both of which are thought to have the capacity to increase red cell 2,3 DPG levels by inhibiting pyruvate kinase activity.

  3. Diagnostic value of FIB-4, aspartate aminotransferase-to-platelet ratio index and liver stiffness measurement in hepatitis B virus-infected patients with persistently normal alanine aminotransferase.

    PubMed

    Tan, You-Wen; Zhou, Xing-Bei; Ye, Yun; He, Cong; Ge, Guo-Hong

    2017-08-21

    To assess the diagnostic value of FIB-4, aspartate aminotransferase-to-platelet ratio index (APRI), and liver stiffness measurement (LSM) in patients with hepatitis B virus infection who have persistently normal alanine transaminase (PNALT). We enrolled 245 patients with chronic hepatitis B: 95 in PNALT group, 86 in intermittently elevated alanine transaminase (PIALT1) group [alanine transaminase (ALT) within 1-2 × upper limit of normal value (ULN)], and 64 in PIALT2 group (ALT > 2 × ULN). All the patients received a percutaneous liver biopsy guided by ultrasonography. LSM, biochemical tests, and complete blood cell counts were performed. The pathological examination revealed moderate inflammatory necrosis ratios of 16.81% (16/95), 32.56% (28/86), and 45.31% (28/64), and moderate liver fibrosis of 24.2% (23/95), 33.72% (29/86), and 43.75% (28/64) in the PNALT, PIALT1, and PIALT2 groups, respectively. The degrees of inflammation and liver fibrosis were significantly higher in the PIALT groups than in the PNALT group ( P < 0.05). No significant difference was found in the areas under the curve (AUCs) between APRI and FIB-4 in the PNALT group; however, significant differences were found between APRI and LSM, and between FIB-4 and LSM in the PNALT group ( P < 0.05 for both). In the PIALT1 and PIALT2 groups, no significant difference ( P > 0.05) was found in AUCs for all comparisons ( P > 0.05 for all). In the overall patients, a significant difference in the AUCs was found only between LSM and APRI ( P < 0.05). APRI and FIB-4 are not the ideal noninvasive hepatic fibrosis markers for PNALT patients. LSM is superior to APRI and FIB-4 in PNALT patients because of the influence of liver inflammation and necrosis.

  4. Diagnostic value of FIB-4, aspartate aminotransferase-to-platelet ratio index and liver stiffness measurement in hepatitis B virus-infected patients with persistently normal alanine aminotransferase

    PubMed Central

    Tan, You-Wen; Zhou, Xing-Bei; Ye, Yun; He, Cong; Ge, Guo-Hong

    2017-01-01

    AIM To assess the diagnostic value of FIB-4, aspartate aminotransferase-to-platelet ratio index (APRI), and liver stiffness measurement (LSM) in patients with hepatitis B virus infection who have persistently normal alanine transaminase (PNALT). METHODS We enrolled 245 patients with chronic hepatitis B: 95 in PNALT group, 86 in intermittently elevated alanine transaminase (PIALT1) group [alanine transaminase (ALT) within 1-2 × upper limit of normal value (ULN)], and 64 in PIALT2 group (ALT > 2 × ULN). All the patients received a percutaneous liver biopsy guided by ultrasonography. LSM, biochemical tests, and complete blood cell counts were performed. RESULTS The pathological examination revealed moderate inflammatory necrosis ratios of 16.81% (16/95), 32.56% (28/86), and 45.31% (28/64), and moderate liver fibrosis of 24.2% (23/95), 33.72% (29/86), and 43.75% (28/64) in the PNALT, PIALT1, and PIALT2 groups, respectively. The degrees of inflammation and liver fibrosis were significantly higher in the PIALT groups than in the PNALT group (P < 0.05). No significant difference was found in the areas under the curve (AUCs) between APRI and FIB-4 in the PNALT group; however, significant differences were found between APRI and LSM, and between FIB-4 and LSM in the PNALT group (P < 0.05 for both). In the PIALT1 and PIALT2 groups, no significant difference (P > 0.05) was found in AUCs for all comparisons (P > 0.05 for all). In the overall patients, a significant difference in the AUCs was found only between LSM and APRI (P < 0.05). CONCLUSION APRI and FIB-4 are not the ideal noninvasive hepatic fibrosis markers for PNALT patients. LSM is superior to APRI and FIB-4 in PNALT patients because of the influence of liver inflammation and necrosis. PMID:28883700

  5. Occult Hepatitis B Virus Among the Patients With Abnormal Alanine Transaminase

    PubMed Central

    Makvandi, Manoochehr; Neisi, Niloofar; Khalafkhany, Davod; Makvandi, Kamyar; Hajiani, Eskandar; Shayesteh, Ali Akbar; Masjedi Zadeh, Abdolrahim; Sina, Amir Hosein; Hamidifard, Mojtaba; Rasti, Mojtaba; Aryan, Ehsan; Ahmadi, Kambiz; Yad Yad, Mohammad Jafar

    2014-01-01

    Background: The occult hepatitis B infection (OBI) is defined as the presence of hepatitis B virus (HBV) DNA in the sera or in the liver biopsy and the absence of hepatitis B surface antigen (HBsAg) by serological test. Objectives: The current study aimed to evaluate the occult HBV infection by polymerase chain reaction (PCR) and determine HBV genotyping among the patients with abnormal alanine transaminase (ALT) in Ahvaz city, Iran. Patients and Methods: The sera of 120 patients, 54 (45%) females and 66 (55%) males, with abnormal ALT 40-152 IU were collected. All the patients were negative for HBsAg for more than one year. The patients` sera were tested by PCR using primers specified for the S region of HBV. Then the positive PCR products were sequenced to determine HBV genotyping and phylogenic tree. Results: Of these 120 subjects, 12 (10%) patients including 6 (5%) males and 6 (5%) females were found positive for HBV DNA by PCR, which indicated the presence of occult HBV infection among these patients. The sequencing results revealed that genotype D was predominant with sub-genotyping D1 among OBI patients. Conclusions: Occult hepatitis B infection is remarkably prevalent in Ahvaz, Iran, and should be considered as a potential risk factor for the transmission of Hepatitis B Virus throughout the community by the carriers. PMID:25485052

  6. Peroxisomal Alanine: Glyoxylate Aminotransferase AGT1 Is Indispensable for Appressorium Function of the Rice Blast Pathogen, Magnaporthe oryzae

    PubMed Central

    Bhadauria, Vijai; Banniza, Sabine; Vandenberg, Albert; Selvaraj, Gopalan; Wei, Yangdou

    2012-01-01

    The role of β-oxidation and the glyoxylate cycle in fungal pathogenesis is well documented. However, an ambiguity still remains over their interaction in peroxisomes to facilitate fungal pathogenicity and virulence. In this report, we characterize a gene encoding an alanine, glyoxylate aminotransferase 1 (AGT1) in Magnaporthe oryzae, the causative agent of rice blast disease, and demonstrate that AGT1 is required for pathogenicity of M. oryzae. Targeted deletion of AGT1 resulted in the failure of penetration via appressoria; therefore, mutants lacking the gene were unable to induce blast symptoms on the hosts rice and barley. This penetration failure may be associated with a disruption in lipid mobilization during conidial germination as turgor generation in the appressorium requires mobilization of lipid reserves from the conidium. Analysis of enhanced green fluorescent protein expression using the transcriptional and translational fusion with the AGT1 promoter and open reading frame, respectively, revealed that AGT1 expressed constitutively in all in vitro grown cell types and during in planta colonization, and localized in peroxisomes. Peroxisomal localization was further confirmed by colocalization with red fluorescent protein fused with the peroxisomal targeting signal 1. Surprisingly, conidia produced by the Δagt1 mutant were unable to form appressoria on artificial inductive surfaces, even after prolonged incubation. When supplemented with nicotinamide adenine dinucleotide (NAD+)+pyruvate, appressorium formation was restored on an artificial inductive surface. Taken together, our data indicate that AGT1-dependent pyruvate formation by transferring an amino group of alanine to glyoxylate, an intermediate of the glyoxylate cycle is required for lipid mobilization and utilization. This pyruvate can be converted to non-fermentable carbon sources, which may require reoxidation of NADH generated by the β-oxidation of fatty acids to NAD+ in peroxisomes

  7. Behavior of fluorinated analogs of L-(3,4-dihydroxyphenyl)alanine and L-threo-(3,4-dihydroxyphenyl)serine as substrates for Dopa decarboxylase.

    PubMed

    Borri Voltattorni, Carla; Bertoldi, Mariarita; Bianconi, Silvia; Deng, Wei-ping; Wong, Kelli; Kim, InHo; Herbert, Brian; Kirk, Kenneth L

    2002-07-05

    We have determined the kinetic parameters for Dopa decarboxylase (DDC) of three ring-fluorinated analogs of 3,4-dihydroxyphenylalanine (Dopa). The rank order of catalytic efficiency of decarboxylation (k(cat)/K(m)) is Dopa>6-F-Dopa>2-F-Dopa>5-F-Dopa. This rank is consistent with previous in vivo and in vitro studies which indicate that, of the fluorinated analogs, 6-F-Dopa has pharmacokinetics that are most suited for positron emission tomographic (PET) evaluation of dopamine function. The effectiveness of PET as a diagnostic tool, the convenient half-life of (18)F (110 min) and the favorable pharmacokinetics of 6-[(18)F]FDOPA have combined to make this an extremely valuable reagent to study dopaminergic activity. The reactions of the related fluorinated DOPS analogs show that, while 6-F-threo-3,4-(dihydroxyphenyl)serine (DOPS) is decarboxylated at approximately the same rate as the non-fluorinated substrate, 2-F-threo-DOPS is not converted into the corresponding amine. In both cases a Pictet-Spengler condensation with the pyridoxal 5(')-phosphate (PLP) cofactor occurs to produce tetrahydroisoquinolines. Condensation of fluorinated catecholamines and catechol amino acids with endogenous aldehydes will be investigated as an approach to study possible mechanisms of L-Dopa-linked neurotoxicity. (c) 2002 Elsevier Science (USA).

  8. The effectiveness of fermented turmeric powder in subjects with elevated alanine transaminase levels: a randomised controlled study.

    PubMed

    Kim, Sang-Wook; Ha, Ki-Chan; Choi, Eun-Kyung; Jung, Su-Young; Kim, Min-Gul; Kwon, Dae-Young; Yang, Hye-Jung; Kim, Min-Jung; Kang, Hee-Joo; Back, Hyang-Im; Kim, Sun-Young; Park, Soo-Hyun; Baek, Hum-Young; Kim, Yong-Jae; Lee, Joon-Yeol; Chae, Soo-Wan

    2013-03-08

    Previous animal studies have shown that Curcuma longa (turmeric) improves liver function. Turmeric may thus be a promising ingredient in functional foods aimed at improving liver function. The purpose of the study is to investigate the hepatoprotective effect of fermented turmeric powder (FTP) on liver function in subjects with elevated alanine transaminase (ALT) levels. A randomised, double-blind, placebo-controlled trial was conducted between November 2010 and April 2012 at the clinical trial center for functional foods of the Chonbuk National University Hospital. The trial included 60 subjects, 20 years old and above, who were diagnosed mild to moderate elevated ALT levels between 40 IU/L and 200 IU/L. Sixty subjects were randomised to receive FTP 3.0 g per day or placebo 3.0 g per day for 12 weeks. The treatment group received two capsules of FTP three times a day after meals, for 12 weeks. The primary efficacy endpoint was change in the ALT levels in the two groups. The secondary efficacy endpoints included its effect on aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), total bilirubin (TB), and lipid profiles. Safety was assessed throughout the study using ongoing laboratory tests. Adverse events (AEs) were also recorded. Sixty subjects were randomised in the study (30 into the FTP group, 30 into the placebo group), and among them, twelve subjects were excluded from the analysis for protocol violation, adverse events or consent withdrawal. The two groups did not differ in baseline characteristics. After 12 weeks of treatment, 48 subjects were evaluated. Of the 48 subjects, 26 randomly received FTP capsules and 22 received placebo. The FTP group showed a significant reduction in ALT levels after 12 weeks of treatment compared with the placebo group (p = 0.019). There was also observed that the serum AST levels were significantly reduce in the FTP group than placebo group (p = 0.02). The GGT levels showed a tendency to decrease, while the

  9. Characterizing the Hot Spots Involved in RON-MSPβ Complex Formation Using In Silico Alanine Scanning Mutagenesis and Molecular Dynamics Simulation

    PubMed Central

    Zarei, Omid; Hamzeh-Mivehroud, Maryam; Benvenuti, Silvia; Ustun-Alkan, Fulya; Dastmalchi, Siavoush

    2017-01-01

    Purpose: Implication of protein-protein interactions (PPIs) in development of many diseases such as cancer makes them attractive for therapeutic intervention and rational drug design. RON (Recepteur d’Origine Nantais) tyrosine kinase receptor has gained considerable attention as promising target in cancer therapy. The activation of RON via its ligand, macrophage stimulation protein (MSP) is the most common mechanism of activation for this receptor. The aim of the current study was to perform in silico alanine scanning mutagenesis and to calculate binding energy for prediction of hot spots in protein-protein interface between RON and MSPβ chain (MSPβ). Methods: In this work the residues at the interface of RON-MSPβ complex were mutated to alanine and then molecular dynamics simulation was used to calculate binding free energy. Results: The results revealed that Gln193, Arg220, Glu287, Pro288, Glu289, and His424 residues from RON and Arg521, His528, Ser565, Glu658, and Arg683 from MSPβ may play important roles in protein-protein interaction between RON and MSP. Conclusion: Identification of these RON hot spots is important in designing anti-RON drugs when the aim is to disrupt RON-MSP interaction. In the same way, the acquired information regarding the critical amino acids of MSPβ can be used in the process of rational drug design for developing MSP antagonizing agents, the development of novel MSP mimicking peptides where inhibition of RON activation is required, and the design of experimental site directed mutagenesis studies. PMID:28507948

  10. Quantum Mechanics Approach to Hydration Energies and Structures of Alanine and Dialanine.

    PubMed

    Lanza, Giuseppe; Chiacchio, Maria A

    2017-06-20

    A systematic approach to the phenomena related to hydration of biomolecules is reported at the state of the art of electronic-structure methods. Large-scale CCSD(T), MP4-SDQ, MP2, and DFT(M06-2X) calculations for some hydrated complexes of alanine and dialanine (Ala⋅13 H 2 O, Ala 2 H + ⋅18 H 2 O, and Ala 2 ⋅18 H 2 O) are compared with experimental data and other elaborate modeling to assess the reliability of a simple bottom-up approach. The inclusion of a minimal number of water molecules for microhydration of the polar groups together with the polarizable continuum model is sufficient to reproduce the relative bulk thermodynamic functions of the considered biomolecules. These quantities depend on the adopted electronic-structure method, which should be chosen with great care. Nevertheless, the computationally feasible MP2 and M06-2X functionals with the aug-cc-pVTZ basis set satisfactorily reproduce values derived by high-level CCSD(T) and MP4-SDQ methods, and thus they are suitable for future developments of more elaborate and hence more biochemically significant peptides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Studies of Azetidin-2-one as a Reactive Enolate Synthon of β-Alanine for Condensations with Aldehydes and Ketones.

    PubMed

    Williams, David R; Donnell, Andrew F; Kammler, David C; Ward, Sarah A; Taylor, Levin

    2016-11-04

    Studies describe formation of the lithium enolate of N-(4-methoxybenzyloxy)azetidin-2-one (1) and characterization of representative aldol reactions with aldehydes and ketones. Diastereoselectivity features the production of anti-aldol adducts from α,β-unsaturated ketones and α-branched aliphatic aldehydes. The stereoselectivity is rationalized via closed, six-membered transition-state arrangements leading to the formation of Felkin-Anh and anti-Felkin products. Examples illustrate the direct incorporation of monocyclic β-lactams into a variety of molecular architectures. The utility of 1 as an enolate synthon of homoglycine (β-alanine) is illustrated by the efficient synthesis of novel β-amino acid derivatives, including complex 4-hydroxy-2-pyridinones.

  12. Exploring conformational preferences of alanine tetrapeptide by CCSD(T), MP2, and dispersion-corrected DFT methods

    NASA Astrophysics Data System (ADS)

    Kang, Young Kee; Park, Hae Sook

    2018-06-01

    The 129 local minima of the alanine tetrapeptide with relative energy < 10 kcal/mol were identified at the ωB97X-D/6-311++G(d,p) level of theory from initial structures generated by combining nine local minima of each residue. The CCSD(T), MP2, and dispersion-corrected DFT levels of theory with various basis sets were assessed for relative energies of the 24 representative conformations. The best performance was obtained at the double-hybrid DSD-PBEP86-D3BJ/def2-QZVP level of theory with RMSD = 0.12 kcal/mol against the CCSD(T)/CBS-limit energies. The ωB97X-D/def2-QZVP and CAM-B3LYP-D3BJ/def2-QZVP levels of theory can be an alternative level of theory with marginal deviations for conformational study of peptides.

  13. Direct monitoring by carbon-13 nuclear magnetic resonance spectroscopy of the metabolism and metabolic rate of 13C-labeled compounds in vivo.

    PubMed

    Iida, K; Hidoh, O; Fukami, J; Kajiwara, M

    1991-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy has been used to observe the transformations of [1-13C]-D-glucose to [1,1'-13C2]-D-trehalose, and [3-13C]-L-alanine to [2-13C]-L-glutamic acid in the living body of Gryllodes sigillatus. [3-13C]-D-Alanine was not metabolized. The metabolic rate of [1-13C]-D-glucose was found to be altered by prior injection of boric acid.

  14. Design and synthesis of novel N-benzylidenesulfonohydrazide inhibitors of MurC and MurD as potential antibacterial agents.

    PubMed

    Frlan, Rok; Kovac, Andreja; Blanot, Didier; Gobec, Stanislav; Pecar, Slavko; Obreza, Ales

    2008-01-11

    A series of novel N-benzylidenesulfonohydrazide compounds were designed and synthesized as inhibitors of UDP-N-acetylmuramic acid: L-alanine ligase (MurC) and UDP-N-acetylmuramoyl-L-alanine: D-glutamate ligase (MurD) from E. coli, involved in the biosynthesis of bacterial cell-walls. Some compounds possessed inhibitory activity against both enzymes with IC(50) values as low as 30 microM. In addition, a new, one-pot synthesis of amidobenzaldehydes is reported.

  15. Rational Design of Bacillus coagulans NL01 l-Arabinose Isomerase and Use of Its F279I Variant in d-Tagatose Production.

    PubMed

    Zheng, Zhaojuan; Mei, Wending; Xia, Meijuan; He, Qin; Ouyang, Jia

    2017-06-14

    d-Tagatose is a prospective functional sweetener that can be produced by l-arabinose isomerase (AI) from d-galactose. To improve the activity of AI toward d-galactose, the AI of Bacillus coagulans was rationally designed on the basis of molecular modeling and docking. After alanine scanning and site-saturation mutagenesis, variant F279I that exhibited improved activity toward d-galactose was obtained. The optimal temperature and pH of F279I were determined to be 50 °C and 8.0, respectively. This variant possessed 1.4-fold catalytic efficiency compared with the wild-type (WT) enzyme. The recombinant Escherichia coli overexpressing F279I also showed obvious advantages over the WT in biotransformation. Under optimal conditions, 67.5 and 88.4 g L -1 d-tagatose could be produced from 150 and 250 g L -1 d-galactose, respectively, in 15 h. The biocatalyst constructed in this study presents a promising alternative for large-scale d-tagatose production.

  16. Insulin resistance and alanine amino transaminase (ALT) levels in first degree relatives of type 2 diabetes mellitus.

    PubMed

    Kuzhandai velu, V; Jyothirmayi, B; Kumar, J S

    2011-01-01

    Insulin resistance is established as an independent predictor of a range of disorders such as obesity, hypertension, dyslipidemia, type 2 diabetes mellitus and atherosclerotic cardiovascular diseases. There is an association of hyperinsulinemia with hypertriglycerdemia, low level of HDL and high level of LDL. In nonalcoholic fatty liver disease, there is an elevation of ALT, raising the possibility that the prospective relationship between ALT and type 2 diabetes may reflect cross-sectional associations with insulin resistance or obesity. To find the significance of insulin resistance and alanine aminotransferase level in first degree relatives of type 2 diabetes mellitus. The study included 50 first degree relatives of type 2 diabetes (25 men and 25 women) aged 20-60 years and 30 control of similar age. All cases were taken from SRM Medical College Hospital and Research Centre, Chennai. All the cases were analyzed for HOMA(IR), QUICKI, IR ratio, fasting glucose, insulin (ELISA), lipid profile and alanine aminotransferase. Student's 't' test was applied for statistical analysis. The data show the significance of insulin resistance (HOMA(IR)) (2.76±1.46, 1.35±0.8, p<0.001) in the first degree relatives of type 2 diabetes mellitus when compared with controls respectively and increased level fasting plasma insulin (12.28±6.16, 6.12±3.04, p<0.001). In the lipid profile the total cholesterol and TAG are significant. No statistical significance was found in ALT (24.8±9.84, 20.08±11.02). Results of the study conclude that there is a high prevalence of insulin resistance in the first degree relatives of type 2 diabetes mellitus. ALT levels in the first degree relatives of type 2 diabetes mellitus had increased levels of insulin resistance, the pathogenesis suggesting increase in ALT levels as seen in insulin resistance condition. In our study, ALT was not statistically significant. Copyright © 2012 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  17. On the output factor measurements of the CyberKnife iris collimator small fields: Experimental determination of the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors for microchamber and diode detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantelis, E.; Moutsatsos, A.; Zourari, K.

    Purpose: To measure the output factors (OFs) of the small fields formed by the variable aperture collimator system (iris) of a CyberKnife (CK) robotic radiosurgery system, and determine the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors for a microchamber and four diode detectors. Methods: OF measurements were performed using a PTW PinPoint 31014 microchamber, four diode detectors (PTW-60017, -60012, -60008, and the SunNuclear EDGE detector), TLD-100 microcubes, alanine dosimeters, EBT films, and polymer gels for the 5 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm irismore » collimators at 650 mm, 800 mm, and 1000 mm source to detector distance (SDD). The alanine OF measurements were corrected for volume averaging effects using the 3D dose distributions registered in polymer gel dosimeters. k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors for the PinPoint microchamber and the diode dosimeters were calculated through comparison against corresponding polymer gel, EBT, alanine, and TLD results. Results: Experimental OF results are presented for the array of dosimetric systems used. The PinPoint microchamber was found to underestimate small field OFs, and a k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factor ranging from 1.127 {+-} 0.022 (for the 5 mm iris collimator) to 1.004 {+-} 0.010 (for the 15 mm iris collimator) was determined at the reference SDD of 800 mm. The PinPoint k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factor was also found to increase with decreasing SDD; k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} values equal to 1.220 {+-} 0.028 and 1

  18. Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation.

    PubMed

    Cheng, Jun; Ding, Lingkan; Xia, Ao; Lin, Richen; Li, Yuyou; Zhou, Junhu; Cen, Kefa

    2015-03-01

    The biological hydrogen production from amino acids obtained by protein degradation was comprehensively investigated to increase heating value conversion efficiency. The five amino acids (i.e., alanine, serine, aspartic acid, arginine, and leucine) produced limited hydrogen (0.2-16.2 mL/g) but abundant soluble metabolic products (40.1-84.0 mM) during dark-fermentation. The carbon conversion efficiencies of alanine (85.3%) and serine (94.1%) during dark-fermentation were significantly higher than those of other amino acids. Residual dark-fermentation solutions treated with zeolite for NH4(+) removal were inoculated with photosynthetic bacteria to further produce hydrogen during photo-fermentation. The hydrogen yields of alanine and serine through combined dark- and photo-fermentation were 418.6 and 270.2 mL/g, respectively. The heating value conversion efficiency of alanine to hydrogen was 25.1%, which was higher than that of serine (21.2%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. ORAL DELIVERY OF L-ARGININE STIMULATES PROSTAGLANDIN-DEPENDENT SECRETORY DIARRHEA IN C. PARVUM INFECTED NEONATAL PIGLETS

    PubMed Central

    Gookin, Jody L.; Foster, Derek M.; Coccaro, Maria R.; Stauffer, Stephen H.

    2008-01-01

    Objectives To determine if oral supplementation with L-arginine could augment nitric oxide (NO) synthesis and promote epithelial defense in neonatal piglets infected with C. parvum. Methods Neonatal piglets were fed a liquid milk replacer and on day 3 of age infected or not with 108 C. parvum oocysts and the milk replacer supplemented with L-arginine or L-alanine. Milk consumption, body weight, fecal consistency, and oocyst excretion were recorded daily. On day 3 post-infection, piglets were euthanized, and serum concentration of NO metabolites and histological severity of villous atrophy and epithelial infection were quantified. Sheets of ileal mucosa were mounted in Ussing chambers for measurement of barrier function (transepithelial resistance (TER) and permeability) and short-circuit current (Isc; an indirect measurement of Cl− secretion in this tissue). Results C. parvum infected piglets had large numbers of epithelial parasites, villous atrophy, decreased barrier function, severe watery diarrhea, and failure to gain weight. L-arginine promoted synthesis of NO by infected piglets which was unaccompanied by improvement in severity of infection but rather promoted epithelial chloride secretion and diarrhea. Epithelial secretion by infected mucosa from L-arginine supplemented piglets was fully inhibited by the cyclooxygenase inhibitor indomethacin, indicating that prostaglandin synthesis was responsible for this effect. Conclusions Results of these studies demonstrate that provision of additional NO substrate in the form of L-arginine incites prostaglandin-dependent secretory diarrhea and does not promote epithelial defense or barrier function of C. parvum infected neonatal ileum. PMID:18223372

  20. Connexins in Prostate Cancer Initiation and Progression

    DTIC Science & Technology

    2012-09-01

    Isoleucine and A=alanine. In L212A/I213A the leucine at position 212 and isoleucine at position 213 were mutated to alanine. Similar strategy was used to...and isoleucine at the indicated amino acid residues were mutated to alanine using site-directed mutagenesis (Figure 3). Expression of Cx32 and...Its Mutants and Gap Junction Assembly Human LNCaP cells neither express Cx32 nor form functional GJs [23]. We introduced WT-Cx32 and various

  1. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokubo, Hironori; Harris, Robert C.; Asthagiri, Dilip

    The electrostatic (?Gel), cavity-formation (?Gvdw), and total (?G) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with xed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ?Gel, ?Gvdw, and ?G, were found to be linear in n, with the slopes of the best-fit lines being gamma_el, gamma_vdw, and gamma, respectively. Both gamma_el and gamma were negative for fixed and flexible peptides, and gamma_vdw was negative for fixed peptides. That gamma_vdw was negative was surprising,more » as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that gamma_vdw should be positive. A negative gamma_vdw seemingly contradicts the notion that ?Gvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas, but when we computed ?Gvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, gamma-vdw was positive. Because most proteins do not assume extended conformations, a ?Gvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis, but the large fluctuations in this energy may make attributing the collapse of the peptide to this intramolecular energy difficult.« less

  2. Novel cocrystal of N-phthaloyl-β-alanine with 2,2-bipyridyl: Synthesis, computational and free radical scavenging activity studies

    NASA Astrophysics Data System (ADS)

    Chahkandi, Mohammad; Bhatti, Moazzam H.; Yunus, Uzma; Rehman, Naima; Nadeem, Muhammad; Tahir, Muhammad Nawaz; Zakria, Muhammad

    2018-01-01

    In the present work a novel cocrystal adduct of N-phthaloyl-β-alanine and 2,2-bipyridyl as compound 1 with molecular formula C16H13N3O4 was synthesized by slow evaporation process of the ethanoic solution containing these two moieties. In followings, the crystal structure and photophysical properties of 1 was characterized by single X-ray crystal analysis, FTIR, and UV-Vis spectra. The thermal behavior was analyzed by the Thermogravimetric/Differential Thermal Analyzer (TG-DTA). The cocrystal belong to monoclinic crystallographic system with space group P21/n, Z = 4. DPPH radical scavenging activity of the title cocrystal is slightly higher than coformer with lower IC50 value. Finally, using DFT calculations executed at hybrid B3LYP/6-311+G (d, p) level of theory the geometric and electronic structures of the crystalline network of C16H13N3O4 (1), studied. Inter-molecular conventional Osbnd H⋯N as well as the non-conventional Csbnd H⋯O hydrogen bonds (HBs) and Csbnd H···π and Csbnd O···π stacking interactions gathered the monomeric structures of 1 (1-mon) to create the 3D architecture of the network (1-net). The dispersion corrected density functional theory (DFT-D) calculations indicate that Osbnd H⋯N and Csbnd H⋯O HBs, govern the 1-net formation. The calculated UV-Vis spectrum in vacuo has agreement with the experimental one that shows five major bands in the range of 170-271 nm that could assigned to transitions between 2,2-bipyridyl and N-phthaloyl-β-alanine parts of 1 with n → π∗ and π → π* ligand-ligand-charge transfer (LLCT) character. The calculated electronic spectra in solvents (water, acetonitrile, methanol, and n-heptane) comparing with the vacuo one show broad bands with blue shifts.

  3. The Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  4. Identification of dietary alanine toxicity and trafficking dysfunction in a Drosophila model of hereditary sensory and autonomic neuropathy type 1

    PubMed Central

    Oswald, Matthew C. W.; West, Ryan J. H.; Lloyd-Evans, Emyr; Sweeney, Sean T.

    2015-01-01

    Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is characterized by a loss of distal peripheral sensory and motorneuronal function, neuropathic pain and tissue necrosis. The most common cause of HSAN1 is due to dominant mutations in serine palmitoyl-transferase subunit 1 (SPT1). SPT catalyses the condensation of serine with palmitoyl-CoA, the initial step in sphingolipid biogenesis. Identified mutations in SPT1 are known to both reduce sphingolipid synthesis and generate catalytic promiscuity, incorporating alanine or glycine into the precursor sphingolipid to generate a deoxysphingoid base (DSB). Why either loss of function in SPT1, or generation of DSBs should generate deficits in distal sensory function remains unclear. To address these questions, we generated a Drosophila model of HSAN1. Expression of dSpt1 bearing a disease-related mutation induced morphological deficits in synapse growth at the larval neuromuscular junction consistent with a dominant-negative action. Expression of mutant dSpt1 globally was found to be mildly toxic, but was completely toxic when the diet was supplemented with alanine, when DSBs were observed in abundance. Expression of mutant dSpt1 in sensory neurons generated developmental deficits in dendritic arborization with concomitant sensory deficits. A membrane trafficking defect was observed in soma of sensory neurons expressing mutant dSpt1, consistent with endoplasmic reticulum (ER) to Golgi block. We found that we could rescue sensory function in neurons expressing mutant dSpt1 by co-expressing an effector of ER–Golgi function, Rab1 suggesting compromised ER function in HSAN1 affected dendritic neurons. Our Drosophila model identifies a novel strategy to explore the pathological mechanisms of HSAN1. PMID:26395456

  5. Mass spectrometric analysis of L-cysteine metabolism: physiological role and fate of L-cysteine in the enteric protozoan parasite Entamoeba histolytica.

    PubMed

    Jeelani, Ghulam; Sato, Dan; Soga, Tomoyoshi; Watanabe, Haruo; Nozaki, Tomoyoshi

    2014-11-04

    L-cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins, L-cysteine has important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such as Entamoeba histolytica, L-cysteine has been implicated in growth, attachment, survival, and protection from oxidative stress. However, a specific role of this amino acid or related metabolic intermediates is not well understood. In this study, using stable-isotope-labeled L-cysteine and capillary electrophoresis-time of flight mass spectrometry, we investigated the metabolism of L-cysteine in E. histolytica. [U-(13)C3, (15)N]L-cysteine was rapidly metabolized into three unknown metabolites, besides L-cystine and L-alanine. These metabolites were identified as thiazolidine-4-carboxylic acid (T4C), 2-methyl thiazolidine-4-carboxylic acid (MT4C), and 2-ethyl-thiazolidine-4-carboxylic acid (ET4C), the condensation products of L-cysteine with aldehydes. We demonstrated that these 2-(R)-thiazolidine-4-carboxylic acids serve for storage of L-cysteine. Liberation of L-cysteine occurred when T4C was incubated with amebic lysates, suggesting enzymatic degradation of these L-cysteine derivatives. Furthermore, T4C and MT4C significantly enhanced trophozoite growth and reduced intracellular reactive oxygen species (ROS) levels when it was added to cultures, suggesting that 2-(R)-thiazolidine-4-carboxylic acids are involved in the defense against oxidative stress. Amebiasis is a human parasitic disease caused by the protozoan parasite Entamoeba histolytica. In this parasite, L-cysteine is the principal low-molecular-weight thiol and is assumed to play a significant role in supplying the amino acid during trophozoite invasion, particularly when the parasites move from the anaerobic intestinal lumen to highly

  6. A Highly Conserved Leucine in Mammarenavirus Matrix Z Protein Is Required for Z Interaction with the Virus L Polymerase and Z Stability in Cells Harboring an Active Viral Ribonucleoprotein.

    PubMed

    Iwasaki, Masaharu; de la Torre, Juan C

    2018-06-01

    Mammarenaviruses cause chronic infections in their natural rodent hosts. Infected rodents shed infectious virus into excreta. Humans are infected through mucosal exposure to aerosols or direct contact of abraded skin with fomites, resulting in a wide range of manifestations from asymptomatic or mild febrile illness to severe life-threatening hemorrhagic fever. The mammarenavirus matrix Z protein has been shown to be a main driving force of virus budding and to act as a negative regulator of viral RNA synthesis. To gain a better understanding of how the Z protein exerts its several different functions, we investigated the interaction between Z and viral polymerase L protein using the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV). We found that in the presence of an active viral ribonucleoprotein (vRNP), the Z protein translocated from nonionic detergent-resistant, membrane-rich structures to a subcellular compartment with a different membrane composition susceptible to disruption by nonionic detergents. Alanine (A) substitution of a highly conserved leucine (L) at position 72 in LCMV Z protein abrogated Z-L interaction. The L72A mutation did not affect the stability or budding activity of Z when expressed alone, but in the presence of an active vRNP, mutation L72A promoted rapid degradation of Z via a proteasome- and lysosome-independent pathway. Accordingly, L72A mutation in the Z protein resulted in nonviable LCMV. Our findings have uncovered novel aspects of the dynamics of the Z protein for which a highly conserved L residue was strictly required. IMPORTANCE Several mammarenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever disease in humans and pose important public health concerns in their regions of endemicity. Moreover, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. The mammarenavirus

  7. The vibrational spectrum of the hydrated alanine-leucine peptide in the amide region from IR experiments and first principles calculations

    NASA Astrophysics Data System (ADS)

    Hassan, Irtaza; Donati, Luca; Stensitzki, Till; Keller, Bettina G.; Heyne, Karsten; Imhof, Petra

    2018-04-01

    We have combined infrared (IR) experiments with molecular dynamics (MD) simulations in solution at finite temperature to analyse the vibrational signature of the small floppy peptide Alanine-Leucine. IR spectra computed from first-principles MD simulations exhibit no distinct differences between conformational clusters of α -helix or β -sheet-like folds with different orientations of the bulky leucine side chain. All computed spectra show two prominent bands, in good agreement with the experiment, that are assigned to the stretch vibrations of the carbonyl and carboxyl group, respectively. Variations in band widths and exact maxima are likely due to small fluctuations in the backbone torsion angles.

  8. Precise structural analysis of α-helical polypeptide by quantum-chemical calculation related to reciprocal side-chain combination of two L-phenylalanine residues

    NASA Astrophysics Data System (ADS)

    Niimura, Subaru; Kurosu, Hiromichi; Shoji, Akira

    2010-04-01

    To clarify the positive role of side-chain conformation in the stability of protein secondary structure (main-chain conformation), we successfully calculated the optimization structure of a series of well-defined α-helical octadecapeptides composed of two L-phenylalanine (Phe) and 16 L-alanine (Ala) residues, based on the molecular orbital calculation with density functional theory (DFT/B3LYP/6-31G(d)). From the total energy calculation and the precise secondary structural analysis, we found that the conformational stability of the α-helix is closely related to the reciprocal side-chain combinations (such as positional relation and side-chain conformation) of two Phe residues in this system. Furthermore, we demonstrated that the 1H, 13C, 15N and 17O isotropic chemical shifts of each Phe residue depend on the respective side-chain conformations of the Phe residue.

  9. The Aspergillus nidulans Proline Permease as a Model for Understanding the Factors Determining Substrate Binding and Specificity of Fungal Amino Acid Transporters*

    PubMed Central

    Gournas, Christos; Evangelidis, Thomas; Athanasopoulos, Alexandros; Mikros, Emmanuel; Sophianopoulou, Vicky

    2015-01-01

    Amino acid uptake in fungi is mediated by general and specialized members of the yeast amino acid transporter (YAT) family, a branch of the amino acid polyamine organocation (APC) transporter superfamily. PrnB, a highly specific l-proline transporter, only weakly recognizes other Put4p substrates, its Saccharomyces cerevisiae orthologue. Taking advantage of the high sequence similarity between the two transporters, we combined molecular modeling, induced fit docking, genetic, and biochemical approaches to investigate the molecular basis of this difference and identify residues governing substrate binding and specificity. We demonstrate that l-proline is recognized by PrnB via interactions with residues within TMS1 (Gly56, Thr57), TMS3 (Glu138), and TMS6 (Phe248), which are evolutionary conserved in YATs, whereas specificity is achieved by subtle amino acid substitutions in variable residues. Put4p-mimicking substitutions in TMS3 (S130C), TMS6 (F252L, S253G), TMS8 (W351F), and TMS10 (T414S) broadened the specificity of PrnB, enabling it to recognize more efficiently l-alanine, l-azetidine-2-carboxylic acid, and glycine without significantly affecting the apparent Km for l-proline. S253G and W351F could transport l-alanine, whereas T414S, despite displaying reduced proline uptake, could transport l-alanine and glycine, a phenotype suppressed by the S130C mutation. A combination of all five Put4p-ressembling substitutions resulted in a functional allele that could also transport l-alanine and glycine, displaying a specificity profile impressively similar to that of Put4p. Our results support a model where residues in these positions determine specificity by interacting with the substrates, acting as gating elements, altering the flexibility of the substrate binding core, or affecting conformational changes of the transport cycle. PMID:25572393

  10. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra

    1998-10-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  11. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  12. Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.

    2013-11-20

    Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures ofmore » IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.« less

  13. Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel β-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.

    PubMed

    Yazawa, Koji; Suzuki, Furitsu; Nishiyama, Yusuke; Ohata, Takuya; Aoki, Akihiro; Nishimura, Katsuyuki; Kaji, Hironori; Shimizu, Tadashi; Asakura, Tetsuo

    2012-11-25

    The accurate (1)H positions of alanine tripeptide, A(3), with anti-parallel and parallel β-sheet structures could be determined by highly resolved (1)H DQMAS solid-state NMR spectra and (1)H chemical shift calculation with gauge-including projector augmented wave calculations.

  14. Diagnostic Dilemma for Low Viremia with Significant Fibrosis; Is HBV DNA Threshold Level a Good Indicator for Predicting Liver Damage?

    PubMed

    Yenilmez, Ercan; Çetinkaya, Rıza Aytaç; Tural, Ersin

    2018-05-04

    The most important difficulties about management of hepatitis B are still determining the liver damage and the right time to start antiviral therapy. To reveal the role of hepatitis B virus DNA threshold level for prediction of liver fibrosis and inflammation in young-aged hepatitis B e antigen negative chronic hepatitis B patients. Diagnostic accuracy study. A total of 273 hepatitis B e antigen negative young chronic hepatitis B patients with any hepatitis B virus DNA levels between 2008 and 2016, who had liver biopsy after at least 6 months follow up period, enrolled in this retrospective study. We created two groups as case and control, cases with hepatitis B virus DNA levels below 2.000 IU/mL and controls with hepatitis B virus DNA levels over 2.000 IU/mL. Having histological activity index ≥4 or/and fibrosis scores ≥2 were defined as significant histological abnormality. Then, we analyzed the relationship between these groups. We showed that significant fibrosis may occur in one third of young chronic hepatitis B patients with low viremia (30.2%, n=42/139 in cases, %55.2, n=74/134 in controls). Among the 42 cases with low viremia and significant fibrosis, 21.4% had alanine aminotransferase level between 40-59 U/L, 42.8% had alanine aminotransferase level between 60-79 U/L, and 35.7% had alanine aminotransferase level over 80 U/L. There was weak correlation between hepatitis B virus DNA threshold level and fibrosis score (p=0.000, rho=0.253). The optimum serum hepatitis B virus DNA threshold level in our study for predicting significant fibrosis was 1293 IU/mL (p=0.00, AUC: 0.657±0.034). The optimum alanine aminotransferase threshold level for predicting significant histological activity index and fibrosis was 64.5 and 59.5 U/L, respectively. The sensitivity and the specificity of 1293 vs 2000 IU/mL hepatitis B virus DNA threshold with 60 U/L alanine aminotransferase threshold level for predicting F≥2 fibrosis score were similar (sensitivity: 0.43 and 0

  15. Novel histone deacetylase 8-selective inhibitor 1,3,4-oxadiazole-alanine hybrid induces apoptosis in breast cancer cells.

    PubMed

    Pidugu, Vijaya Rao; Yarla, Nagendra Sastry; Bishayee, Anupam; Kalle, Arunasree M; Satya, Alapati Krishna

    2017-11-01

    Identification of isoform-specific histone deacetylase inhibitors (HDACi) is a significant advantage to overcome the adverse side effects of pan-HDACi for the treatment of various diseases, including cancer. We have designed, and synthesized novel 1,3,4 oxadiazole with glycine/alanine hybrids as HDAC8-specific inhibitors and preliminary evaluation has indicated that 1,3,4 oxadiazole with alanine hybrid [(R)-2-amino-N-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)propanamide (10b)] to be a potent HDAC8 inhibitor. In the present study, the in vitro efficacy of the molecule in inhibiting the cancer cell proliferation and the underlying molecular mechanism was studied. 10b inhibited the growth of MDA-MB-231 and MCF7 breast cancer cells, with a lower IC 50 of 230 and 1000 nM, respectively, compared to K562, COLO-205 and HepG2 cells and was not cytotoxic to normal breast epithelial cells, MCF10A. 10b was specific to HDAC8 and did not affect the expression of other class I HDACs. Further, a dose-dependent increase in H3K9 acetylation levels demonstrated the HDAC-inhibitory activity of 10b in MDA-MB-231 cells. Flow cytometric analysis indicated a dose-dependent increase and decrease in the percent apoptotic cells and mitochondrial membrane potential, respectively, when treated with 10b. Immunoblot analysis showed a modulation of Bax/Bcl2 ratio with a decrease in Bcl2 expression and no change in Bax expression. 10b treatment resulted in induction of p21 and inhibition of CDK1 proteins along with cytochrome c release from mitochondria, activation of caspases-3 and -9 and cleavage of poly ADP-ribose polymerase leading to apoptotic death of MDA-MB-231 and MCF7 cells. In conclusion, our results clearly demonstrated the efficacy of 10b as an anticancer agent against breast cancer.

  16. The effectiveness of fermented turmeric powder in subjects with elevated alanine transaminase levels: a randomised controlled study

    PubMed Central

    2013-01-01

    Background Previous animal studies have shown that Curcuma longa (turmeric) improves liver function. Turmeric may thus be a promising ingredient in functional foods aimed at improving liver function. The purpose of the study is to investigate the hepatoprotective effect of fermented turmeric powder (FTP) on liver function in subjects with elevated alanine transaminase (ALT) levels. Methods A randomised, double-blind, placebo-controlled trial was conducted between November 2010 and April 2012 at the clinical trial center for functional foods of the Chonbuk National University Hospital. The trial included 60 subjects, 20 years old and above, who were diagnosed mild to moderate elevated ALT levels between 40 IU/L and 200 IU/L. Sixty subjects were randomised to receive FTP 3.0 g per day or placebo 3.0 g per day for 12 weeks. The treatment group received two capsules of FTP three times a day after meals, for 12 weeks. The primary efficacy endpoint was change in the ALT levels in the two groups. The secondary efficacy endpoints included its effect on aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), total bilirubin (TB), and lipid profiles. Safety was assessed throughout the study using ongoing laboratory tests. Adverse events (AEs) were also recorded. Results Sixty subjects were randomised in the study (30 into the FTP group, 30 into the placebo group), and among them, twelve subjects were excluded from the analysis for protocol violation, adverse events or consent withdrawal. The two groups did not differ in baseline characteristics. After 12 weeks of treatment, 48 subjects were evaluated. Of the 48 subjects, 26 randomly received FTP capsules and 22 received placebo. The FTP group showed a significant reduction in ALT levels after 12 weeks of treatment compared with the placebo group (p = 0.019). There was also observed that the serum AST levels were significantly reduce in the FTP group than placebo group (p = 0.02). The GGT levels

  17. Spondias mombin L. (Anacardiaceae) enhances detoxification of hepatic and macromolecular oxidants in acetaminophen-intoxicated rats.

    PubMed

    Saheed, Sabiu; Taofik, Sunmonu Olatunde; Oladipo, Ajani Emmanuel; Tom, Ashafa Anofi Omotayo

    2017-11-01

    Oxidative stress is a common pathological condition associated with drug-induced hepatotoxicity. This study investigated Spondias mombin L. aqueous leaf extract on reactive oxygen species and acetaminophen-mediated oxidative onslaught in rats' hepatocytes. Hepatotoxic rats were orally administered with the extract and vitamin C for 4 weeks. The extract dose-dependently scavenged DPPH, hydrogen peroxide and hydroxyl radicals, with IC 50 values of 0.13, 0.66, and 0.64 mg/mL, and corresponding % inhibitions of 89, 80, and 90%, respectively at 1.0 mg/mL. Ferric ion was also significantly reduced. The marked (p<0.05) increases in the activities of alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase were reduced following treatment with the extract. The extract also significantly (p<0.05) induced the activities of antioxidant enzymes. These inductions reversed the acetaminophen-enhanced reduction in the specific activities of these enzymes as well as attenuated the observed elevated concentrations of autooxidized products and rived DNA in the acetaminophen-intoxicated animals. The observed effects competed with those of vitamin C and are suggestive of hepatoprotective and antioxidative attributes of the extract. Overall, the data from the present findings suggest that S. Mombin aqueous leaf extract is capable of ameliorating acetaminophen-mediated oxidative hepatic damage via enhancement of antioxidant defense systems.

  18. Dosimetry for electron Intra-Operative RadioTherapy: Comparison of output factors obtained through alanine/EPR pellets, ionization chamber and Monte Carlo-GEANT4 simulations for IORT mobile dedicate accelerator

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria

    2015-09-01

    In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus

  19. Characterization of supramolecular (H2O)18 water morphology and water-methanol (H2O)15(CH3OH)3 clusters in a novel phosphorus functionalized trimeric amino acid host.

    PubMed

    Raghuraman, Kannan; Katti, Kavita K; Barbour, Leonard J; Pillarsetty, Nagavarakishore; Barnes, Charles L; Katti, Kattesh V

    2003-06-11

    Phosphorus functionalized trimeric alanine compounds (l)- and (d)-P(CH(2)NHCH(CH(3))COOH)(3) 2 are prepared in 90% yields by the Mannich reaction of Tris(hydroxymethyl)phosphine 1 with (l)- or (d)- Alanine in aqueous media. The hydration properties of (l)-2 and (d)-2 in water and water-methanol mixtures are described. The crystal structure analysis of (l)-2.4H(2)O, reveals that the alanine molecules pack to form two-dimensional bilayers running parallel to (001). The layered structural motif depicts two closely packed monolayers of 2 each oriented with its phosphorus atoms projected at the center of the bilayer and adjacent monolayers are held together by hydrogen bonds between amine and carboxylate groups. The water bilayers are juxtaposed with the H-bonded alanine trimers leading to 18-membered (H(2)O)(18) water rings. Exposure of aqueous solution of (l)-2 and (d)-2 to methanol vapors resulted in closely packed (l)-2 and (d)-2 solvated with mixed water-methanol (H(2)O)(15)(CH(3)OH)(3) clusters. The O-O distances in the mixed methanol-water clusters of (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH (O-O(average) = 2.857 A) are nearly identical to the O-O distance observed in the supramolecular (H(2)O)(18) water structure (O-O(average) = 2.859 A) implying the retention of the hydrogen bonded structure in water despite the accommodation of hydrophobic methanol groups within the supramolecular (H(2)O)(15)(CH(3)OH)(3) framework. The O-O distances in (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH and in (H(2)O)(18) are very close to the O-O distance reported for liquid water (2.85 A).

  20. Intramolecular interactions of L-phenylalanine: Valence ionization spectra and orbital momentum distributions of its fragment molecules.

    PubMed

    Ganesan, Aravindhan; Wang, Feng; Falzon, Chantal

    2011-02-01

    Intramolecular interactions between fragments of L-phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L-phenylalanine, benzene and L-alanine are studied using density functional theory methods. While fully resolved experimental PES of L-phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e(1g) and 1a(2u) orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L-phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14-20 eV, rather than outside of this region. This study presents a competent orbital based fragments-in-molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D-PDF technique. Copyright © 2010 Wiley Periodicals, Inc.

  1. l-Theanine prevents ETEC-induced liver damage by reducing intrinsic apoptotic response and inhibiting ERK1/2 and JNK1/2 signaling pathways.

    PubMed

    Gong, Zhihua; Liu, Qiuling; Lin, Ling; Deng, Yanli; Cai, Shuxian; Liu, Zunying; Zhang, Sheng; Xiao, Wenjun; Xiong, Shuo; Chen, Dong

    2018-01-05

    l-Theanine (LTA; γ-glutamylethylamide), a peculiar non-protein-derived amino acid isolated from tea, is widely used as a functional ingredient and dietary supplement. l-Theanine has been confirmed to have hepatoprotective effects, but the underlying mechanism remains unknown. This study investigated the protective effect of l-Theanine-in vivo, using an enterotoxigenic Escherichia coli (ETEC)-infected mouse model. l-Theanine significantly decreased the elevated serum activities of both aspartate aminotransferase (AST) and alanine aminotransferase (ALT), two biomarkers of hepatic impairment. This was consistent with histopathological images from the microscopic observation of liver tissue. In addition, l-theanine significantly increased the mRNA and protein expression of Bcl-2 and decreased the expression of Bax, anti- and pro-apoptotic molecules, respectively, compared with levels in the ETEC control group. The expression of cleaved caspase-3 protein in the group pre-treated with l-theanine was significantly lower than that in the ETEC group. Additionally, decreases in extracellular signal-regulated kinase (ERK1/2) and c-Jun NH 2 -terminal kinase(JNK1/2) MAPK phosphorylation were observed in the l-theanine pre-treated group. Our study demonstrates that l-theanine possesses anti-apoptotic activity, which can be attributed to suppression of the intrinsic mitochondria-mediated apoptosis and MAPK phosphorylation signaling pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. New salts of amino acids with dimeric cations

    NASA Astrophysics Data System (ADS)

    Ghazaryan, V. V.; Fleck, M.; Petrosyan, A. M.

    2010-10-01

    Among salts of amino acids there are compounds with the composition 2A..HX, which consist of dimeric A...A+ cations with short symmetric or asymmetric hydrogen bonds between zwitter-ionic and protonated moieties. These species are materials liable to undergo phase transitions or possess interesting nonlinear optical properties. Here, we report the preparation of 20 new salts with dimeric cations from aqueous solutions, including compounds of glycine, betaine, β- alanine, L-alanine, L-phenylalanine, L-threonine, L-valine, L-leucine and L-proline, with BF4-, ClO4-, Cl-, Br-, HSeO3-, and HC2O4-; as anions. The prepared salts are characterized by IR and Raman spectroscopy. Some of them are grown in form of good quality single crystals, which allowed the determination of their crystal structure.

  3. Association of the Aspartate Aminotransferase to Alanine Aminotransferase Ratio with BNP Level and Cardiovascular Mortality in the General Population: The Yamagata Study 10-Year Follow-Up

    PubMed Central

    Yokoyama, Miyuki; Otaki, Yoichiro; Takahashi, Hiroki; Arimoto, Takanori; Shishido, Tetsuro; Miyamoto, Takuya; Konta, Tsuneo; Shibata, Yoko; Daimon, Makoto; Kayama, Takamasa; Kubota, Isao

    2016-01-01

    Background. Early identification of high risk subjects for cardiovascular disease in health check-up is still unmet medical need. Cardiovascular disease is characterized by the superior increase in aspartate aminotransferase (AST) to alanine aminotransferase (ALT). However, the association of AST/ALT ratio with brain natriuretic peptide (BNP) levels and cardiovascular mortality remains unclear in the general population. Methods and Results. This longitudinal cohort study included 3,494 Japanese subjects who participated in a community-based health check-up, with a 10-year follow-up. The AST/ALT ratio increased with increasing BNP levels. And multivariate logistic analysis showed that the AST/ALT ratio was significantly associated with a high BNP (≥100 pg/mL). There were 250 all-cause deaths including 79 cardiovascular deaths. Multivariate Cox proportional hazard regression analysis revealed that a high AST/ALT ratio (>90 percentile) was an independent predictor of all-cause and cardiovascular mortality after adjustment for confounding factors. Kaplan-Meier analysis demonstrated that cardiovascular mortality was higher in subjects with a high AST/ALT ratio than in those without. Conclusions. The AST/ALT ratio was associated with an increase in BNP and was predictive of cardiovascular mortality in a general population. Measuring the AST/ALT ratio during routine health check-ups may be a simple and cost-effective marker for cardiovascular mortality. PMID:27872510

  4. Paralogous ALT1 and ALT2 Retention and Diversification Have Generated Catalytically Active and Inactive Aminotransferases in Saccharomyces cerevisiae

    PubMed Central

    Peñalosa-Ruiz, Georgina; Aranda, Cristina; Ongay-Larios, Laura; Colon, Maritrini; Quezada, Hector; Gonzalez, Alicia

    2012-01-01

    Background Gene duplication and the subsequent divergence of paralogous pairs play a central role in the evolution of novel gene functions. S. cerevisiae possesses two paralogous genes (ALT1/ALT2) which presumably encode alanine aminotransferases. It has been previously shown that Alt1 encodes an alanine aminotransferase, involved in alanine metabolism; however the physiological role of Alt2 is not known. Here we investigate whether ALT2 encodes an active alanine aminotransferase. Principal Findings Our results show that although ALT1 and ALT2 encode 65% identical proteins, only Alt1 displays alanine aminotransferase activity; in contrast ALT2 encodes a catalytically inert protein. ALT1 and ALT2 expression is modulated by Nrg1 and by the intracellular alanine pool. ALT1 is alanine-induced showing a regulatory profile of a gene encoding an enzyme involved in amino acid catabolism, in agreement with the fact that Alt1 is the sole pathway for alanine catabolism present in S. cerevisiae. Conversely, ALT2 expression is alanine-repressed, indicating a role in alanine biosynthesis, although the encoded-protein has no alanine aminotransferase enzymatic activity. In the ancestral-like yeast L. kluyveri, the alanine aminotransferase activity was higher in the presence of alanine than in the presence of ammonium, suggesting that as for ALT1, LkALT1 expression could be alanine-induced. ALT2 retention poses the questions of whether the encoded protein plays a particular function, and if this function was present in the ancestral gene. It could be hypotesized that ALT2 diverged after duplication, through neo-functionalization or that ALT2 function was present in the ancestral gene, with a yet undiscovered function. Conclusions ALT1 and ALT2 divergence has resulted in delegation of alanine aminotransferase activity to Alt1. These genes display opposed regulatory profiles: ALT1 is alanine-induced, while ALT2 is alanine repressed. Both genes are negatively regulated by the Nrg1

  5. Responses of single facial taste fibers in the channel catfish, Ictalurus punctatus, to amino acids.

    PubMed

    Kohbara, J; Michel, W; Caprio, J

    1992-10-01

    1. Amino acids and nucleotides stimulate taste receptors of teleosts. In this report, responses to these compounds of 105 facial taste fibers (79 fully characterized) that innervate maxillary barbel taste buds of the channel catfish (Ictalurus punctatus) were analyzed. 2. The fully characterized facial taste fibers that responded to amino acids (n = 68) were generally poorly responsive to nucleotides and related substances (NRS), whereas the fibers responsive to NRS (n = 11) were poorly responsive to amino acids. Spike discharge of the amino acid-responsive fibers to the most potent amino acid stimulus tested per fiber increased 44-fold from a mean spontaneous activity of 2.1 +/- 3.5 to 92.1 +/- 42.4 (SD) spikes/3 s. Spike activity of the NRS-responsive fibers to NRS increased 11.5-fold from a mean spontaneous activity of 3.4 +/- 5.9 to 39.1 +/- 27.4 spikes/3 s. There was no significant difference between the spontaneous rates, but stimulus evoked spike rates for the amino acid-responsive fibers were significantly greater (P < 0.05; Mann-Whitney test) than those for the NRS-responsive fibers. 3. Hierarchical cluster analysis based on the 3-s response time identified three major groups of neurons. The identified clusters comprised neurons that were highly responsive to either L-alanine (i.e., Ala cluster; n = 39), L-arginine (i.e., Arg cluster; n = 29), or NRS (NRS cluster; n = 11). Fibers comprising the Arg cluster were more narrowly tuned than those within the Ala cluster. This report further characterizes the responses to amino acids of the individual facial taste fibers comprising the Ala and Arg clusters. 4. Subclusters were evident within both of the amino acid-responsive clusters. The Arg cluster was divisible into two subclusters dependent on the response to 1 mM L-proline. Twelve neurons that were significantly (P < 0.05; Mann-Whitney test) more responsive to L-proline than the remaining 17 neurons within the Arg cluster formed the Arg/Pro subcluster; these

  6. Isolation of temperature-sensitive mutations in murC of Staphylococcus aureus.

    PubMed

    Ishibashi, Mihoko; Kurokawa, Kenji; Nishida, Satoshi; Ueno, Kohji; Matsuo, Miki; Sekimizu, Kazuhisa

    2007-09-01

    Enzymes in the bacterial peptidoglycan biosynthesis pathway are important targets for novel antibiotics. Of 750 temperature-sensitive (TS) mutants of Gram-positive Staphylococcus aureus, six were complemented by the murC gene, which encodes the UDP-N-acetylmuramic acid:l-alanine ligase. Each mutation resulted in a single amino acid substitution and, in all cases, the TS phenotype was suppressed by high osmotic stress. In mutant strains with the G222E substitution, a decrease in the viable cell number immediately after shift to the restrictive temperature was observed. These results suggest that S. aureus MurC protein is essential for cell growth. The MurC H343Y mutation is located in the putative alanine recognition pocket. Consistent with this, allele-specific suppression was observed of the H343Y mutation by multiple copies of the aapA gene, which encodes an alanine transporter. The results suggest an in vivo role for the H343 residue of S. aureus MurC protein in high-affinity binding to L-alanine.

  7. A new comprehensive technique of catheterisation, blood sampling, sample preparation and sample analysis by means of high-pressure liquid chromatography for pharmacokinetic studies with estradiol-linked nitrosoureas and their metabolites.

    PubMed

    Betsch, B; Berger, M R; Spiegelhalder, B

    1990-09-01

    Estradiol-linked nitrosoureas are offering new perspectives in the antineoplastic chemotherapy of estradiol-receptor positive mammary carcinomas. In such a molecule estradiol has the function of a carrier which brings about a specific accumulation of the anticancer drug in estradiol-receptor containing tumor cells. However, there is only little knowledge about the pharmacokinetic behavior of this new group of anticancer agents. For that reason a new comprehensive technique of catheterisation, blood sampling, sample preparation and sample analysis with high-pressure liquid chromatography (HPLC) for preclinical pharmacokinetic studies with estradiol-linked nitrosoureas and their metabolites has been developed. N-(2-Chloroethyl)-N-nitroso-carbamoyl-L-alanine-estradiol-17-ester (CNC-alanine-estradiol-17-ester) and N-(2-chloroethyl)-N-nitroso-carbamoyl-L-alanine (CNC-alanine) were used as test compounds. The drugs were tested in female Sprague-Dawley rats with chemically induced mammary carcinomas. The laboratory animals were supplied with two catheters prior to the pharmacokinetic experiments. The blood samples were drawn from the vena cava catheter after the drug had been applied through a vena jugularis catheter. The compounds were extracted from plasma with C18 silicagel reversed phase cartridges. The clean-up technique delivered clear samples only slightly contaminated with the biological matrix. The recovery from plasma was 75 +/- 5% for the hormone-linked CNC-alanine-estradiol-17-ester and 70 +/- 5% for the unlinked CNC-alanine. The analysis was carried out by means of HPLC.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Neutron inelastic scattering by amino acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaper, C.L.; Sinha, S.K.; Dasannacharya, B.A.

    Inelastic neutron scattering experiments on normal, N-deuterated glycine, normal and N-deuterated alanine, L-valine, L-tyrosine and, L-phenylalanine at 100 K, are reported. Coupling of the external modes to different hydrogens is discussed.

  9. Protective effect of L-arginine against necrosis and apoptosis induced by experimental ischemic and reperfusion in rat liver.

    PubMed

    Chattopadhyay, Pronobesh; Shukla, Gunjan; Wahi, Arun Kumar

    2009-01-01

    To study the effect of L-arginine on apoptosis and necrosis induced by 1-h ischemia followed by 3-h reperfusion. Adult Wistar rats underwent 60 min of partial liver ischemia followed by 3-h reperfusion. Eighteen Wistar rats were divided into sham-operated control group (I) (n = 6), ischemia and reperfusion (I/R) group (0.9 % saline (5 mL/kg, orally) for 7 days) (II) (n = 6), and L-arginine-treated group (10 mg/kg body weight daily orally for 7 days before inducing ischemia-reperfusion maneuver) (III) (n = 6). Apoptotic and necrotic hepatocytes, nitric oxide levels in hepatocytes, Bcl-2 mRNA, and Bcl-2 protein were measured. Liver injury was assessed by plasma alanine transaminases (ALT), aspartate transaminases (AST), liver histopathology, and electron microscopy. An ischemic and reperfusion hepatocellular injury occurred as was indicated by increased serum ALT, AST, histopathology, and electron microscopy. Apoptosis and necrosis associated marker gene Bcl-2 mRNA and protein expression were decreased in I/R group. Pretreatment with L-arginine significantly decreased serum ALT and AST level and apoptotic and necrotic cells after 1 h ischemia followed by 3 h of reperfusion. Nitric oxide production in hepatocytes was increased twofold by L-arginine treatment when compared with I/R group. Histopathology and transmission electron microscopy (TEM) studies showed markedly diminished hepatocellular injury in L-arginine-pretreated rats during the hepatic I/R. Thus, it may be concluded that L-arginine afforded significant protection from necrosis and apoptosis in I/R injury by upregulated Bcl-2 gene and nitric oxide production.

  10. Dosimetry for Small Fields in Stereotactic Radiosurgery Using Gafchromic MD-V2-55 Film, TLD-100 and Alanine Dosimeters

    PubMed Central

    Massillon-JL, Guerda; Cueva-Prócel, Diego; Díaz-Aguirre, Porfirio; Rodríguez-Ponce, Miguel; Herrera-Martínez, Flor

    2013-01-01

    This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in 60Co gamma-ray and 6 MV x-ray reference (10×10 cm2) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields

  11. Design and synthesis of novel HDAC8 inhibitory 2,5-disubstituted-1,3,4-oxadiazoles containing glycine and alanine hybrids with anti cancer activity.

    PubMed

    Pidugu, Vijaya Rao; Yarla, Nagendra Sastry; Pedada, Srinivasa Rao; Kalle, Arunasree M; Satya, A Krishna

    2016-11-01

    Oxadiazole is a heterocyclic compound containing an oxygen atom and two nitrogen atoms in a five-membered ring. Of the four oxadiazoles known, 1,3,4-oxadiazole has become an important structural motif for the development of new drugs and the compounds containing 1,3,4-oxadiazole cores have a broad spectrum of biological activity. Herein, we describe the design, synthesis and biological evaluation of a series of novel 2,5-disubstituted 1,3,4-oxadiazoles (10a-10j) as class I histone deacetylase (HDAC) inhibitors. The compounds were designed and evaluated for HDAC8 selectivity using in silico docking software (Glide) and the top 10 compounds with high dock score and obeying Lipinski's rule were synthesized organically. Further the biological HDAC inhibitory and selectivity assays and anti-proliferative assays were carried out. In in silico and in vitro studies, all compounds (10a-10j) showed significant HDAC inhibition and exhibited HDAC8 selectivity. Among all tested compounds, 10b showed substantial HDAC8 inhibitory activity and better anticancer activity which is comparable to the positive control, a FDA approved drug, vorinostat (SAHA). Structural activity relation is discussed with various substitutions in the benzene ring connected on 1,3,4-oxadizole and glycine/alanine. The study warranted further investigations to develop HDAC8-selective inhibitory molecule as a drug for neoplastic diseases. Novel 1,3,4-oxadizole substituted with glycine/alanine showed HDAC8 inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces.

    PubMed

    Simões, Inês C M; Costa, Inês P D; Coimbra, João T S; Ramos, Maria J; Fernandes, Pedro A

    2017-01-23

    Knowing how proteins make stable complexes enables the development of inhibitors to preclude protein-protein (P:P) binding. The identification of the specific interfacial residues that mostly contribute to protein binding, denominated as hot spots, is thus critical. Here, we refine an in silico alanine scanning mutagenesis protocol, based on a residue-dependent dielectric constant version of the Molecular Mechanics/Poisson-Boltzmann Surface Area method. We have used a large data set of structurally diverse P:P complexes to redefine the residue-dependent dielectric constants used in the determination of binding free energies. The accuracy of the method was validated through comparison with experimental data, considering the per-residue P:P binding free energy (ΔΔG binding ) differences upon alanine mutation. Different protocols were tested, i.e., a geometry optimization protocol and three molecular dynamics (MD) protocols: (1) one using explicit water molecules, (2) another with an implicit solvation model, and (3) a third where we have carried out an accelerated MD with explicit water molecules. Using a set of protein dielectric constants (within the range from 1 to 20) we showed that the dielectric constants of 7 for nonpolar and polar residues and 11 for charged residues (and histidine) provide optimal ΔΔG binding predictions. An overall mean unsigned error (MUE) of 1.4 kcal mol -1 relative to the experiment was achieved in 210 mutations only with geometry optimization, which was further reduced with MD simulations (MUE of 1.1 kcal mol -1 for the MD employing explicit solvent). This recalibrated method allows for a better computational identification of hot spots, avoiding expensive and time-consuming experiments or thermodynamic integration/ free energy perturbation/ uBAR calculations, and will hopefully help new drug discovery campaigns in their quest of searching spots of interest for binding small drug-like molecules at P:P interfaces.

  13. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    NASA Astrophysics Data System (ADS)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E.

    2017-08-01

    This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH2 chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH3+ adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S22-) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH2 to NH3+ species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  14. Dose- and Glucose-Dependent Effects of Amino Acids on Insulin Secretion from Isolated Mouse Islets and Clonal INS-1E Beta-Cells

    PubMed Central

    Liu, Zhenping; Jeppesen, Per B.; Gregersen, Søren; Chen, Xiaoping; Hermansen, Kjeld

    2008-01-01

    BACKGROUND: The influence of glucose and fatty acids on beta-cell function is well established whereas little is known about the role of amino acids (AAs). METHODS: Islets isolated from NMRI mice were incubated overnight. After preincubation, isolated islets as well as clonal INS-1E beta-cells were incubated for 60 min in a modified Krebs Ringer buffer containing glucose and AAs. RESULTS: At 16.7 mmol/l (mM) glucose, L-arginine, L-lysine, L-alanine, L-proline, L-leucine, and L-glutamine potentiated glucose-stimulated insulin secretion dose-dependently, while DL-homocysteine inhibited insulin secretion. Maximal insulin stimulation was obtained at 20 mM L-proline, L-lysine, L-alanine, L-arginine (islets: 2.5 to 6.7 fold increase; INS-1E cells: 1.6 to 2.2 fold increase). L-glutamine and L-leucine only increased glucose-stimulated (16.7 mM) insulin secretion (INS-1E cells: 1.5 and 1.3 fold, respectively) at an AA concentration of 20 mM. Homocysteine inhibited insulin secretion both at 5.6 mM and 16.7 mM glucose. At glucose levels ranging from 1.1 to 25 mM, the equimolar concentration of 10 mM, L-proline, L-lysine, L-arginine increased insulin secretion from mouse islets and INS-1E cells at all glucose levels applied, with a maximal effect obtained at 25 mM glucose. At a concentration of 10 mM, L-arginine and L-lysine had the highest insulinotropic potency among the AAs investigated. CONCLUSION: L-arginine, L-lysine, L-alanine, L-proline, L-leucine and L-glutamine acutely stimulate insulin secretion from mouse islets and INS-1E cells in a dose- and glucose-dependent manner, whereas DL-homocysteine inhibits insulin release. PMID:19290384

  15. D:L-AMINO Acids and the Turnover of Microbial Biomass

    NASA Astrophysics Data System (ADS)

    Lomstein, B. A.; Braun, S.; Mhatre, S. S.; Jørgensen, B. B.

    2015-12-01

    Decades of ocean drilling have demonstrated wide spread microbial life in deep sub-seafloor sediment, and surprisingly high microbial cell numbers. Despite the ubiquity of life in the deep biosphere, the large community sizes and the low energy fluxes in the vast buried ecosystem are still poorly understood. It is not know whether organisms of the deep biosphere are specifically adapted to extremely low energy fluxes or whether most of the observed cells are in a maintenance state. Recently we developed and applied a new culture independent approach - the D:L-amino acid model - to quantify the turnover times of living microbial biomass, microbial necromass and mean metabolic rates. This approach is based on the built-in molecular clock in amino acids that very slowly undergo chemical racemization until they reach an even mixture of L- and D- forms, unless microorganisms spend energy to keep them in the L-form that dominates in living organisms. The approach combines sensitive analyses of amino acids, the unique bacterial endospore marker (dipicolinic acid) with racemization dynamics of stereo-isomeric amino acids. Based on a heating experiment, we recently reported kinetic parameters for racemization of aspartic acid, glutamic acid, serine and alanine in bulk sediment from Aarhus Bay, Denmark. The obtained racemization rate constants were faster than the racemization rate constants of free amino acids, which we have previously applied in Holocene sediment from Aarhus Bay and in up to 10 mio yr old sediment from ODP Leg 201. Another important input parameter for the D:L-amino acid model is the cellular carbon content. It has recently been suggested that the cellular carbon content most likely is lower than previously thought. In recognition of these new findings, previously published data based on the D:L-amino acid model were recalculated and will be presented together with new data from an Arctic Holocene setting with constant sub-zero temperatures.

  16. Deuteration and selective labeling of alanine methyl groups of β2-adrenergic receptor expressed in a baculovirus-insect cell expression system.

    PubMed

    Kofuku, Yutaka; Yokomizo, Tomoki; Imai, Shunsuke; Shiraishi, Yutaro; Natsume, Mei; Itoh, Hiroaki; Inoue, Masayuki; Nakata, Kunio; Igarashi, Shunsuke; Yamaguchi, Hideyuki; Mizukoshi, Toshimi; Suzuki, Ei-Ichiro; Ueda, Takumi; Shimada, Ichio

    2018-03-08

    G protein-coupled receptors (GPCRs) exist in equilibrium between multiple conformations, and their populations and exchange rates determine their functions. However, analyses of the conformational dynamics of GPCRs in lipid bilayers are still challenging, because methods for observations of NMR signals of large proteins expressed in a baculovirus-insect cell expression system (BVES) are limited. Here, we report a method to incorporate methyl- 13 C 1 H 3 -labeled alanine with > 45% efficiency in highly deuterated proteins expressed in BVES. Application of the method to the NMR observations of β 2 -adrenergic receptor in micelles and in nanodiscs revealed the ligand-induced conformational differences throughout the transmembrane region of the GPCR.

  17. Isolation of eukaryotic ribosomal proteins. Purification and characterization of 60 S ribosomal subunit proteins L3, L6, L7', L8, L10, L15, L17, L18, L19, L23', L25, L27', L28, L29, L31, L32, L34, L35, L36, L36', and L37'.

    PubMed

    Tsurugi, K; Collatz, E; Todokoro, K; Wool, I G

    1977-06-10

    The proteins of the large subunit of rat liver ribosomes were separated into seven groups by stepwise elution from carboxymethylcellulose with LiCl at pH 6.5. Twenty-one proteins (L3, L6, L7', L8, L10, L15, L17, L18, L19, L23', L25, L27', L28, L29, L31, L32, L34, L35, L36, L36', and L37') were isolated from three groups (C60, E60, and F60) by ion exchange chromatography on carboxymethycellulose and by filtration through Sephadex. The amount of protein obtained varied from 0.3 to 25 mg. Nine of the proteins (L6, L8, L18, L27', L28, L29, L34, L36, and L36') had no detectable contamination: the impurities in the others were no greater than 9%. The molecular weight of the proteins was estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the amino acid composition was determined.

  18. Dose control in electron beam processing: Comparison of results from a graphite charge collector, routine dosimeters and the ISS alanine-based dosimeter

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Onori, S.; Casali, F.; Chirco, P.

    1993-10-01

    A 12 MeV linear accelerator is currently used for electron beam processing of power semiconductor devices for lifetime control and, on an experimental basis, for food irradiation, sludge treatment etc. In order to control the irradiation process a simple, quick and reliable method for a direct evaluation of dose and fluence in a broad electron beam has been developed. This paper presents the results obtained using a "charge collector" which measures the charge absorbed in a graphite target exposed in air. Calibration of the system with super-Fricke dosimeter and comparison of absorbed dose results obtained with plastic dosimeters and alanine pellets are discussed.

  19. Quantum mechanical effects in zwitterionic amino acids: The case of proline, hydroxyproline, and alanine in water

    NASA Astrophysics Data System (ADS)

    Ulman, Kanchan; Busch, Sebastian; Hassanali, Ali A.

    2018-06-01

    In this work, we use ab initio molecular dynamics simulations to elucidate the electronic properties of three hydrated zwitterionic amino acids, namely proline, hydroxyproline, and alanine, the former two forming an important constituent of collagen. In all three systems, we find a substantial amount of charge transfer between the amino acids and surrounding solvent, which, rather surprisingly, also involves the reorganization of electron density near the hydrophobic non-polar groups. Water around proline appears to be slightly more polarized, as reflected by the enhanced water dipole moment in its hydration shell. This observation is also complemented by an examination of the IR spectra of the three systems where there is a subtle red and blue shift in the O-H stretch and bend regions, respectively, for proline. We show that polarizability of these amino acids as revealed by a dipole moment analysis involves a significant enhancement from the solvent and that this also involves non-polar groups. Our results suggest that quantum mechanical effects are likely to be important in understanding the coupling between biomolecules and water in general and in hydrophobic interactions.

  20. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  1. Potential-Energy and Free-Energy Surfaces of Glycyl-Phenylalanyl-Alanine (GFA) Tripeptide. Experiment and Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdes, Haydee; Spiwok, Vojtech; Rezac, Jan

    2008-04-17

    The free-energy surface (FES) of glycyl-phenylalanyl-alanine (GFA) tripeptide was explored by molecular dynamics (MD) simulations in combination with high-level correlated ab initio quantum chemical calculations and metadynamics. Both the MD and metadynamics employed the tightbinding DFT-D method instead of the AMBER force field, which yielded inaccurate results. We classified the minima localised in the FESs as follows: a) the backbone-conformational arrangement; and b) the existence of a COOH---OC intramolecular H-bond (families CO₂Hfree and CO₂Hbonded). Comparison with experimental results showed that the most stable minima in the FES correspond to the experimentally observed structures. Remarkably, however, we did not observe experimentallymore » the CO₂Hbonded family (also predicted by metadynamics), although its stability is comparable to that of the CO₂Hfree structures. This fact was explained by the former’s short excited state lifetime. We also carried out ab initio calculations using DFT-D and the M06-2X functional. The importance of the dispersion energy in stabilizing peptide conformers is well reflected by our pioneer analysis using the DFT-SAPT method to explore the nature of the backbone/side-chain interactions.« less

  2. Involvement of tyrosine residues, N-terminal amino acids, and beta-alanine in insect cuticular sclerotization.

    PubMed

    Andersen, Svend Olav

    2007-09-01

    During sclerotization of insect cuticle the acyldopamines, N-acetyldopamine (NADA) and N-beta-alanyldopamine (NBAD), are oxidatively incorporated into the cuticular matrix, thereby hardening and stabilizing the material by forming crosslinks between the proteins in the cuticular matrix and by forming polymers filling the intermolecular spaces in the cuticle. Sclerotized cuticle from the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor, was hydrolyzed in dilute hydrochloric acid, and from the hydrolysates some components presumably degradation products of cuticular crosslinks were isolated. In two of the components, the sidechain of 3,4-dihydroxyacetophenone was linked to the amino groups of glycine and beta-alanine, respectively, and in the third component to the phenolic group of tyrosine. These three compounds, glycino-dihydroxyacetophenone, beta-alanino-dihydroxyacetophenone, and O-tyrosino-dihydroxyacetophenone, as well as the previously reported compound, lysino-dihydroxyacetophenone [Andersen, S.O., Roepstorff, P., 2007. Aspects of cuticular sclerotization in the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor. Insect Biochem. Mol. Biol. 37, 223-234], are suggested to be degradation products of cuticular crosslinks, in which amino acid residues formed linkages to both the alpha- and beta-positions of the sidechain of acyldopamines.

  3. Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: Pre/post 2 treatment experimental design.

    PubMed

    Jordan, Thomas; Lukaszuk, Judith; Misic, Mark; Umoren, Josephine

    2010-05-19

    beta-Alanine (betaA) has been shown to improve performance during cycling. This study was the first to examine the effects of betaA supplementation on the onset of blood lactate accumulation (OBLA) during incremental treadmill running. Seventeen recreationally-active men (mean +/- SE 24.9 +/- 4.7 yrs, 180.6 +/- 8.9 cm, 79.25 +/- 9.0 kg) participated in this randomized, double-blind, placebo-controlled pre/post test 2-treatment experimental design. Subjects participated in two incremental treadmill tests before and after 28 days of supplementation with either betaA (6.0 g.d-1)(betaA, n = 8) or an equivalent dose of Maltodextrin as the Placebo (PL, n = 9). Heart rate, percent heart rate maximum (%HRmax), %VO2max@OBLA (4.0 mmol.L-1 blood lactate concentration) and VO2max (L.min-1) were determined for each treadmill test. Friedman test was used to determine within group differences; and Mann-Whitney was used to determine between group differences for pre and post values (p < 0.05). The betaA group experienced a significant rightward shift in HR@OBLA beats.min-1 (p < 0.01) pre/post (161.6 +/- 19.2 to 173.6 +/- 9.9) but remained unchanged in the PL group (166.8 +/- 15.8 to 169.6 +/- 16.1). The %HRmax@OBLA increased (p < 0.05) pre/post in the betaA group (83.0% +/- 9.7 to 88.6% +/- 3.7) versus no change in the PL group (86.3 +/- % 4.8 to 87.9% +/- 7.2). The %VO2max@OBLA increased (p < 0.05) in the betaA group pre/post (69.1 +/- 11.0 to 75.6 +/- 10.7) but remained unchanged in the PL group (73.3 +/- 7.3 to 74.3 +/- 7.3). VO2max (L.min-1) decreased (p < 0.01) in the betaA group pre/post (4.57 +/- 0.8 to 4.31 +/- 0.8) versus no change in the PL group (4.04 +/- 0.7 to 4.18 +/- 0.8). Body mass kg increased (p < 0.05) in the betaA group pre/post (77.9 +/- 9.0 to 78.3 +/- 9.3) while the PL group was unchanged (80.6 +/- 9.1 to 80.4 +/- 9.0). betaA supplementation for 28 days enhanced sub-maximal endurance performance by delaying OBLA. However, betaA supplemented individuals had a

  4. Generation of quinoneimine intermediates in the bioactivation of 3-(N-phenylamino)alanine (PAA) by human liver microsomes: a potential link between eosinophilia-myalgia syndrome and toxic oil syndrome.

    PubMed

    Martínez-Cabot, Anna; Messeguer, Angel

    2007-10-01

    Eosinophilia-myalgia syndrome (EMS) was an intoxication episode that occurred in the US in 1989 and affected 1,500 people. EMS was associated with the ingestion of manufactured L-tryptophan, and 3-(N-phenylamino)alanine (PAA) was identified as one of the contaminants present in the L-tryptophan batches responsible for intoxication. In previous studies (Martínez-Cabot et al., Chem Res. Toxicol., in press), we have shown that the incubation of 3-(N-phenylamino)propane-1,2-diol (PAP), a toxic biomarker of the oil batches that caused Toxic Oil Syndrome in Spain, with human liver microsomes generates a reactive quinoneimine intermediate. The structural similarity between PAA and PAP led Mayeno and co-workers (Mayeno et al. (1995) Chem. Res. Toxicol. 8, 911-916) to hypothesize that both xenobiotics could be linked to a common etiologic agent. We thus set about to study the bioactivation of PAA by human liver microsomes. Under these conditions, PAA is converted to its 4'-hydroxy derivative, an unstable intermediate that is rapidly transformed into the final metabolites 4-aminophenol and formylglycine, which were identified in the incubations by GC/MS using the H2(18)O-labeled medium. We also provide evidence that 4-aminophenol and formylglycine are formed from a quinoneimine intermediate via a pathway similar to that demonstrated for PAP bioactivation. This quinoneimine, in the absence of nucleophiles in the incubation medium, could isomerize to give the corresponding imine, which could undergo hydrolysis to yield the aforementioned final products. These findings establish that EMS and TOS are linked by a common toxic metabolite (4-aminophenol) and that they may be further linked by the concomitant release of potentially hazardous carbonyl species.

  5. Potential grape-derived contributions to volatile ester concentrations in wine.

    PubMed

    Boss, Paul K; Pearce, Anthony D; Zhao, Yanjia; Nicholson, Emily L; Dennis, Eric G; Jeffery, David W

    2015-04-29

    Grape composition affects wine flavour and aroma not only through varietal compounds, but also by influencing the production of volatile compounds by yeast. C9 and C12 compounds that potentially influence ethyl ester synthesis during fermentation were studied using a model grape juice medium. It was shown that the addition of free fatty acids, their methyl esters or acyl-carnitine and acyl-amino acid conjugates can increase ethyl ester production in fermentations. The stimulation of ethyl ester production above that of the control was apparent when lower concentrations of the C9 compounds were added to the model musts compared to the C12 compounds. Four amino acids, which are involved in CoA biosynthesis, were also added to model grape juice medium in the absence of pantothenate to test their ability to influence ethyl and acetate ester production. β-Alanine was the only one shown to increase the production of ethyl esters, free fatty acids and acetate esters. The addition of 1 mg∙L(-1) β-alanine was enough to stimulate production of these compounds and addition of up to 100 mg∙L(-1) β-alanine had no greater effect. The endogenous concentrations of β-alanine in fifty Cabernet Sauvignon grape samples exceeded the 1 mg∙L(-1) required for the stimulatory effect on ethyl and acetate ester production observed in this study.

  6. Characterization, Genome Sequence, and Analysis of Escherichia Phage CICC 80001, a Bacteriophage Infecting an Efficient L-Aspartic Acid Producing Escherichia coli.

    PubMed

    Xu, Youqiang; Ma, Yuyue; Yao, Su; Jiang, Zengyan; Pei, Jiangsen; Cheng, Chi

    2016-03-01

    Escherichia phage CICC 80001 was isolated from the bacteriophage contaminated medium of an Escherichia coli strain HY-05C (CICC 11022S) which could produce L-aspartic acid. The phage had a head diameter of 45-50 nm and a tail of about 10 nm. The one-step growth curve showed a latent period of 10 min and a rise period of about 20 min. The average burst size was about 198 phage particles per infected cell. Tests were conducted on the plaques, multiplicity of infection, and host range. The genome of CICC 80001 was sequenced with a length of 38,810 bp, and annotated. The key proteins leading to host-cell lysis were phylogenetically analyzed. One protein belonged to class II holin, and the other two belonged to the endopeptidase family and N-acetylmuramoyl-L-alanine amidase family, respectively. The genome showed the sequence identity of 82.7% with that of Enterobacteria phage T7, and carried ten unique open reading frames. The bacteriophage resistant E. coli strain designated CICC 11021S was breeding and its L-aspartase activity was 84.4% of that of CICC 11022S.

  7. Preparation of alanine and tyrosine functionalized graphene oxide nanoflakes and their modified carbon paste electrodes for the determination of dopamine

    NASA Astrophysics Data System (ADS)

    Kumar, Mohan; Swamy, B. E. Kumara; Asif, M. H. Mohammed; Viswanath, C. C.

    2017-03-01

    Herein, established the synthesis of graphene oxide (GO) by Hummers Method with addition of KMnO4 followed by thermal heating at 80 °C. The obtained GO was further functionalized by alanine and tyrosine. The prepared GO, alanine functionalized GO nanoflakes (AGONF) and tyrosine functionalized GO nanoflakes (TGONF) were characterized by spectroscopic technique using energy-dispersive spectroscopy (EDS), quantitatively by scanning electron microscopy (SEM) and structural studies along with interlayer distance verified through X-ray diffraction technique. Afterwards, the prepared AGONF and TGONF were used as the modifier for the carbon paste electrode (CPE). The electrochemical behavior of the AGONF and TGONF modified carbon paste electrodes (MCPEs) towards dopamine (DA) in phosphate buffer solution (PBS) were examined by cyclic voltammetric (CV) technique and the obtained consequences showed good electrocatalytic activity of MCPEs by increasing the redox peak current with a lower potential difference compared to the bare CPE (BCPE). The AGONF and TGONF MCPEs were further used for the optimization studies. From the pH studies, it was found that the equal number of proton and electron transfer reaction involved in both the modified electrodes. The scan rate studies demonstrate the adsorption controlled electrode process at AGONF MCPE and diffusion controlled at TGONF MCPE. The oxidation peak current increased linearly with two concentration interval of DA at a range of 2-7 μM and 10-30 μM in presence of PBS (pH 7.4) at MCPEs and the limit of detection (LOD) were found to be 0.84 μM and 0.96 μM for first interval DA concentration range (2-7 μM) at AGONF and TGONF MCPE. The stability, repeatability and reproducibility of functionalized GO nanoflakes MCPEs at DA were studied and established excellent characteristics. The newly developed functionalized GO nanoflake electrodes were successfully tested in DA injection sample. Furthermore the functionalized GO and

  8. Effects of elevated temperatures during interruption of irradiation on Harwell Red 4034 PMMA and Kodak Biomax alanine film dosimetry systems

    NASA Astrophysics Data System (ADS)

    Sidereas, P.; Patil, D. S.; Garcia, R.; Tracy, R. P.; Holzman, J. M.

    2007-11-01

    In the industrial setting it is not uncommon for a process interruption to occur during irradiation. In this event, dosimeters may be exposed to prolonged periods of elevated temperature without exposure to ionizing radiation. Once the process is restarted, the same dosimeters are exposed to ionizing radiation in order to achieve target dose. The goal of this experiment was to simulate a process interruption within limits and quantify the effects of a combination of factors (heat, time, and fractionation) on dosimeter response. We present an in-depth experimental study on the response of dosimeters that have been irradiated, stored for a fixed period of time at several temperatures, and then re-irradiated. This study was performed using Harwell Red 4034 polymethylmethacrylate (PMMA) and Kodak BioMax alanine film dosimeters.

  9. Protection against Fasciola gigantica infection in mice by vaccination with recombinant juvenile-specific cathepsin L.

    PubMed

    Sansri, Veerawat; Meemon, Krai; Changklungmoa, Narin; Kueakhai, Pornanan; Chantree, Pathanin; Chaichanasak, Pannigan; Lorsuwannarat, Natcha; Itagaki, Tadashi; Sobhon, Prasert

    2015-03-24

    Fasciola gigantica cathepsin L1H (FgCatL1H) is one of the major cathepsin L released by juveniles of F. gigantica to aid in the invasion of host's tissues. Due to its high sequence similarity with other cathepsin L (CatL) isoforms of late stage F. gigantica, it was considered to be a good vaccine candidate that can block all CatL-mediated protease activities and affect juveniles as well as adult parasites. In this study, recombinant proFgCatL1H protein expressed in yeast, Pichia pastoris, system was mixed with Freund's adjuvants and used to subcutaneously immunize mice that were later challenged with metacercariae of F. gigantica. The percentage of worm protection in the rproFgCatL1H-vaccinated mice compared to the non-immunized and adjuvant control mice were approximately 62.7% and 66.1%, respectively. Anti-rproFgCatL1H antisera collected from vaccinated mice reacted specifically with rproFgCatL1H and other cathepsin L isoforms of F. gigantica, but the antibodies did not cross react with antigens from other trematode and nematode parasites, including Eurytrema pancreaticum, Opisthorchis viverrini, Fischoederius cobboldi, Cotylophoron cotylophorum, Gigantocotyle explanatum, Paramphistomum cervi, and Setaria labiato-papillosa. The levels of IgG1 and IgG2a in mouse sera increased significantly at two weeks after immunization and were highest during the sixth to eighth weeks after immunization. The IgG1 level was higher than IgG2a at all periods of immunization, implicating the dominance of the Th2 response. The levels of IgG1 and IgG2a in the immune sera were shown to be strongly correlated with the numbers of worm recovery, and the correlation coefficient was higher for IgG1. The levels of serum aspartate aminotransferase and alanine transaminase were significantly lower in the sera of rproFgCatL1H-vaccinated mice than in the infected control mice indicating a lower degree of liver damage. This study demonstrated a high potential of FgCatL1H vaccine, and its

  10. Combination of aerobic exercise and an arginine, alanine, and phenylalanine mixture increases fat mobilization and ketone body synthesis.

    PubMed

    Ueda, Keisuke; Sanbongi, Chiaki; Takai, Shoko; Ikegami, Shuji; Fujita, Satoshi

    2017-07-01

    During exercise, blood levels of several hormones increase acutely. We hypothesized that consumption of a specific combination of amino acids (arginine, alanine, and phenylalanine; A-mix) may be involved in secretion of glucagon, and when combined with exercise may promote fat catabolism. Ten healthy male volunteers were randomized in a crossover study to ingest either A-mix (3 g/dose) or placebo (3 g of dextrin/dose). Thirty minutes after ingesting, each condition subsequently performed workload trials on a cycle ergometer at 50% of maximal oxygen consumption for 1 h. After oral intake of A-mix, the concentrations of plasma ketone bodies and adrenalin during and post-exercise were significantly increased. The area under the curve for glycerol and glucagon was significantly increased in the post-exercise by A-mix administration. These results suggest that pre-exercise ingestion of A-mix causes a shift of energy source from carbohydrate to fat combustion by increasing secretion of adrenalin and glucagon.

  11. Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 60 S ribosomal subunit proteins L4, L5, L7, L9, L11, L12, L13, L21, L22, L23, L26, L27, L30, L33, L35', L37, and L39.

    PubMed

    Tsurugi, K; Collatz, E; Wool, E G; Lin, A

    1976-12-25

    The proteins of the large subunit of rat liver ribosomes were separated into seven groups by stepwise elution from carboxymethylcellulose with LiCl at pH 6.5. Seventeen proteins (L4, L5, L7, L9, L11, L12, L13, L21, L22, L23, L26, L27, L30, L33, L35', L37, and L39) were isolated from three of the groups (B60, D60, G60) by ion exchange chromatography on carboxymethylcellulose and by filtration through Sephadex. The amount of protein obtained varied from 0.5 to 15 mg. Eight of the proteins (L9, L11, L13, L21, L22, L35', L37 and L39) had no detectable contamination; the impurities in the others were no greater than 9%. The molecular weight of the proteins was estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the amino acid composition was determined.

  12. Allele-specific Characterization of Alanine: Glyoxylate Aminotransferase Variants Associated with Primary Hyperoxaluria

    PubMed Central

    Lage, Melissa D.; Pittman, Adrianne M. C.; Roncador, Alessandro; Cellini, Barbara; Tucker, Chandra L.

    2014-01-01

    Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele. PMID:24718375

  13. Synthesis and cytotoxicity of azo nano-materials as new biosensors for L-Arginine determination.

    PubMed

    Shang, Xuefang; Luo, Leiming; Ren, Kui; Wei, Xiaofang; Feng, Yaqian; Li, Xin; Xu, Xiufang

    2015-06-01

    Inspired from biological counterparts, chemical modification of azo derivatives with function groups may provide a highly efficient method to detect amino acid. Herein, we have designed and prepared a series of azo nano-materials involving -NO2, -COOH, -SO3H and naphthyl group, which showed high response for Arginine (Arg) among normal twenty kinds of (Alanine, Valine, Leucine, Isoleucine, Methionine, Aspartic acid, Glutamic acid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, nano-material 3 exhibited high binding ability for Arg and low cytotoxicity to KYSE450 cells over a concentration range of 5-50μmol·L(-1) which may be used a biosensor for the Arg detection in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. L-Sulforaphane confers protection against oxidative stress in an in vitro model of age-related macular degeneration.

    PubMed

    Dulull, Nabeela Khadija; Dias, Daniel Anthony; Thrimawithana, Thilini Rasika; Kwa, Faith Ai Ai

    2018-01-25

    In age-related macular degeneration, oxidative damage and abnormal neovascularization in the retina are caused by the upregulation of vascular endothelium growth factor and reduced expression of Glutathione-S-transferase genes. Current treatments are only palliative. Compounds from cruciferous vegetables (e.g. L-Sulforaphane) have been found to restore normal gene expression levels in diseases including cancer via the activity of histone deacetylases and DNA methyltransferases, thus retarding disease progression. To examine L-Sulforaphane as a potential treatment to ameliorate aberrant levels of gene expression and metabolites observed in age-related macular degeneration. The in vitro oxidative stress model of AMD was based on the exposure of Adult Retinal Pigment Epithelium-19 cell line to 200µM hydrogen peroxide. The effects of L-Sulforaphane on cell proliferation were determined by MTS assay. The role of GSTM1, VEGFA, DNMT1 and HDAC6 genes in modulating these effects were investigated using quantitative real-time polymerase chain reaction. The metabolic profiling of L-Sulforaphane-treated cells via gas-chromatography mass-spectrometry was established. Significant differences between control and treatment groups were validated using one-way ANOVA, student t test and post-hoc Bonferroni statistical tests (p<0.05). L-Sulforaphane induced a dose-dependent increase in cell cell proliferation in the presence of hydrogen peroxide by upregulating Glutathione-S-Transferase µ1 gene expression. Metabolic profiling revealed that L-Sulforaphane increased levels of 2-monopalmitoglycerol, 9, 12, 15,-(Z-Z-Z)-Octodecatrienoic acid, 2-[Bis(trimethylsilyl)amino]ethyl bis(trimethylsilyl)-phosphate and nonanoic acid but decreased β-alanine levels in the absence or presence of hydrogen peroxide, respectively. This study supports the use of L-Sulforaphane to promote regeneration of retinal cells under oxidative stress conditions. Copyright© Bentham Science Publishers; For any

  15. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of total protein (expressed as free amino acid) L-Alanine 6.1 L-Arginine 6.6 L-Aspartic acid... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6 L... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Amino acids. 172.320 Section 172.320 Food and...

  16. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of total protein (expressed as free amino acid) L-Alanine 6.1 L-Arginine 6.6 L-Aspartic acid... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6 L... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Amino acids. 172.320 Section 172.320 Food and...

  17. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of total protein (expressed as free amino acid) L-Alanine 6.1 L-Arginine 6.6 L-Aspartic acid... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6 L... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Amino acids. 172.320 Section 172.320 Food and...

  18. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of total protein (expressed as free amino acid) L-Alanine 6.1 L-Arginine 6.6 L-Aspartic acid... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6 L... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Amino acids. 172.320 Section 172.320 Food and Drugs...

  19. Efficient Enzymatic Preparation of (13) N-Labelled Amino Acids: Towards Multipurpose Synthetic Systems.

    PubMed

    da Silva, Eunice S; Gómez-Vallejo, Vanessa; Baz, Zuriñe; Llop, Jordi; López-Gallego, Fernando

    2016-09-12

    Nitrogen-13 can be efficiently produced in biomedical cyclotrons in different chemical forms, and its stable isotopes are present in the majority of biologically active molecules. Hence, it may constitute a convenient alternative to Fluorine-18 and Carbon-11 for the preparation of positron-emitter-labelled radiotracers; however, its short half-life demands for the development of simple, fast, and efficient synthetic processes. Herein, we report the one-pot, enzymatic and non-carrier-added synthesis of the (13) N-labelled amino acids l-[(13) N]alanine, [(13) N]glycine, and l-[(13) N]serine by using l-alanine dehydrogenase from Bacillus subtilis, an enzyme that catalyses the reductive amination of α-keto acids by using nicotinamide adenine dinucleotide (NADH) as the redox cofactor and ammonia as the amine source. The integration of both l-alanine dehydrogenase and formate dehydrogenase from Candida boidinii in the same reaction vessel to facilitate the in situ regeneration of NADH during the radiochemical synthesis of the amino acids allowed a 50-fold decrease in the concentration of the cofactor without compromising reaction yields. After optimization of the experimental conditions, radiochemical yields were sufficient to carry out in vivo imaging studies in small rodents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Echinococcus granulosus: specificity of amino acid transport systems in protoscoleces.

    PubMed

    Jeffs, S A; Arme, C

    1987-08-01

    Protoscoleces of Echinococcus granulosus absorb the L-amino acids proline, methionine, leucine, alanine, serine, phenylalanine, lysine and glutamic acid by a combination of mediated transport and diffusion. All eight amino acids were accumulated against a concentration gradient. Comparison of Kt and Vmax values suggests that a low affinity for a particular compound is compensated for by a relatively larger number of transport sites for that compound. Four systems serve for the transport of the eight substrates studied: 2 for neutral (EgN1, EgN2) and 1 each for acidic (EgA) and basic (EgB) amino acids. All eight amino acids are incorporated into protein to varying degrees and substantial portions of absorbed L-alanine and L-methionine are metabolized into other compounds.