Sample records for l-alanyl-glutamine preoperative infusion

  1. Double-blinded, placebo-controlled trial on intravenous L-alanyl-L-glutamine in the incidence of oral mucositis following chemoradiotherapy in patients with head-and-neck cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerchietti, Leandro C.A.; Navigante, Alfredo H.; Internal Medicine Department, Instituto de Oncologia Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires

    2006-08-01

    Purpose: We performed this double-blinded, placebo-controlled study to determine the safety and efficacy of L-alanyl-L-glutamine in the prevention of mucositis in patients with head-and-neck cancer. Methods and Materials: Thirty-two patients with head-and-neck cancer were treated with chemoradiotherapy (CRT) (radiotherapy daily up to 70 Gy plus cisplatin/5-fluoruracil once a week) and were asked to participate. Twenty-nine patients received the CRT schedule and were double-blindly assigned to receive either intravenous L-alanyl-L-glutamine 0.4 g/kg weight/day or an equal volume of saline (placebo) during chemotherapy days. Results: Fourteen patients received L-alanyl-L-glutamine and 15 received placebo. Mucositis was assessed by the Objective Mucositis Score (OMS)more » and the World Health Organization (WHO) grading system. There was a significant difference in incidence of mucositis developed in patients receiving placebo compared with those who received L-alanyl-L-glutamine (p = 0.035). The number of patients with severe objective mucositis (OMS >1.49) was higher in the placebo group compared with the L-alanyl-L-glutamine group (67% vs. 14%, p 0.007). L-alanyl-L-glutamine patients experienced less pain (three highest Numeric Rating Scale scores of 1.3/10 vs. 6.3/10 respectively, p = 0.008) and need for feeding tubes (14% vs. 60% respectively, p = 0.020) compared with placebo patients. No adverse effects related to the drug or the infusions were noted in either group. Conclusion: For patients with head-and-neck cancer receiving CRT, intravenous L-alanyl-L-glutamine may be an effective preventive measure to decrease the severity of mucositis.« less

  2. The Effect of Cisplatin on Blood Ammonia Elevation by Alanyl-Glutamine Supplementation.

    PubMed

    Obayashi, Yoko; Kajiwara, Kenta; Nakamura, Eiji

    2018-01-01

    Although there are many clinical studies in which the beneficial effect of glutamine formulation on mucositis induced by chemo/radiotherapy was evaluated, the results are sometimes conflicting with the report of clinical deterioration. Then, we hypothesized that chemotherapy may increase the incidence of hyperammonemia without comparable change of major parameters of hepatic/renal disorder. To verify our hypothesis, we examined the increase in blood ammonia level with 1-h intravenous infusion of alanyl-glutamine on day 1-4 after cisplatin (CDDP) administration in rats and assessed the correlation with hepatic/renal parameters. Hepatic parameters (glutamate-oxaloacetic transaminase [GOT] and glutamic-pyruvic transaminase [GPT]) with CDDP did not change until day 3 and only GOT increased on day 4. Renal parameters (plasma creatinine, blood urea nitrogen) with CDDP continuously increased up to day 4. Alanyl-glutamine infusion significantly elevated blood ammonia level of CDDP rats with the peak on day 3, although the same dose did not change that of control rats. These results indicates that CDDP enhances the increase in blood ammonia level by glutamine supplementation without correlating with primary parameters for hepatic/renal dysfunction. © 2018 S. Karger AG, Basel.

  3. Enzymatic production of L-alanyl-L-glutamine by recombinant E. coli expressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis.

    PubMed

    Hirao, Yoshinori; Mihara, Yasuhiro; Kira, Ikuo; Abe, Isao; Yokozeki, Kenzo

    2013-01-01

    An enzymatic production method for synthesizing L-alanyl-L-glutamine (Ala-Gln) from L-alanine methyl ester hydrochloride (AlaOMe) and L-glutamine (Gln) was developed in this study. The cultivation conditions for an Escherichia coli strain overexpressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis AJ 2458 (SAET) and reaction conditions for Ala-Gln production were optimized. A high cell density culture broth prepared by fed-batch cultivation showed 440 units/mL of Ala-Gln-producing activity. In addition, an Ala-Gln-producing reaction using intact E. coli cells overexpressing SAET under optimum conditions was conducted. A total Ala-Gln yield of 69.7 g/L was produced in 40 min. The molar yield was 67% against both AlaOMe and Gln.

  4. Alanyl-glutamine dipeptide-supplemented parenteral nutrition improves intestinal metabolism and prevents increased permeability in rats.

    PubMed Central

    Haque, S M; Chen, K; Usui, N; Iiboshi, Y; Okuyama, H; Masunari, A; Cui, L; Nezu, R; Takagi, Y; Okada, A

    1996-01-01

    OBJECTIVE: The authors determined the effects of alanyl-glutamine-supplemented total parenteral nutrition (TPN) on mucosal metabolism, integrity, and permeability of the small intestine in rats. METHODS: Male Sprague-Dawley rats were randomized to receive TPN supplemented with a conventional amino acids mixture (STD group) or the same solution supplemented with alanyl-glutamine; both solutions were isocaloric and isonitrogenous. On the seventh day of TPN, D-xylose and fluorescein isothiocyanate (FITC)-dextran were administered orally. One hour later, superior mesenteric vein (SMV) D-xylose and plasma FITC-dextran concentration were measured. Intestinal blood flow and calculated intestinal substrates flux were measured with ultrasonic transit time flowmetery. RESULTS: Plasma FITC-dextran increased significantly in the STD group. Intestinal blood flow and SMV D-xylose concentration did not differ between the groups. Mucosa weight, villus height, mucosal wall thickness, mucosal protein, and DNA and RNA content in jejunal mucosa were significantly increased in the alanyl-glutamine group. Jejunal mucosal glutaminase activity and net intestinal uptake of glutamine (glutamine flux) were significantly higher in the alanyl-glutamine group as compared with the STD group. CONCLUSION: Addition of alanyl-glutamine dipeptide to the TPN solution improves intestinal glutamine metabolism and prevents mucosal atrophy and deterioration of permeability. PMID:8604914

  5. Endogenous glutamine production in critically ill patients: the effect of exogenous glutamine supplementation

    PubMed Central

    2014-01-01

    Introduction Glutamine rate of appearance (Ra) may be used as an estimate of endogenous glutamine production. Recently a technique employing a bolus injection of isotopically labeled glutamine was introduced, with the potential to allow for multiple assessments of the glutamine Ra over time in critically ill patients, who may not be as metabolically stable as healthy individuals. Here the technique was used to evaluate the endogenous glutamine production in critically ill patients in the fed state with and without exogenous glutamine supplementation intravenously. Methods Mechanically ventilated patients (n = 11) in the intensive care unit (ICU) were studied on two consecutive days during continuous parenteral feeding. To allow the patients to be used as their own controls, they were randomized for the reference measurement during basal feeding without supplementation, before or after the supplementation period. Glutamine Ra was determined by a bolus injection of 13C-glutamine followed by a period of frequent sampling to establish the decay-curve for the glutamine tracer. Exogenous glutamine supplementation was given by intravenous infusion of a glutamine containing dipeptide, L-alanyl-L-glutamine, 0.28 g/kg during 20 hours. Results A 14% increase of endogenous glutamine Ra was seen at the end of the intravenous supplementation period as compared to the basal measurements (P = 0.009). Conclusions The bolus injection technique to measure glutamine Ra to estimate the endogenous production of glutamine in critically ill patients was demonstrated to be useful for repetitive measurements. The hypothesized attenuation of endogenous glutamine production during L-alanyl-L-glutamine infusion given as a part of full nutrition was not seen. PMID:24731231

  6. Oral supplementations with L-glutamine or L-alanyl-L-glutamine do not change metabolic alterations induced by long-term high-fat diet in the B6.129F2/J mouse model of insulin resistance.

    PubMed

    Bock, Patricia Martins; Krause, Mauricio; Schroeder, Helena Trevisan; Hahn, Gabriela Fernandes; Takahashi, Hilton Kenji; Schöler, Cinthia Maria; Nicoletti, Graziella; Neto, Luiz Domingos Zavarize; Rodrigues, Maria Inês Lavina; Bruxel, Maciel Alencar; Homem de Bittencourt, Paulo Ivo

    2016-01-01

    In this work, we aimed to investigate the effects of long-term supplementations with L-glutamine or L-alanyl-L-glutamine in the high-fat diet (HFD)-fed B6.129SF2/J mouse model over insulin sensitivity response and signaling, oxidative stress markers, metabolism and HSP70 expression. Mice were fed in a standard low-fat diet (STA) or a HFD for 20 weeks. In the 21th week, mice from the HFD group were allocated in five groups and supplemented for additional 8 weeks with different amino acids: HFD control group (HFD-Con), HFD + dipeptide L-alanyl-L-glutamine group (HFD-Dip), HFD + L-alanine group (HFD-Ala), HFD + L-glutamine group (HFD-Gln), or the HFD + L-alanine + L-glutamine (in their free forms) group (HFD-Ala + Gln). HFD induced higher body weight, fat pad, fasted glucose, and total cholesterol in comparison with STA group. Amino acid supplementations did not induce any modifications in these parameters. Although insulin tolerance tests indicated insulin resistance in all HFD groups, amino acid supplementations did not improve insulin sensitivity in the present model. There were also no significant differences in the immunocontents of insulin receptor, Akt, and Toll-like receptor-4. Notably, total 70 kDa heat shock protein (HSP72 + HSP73) contents in the liver was markedly increased in HFD-Con group as compared to STA group, which might suggest that insulin resistance is only in the beginning. Apparently, B6.129SF2/J mice are more resistant to the harmful effects of HFD through a mechanism that may include gut adaptation, reducing the absorption of nutrients, including amino acids, which may explain the lack of improvements in our intervention.

  7. Design of composite microparticle systems based on pectin and waste material of propolis for modified l-alanyl-l-glutamine release and with immunostimulant activity.

    PubMed

    Villa Nova, Mônica; Ratti, Bianca A; Herculano, Leandro S; Bittencourt, Paulo R S; Novello, Cláudio R; Bazotte, Roberto Barbosa; Lautenschlager, Sueli de Oliveira Silva; Bruschi, Marcos Luciano

    2017-12-12

    Catabolic conditions like acquired immunodeficiency syndrome, cancer, and burn can cause immunosuppression. Amino acids such as alanine and glutamine are essential for the activity of the immune system. Propolis is immunostimulant and the waste of propolis extraction has been reused with technological and therapeutic purposes. Therefore, this study describes the association of propolis byproduct extract (BPE) with pectin to prepare spray-dried microparticles containing the dipeptide l-alanyl-l-glutamine as stimulant systems of neutrophils. The use of a factorial design allowed selecting the best formulation, which was characterized by morphology, size, and entrapment efficiency analyses. In addition, the systems were characterized by thermal and X-ray diffraction analysis, Fourier-transform infrared spectroscopy, in vitro drug release, and in vitro cytotoxicity and stimulation test of neutrophils. Small well-structured microparticles with good entrapment efficiency values were achieved. Thermal stability of formulation was observed, and it was proved that pectin, BPE and l-alanyl-l-glutamine were dispersed throughout the matrix. The drug was released from the microparticles during 24 h governed by swelling and diffusion. The drug-loaded formulations showed a significant stimulating effect on neutrophils. These structures could increase the activity of immune cells, and other in vitro and in vivo studies should be performed in the future.

  8. Supplementation of l-Alanyl-l-Glutamine and Fish Oil Improves Body Composition and Quality of Life in Patients With Chronic Heart Failure.

    PubMed

    Wu, Christina; Kato, Tomoko S; Ji, Ruiping; Zizola, Cynthia; Brunjes, Danielle L; Deng, Yue; Akashi, Hirokazu; Armstrong, Hilary F; Kennel, Peter J; Thomas, Tiffany; Forman, Daniel E; Hall, Jennifer; Chokshi, Aalap; Bartels, Matthew N; Mancini, Donna; Seres, David; Schulze, P Christian

    2015-11-01

    Skeletal muscle dysfunction and exercise intolerance are clinical hallmarks of patients with heart failure. These have been linked to a progressive catabolic state, skeletal muscle inflammation, and impaired oxidative metabolism. Previous studies suggest beneficial effects of ω-3 polyunsaturated fatty acids and glutamine on exercise performance and muscle protein balance. In a randomized double-blind, placebo-controlled trial, 31 patients with heart failure were randomized to either l-alanyl-l-glutamine (8 g/d) and polyunsaturated fatty acid (6.5 g/d) or placebo (safflower oil and milk powder) for 3 months. Cardiopulmonary exercise testing, dual-energy x-ray absorptiometry, 6-minute walk test, hand grip strength, functional muscle testing, echocardiography, and quality of life and lateral quadriceps muscle biopsy were performed at baseline and at follow-up. Oxidative capacity and metabolic gene expression were analyzed on muscle biopsies. No differences in muscle function, echocardiography, 6-minute walk test, or hand grip strength and a nonsignificant increase in peak VO2 in the treatment group were found. Lean body mass increased and quality of life improved in the active treatment group. Molecular analysis revealed no differences in muscle fiber composition, fiber cross-sectional area, gene expression of metabolic marker genes (PGC1α, CPT1, PDK4, and GLUT4), and skeletal muscle oxidative capacity. The combined supplementation of l-alanyl-l-glutamine and polyunsaturated fatty acid did not improve exercise performance or muscle function but increased lean body mass and quality of life in patients with chronic stable heart failure. These findings suggest potentially beneficial effects of high-dose nutritional polyunsaturated fatty acids and amino acid supplementations in patients with chronic stable heart failure. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01534663. © 2015 American Heart Association, Inc.

  9. Prolonged continuous intravenous infusion of the dipeptide L-alanine- L-glutamine significantly increases plasma glutamine and alanine without elevating brain glutamate in patients with severe traumatic brain injury

    PubMed Central

    2014-01-01

    Introduction Low plasma glutamine levels are associated with worse clinical outcome. Intravenous glutamine infusion dose- dependently increases plasma glutamine levels, thereby correcting hypoglutaminemia. Glutamine may be transformed to glutamate which might limit its application at a higher dose in patients with severe traumatic brain injury (TBI). To date, the optimal glutamine dose required to normalize plasma glutamine levels without increasing plasma and cerebral glutamate has not yet been defined. Methods Changes in plasma and cerebral glutamine, alanine, and glutamate as well as indirect signs of metabolic impairment reflected by increased intracranial pressure (ICP), lactate, lactate-to-pyruvate ratio, electroencephalogram (EEG) activity were determined before, during, and after continuous intravenous infusion of 0.75 g L-alanine-L-glutamine which was given either for 24 hours (group 1, n = 6) or 5 days (group 2, n = 6) in addition to regular enteral nutrition. Lab values including nitrogen balance, urea and ammonia were determined daily. Results Continuous L-alanine-L-glutamine infusion significantly increased plasma and cerebral glutamine as well as alanine levels, being mostly sustained during the 5 day infusion phase (plasma glutamine: from 295 ± 62 to 500 ± 145 μmol/ l; brain glutamine: from 183 ± 188 to 549 ± 120 μmol/ l; plasma alanine: from 327 ± 91 to 622 ± 182 μmol/ l; brain alanine: from 48 ± 55 to 89 ± 129 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test). Plasma glutamate remained unchanged and cerebral glutamate was decreased without any signs of cerebral impairment. Urea and ammonia were significantly increased within normal limits without signs of organ dysfunction (urea: from 2.7 ± 1.6 to 5.5 ± 1.5 mmol/ l; ammonia: from 12 ± 6.3 to 26 ± 8.3 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test). Conclusions High dose L-alanine-L-glutamine infusion (0

  10. Alanyl-glutamine and glutamine plus alanine supplements improve skeletal redox status in trained rats: involvement of heat shock protein pathways.

    PubMed

    Petry, Eder Ricardo; Cruzat, Vinicius Fernandes; Heck, Thiago Gomes; Leite, Jaqueline Santos Moreira; Homem de Bittencourt, Paulo Ivo; Tirapegui, Julio

    2014-01-17

    We hypothesized that oral l-glutamine supplementations could attenuate muscle damage and oxidative stress, mediated by glutathione (GSH) in high-intensity aerobic exercise by increasing the 70-kDa heat shock proteins (HSP70) and heat shock factor 1 (HSF1). Adult male Wistar rats were 8-week trained (60-min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were supplemented with either l-alanyl-l-glutamine dipeptide (1.5 g/kg, DIP) or a solution containing the amino acids l-glutamine (1g/kg) and l-alanine (0.67 g/kg) in their free form (GLN+ALA) or water (controls). Plasma from both DIP- and GLN+ALA-treated animals showed higher l-glutamine concentrations and reduced ammonium, malondialdehyde, myoglobin and creatine kinase activity. In the soleus and gastrocnemius muscle of both supplemented groups, l-glutamine and GSH contents were increased and GSH disulfide (GSSG) to GSH ratio was attenuated (p<0.001). In the soleus muscle, cytosolic and nuclear HSP70 and HSF1 were increased by DIP supplementation. GLN+ALA group exhibited higher HSP70 (only in the nucleus) and HSF1 (cytosol and nucleus). In the gastrocnemius muscle, both supplementations were able to increase cytosolic HSP70 and cytosolic and nuclear HSF1. In trained rats, oral supplementation with DIP or GLN+ALA solution increased the expression of muscle HSP70, favored muscle l-glutamine/GSH status and improved redox defenses, which attenuate markers of muscle damage, thus improving the beneficial effects of high-intensity exercise training. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Supplementation with L-Glutamine and L-Alanyl-L-Glutamine Changes Biochemical Parameters and Jejunum Morphophysiology in Type 1 Diabetic Wistar Rats

    PubMed Central

    da Rosa, Carlos Vinicius D.; Azevedo, Silvia C. S. F.; Bazotte, Roberto B.; Peralta, Rosane M.; Buttow, Nilza C.; Pedrosa, Maria Montserrat D.; de Godoi, Vilma A. F.; Natali, Maria Raquel M.

    2015-01-01

    We evaluated the effects of the supplementation with L-glutamine and glutamine dipeptide (GDP) on biochemical and morphophysiological parameters in streptozotocin-diabetic rats. For this purpose, thirty animals were distributed into six groups treated orally (gavage) during thirty days: non diabetic rats (Control) + saline, diabetic + saline; Control + L-glutamine (248 mg/kg), Diabetic + L-glutamine (248 mg/kg), Control + GDP (400 mg/kg), Diabetic + GDP (400 mg/kg). Diabetes was induced by an intravenous injection of streptozotocin (60 mg/kg) and confirmed by fasting glucose ≥ 200 mg/dL. Physiological parameters, i.e., body mass, food intake, blood glucose, water intake, urine and faeces were evaluated during supplementation. After the period of supplementation, the animals were euthanized. The blood was collected for biochemical assays (fructosamine, transaminases, lipid profile, total protein, urea, ammonia). Moreover, the jejunum was excised and stored for morphophysiological assays (intestinal enzyme activity, intestinal wall morphology, crypt proliferative index, number of serotoninergic cells from the mucosa, and vipergic neurons from the submucosal tunica). The physiological parameters, protein metabolism and intestinal enzyme activity did not change with the supplementation with L-glutamine or GDP. In diabetic animals, transaminases and fructosamine improved with L-glutamine and GDP supplementations, while the lipid profile improved with L-glutamine. Furthermore, both forms of supplementation promoted changes in jejunal tunicas and wall morphometry of control and diabetic groups, but only L-glutamine promoted maintenance of serotoninergic cells and vipergic neurons populations. On the other hand, control animals showed changes that may indicate negative effects of L-glutamine. Thus, the supplementation with L-glutamine was more efficient for maintaining intestinal morphophysiology and the supplementation with GDP was more efficient to the organism as a

  12. Supplementation with L-Glutamine and L-Alanyl-L-Glutamine Changes Biochemical Parameters and Jejunum Morphophysiology in Type 1 Diabetic Wistar Rats.

    PubMed

    da Rosa, Carlos Vinicius D; Azevedo, Silvia C S F; Bazotte, Roberto B; Peralta, Rosane M; Buttow, Nilza C; Pedrosa, Maria Montserrat D; de Godoi, Vilma A F; Natali, Maria Raquel M

    2015-01-01

    We evaluated the effects of the supplementation with L-glutamine and glutamine dipeptide (GDP) on biochemical and morphophysiological parameters in streptozotocin-diabetic rats. For this purpose, thirty animals were distributed into six groups treated orally (gavage) during thirty days: non diabetic rats (Control) + saline, diabetic + saline; Control + L-glutamine (248 mg/kg), Diabetic + L-glutamine (248 mg/kg), Control + GDP (400 mg/kg), Diabetic + GDP (400 mg/kg). Diabetes was induced by an intravenous injection of streptozotocin (60 mg/kg) and confirmed by fasting glucose ≥ 200 mg/dL. Physiological parameters, i.e., body mass, food intake, blood glucose, water intake, urine and faeces were evaluated during supplementation. After the period of supplementation, the animals were euthanized. The blood was collected for biochemical assays (fructosamine, transaminases, lipid profile, total protein, urea, ammonia). Moreover, the jejunum was excised and stored for morphophysiological assays (intestinal enzyme activity, intestinal wall morphology, crypt proliferative index, number of serotoninergic cells from the mucosa, and vipergic neurons from the submucosal tunica). The physiological parameters, protein metabolism and intestinal enzyme activity did not change with the supplementation with L-glutamine or GDP. In diabetic animals, transaminases and fructosamine improved with L-glutamine and GDP supplementations, while the lipid profile improved with L-glutamine. Furthermore, both forms of supplementation promoted changes in jejunal tunicas and wall morphometry of control and diabetic groups, but only L-glutamine promoted maintenance of serotoninergic cells and vipergic neurons populations. On the other hand, control animals showed changes that may indicate negative effects of L-glutamine. Thus, the supplementation with L-glutamine was more efficient for maintaining intestinal morphophysiology and the supplementation with GDP was more efficient to the organism as a

  13. L-alanyl-L-glutamine ingestion maintains performance during a competitive basketball game.

    PubMed

    Hoffman, Jay R; Williams, David R; Emerson, Nadia S; Hoffman, Mattan W; Wells, Adam J; McVeigh, Daniele M; McCormack, William P; Mangine, Gerald T; Gonzalez, Adam M; Fragala, Maren S

    2012-03-07

    The purpose of this study was to examine the efficacy of L-alanyl-L-glutamine (AG) ingestion on basketball performance, including jump power, reaction time, shooting accuracy and fatigue. Ten women (21.2 ± 1.6 years; height: 177.8 ± 8.7 cm; body mass: 73.5 ± 8.0 kg), all scholarship NCAA Division I basketball players, volunteered for this study. Subjects participated in four trials, each consisting of a 40-min basketball game with controlled time-outs for rehydration. During the first trial (DHY) subjects were not allowed to rehydrate, and the total weight lost during the contest was used to determine fluid replenishment during the subsequent three trials. During one trial subjects consumed only water (W), while during the other two trials subjects consumed the AG supplement mixed in water using either a low dose (1 g per 500 ml) (AG1) or high dose (2 g per 500 ml) (AG2) concentration. All data assessed prior to and following each game were converted into a Δ score (Post results - Pre results). All performance data were then analyzed using a one-way repeated measures analysis of variance. During DHY subjects lost 1.72 ± 0.42 kg (2.3%) of their body mass. No differences in fluid intake (1.55 ± 0.43 L) were seen between rehydration trials. A 12.5% (p = 0.016) difference in basketball shooting performance was noted between DHY and AG1 and an 11.1% (p = 0.029) difference was seen between AG1 and W. Visual reaction time was significantly greater following AG1 (p = 0.014) compared to DHY. Differences (p = 0.045) in fatigue, as determined by player loads, were seen only between AG2 and DHY. No differences were seen in peak or mean vertical jump power during any trial. Rehydration with AG appears to maintain basketball skill performance and visual reaction time to a greater extent than water only.

  14. Perioperative Alanyl-Glutamine-Supplemented Parenteral Nutrition in Chronic Radiation Enteritis Patients With Surgical Intestinal Obstruction: A Prospective, Randomized, Controlled Study.

    PubMed

    Yao, Danhua; Zheng, Lei; Wang, Jian; Guo, Mingxiao; Yin, Jianyi; Li, Yousheng

    2016-04-01

    A prospective, randomized, controlled study was performed to evaluate the effects of perioperative alanyl-glutamine-supplemented parenteral nutrition (PN) support on the immunologic function, intestinal permeability, and nutrition status of surgical patients with chronic radiation enteritis (CRE)-induced intestinal obstruction. Patients who received 0.4 g/kg/d alanyl-glutamine and isonitrogenous PN were assigned to an alanyl-glutamine-supplemented PN (Gln-PN) group and a control group, respectively. Serum levels of alanine aminotransferase and glutamine, body fat mass (FM), immunologic function, and intestinal permeability were measured before and after surgery. Serum glutamine levels of the Gln-PN group significantly exceeded that of the control group (P < .001; Gln-PN, baseline 460.7 ± 42.5 vs 523.3 ± 48.6 µmol/L on postoperative day 14 [POD14], P < .001; control, baseline 451.9 ± 44.0 vs 453.8 ± 42.3 µmol/L on POD14, P = .708). Lactulose/mannitol ratios of both groups decreased over time (Gln-PN, baseline 0.129 ± 0.0403 vs 0.024 ± 0.0107 on POD1 4; control, baseline 0.125 ± 0.0378 vs 0.044 ± 0.0126 on POD14, P < .001 in both groups). CD4/CD8-positive T-lymphocyte ratios significantly rose in both groups, with significant intergroup difference (P < .001; Gln-PN, baseline 1.36 ± 0.32 vs 1.82 ± 0.30 on POD14, P < .001; control, baseline 1.37 ± 0.25 vs 1.63 ± 0.31 on POD14, P < .001). In the Gln-PN group, FM increased from 3.68 ± 1.68 kg at baseline to 5.22 ± 1.42 kg on POD14 (P < .001). FM of control group increased from 3.84 ± 1.57 kg at baseline to 5.40 ± 1.54 kg on POD14 (P < .001). However, there were no significant intergroup differences (P = .614). Gln-PN significantly boosted the immune state and decreased the intestinal permeability of CRE patients. However, Gln-PN was not superior to standard PN in improving the nutrition state and intestinal motility of surgical patients with CRE-induced intestinal obstruction. © 2015 American Society

  15. A Tracer Bolus Method for Investigating Glutamine Kinetics in Humans

    PubMed Central

    Mori, Maiko; Smedberg, Marie; Klaude, Maria; Tjäder, Inga; Norberg, Åke; Rooyackers, Olav; Wernerman, Jan

    2014-01-01

    Glutamine transport between tissues is important for the outcome of critically ill patients. Investigation of glutamine kinetics is, therefore, necessary to understand glutamine metabolism in these patients in order to improve future intervention studies. Endogenous glutamine production can be measured by continuous infusion of a glutamine tracer, which necessitates a minimum measurement time period. In order to reduce this problem, we used and validated a tracer bolus injection method. Furthermore, this method was used to measure the glutamine production in healthy volunteers in the post-absorptive state, with extra alanine and with glutamine supplementation and parenteral nutrition. Healthy volunteers received a bolus injection of [1-13C] glutamine, and blood was collected from the radial artery to measure tracer enrichment over 90 minutes. Endogenous rate of appearance (endoRa) of glutamine was calculated from the enrichment decay curve and corrected for the extra glutamine supplementation. The glutamine endoRa of healthy volunteers was 6.1±0.9 µmol/kg/min in the post-absorptive state, 6.9±1.0 µmol/kg/min with extra alanyl-glutamine (p = 0.29 versus control), 6.1±0.4 µmol/kg/min with extra alanine only (p = 0.32 versus control), and 7.5±0.9 µmol/kg/min with extra alanyl-glutamine and parenteral nutrition (p = 0.049 versus control). In conclusion, a tracer bolus injection method to measure glutamine endoRa showed good reproducibility and small variation at baseline as well as during parenteral nutrition. Additionally, we showed that parenteral nutrition including alanyl-glutamine increased glutamine endoRa in healthy volunteers, which was not attributable to the alanine part of the dipeptide. PMID:24810895

  16. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise.

    PubMed

    Leite, Jaqueline Santos Moreira; Raizel, Raquel; Hypólito, Thaís Menezes; Rosa, Thiago Dos Santos; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p < 0.05). The results presented herein demonstrate that l-glutamine supplemented with l-alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.

  17. L-glutamine supplementations enhance liver glutamine-glutathione axis and heat shock factor-1 expression in endurance-exercise trained rats.

    PubMed

    Petry, Éder Ricardo; Cruzat, Vinicius Fernandes; Heck, Thiago Gomes; Homem de Bittencourt, Paulo Ivo; Tirapegui, Julio

    2015-04-01

    Liver L-glutamine is an important vehicle for the transport of ammonia and intermediary metabolism of amino acids between tissues, particularly under catabolic situations, such as high-intensity exercise. Hence, the aim of this study was to investigate the effects of oral supplementations with L-glutamine in its free or dipeptide forms (with L-alanine) on liver glutamine-glutathione (GSH) axis, and 70 kDa heat shock proteins (HSP70)/heat shock transcription factor 1 (HSF1) expressions. Adult male Wistar rats were 8-week trained (60 min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were daily supplemented with 1 g of L-glutamine/kg body weight per day in either l-alanyl-L-glutamine dipeptide (DIP) form or a solution containing L-glutamine and l-alanine in their free forms (GLN+ALA) or water (controls). Exercise training increased cytosolic and nuclear HSF1 and HSP70 expression, as compared with sedentary animals. However, both DIP and GLN+ALA supplements enhanced HSF1 expression (in both cytosolic and nuclear fractions) in relation to exercised controls. Interestingly, HSF1 rises were not followed by enhanced HSP70 expression. DIP and GLN+ALA supplements increased plasma glutamine concentrations (by 62% and 59%, respectively) and glutamine to glutamate plasma ratio in relation to trained controls. This was in parallel with a decrease in plasma ammonium levels. Supplementations increased liver GSH (by 90%), attenuating the glutathione disulfide (GSSG) to GSH ratio, suggesting a redox state protection. In conclusion, oral administration with DIP and GLN+ALA supplements in endurance-trained rats improve liver glutamine-GSH axis and modulate HSF1 pathway.

  18. Simultaneous infusion of glutamine and branched-chain amino acids (BCAA) to septic rats does not have more favorable effect on protein synthesis in muscle, liver, and small intestine than separate infusions.

    PubMed

    Holecek, Milan; Muthny, Tomas; Kovarik, Miroslav; Sispera, Ludek

    2006-01-01

    Glutamine and branched-chain amino acids (BCAA; valine, leucine, and isoleucine) are used as nutrition supplements in the treatment of proteocatabolic illness. We hypothesized that simultaneous administration of BCAA and glutamine affects protein metabolism more significantly than separate administration. In the present study, we evaluated their effect on protein synthesis in skeletal muscle, liver, and jejunum of septic rats. Twenty-four hours after induction of sepsis by subcutaneous injection of turpentine, the rats were infused for 6 hours with 5 mL of 1.75% glutamine, 1.75% BCAA, 1.75% glutamine+BCAA, or saline solution. The control group consisted of intact rats infused with saline. Protein synthesis was measured at the end of infusion by a "flooding method" with [3,4,5-(3)H]phenylalanine. In turpentine-treated animals, we observed a decrease in glutamine concentration in blood plasma and skeletal muscle, a decrease in BCAA concentration in liver and jejunum, and a decrease in protein synthesis in all tissues. Glutamine or glutamine+BCAA infusion increased glutamine concentration in plasma and muscle and stimulated protein synthesis in the liver. The BCAA infusion enhanced concentrations of BCAA in plasma and tissues, but the effect of BCAA on protein synthesis was insignificant. Synergistic effect of simultaneous infusion of glutamine and BCAA on protein synthesis was not observed. We conclude that glutamine infusion to rats with septic injury may significantly improve impaired protein synthesis in the liver and that there is no synergistic effect of glutamine and BCAA infusion on protein synthesis in skeletal muscle, liver, and jejunum.

  19. Safety of oral glutamine in the abbreviation of preoperative fasting: a double-blind, controlled, randomized clinical trial.

    PubMed

    Borges Dock-Nascimento, D; Aguilar-Nascimento, J E D; Caporossi, C; Sepulveda Magalhães Faria, M; Bragagnolo, R; Caporossi, F Stephan; Linetzky Waitzberg, D

    2011-01-01

    No study so far has tested a beverage containing glutamine 2 h before anesthesia in patients undergoing surgery. The aim of the study was to investigate: 1) the safety of the abbreviation of preoperative fasting to 2 h with a carbohydrate-L-glutamine-rich drink; and 2) the residual gastric volume (RGV) measured after the induction of anesthesia for laparoscopic cholecystectomies. Randomized controlled trial with 56 women (42 (17-65) years-old) submitted to elective laparoscopic cholecystectomy. Patients were randomized to receive either conventional preoperative fasting of 8 hours (fasted group, n = 12) or one of three different beverages drunk in the evening before surgery (400 mL) and 2 hours before the initiation of anesthesia (200 mL). The beverages were water (placebo group, n = 12), 12.5% (240 mOsm/L) maltodextrine (carbohydrate group, n = 12) or the latter in addition to 50 g (40 g in the evening drink and 10 g in the morning drink) of L-glutamine (glutamine group, n = 14). A 20 F nasogastric tube was inserted immediately after the induction of general anesthesia to aspirate and measure the RGV. Fifty patients completed the study. None of the patients had either regurgitation during the induction of anesthesia or postoperative complications. The median (range) of RGV was 6 (0-80) mL. The RGV was similar (p = 0.29) between glutamine group (4.5 [0-15] mL), carbohydrate group (7.0 [0-80] mL), placebo group (8.5 [0-50] mL), and fasted group (5.0 [0-50] mL). The abbreviation of preoperative fasting to 2 h with carbohydrate and L-glutamine is safe and does not increase the RGV during induction of anesthesia.

  20. Oral supplementations with free and dipeptide forms of L-glutamine in endotoxemic mice: effects on muscle glutamine-glutathione axis and heat shock proteins.

    PubMed

    Cruzat, Vinicius F; Pantaleão, Lucas C; Donato, José; de Bittencourt, Paulo Ivo Homem; Tirapegui, Julio

    2014-03-01

    Sepsis is a leading cause of death in intensive care units worldwide. Low availability of glutamine contributes to the catabolic state of sepsis. L-Glutamine supplementation has antioxidant properties and modulates the expression of heat shock proteins (HSPs). This study investigated the effects of oral supplementation with L-glutamine plus L-alanine (GLN+ALA), both in the free form and L-alanyl-L-glutamine dipeptide (DIP), on glutamine-glutathione (GSH) axis and HSPs expression in endotoxemic mice. B6.129F2/J mice were subjected to endotoxemia (lipopolysaccharides from Escherichia coli, 5 mg.kg(-1), LPS group) and orally supplemented for 48 h with either L-glutamine (1 g.kg(-1)) plus L-alanine (0.61 g.kg(-1)) (GLN+ALA-LPS group) or 1.49 g.kg(-1) of DIP (DIP-LPS group). Endotoxemia reduced plasma and muscle glutamine concentrations [relative to CTRL group] which were restored in both GLN+ALA-LPS and DIP-LPS groups (P<.05). In supplemented groups were re-established GSH content and intracellular redox status (GSSG/GSH ratio) in circulating erythrocytes and muscle. Thiobarbituric acid reactive substance was 4-fold in LPS treated mice relative to the untreated CTRL group, and plasma TNF-α and IL-1β levels were attenuated by the supplements. Heat shock proteins 27, 70 and 90 (protein and mRNA) were elevated in the LPS group and were returned to basal levels (relative to CTRL group) in both GLN+ALA-LPS and DIP-LPS groups. Supplementations to endotoxemic mice resulted in up-regulation of GSH reductase, GSH peroxidase and glutamate cysteine ligase mRNA expression in muscle. In conclusion, oral supplementations with GLN+ALA or DIP are effective in reversing the conditions of LPS-induced deleterious impact on glutamine-GSH axis in mice under endotoxemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Alanyl-glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids.

    PubMed

    Kratochwill, Klaus; Boehm, Michael; Herzog, Rebecca; Lichtenauer, Anton Michael; Salzer, Elisabeth; Lechner, Michael; Kuster, Lilian; Bergmeister, Konstantin; Rizzi, Andreas; Mayer, Bernd; Aufricht, Christoph

    2012-03-01

    Exposure of mesothelial cells to peritoneal dialysis fluids (PDF) results in cytoprotective cellular stress responses (CSR) that counteract PDF-induced damage. In this study, we tested the hypothesis that the CSR may be inadequate in relevant models of peritoneal dialysis (PD) due to insufficient levels of glutamine, resulting in increased vulnerability against PDF cytotoxicity. We particularly investigated the role of alanyl-glutamine (Ala-Gln) dipeptide on the cytoprotective PDF stress proteome. Adequacy of CSR was investigated in two human in vitro models (immortalized cell line MeT-5A and mesothelial cells derived from peritoneal effluent of uraemic patients) following exposure to heat-sterilized glucose-based PDF (PD4-Dianeal, Baxter) diluted with medium and, in a comparative proteomics approach, at different levels of glutamine ranging from depletion (0 mM) via physiological (0.7 mM) to pharmacological levels (8 mM administered as Ala-Gln). Despite severe cellular injury, expression of cytoprotective proteins was dampened upon PDF exposure at physiological glutamine levels, indicating an inadequate CSR. Depletion of glutamine aggravated cell injury and further reduced the CSR, whereas addition of Ala-Gln at pharmacological level restored an adequate CSR, decreasing cellular damage in both PDF exposure systems. Ala-Gln specifically stimulated chaperoning activity, and cytoprotective processes were markedly enhanced in the PDF stress proteome. Taken together, this study demonstrates an inadequate CSR of mesothelial cells following PDF exposure associated with low and physiological levels of glutamine, indicating a new and potentially relevant pathomechanism. Supplementation of PDF with pharmacological doses of Ala-Gln restored the cytoprotective stress proteome, resulting in improved resistance of mesothelial cells to exposure to PDF. Future work will study the clinical relevance of CSR-mediated cytoprotection.

  2. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise.

    PubMed

    Raizel, Raquel; Leite, Jaqueline Santos Moreira; Hypólito, Thaís Menezes; Coqueiro, Audrey Yule; Newsholme, Philip; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.

  3. L-glutamine

    MedlinePlus

    L-glutamine is used to is used to reduce the frequency of painful episodes (crises) in adults and children ... oxygen to all parts of the body). L-glutamine is in a class of medications called amino ...

  4. Combined enteral infusion of glutamine, carbohydrates, and antioxidants modulates gut protein metabolism in humans.

    PubMed

    Coëffier, Moïse; Claeyssens, Sophie; Lecleire, Stéphane; Leblond, Jonathan; Coquard, Aude; Bôle-Feysot, Christine; Lavoinne, Alain; Ducrotté, Philippe; Déchelotte, Pierre

    2008-11-01

    Available data suggest that nutrients can affect intestinal protein metabolism, which contributes to the regulation of gut barrier function. We aimed to assess whether an oral nutritional supplement (ONS) containing glutamine (as the dipeptide Ala-Gln), carbohydrates, and antioxidants would modulate duodenal protein metabolism in healthy humans. Thirty healthy control subjects were included and, over a period of 5 h, received by nasogastric tube either saline or ONS providing 11.7 kcal/kg as 0.877 g Ala-Gln/kg, 3.9 g carbohydrates/kg, and antioxidants (29.25 mg vitamin C/kg, 9.75 mg vitamin E/kg, 195 microg beta-carotene/kg, 5.85 mg Se/kg, and 390 microg Zn/kg) or glutamine (0.585 g/kg, 2.34 kcal/kg). Simultaneously, a continuous intravenous infusion of l-[1-(13)C]-leucine was done until endoscopy. Leucine enrichment was assessed by using gas chromatography-mass spectrometric analysis, and mucosal fractional synthesis rate was calculated by using intracellular amino acid enrichment as precursor. Mucosal proteolytic pathways were also evaluated. ONS infusion resulted in a doubling increase (P < 0.01) of duodenal fractional synthesis rate and a significant (P < 0.05) decrease in cathepsin D-mediated proteolysis compared with saline, whereas proteasome and Ca(2+)-dependent activities were unaffected. ONS infusion significantly (P < 0.01) decreased duodenal glutathione but not glutathione disulfide concentrations or the ratio of glutathione to glutathione disulfide. Insulinemia increased after ONS infusion, whereas plasma essential amino acids decreased. Infusion of glutamine alone did not reproduce ONS effects. ONS infusion improves duodenal protein balance in healthy humans. Further investigations are needed to study the origin of these effects and to evaluate ONS supply in stressed persons.

  5. Alanyl-glutamine supplementation regulates mTOR and ubiquitin proteasome proteolysis signaling pathways in piglets.

    PubMed

    Zhang, Bolin; Lin, Meng; Yu, Changning; Li, Jiaolong; Zhang, Lin; Zhou, Ping; Yang, Wenwei; Gao, Feng; Zhou, Guanghong

    2016-10-01

    The aim of the present study was to investigate the effects of the alanyl-glutamine dipeptide (Ala-Gln) or the combination supplementation of free alanine and glutamine (Ala+Gln) on the mammalian target of rapamycin (mTOR) and ubiquitin-proteasome proteolysis (UPP) signaling pathways in piglets. We randomly allocated 180 piglets to three treatments with three replicates of 20 piglets each, fed with diets containing 0.62% Ala, 0.5% Ala-Gln, 0.21% Ala+0.34% Gln, respectively. The duration of the experiment was 28 d. The results showed that Ala-Gln increased average daily gain of piglets, and decreased the ratio of feed to gain (P < 0.05). Ala-Gln supplementation increased the concentrations of Gln and glutamate and decreased the activity of glutamine synthetase in liver and skeletal muscle (P < 0.05). Ala-Gln increased the expression of glutaminase and glutamate dehydrogenate (P < 0.05). The increased phosphorylation of eIF-4 E binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1) in Ala-Gln treatment were associated with phosphorylation of the mTOR in liver and skeletal muscle. Ala+Gln did not affect the phosphorylation abundances of mTOR, 4E-BP1, or S6K1 (P > 0.05). Ala-Gln supplementation inhibited the mRNA expressions of MAFbx and MuRF1 in skeletal muscle of piglets (P < 0.05). Taken together, Ala-Gln supplementation improved the growth performance of piglets, enhanced the metabolism of Gln, upregulated protein synthetic signaling in liver and skeletal muscle and decreased protein degradative signaling in muscle of piglets. Moreover, these effects of Ala-Gln were more effective than those of Ala+Gln. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Addition of Alanyl-Glutamine to Dialysis Fluid Restores Peritoneal Cellular Stress Responses – A First-In-Man Trial

    PubMed Central

    Boehm, Michael; Herzog, Rebecca; Gruber, Katharina; Lichtenauer, Anton Michael; Kuster, Lilian; Csaicsich, Dagmar; Gleiss, Andreas; Alper, Seth L.; Aufricht, Christoph; Vychytil, Andreas

    2016-01-01

    Background Peritonitis and ultrafiltration failure remain serious complications of chronic peritoneal dialysis (PD). Dysfunctional cellular stress responses aggravate peritoneal injury associated with PD fluid exposure, potentially due to peritoneal glutamine depletion. In this randomized cross-over phase I/II trial we investigated cytoprotective effects of alanyl-glutamine (AlaGln) addition to glucose-based PDF. Methods In a prospective randomized cross-over design, 20 stable PD outpatients underwent paired peritoneal equilibration tests 4 weeks apart, using conventional acidic, single chamber 3.86% glucose PD fluid, with and without 8 mM supplemental AlaGln. Heat-shock protein 72 expression was assessed in peritoneal effluent cells as surrogate parameter of cellular stress responses, complemented by metabolomics and functional immunocompetence assays. Results AlaGln restored peritoneal glutamine levels and increased the primary outcome heat-shock protein expression (effect 1.51-fold, CI 1.07–2.14; p = 0.022), without changes in peritoneal ultrafiltration, small solute transport, or biomarkers reflecting cell mass and inflammation. Further effects were glutamine-like metabolomic changes and increased ex-vivo LPS-stimulated cytokine release from healthy donor peripheral blood monocytes. In patients with a history of peritonitis (5 of 20), AlaGln supplementation decreased dialysate interleukin-8 levels. Supplemented PD fluid also attenuated inflammation and enhanced stimulated cytokine release in a mouse model of PD-associated peritonitis. Conclusion We conclude that AlaGln-supplemented, glucose-based PD fluid can restore peritoneal cellular stress responses with attenuation of sterile inflammation, and may improve peritoneal host-defense in the setting of PD. PMID:27768727

  7. Glutamine and alanyl-glutamine dipeptide reduce mesenteric plasma extravasation, leukocyte adhesion and tumor necrosis factor-α (TNF-α) release during experimental endotoxemia.

    PubMed

    Scheibe, R; Schade, M; Grundling, M; Pavlovic, D; Starke, K; Wendt, M; Retter, S; Murphy, M; Suchner, U; Spassov, A; Gedrange, T; Lehmann, Ch

    2009-12-01

    Glutamine (GLN) appears to be an essential nutrient during organism development and critical illness. The aim of our study was to evaluate the effects of GLN and its generic preparation alanyl-glutamine-dipeptide (DIP) on the microcirculation in endotoxemia in rats and its effects on tonus or aortal rings in vitro. Male Lewis rats (n=40) were separated in 4 groups. Group 1 (CON) served as healthy control group while the other groups received an endotoxin bolus i.v. (5 mg/kg lipopolysaccharide, LPS i.v.). In group 3 (LPS+GLN) 0.75 g/kg-1 GLN i.v. before LPS challenge was administered. In group 4 (LPS+DIP) DIP containing 0.75 g/kg GLN was given. Leukocyte-endothelial interactions and mesenteric plasma extravasation were determined at 0, 1 and 2 hours during the experiment by intravital fluorescence microscopy (IVM). Cytokine release (TNF-alpha, IL-1 beta, IL-6, IL-10) was measured by ELISA. GLN treatment reduced leukocyte adherence (-49.7% vs. LPS group, p<0.05) and plasma extravasation (-12.3% vs. LPS group, p<0.05) significantly during endotoxemia compared to untreated LPS animals. In group 4 (DIP+LPS), a decrease of leukocyte adherence (-56.0%) and mesenteric plasma extravasation (-18.8% vs. LPS group, p<0.05) was also found. TNF-alpha levels were reduced in both GLN and DIP (p<0.05). In vitro experiments demonstrated that glutamine agents could attenuate the response to contracting agents in presence of the vascular endothelium, implying nitric oxide pathway. In vivo, GLN as well as DIP pre-treatment diminish the detrimental impact of endotoxemia on the mesenteric microcirculation and the TNF-alpha release, the effects whose clinical importance should be further examined.

  8. A controlled trial of glutamine effects on bone healing.

    PubMed

    Polat, Onur; Kilicoglu, Sibel Serin; Erdemli, Esra

    2007-01-01

    Glutamine is considered a nonessential amino acid, but it may be conditionally essential in patients with catabolic conditions. For centuries, researchers have looked for ways to promote and accelerate fracture healing. This controlled animal study examines the effects of glutamine on fracture healing. The left tibias of 10 standardized albino rats were broken at the distal third to produce a closed fracture. L-glutamine/L-alanyl solution (2.0 mL/kg) was administered through the tail veins of half the rats for the first 7 d, and physiologic serum alone was given to the control group. On the 21st day, all rats were euthanized and their left legs removed; after histologic observation, the tibias were examined under light microscopy. In the glutamine-injected group, development of primary callus was quicker and more regular than in the control group. The control group produced insufficient fibrous callus, and the glutamine group attained formed cartilaginous callus. Glutamine was noted to have positive effects on healing of traumatically fractured bone through attainment of positive nitrogen balance. This effect was minimal in enhancing the quality of fracture healing under conditions of stress, but some effect was noted on the speed of healing. Further research is needed in this area.

  9. Early Administration of Glutamine Protects Cardiomyocytes from Post-Cardiac Arrest Acidosis.

    PubMed

    Lin, Yan-Ren; Li, Chao-Jui; Syu, Shih-Han; Wen, Cheng-Hao; Buddhakosai, Waradee; Wu, Han-Ping; Hsu Chen, Cheng; Lu, Huai-En; Chen, Wen-Liang

    2016-01-01

    Postcardiac arrest acidosis can decrease survival. Effective medications without adverse side effects are still not well characterized. We aimed to analyze whether early administration of glutamine could improve survival and protect cardiomyocytes from postcardiac arrest acidosis using animal and cell models. Forty Wistar rats with postcardiac arrest acidosis (blood pH < 7.2) were included. They were divided into study (500 mg/kg L-alanyl-L-glutamine, n = 20) and control (normal saline, n = 20) groups. Each of the rats received resuscitation. The outcomes were compared between the two groups. In addition, cardiomyocytes derived from human induced pluripotent stem cells were exposed to HBSS with different pH levels (7.3 or 6.5) or to culture medium (control). Apoptosis-related markers and beating function were analyzed. We found that the duration of survival was significantly longer in the study group ( p < 0.05). In addition, in pH 6.5 or pH 7.3 HBSS buffer, the expression levels of cell stress (p53) and apoptosis (caspase-3, Bcl-xL) markers were significantly lower in cardiomyocytes treated with 50 mM L-glutamine than those without L-glutamine (RT-PCR). L-glutamine also increased the beating function of cardiomyocytes, especially at the lower pH level (6.5). More importantly, glutamine decreased cardiomyocyte apoptosis and increased these cells' beating function at a low pH level.

  10. Interaction of L-alanyl-L-valine and L-valyl-L-alanine with organic vapors: thermal stability of clathrates, sorption capacity and the change in the morphology of dipeptide films.

    PubMed

    Ziganshin, Marat A; Gubina, Nadezhda S; Gerasimov, Alexander V; Gorbatchuk, Valery V; Ziganshina, Sufia A; Chuklanov, Anton P; Bukharaev, Anastas A

    2015-08-21

    The strong effect of the amino acid sequence in L-alanyl-L-valine and L-valyl-L-alanine on their sorption properties toward organic compounds and water, and the thermal stability of the inclusion compounds of these dipeptides have been found. Generally, L-valyl-L-alanine has a greater sorption capacity for the studied compounds, but the thermal stability of the L-alanyl-L-valine clathrates is higher. Unusual selectivity of L-valyl-L-alanine for vapors of few chloroalkanes was observed. The correlation between the change in the surface morphology of thin film of dipeptides and stoichiometry of their clathrates with organic compounds was found. This discovery may be used to predict the influence of vapors on the morphology of films of short-chain oligopeptides.

  11. Enteral glutamine infusion modulates ubiquitination of heat shock proteins, Grp-75 and Apg-2, in the human duodenal mucosa.

    PubMed

    Bertrand, Julien; Goichon, Alexis; Chan, Philippe; Azhar, Saida; Lecleire, Stéphane; Donnadieu, Nathalie; Vaudry, David; Cailleux, Anne-Françoise; Déchelotte, Pierre; Coëffier, Moïse

    2014-04-01

    Glutamine, the most abundant amino acid in the human body, plays several important roles in the intestine. Previous studies showed that glutamine may affect protein expression by regulating ubiquitin-proteasome system. We thus aimed to evaluate the effects of glutamine on ubiquitinated proteins in human duodenal mucosa. Five healthy male volunteers were included and received during 5 h, on two occasions and in a random order, either an enteral infusion of maltodextrins alone (0.25 g kg(-1) h(-1), control), mimicking carbohydrate-fed state, or maltodextrins with glutamine (0.117 g kg(-1) h(-1), glutamine). Endoscopic duodenal biopsies were then taken. Total cellular protein extracts were separated by 2D gel electrophoresis and analyzed by an immunodetection using anti-ubiquitin antibody. Differentially ubiquitinated proteins were then identified by liquid chromatography-electrospray ionization MS/MS. Five proteins were differentially ubiquitinated between control and glutamine conditions. Among these proteins, we identified two chaperone proteins, Grp75 and hsp74. Grp75 was less ubiquitinated after glutamine infusion compared with control. In contrast, hsp74, also called Apg-2, was more ubiquitinated after glutamine. In conclusion, we provide evidence that glutamine may regulate ubiquitination processes of specific proteins, i.e., Grp75 and Apg-2. Grp75 has protective and anti-inflammatory properties, while Apg-2 indirectly regulates stress-induced cell survival and proliferation through interaction with ZO-1. Further studies should confirm these results in stress conditions.

  12. L-glutamine Induces Expression of Listeria monocytogenes Virulence Genes

    PubMed Central

    Lobel, Lior; Burg-Golani, Tamar; Sigal, Nadejda; Rose, Jessica; Livnat-Levanon, Nurit; Lewinson, Oded; Herskovits, Anat A.

    2017-01-01

    The high environmental adaptability of bacteria is contingent upon their ability to sense changes in their surroundings. Bacterial pathogen entry into host poses an abrupt and dramatic environmental change, during which successful pathogens gauge multiple parameters that signal host localization. The facultative human pathogen Listeria monocytogenes flourishes in soil, water and food, and in ~50 different animals, and serves as a model for intracellular infection. L. monocytogenes identifies host entry by sensing both physical (e.g., temperature) and chemical (e.g., metabolite concentrations) factors. We report here that L-glutamine, an abundant nitrogen source in host serum and cells, serves as an environmental indicator and inducer of virulence gene expression. In contrast, ammonia, which is the most abundant nitrogen source in soil and water, fully supports growth, but fails to activate virulence gene transcription. We demonstrate that induction of virulence genes only occurs when the Listerial intracellular concentration of L-glutamine crosses a certain threshold, acting as an on/off switch: off when L-glutamine concentrations are below the threshold, and fully on when the threshold is crossed. To turn on the switch, L-glutamine must be present, and the L-glutamine high affinity ABC transporter, GlnPQ, must be active. Inactivation of GlnPQ led to complete arrest of L-glutamine uptake, reduced type I interferon response in infected macrophages, dramatic reduction in expression of virulence genes, and attenuated virulence in a mouse infection model. These results may explain observations made with other pathogens correlating nitrogen metabolism and virulence, and suggest that gauging of L-glutamine as a means of ascertaining host localization may be a general mechanism. PMID:28114430

  13. l-Glutamine as a Substrate for l-Asparaginase from Serratia marcescens

    PubMed Central

    Novak, Edward K.; Phillips, Arthur W.

    1974-01-01

    l-Asparaginase from Serratia marcescens was found to hydrolyze l-glutamine at 5% of the rate of l-asparagine hydrolysis. The ratio of the two activities did not change through several stages of purification, anionic and cationic polyacrylamide disk gel electrophoresis, and partial thermal inactivation. The two activities had parallel blood clearance rates in mice. l-glutamine was found to be a competitive inhibitor of l-asparagine hydrolysis. A separate l-glutaminase enzyme free of l-asparaginase activity was separated by diethylaminoethyl-cellulose chromatography. PMID:4590479

  14. L-glutamine for sickle cell anemia: more questions than answers.

    PubMed

    Quinn, Charles T

    2018-06-12

    In 2017, the Food and Drug Administration (FDA) approved two medications for sickle cell anemia (SCA): hydroxyurea for children (≥2 years of age) and L-glutamine for children and adults (≥5 years). The approval of hydroxyurea for children was long overdue, having been authorized by the FDA for adults in 1998 and by the European Medicines Agency for adults and children in 2007, but the approval of L-glutamine was a surprise to many in the field. There are few published studies of L-glutamine as a treatment for SCA, so all can be reviewed in this brief manuscript. Accordingly, there are many unanswered questions about L-glutamine and its role in current therapy for SCA. Copyright © 2018 American Society of Hematology.

  15. Serum Glutamine Levels as a Potential Diagnostic Biomarker in Sepsis following Surgery for Peritonitis.

    PubMed

    Yang, Chun-Ju; Huang, Ting-Shuo; Lee, Tung-Liang; Yang, Kang-Chung; Yuan, Shin-Sheng; Lu, Ruey-Hwa; Hsieh, Chung-Ho; Shyu, Yu-Chiau

    2017-12-31

    Few diagnostic biomarkers for sepsis after emergency peritonitis surgery are available to clinicians, and, thus, it is important to develop new biomarkers for patients undergoing this procedure. We investigated whether serum glutamine and selenium levels could be diagnostic biomarkers of sepsis in individuals recovering from emergency peritonitis surgery. From February 2012 to March 2013, patients who had peritonitis diagnosed at the emergency department and underwent emergency surgery were screened for eligibility. Serum glutamine and selenium levels were obtained at pre-operative, post-operative and recovery time points. The average level of pre-operation serum glutamine was significantly different from that on the recovery day (0.317 ± 0.168 vs. 0.532 ± 0.155 mM, P < 0.001); moreover, serum glutamine levels were unaffected by surgery. Selenium levels were significantly lower on the day of surgery than they were at recovery (106.6 ± 36.39 vs. 130.68 ± 56.98 ng/mL, P = 0.013); no significant difference was found between pre-operation and recovery selenium levels. Unlike selenium, glutamine could be a sepsis biomarker for individuals with peritonitis. We recommend including glutamine as a biomarker for sepsis severity assessment in addition to the commonly used clinical indicators.

  16. Effects of Alanyl-Glutamine Treatment on the Peritoneal Dialysis Effluent Proteome Reveal Pathomechanism-Associated Molecular Signatures*

    PubMed Central

    Herzog, Rebecca; Boehm, Michael; Unterwurzacher, Markus; Wagner, Anja; Parapatics, Katja; Májek, Peter; Mueller, André C.; Lichtenauer, Anton; Bennett, Keiryn L.; Alper, Seth L.; Vychytil, Andreas; Aufricht, Christoph; Kratochwill, Klaus

    2018-01-01

    Peritoneal dialysis (PD) is a modality of renal replacement therapy in which the high volumes of available PD effluent (PDE) represents a rich source of biomarkers for monitoring disease and therapy. Although this information could help guide the management of PD patients, little is known about the potential of PDE to define pathomechanism-associated molecular signatures in PD. We therefore subjected PDE to a high-performance multiplex proteomic analysis after depletion of highly-abundant plasma proteins and enrichment of low-abundance proteins. A combination of label-free and isobaric labeling strategies was applied to PDE samples from PD patients (n = 20) treated in an open-label, randomized, two-period, cross-over clinical trial with standard PD fluid or with a novel PD fluid supplemented with alanyl-glutamine (AlaGln). With this workflow we identified 2506 unique proteins in the PDE proteome, greatly increasing coverage beyond the 171 previously-reported proteins. The proteins identified range from high abundance plasma proteins to low abundance cellular proteins, and are linked to larger numbers of biological processes and pathways, some of which are novel for PDE. Interestingly, proteins linked to membrane remodeling and fibrosis are overrepresented in PDE compared with plasma, whereas the proteins underrepresented in PDE suggest decreases in host defense, immune-competence and response to stress. Treatment with AlaGln-supplemented PD fluid is associated with reduced activity of membrane injury-associated mechanisms and with restoration of biological processes involved in stress responses and host defense. Our study represents the first application of the PDE proteome in a randomized controlled prospective clinical trial of PD. This novel proteomic workflow allowed detection of low abundance biomarkers to define pathomechanism-associated molecular signatures in PD and their alterations by a novel therapeutic intervention. PMID:29208752

  17. Oral L-glutamine administration attenuated cutaneous wound healing in Wistar rats.

    PubMed

    Goswami, Saurabh; Kandhare, Amit; Zanwar, Anand A; Hegde, Mahabaleshwar V; Bodhankar, Subhash L; Shinde, Sudhir; Deshmukh, Shahaji; Kharat, Ravindran

    2016-02-01

    The objective of this study was to evaluate the wound healing potential of L-glutamine in laboratory rats using excision and incision wound models. Excision wounds of size 500 mm(2) and depth 2 mm were made on the dorsal portion of male Wistar rats (230-250 g) and were used for the study of oral L-glutamine (1 g/kg) treatment on the rate of contraction of wound and epithelisation. Histological evaluation of wound tissue was also performed. Six-centimetre-long two linear-paravertebral incisions in male Wistar rats (230-250 g) were used to study the effect of L-glutamine (1 g/kg, p.o.) treatment on tensile strength, total protein and hydroxyproline content in the incision model. Oral administration of L-glutamine (1 g/kg) significantly decreased wound area, epithelisation period and wound index, whereas the rate of wound contraction significantly increased (P < 0·001) when compared with vehicle control rats in the excision wound model. Tensile strength, hydroxyproline content and protein level were significantly increased (P < 0·001) in L-glutamine (1 g/kg, p.o.)-treated rats when compared with vehicle control rats in the incision wound model. Histological evaluation of wound tissue from L-glutamine (1 g/kg, p.o.)-treated rats showed complete epithelialisation with new blood vessel formation and high fibrous tissues in the excision wound model. In conclusion, oral administration of l-glutamine (1 g/kg) promotes wound healing by acting on various stages of wound healing such as collagen synthesis, wound contraction and epithelialisation. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  18. Oral free and dipeptide forms of glutamine supplementation attenuate oxidative stress and inflammation induced by endotoxemia.

    PubMed

    Cruzat, Vinicius Fernandes; Bittencourt, Aline; Scomazzon, Sofia Pizzato; Leite, Jaqueline Santos Moreira; de Bittencourt, Paulo Ivo Homem; Tirapegui, Julio

    2014-05-01

    The aim of the present study was to determine the effects of oral supplementation with L-glutamine plus L-alanine (GLN+ALA), both in the free form and L-alanyl-L-glutamine dipeptide (DIP) in endotoxemic mice. B6.129 F2/J mice were subjected to endotoxemia (Escherichia coli lipopolysaccharide [LPS], 5 mg/kg, LPS group) and orally supplemented for 48 h with either L-glutamine (1 g/kg) plus L-alanine (0.61 g/kg) (GLN+ALA-LPS group) or 1.49 g/kg DIP (DIP-LPS group). Plasma glutamine, cytokines, and lymphocyte proliferation were measured. Liver and skeletal muscle glutamine, glutathione (GSH), oxidized GSH (GSSG), tissue lipoperoxidation (TBARS), and nuclear factor (NF)-κB-interleukin-1 receptor-associated kinase 1 (IRAK1)-Myeloid differentiation primary response gene 88 pathway also were determined. Endotoxemia depleted plasma (by 71%), muscle (by 44%), and liver (by 49%) glutamine concentrations (relative to the control group), which were restored in both GLN+ALA-LPS and DIP-LPS groups (P < 0.05). Supplemented groups reestablished GSH content, intracellular redox status (GSSG/GSH ratio), and TBARS concentration in muscle and liver (P < 0.05). T- and B-lymphocyte proliferation increased in supplemented groups compared with controls and LPS group (P < 0.05). Tumor necrosis factor-α, interleukin (IL)-6, IL-1 β, and IL-10 increased in LPS group but were attenuated by the supplements (P < 0.05). Endotoxemic mice exhibited higher muscle gene expression of components of the NF-κB pathway, with the phosphorylation of IκB kinase-α/β. These returned to basal levels (relative to the control group) in both GLN+ALA-LPS and DIP-LPS groups (P < 0.05). Higher mRNA of IRAK1 and MyD88 were observed in muscle of LPS group compared with the control and supplemented groups (P < 0.05). Oral supplementations with GLN+ALA or DIP are effective in attenuating oxidative stress and the proinflammatory responses induced by endotoxemia in mice. Copyright © 2014 Elsevier Inc. All rights

  19. Preoperative chemoradiotherapy with capecitabine versus protracted infusion 5-fluorouracil for rectal cancer: A matched-pair analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Prajnan; Lin, Edward H.; Bhatia, Sumita

    2006-12-01

    Purpose: To retrospectively compare the acute toxicity, pathologic response, relapse rates, and survival in rectal cancer patients treated with preoperative radiotherapy (RT) and either concurrent capecitabine or concurrent protracted infusion 5-fluorouracil (5-FU). Methods: Between June 2001 and February 2004, 89 patients with nonmetastatic rectal adenocarcinoma were treated with preoperative RT and concurrent capecitabine, followed by mesorectal excision. These patients were individually matched by clinical T and N stage (as determined by endoscopic ultrasound and CT scans) with 89 control patients treated with preoperative RT and concurrent protracted infusion 5-FU between September 1997 and August 2002. Results: In each group, 5more » patients (6%) had Grade 3-4 toxicity during chemoradiotherapy. The pathologic complete response rate was 21% with capecitabine and 12% with protracted infusion 5-FU (p = 0.19). Of the 89 patients in the capecitabine group and 89 in the 5-FU group, 46 (52%) and 55 (62%), respectively, had downstaging of the T stage after chemoradiotherapy (p = 0.20). The estimated 3-year local control (p = 0.15), distant control (p = 0.86), and overall survival (p = 0.12) rate was 94.4%, 86.3%, and 89.8% for patients treated with capecitabine and 98.6%, 86.6%, and 96.4% for patients treated with protracted infusion 5-FU, respectively. Conclusion: Preoperative concurrent capecitabine and concurrent protracted infusion 5-FU were both well tolerated, with similar, low rates of Grade 3-4 acute toxicity. No significant differences were seen in the pathologic response, local and distant recurrence, or overall survival among patients treated with preoperative RT and concurrent capecitabine compared with those treated with RT and concurrent protracted infusion 5-FU.« less

  20. The Synthesis of L-Alanyl and β-Alanyl Derivatives of 2-Aminoacridone and Their Application in the Detection of Clinically-Important Microorganisms.

    PubMed

    Cellier, Marie; James, Arthur L; Orenga, Sylvain; Perry, John D; Turnbull, Graeme; Stanforth, Stephen P

    2016-01-01

    In clinical microbiology the speed with which pathogenic microorganisms may be detected has a direct impact on patient health. One important strategy used in the laboratory is the growth of cultures in the presence of an enzymatic substrate which, once transformed by the appropriate microbial enzyme, generates a detectable colour or fluorescence output. Such substrates have previously been prepared by our group and others and are available as commercial diagnostic kits, however they all suffer from some degree of diffusion when used in a solid growth medium. This diffusion complicates the detection and differentiation of species in polymicrobial cultures and so we sought to improve on our previous work. In this work we have prepared and evaluated a series of novel fluorogenic enzyme substrates based on N-substituted-2-aminoacridones. All of the prepared substrates were found to be suitable for the detection and differentiation of certain microorganisms, however those based on the 2-amino-10-benzylacridone core in particular showed no apparent diffusion when incorporated into solid growth media. On transformation these substrates generated brightly fluorescent colonies that are clearly contrasted with the background medium due to the difference in emission wavelength (λem 445-450 nm for the substrate, λem 550 nm for the product). Here we have shown that our L-alanyl aminopeptidase substrate, 2-(N-L-alanylamino)-10-benzylacridone, is particularly suited to the detection of Gram-negative bacteria, and our β-alanyl aminopeptidase substrate, 2-(N- β-alanylamino)-10-benzylacridone, to the detection of Pseudomonas aeruginosa and Serratia marcescens when grown on solid media incorporating these substrates. The resulting fluorophore shows no apparent diffusion from the colonies of interest, and the enhanced sensitivity offered by fluorescent emission may allow for the detection of these organisms as microcolonies using automated fluorescence microscopy.

  1. Biosynthesis of D-alanyl-lipoteichoic acid by Lactobacillus casei: interchain transacylation of D-alanyl ester residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, W.C. 3d.; Taron, D.J.; Neuhaus, F.C.

    Lipoteichoic acid (LTA) from Lactobacillus casei contains poly(glycerophosphate) substituted with D-alanyl ester residues. The distribution of these residues in the in vitro-synthesized polymer is uniform. Esterification of LTA with D-alanine may occur in one of two modes: (i) addition at random or (ii) addition at a defined locus in the poly(glycerophosphate) chain followed by redistribution of the ester residues. A time-dependent transacylation of these residues from D-(/sup 14/C)alanyl-lipophilic LTA to hydrophilic acceptor was observed. The hydrophilic acceptor was characterized as D-alanyl-hydrophilic LTA. This transacylation requires neither ATP nor the D-alanine incorporation system, i.e., the D-alanine activating enzyme and D-alanine:membrane acceptormore » ligase. No evidence for an enzyme-catalyzed transacylation reaction was observed. The authors propose that this process of transacylation may be responsible for the redistribution of D-alanyl residues after esterification to the poly(glycerophosphate). As a result, it is difficult to distinguish between these proposed modes of addition.« less

  2. Protective effects of l-glutamine against toxicity of deltamethrin in the cerebral tissue

    PubMed Central

    Varol, Sefer; Özdemir, Hasan Hüseyin; Çevik, Mehmet Uğur; Altun, Yaşar; Ibiloğlu, Ibrahim; Ekinci, Aysun; Ibiloğlu, Aslıhan Okan; Balduz, Metin; Arslan, Demet; Tekin, Recep; Aktar, Fesih; Aluçlu, Mehmet Ufuk

    2016-01-01

    Background Deltamethrin (DLM) is a broad-spectrum synthetic dibromo-pyrethroid pesticide that is widely used for agricultural and veterinary purposes. However, human exposure to the pesticide leads to neurotoxicity. Glutamine is one of the principal, free intracellular amino acids and may also be an antioxidant. This study was undertaken in order to examine the neuroprotective and antioxidant potential of l-glutamine against DLM toxicity in female Wistar albino rats. Materials and methods The rats were divided into the following groups (n=10): Group I: control (distilled water; 10 mL/kg, po one dose), Group II: l-glutamine (1.5 g/kg, po one dose), Group III: DLM (35 mg/kg, po one dose), and Group IV: DLM (35 mg/kg, po one dose) and l-glutamine (1.5 g/kg, po one dose after 4 hours). Total oxidant status (TOS), total antioxidant status (TAS), tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 levels and apoptosis were evaluated in brain tissue. Results DLM-treated animals had a significant increase in brain biochemical parameters, as well as TOS and TAS. Furthermore, the histopathological examination showed neuronal cell degeneration in the cerebral tissue. l-Glutamine treatment decreased the elevated brain levels of TOS and neuronal cell degeneration. There was no difference in tumor necrosis factor-α, IL-1β, and IL-6 levels between the groups. Conclusion l-Glutamine may reduce the toxic effects of DLM in the cerebral tissue through antioxidant properties. PMID:27143900

  3. Desired and side effects of the supplementation with l-glutamine and l-glutathione in enteric glia of diabetic rats.

    PubMed

    Panizzon, Cynthia Priscilla do Nascimento Bonato; Zanoni, Jacqueline Nelisis; Hermes-Uliana, Catchia; Trevizan, Aline Rosa; Sehaber, Camila Caviquioli; Pereira, Renata Virginia Fernandes; Linden, David Robert; Neto, Marcílio Hubner de Miranda

    2016-07-01

    Enteric neuropathy associated with Diabetes Mellitus causes dysfunction in the digestive system, such as: nausea, diarrhea, constipation, vomiting, among others. The aim of this study was to compare the effects of supplementation with 2% l-glutamine and 1% l-glutathione on neurons and enteric glial cells of ileum of diabetic rats. Thirty male Wistar rats have been used according to these group distributions: Normoglycemic (N), Normoglycemic supplemented with l-glutamine (NG), Normoglycemic supplemented with l-glutathione (NGO), Diabetic (D), Diabetic supplemented with l-glutamine (DG) and Diabetic supplemented with l-glutathione (DGO). After 120days, the ileum was processed for immunohistochemistry of HuC/D and S100β. Quantitative and morphometric analysis have been performed. Diabetic rats presented a decrease in the number of neurons when compared to normoglycemic animals. However, diabetes was not associated with a change in glial density. l-Glutathione prevented the neuronal death in diabetic rats. l-Glutathione increased a glial proliferation in diabetic rats. The neuronal area in diabetic rats increased in relation to the normoglycemics. The diabetic rats supplemented with l-glutamine and l-glutathione showed a smaller neuronal area in comparison to diabetic group. The glial cell area was a decreased in the diabetics. The diabetic rats supplemented with l-glutamine and l-glutathione did not have significant difference in the glial cell body area when compared to diabetic rats. It is concluded that the usage of l-glutamine and l-glutathione as supplements presents both desired and side effects that are different for the same substance in considering normoglycemic or diabetic animals. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. l-Glutamine supplementation promotes an improved energetic balance in Walker-256 tumor-bearing rats.

    PubMed

    Martins, Heber Amilcar; Bazotte, Roberto Barbosa; Vicentini, Geraldo Emilio; Lima, Mariana Machado; Guarnier, Flavia Alessandra; Hermes-Uliana, Catchia; Frez, Flavia Cristina Vieira; Bossolani, Gleison Daion Piovezana; Fracaro, Luciane; Fávaro, Larissa Dos Santos; Manzano, Mariana Inocêncio; Zanoni, Jacqueline Nelisis

    2017-03-01

    We evaluated the effects of supplementation with oral l-glutamine in Walker-256 tumor-bearing rats. A total of 32 male Wistar rats aged 54 days were randomly divided into four groups: rats without Walker-256 tumor, that is, control rats (C group); control rats supplemented with l-glutamine (CG group); Walker-256 tumor rats without l-glutamine supplementation (WT group); and WT rats supplemented with l-glutamine (WTG group). l-Glutamine was incorporated into standard food at a proportion of 2 g/100 g (2%). After 10 days of the experimental period, the jejunum and duodenum were removed and processed. Protein expression levels of key enzymes of gluconeogenesis, that is, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, were analyzed by western blot and immunohistochemical techniques. In addition, plasma corticosterone, glucose, insulin, and urea levels were evaluated. The WTG group showed significantly increased plasma glucose and insulin levels ( p < 0.05); however, plasma corticosterone and urea remained unchanged. Moreover, the WTG group showed increased immunoreactive staining for jejunal phosphoenolpyruvate carboxykinase and increased expression of duodenal glucose-6-phosphatase. Furthermore, the WTG group presented with less intense cancer cachexia and slower tumor growth. These results could be attributed, at least partly, to increased intestinal gluconeogenesis and insulinemia, and better glycemia maintenance during fasting in Walker-256 tumor rats on a diet supplemented with l-glutamine.

  5. Assembly of D-alanyl-lipoteichoic acid in Lactobacillus casei: mutants deficient in the D-alanyl ester content of this amphiphile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ntamere, A.S.; Taron, D.J.; Neuhaus, F.C.

    D-Alanyl-lipoteichoic acid (D-alanyl-LTA) from Lactobacillus casei ATCC 7469 contains a poly(glycerophosphate) moiety that is acylated with D-alanyl ester residues. The physiological function of these residues is not well understood. Five mutant strains of this organism that are deficient in the esters of this amphiphile were isolated and characterized. When compared with the parent, strains AN-1 and AN-4 incorporated less than 10% of D-(/sup 14/C)alanine into LTA, whereas AN-2, AN-3, and AN-5 incorporated 50%. The synthesis of D-(/sup 14/C)alanyl-lipophilic LTA was virtually absent in the first group and was approximately 30% in the second group. The mutant strains synthesized and selectedmore » the glycolipid anchor for LTA assembly. In addition, all of the strains synthesized the poly(glycerophosphate) moiety of LTA to the same extent as did the parent or to a greater extent. It was concluded that the membranes from the mutant strains AN-1 and AN-4 are defective for D-alanylation of LTA even though acceptor LTA is present. Mutant strains AN-2 and AN-3 appear to be partially deficient in the amount of the D-alanine-activating enzyme. Aberrant morphology and defective cell separation appear to result from this deficiency in D-alanyl ester content.« less

  6. Regulation of skeletal muscle protein synthetic and degradative signaling by alanyl-glutamine in piglets challenged with Escherichia coli lipopolysaccharide.

    PubMed

    Zhang, Bolin; Yu, Changning; Lin, Meng; Fu, Ya'nan; Zhang, Lin; Meng, Meijuan; Xing, Shen; Li, Jiaolong; Sun, Hui; Gao, Feng; Zhou, Guanghong

    2015-05-01

    The aim of this study was to investigate the effects of alanyl-glutamine (Ala-Gln) on skeletal muscle protein synthetic and degradative signaling in piglets challenged with Escherichia coli lipopolysaccharide (LPS). Piglets were arranged in a 2 × 2 factorial design and the main effects were LPS challenge (0 or 100 units) and diets (0.62% Ala or 0.5% Ala-Gln). After treatment with either Ala or Ala-Gln for 10 d, piglets were injected twice with either saline or LPS on days 11 and 15. During days 11 to 15 (postchallenge), LPS challenge affected the growth performance of piglets. Ala-Gln supplementation tended to alleviate the reduction of the average daily weight gain (P = 0.071) and the average daily feed intake (P = 0.087) of the LPS-challenged piglets. LPS challenge increased the concentrations of cytokines in plasma (P < 0.05), however, Ala-Gln supplementation prevented the elevation of cortisol induced by LPS challenge (P < 0.05). Moreover, Ala-Gln supplementation increased the mRNA expressions of insulin-like growth factor-1 signaling and Akt (P < 0.05). Ala-Gln supplementation also increased the phosphorylation abundance of the mammalian target of rapamycin, eIF-4 E binding protein 1 and ribosomal protein S6 kinase 1 (P < 0.05). Additionally, Ala-Gln supplementation down-regulated the mRNA abundances of toll-like receptor 4 (TLR4), muscle atrophy F-box, and muscle RING finger 1, which are associated with protein degradation induced by LPS challenge. Ala-Gln supplementation had beneficial effects in improving protein synthesis signaling of skeletal muscle, and reversed the deleterious changes of signaling molecules in muscle atrophy mainly through down-regulation of Akt/FOXO and TLR4 signaling pathways induced by LPS challenge. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Effects of nutritionally induced metabolic acidosis with or without glutamine infusion on acid-base balance, plasma amino acids, and plasma nonesterified fatty acids in sheep.

    PubMed

    Odongo, N E; Greenwood, S L; Or-Rashid, M M; Radford, D; Alzahal, O; Shoveller, A K; Lindinger, M I; Matthews, J C; McBride, B W

    2009-03-01

    This study characterized the effects of nutritionally induced metabolic acidosis with or without Gln infusion on acid-base balance, plasma AA, and plasma NEFA in sheep. In a randomized complete block design with a 2 x 2 factorial arrangement of treatments, 24 fully fleeced sheep (Rideau-Arcott, 63.6 +/- 5.9 kg of BW) were fed a control supplement (CS; 300 g/d of canola meal) or an acidosis supplement (AS; 300 g/d of NutriChlor; HCl-treated canola meal), offered twice daily at 0700 and 1100 h. Sheep were infused at 1400 h daily with 0.3 g of L-glutamine per kg of BW or saline via jugular vein catheters for 7 d. The sheep were individually housed and limit-fed a basal diet of dehydrated alfalfa pellets (1.75 kg/d; 90% DM, 22% CP, and 1.2 Mcal of NE(g)/kg on a DM basis) offered twice daily at 1000 and 1300 h. Blood and urine was sampled daily between 1100 and 1130 h, and blood samples were analyzed for hematocrit, plasma pH, gases, strong ions, AA, and NEFA, whereas urine was analyzed for pH. The AS reduced (P < 0.01) DMI, urine and plasma pH, blood urea, partial pressure of CO(2), strong ion difference, and plasma HCO(3)(-), and increased (P < 0.01) plasma K(+), Ca(2+), and Cl(-). The AS with saline infusion increased (P infusion reduced (P < 0.01) partial pressure of O(2) and plasma glucose. The AS increased (P < 0.01) plasma lysine and reduced (P < 0.01) plasma taurine. Glutamine infusion increased (P = 0.04) plasma leucine with the CS treatment but had no effect (P = 0.89) with the AS treatment. Plasma 16:0, 18:2n-6, 18:3n-3, 20:4n-6, and total NEFA were increased and 18:0 was decreased (P < 0.001) in AS sheep compared with CS sheep. Infusion of Gln decreased (P < 0.05) 16:0, 18:2n-6, 18:3n-3, 20:4n-6, and total NEFA compared with saline infusion. Plasma cis-9, trans-11 CLA was elevated (P = 0.001) in AS sheep, whereas plasma cis-9, trans-11 CLA, regardless of the diets, was decreased (P

  8. Mouse Sperm Cryopreservation Using Cryoprotectant Containing l-Glutamine.

    PubMed

    Takeo, Toru; Nakagata, Naomi

    2018-06-01

    Efforts to advance sperm cryopreservation are ongoing and include modifications in the cryoprotective agents. The addition of l-glutamine maintains post-thaw motility and reduces plasma membrane damage to sperm. © 2018 Cold Spring Harbor Laboratory Press.

  9. Dietary L-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus.

    PubMed

    Ren, Wenkai; Luo, Wei; Wu, Miaomiao; Liu, Gang; Yu, Xinglong; Fang, Jun; Li, Teijun; Yin, Yulong; Wu, Guoyao

    2013-09-01

    Porcine circovirus type 2 (PCV2) causes reproductive failure in swine. As glutamine can enhance immune function in animals, this study was conducted with mice to test the hypothesis that dietary glutamine supplementation will improve pregnancy outcome in PCV2-infected dams. Beginning on day 0 of gestation, mice were fed a standard diet supplemented with 1.0% L-glutamine or 1.22% L-alanine (isonitrogenous control). All mice were infected with PCV2 (2000 TCID50) on day 10 of gestation. On day 17 of gestation, six mice from each group were euthanized to obtain maternal tissues and fetuses for hematology and histopathology tests. The remaining mice continued to receive their respective diets supplemented with 1.0% L-glutamine or 1.22% L-alanine through lactation. The PCV2 virus was present in maternal samples (serum and lung) of most mice in the control group but was not detected in the glutamine-supplemented mice. Dietary glutamine supplementation reduced abortion, decreased fetal deaths, and enhanced neonatal survival. The glutamine treatment also reduced concentrations of interleukin-6, while increasing concentrations of tumor necrosis factor-α and C-reactive protein, in the maternal serum of mice. Furthermore, glutamine supplementation attenuated microscopic lesions in maternal tissues (lung, spleen, and liver). Collectively, these results indicate that dietary glutamine supplementation is beneficial for ameliorating reproductive failure in virus-infected mice. The findings support the notion that gestating dams require adequate amounts of dietary glutamine for the optimal survival and growth of embryos, fetuses, and neonates, and have important implications for nutritional support of mammals (including swine and humans) during gestation and lactation.

  10. l-Glutamine Attenuates Apoptosis Induced by Endoplasmic Reticulum Stress by Activating the IRE1α-XBP1 Axis in IPEC-J2: A Novel Mechanism of l-Glutamine in Promoting Intestinal Health

    PubMed Central

    Chen, Jiashun; Liu, Shaojuan; Yao, Kang; Yin, Yulong

    2017-01-01

    Intestinal absorption and barrier malfunctions are associated with endoplasmic reticulum stress (ERS) in the intestine. We induced ERS by exposing the intestinal porcine epithelial cell line J2 (IPEC-J2) to tunicamycin (TUNI) to explore the potential of l-glutamine to reduce ERS-induced apoptosis. Our experiments demonstrated that exposing cells to TUNI results in spontaneous ERS and encourages the upregulation of glucose-regulated protein 78 (GRP78). Prolonged TUNI-induced ERS was found to increase apoptosis mediated by C/enhancer binding protein homologous protein (CHOP), accompanied by GRP78 downregulation. Treatment with l-glutamine was found to promote cell proliferation within the growth medium but to have little effect in basic Dulbecco’s modified Eagle medium. Finally, in the milieu of TUNI-induced ERS, l-glutamine was found to maintain a high level of GRP78, alleviate CHOP-mediated apoptosis and activate the inositol requiring enzyme 1α (IRE1α)-X-box binding protein 1 (XBP1) axis. A specific inhibitor of the IRE1α-XBP1 axis reversed the protective effect of l-glutamine by blocking the expression of IRE1α/XBP1s. We propose that the functional effect of l-glutamine on intestinal health may be partly due to its modulation of ERS and CHOP-mediated apoptosis. PMID:29206200

  11. Intravenous glutamine supplementation enhances renal de novo arginine synthesis in humans: a stable isotope study.

    PubMed

    Buijs, Nikki; Brinkmann, Saskia J H; Oosterink, J Efraim; Luttikhold, Joanna; Schierbeek, Henk; Wisselink, Willem; Beishuizen, Albertus; van Goudoever, Johannes B; Houdijk, Alexander P J; van Leeuwen, Paul A M; Vermeulen, Mechteld A R

    2014-11-01

    Arginine plays a role in many different pathways in multiple cell types. Consequently, a shortage of arginine, caused by pathologic conditions such as cancer or injury, has the potential to disturb many cellular and organ functions. Glutamine is the ultimate source for de novo synthesis of arginine in humans via the intestinal-renal axis. Therefore, we hypothesized that parenteral glutamine supplementation may stimulate the interorgan pathway of arginine production. The objectives were to quantify arginine production from its precursor glutamine and to establish the contribution of the kidneys to de novo synthesis of arginine in patients receiving intravenous supplementation of glutamine dipeptide during major abdominal surgery. Whole-body and renal metabolism of glutamine, citrulline, and arginine was assessed by stable isotope techniques in 7 patients receiving a perioperative supplement of intravenous alanyl-glutamine (0.5 g · kg(-1) · d(-1)). Plasma glutamine, citrulline, and arginine concentrations increased significantly in patients receiving intravenous glutamine dipeptide. At whole-body level, 91% of total citrulline turnover was derived from glutamine, whereas 49% of whole-body citrulline turnover was used for de novo synthesis of arginine. The kidneys were responsible for 75% of whole-body arginine production from citrulline. Glutamine and citrulline are important sources for de novo arginine synthesis. The kidneys are the main production site for endogenous arginine. After comparison of these results with previous similar studies, our data suggest that an intravenous glutamine supplement doubles renal arginine production from citrulline. This trial was registered at www.trialregister.nl as NTR2914. © 2014 American Society for Nutrition.

  12. Plasma Glutamine Is a Minor Precursor for the Synthesis of Citrulline: A Multispecies Study1234

    PubMed Central

    Marini, Juan C; Agarwal, Umang; Didelija, Inka C; Azamian, Mahshid; Stoll, Barbara; Nagamani, Sandesh CS

    2017-01-01

    Background: Glutamine is considered the main precursor for citrulline synthesis in many species, including humans. The transfer of 15N from 2-[15N]-glutamine to citrulline has been used as evidence for this precursor-product relation. However, work in mice has shown that nitrogen and carbon tracers follow different moieties of glutamine and that glutamine contribution to the synthesis of citrulline is minor. It is unclear whether this small contribution of glutamine is also true in other species. Objective: The objective of the present work was to determine the contribution of glutamine to citrulline production by using nitrogen and carbon skeleton tracers in multiple species. Methods: Humans (n = 4), pigs (n = 5), rats (n = 6), and mice (n = 5) were infused with l-2-[15N]- and l-[2H5]-glutamine and l-5,5-[2H2]-citrulline. The contribution of glutamine to citrulline synthesis was calculated by using different ions and fragments: glutamine M+1 to citrulline M+1, 2-[15N]-glutamine to 2-[15N]-citrulline, and [2H5]-glutamine to [2H5]-citrulline. Results: Species-specific differences in glutamine and citrulline fluxes were found (P < 0.001), with rats having the largest fluxes, followed by mice, pigs, and humans (all P < 0.05). The contribution of glutamine to citrulline as estimated by using glutamine M+1 to citrulline M+1 ranged from 88% in humans to 46% in pigs. However, the use of 2-[15N]-glutamine and 2-[15N]-citrulline as precursor and product yielded values of 48% in humans and 28% in pigs. Furthermore, the use of [2H5]-glutamine to [2H5]-citrulline yielded lower values (P < 0.001), resulting in a contribution of glutamine to the synthesis of citrulline of ∼10% in humans and 3% in pigs. Conclusions: The recycling of the [15N]-glutamine label overestimates the contribution of glutamine to citrulline synthesis compared with a tracer that follows the carbon skeleton of glutamine. Glutamine is a minor precursor for the synthesis of citrulline in humans, pigs, rats

  13. Acute depletion of plasma glutamine increases leucine oxidation in prednisone-treated humans

    PubMed Central

    Le Bacquer, Olivier; Mauras, Nelly; Welch, Susan; Haymond, Morey; Darmaun, Dominique

    2007-01-01

    Background, aims & methods To determine whether depletion in plasma glutamine worsens the catabolic response to corticosteroids, 7 healthy volunteers received oral prednisone for 6 days on 2 separate occasions, at least 2 weeks apart, and in random order. On the 6th day of each treatment course, they received 5h intravenous infusions of L-[1-14C]-leucine and L-[1-13C]-glutamine in the postabsorptive state 1) under baseline conditions (prednisone only day), and 2) after 24h of treatment with phenylbutyrate (prednisone+phenylbutyrate day), a glutamine chelating agent. Results Phenylbutyrate treatment was associated with 1) an ≈15% decline in plasma glutamine concentration (627±39 vs. 530±31 μmol.L-1; P<0.05), 2) no change in leucine appearance rate, an index of protein breakdown (124±9 vs. 128±9 μmol.kg-1.h-1; NS) nor in non oxidative leucine disposal, an index of whole body protein synthesis (94±9 vs. 91±7 μmol.kg -1.h-1; NS); and 3) a ≈25% rise in leucine oxidation (30±1 vs. 38±2 μmol.kg-1.h-1, P<0.05), despite an ≈25% decline (p<0.05) in leucine concentration. Conclusions In a model of mild, stress-induced protein catabolism, depletion of plasma glutamine per se may worsen branched chain amino acid and protein wasting. PMID:17097772

  14. Characterization of cerebral glutamine uptake from blood in the mouse brain: implications for metabolic modeling of 13C NMR data

    PubMed Central

    Bagga, Puneet; Behar, Kevin L; Mason, Graeme F; De Feyter, Henk M; Rothman, Douglas L; Patel, Anant B

    2014-01-01

    13C Nuclear Magnetic Resonance (NMR) studies of rodent and human brain using [1-13C]/[1,6-13C2]glucose as labeled substrate have consistently found a lower enrichment (∼25% to 30%) of glutamine-C4 compared with glutamate-C4 at isotopic steady state. The source of this isotope dilution has not been established experimentally but may potentially arise either from blood/brain exchange of glutamine or from metabolism of unlabeled substrates in astrocytes, where glutamine synthesis occurs. In this study, the contribution of the former was evaluated ex vivo using 1H-[13C]-NMR spectroscopy together with intravenous infusion of [U-13C5]glutamine for 3, 15, 30, and 60 minutes in mice. 13C labeling of brain glutamine was found to be saturated at plasma glutamine levels >1.0 mmol/L. Fitting a blood–astrocyte–neuron metabolic model to the 13C enrichment time courses of glutamate and glutamine yielded the value of glutamine influx, VGln(in), 0.036±0.002 μmol/g per minute for plasma glutamine of 1.8 mmol/L. For physiologic plasma glutamine level (∼0.6 mmol/L), VGln(in) would be ∼0.010 μmol/g per minute, which corresponds to ∼6% of the glutamine synthesis rate and rises to ∼11% for saturating blood glutamine concentrations. Thus, glutamine influx from blood contributes at most ∼20% to the dilution of astroglial glutamine-C4 consistently seen in metabolic studies using [1-13C]glucose. PMID:25074745

  15. Immunohistochemical study of vasoactive intestinal peptide (VIP) enteric neurons in diabetic rats supplemented with L-glutamine.

    PubMed

    Alves, Eder Paulo Belato; Alves, Angela Maria Pereira; Pereira, Renata Virginia Fernandes; de Miranda Neto, Marcílio Hubner; Zanoni, Jacqueline Nelisis

    2010-02-01

    The purpose of this work was to study the area of the varicosities of nerve fibers of myenteric neurons immunoreactive to vasoactive intestinal peptide (VIP-IR) and of the cell bodies of VIP-IR submucosal neurons of the jejunum of diabetic rats supplemented with 2% L-glutamine. Twenty male rats were divided into the following groups: normoglycemic (N), normoglycemic supplemented with L-glutamine (NG), diabetic (D) and diabetic supplemented with L-glutamine (DG). Whole-mounts of the muscle tunica and the submucosal layer were subjected to the immunohistochemical technique for neurotransmitter VIP identification. Morphometric analyses were carried out in 500 VIP-IR cell bodies of submucosal neurons and 2000 VIP-IR varicosities from each group. L-Glutamine supplementation to the normoglycemic animals caused an increase in the areas of the cell bodies (8.49%) and varicosities (21.3%) relative to the controls (P < 0.05). On the other hand, there was a decrease in the areas of the cell bodies (4.55%) and varicosities (28.9%) of group DG compared to those of group D (P < 0.05). It is concluded that L-glutamine supplementation was positive both to normoglycemic and diabetic animals.

  16. Influence of Nutritional Conditions on Production of l-Glutamine by Flavobacterium rigense

    PubMed Central

    Nabe, Koichi; Ujimaru, Toshihiko; Yamada, Shigeki; Chibata, Ichiro

    1981-01-01

    The nutritional conditions for the production of l-glutamine by Flavobacterium rigense strain 703 were investigated. The optimum concentration of ammonia for achieving the highest yield of l-glutamine (25 mg/ml of broth) was relatively broad, from 0.9 to 1.6%, whereas fumaric acid had a narrow optimum range, near 5.5%. High concentration of inorganic ions such as chloride or sulfate ion clearly inhibited cell growth. Therefore, ammonium salts other than (NH4)2-fumarate were unsuitable for the highest production. The optimum concentration of (NH4)2-fumarate was 7%. To reduce the concentration of fumaric acid in the medium, many substances were evaluated as substitutes. The fumaric acid concentration required for highest l-glutamine yield could not be replaced by any one of the compounds tested. However, part of fumaric acid could be replaced with succinic acid and cupric ion; 4% (NH4)2-fumarate plus 2.5% succinic acid or 5% (NH4)2-fumarate plus 1 mM cupric ion produced results similar to 7% (NH4)2-fumarate in the fermentation medium. PMID:16345682

  17. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan.

    PubMed Central

    Mengin-Lecreulx, D; van Heijenoort, J; Park, J T

    1996-01-01

    A gene, mpl, encoding UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelat e ligase was recognized by its amino acid sequence homology with murC as the open reading frame yjfG present at 96 min on the Escherichia coli map. The existence of such an enzymatic activity was predicted from studies indicating that reutilization of the intact tripeptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate occurred and accounted for well over 30% of new cell wall synthesis. Murein tripeptide ligase activity could be demonstrated in crude extracts, and greatly increased activity was produced when the gene was cloned and expressed under control of the trc promoter. A null mutant totally lacked activity but was viable, showing that the enzyme is not essential for growth. PMID:8808921

  18. The Influence of Oral L-Glutamine Supplementation on Muscle Strength Recovery and Soreness Following Unilateral Knee Extension Eccentric Exercise.

    PubMed

    Legault, Zachary; Bagnall, Nicholas; Kimmerly, Derek S

    2015-10-01

    The study aimed to examine the effects that L-glutamine supplementation has on quadriceps muscle strength and soreness ratings following eccentric exercise. It was hypothesized that glutamine ingestion would quicken the recovery rate of peak force production and decrease muscle soreness ratings over a 72-hr recovery period. Sixteen healthy participants (8♀/8♂; 22 ± 4 years) volunteered in a double-blind, randomized, placebo-controlled crossover study. Supplement conditions consisted of isoenergetic placebo (maltodextrin, 0.6 g·kg-1·day-1) and L-glutamine (0.3 g·kg-1·day-1 + 0.3 g·kg-1·day-1 maltodextrin) ingestion once per day over 72 hr. Knee extensor peak torque at 0°, 30°, and 180° per second and muscle soreness were measured before, immediately following, 24, 48, and 72 hr posteccentric exercise. Eccentric exercise consisted of 8 sets (10 repetitions/set) of unilateral knee extension at 125% maximum concentric force with 2-min rest intervals. L-glutamine resulted in greater relative peak torque at 180°/sec both immediately after (71 ± 8% vs. 66 ± 9%), and 72 hr (91 ± 8% vs. 86 ± 7%) postexercise (all, p < .01). In men, L-glutamine produced greater (p < .01) peak torques at 30°/ sec postexercise. Men also produced greater normalized peak torques at 30°/sec (Nm/kg) in the L-glutamine condition than women (all, p < .05). In the entire sample, L-glutamine resulted in lower soreness ratings at 24 (2.8 ± 1.2 vs. 3.4 ± 1.2), 48 (2.6 ± 1.4 vs. 3.9 ± 1.2), and 72 (1.7 ± 1.2 vs. 2.9 ± 1.3) hr postexercise (p < .01). The L-glutamine supplementation resulted in faster recovery of peak torque and diminished muscle soreness following eccentric exercise. The effect of L-glutamine on muscle force recovery may be greater in men than women.

  19. Effects of Carnosine (Beta-Alanyl-L-Histidine) in an Experimental Rat Model of Acute Kidney Injury Due to Septic Shock

    PubMed Central

    Sahin, Sabiha; Donmez, Dilek Burukoglu

    2018-01-01

    Background Acute kidney injury (AKI) secondary to sepsis is a major cause of morbidity and mortality in the human intensive care unit (ICU). Kidney function and the histological findings of AKI were investigated in an experimental rat model with sepsis induced by cecal ligation and puncture (CLP) and compared with and without treatment with carnosine (beta-alanyl-L-histidine). Material/Methods Twenty-four Sprague-Dawley rats were randomly divided into three groups consisting eight rats in each: Group 1 – control; Group 2 – septic shock; and Group 3 – septic shock treated with carnosine. Femoral vein and artery catheterization were applied in all rats. Rats in Group 1 underwent laparotomy and catheterization. The other two groups with septic shock underwent laparotomy, CLP, catheterization, and bladder cannulation. Rats in Group 3 received an intraperitoneal (IP) injection of 250 mg/kg carnosine, 60 min following CLP. Rats were monitored for blood pressure, pulse rate, and body temperature to assess responses to postoperative sepsis, and 10 mL/kg saline replacement was administered. Twenty-four hours following CLP, rats were sacrificed, and blood and renal tissue samples were collected. Results Statistically significant improvements were observed in kidney function, tissue and serum malondialdehyde levels, routine blood values, biochemical indices, and in histopathological findings in rats in Group 3 who were treated with carnosine, compared with Group 2 exposed to septic shock without carnosine treatment. Conclusions Carnosine (beta-alanyl-L-histidine) has been shown to have beneficial effects in reducing AKI due to septic shock in a rat model of septicemia. PMID:29334583

  20. Synthesis, spectral characterization and biological studies of some organotin(IV) complexes of L-proline, trans-hydroxy- L-proline and L-glutamine

    NASA Astrophysics Data System (ADS)

    Nath, Mala; Jairath, Ruchi; Eng, George; Song, Xueqing; Kumar, Ashok

    2005-12-01

    New organotin(IV) complexes of the general formula R 3Sn(L) (where R = Me, n-Bu and HL = L-proline; R = Me, Ph and HL = trans-hydroxy- L-proline and L-glutamine) and R 2Sn(L) 2 (where R = n-Bu, Ph and HL = L-proline; R = Ph, HL = trans-hydroxy- L-proline) have been synthesized by the reaction of R nSnCl 4- n (where n = 2 or 3) with sodium salt of the amino acid (HL). n-Bu 2Sn(Pro) 2 was synthesized by the reaction of n-Bu 2SnO with L-proline under azeotropic removal of water. The bonding and coordination behavior in these complexes have been discussed on the basis of IR and 119Sn Mössbauer spectroscopic studies in the solid-state. Their coordination behavior in solution has been discussed with the help of multinuclear ( 1H, 13C and 119Sn) NMR spectral studies. The 119Sn Mössbauer and IR studies indicate that L-proline and trans-hydroxy- L-proline show similar coordination behavior towards organotin(IV) compounds. Pentacoordinate trigonal-bipyramidal and hexacoordinate octahedral structures, respectively, have been proposed for the tri- and diorganotin(IV) complexes of L-proline and trans-hydroxy- L-proline, in which the carboxylate group acts as bidentate group. L-Glutamine shows different coordination behavior towards organotin(IV) compounds, it acts as monoanionic bidentate ligand coordinating through carboxylate and amino group. The triorganotin(IV) complexes of L-glutamine have been proposed to have trigonal-bipyramidal environment around tin. The newly synthesized complexes have been tested for their antiinflammatory and cardiovascular activities. Their LD 50 values are >1000 mg kg -1.

  1. Maternal L-glutamine supplementation prevents prenatal alcohol exposure-induced fetal growth restriction in an ovine model.

    PubMed

    Sawant, Onkar B; Wu, Guoyao; Washburn, Shannon E

    2015-06-01

    Prenatal alcohol exposure is known to cause fetal growth restriction and disturbances in amino acid bioavailability. Alterations in these parameters can persist into adulthood and low birth weight can lead to altered fetal programming. Glutamine has been associated with the synthesis of other amino acids, an increase in protein synthesis and it is used clinically as a nutrient supplement for low birth weight infants. The aim of this study was to explore the effect of repeated maternal alcohol exposure and L-glutamine supplementation on fetal growth and amino acid bioavailability during the third trimester-equivalent period in an ovine model. Pregnant sheep were randomly assigned to four groups, saline control, alcohol (1.75-2.5 g/kg), glutamine (100 mg/kg, three times daily) or alcohol + glutamine. In this study, a weekend binge drinking model was followed where treatment was done 3 days per week in succession from gestational day (GD) 109-132 (normal term ~147). Maternal alcohol exposure significantly reduced fetal body weight, height, length, thoracic girth and brain weight, and resulted in decreased amino acid bioavailability in fetal plasma and placental fluids. Maternal glutamine supplementation successfully mitigated alcohol-induced fetal growth restriction and improved the bioavailability of glutamine and glutamine-related amino acids such as glycine, arginine, and asparagine in the fetal compartment. All together, these findings show that L-glutamine supplementation enhances amino acid availability in the fetus and prevents alcohol-induced fetal growth restriction.

  2. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol

    PubMed Central

    Sawant, Onkar B.; Ramadoss, Jayanth; Hankins, Gary D.; Wu, Guoyao

    2014-01-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid–base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid–base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy. PMID:24810329

  3. Glutamine decreases the duration of postoperative ileus after abdominal surgery: an experimental study of conscious dogs.

    PubMed

    Ohno, Tetsuro; Mochiki, Erito; Ando, Hiroyuki; Fukasawa, Takaharu; Toyomasu, Yoshitaka; Ogata, Kyoichi; Aihara, Ryuusuke; Asao, Takayuki; Kuwano, Hiroyuki

    2009-06-01

    Postoperative ileus (POI) is a transient bowel dysmotility that occurs following many types of operations and is one of the most common complications of gastrointestinal surgery. We hypothesized that enteral supplementation of glutamine after abdominal surgery would restore fuel to the small intestine, suppress oxidative stress, and lead to improvement in POI. Twelve dogs underwent distal gastrectomy and were each randomly assigned to one of two groups based on postoperative treatment: the water injection (control) group and the glutamine injection group. Water (40 ml) or L(+)-glutamine (1 g/40 ml water) was injected into the residual stomach through the gastric tube every 12 h after surgery for 7 days. Changes in the plasma and intestinal intracellular concentration of glutamine and in gastrointestinal motility were measured. The plasma and intracellular glutamine levels decreased after the operation in both groups, although the decreased intracellular glutamine levels were not significantly different than preoperative levels. The glutamine group showed a significantly smaller decrease of the plasma glutamine level compared with the control group (P < 0.05). All the dogs showed gastrointestinal dysmotility after the operation. The mean length of time between the operation and the appearance of interdigestive migrating contractions in the glutamine group was significantly shorter than in the control group (22.4 +/- 3.1 h versus 37.8 +/- 4.0 h, respectively; P < 0.05). In conclusion, glutamine could act as a motility-recovery agent after abdominal surgery and thereby decrease the duration of POI.

  4. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol.

    PubMed

    Sawant, Onkar B; Ramadoss, Jayanth; Hankins, Gary D; Wu, Guoyao; Washburn, Shannon E

    2014-08-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75-2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid-base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid-base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.

  5. Preoperative Capecitabine and Pelvic Radiation in Locally Advanced Rectal Cancer-Is it Equivalent to 5-FU Infusion Plus Leucovorin and Radiotherapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Alexander K., E-mail: alexc@cancerboard.ab.c; Wong, Alfred O.; Jenken, Daryl A.

    2010-04-15

    Purpose: The aim of this retrospective case-matching study was to compare the treatment outcomes and acute toxicity of preoperative radiotherapy (RT) with capecitabine vs. preoperative RT with intermittent 5-fluorouracil (5-FU) infusion, leucovorin, and mitomycin C in rectal cancer. Methods and Materials: We matched 34 patients who were treated with preoperative concurrent capecitabine and 50 Gy of RT by their clinical T stage (T3 or T4) and the tumor location (<=7 cm or >7 cm from the anal verge) with another 68 patients who were treated with preoperative intermittent 5-FU infusion, leucovorin, mitomycin C, and 50 Gy of RT for amore » comparison of the pathologic tumor response, local control, distant failure, and survival rates. Results: The pathologic complete response rate was 21% with capecitabine and 18% with 5-FU and leucovorin (p = 0.72). The rate of T downstaging after chemoradiation was 59% for both groups. The rate of sphincter-sparing resection was 38% after capecitabine plus RT and 43% after 5-FU plus RT (p = 0.67). At 3 years, there was no significant difference in the local control rate (93% for capecitabine and 92% for 5-FU and leucovorin), relapse-free rate (74% for capecitabine and 73% for 5-FU and leucovorin), or disease-specific survival rate (86% for capecitabine and 77% for 5-FU and leucovorin). The acute toxicity profile was comparable, with little Grade 3 and 4 toxicity. Conclusions: When administered with concurrent preoperative RT, both capecitabine and intermittent 5-FU infusion with leucovorin modulation provided comparable pathologic tumor response, local control, relapse-free survival, and disease-specific survival rates in rectal cancer.« less

  6. L-ornithine-L-aspartate infusion efficacy in hepatic encephalopathy.

    PubMed

    Ahmad, Irfan; Khan, Anwaar A; Alam, Altaf; Dilshad, Akif; Butt, Arshad Kamal; Shafqat, Farzana; Malik, Kashif; Sarwar, Shahid

    2008-11-01

    To determine the efficacy of L-ornithine-L-aspartate in treatment of hepatic encephalopathy. Randomized, placebo-controlled trial. Department of Gastroenterology and Hepatology, Sheikh Zayed Hospital, Lahore, from February to August 2005. Cirrhotic patients with hyperammonemia and overt hepatic encephalopathy were enrolled. Eighty patients were randomized to two treatment groups, L-ornithine-L-aspartate (20 g/d) or placebo, both dissolved in 250 mL of 5% dextrose water and infused intravenously for four hours a day for five consecutive days with 0.5 g/kg dietary protein intake at the end of daily treatment period. Outcome variables were postprandial blood ammonia and mental state grade. Adverse reactions and mortality were also determined. Both treatment groups were comparable regarding age, gender, etiology of cirrhosis, Child-Pugh class, mental state grade and blood ammonia at baseline. Although, improvement occurred in both groups, there was a greater improvement in L-ornithine-L-aspartate group with regard to both variables. Four patients in the placebo group and 2 in L-ornithine-L-aspartate group died. L-ornithine-L-aspartate infusions were found to be effective in cirrhotic patients with hepatic encephalopathy.

  7. Glutamine activates STAT3 to control cancer cell proliferation independently of glutamine metabolism

    PubMed Central

    Vazeille, Thibaut; Sonveaux, Pierre

    2016-01-01

    Cancer cells can use a variety of metabolic substrates to fulfill the bioenergetic and biosynthetic needs of their oncogenic program. Besides bioenergetics, cancer cell metabolism also directly influences genetic, epigenetic and signaling events associated with tumor progression. Many cancer cells are addicted to glutamine, and this addiction is observed in oxidative as well as in glycolytic cells. While both oxidative and bioreductive glutamine metabolism can contribute to cancer progression and glutamine can further serve to generate peptides (including glutathione) and proteins, we report that glutamine promotes the proliferation of cancer cells independently of its use as a metabolic fuel or as a precursor of glutathione. Extracellular glutamine activates transcription factor STAT3, which is necessary and sufficient to mediate the proliferative effects of glutamine in glycolytic and in oxidative cancer cells. Glutamine also activates transcription factors HIF-1, mTOR and c-Myc, but these factors do not mediate the effects of glutamine on cancer cell proliferation. Our findings shed a new light on the anticancer effects of L-asparaginase that possesses glutaminase activity and converts glutamine into glutamate extracellularly. Conversely, cancer resistance to treatments that block glutamine metabolism could arise from glutamine-independent STAT3 re-activation. PMID:27748760

  8. Temporal Dynamics of Antidepressant Ketamine Effects on Glutamine Cycling Follow Regional Fingerprints of AMPA and NMDA Receptor Densities.

    PubMed

    Li, Meng; Demenescu, Liliana Ramona; Colic, Lejla; Metzger, Coraline Danielle; Heinze, Hans-Jochen; Steiner, Johann; Speck, Oliver; Fejtova, Anna; Salvadore, Giacomo; Walter, Martin

    2017-05-01

    The anterior cingulate cortex (ACC) has shown decreased glutamate levels in patients with major depressive disorder. Subanesthetic doses of ketamine were repeatedly shown to improve depressive symptoms within 24 h after infusion and this antidepressant effect was attributed to increased α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) throughput. To elucidate ketamine's mechanism of action, we tested whether the clinical time course of the improvement is mirrored by the change of glutamine/glutamate ratio and if such effects show a regional and temporal specificity in two distinct subdivisions of ACC with different AMPA/N-methyl-D-aspartate receptor profiles. In a double-blind, placebo-controlled intravenous infusion study of ketamine, we measured glutamate and glutamine in the pregenual ACC (pgACC) and the anterior midcingulate cortex at 1 and 24 h post infusion with magnetic resonance spectroscopy at 7 T. A significant interaction of time, region, and treatment was found for the glutamine/glutamate ratios (placebo, n=14; ketamine, n=12). Post-hoc analyses revealed that the glutamine/glutamate ratio increased significantly in the ketamine group, compared with placebo, specifically in the pgACC after 24 h. The glutamine/glutamate increase in the pgACC caused by ketamine at 24 h post infusion was reproduced in an enlarged sample (placebo, n=24; ketamine, n=20). Our results support a significant temporal and regional response in glutamine/glutamate ratios to a single subanesthetic dose of ketamine, which mirrors the time course of the antidepressant response and reversal of the molecular deficits in patients and which may be associated with the histoarchitectonical receptor fingerprints of the ACC subregions.

  9. Temporal Dynamics of Antidepressant Ketamine Effects on Glutamine Cycling Follow Regional Fingerprints of AMPA and NMDA Receptor Densities

    PubMed Central

    Li, Meng; Demenescu, Liliana Ramona; Colic, Lejla; Metzger, Coraline Danielle; Heinze, Hans-Jochen; Steiner, Johann; Speck, Oliver; Fejtova, Anna; Salvadore, Giacomo; Walter, Martin

    2017-01-01

    The anterior cingulate cortex (ACC) has shown decreased glutamate levels in patients with major depressive disorder. Subanesthetic doses of ketamine were repeatedly shown to improve depressive symptoms within 24 h after infusion and this antidepressant effect was attributed to increased α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) throughput. To elucidate ketamine's mechanism of action, we tested whether the clinical time course of the improvement is mirrored by the change of glutamine/glutamate ratio and if such effects show a regional and temporal specificity in two distinct subdivisions of ACC with different AMPA/N-methyl-D-aspartate receptor profiles. In a double-blind, placebo-controlled intravenous infusion study of ketamine, we measured glutamate and glutamine in the pregenual ACC (pgACC) and the anterior midcingulate cortex at 1 and 24 h post infusion with magnetic resonance spectroscopy at 7 T. A significant interaction of time, region, and treatment was found for the glutamine/glutamate ratios (placebo, n=14; ketamine, n=12). Post-hoc analyses revealed that the glutamine/glutamate ratio increased significantly in the ketamine group, compared with placebo, specifically in the pgACC after 24 h. The glutamine/glutamate increase in the pgACC caused by ketamine at 24 h post infusion was reproduced in an enlarged sample (placebo, n=24; ketamine, n=20). Our results support a significant temporal and regional response in glutamine/glutamate ratios to a single subanesthetic dose of ketamine, which mirrors the time course of the antidepressant response and reversal of the molecular deficits in patients and which may be associated with the histoarchitectonical receptor fingerprints of the ACC subregions. PMID:27604568

  10. Cellular mechanisms underlying the protective effects of preoperative feeding: a randomized study investigating muscle and liver glycogen content, mitochondrial function, gene and protein expression.

    PubMed

    Awad, Sherif; Constantin-Teodosiu, Dumitru; Constantin, Despina; Rowlands, Brian J; Fearon, Kenneth C H; Macdonald, Ian A; Lobo, Dileep N

    2010-08-01

    To investigate the effects of preoperative feeding with a carbohydrate-based drink that also contained glutamine and antioxidants (oral nutritional supplement [ONS], Fresenuis Kabi, Germany) on glycogen reserves, mitochondrial function, and the expression of key metabolic genes and proteins. Preoperative carbohydrate loading attenuates the decline in postoperative insulin sensitivity but the cellular mechanisms underlying this remain unclear. Two groups of 20 patients undergoing laparoscopic cholecystectomy participated in this randomized placebo-controlled double-blind study. Patients received either 600 mL of ONS or placebo the evening before surgery, and again 300 mL 3 to 4 hours before anesthesia. A 300-mL aliquot of ONS contained 50 g of carbohydrate, 15 g of glutamine and antioxidants. Blood was sampled before ingestion of the evening drink, after induction of anesthesia, and on postoperative day 1 for measurement of concentrations of glucose, glutamine, and antioxidants. Rectus abdominis muscle and liver biopsies were performed intraoperatively to determine glycogen and glutamine concentrations, mitochondrial function, pyruvate dehydrogenase kinase (PDK4), forkhead transcription factor 1 (FOXO1), and metallothionein 1A (Mt1A) expression. There were no drink-related complications. ONS ingestion led to increased intraoperative liver glycogen reserves (44%, P < 0.001) and plasma glutamine and antioxidant concentrations, the latter 2 remaining elevated up to the first postoperative day. Muscle PDK4 mRNA, PDK4 protein expression, and Mt1A mRNA expression were 4-fold (P < 0.001), 44% (P < 0.05), and 1.5-fold (P < 0.001), respectively, lower in the ONS group. There were no differences in FOXO1 mRNA and protein expression. The changes in muscle PDK4 may explain the mechanism by which preoperative feeding with carbohydrate-based drinks attenuates the development of postoperative insulin resistance.

  11. Effects of glutamine on gastrointestinal motor activity in patients following gastric surgery.

    PubMed

    Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Andoh, Hiroyuki; Kuwano, Hiroyuki

    2011-04-01

    Postoperative ileus (POI) is one of the most common complications of gastrointestinal surgery. The present study was performed to evaluate the effects of glutamine administration on POI after gastric surgery in humans. The subjects were 31 patients who underwent partial distal gastrectomy for gastric cancer and who were randomly assigned to one of two groups based on postoperative treatment: the glutamine group (3 g/day) and the control group. Manometric recording was done 12 days after surgery, and plasma glutamine concentrations were measured preoperatively and on postoperative day 12. Motor activities of the duodenum in the glutamine group were significantly greater than those of the control group in the interdigestive state. The incidence of phase III motor activity (interdigestive migrating motor contractions) in the glutamine group was significantly higher than that in the control group (60 versus 19%). The glutamine group showed a significantly smaller decrease of plasma glutamine levels compared with the control group. Glutamine could act as a motility-recovery agent after gastrectomy in humans.

  12. Schiff bases attached L-glutamine and L-asparagine: first investigation on antimutagenic and antimicrobial analyses.

    PubMed

    Sakiyan, Iffet; Anar, Mustafa; Oğütcü, Hatice; Agar, Guleray; Sarı, Nurşen

    2014-06-01

    This study was conducted to evaluate the antimutagenic and antimicrobial activities of Schiff bases attached L-glutamine and L-asparagine. Antibacterial activities of the compounds against S. aureus, Sh. dys. typ 7, L. monocytogenes 4b, E. coli, S. typhi H, S. epidermis, Br. abortus, M. luteus, B. cereus, P. putida, and antifungal activity against Candida albicans were studied. These compounds were investigated for antimutagenic properties against Aflatoxin Bı (AFBı) using micronuclei (MN) assay in human lymphocyte cell culture in vitro. The protective role of these compounds against AFBı-induced MN is probably related to its doses.

  13. Effects of L-glutamine on rectal temperature and some markers of oxidative stress in Red Sokoto goats during the hot-dry season.

    PubMed

    Ocheja, Ohiemi Benjamin; Ayo, Joseph Olusegun; Aluwong, Tagang; Minka, Ndazo Salka

    2017-08-01

    The experiment investigated the ameliorative effects of L-glutamine administration on rectal temperature (RT), erythrocyte osmotic fragility (EOF), serum antioxidant enzyme activities and malondialdehyde (MDA) concentration in Red Sokoto goats during the hot-dry season. Twenty eight healthy Red Sokoto goats, comprising 14 experimental (administered 0.2 g/kg of L-glutamine dissolved in 10 mL of distilled water, once daily for 21 days) and 14 control (administered equivalent of distilled water) goats served as subjects. Rectal temperature (measured at 6:00, 13:00 and 18:00 h) and blood samples (taken at 8:00 h) were obtained from all subjects weekly, before, during and after L-glutamine administration. Data obtained were compared using one-way repeated-measures ANOVA, followed by Tukey's post-hoc test. The dry-bulb temperature, relative humidity and temperature-humidity index for the study period ranged between 24.0 and 37.5 °C, 26.0 and 84.0% and 73.0 and 86.3, respectively. L-glutamine administration decreased (P < 0.05) RT, EOF and MDA and increased superoxide dismutase (SOD) activity in experimental group, compared to controls during weeks 1, 2 and 3. Glutathione peroxidase (GPx) and catalase activities were higher (P < 0.05) in the experimental group than in the controls only during week 1 of L-glutamine administration. In conclusion, L-glutamine administration mitigated increases in RT, EOF and serum MDA concentration and enhanced serum SOD, GPx and catalase activities and may be beneficial in heat-stressed goats during the hot-dry season.

  14. GLUTAMINE AND HYPERAMMONEMIC CRISES IN PATIENTS WITH UREA CYCLE DISORDERS

    PubMed Central

    Lee, B.; Diaz, G.A.; Rhead, W.; Lichter-Konecki, U.; Feigenbaum, A.; Berry, S.A.; Le Mons, C.; Bartley, J.; Longo, N.; Nagamani, S.C.; Berquist, W.; Gallagher, R.C.; Harding, C.O.; McCandless, S.E.; Smith, W.; Schulze, A.; Marino, M.; Rowell, R.; Coakley, D.F.; Mokhtarani, M.; Scharschmidt, B.F.

    2016-01-01

    Blood ammonia and glutamine levels are used as biomarkers of control in patients with urea cycle disorders (UCDs). This study was undertaken to evaluate glutamine variability and utility as a predictor of hyperammonemic crises (HACs) in UCD patients. Methods The relationships between glutamine and ammonia levels and the incidence and timing of HACs were evaluated in over 100 adult and pediatric UCD patients who participated in clinical trials of glycerol phenylbutyrate. Results The median (range) intra-subject 24-hour coefficient of variation for glutamine was 15% (8–29%) as compared with 56% (28%–154%) for ammonia, and the correlation coefficient between glutamine and concurrent ammonia levels varied from 0.17 to 0.29. Patients with baseline (fasting) glutamine values >900 µmol/L had higher baseline ammonia levels (mean [SD]: 39.6 [26.2] µmol/L) than patients with baseline glutamine ≤900 µmol/L (26.6 [18.0] µmol/L). Glutamine values >900 µmol/L during the study were associated with an approximately 2-fold higher HAC risk (odds ratio [OR]=1.98; p=0.173). However, glutamine lost predictive significance (OR=1.47; p=0.439) when concomitant ammonia was taken into account, whereas the predictive value of baseline ammonia ≥ 1.0 upper limit of normal (ULN) was highly statistically significant (OR=4.96; p=0.013). There was no significant effect of glutamine >900 µmol/L on time to first HAC crisis (hazard ratio [HR]=1.14; p=0.813), but there was a significant effect of baseline ammonia ≥ 1.0 ULN (HR=4.62; p=0.0011). Conclusions The findings in this UCD population suggest that glutamine is a weaker predictor of HACs than ammonia and that the utility of the predictive value of glutamine will need to take into account concurrent ammonia levels. PMID:26586473

  15. Updated cost-effectiveness analysis of supplemental glutamine for parenteral nutrition of intensive-care patients

    PubMed Central

    Pradelli, L; Povero, M; Muscaritoli, M; Eandi, M

    2015-01-01

    Background/Objectives: Intravenous (i.v.) glutamine supplementation of parenteral nutrition (PN) can improve clinical outcomes, reduce mortality and infection rates and shorten the length of hospital and/or intensive care unit (ICU) stays compared with standard PN. This study is a pharmacoeconomic analysis to determine whether i.v. glutamine supplementation of PN remains both a highly favourable and cost-effective option for Italian ICU patients. Subjects/Methods: A previously published discrete event simulation model was updated by incorporating the most up-to-date and clinically relevant efficacy data (a clinically realistic subgroup analysis from a published meta-analysis), recent cost data from the Italian health-care system and the latest epidemiology data from a large Italian ICU database (covering 230 Italian ICUs and more than 77 000 patients). Sensitivity analyses were performed to test the robustness of the results. Results: Parenteral glutamine supplementation can significantly improve ICU efficiency in Italy, as the additional cost of supplemented treatment is more than completely offset by cost savings in hospital care. Supplementation was more cost-effective (cost-effectiveness ratio (CER)=€35 165 per patient discharged alive) than standard, non-supplemented PN (CER=€40 156 per patient discharged alive), and it resulted in mean cost savings of €4991 per patient discharged alive or €1047 per patient admitted to the hospital. Sensitivity analyses confirmed the robustness of these results. Conclusions: Alanyl-glutamine supplementation of PN is a clinically and economically attractive strategy for ICU patients in Italy and may be applicable to selected ICU patient populations in other countries. PMID:25469466

  16. Updated cost-effectiveness analysis of supplemental glutamine for parenteral nutrition of intensive-care patients.

    PubMed

    Pradelli, L; Povero, M; Muscaritoli, M; Eandi, M

    2015-05-01

    Intravenous (i.v.) glutamine supplementation of parenteral nutrition (PN) can improve clinical outcomes, reduce mortality and infection rates and shorten the length of hospital and/or intensive care unit (ICU) stays compared with standard PN. This study is a pharmacoeconomic analysis to determine whether i.v. glutamine supplementation of PN remains both a highly favourable and cost-effective option for Italian ICU patients. A previously published discrete event simulation model was updated by incorporating the most up-to-date and clinically relevant efficacy data (a clinically realistic subgroup analysis from a published meta-analysis), recent cost data from the Italian health-care system and the latest epidemiology data from a large Italian ICU database (covering 230 Italian ICUs and more than 77,000 patients). Sensitivity analyses were performed to test the robustness of the results. Parenteral glutamine supplementation can significantly improve ICU efficiency in Italy, as the additional cost of supplemented treatment is more than completely offset by cost savings in hospital care. Supplementation was more cost-effective (cost-effectiveness ratio (CER)=[euro ]35,165 per patient discharged alive) than standard, non-supplemented PN (CER=[euro ]40,156 per patient discharged alive), and it resulted in mean cost savings of [euro ]4991 per patient discharged alive or [euro ]1047 per patient admitted to the hospital. Sensitivity analyses confirmed the robustness of these results. Alanyl-glutamine supplementation of PN is a clinically and economically attractive strategy for ICU patients in Italy and may be applicable to selected ICU patient populations in other countries.

  17. Effect of glutamine supplementation on splanchnic metabolism in lactating dairy cows.

    PubMed

    Doepel, L; Lobley, G E; Bernier, J F; Dubreuil, P; Lapierre, H

    2007-09-01

    The suggestion that glutamine (Gln) might become conditionally essential postpartum in dairy cows has been examined through increased postruminal supply of Gln. Net nutrient flux through the splanchnic tissues and mammary gland was measured in 7 multiparous Holstein cows receiving abomasal infusions of water or 300 g/d of Gln for 21 d in a crossover design. Milk yield increased significantly (by 3%) in response to Gln supplementation, but the 2.4% increase in milk protein yield was not statistically significant. Glutamine treatment had no effect on portal or hepatic venous blood flows. Net portal appearance of Gln and Glu was increased by Gln supplementation, accounting for 83% of the infused dose with, therefore, only limited amounts available to provide additional energy to fuel metabolism of the portal-drained viscera. The extra net portal appearance of Gln was offset, however, by a corresponding increase in hepatic removal such that net Gln splanchnic release was not different between treatments. Nonetheless, the Gln treatment resulted in a 43% increase in plasma Gln concentration. Infusions of Gln did not affect splanchnic flux of other nonessential amino acids or of essential amino acids. Glutamine supplementation increased plasma urea-N concentration and tended to increase net hepatic urea flux, with a numerical increase in liver hepatic O2 consumption. There were no effects on glucose in terms of plasma concentration, net portal appearance, net liver release, or postliver supply, suggesting that Gln supplementation had no sparing effect on glucose metabolism. Furthermore, mammary uptake of glucose and amino acids, including Gln, was not affected by Gln supplementation. In conclusion, this study did not support the hypothesis that supplemental Gln would reduce glucose utilization across the gut or increase liver gluconeogenesis or mammary glutamine uptake to increase milk protein synthesis.

  18. Separation and determination of peptide metabolite of Bacillus licheniformis in a microbial fuel cell by high-speed capillary micellar electrokinetic chromatography.

    PubMed

    Wang, Wei; Bai, Ruiguang; Cai, Xiaoyu; Lin, Ping; Ma, Lihong

    2017-11-01

    A method using high-speed capillary micellar electrokinetic chromatography and a microbial fuel cell was applied to determine the metabolite of the peptides released by Bacillus licheniformis. Two peptides, l-carnosine and l-alanyl-l-glutamine were used as the substrate to feed Bacillus licheniformis in a microbial fuel cell. The metabolism process of the bacterium was monitored by analyzing the voltage outputs of the microbial fuel cell. A home-made spontaneous injection device was applied to perform high-speed capillary micellar electrokinetic chromatography. Under the optimized conditions, tryptophan, glycine, valine, tyrosine and the two peptides could be rapidly separated within 2.5 min with micellar electrokinetic chromatography mode. Then the method was applied to analyze the solutions sampled from the microbial fuel cell. After 92 h running, valine, as the metabolite, was successfully detected with concentration 3.90 × 10 -5 M. The results demonstrated that Bacillus licheniformis could convert l-carnosine and l-alanyl-l-glutamine into valine. The method employed in this work was proved to have great potential in analysis of metabolites, such as amino acids, for microorganisms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The neuropharmacology of L-theanine(N-ethyl-L-glutamine): a possible neuroprotective and cognitive enhancing agent.

    PubMed

    Nathan, Pradeep J; Lu, Kristy; Gray, M; Oliver, C

    2006-01-01

    L-theanine (N-ethyl-L-glutamine) or theanine is a major amino acid uniquely found in green tea. L-theanine has been historically reported as a relaxing agent, prompting scientific research on its pharmacology. Animal neurochemistry studies suggest that L-theanine increases brain serotonin, dopamine, GABA levels and has micromolar affinities for AMPA, Kainate and NMDA receptors. In addition has been shown to exert neuroprotective effects in animal models possibly through its antagonistic effects on group 1 metabotrophic glutamate receptors. Behavioural studies in animals suggest improvement in learning and memory. Overall, L-theanine displays a neuropharmacology suggestive of a possible neuroprotective and cognitive enhancing agent and warrants further investigation in animals and humans.

  20. The influence of parenteral glutamine supplementation on glucose homeostasis in critically ill polytrauma patients--A randomized-controlled clinical study.

    PubMed

    Grintescu, Ioana Marina; Luca Vasiliu, Irina; Cucereanu Badica, Ioana; Mirea, Liliana; Pavelescu, Daniela; Balanescu, Andreea; Grintescu, Ioana Cristina

    2015-06-01

    Rapid onset of resistance to insulin is a prominent component of stress metabolism in multiple trauma patients. Recent studies have clarified the role of amino acids (especially glutamine) in glucose transportation and the benefits of parenteral alanyl-glutamine supplementation (0.3-0.6 g/kg/day) in glucose homeostasis. The aims of this study are to evaluate the incidence of hyperglycemic episodes and the need for exogenous insulin to maintain stable glucose levels in critically ill polytrauma patients supplemented with parenteral glutamine dipeptide (Dipeptiven(®)) versus standard nutritional support. This was an open-label randomized-controlled trial of 82 polytrauma patients aged 20-60 years old, randomly assigned into two equal groups independent of sex, age and Injury Severity Score. We excluded patients with diabetes mellitus, or renal or hepatic failure. One group received parenteral Dipeptiven(®) supplementation of 0.5 g/kg/day and the other received standard isocaloric isoproteinic nutritional support. We found that 63% of patients in the glutamine-supplemented group had no hyperglycemic episodes; only 37% required exogenous insulin (mean daily requirement of 44 units/day). In the control group, 51% of patients required insulin (mean daily requirement 63 unit/day; p = 0.0407). The effect of glutamine supplementation on glucose homeostasis is associated with a lower incidence of hyperglycemia among critically ill polytrauma patients, and leads to a lower mean daily dose of insulin. Controlled-trials.com Identifier: ISRCTN71592366 (http://www.controlled-trials.com/ISRCTN71592366/ISRCTN71592366). Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  1. Short-term enteral glutamine does not enhance protein accretion in burned children: a stable isotope study.

    PubMed

    Sheridan, Robert L; Prelack, Kathrina; Yu, Yong-Ming; Lydon, Martha; Petras, Lisa; Young, Vernon R; Tompkins, Ronald G

    2004-06-01

    Glutamine is a nonessential amino acid that, in recent years, has been found to play important roles in several metabolic and immunologic processes. It has been theorized that, in a stressed state, it may become "conditionally essential" because the patient's ability to manufacture glutamine may not be adequate to meet their needs under this condition. We chose to evaluate the ability of 48 hours of enteral glutamine to enhance immediate nitrogen accretion in stressed pediatric burn patients. Nine children with serious burns who were tolerating tube feedings were enrolled in a human studies committee-approved protocol in which they received 48 hours of enteral feedings with glutamine replacing 20% of essential and nonessential amino acids and 48 hours of isonitrogenous, isocaloric standard enteral feedings. This interval was chosen to help ensure that the study periods were comparable from a metabolic perspective. At the end of each period, protein kinetics were determined by a primed constant infusion of L-[1-(13)C] leucine tracer. The order of the studies was randomized. Seven children completed both phases of the study. Results were compared by paired t test and are presented as mean +/- standard error of the mean. During the glutamine feeding period, the leucine flux and leucine oxidation rate were significantly lower than those in the conventional feeding period. This reflects a reduction in total leucine intake from 80 +/- 11 to 62 +/- 10 micromol/kg per hour. However, there was no significant difference in the net balance of leucine accretion into proteins between these 2 dietary periods, which indicated that enriched glutamine feeding for 48 hours did not result in an immediate whole body protein gain in this group of pediatric patients. In addition, plasma glutamine concentration showed a moderate increase after 48 hours of supplementation but did not reach significance. Rapid protein accretion does not occur with short-term enteral glutamine

  2. Perioperative glutamine supplementation restores disturbed renal arginine synthesis after open aortic surgery: a randomized controlled clinical trial.

    PubMed

    Brinkmann, Saskia J H; Buijs, Nikki; Vermeulen, Mechteld A R; Oosterink, Efraim; Schierbeek, Henk; Beishuizen, Albertus; de Vries, Jean-Paul P M; Wisselink, Willem; van Leeuwen, Paul A M

    2016-09-01

    Postoperative renal failure is a common complication after open repair of an abdominal aortic aneurysm. The amino acid arginine is formed in the kidneys from its precursor citrulline, and citrulline is formed from glutamine in the intestines. Arginine enhances the function of the immune and cardiovascular systems, which is important for recovery after surgery. We hypothesized that renal arginine production is diminished after ischemia-reperfusion injury caused by clamping of the aorta during open abdominal aortic surgery and that parenteral glutamine supplementation might compensate for this impaired arginine synthesis. This open-label clinical trial randomized patients who underwent clamping of the aorta during open abdominal aortic surgery to receive a perioperative supplement of intravenous alanyl-glutamine (0.5 g·kg(-1)·day(-1); group A, n = 5) or no supplement (group B, n = 5). One day after surgery, stable isotopes and tracer methods were used to analyze the metabolism and conversion of glutamine, citrulline, and arginine. Whole body plasma flux of glutamine, citrulline, and arginine was significantly higher in group A than in group B (glutamine: 391 ± 34 vs. 258 ± 19 μmol·kg(-1)·h(-1), citrulline: 5.7 ± 0.4 vs. 2.8 ± 0.4 μmol·kg(-1)·h(-1), and arginine: 50 ± 4 vs. 26 ± 2 μmol·kg(-1)·h(-1), P < 0.01), as was the synthesis of citrulline from glutamine (4.8 ± 0.7 vs. 1.6 ± 0.3 μmol·kg(-1)·h(-1)), citrulline from arginine (2.3 ± 0.3 vs. 0.96 ± 0.1 μmol·kg(-1)·h(-1)), and arginine from glutamine (7.7 ± 0.4 vs. 2.8 ± 0.2 μmol·kg(-1)·h(-1)), respectively (P < 0.001 for all). In conclusion, the production of citrulline and arginine is severely reduced after clamping during aortic surgery. This study shows that an intravenous supplement of glutamine increases the production of citrulline and arginine and compensates for the inhibitory effect of ischemia-reperfusion injury. Copyright © 2016 the American Physiological Society.

  3. D-alanylation of lipoteichoic acid contributes to the virulence of Streptococcus suis.

    PubMed

    Fittipaldi, Nahuel; Sekizaki, Tsutomu; Takamatsu, Daisuke; Harel, Josée; Domínguez-Punaro, María de la Cruz; Von Aulock, Sonja; Draing, Christian; Marois, Corinne; Kobisch, Marylène; Gottschalk, Marcelo

    2008-08-01

    We generated by allelic replacement a DeltadltA mutant of a virulent Streptococcus suis serotype 2 field strain and evaluated the contribution of lipoteichoic acid (LTA) d-alanylation to the virulence traits of this swine pathogen and zoonotic agent. The absence of LTA D-alanylation resulted in increased susceptibility to the action of cationic antimicrobial peptides. In addition, and in contrast to the wild-type strain, the DeltadltA mutant was efficiently killed by porcine neutrophils and showed diminished adherence to and invasion of porcine brain microvascular endothelial cells. Finally, the DeltadltA mutant was attenuated in both the CD1 mouse and porcine models of infection, probably reflecting a decreased ability to escape immune clearance mechanisms and an impaired capacity to move across host barriers. The results of this study suggest that LTA D-alanylation is an important factor in S. suis virulence.

  4. Dietary L-glutamine supplementation increases Pasteurella multocida burden and the expression of its major virulence factors in mice.

    PubMed

    Ren, Wenkai; Liu, Shuping; Chen, Shuai; Zhang, Fengmei; Li, Nengzhang; Yin, Jie; Peng, Yuanyi; Wu, Li; Liu, Gang; Yin, Yulong; Wu, Guoyao

    2013-10-01

    This study was conducted to determine the effects of graded doses of L-glutamine supplementation on the replication and distribution of Pasteurella multocida, and the expression of its major virulence factors in mouse model. Mice were randomly assigned to the basal diet supplemented with 0, 0.5, 1.0 or 2.0 % glutamine. Pasteurella multocida burden was detected in the heart, liver, spleen, lung and kidney after 12 h of P. multocida infection. The expression of major virulence factors, toll-like receptors (TLRs), proinflammatory cytokines (interleukin-1 beta, interleukin-6, and tumor necrosis factor alpha) and anti-oxidative factors (GPX1 and CuZnSOD) was analyzed in the lung and spleen. Dietary 0.5 % glutamine supplementation has little significant effect on these parameters, compared to those with basal diet. However, results showed that a high dose of glutamine supplementation increased the P. multocida burden (P < 0.001) and the expression of its major virulence factors (P < 0.05) as compared to those with a lower dose of supplementation. In the lung, high dose of glutamine supplementation inhibited the proinflammatory responses (P < 0.05) and TLRs signaling (P < 0.05). In the spleen, the effect of glutamine supplementation on different components in TLR signaling depends on glutamine concentration, and high dose of glutamine supplementation activated the proinflammatory response. In conclusion, glutamine supplementation increased P. multocida burden and the expression of its major virulence factors, while affecting the functions of the lung and spleen.

  5. Chemical modification of L-glutamine to alpha-amino glutarimide on autoclaving facilitates Agrobacterium infection of host and non-host plants: A new use of a known compound

    PubMed Central

    2011-01-01

    Background Accidental autoclaving of L-glutamine was found to facilitate the Agrobacterium infection of a non host plant like tea in an earlier study. In the present communication, we elucidate the structural changes in L-glutamine due to autoclaving and also confirm the role of heat transformed L-glutamine in Agrobacterium mediated genetic transformation of host/non host plants. Results When autoclaved at 121°C and 15 psi for 20 or 40 min, L-glutamine was structurally modified into 5-oxo proline and 3-amino glutarimide (α-amino glutarimide), respectively. Of the two autoclaved products, only α-amino glutarimide facilitated Agrobacterium infection of a number of resistant to susceptible plants. However, the compound did not have any vir gene inducing property. Conclusions We report a one pot autoclave process for the synthesis of 5-oxo proline and α-amino glutarimide from L-glutamine. Xenobiotic detoxifying property of α-amino glutarimide is also proposed. PMID:21624145

  6. Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions.

    PubMed

    Piljac-Zegarac, J; Belscak, A; Piljac, A

    2009-06-01

    Antioxidant capacity and polyphenolic content of leaf infusions prepared from six highbush blueberry cultivars (Vaccinium corymbosum L.), one wild lowbush blueberry cultivar (Vaccinium myrtillus L.), and one commercially available mix of genotypes were determined. In order to simulate household tea preparation conditions, infusions were prepared in water heated to 95 degrees C. The dynamics of extraction of polyphenolic antioxidants were monitored over the course of 30 minutes. Extraction efficiency, quantified in terms of the total phenol (TP) content, and antioxidant capacity of infusions, evaluated by the ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assays, were compared with cultivar type and extraction time. The 30-minute infusions exhibited the highest TP content and antioxidant capacity according to all three assays. Wild blueberry infusion had the highest TP content (1,879 mg/L gallic acid equivalents [GAE]) and FRAP values (20,050 microM). The range of TP values for 30-minute infusions was 394-1,879 mg/L GAE with a mean of 986 mg/L GAE across cultivars; FRAP values fell between 3,015 and 20,050 microM with a mean of 11,234 microM across cultivars. All 30-minute infusions exhibited significant scavenging capacity for DPPH(*) and ABTS(*+) radicals, comparable to different concentrations of catechin, gallic acid, and 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid. Overall, tested infusions showed significant reducing capacity as well as radical scavenging potential, which places blueberry leaf tea high on the list of dietary sources of antioxidants.

  7. Dietary L-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine.

    PubMed

    Ren, Wenkai; Duan, Jielin; Yin, Jie; Liu, Gang; Cao, Zhong; Xiong, Xia; Chen, Shuai; Li, Tiejun; Yin, Yulong; Hou, Yongqing; Wu, Guoyao

    2014-10-01

    This study was conducted to determine effects of dietary supplementation with 1 % L-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.

  8. The use of a food supplementation with D-phenylalanine, L-glutamine and L-5-hydroxytriptophan in the alleviation of alcohol withdrawal symptoms.

    PubMed

    Jukić, Tomislav; Rojc, Bojan; Boben-Bardutzky, Darja; Hafner, Mateja; Ihan, Alojz

    2011-12-01

    We described the use of a food supplementation with D-phenylalanine, L-glutamine and L-5-hydroxytriptophan in the alleviation of alcohol withdrawal symptoms in patients starting a detoxification therapy. Since abstinence from ethanol causes a hypodopaminergic and a hypoopioidergic environment in the reword system circuits, manifesting with withdrawal symptoms, food supplements that contains D-phenylalanine a peptidase inhibitor (of opioide inactivation) and L-amino-acids (for dopamine synthesis) were used to replenish a lack in neurotransmitters and alleviate the symptoms of alcohol withdrawal. 20 patients suffering from alcohol addictions starting a detoxification therapy have been included in a prospective, randomized, double blind study. The patients have been randomly devided in two groups. One group recieved for a period of 40 days a food supplement containing D-phenylalanine, L-glutamine and L-5-hydroxytriptophan (investigation group), and the control (placebo) group. On the first day of hospitalization the patients performed a SCL-90-R test, and blood samples were taken for measuring liver enzymes, total bilirubin, unbound cortisol and lymphocyte populations. The same was done on the 40th day of hospitalization. During the therapy a significant decrease in SCL-90-R psychiatric symptoms scores and a significant increase in CD4 lymphocyte count was observed in the investigation group. The cortisol values were significantly, but equally decreased in both groups, the same was with the liver enzymes and the total bilirubin values. We conclude that abstinence causes a major stress for the patients. The use of food supplement containing D-phenylalanine, L-glutamine and L-5-hydroxytriptophan alleviates the withdrawal symptoms and causes a rise in CD4 lymphocyte population, but it dose not affect the serum cortisol levels, which are probably more affected by liver inflammation and the liver restitution.

  9. Hypoosmotic swelling modifies glutamate-glutamine cycle in the cerebral cortex and in astrocyte cultures

    PubMed Central

    Hyzinski-García, María C.; Vincent, Melanie Y.; Haskew-Layton, Renée E.; Dohare, Preeti; Keller, Richard W.; Mongin, Alexander A.

    2011-01-01

    In our previous work, we found that perfusion of the rat cerebral cortex with hypoosmotic medium triggers massive release of the excitatory amino acid L-glutamate but decreases extracellular levels of L-glutamine (R.E. Haskew-Layton et al., PLoS ONE, 3: e3543). The release of glutamate was linked to activation of volume-regulated anion channels (VRAC), while mechanism(s) responsible for alterations in extracellular glutamine remained unclear. When mannitol was added to the hypoosmotic medium in order to reverse reductions in osmolarity, changes in microdialysate levels of glutamine were prevented, indicating an involvement of cellular swelling. Since the main source of brain glutamine is astrocytic synthesis and export, we explored the impact of hypoosmotic medium on glutamine synthesis and transport in rat primary astrocyte cultures. In astrocytes, a 40% reduction in medium osmolarity moderately stimulated the release of L-[3H]glutamine by ~2-fold and produced no changes in L-[3H]glutamine uptake. In comparison, hypoosmotic medium stimulated the release of glutamate (traced with D[3H]aspartate) by more than 20-fold. In whole-cell enzymatic assays, we discovered that hypoosmotic medium caused a 20% inhibition of astrocytic conversion of L[3H]glutamate into L-[3H]glutamine by glutamine synthetase. Using an HPLC assay we further found a 35% reduction in intracellular levels of endogenous glutamine. Overall, our findings suggest that cellular swelling (1) inhibits astrocytic glutamine synthetase activity, and (2) reduces substrate availability for this enzyme due to the activation of VRAC. These combined effects likely lead to reductions in astrocytic glutamine export in vivo and may partially explain occurrence of hyperexcitability and seizures in human hyponatremia. PMID:21517854

  10. Glutamine Assimilation and Feedback Regulation of L-acetyl-N-glutamate Kinase Activity in Chlorella variabilis NC64A Results in Changes in Arginine Pools.

    PubMed

    Minaeva, Ekaterina; Forchhammer, Karl; Ermilova, Elena

    2015-11-01

    Glutamine is a metabolite of central importance in nitrogen metabolism of microorganisms and plants. The Chlorella PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase (NAGK) that leads to arginine formation. We provide evidence that glutamine promotes effective growth of C. variabilis strain NC64A. The present study shows that externally supplied glutamine directly influences the internal pool of arginine in NC64A. Glutamine synthetase (GS) catalyzes the ATP-dependent conversion of glutamate and ammonium to glutamine. The results of this study demonstrate that glutamine acts as a negative effector of GS activity. These data emphasize the importance of glutamine-dependent coupling of metabolism and signaling as components of an efficient pathway allowing the maintenance of metabolic homeostasis and sustaining growth of Chlorella. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Preoperative carbohydrate load and intraoperatively infused omega-3 polyunsaturated fatty acids positively impact nosocomial morbidity after coronary artery bypass grafting: a double-blind controlled randomized trial.

    PubMed

    Feguri, Gibran Roder; de Lima, Paulo Ruiz Lúcio; de Cerqueira Borges, Danilo; Toledo, Laura Ramos; Batista, Larissa Nadaf; E Silva, Thaís Carvalho; Segri, Neuber José; de Aguilar-Nascimento, José Eduardo

    2017-04-20

    A strategy of limited preoperative fasting, with carbohydrate (CHO) loading and intraoperative infusion of omega-3 polyunsaturated fatty acids (ω-3 PUFA), has seldom been tried in cardiovascular surgery. Brief fasting, followed by CHO intake 2 h before anesthesia, may improve recovery from CABG procedures and lower perioperative vasoactive drug requirements. Infusion of ω-3 PUFA may reduce occurrences of postoperative atrial fibrillation (POAF) and shorten hospital stays. The aim of this study was to assess morbidity (especially POAF) in ICU patients after coronary artery bypass grafting (CABG)/cardiopulmonary bypass (CPB) in combination, if preoperative fasts are curtailed in favor of CHO loading, and ω-3 PUFA are infused intraoperatively. Fifty-seven patients undergoing CABG were randomly assigned to receive 12.5% maltodextrin (200 ml, 2 h before anesthesia), without infusing ω-3 PUFA (CHO, n = 14); water (200 ml, 2 h before anesthesia), without infusing ω-3 PUFA (controls, n = 14); 12.5% maltodextrin (200 ml, 2 h before anesthesia) plus intraoperative ω-3 PUFA (0.2 mcg/kg) (CHO + W3, n = 15); or water (200 ml, 2 h before anesthesia) plus intraoperative ω-3 PUFA (0.2 mcg/kg) (W3, n = 14). Perioperative clinical variables and mortality were analyzed, examining the incidence of POAF, as well as the need for inotropic vasoactive drugs during surgery and in ICU. Two deaths occurred (3.5%), but there were no instances of bronchoaspiration and mediastinitis. Neither ICU stays nor total postoperative stays differed by group (P > 0.05). Patients given preoperative CHO loads (CHO and CHO + W3 groups) experienced fewer instances of hospital infection (RR = 0.29, 95%CI 0.09-0.94; P = 0.023) and were less reliant on vasoactive amines during surgery (RR = 0.60, 95% CI 0.38-0.94; P = 0.020). Similarly, the number of patients requiring vasoactive drugs while recovering in ICU differed significantly by group (P = 0

  12. The Use of Protein Hydrolysates for Weed Control

    NASA Astrophysics Data System (ADS)

    Christians, Nick; Liu, Dianna; Unruh, Jay Bryan

    Corn gluten meal, the protein fraction of corn (Zea mays L.) grain, is commercially used as a natural weed control agent and nitrogen source in horticultural crops and in the turf and ornamental markets. Corn gluten hydrolysate, a water soluble form of gluten meal, has also been proposed for the same purpose, although it could be sprayed on the soil rather than applied in the granular form. Five depeptides, glutaminyl-glutamine (Gln-Gln), glycinyl-alanine (Gly-Ala), alanyl-­glutamine (Ala-Glu), alanyl-asparagine (Ala-Asp), and alaninyl-alanine (Ala-Ala) and a pentapeptide leucine-serine-proline-alanine-glutamine (Leu-Ser-Pro-Ala-Gln) were identified as the active components of the hydrolysate. Microscopic analysis revealed that Ala-Ala acted on some metabolic process rather than directly on the mitotic apparatus. Similar to the chloracetamides and sulfonyl-urea hebicides, Ala-Ala inhibits cell division rather than disrupting of cell division processes. Cellular ultrastructure changes caused by exposure to Ala-Ala implicate Ala-Ala as having membrane-disrupting characteristics similar to several synthetic herbicides. The potential use of the hydrolysate and the peptides as weed controls is discussed.

  13. Multicentre randomized controlled trial comparing ferric(III)carboxymaltose infusion with oral iron supplementation in the treatment of preoperative anaemia in colorectal cancer patients.

    PubMed

    Borstlap, W A A; Buskens, C J; Tytgat, K M A J; Tuynman, J B; Consten, E C J; Tolboom, R C; Heuff, G; van Geloven, N; van Wagensveld, B A; C A Wientjes, C A; Gerhards, M F; de Castro, S M M; Jansen, J; van der Ven, A W H; van der Zaag, E; Omloo, J M; van Westreenen, H L; Winter, D C; Kennelly, R P; Dijkgraaf, M G W; Tanis, P J; Bemelman, W A

    2015-06-28

    At least a third of patients with a colorectal carcinoma who are candidate for surgery, are anaemic preoperatively. Preoperative anaemia is associated with increased morbidity and mortality. In general practice, little attention is paid to these anaemic patients. Some will have oral iron prescribed others not. The waiting period prior to elective colorectal surgery could be used to optimize a patients' physiological status. The aim of this study is to determine the efficacy of preoperative intravenous iron supplementation in comparison with the standard preoperative oral supplementation in anaemic patients with colorectal cancer. In this multicentre randomized controlled trial, patients with an M0-staged colorectal carcinoma who are scheduled for curative resection and with a proven iron deficiency anaemia are eligible for inclusion. Main exclusion criteria are palliative surgery, metastatic disease, neoadjuvant chemoradiotherapy (5 × 5 Gy = no exclusion) and the use of Recombinant Human Erythropoietin within three months before inclusion or a blood transfusion within a month before inclusion. Primary endpoint is the percentage of patients that achieve normalisation of the haemoglobin level between the start of the treatment and the day of admission for surgery. This study is a superiority trial, hypothesizing a greater proportion of patients achieving the primary endpoint in favour of iron infusion compared to oral supplementation. A total of 198 patients will be randomized to either ferric(III)carboxymaltose infusion in the intervention arm or ferrofumarate in the control arm. This study will be performed in ten centres nationwide and one centre in Ireland. This is the first randomized controlled trial to determine the efficacy of preoperative iron supplementation in exclusively anaemic patients with a colorectal carcinoma. Our trial hypotheses a more profound haemoglobin increase with intravenous iron which may contribute to a superior optimisation of

  14. Enteral nutrition supplemented with L-glutamine in patients with systemic inflammatory response syndrome due to pulmonary infection.

    PubMed

    Cavalcante, Ana Augusta Monteiro; Campelo, Márcio Wilker Soares; de Vasconcelos, Marcelo Pinho Pessoa; Ferreira, Camila Marques; Guimarães, Sergio Botelho; Garcia, José Huygens Parente; de Vasconcelos, Paulo Roberto Leitão

    2012-04-01

    To evaluate the effect of enteral nutrition (EN) supplemented with l-glutamine on glycolytic parameters, inflammation, immune function, and oxidative stress in moderately ill intensive care patients with sepsis. Thirty patients received EN. Fifteen patients received EN supplemented with glutamine (30 g; GLN group) for 2 d followed by EN supplemented with calcium caseinate (30 g, CAS group), also over 2 d. The other 15 patients received EN with calcium caseinate (30 g; CAS group) for 2 d followed by EN with glutamine (30 g; GLN group), also over 2 days. One washout day with only EN was provided between every 2-d period of EN plus supplementation to all patients. Blood samples were taken before and after supplementation. There were no changes in glycolytic parameters in either group. Leukocytes decreased in the two groups (from 13 650 to 11 500 in the CAS group, P = 0.019; from 12.850 to 11.000 in the GLN group, P = 0.046). Lymphocytes increased in the GLN group (from 954 to 1916, P < 0.0001) and were more numerous after glutamine supplementation (from 1916 to 1085, P < 0.0001, GLN versus CAS). No significant changes were observed in interleukin levels, but urea levels were higher in the GLN compared with the CAS group (50.0-47.0, P = 0.030). Glutathione plasma concentrations did not differ significantly between the groups. No significant changes were observed in the plasma glutamine and glutamate concentrations. The EN supplemented with glutamine increased the lymphocyte count and helped to decrease lipid peroxidation but presented no effect on the antioxidant glutathione capacity and on cytokine concentrations or glycolytic parameters. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Does an L-glutamine-containing, Glucose-free, Oral Rehydration Solution Reduce Stool Output and Time to Rehydrate in Children with Acute Diarrhoea? A Double-blind Randomized Clinical Trial

    PubMed Central

    Gutiérrez, Claudia; Villa, Sofía; Mota, Felipe R.; Calva, Juan J.

    2007-01-01

    This study assessed whether an oral rehydration solution (ORS) in which glucose is replaced by L-glutamine (L-glutamine ORS) is more effective than the standard glucose-based rehydration solution recommended by the World Health Organization (WHO-ORS) in reducing the stool volume and time to rehydrate in acute diarrhoea. In a double-blind, randomized controlled trial in a Mexican hospital, 147 dehydrated children, aged 1–60 month(s), were assigned either to the WHO-ORS (74 children), or to the L-glutamine ORS (73 children) and followed until successful rehydration. There were no significant differences between the groups in stool output during the first four hours, time to successful rehydration, volume of ORS required for rehydration, urinary output, and vomiting. This was independent of rotavirus-associated infection. An L-glutamine-containing glucose-free ORS seems not to offer greater clinical benefit than the standard WHO-ORS in mildly-to-moderately-dehydrated children with acute non-cholera diarrhoea. PMID:18330060

  16. Prolonged preoperative fasting in elective surgical patients: why should we reduce it?

    PubMed

    Pimenta, Gunther Peres; de Aguilar-Nascimento, José Eduardo

    2014-02-01

    Despite the abundance of evidence to the contrary, 6-8 hours of total preoperative fasting is still considered essential by many surgeons and anesthesiologists, based on the strength of old concepts. Patients frequently end up fasting for 12 hours or more because of delays and changes in operating room schedules. The metabolic response to long fasting leads to intensification of the organic response occurring after trauma, which is mainly manifested as increased insulin resistance, an acute-phase response, and loss of lean body mass. In fact, there has not been any evidence indicating that a shorter fast of 2-3 hours, which includes oral clear or carbohydrate (CHO)-rich (12.5% carbohydrates, 50 kcal/100 mL) fluids, results in an increased risk of aspiration, regurgitation, or related morbidity compared with the standard policy of "nil by mouth after midnight." In addition, preoperative treatment with CHO-rich fluids may reduce postoperative discomfort and, for patients undergoing major abdominal surgery, may decrease the duration of postoperative hospitalization. New formulas for preoperative oral fluids containing amino acid or protein such as glutamine or whey protein are also potential candidates for early preoperative treatment and merit further study.

  17. Does oral glutamine improve insulin sensitivity in adolescents with type 1 diabetes?

    PubMed

    Torres-Santiago, Lournaris; Mauras, Nelly; Hossain, Jobayer; Weltman, Arthur L; Darmaun, Dominique

    2017-02-01

    The decline in insulin sensitivity (S I ) associated with puberty increases the difficulty of achieving glycemic control in adolescents with type 1 diabetes (T1D). The aim of this study was to determine whether glutamine supplementation affects blood glucose by enhancing S I in adolescents with T1D. Thirteen adolescents with T1D (HbA1C 8.2 ± 0.1%) were admitted to perform afternoon exercise (four 15-min treadmill/5-min rest cycles of exercise) on two occasions within a 4-wk period. They were randomized to receive a drink containing either glutamine (0.25 g/kg) or placebo before exercise, at bedtime, and early morning in a double-blind, crossover design. Blood glucose was monitored overnight, and a hyperinsulinemic-euglycemic clamp was performed the following morning. Blood glucose concentration dropped comparably during exercise on both days. However, the total number of nocturnal hypoglycemic events (17 versus 7, P = 0.045) and the cumulative probability of overnight hypoglycemia (50% versus 33%, P = 0.02) were higher on the glutamine day than on the placebo day. During clamp, glucose infusion rate was not affected by glutamine supplementation (7.7 ± 1 mg • kg -1 • min -1 versus 7.0 ± 1; glutamine versus placebo; P = 0.4). Oral glutamine supplementation decreases blood glucose in adolescents with T1D after exercise. Insulin sensitivity, however, was unaltered during the euglycemic clamp. Although the mechanisms involved remain to be elucidated, studies to explore the potential use of glutamine to improve blood glucose control are needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Supplementation with L-glutamine prevents tumor growth and cancer-induced cachexia as well as restores cell proliferation of intestinal mucosa of Walker-256 tumor-bearing rats.

    PubMed

    Martins, Heber Amilcar; Sehaber, Camila Caviquioli; Hermes-Uliana, Catchia; Mariani, Fernando Augusto; Guarnier, Flavia Alessandra; Vicentini, Geraldo Emílio; Bossolani, Gleison Daion Piovezana; Jussani, Laraine Almeida; Lima, Mariana Machado; Bazotte, Roberto Barbosa; Zanoni, Jacqueline Nelisis

    2016-12-01

    This study aimed to evaluate the intestinal mucosa of the duodenum and jejunum of Walker-256 tumor-bearing rats supplemented with L-glutamine. Thirty-two male 50-day-old Wistar rats (Rattus norvegicus) were randomly divided into four groups: control (C), control supplemented with 2 % L-glutamine (GC), Walker-256 tumor (WT), and Walker-256 tumor supplemented with 2 % L-glutamine (TWG). Walker-256 tumor was induced by inoculation viable tumor cells in the right rear flank. After 10 days, celiotomy was performed and duodenal and jejunal tissues were removed and processed. We evaluated the cachexia index, proliferation index, villus height, crypt depth, total height of the intestinal wall, and number of goblet cells by the technique of periodic acid-Schiff (PAS). Induction of Walker-256 tumor promoted a reduction of metaphase index in the TW group animals, which was accompanied by a reduction in the villous height and crypt depths, resulting in atrophy of the intestinal wall as well as increased PAS-positive goblet cells. Supplementation with L-glutamine reduced the tumor growth and inhibited the development of the cachectic syndrome in animals of the TWG group. Furthermore, amino acid supplementation promoted beneficial effects on the intestinal mucosa in the TWG animals through restoration of the number of PAS-positive goblet cells. Therefore, supplementation with 2 % L-glutamine exhibited a promising role in the prevention of tumor growth and cancer-associated cachexia as well as restoring the intestinal mucosa in the duodenum and jejunum of Walker-256 tumor-bearing rats.

  19. Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia

    PubMed Central

    Willems, Lise; Jacque, Nathalie; Jacquel, Arnaud; Neveux, Nathalie; Trovati Maciel, Thiago; Lambert, Mireille; Schmitt, Alain; Poulain, Laury; Green, Alexa S.; Uzunov, Madalina; Kosmider, Olivier; Radford-Weiss, Isabelle; Moura, Ivan Cruz; Auberger, Patrick; Ifrah, Norbert; Bardet, Valérie; Chapuis, Nicolas; Lacombe, Catherine; Mayeux, Patrick; Tamburini, Jérôme

    2013-01-01

    Cancer cells require nutrients and energy to adapt to increased biosynthetic activity, and protein synthesis inhibition downstream of mammalian target of rapamycin complex 1 (mTORC1) has shown promise as a possible therapy for acute myeloid leukemia (AML). Glutamine contributes to leucine import into cells, which controls the amino acid/Rag/mTORC1 signaling pathway. We show in our current study that glutamine removal inhibits mTORC1 and induces apoptosis in AML cells. The knockdown of the SLC1A5 high-affinity transporter for glutamine induces apoptosis and inhibits tumor formation in a mouse AML xenotransplantation model. l-asparaginase (l-ase) is an anticancer agent also harboring glutaminase activity. We show that l-ases from both Escherichia coli and Erwinia chrysanthemi profoundly inhibit mTORC1 and protein synthesis and that this inhibition correlates with their glutaminase activity levels and produces a strong apoptotic response in primary AML cells. We further show that l-ases upregulate glutamine synthase (GS) expression in leukemic cells and that a GS knockdown enhances l-ase–induced apoptosis in some AML cells. Finally, we observe a strong autophagic process upon l-ase treatment. These results suggest that l-ase anticancer activity and glutamine uptake inhibition are promising new therapeutic strategies for AML. PMID:24014241

  20. Advanced drug delivery of N-acetylcarnosine (N-acetyl-beta-alanyl-L-histidine), carcinine (beta-alanylhistamine) and L-carnosine (beta-alanyl-L-histidine) in targeting peptide compounds as pharmacological chaperones for use in tissue engineering, human disease management and therapy: from in vitro to the clinic.

    PubMed

    Babizhayev, Mark A; Yegorov, Yegor E

    2010-11-01

    A pharmacological chaperone is a relatively new concept in the treatment of certain chronic disabling diseases. Cells maintain a complete set of functionally competent proteins normally and in the face of injury or environmental stress with the use of various mechanisms, including systems of proteins called molecular chaperones. Proteins that are denatured by any form of proteotoxic stress are cooperatively recognized by heat shock proteins (HSP) and directed for refolding or degradation. Under non-denaturing conditions HSP have important functions in cell physiology such as in transmembrane protein transport and in enabling assembly and folding of newly synthesized polypeptides. Besides cellular molecular chaperones, which are stress-induced proteins, there have been recently reported chemical, or so-called pharmacological chaperones with demonstrated ability to be effective in preventing misfolding of different disease causing proteins, specifically in the therapeutic management of sight-threatening eye diseases, essentially reducing the severity of several neurodegenerative disorders (such as age-related macular degeneration), cataract and many other protein-misfolding diseases. This work reviews the biological and therapeutic activities protected with the patents of the family of imidazole-containing peptidomimetics Carcinine (β-alanylhistamine), N-acetylcarnosine (N-acetyl-β-alanylhistidine) and Carnosine (β-alanyl-L-histidine) which are essential constituents possessing diverse biological and pharmacological chaperone properties in human tissues.

  1. Effect of total parenteral nutrition, systemic sepsis, and glutamine on gut mucosa in rats

    NASA Technical Reports Server (NTRS)

    Yoshida, S.; Leskiw, M. J.; Schluter, M. D.; Bush, K. T.; Nagele, R. G.; Lanza-Jacoby, S.; Stein, T. P.

    1992-01-01

    The effect of the combination of total parenteral nutrition (TPN) and systemic sepsis on mucosal morphology and protein synthesis was investigated. Rats were given a standard TPN mixture consisting of glucose (216 kcal.kg-1.day-1), lipid (24 kcal.kg-1.day-1), and amino acids (1.5 g N.kg-1.day-1) for 5 days. On the 5th day the rats (n = 37) were randomized into four groups according to diet as follows: 1) control nonseptic on standard TPN, 2) control nonseptic on TPN with glutamine, 3) septic on standard TPN, and 4) septic with the TPN supplemented with glutamine. Twenty hours after the injection of Escherichia coli, the rats were given a 4-h constant infusion of [U-14C]leucine to determine the mucosal fractional protein synthesis rates. The following results were obtained. 1) Histological examination showed that systemic sepsis caused tissue damage to the ileum and jejunum. 2) Glutamine supplementation attenuated these changes. 3) There were no visible changes to the colon either from glutamine supplementation or sepsis. 4) Sepsis was associated with an increase in mucosal protein synthesis and decreased muscle synthesis. 5) Addition of glutamine to the TPN mix further increased protein synthesis in the intestinal mucosa of septic rats.

  2. Seventy day safety assessment of an orally ingested, l-glutamine-containing oat and yeast supplement for horses.

    PubMed

    Lindinger, Michael I; Anderson, Scott C

    2014-10-01

    We describe a safety assessment of an oral supplement designed to nutritionally support the gastrointestinal system of horses. The supplement comprised a mixture of essential (l-threonine) and conditionally essential (l-glutamine) amino acids, polar lipids, oat bran rich in beta glucans and yeast extract. Young (1-2years) horses of both sexes were allocated to control (n=7) and treatment groups (n=7) and studied for 9weeks. Horses in the treatment group received the supplement daily for 8weeks. After 8weeks of supplementation, horses were studied for one additional week. Outcome measures included body mass, weight gain, results of clinical examination, hematology and plasma chemistry. There were no adverse events associated with supplementation and horses in both groups showed normal weight gain, clinical signs, hematology and chemistry. l-Glutamine, which is not yet listed as GRAS, was considered with respect to its potential for nutritional support and safety when ingested orally. It is concluded that this oral supplement, when ingested by horses at twice the recommended daily level, was safe and does not pose a health risk when used in accordance with good feeding practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Nonnutritive effects of glutamine.

    PubMed

    Roth, Erich

    2008-10-01

    Glutamine is the most abundant free amino acid of the human body. Besides its role as a constituent of proteins and its importance in amino acid transamination, glutamine has regulatory capacity in immune and cell modulation. Glutamine deprivation reduces proliferation of lymphocytes, influences expression of surface activation markers on lymphocytes and monocytes, affects the production of cytokines, and stimulates apoptosis. Moreover, glutamine administration seems to have a positive effect on glucose metabolism in the state of insulin resistance. Glutamine influences a variety of different molecular pathways. Glutamine stimulates the formation of heat shock protein 70 in monocytes by enhancing the stability of mRNA, influences the redox potential of the cell by enhancing the formation of glutathione, induces cellular anabolic effects by increasing the cell volume, activates mitogen-activated protein kinases, and interacts with particular aminoacyl-transfer RNA synthetases in specific glutamine-sensing metabolism. Glutamine is applied under clinical conditions as an oral, parenteral, or enteral supplement either as the single amino acid or in the form of glutamine-containing dipeptides for preventing mucositis/stomatitis and for preventing glutamine-deficiency in critically ill patients. Because of the high turnover rate of glutamine, even high amounts of glutamine up to a daily administration of 30 g can be given without any important side effects.

  4. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  5. The effects of oral liquid and intravenous glutamine on bowel adaptation in a rabbit short bowel syndrome model.

    PubMed

    Tekın, Ahmet; Yemış, Mustafa; Küçükkartallar, Tevfik; Vatansever, Celalettin; Çakir, Murat; Yilmaz, Hüseyin; Toy, Hatice; Özer, Şükru

    2010-09-01

    The aim of this study was to examine whether liquid glutamine given to rabbits after resection is as effective as intravenous (i.v.) glutamine and to study the positive effects of glutamine on mucosal atrophy that occurs after bowel resection. Thirty rabbits with an average weight of 2500 g were used. On the third day, 30 rabbits were divided into three groups as follows: Group I (controls): bowel resection + oral total parenteral nutrition, Group II (oral liquid L-glutamine): Bowel resection + oral total parenteral nutrition + oral liquid L-glutamine, and Group III (i.v. L-glutamine): bowel resection + oral total parenteral nutrition + i.v. L-glutamine. On the postoperative 7th day, all subjects were sacrificed to examine intestinal adaptation indicators. There was an increase in average villus height and crypt depth in Group III compared to the other groups (p=0.0001). In Group II, the villus height and crypt depth increased more than in Group I, but the difference was less significant (p=0.038). There was no significant difference between groups in terms of average goblet cell proliferation. In our experimental study, it was observed that the orally given L-glutamine liquid in the rabbit intestinal adaptation model prevented mucosal atrophy after 50% bowel resection and even increased mucosa mass. However, i.v. glutamine led to similar and even better results. Neither route of glutamine administration was determined to have an effect on goblet cell proliferation.

  6. Experimental Cancer Cachexia Changes Neuron Numbers and Peptide Levels in the Intestine: Partial Protective Effects after Dietary Supplementation with L-Glutamine

    PubMed Central

    Vicentini, Geraldo E.; Fracaro, Luciane; de Souza, Sara R. G.; Martins, Heber A.; Guarnier, Flávia A.; Zanoni, Jacqueline N.

    2016-01-01

    Gastrointestinal dysmotility frequently occurs in cancer cachexia and may result from damage to enteric innervation caused by oxidative stress, especially due to glutathione depletion. We assessed the effect of dietary supplementation with 20 g/kg l-glutamine (a glutathione precursor) on the intrinsic innervation of the enteric nervous system in healthy and Walker 256 tumor-bearing Wistar rats during the development of experimental cachexia (14 days), in comparison with non-supplemented rats, by using immunohistochemical methods and Western blotting. The total neural population and cholinergic subpopulation densities in the myenteric plexus, as well as the total population and VIPergic subpopulation in the submucosal plexus of the jejunum and ileum, were reduced in cachectic rats, resulting in adaptive morphometric alterations and an increase in vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) expression, suggesting a neuroplastic response. l-glutamine supplementation prevented decrease in myenteric neuronal density in the ileum, morphometric alterations in the neurons and nerve fibers (in both the plexuses of the jejunum and ileum), and the overexpression of VIP and CGRP. Cancer cachexia severely affected the intrinsic innervation of the jejunum and ileum to various degrees and this injury seems to be associated with adaptive neural plasticity. l-glutamine supplementation presented partial protective effects on the enteric innervation against cancer cachexia, possibly by attenuating oxidative stress. PMID:27635657

  7. Experimental Cancer Cachexia Changes Neuron Numbers and Peptide Levels in the Intestine: Partial Protective Effects after Dietary Supplementation with L-Glutamine.

    PubMed

    Vicentini, Geraldo E; Fracaro, Luciane; de Souza, Sara R G; Martins, Heber A; Guarnier, Flávia A; Zanoni, Jacqueline N

    2016-01-01

    Gastrointestinal dysmotility frequently occurs in cancer cachexia and may result from damage to enteric innervation caused by oxidative stress, especially due to glutathione depletion. We assessed the effect of dietary supplementation with 20 g/kg l-glutamine (a glutathione precursor) on the intrinsic innervation of the enteric nervous system in healthy and Walker 256 tumor-bearing Wistar rats during the development of experimental cachexia (14 days), in comparison with non-supplemented rats, by using immunohistochemical methods and Western blotting. The total neural population and cholinergic subpopulation densities in the myenteric plexus, as well as the total population and VIPergic subpopulation in the submucosal plexus of the jejunum and ileum, were reduced in cachectic rats, resulting in adaptive morphometric alterations and an increase in vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) expression, suggesting a neuroplastic response. l-glutamine supplementation prevented decrease in myenteric neuronal density in the ileum, morphometric alterations in the neurons and nerve fibers (in both the plexuses of the jejunum and ileum), and the overexpression of VIP and CGRP. Cancer cachexia severely affected the intrinsic innervation of the jejunum and ileum to various degrees and this injury seems to be associated with adaptive neural plasticity. l-glutamine supplementation presented partial protective effects on the enteric innervation against cancer cachexia, possibly by attenuating oxidative stress.

  8. Glutamine Synthetase Is a Genetic Determinant of Cell Type–Specific Glutamine Independence in Breast Epithelia

    PubMed Central

    Kung, Hsiu-Ni; Marks, Jeffrey R.; Chi, Jen-Tsan

    2011-01-01

    Although significant variations in the metabolic profiles exist among different cells, little is understood in terms of genetic regulations of such cell type–specific metabolic phenotypes and nutrient requirements. While many cancer cells depend on exogenous glutamine for survival to justify the therapeutic targeting of glutamine metabolism, the mechanisms of glutamine dependence and likely response and resistance of such glutamine-targeting strategies among cancers are largely unknown. In this study, we have found a systematic variation in the glutamine dependence among breast tumor subtypes associated with mammary differentiation: basal- but not luminal-type breast cells are more glutamine-dependent and may be susceptible to glutamine-targeting therapeutics. Glutamine independence of luminal-type cells is associated mechanistically with lineage-specific expression of glutamine synthetase (GS). Luminal cells can also rescue basal cells in co-culture without glutamine, indicating a potential for glutamine symbiosis within breast ducts. The luminal-specific expression of GS is directly induced by GATA3 and represses glutaminase expression. Such distinct glutamine dependency and metabolic symbiosis is coupled with the acquisition of the GS and glutamine independence during the mammary differentiation program. Understanding the genetic circuitry governing distinct metabolic patterns is relevant to many symbiotic relationships among different cells and organisms. In addition, the ability of GS to predict patterns of glutamine metabolism and dependency among tumors is also crucial in the rational design and application of glutamine and other metabolic pathway targeted therapies. PMID:21852960

  9. Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients.

    PubMed

    Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang

    2004-03-01

    Glutamine is an important energy source in intestinal mucosa, the small intestine is the major organ of glutamine uptake and metabolism and plays an important role in the maintenance of whole body glutamine homeostasis. The purpose of this clinical study is to observe the protection effects of enteral supplement with glutamine granules on intestinal mucosal barrier function in severe burned patients. Forty-eight severe burn patients (total burn surface area 30-75%, full thickness burn area 20-85%) were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). Glutamine granules 0.5 g/kg were supplied orally for 14 days in Gln group, and the same dosage of placebo were given for 14 days in B group. The plasma level of glutamine, endotoxin and the activity of diamine oxidase (DAO), as well as intestinal mucosal permeability were determined. The results showed that the levels of plasma endotoxin, activity and urinary lactulose and mannitol (L/M) ratio in all patients were significant higher than that of normal control. After taking glutamine granules for 14 days, plasma glutamine concentration was significantly higher in Gln group than that in B group (607.86+/-147.25 microM/l versus 447.63 +/- 132.28 microM/l, P < 0.01). On the other hand, the levels of plasma DAO activity and urinary L/M ratio in Gln group were lower than those in B group. In addition, the wound healing was better and hospital stay days were reduced in the Gln group (46.59 +/- 12.98 days versus 55.68 +/- 17.36 days, P < 0.05). These results indicated that glutamine granules taken orally could abate the degree of intestine injury, lessen intestinal mucosal permeability, ameliorate wound healing and reduce hospital stay.

  10. Oral glutamine and amino acid supplementation inhibit whole-body protein degradation in children with Duchenne muscular dystrophy.

    PubMed

    Mok, Elise; Eléouet-Da Violante, Catherine; Daubrosse, Christel; Gottrand, Frédéric; Rigal, Odile; Fontan, Jean-Eudes; Cuisset, Jean-Marie; Guilhot, Joëlle; Hankard, Régis

    2006-04-01

    Glutamine has been shown to acutely decrease whole-body protein degradation in Duchenne muscular dystrophy (DMD). To improve nutritional support in DMD, we tested whether oral supplementation with glutamine for 10 d decreased whole-body protein degradation significantly more than did an isonitrogenous amino acid control mixture. Twenty-six boys with DMD were included in this randomized, double-blind parallel study; they received an oral supplement of either glutamine (0.5 g . kg(-1) . d(-1)) or an isonitrogenous, nonspecific amino acid mixture (0.8 g . kg(-1) . d(-1)) for 10 d. The subjects in each group were not clinically different at entry. Leucine and glutamine metabolisms were estimated in the postabsorptive state by using a primed continuous intravenous infusion of [1-(13)C]leucine and [2-(15)N]glutamine before and 10 d after supplementation. A significant effect of time was observed on estimates of whole-body protein degradation. A significant (P < 0.05) decrease in the rate of leucine appearance (an index of whole-body protein degradation) was observed after both glutamine and isonitrogenous amino acid supplementation [x +/-SEM: 136 +/- 9 to 124 +/- 6 micromol . kg fat-free mass (FFM)(-1) . h(-1) for glutamine and 136 +/- 6 to 131 +/- 8 micromol . kg FFM(-1) . h(-1) for amino acids]. A significant (P < 0.05) decrease in endogenous glutamine due to protein breakdown was also observed (91 +/- 6 to 83 +/- 4 micromol . kg FFM(-1) . h(-1) for glutamine and 91 +/- 4 to 88 +/- 5 micromol . kg FFM(-1) . h(-1) for amino acids). The decrease in the estimates of whole-body protein degradation did not differ significantly between the 2 supplemental groups. Oral glutamine or amino acid supplementation over 10 d equally inhibits whole-body protein degradation in DMD.

  11. L-glutamine is a key parameter in the immunosuppression phenomenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammami, Ines; Chen, Jingkui; Bronte, Vincenzo

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer The absence of L-Gln inhibited iNOS activity, but not ARG1 one. Black-Right-Pointing-Pointer MSC-1 cells were able to inhibit Jurkat cell growth, but not their viability. Black-Right-Pointing-Pointer Absence of L-Gln down-regulated central carbon metabolism and L-Arg recycling. Black-Right-Pointing-Pointer Absence of L-Gln deteriorated cell bioenergetic status. Black-Right-Pointing-Pointer L-Gln is crucial for iNOS-mediated immunosuppression activity. -- Abstract: Suppression of tumour-specific T-cell functions by myeloid-derived suppressor cells (MDSCs) is a dominant mechanism of tumour escape. MDSCs express two enzymes, i.e. inducible nitric oxide synthase (iNOS) and arginase (ARG1), which metabolize the semi-essential amino acid L-arginine (L-Arg) whose bioavailability is crucial for T-cellmore » proliferation and functions. Recently, we showed that glutaminolysis supports MDSC maturation process by ensuring the supply of intermediates and energy. In this work, we used an immortalized cell line derived from mouse MDSCs (MSC-1 cell line) to further investigate the role of L-glutamine (L-Gln) in the maintenance of MDSC immunosuppressive activity. Culturing MSC-1 cells in L-Gln-limited medium inhibited iNOS activity, while ARG1 was not affected. MSC-1 cells inhibited Jukat cell growth without any noticeable effect on their viability. The characterization of MSC-1 cell metabolic profile revealed that L-Gln is an important precursor of lactate production via the NADP{sup +}-dependent malic enzyme, which co-produces NADPH. Moreover, the TCA cycle activity was down-regulated in the absence of L-Gln and the cell bioenergetic status was deteriorated accordingly. This strongly suggests that iNOS activity, but not that of ARG1, is related to an enhanced central carbon metabolism and a high bioenergetic status. Taken altogether, our results suggest that the control of glutaminolysis fluxes may represent a valuable target for

  12. Effect of abomasal butyrate infusion on gene expression in the duodenum of lambs

    USDA-ARS?s Scientific Manuscript database

    A previous study infusing butyrate into the abomasum of sheep produced increased oxygen, glucose, glutamate, and glutamine uptake by the portal-drained viscera. These changes were thought to be partially due to increases in glycolysis and cell proliferation. The purpose of this study was to evaluate...

  13. Antipeptide antibodies that can distinguish specific subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.)

    NASA Technical Reports Server (NTRS)

    Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.

  14. Comparison of continuous interscalene block and subacromial infusion of local anesthetic for postoperative analgesia after open shoulder surgery.

    PubMed

    Baskan, Semih; Cankaya, Deniz; Unal, Hidayet; Yoldas, Burak; Taspinar, Vildan; Deveci, Alper; Tabak, Yalcin; Baydar, Mustafa

    2017-01-01

    This study compared the efficacy of continuous interscalene block (CISB) and subacromial infusion of local anesthetic (CSIA) for postoperative analgesia after open shoulder surgery. This randomized, prospective, double-blinded, single-center study included 40 adult patients undergoing open shoulder surgery. All patients received a standardized general anesthetic. The patients were separated into group CISB and group CSIA. A loading dose of 40 mL 0.25% bupivacaine was administered and patient-controlled analgesia was applied by catheter with 0.1% bupivacaine 5 mL/h throughout 24 h basal infusion, 2 mL bolus dose, and 20 min knocked time in both groups postoperatively. Visual analog scale (VAS) scores, additional analgesia need, local anesthetic consumption, complications, and side effects were recorded during the first 24 h postoperatively. The range of motion (ROM) score was recorded preoperatively and in the first and third weeks postoperatively. A statistically significant difference was determined between the groups in respect of consumption of local anesthetic, VAS scores, additional analgesia consumption, complications, and side effects, with lower values recorded in the CISB group. There were no significant differences in ROM scoring in the preoperative and postoperative third week between the two groups but there were significant differences in ROM scoring in the postoperative first week, with higher ROM scoring values in the group CISB patients. The results of this study have shown that continuous interscalene infusion of bupivacaine is an effective and safe method of postoperative analgesia after open shoulder surgery.

  15. Antioxidant and antimicrobial properties of Teucrium arduini L. (Lamiaceae) flower and leaf infusions (Teucrium arduini L. antioxidant capacity).

    PubMed

    Samec, D; Gruz, J; Strnad, M; Kremer, D; Kosalec, I; Grubesić, R Jurisić; Karlović, K; Lucic, A; Piljac-Zegarac, J

    2010-01-01

    Antioxidant and antimicrobial activities, as well as total phenol (TP, Folin-Ciocalteu method) and phenolic acid (UPLC-MS/MS) contents of leaf and flower infusions of Teucrium arduini L. from six different mountainous localities in Croatia (Ucka, Vosac, Sveti Jure, Snjeznica, Vaganac, Susanj) were analysed in this study. Antioxidant capacity was evaluated using the ferric reducing/antioxidant power (FRAP) assay, as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging assays. The antioxidant potency composite index (ACI), giving equal weight to all three methods used to quantify antioxidant capacity, was the highest for the sample from Vosac (96.7) among flower infusions, while maximum ACI (100) was determined for the infusion from Ucka among leaf infusions. Strong positive correlation was found between the total phenols and ACI for leaf (r=0.953) and flower (r=0.977) infusions. Our results point to significantly (p<0.05) different TP content between leaf and flower infusions, as well as across localities. Leaf infusions of T. arduini from Susanj exhibited marked antibacterial activity against Staphylococcus aureus, while none of the tested infusions exhibited antimicrobial activity against gram-negative bacterial species, or the tested fungal species. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. [Cardioprotective effects of glutamine in patients with ischemic heart disease operated under conditions of extracorporeal blood circulation].

    PubMed

    Lomivorotov, V V; Efremov, S M; Shmyrev, V A; Ponomarev, D N; Sviatchenko, A V; Kniaz'kova, L G

    2012-01-01

    It was conducted a study of glutamine cardioptotective effects during perioperative use in patients with ischemic heart disease, operated under CB. Exclusion criteria were: left ventricular ejection fraction less than 50%, diabetes melitus, myocardial infarction less than 3 months ago, Patients of the study group (n=25) had glutamine (20% solution N(2)-L-alanine-L-glutamine ("Dipeptiven" Fresenius Kabi, Germany); 0.4 g/kg/day. Patients of control group (n=25) received placebo (0.9% NaCl solution). The main indicators were the dynamics of troponin I, as well as central hemodynamics parameters. On the 1-st day after operation the concentration of troponin I was significantly lower in the glutamine-group compared placebo-group (1.280 (0.840-2.230) 2.410 (1.060-6.600) ng/ml; p=0.035). 4 hours after CB in a glutamine-group also had significantly large indicators of cardiac index (2.58 (2.34-2.91) l/min/m2 vs 2.03 (1.76-2.32)) l/min/m2; p=0,002) and stroke index (32.8 (27.8-36.0.) ml/m2 vs 26.1 (22.6-31.8) ml/m2; p=0.023). Systemic vascular resistance index was significantly lower in glutamine-group (1942 (1828-2209) dyn x s/cm(-5)/m2 vs 2456 (2400-3265) dyn x s/cm(-5)/m2; p=0.001). Conclusion. Perioperative use of N(2)-L-alanine-L-glutamine during the first 24 hours ofperioperative period gives cardioprotective effect in patients with ischemic heart disease operated under CB.

  17. Disruption of the Glutamate–Glutamine Cycle Involving Astrocytes in an Animal Model of Depression for Males and Females

    PubMed Central

    Rappeneau, Virginie; Blaker, Amanda; Petro, Jeff R.; Yamamoto, Bryan K.; Shimamoto, Akiko

    2016-01-01

    controls. When 10 μM of glutamate was infused, these females showed a significant accumulation of glutamate compared to controls. Infusions of glutamate reduced extracellular glutamine for both male and female intruders compared to their respective controls. Conclusion: Twenty-one days of territorial or maternal aggression produced a depressive-like phenotype and impaired astrocytes in both male and female intruders. Disruption of the glutamate–glutamine cycle in the PFC-striatal network may be linked to depressive-like deficits more in females than in males. PMID:28018190

  18. Dosing and efficacy of glutamine supplementation in human exercise and sport training.

    PubMed

    Gleeson, Michael

    2008-10-01

    Some athletes can have high intakes of l-glutamine because of their high energy and protein intakes and also because they consume protein supplements, protein hydrolysates, and free amino acids. Prolonged exercise and periods of heavy training are associated with a decrease in the plasma glutamine concentration and this has been suggested to be a potential cause of the exercise-induced immune impairment and increased susceptibility to infection in athletes. However, several recent glutamine feeding intervention studies indicate that although the plasma glutamine concentration can be kept constant during and after prolonged strenuous exercise, the glutamine supplementation does not prevent the postexercise changes in several aspects of immune function. Although glutamine is essential for lymphocyte proliferation, the plasma glutamine concentration does not fall sufficiently low after exercise to compromise the rate of proliferation. Acute intakes of glutamine of approximately 20-30 g seem to be without ill effect in healthy adult humans and no harm was reported in 1 study in which athletes consumed 28 g glutamine every day for 14 d. Doses of up to 0.65 g/kg body mass of glutamine (in solution or as a suspension) have been reported to be tolerated by patients and did not result in abnormal plasma ammonia levels. However, the suggested reasons for taking glutamine supplements (support for immune system, increased glycogen synthesis, anticatabolic effect) have received little support from well-controlled scientific studies in healthy, well-nourished humans.

  19. Effect of preoperative intravenous carbohydrate loading on preoperative discomfort in elective surgery patients.

    PubMed

    Helminen, Heli; Viitanen, Hanna; Sajanti, Juha

    2009-02-01

    We studied the effect of three different fasting protocols on preoperative discomfort and glucose and insulin levels. Two hundred and ten ASA I-III patients undergoing general or gastrointestinal surgery were randomly assigned to three groups: overnight intravenous 5% glucose infusion (1000 ml), carbohydrate-rich drink (400 ml) at 6-7 a.m., or overnight fasting. The subjective feelings of thirst, hunger, mouth dryness, weakness, tiredness, anxiety, headache and pain of each patient were questioned preoperatively using a visual analogue scale. Serum glucose and insulin levels were measured at predetermined time points preoperatively. During the waiting period before surgery, the carbohydrate-rich drink group was less hungry than the fasting group (P = 0.011). No other differences were seen in visual analogue scale scores among the study groups. Trend analysis showed increasing thirst, mouth dryness and anxiety in the intravenous glucose group (P < 0.05). The carbohydrate-rich drink group experienced decreasing thirst but increasing hunger and mouth dryness (P < 0.05). In the fasting group, thirst, hunger, mouth dryness, weakness, tiredness and anxiety increased (P < 0.05). Both intravenous and oral carbohydrate caused a significant increase in glucose and insulin levels. Intravenous glucose infusion does not decrease the sense of thirst and hunger as effectively as a carbohydrate-rich drink but does alleviate the feelings of weakness and tiredness compared with fasting.

  20. Wetting characteristics and blood clotting on surfaces of copoly(gamma-Benzyl-L-glutamate, gamma-hydroxyethyl-L-glutamine).

    PubMed

    Yano, E; Komai, T; Kawasaki, T; Kaifu, K; Atsuta, T; Kubo, Y; Fujiwara, Y

    1985-09-01

    The film surface of poly(gamma-benzyl-L-glutamate) (PBLG) was modified with 2-aminoethanol to enhance its hydrophilicity. Controlling the reaction conditions of PBLG and 2-aminoethanol, various types of copoly(gamma-benzyl-L-glutamate, gamma-hydroxyethyl-L-glutamine) film surfaces were obtained. Surface free energy (gamma sv), the dispersive component of gamma sv (gamma dsv), the nondispersive component of gamma sv (gamma psv), and the interfacial free energy of polymer surface with water (gamma sw), which were obtained by using the contact angle measurement and calculation method proposed by Andrade et al., were changed remarkably by the aminolysis. The gamma sv value increased after 2 h of aminolysis from 48.2 (PBLG) to 65.3 dyn/cm and gradually increased to around 70 dyn/cm after 12 h reaction. (gamma dsv) and (gamma psv) changed from 31.0 and 17.2 dyn/cm (PBLG) to 26.5 and 44.3 dyn/cm, respectively. These parameters of the material surfaces, modified over 12 h reaction, were found to be similar to those of the surfaces of canine aorta, vein, and human fibrin membrane. Blood clotting times on these polymer surfaces were comparatively longer than on siliconized glass surfaces.

  1. Beta-Endorphin-Induced Cardiorespiratory Depression is Inhibited by Glycyl-L-Glutamine, a Dipeptide Derived from Beta-Endorphin Processing. Appendix 1

    DTIC Science & Technology

    1993-01-01

    Analysis of controversies. Peptides 6, Suppl. 2: 51- 56, 1985. F16rez, J., Mediavilla, A . and Pazos , A .: Respiratory effects of P-endorphin, D-Ala 2-met...GLYCYL-L-GLUTAMINE, A DIPEPTIDE DERIVED L in FROM P-ENDORPHIN PROCESSING1 Can B. Unal, Medge D. Owen-Kummer and William R. MillingtonQ Division of... a -End, •-endorphin; POMC, proopiomelanocortin; MAP, mean arterial pressure; HR, heart rate; i.c.v., intracerebroventricular; i.c., intracisternal

  2. Interrelationships between glutamine and citrulline metabolism.

    PubMed

    Marini, Juan C

    2016-01-01

    This article analyzes the contribution of glutamine to the synthesis of citrulline and reviews the evidence that glutamine supplementation increases citrulline production. Glutamine supplementation has been proposed in the treatment of critically ill patients; however, a recent large multicenter randomized controlled trial resulted in increased mortality in the glutamine-supplemented group. Within this context, defining the contribution of glutamine to the production of citrulline, and thus to de-novo arginine synthesis, has become a pressing issue. The beneficial effects of glutamine supplementation may be partially mediated by the effects of glutamine on citrulline synthesis by the gut and the de-novo synthesis of arginine by the kidney and other tissues. Although there is no strong evidence to support that glutamine is a major precursor for citrulline synthesis in humans, glutamine has the potential to increase overall gut function and in this way increase citrulline production.

  3. Variations in the Degree of d-Alanylation of Teichoic Acids in Lactococcus lactis Alter Resistance to Cationic Antimicrobials but Have No Effect on Bacterial Surface Hydrophobicity and Charge▿

    PubMed Central

    Giaouris, Efstathios; Briandet, Romain; Meyrand, Mickael; Courtin, Pascal; Chapot-Chartier, Marie-Pierre

    2008-01-01

    An increase of the degree of d-alanylation of teichoic acids in Lactococcus lactis resulted in a significant increase of bacterial resistance toward the cationic antimicrobials nisin and lysozyme, whereas the absence of d-alanylation led to a decreased resistance toward the same compounds. In contrast, the same variations of the d-alanylation degree did not modify bacterial cell surface charge and hydrophobicity. Bacterial adhesion to polystyrene and glass surfaces was not modified either. PMID:18539809

  4. Zinc and glutamine improve brain development in suckling mice subjected to early postnatal malnutrition.

    PubMed

    Ladd, Fernando V L; Ladd, Aliny A B L; Ribeiro, Antônio Augusto C M; Costa, Samuel B C; Coutinho, Bruna P; Feitosa, George André S; de Andrade, Geanne M; de Castro-Costa, Carlos Maurício; Magalhães, Carlos Emanuel C; Castro, Ibraim C; Oliveira, Bruna B; Guerrant, Richard L; Lima, Aldo Angelo M; Oriá, Reinaldo B

    2010-06-01

    The effect of zinc and glutamine on brain development was investigated during the lactation period in Swiss mice. Malnutrition was induced by clustering the litter size from 6-7 pups/dam (nourished control) to 12-14 pups/dam (undernourished control) following birth. Undernourished groups received daily supplementation with glutamine by subcutaneous injections starting at day 2 and continuing until day 14. Glutamine (100 mM, 40-80 microL) was used for morphological and behavioral studies. Zinc acetate was added in the drinking water (500 mg/L) to the lactating dams. Synaptophysin and myelin basic protein brain expressions were evaluated by immunoblot. Zinc serum and brain levels and hippocampal neurotransmitters were also evaluated. Zinc with or without glutamine improved weight gain as compared to untreated, undernourished controls. In addition, zinc supplementation improved cliff avoidance and head position during swim behaviors especially on days 9 and 10. Using design-based stereological methods, we found a significant increase in the volume of CA1 neuronal cells in undernourished control mice, which was not seen in mice receiving zinc or glutamine alone or in combination. Undernourished mice given glutamine showed increased CA1 layer volume as compared with the other groups, consistent with the trend toward increased number of neurons. Brain zinc levels were increased in the nourished and undernourished-glutamine treated mice as compared to the undernourished controls on day 7. Undernourished glutamine-treated mice showed increased hippocampal gamma-aminobutyric acid and synaptophysin levels on day 14. We conclude that glutamine or zinc protects against malnutrition-induced brain developmental impairments. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Interrelationships between glutamine and citrulline metabolism

    PubMed Central

    2015-01-01

    Purpose of review To analyze the evidence that glutamine supplementation increases citrulline production. To determine the contribution of glutamine to the synthesis of citrulline. Recent findings Glutamine supplementation has been proposed in the treatment of critically ill patients; however, a recent large multicenter randomized controlled trial resulted in increased mortality in the glutamine supplemented group. Within this context, defining the contribution of glutamine to the production of citrulline, and thus to de novo arginine synthesis, has become a pressing issue. Summary The beneficial effects of glutamine supplementation may be partially mediated by the effects of glutamine on citrulline synthesis by the gut and the de novo synthesis of arginine by the kidney and other tissues. Although there is no strong evidence to support that glutamine is a major precursor for citrulline synthesis in humans, glutamine has the potential to increase overall gut function and in this way increase citrulline production. PMID:26560519

  6. Effects of adding different levels of Glutamine to modified Beltsville extender on the survival of frozen rooster semen.

    PubMed

    Khiabani, Aytak Bakhshayesh; Moghaddam, Gholamali; Kia, Hossein Daghigh

    2017-09-01

    The aim of the present study was to investigate the effects of l-glutamine on the quality of frozen-thawed rooster semen. Semen samples were collected from eight mature roosters (Ross 308). After initial semen assessments, samples of adequate quality were mixed together and diluted with modified Beltsville extender without l-glutamine (control) and supplemented with 2.5, 5, and 7.5mM l-glutamine. Semen straws were subjected to cryopreservation and evaluated twice at 15-day intervals. After thawing, sperm viability, total and progressive sperm motilities were measured by Eosin-Nigrosine and Computer-Aided Sperm Analysis (CASA), respectively. The results showed that sperm functions decreased on day 30 compared to day 15. The extender supplemented with 5mM glutamine improved (p<0.05) sperm viability, total and progressive sperm motilities compared to other treatments and the control group. The best level of glutamine appeared to be 2.5mM, as it provided the highest sperm membrane integrity and the lowest level of abnormalities. The results of this study suggest that the addition of glutamine to the diluent improves semen quality and using glutamine allows rooster sperm to be frozen for longer. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The effect of preoperative nutritional status on postoperative outcomes in children undergoing surgery for congenital heart defects in San Francisco (UCSF) and Guatemala City (UNICAR).

    PubMed

    Radman, Monique; Mack, Ricardo; Barnoya, Joaquin; Castañeda, Aldo; Rosales, Monica; Azakie, Anthony; Mehta, Nilesh; Keller, Roberta; Datar, Sanjeev; Oishi, Peter; Fineman, Jeffrey

    2014-01-01

    The objective of this study was to determine the association between preoperative nutritional status and postoperative outcomes in children undergoing surgery for congenital heart defects (CHD). Seventy-one patients with CHD were enrolled in a prospective, 2-center cohort study. We adjusted for baseline risk differences using a standardized risk adjustment score for surgery for CHD. We assigned a World Health Organization z score for each subject's preoperative triceps skin-fold measurement, an assessment of total body fat mass. We obtained preoperative plasma concentrations of markers of nutritional status (prealbumin, albumin) and myocardial stress (B-type natriuretic peptide [BNP]). Associations between indices of preoperative nutritional status and clinical outcomes were sought. Subjects had a median (interquartile range [IQR]) age of 10.2 (33) months. In the University of California at San Francisco (UCSF) cohort, duration of mechanical ventilation (median, 19 hours; IQR, 29 hours), length of intensive care unit stay (median, 5 days; IQR 5 days), duration of any continuous inotropic infusion (median, 66 hours; IQR 72 hours), and preoperative BNP levels (median, 30 pg/mL; IQR, 75 pg/mL) were associated with a lower preoperative triceps skin-fold z score (P < .05). Longer duration of any continuous inotropic infusion and higher preoperative BNP levels were also associated with lower preoperative prealbumin (12.1 ± 0.5 mg/dL) and albumin (3.2 ± 0.1; P < .05) levels. Lower total body fat mass and acute and chronic malnourishment are associated with worse clinical outcomes in children undergoing surgery for CHD at UCSF, a resource-abundant institution. There is an inverse correlation between total body fat mass and BNP levels. Duration of inotropic support and BNP increase concomitantly as measures of nutritional status decrease, supporting the hypothesis that malnourishment is associated with decreased myocardial function. Copyright © 2014 The American

  8. Infusion dose requirement of rocuronium in patients on phenytoin therapy - A prospective comparative study.

    PubMed

    Sheshadri, Veena; Radhakrishnan, Arathi; Halemani, Kusuma; Keshavan, Venkatesh H

    2017-10-01

    Patients with intracranial tumour are usually on anticonvulsants. Patients on phenytoin therapy demonstrate rapid metabolism of nondepolarising muscle relaxants secondary to enzyme induction. Infusion dose requirement of rocuronium in such patients has been sparingly studied. We studied the continuous infusion dose requirement of rocuronium bromide in patients on phenytoin therapy and its correlation with serum levels of phenytoin. Seventy-five patients scheduled for supratentorial tumour surgery were included in the study. Patients not on phenytoin were taken as control. The primary outcome variable studied was the infusion dose requirement of rocuronium in patients on phenytoin. Based on pre-operative serum phenytoin levels, study group patients were divided into two groups: sub-therapeutic level group (phenytoin level <10 μg/mL) and therapeutic level group (phenytoin level >10 μg/mL). Following anaesthesia induction, rocuronium bromide 0.6 mg/kg was administered to achieve tracheal intubation. Rocuronium infusion was titrated to maintain zero response on the train-of-four response. Demographic data were comparable. Patients receiving phenytoin required higher infusion dose compared to the control group (0.429 ± 0.2 mg/kg/h vs. 0.265 ± 0.15 mg/kg/h, P < 0.001). The serum phenytoin level had no correlation to infusion dose requirement of rocuronium (0.429 ± 0.205 mg/kg/h vs. 0.429 ± 0.265 mg/kg/h ( P = 0.815). The recovery was faster in the phenytoin group compared to the control group. Haowever, it was not clinically significant. The infusion dose requirement of rocuronium bromide in patients on phenytoin is higher and the serum levels of phenytoin does not influence the dose required.

  9. Influence of infusion pump operation and flow rate on hemodynamic stability during epinephrine infusion.

    PubMed

    Klem, S A; Farrington, J M; Leff, R D

    1993-08-01

    To determine whether variations in the flow rate of epinephrine solutions administered via commonly available infusion pumps lead to significant variations in blood pressure (BP) in vivo. Prospective, randomized, crossover study with factorial design, using infusion pumps with four different operating mechanisms (pulsatile diaphragm, linear piston/syringe, cyclic piston-valve, and linear peristaltic) and three drug delivery rates (1, 5, and 10 mL/hr). Two healthy, mixed-breed dogs (12 to 16 kg). Dogs were made hypotensive with methohexital bolus and continuous infusion. BP was restored to normal with constant-dose epinephrine infusion via two pumps at each rate. Femoral mean arterial pressure (MAP) was recorded every 10 secs. Pump-flow continuity was quantitated in vitro using a digital gravimetric technique. Variations in MAP and flow continuity were expressed by the coefficient of variation; analysis of variance was used for comparisons. The mean coefficients of variations for MAP varied from 3.8 +/- 3.1% (linear piston/syringe) to 6.1 +/- 6.6% (linear peristaltic), and from 3.4 +/- 2.2% (10 mL/hr) to 7.9 +/- 6.6% (1 mL/hr). The coefficients of variation for in vitro flow continuity ranged from 9 +/- 8% (linear piston-syringe) to 250 +/- 162% (pulsatile diaphragm), and from 35 +/- 44% (10 mL/hr) to 138 +/- 196% (1 mL/hr). Both the type of pump and infusion rate significantly (p < .001) influenced variation in drug delivery rate. The 1 mL/hr infusion rate significantly (p < .01) influenced MAP variation. Cyclic fluctuations in MAP of < or = 30 mm Hg were observed using the pulsatile diaphragm pump at 1 mL/hr. Factors inherent in the operating mechanisms of infusion pumps may result in clinically important hemodynamic fluctuations when administering a concentrated short-acting vasoactive medication at slow infusion rates.

  10. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion.

    PubMed

    Zhang, Ji; Fan, Jing; Venneti, Sriram; Cross, Justin R; Takagi, Toshimitsu; Bhinder, Bhavneet; Djaballah, Hakim; Kanai, Masayuki; Cheng, Emily H; Judkins, Alexander R; Pawel, Bruce; Baggs, Julie; Cherry, Sara; Rabinowitz, Joshua D; Thompson, Craig B

    2014-10-23

    Many cancer cells consume large quantities of glutamine to maintain TCA cycle anaplerosis and support cell survival. It was therefore surprising when RNAi screening revealed that suppression of citrate synthase (CS), the first TCA cycle enzyme, prevented glutamine-withdrawal-induced apoptosis. CS suppression reduced TCA cycle activity and diverted oxaloacetate, the substrate of CS, into production of the nonessential amino acids aspartate and asparagine. We found that asparagine was necessary and sufficient to suppress glutamine-withdrawal-induced apoptosis without restoring the levels of other nonessential amino acids or TCA cycle intermediates. In complete medium, tumor cells exhibiting high rates of glutamine consumption underwent rapid apoptosis when glutamine-dependent asparagine synthesis was suppressed, and expression of asparagine synthetase was statistically correlated with poor prognosis in human tumors. Coupled with the success of L-asparaginase as a therapy for childhood leukemia, the data suggest that intracellular asparagine is a critical suppressor of apoptosis in many human tumors.

  11. A periplasmic D-alanyl-D-alanine dipeptidase in the gram-negative bacterium Salmonella enterica.

    PubMed

    Hilbert, F; García-del Portillo, F; Groisman, E A

    1999-04-01

    The VanX protein is a D-alanyl-D-alanine (D-Ala-D-Ala) dipeptidase essential for resistance to the glycopeptide antibiotic vancomycin. While this enzymatic activity has been typically associated with vancomycin- and teicoplainin-resistant enterococci, we now report the identification of a D-Ala-D-Ala dipeptidase in the gram-negative species Salmonella enterica. The Salmonella enzyme is only 36% identical to VanX but exhibits a similar substrate specificity: it hydrolyzes D-Ala-D-Ala, DL-Ala-DL-Phe, and D-Ala-Gly but not the tripeptides D-Ala-D-Ala-D-Ala and DL-Ala-DL-Lys-Gly or the dipeptides L-Ala-L-Ala, N-acetyl-D-Ala-D-Ala, and L-Leu-Pro. The Salmonella dipeptidase gene, designated pcgL, appears to have been acquired by horizontal gene transfer because pcgL-hybridizing sequences were not detected in related bacterial species and the G+C content of the pcgL-containing region (41%) is much lower than the overall G+C content of the Salmonella chromosome (52%). In contrast to wild-type Salmonella, a pcgL mutant was unable to use D-Ala-D-Ala as a sole carbon source. The pcgL gene conferred D-Ala-D-Ala dipeptidase activity upon Escherichia coli K-12 but did not allow growth on D-Ala-D-Ala. The PcgL protein localizes to the periplasmic space of Salmonella, suggesting that this dipeptidase participates in peptidoglycan metabolism.

  12. Regulation of stem-like cancer cells by glutamine through β-catenin pathway mediated by redox signaling.

    PubMed

    Liao, Jianwei; Liu, Pan-Pan; Hou, Guoxin; Shao, Jiajia; Yang, Jing; Liu, Kaiyan; Lu, Wenhua; Wen, Shijun; Hu, Yumin; Huang, Peng

    2017-02-28

    Cancer stem cells (CSCs) are thought to play an important role in tumor recurrence and drug resistance, and present a major challenge in cancer therapy. The tumor microenvironment such as growth factors, nutrients and oxygen affect CSC generation and proliferation by providing the necessary energy sources and growth signals. The side population (SP) analysis has been used to detect the stem-like cancer cell populations based on their high expression of ABCG2 that exports Hoechst-33342 and certain cytotoxic drugs from the cells. The purpose of this research is to investigate the effect of a main nutrient molecule, glutamine, on SP cells and the possible underlying mechanism(s). Biochemical assays and flow cytometric analysis were used to evaluate the effect of glutamine on stem-like side population cells in vitro. Molecular analyses including RNAi interfering, qRT-PCR, and immunoblotting were employed to investigate the molecular signaling in response to glutamine deprivation and its influence on tumor formation capacity in vivo. We show that glutamine supports the maintenance of the stem cell phenotype by promoting glutathione synthesis and thus maintaining redox balance for SP cells. A deprivation of glutamine in the culture medium significantly reduced the proportion of SP cells. L-asparaginase, an enzyme that catalyzes the hydrolysis of asparagine and glutamine to aspartic acid and glutamate, respectively, mimics the effect of glutamine withdrawal and also diminished the proportion of SP cells. Mechanistically, glutamine deprivation increases intracellular ROS levels, leading to down-regulation of the β-catenin pathway. Glutamine plays a significant role in maintaining the stemness of cancer cells by a redox-mediated mechanism mediated by β-catenin. Inhibition of glutamine metabolism or deprivation of glutamine by L-asparaginase may be a new strategy to eliminate CSCs and overcome drug resistance.

  13. Glutamine Modulates Macrophage Lipotoxicity

    PubMed Central

    He, Li; Weber, Kassandra J.; Schilling, Joel D.

    2016-01-01

    Obesity and diabetes are associated with excessive inflammation and impaired wound healing. Increasing evidence suggests that macrophage dysfunction is responsible for these inflammatory defects. In the setting of excess nutrients, particularly dietary saturated fatty acids (SFAs), activated macrophages develop lysosome dysfunction, which triggers activation of the NLRP3 inflammasome and cell death. The molecular pathways that connect lipid stress to lysosome pathology are not well understood, but may represent a viable target for therapy. Glutamine uptake is increased in activated macrophages leading us to hypothesize that in the context of excess lipids glutamine metabolism could overwhelm the mitochondria and promote the accumulation of toxic metabolites. To investigate this question we assessed macrophage lipotoxicity in the absence of glutamine using LPS-activated peritoneal macrophages exposed to the SFA palmitate. We found that glutamine deficiency reduced lipid induced lysosome dysfunction, inflammasome activation, and cell death. Under glutamine deficient conditions mTOR activation was decreased and autophagy was enhanced; however, autophagy was dispensable for the rescue phenotype. Rather, glutamine deficiency prevented the suppressive effect of the SFA palmitate on mitochondrial respiration and this phenotype was associated with protection from macrophage cell death. Together, these findings reveal that crosstalk between activation-induced metabolic reprogramming and the nutrient microenvironment can dramatically alter macrophage responses to inflammatory stimuli. PMID:27077881

  14. Nano-Nutrition of Chicken Embryos. The Effect of in Ovo Administration of Diamond Nanoparticles and l-Glutamine on Molecular Responses in Chicken Embryo Pectoral Muscles

    PubMed Central

    Grodzik, Marta; Sawosz, Filip; Sawosz, Ewa; Hotowy, Anna; Wierzbicki, Mateusz; Kutwin, Marta; Jaworski, Sławomir; Chwalibog, André

    2013-01-01

    It has been demonstrated that the content of certain amino acids in eggs is not sufficient to fully support embryonic development. One possibility to supply the embryo with extra nutrients and energy is in ovo administration of nutrients. Nanoparticles of diamond are highly biocompatible non-toxic carbonic structures, and we hypothesized that bio-complexes of diamond nanoparticles with l-glutamine may affect molecular responses in breast muscle. The objective of the investigation was to evaluate the effect of diamond nanoparticle (ND) and l-glutamine (Gln) on expression of growth and differentiation factors of chicken embryo pectoral muscles. ND, Gln, and Gln/ND solutions (50 mg/L) were injected into fertilized broiler chicken eggs at the beginning of embryogenesis. Muscle tissue was dissected at day 20 of incubation and analysed for gene expression of FGF2, VEGF-A, and MyoD1. ND and especially Gln/ND up-regulated expression of genes related to muscle cell proliferation (FGF2) and differentiation (MyoD1). Furthermore, the ratio between FGF2 and MyoD1 was highest in the Gln/ND group. At the end of embryogenesis, Gln/ND enhanced both proliferation and differentiation of pectoral muscle cells and differentiation dominated over proliferation. These preliminary results suggest that the bio-complex of glutamine and diamond nanoparticles may accelerate growth and maturation of muscle cells. PMID:24264045

  15. Nano-nutrition of chicken embryos. The effect of in ovo administration of diamond nanoparticles and L-glutamine on molecular responses in chicken embryo pectoral muscles.

    PubMed

    Grodzik, Marta; Sawosz, Filip; Sawosz, Ewa; Hotowy, Anna; Wierzbicki, Mateusz; Kutwin, Marta; Jaworski, Sławomir; Chwalibog, André

    2013-11-20

    It has been demonstrated that the content of certain amino acids in eggs is not sufficient to fully support embryonic development. One possibility to supply the embryo with extra nutrients and energy is in ovo administration of nutrients. Nanoparticles of diamond are highly biocompatible non-toxic carbonic structures, and we hypothesized that bio-complexes of diamond nanoparticles with L-glutamine may affect molecular responses in breast muscle. The objective of the investigation was to evaluate the effect of diamond nanoparticle (ND) and L-glutamine (Gln) on expression of growth and differentiation factors of chicken embryo pectoral muscles. ND, Gln, and Gln/ND solutions (50 mg/L) were injected into fertilized broiler chicken eggs at the beginning of embryogenesis. Muscle tissue was dissected at day 20 of incubation and analysed for gene expression of FGF2, VEGF-A, and MyoD1. ND and especially Gln/ND up-regulated expression of genes related to muscle cell proliferation (FGF2) and differentiation (MyoD1). Furthermore, the ratio between FGF2 and MyoD1 was highest in the Gln/ND group. At the end of embryogenesis, Gln/ND enhanced both proliferation and differentiation of pectoral muscle cells and differentiation dominated over proliferation. These preliminary results suggest that the bio-complex of glutamine and diamond nanoparticles may accelerate growth and maturation of muscle cells.

  16. Expression and function of system N glutamine transporters (SN1/SN2 or SNAT3/SNAT5) in retinal ganglion cells.

    PubMed

    Umapathy, Nagavedi S; Dun, Ying; Martin, Pamela M; Duplantier, Jennifer N; Roon, Penny; Prasad, Puttur; Smith, Sylvia B; Ganapathy, Vadivel

    2008-11-01

    Glutamine transport is essential for the glutamate-glutamine cycle, which occurs between neurons and glia. System N, consisting of SN1 (SNAT3) and SN2 (SNAT5), is the principal mediator of glutamine transport in retinal Müller cells. Mediators of glutamine transport in retinal ganglion cells were investigated. The relative contributions of various transport systems for glutamine uptake (systems N, A, L, y+L, ASCT, and ATB(0,+)) were examined in RGC-5 cells based on differential features of the individual transport systems. mRNA for the genes encoding members of these transport systems were analyzed by RT-PCR. Based on these data, SN1 and SN2 were analyzed in mouse retina, RGC-5 cells, and primary mouse ganglion cells (GCs) by in situ hybridization (ISH), immunofluorescence (IF), and Western blotting. Three transport systems--N, A, and L--participated in glutamine uptake in RGC-5 cells. System N was the principal contributor; systems A and L contributed considerably less. ISH and IF revealed SN1 and SN2 expression in the ganglion, inner nuclear, and photoreceptor cell layers. SN1 and SN2 colocalized with the ganglion cell marker Thy 1.2 and with the Müller cell marker vimentin, confirming their presence in both retinal cell types. SN1 and SN2 proteins were detected in primary mouse GCs. These findings suggest that in addition to its role in glutamine uptake in retinal glial cells, system N contributes significantly to glutamine uptake in ganglion cells and, hence, contributes to the retinal glutamate-glutamine cycle.

  17. Biosynthesis of Lipoteichoic Acid in Lactobacillus rhamnosus: Role of DltD in d-Alanylation

    PubMed Central

    Debabov, Dmitri V.; Kiriukhin, Michael Y.; Neuhaus, Francis C.

    2000-01-01

    The dlt operon (dltA to dltD) of Lactobacillus rhamnosus 7469 encodes four proteins responsible for the esterification of lipoteichoic acid (LTA) by d-alanine. These esters play an important role in controlling the net anionic charge of the poly (GroP) moiety of LTA. dltA and dltC encode the d-alanine–d-alanyl carrier protein ligase (Dcl) and d-alanyl carrier protein (Dcp), respectively. Whereas the functions of DltA and DltC are defined, the functions of DltB and DltD are unknown. To define the role of DltD, the gene was cloned and sequenced and a mutant was constructed by insertional mutagenesis of dltD from Lactobacillus casei 102S. Permeabilized cells of a dltD::erm mutant lacked the ability to incorporate d-alanine into LTA. This defect was complemented by the expression of DltD from pNZ123/dlt. In in vitro assays, DltD bound Dcp for ligation with d-alanine by Dcl in the presence of ATP. In contrast, the homologue of Dcp, the Escherichia coli acyl carrier protein (ACP), involved in fatty acid biosynthesis, was not bound to DltD and thus was not ligated with d-alanine. DltD also catalyzed the hydrolysis of the mischarged d-alanyl–ACP. The hydrophobic N-terminal sequence of DltD was required for anchoring the protein in the membrane. It is hypothesized that this membrane-associated DltD facilitates the binding of Dcp and Dcl for ligation of Dcp with d-alanine and that the resulting d-alanyl–Dcp is translocated to the primary site of d-alanylation. PMID:10781555

  18. Is the glutamine story over?

    PubMed

    Smedberg, Marie; Wernerman, Jan

    2016-11-10

    Glutamine has been launched as a conditionally indispensible amino acid for the critically ill. Supplementation has been recommended in guidelines from international societies. Although data have been presented pointing out that glutamine supplementation may not be for everybody, recommendations for treatments and design of study protocols have included all critically ill patients. Results from more recent studies and meta-analyses indicate that indiscriminate use of glutamine supplementation in critically ill patients may actually cause harm rather than beneficial effects. This viewpoint sorts out arguments of controversy in the glutamine story.

  19. THE EFFECT OF PRE-OPERATIVE NUTRITIONAL STATUS ON POST-OPERATIVE OUTCOMES IN CHILDREN UNDERGOING SURGERY FOR CONGENITAL HEART DEFECTS IN SAN FRANCISCO (UCSF) AND GUATEMALA CITY (UNICAR)

    PubMed Central

    Radman, Monique; Mack, Ricardo; Barnoya, Joaquin; Castañeda, Aldo; Rosales, Monica; Azakie, Anthony; Mehta, Nilesh; Keller, Roberta; Datar, Sanjeev; Oishi, Peter; Fineman, Jeffrey

    2013-01-01

    Objective To determine the association between preoperative nutritional status and postoperative outcomes in children undergoing surgery for congenital heart defects (CHD). Methods Seventy-one patients with CHD were enrolled in a prospective, two-center cohort study. We adjusted for baseline risk differences using a standardized risk adjustment score for surgery for CHD. We assigned a World Health Organization Z-score for each subjects’ preoperative triceps skinfold measurement, an assessment of total body fat mass. We obtained preoperative plasma concentrations of markers of nutritional status (prealbumin, albumin) and myocardial stress (B-type natriuretic peptide, BNP). Associations between indices of preoperative nutritional status and clinical outcomes were sought. Results Subjects had a median (IQR) age of 10.2 (33) months. In the UCSF cohort, duration of mechanical ventilation (median 19 hours, IQR 29), length of ICU stay (median 5 days, IQR 5), duration of any continuous inotropic infusion (median 66 hours, IQR 72) and preoperative BNP levels (median 30 pg/mL, IQR 75) were associated with a lower preoperative triceps skinfold Z-score (p<0.05). Longer duration of any continuous inotropic infusion and higher preoperative BNP levels were also associated with lower preoperative prealbumin (12.1 ± 0.5 mg/dL) and albumin (3.2 ± 0.1) (p<0.05). Conclusions Lower total body fat mass and acute and chronic malnourishment are associated with worse clinical outcomes in children undergoing surgery for CHD at UCSF, a resource-abundant institution. There is an inverse correlation between total body fat mass and BNP levels. Duration of inotropic support and BNP increase concomitantly as measures of nutritional status decrease, supporting the hypothesis that malnourishment is associated with decreased myocardial function. PMID:23583172

  20. Influence of magnetic fields on the hydration process of amino acids: vibrational spectroscopy study of L-phenylalanine and L-glutamine.

    PubMed

    De Ninno, Antonella; Congiu Castellano, Agostina

    2014-02-01

    Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used to investigate the effect of weak electromagnetic fields on the structure of L-glutamine (L-Gln) and L-phenylalnine (L-Phe) in aqueous solution. It has been found that the exposure to a DC field or a 50 Hz AC field, for a short time induces modifications in the spectra of exposed samples in agreement with our preceding observations on glutamic acid. Furthermore, the acid-base equilibrium has been investigated by using the ratio of the intensity of the deprotonated on protonated species. In the case of L-Phe, the exposure induces a measurable shift of acid dissociation constant pKa1 out of the experimental errors, while in case of L-Gln, the effect is under the limit detectable with this method. The phenomenon of the shift of the acid-base equilibrium has been connected elsewhere to modification of the water-water hydrogen bonds in the water around both the backbone and the residue (R). Here we suggest that the magnetic field modifies the water structure around the molecules and changes the hydrophobic interactions allowing the molecules of amino acids to aggregate. The differences observed in the behavior of L-Phe and L-Gln may be related to the differences in the polarity of their residues. © 2013 Wiley Periodicals, Inc.

  1. Glutamine metabolism in advanced age

    PubMed Central

    2016-01-01

    Glutamine, reviewed extensively in the last century, is a key substrate for the splanchnic bed in the whole body and is a nutrient of particular interest in gastrointestinal research. A marked decrease in the plasma glutamine concentration has recently been observed in neonates and adults during acute illness and stress. Although some studies in newborns have shown parenteral and enteral supplementation with glutamine to be of benefit (by decreasing proteolysis and activating the immune system), clinical trials have not demonstrated prolonged advantages such as reductions in mortality or risk of infections in adults. In addition, glutamine is not able to combat the muscle wasting associated with disease or age-related sarcopenia. Oral glutamine supplementation initiated before advanced age in rats increases gut mass and improves the villus height of mucosa, thereby preventing the gut atrophy encountered in advanced age. Enterocytes from very old rats continuously metabolize glutamine into citrulline, which allowed, for the first time, the use of citrulline as a noninvasive marker of intestinal atrophy induced by advanced age. PMID:26936258

  2. Influence of temperature and brewing time of nettle (Urtica dioica L.) infusions on vitamin C content

    PubMed

    Wolska, Jolanta; Czop, Michał; Jakubczyk, Karolina; Janda, Katarzyna

    Stinging nettle (Urtica dioica L.) can be found in temperate climate zones of Europe, Africa and America Nettle may be a source of nutritional ingredients, mineral salts, vitamins and antioxidants. The aim of the study was to determine the effect of temperature and brewing time Urtica dioica L. infusions from different parts of this plant on vitamin C (ascorbic acid) content. Infusions of nettle leaf, stem and root were prepared at room temperature, 50°C, 60°C, 70°C and 80°C for 10 minutes. Leaf infusions were also brewed for 5, 10, 15 and 20 minutes at initial water temperature of 60°C. The amount of vitamin C was determined by the spectrophotometric method. The best temperature of brewing nettle infusions, in terms of vitamin C concentration, is between 50 °C and 60 °C as it is sufficient to extract the substance, yet not high enough to destroy it. The optimal time of brewing appeared to be 10 minutes as the prolonged exposure to high temperature appeared to be detrimental for ascorbic acid as well.

  3. Determination of glutamine and glutamic acid in mammalian cell cultures using tetrathiafulvalene modified enzyme electrodes.

    PubMed

    Mulchandani, A; Bassi, A S

    1996-01-01

    Tetrathiafulvalene (TTF) mediated amperometric enzyme electrodes have been developed for the monitoring of L-glutamine and L-glutamic acid in growing mammalian cell cultures. The detection of glutamine was accomplished by a coupled enzyme system comprised of glutaminase plus glutamate oxidase, while the detection of glutamic acid was carried out by a single enzyme, glutamate oxidase. The appropriate enzyme(s) were immoblized on the Triton-X treated surface of tetrathiafulvalene modified carbon paste electrodes by adsorption, in conjunction with entrapment by an electrochemically deposited copolymer film of 1,3-phenylenediamine and resorcinol. Operating conditions for the glutamine enzyme electrode were optimized with respect to the amount of enzymes immoblized, pH, temperature and mobile phase flow rate for operation in a flow injection (FIA) system. When applied to glutamine and glutamic acid measurements in mammalian cell culture in FIA, the results obtained with enzyme electrodes were in excellent agreement with those determined by enzymatic analysis.

  4. The Phenolic Contents and Antioxidant Activities of Infusions of Sambucus nigra L.

    PubMed

    Viapiana, Agnieszka; Wesolowski, Marek

    2017-03-01

    The aim of this work was to evaluate the antioxidant potential of teas prepared from twenty-four commercially available berries and flowers of Sambucus nigra L. in relation to their phenolic profile, as reflected by the most representative phenolic acids (caffeic, chlorogenic, p-coumaric, ferulic, gallic and syringic acids); flavonols (quercetin, kaempferol, myricetin and rutin); and total phenolic (TPC), phenolic acid (TAC) and flavonoid (TFC) contents. The infusions prepared from elderflowers contained more abundant phenolic compounds than the elderberry infusions. The TPC of these infusions ranged from 19.81 to 23.90 mg of gallic acid equivalents/g dry weight of sample (GAE/g DW) for elderberries and from 15.23 to 35.57 mg GAE/g DW for elderflowers, whereas the TFC ranged from 2.60 to 4.49 mg of rutin equivalents/g dry weight of sample (RUTE/g DW) in elderberry infusions and from 5.27 to 13.19 mg RUTE/g DW in elderflower infusions. Among the phenolic compounds quantified in this study, quercetin (2.07-9.48 mg/g DW) and myricetin (1.17-9.62 mg/g DW) had the highest concentrations in the teas prepared from berries and flowers, respectively. Moreover, the antioxidant potential of elder infusions assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and ferric reducing antioxidant power (FRAP) assays revealed that the teas prepared from flowers had higher mean DPPH and FRAP activities than the teas prepared from berries. Therefore, elder beverages could be important dietary sources of natural antioxidants that contribute to the prevention of diseases caused by oxidative stress.

  5. Glutamine granule-supplemented enteral nutrition maintains immunological function in severely burned patients.

    PubMed

    Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang

    2006-08-01

    Glutamine is an important energy source for immune cells. It is a necessary nutrient for cell proliferation, and serves as specific fuel for lymphocytes, macrophages, and enterocytes when it is present in appropriate concentrations. The purpose of this clinical study was to observe the effects of enteral nutrition supplemented with glutamine granules on immunologic function in severely burned patients. Forty-eight severely burned patients (total burn surface area 30-75%, full thickness burn area 20-58%) who met the requirements of the protocol joined this double-blind randomized controlled clinical trail. Patients were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). There was isonitrogenous and isocaloric intake in both groups, Gln and B group patents were given glutamine granules or placebo (glycine) at 0.5 g/kgd for 14 days with oral feeding or tube feeding, respectively. The plasma level of glutamine and several indices of immunologic function including lymphocyte transformation ratio, neutrophil phagocytosis index (NPI), CD4/CD8 ratio, the content of immunoglobulin, complement C3, C4 and IL-2 levels were determined. Moreover, wound healing rate of burn area was observed and then hospital stay was recorded. The results showed significantly reduced plasma glutamine and damaged immunological function after severe burn Indices of cellular immunity function were remarkably decreased from normal controls. After taking glutamine granules for 14 days, plasma glutamine concentration was significantly higher in Gln group than that in B group (607.86+/-147.25 micromol/L versus 447.63+/-132.38 micromol/L, P<0.01). On the other hand, cellular immunity functions were improved in Gln group, such as lymphocyte transformation ratio, NPI, CD4/CD8 ratio and IL-2 compared those in the B group (P<0.05-0.01). However, for humoral immunity function such as the concentration of IgG, IgM, C3, C4, no

  6. Interrelationships between glutamine and citrulline metabolism

    USDA-ARS?s Scientific Manuscript database

    This article analyzes the contribution of glutamine to the synthesis of citrulline and reviews the evidence that glutamine supplementation increases citrulline production. Glutamine supplementation has been proposed in the treatment of critically ill patients; however, a recent large multicenter ran...

  7. Effects of dietary L-glutamine supplementation on specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine.

    PubMed

    Chen, Shuai; Liu, Shuping; Zhang, Fengmei; Ren, Wenkai; Li, Nengzhang; Yin, Jie; Duan, Jielin; Peng, Yuanyi; Liu, Gang; Yin, Yulong; Wu, Guoyao

    2014-10-01

    Little is known about effects of dietary glutamine supplementation on specific and general defense responses in a vaccine-immunized animal model. Thus, this study determined roles for dietary glutamine supplementation in specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. The measured variables included: (1) the production of pathogen-specific antibodies; (2) mRNA levels for pro-inflammatory cytokines, toll-like receptors and anti-oxidative factors; and (3) the distribution of P. multocida in tissues and the expression of its major virulence factors in vivo. Dietary supplementation with 0.5 % glutamine had a better protective role than 1 or 2 % glutamine against P. multocida infection in vaccine-immunized mice, at least partly resulting from its effects in modulation of general defense responses. Dietary glutamine supplementation had little effects on the production of P. multocida-specific antibodies. Compared to the non-supplemented group, dietary supplementation with 0.5 % glutamine had no effect on bacterial burden in vivo but decreased the expression of major virulence factors in the spleen. Collectively, supplementing 0.5 % glutamine to a conventional diet provides benefits in vaccine-immunized mice by enhancing general defense responses and decreasing expression of specific virulence factors.

  8. Clinical and protein metabolic efficacy of glutamine granules-supplemented enteral nutrition in severely burned patients.

    PubMed

    Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang

    2005-05-01

    As an abundant amino acid in the human body, glutamine has many important metabolic roles that may protect or promote tissue integrity and enhance the immune system. A relative deficiency of glutamine in such patients could compromise recovery and result in prolonged illness and an increase in late mortality. The purpose of this clinical study is to observe the effects of enteral supplement with glutamine granules on protein metabolism in severely burned patients. Forty-eight severe burn patients (total burn surface area 30-75%, full thickness burn area 20-58%) who met the requirements of the protocol joined this double-blind randomized controlled clinical trial. Patients were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). There was isonitrogenous and isocaloric intake in both groups, glutamine and B group patents were supplemented with glutamine granules or placebo (glycine) at 0.5 g/kg per day for 14 days with oral feeding or tube feeding, respectively. The level of plasma glutamine, plasma protein content, urine nitrogen and urine 3-methylhistidine (3-MTH) excretion were determined, wound healing rate of the burned area and hospital stay were recorded. The results showed that there were significant reductions in plasma glutamine level and abnormal protein metabolism. After supplement with glutamine granules for 14 days, the plasma glutamine concentration was significantly higher than that in B group (607.86+/-147.25 micromol/L versus 447.63+/-132.38 micromol/L, P<0.01) and the plasma prealbumin and transferrin in Gln group were remarkably higher than those in B group (P<0.01), but the concentration of total protein and albumin were not significantly changed compared with B group (P>0.05). On the other hand, the amount of urine nitrogen and 3-MTH excreted in Gln group were significantly lower than that in B group. In addition, wound healing was faster and hospital stay days were

  9. Glutamine Metabolism in Cancer: Understanding the Heterogeneity

    PubMed Central

    Cluntun, Ahmad A; Lukey, Michael J; Cerione, Richard A; Locasale, Jason W

    2017-01-01

    Reliance on glutamine has long been considered a hallmark of cancer cell metabolism. However, some recent studies have challenged this notion in vivo, prompting a need for further clarifications on the role of glutamine metabolism in cancer. We find that there is ample evidence of an essential role for glutamine in tumors and that a variety of factors, including tissue type, the underlying cancer genetics, the tumor microenvironment and other variables such as diet and host physiology collectively influence the role of glutamine in cancer. Thus the requirements for glutamine in cancer are overall highly heterogeneous. In this review, we discuss the implications both for basic science and for targeting glutamine metabolism in cancer therapy. PMID:28393116

  10. Glutamine metabolism and cycling in Neurospora crassa.

    PubMed Central

    Mora, J

    1990-01-01

    Evidence for the existence of a glutamine cycle in Neurospora crassa is reviewed. Through this cycle glutamine is converted into glutamate by glutamate synthase and catabolized by the glutamine transaminase-omega-amidase pathway, the products of which (2-oxoglutarate and ammonium) are the substrates for glutamate dehydrogenase-NADPH, which synthesizes glutamate. In the final step ammonium is assimilated into glutamine by the action of a glutamine synthetase (GS), which is formed by two distinct polypeptides, one catalytically very active (GS beta), and the other (GS alpha) less active but endowed with the capacity to modulate the activity of GS alpha. Glutamate synthase uses the amide nitrogen of glutamine to synthesize glutamate; glutamate dehydrogenase uses ammonium, and both are required to maintain the level of glutamate. The energy expended in the synthesis of glutamine drives the cycle. The glutamine cycle is not futile, because it is necessary to drive an effective carbon flow to support growth; in addition, it facilitates the allocation of nitrogen or carbon according to cellular demands. The glutamine cycle which dissipates energy links catabolism and anabolism and, in doing so, buffers variations in the nutrient supply and drives energy generation and carbon flow for optimal cell function. PMID:2145504

  11. Insertional Inactivation of Genes Responsible for the d-Alanylation of Lipoteichoic Acid in Streptococcus gordonii DL1 (Challis) Affects Intrageneric Coaggregations

    PubMed Central

    Clemans, Daniel L.; Kolenbrander, Paul E.; Debabov, Dmitri V.; Zhang, Qunying; Lunsford, R. Dwayne; Sakone, Holly; Whittaker, Catherine J.; Heaton, Michael P.; Neuhaus, Francis C.

    1999-01-01

    Most human oral viridans streptococci participate in intrageneric coaggregations, the cell-to-cell adherence among genetically distinct streptococci. Two genes relevant to these intrageneric coaggregations were identified by transposon Tn916 mutagenesis of Streptococcus gordonii DL1 (Challis). A 626-bp sequence flanking the left end of the transposon was homologous to dltA and dltB of Lactobacillus rhamnosus ATCC 7469 (formerly called Lactobacillus casei). A 60-kb probe based on this flanking sequence was used to identify the homologous DNA in a fosmid library of S. gordonii DL1. This DNA encoded d-alanine-d-alanyl carrier protein ligase that was expressed in Escherichia coli from the fosmid clone. The cloned streptococcal dltA was disrupted by inserting an ermAM cassette, and then it was linearized and transformed into S. gordonii DL1 for allelic replacement. Erythromycin-resistant transformants containing a single insertion in dltA exhibited a loss of d-alanyl esters in lipoteichoic acid (LTA) and a loss of intrageneric coaggregation. This phenotype was correlated with the loss of a 100-kDa surface protein reported previously to be involved in mediating intrageneric coaggregation (C. J. Whittaker, D. L. Clemans, and P. E. Kolenbrander, Infect. Immun. 64:4137–4142, 1996). The mutants retained the parental ability to participate in intergeneric coaggregation with human oral actinomyces, indicating the specificity of the mutation in altering intrageneric coaggregations. The mutants were altered morphologically and exhibited aberrant cell septa in a variety of pleomorphs. The natural DNA transformation frequency was reduced 10-fold in these mutants. Southern analysis of chromosomal DNAs from various streptococcal species with the dltA probe revealed the presence of this gene in most viridans streptococci. Thus, it is hypothesized that d-alanyl LTA may provide binding sites for the putative 100-kDa adhesin and scaffolding for the proper presentation of this adhesin

  12. Insertional inactivation of genes responsible for the D-alanylation of lipoteichoic acid in Streptococcus gordonii DL1 (Challis) affects intrageneric coaggregations.

    PubMed

    Clemans, D L; Kolenbrander, P E; Debabov, D V; Zhang, Q; Lunsford, R D; Sakone, H; Whittaker, C J; Heaton, M P; Neuhaus, F C

    1999-05-01

    Most human oral viridans streptococci participate in intrageneric coaggregations, the cell-to-cell adherence among genetically distinct streptococci. Two genes relevant to these intrageneric coaggregations were identified by transposon Tn916 mutagenesis of Streptococcus gordonii DL1 (Challis). A 626-bp sequence flanking the left end of the transposon was homologous to dltA and dltB of Lactobacillus rhamnosus ATCC 7469 (formerly called Lactobacillus casei). A 60-kb probe based on this flanking sequence was used to identify the homologous DNA in a fosmid library of S. gordonii DL1. This DNA encoded D-alanine-D-alanyl carrier protein ligase that was expressed in Escherichia coli from the fosmid clone. The cloned streptococcal dltA was disrupted by inserting an ermAM cassette, and then it was linearized and transformed into S. gordonii DL1 for allelic replacement. Erythromycin-resistant transformants containing a single insertion in dltA exhibited a loss of D-alanyl esters in lipoteichoic acid (LTA) and a loss of intrageneric coaggregation. This phenotype was correlated with the loss of a 100-kDa surface protein reported previously to be involved in mediating intrageneric coaggregation (C. J. Whittaker, D. L. Clemans, and P. E. Kolenbrander, Infect. Immun. 64:4137-4142, 1996). The mutants retained the parental ability to participate in intergeneric coaggregation with human oral actinomyces, indicating the specificity of the mutation in altering intrageneric coaggregations. The mutants were altered morphologically and exhibited aberrant cell septa in a variety of pleomorphs. The natural DNA transformation frequency was reduced 10-fold in these mutants. Southern analysis of chromosomal DNAs from various streptococcal species with the dltA probe revealed the presence of this gene in most viridans streptococci. Thus, it is hypothesized that D-alanyl LTA may provide binding sites for the putative 100-kDa adhesin and scaffolding for the proper presentation of this adhesin to

  13. Glycyl-L-Glutamine: A Dipeptide Neurotransmitter Derived from Beta- Endorphin

    DTIC Science & Technology

    1994-03-31

    pentobarbital anesthetized rats 15 min after 8-endorphin injection. S-Endorphin (0.5 nmol) followed by saline injection produced a rapid and sustained reduction ...glutamine did not influence the reduction in plasma pH caused by B-endorphin, however. When administered icy to rats that had not been pretreated...into specific thermoregulatory sites the medial preoptic area (mPOA) of the hypothalamus (Resch and Simpson, 1991). This finding provided us with an

  14. DdlN from Vancomycin-Producing Amycolatopsis orientalis C329.2 Is a VanA Homologue with d-Alanyl-d-Lactate Ligase Activity

    PubMed Central

    Marshall, C. Gary; Wright, Gerard D.

    1998-01-01

    Vancomycin-resistant enterococci acquire high-level resistance to glycopeptide antibiotics through the synthesis of peptidoglycan terminating in d-alanyl-d-lactate. A key enzyme in this process is a d-alanyl-d-alanine ligase homologue, VanA or VanB, which preferentially catalyzes the synthesis of the depsipeptide d-alanyl-d-lactate. We report the overexpression, purification, and enzymatic characterization of DdlN, a VanA and VanB homologue encoded by a gene of the vancomycin-producing organism Amycolatopsis orientalis C329.2. Evaluation of kinetic parameters for the synthesis of peptides and depsipeptides revealed a close relationship between VanA and DdlN in that depsipeptide formation was kinetically preferred at physiologic pH; however, the DdlN enzyme demonstrated a narrower substrate specificity and commensurately increased affinity for d-lactate in the C-terminal position over VanA. The results of these functional experiments also reinforce the results of previous studies that demonstrated that glycopeptide resistance enzymes from glycopeptide-producing bacteria are potential sources of resistance enzymes in clinically relevant bacteria. PMID:9791137

  15. Expression and Function of System N Glutamine Transporters (SN1/SN2 or SNAT3/SNAT5) in Retinal Ganglion Cells

    PubMed Central

    Umapathy, Nagavedi S.; Dun, Ying; Martin, Pamela M.; Duplantier, Jennifer N.; Roon, Penny; Prasad, Puttur; Smith, Sylvia B.; Ganapathy, Vadivel

    2008-01-01

    Purpose Glutamine transport is essential for the glutamate-glutamine cycle, which occurs between neurons and glia. System N, consisting of SN1 (SNAT3) and SN2 (SNAT5), is the principal mediator of glutamine transport in retinal Müller cells. Mediators of glutamine transport in retinal ganglion cells were investigated. Methods The relative contributions of various transport systems for glutamine uptake (systems N, A, L, y+L, ASCT, and ATB0,+) were examined in RGC-5 cells based on differential features of the individual transport systems. mRNA for the genes encoding members of these transport systems were analyzed by RT-PCR. Based on these data, SN1 and SN2 were analyzed in mouse retina, RGC-5 cells, and primary mouse ganglion cells (GCs) by in situ hybridization (ISH), immunofluorescence (IF), and Western blotting. Results Three transport systems—N, A, and L—participated in glutamine uptake in RGC-5 cells. System N was the principal contributor; systems A and L contributed considerably less. ISH and IF revealed SN1 and SN2 expression in the ganglion, inner nuclear, and photoreceptor cell layers. SN1 and SN2 colocalized with the ganglion cell marker Thy 1.2 and with the Müller cell marker vimentin, confirming their presence in both retinal cell types. SN1 and SN2 proteins were detected in primary mouse GCs. Conclusions These findings suggest that in addition to its role in glutamine uptake in retinal glial cells, system N contributes significantly to glutamine uptake in ganglion cells and, hence, contributes to the retinal glutamate-glutamine cycle. PMID:18689705

  16. Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets.

    PubMed

    Wang, Hao; Zhang, Chen; Wu, Guoyao; Sun, Yuli; Wang, Bin; He, Beibei; Dai, Zhaolai; Wu, Zhenlong

    2015-01-01

    Dysfunction of tight junction integrity is associated with decreased nutrient absorption and numerous gastrointestinal diseases in humans and piglets. Although l-glutamine has been reported to enhance intestinal-mucosal mass and barrier function under stressful conditions, in vivo data to support a functional role for l-glutamine on intestinal tight junction protein (TJP) expression in weanling mammals are limited. This study tested the hypothesis that glutamine regulates expression of TJPs and stress-related corticotropin-releasing factor (CRF) signaling in the jejunum of weanling piglets. Piglets were reared by sows or weaned at 21 d of age to a corn and soybean meal-based diet that was or was not supplemented with 1% l-glutamine for 7 d. Growth performance, intestinal permeability, TJP abundance, and CRF expression were examined. Weaning caused increases (P < 0.05) in intestinal permeability by 40% and in CRF concentrations by 4.7 times in association with villus atrophy (P < 0.05). Western blot analysis showed reductions (P < 0.05) in jejunal expression of occludin, claudin-1, zonula occludens (ZO) 2, and ZO-3, but no changes in the abundance of claudin-3, claudin-4, or ZO-1 in weanling piglets compared with age-matched suckling controls. Glutamine supplementation improved (P < 0.05) intestinal permeability and villus height, while reducing (P < 0.05) jejunal mRNA and protein levels for CRF and attenuating (P < 0.05) weanling-induced decreases in occludin, claudin-1, ZO-2, and ZO-3 protein abundances. Collectively, our results support an important role for l-glutamine in regulating expression of TJPs and CRF in the jejunum of weanling piglets. © 2015 American Society for Nutrition.

  17. [Effect of glutamine and growth hormone on adaptation in short bowel syndrome].

    PubMed

    Wu, Guo-hao; Wu, Zhao-han; Wu, Zhao-guang

    2005-09-01

    To assess the effects of parenteral glutamine and growth hormone supplementation on gut adaptation for patients with short bowel syndrome. Twenty-six patients [male 15, female 11, aged (39 +/- 23) years] with short bowel syndrome received parenteral nutrition (PN) 3-52 months after surgical resection. The median length of remnant small intestine was 42.5(0-100)cm. All patients received growth hormone (0.10+/- 0.06) mg.kg(-1).d(-1) plus glutamine (0.30 +/- 0.17) mg.kg(-1).d(-1) for two or three weeks. Among the 26 patients, PN was not required soon after treatment in 34.6% (n=9) of the patients, the frequency and volume of PN decreased from (6.0 +/- 1.0) d to (4.2 +/- 1.0) d, from (13.6 +/- 5.2) L per week to (8.2 +/- 3.3) L per week respectively in 30.8% (n=8) of the patients,while 34.6% (n=9) still required PN after treatment. The combined administration of glutamine and growth hormone can promote remnant intestinal adaptation in short bowel patients.

  18. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    PubMed

    Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei

    2017-11-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  19. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes

    PubMed Central

    Tran, Thai Q.; Ishak Gabra, Mari B.; Lowman, Xazmin H.; Yang, Ying; Reid, Michael A.; Pan, Min; O’Connor, Timothy R.

    2017-01-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer. PMID:29107960

  20. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  1. Carperitide and atrial fibrillation after coronary bypass grafting: the Nihon University working group study of low-dose HANP infusion therapy during cardiac surgery trial for postoperative atrial fibrillation.

    PubMed

    Sezai, Akira; Iida, Mitsuru; Yoshitake, Isamu; Wakui, Shinji; Osaka, Shunji; Kimura, Haruka; Yaoita, Hiroko; Hata, Hiroaki; Shiono, Motomi; Nakai, Toshiko; Takayama, Tadateru; Kunimoto, Satoshi; Kasamaki, Yuji; Hirayama, Atsushi

    2015-06-01

    Occurrence of atrial fibrillation after cardiac surgery is associated with long-term mortality. We investigated whether infusion of human atrial natriuretic peptide (carperitide) could prevent postoperative atrial fibrillation. A total of 668 patients who underwent isolated coronary artery bypass grafting were randomized to receive infusion of carperitide or physiological saline from the initiation of cardiopulmonary bypass. Patients were monitored continuously for 1 week after surgery to detect atrial fibrillation. The risk factors were investigated by Cox proportional hazard model. Postoperative atrial fibrillation occurred in 41 of 335 patients (12.2%) from the carperitide group versus 110 of 333 patients (32.7%) from the placebo group (P<0.0001). Postoperative levels of angiotensin-II, aldosterone, creatine kinase MB isoenzyme, human heart fatty acid-binding protein, and brain natriuretic peptide were all significantly lower in the carperitide group. The risk factors for postoperative atrial fibrillation by the Cox proportional hazard model were an age ≥70 years, emergency surgery, preoperative aldosterone level >150 ng/mL, preoperative nonuse of angiotensin receptor antagonists, preoperative use of calcium antagonists, postoperative nonuse of β-blockers, postoperative nonuse of aldosterone blockers, and nonuse of carperitide. -Perioperative carperitide infusion reduced the occurrence of postoperative atrial fibrillation. Accordingly, carperitide could be a useful option for preventing postoperative atrial fibrillation. -URL: http://www.umin.ac.jp. Unique Identifier: UMIN000003958. © 2015 American Heart Association, Inc.

  2. Serum Amino Acids Profile and the Beneficial Effects of L-Arginine or L-Glutamine Supplementation in Dextran Sulfate Sodium Colitis

    PubMed Central

    Wu, Miaomiao; Liu, Gang; Yang, Guan; Xion, Yan; Su, Dingding; Wu, Li; Li, Tiejun; Chen, Shuai; Duan, Jielin; Yin, Yulong; Wu, Guoyao

    2014-01-01

    This study was conducted to investigate serum amino acids profile in dextran sulfate sodium (DSS)-induced colitis, and impacts of graded dose of arginine or glutamine supplementation on the colitis. Using DSS-induced colitis model, which is similar to human ulcerative colitis, we determined serum profile of amino acids at day 3, 7, 10 and 12 (5 days post DSS treatment). Meanwhile, effects of graded dose of arginine (0.4%, 0.8%, and 1.5%) or glutamine (0.5%, 1.0% and 2.0%) supplementation on clinical parameters, serum amino acids, colonic tight junction proteins, colonic anti-oxidative indicators [catalase, total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px)], colonic pro-inflammatory cytokines [interleukin-1 beta (IL-1β), IL-6, IL-17 and tumor necrosis factor alpha (TNF-α)] in DSS-induced colitis were fully analyzed at day 7 and 12. Additionally, the activation of signal transduction pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt), and myosin light chain kinase (MLCK)- myosin light chain (MLC20), were analyzed using immunoblotting. Serum amino acids analysis showed that DSS treatment changed the serum contents of amino acids, such as Trp, Glu, and Gln (P<0.05). Dietary arginine or glutamine supplementation had significant (P<0.05) influence on the clinical and biochemical parameters (T-SOD, IL-17 and TNF-α) in colitis model. These results were associated with colonic NF-κB, PI3K-Akt and MLCK signaling pathways. In conclusion, arginine or glutamine could be a potential therapy for intestinal inflammatory diseases. PMID:24505477

  3. Serum amino acids profile and the beneficial effects of L-arginine or L-glutamine supplementation in dextran sulfate sodium colitis.

    PubMed

    Ren, Wenkai; Yin, Jie; Wu, Miaomiao; Liu, Gang; Yang, Guan; Xion, Yan; Su, Dingding; Wu, Li; Li, Tiejun; Chen, Shuai; Duan, Jielin; Yin, Yulong; Wu, Guoyao

    2014-01-01

    This study was conducted to investigate serum amino acids profile in dextran sulfate sodium (DSS)-induced colitis, and impacts of graded dose of arginine or glutamine supplementation on the colitis. Using DSS-induced colitis model, which is similar to human ulcerative colitis, we determined serum profile of amino acids at day 3, 7, 10 and 12 (5 days post DSS treatment). Meanwhile, effects of graded dose of arginine (0.4%, 0.8%, and 1.5%) or glutamine (0.5%, 1.0% and 2.0%) supplementation on clinical parameters, serum amino acids, colonic tight junction proteins, colonic anti-oxidative indicators [catalase, total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px)], colonic pro-inflammatory cytokines [interleukin-1 beta (IL-1β), IL-6, IL-17 and tumor necrosis factor alpha (TNF-α)] in DSS-induced colitis were fully analyzed at day 7 and 12. Additionally, the activation of signal transduction pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt), and myosin light chain kinase (MLCK)-myosin light chain (MLC20), were analyzed using immunoblotting. Serum amino acids analysis showed that DSS treatment changed the serum contents of amino acids, such as Trp, Glu, and Gln (P<0.05). Dietary arginine or glutamine supplementation had significant (P<0.05) influence on the clinical and biochemical parameters (T-SOD, IL-17 and TNF-α) in colitis model. These results were associated with colonic NF-κB, PI3K-Akt and MLCK signaling pathways. In conclusion, arginine or glutamine could be a potential therapy for intestinal inflammatory diseases.

  4. Exogenous Glutamine in Respiratory Diseases: Myth or Reality?

    PubMed Central

    Oliveira, Gisele P.; de Abreu, Marcelo Gama; Pelosi, Paolo; Rocco, Patricia R. M.

    2016-01-01

    Several respiratory diseases feature increased inflammatory response and catabolic activity, which are associated with glutamine depletion; thus, the benefits of exogenous glutamine administration have been evaluated in clinical trials and models of different respiratory diseases. Recent reviews and meta-analyses have focused on the effects and mechanisms of action of glutamine in a general population of critical care patients or in different models of injury. However, little information is available about the role of glutamine in respiratory diseases. The aim of the present review is to discuss the evidence of glutamine depletion in cystic fibrosis (CF), asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), and lung cancer, as well as the results of exogenous glutamine administration in experimental and clinical studies. Exogenous glutamine administration might be beneficial in ARDS, asthma, and during lung cancer treatment, thus representing a potential therapeutic tool in these conditions. Further experimental and large randomized clinical trials focusing on the development and progression of respiratory diseases are necessary to elucidate the effects and possible therapeutic role of glutamine in this setting. PMID:26861387

  5. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach

    PubMed Central

    Chen, Lian; Cui, Hengmin

    2015-01-01

    Glutamine metabolism has been proved to be dysregulated in many cancer cells, and is essential for proliferation of most cancer cells, which makes glutamine an appealing target for cancer therapy. In order to be well used by cells, glutamine must be transported to cells by specific transporters and converted to glutamate by glutaminase. There are currently several drugs that target glutaminase under development or clinical trials. Also, glutamine metabolism restriction has been proved to be effective in inhibiting tumor growth both in vivo and vitro through inducing apoptosis, growth arrest and/or autophagy. Here, we review recent researches about glutamine metabolism in cancer, and cell death induced by targeting glutamine, and their potential roles in cancer therapy. PMID:26402672

  6. Glutamate and asparagine cataplerosis underlie glutamine addiction in melanoma

    PubMed Central

    Ratnikov, Boris; Aza-Blanc, Pedro; Ronai, Ze'ev A.; Smith, Jeffrey W.; Osterman, Andrei L.; Scott, David A.

    2015-01-01

    Glutamine dependence is a prominent feature of cancer metabolism, and here we show that melanoma cells, irrespective of their oncogenic background, depend on glutamine for growth. A quantitative audit of how carbon from glutamine is used showed that TCA-cycle-derived glutamate is, in most melanoma cells, the major glutamine-derived cataplerotic output and product of glutaminolysis. In the absence of glutamine, TCA cycle metabolites were liable to depletion through aminotransferase-mediated α-ketoglutarate-to-glutamate conversion and glutamate secretion. Aspartate was an essential cataplerotic output, as melanoma cells demonstrated a limited capacity to salvage external aspartate. Also, the absence of asparagine increased the glutamine requirement, pointing to vulnerability in the aspartate-asparagine biosynthetic pathway within melanoma metabolism. In contrast to melanoma cells, melanocytes could grow in the absence of glutamine. Melanocytes use more glutamine for protein synthesis rather than secreting it as glutamate and are less prone to loss of glutamate and TCA cycle metabolites when starved of glutamine. PMID:25749035

  7. Glutamine supplementation suppresses herpes simplex virus reactivation.

    PubMed

    Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I

    2017-06-30

    Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.

  8. Efficacy of preoperative transcatheter arterial chemoembolization combined with systemic chemotherapy for treatment of unresectable hepatoblastoma in children.

    PubMed

    Hirakawa, Masakazu; Nishie, Akihiro; Asayama, Yoshiki; Fujita, Nobuhiro; Ishigami, Kousei; Tajiri, Tatsurou; Taguchi, Tomoaki; Honda, Hiroshi

    2014-09-01

    The purpose of this study was to evaluate, retrospectively, the clinical efficacy of preoperative transcatheter arterial chemoembolization (TACE) combined with systemic chemotherapy for unresectable hepatoblastoma. Five boys and three girls (mean age 15.2 months) were treated with preoperative TACE combined with systemic chemotherapy for unresectable hepatoblastomas. Mean tumor diameter and mean alfa-fetoprotein (AFP) level were 11.8 cm and 549,386 ng/mL, respectively. Pretreatment, the extent of disease (PRETEXT) was: II, 1; III, 6; IV, 1. For all patients, preoperative systemic chemotherapy was administered before TACE. At each TACE, carboplatin and adriamycin mixed with iodized oil were infused into the feeding arteries. Tumor response and prognosis after treatment were evaluated. TACE resulted in few Grade 1 adverse effects (AEs), without G3 or more AEs, according to CTACAE 3.0. Mean tumor shrinkage was 60.9%, and the mean AFP decrease from initial levels was 94.8%. In all cases TACE combined with systemic chemotherapy enabled subsequent safe and complete surgical resection. After a mean follow-up of 59 months, tumor-free survival was 75%. Preoperative TACE combined with systemic chemotherapy was effective in inducing surgical resectability of unresectable hepatoblastoma.

  9. A glutamine-rich carrier efficiently delivers anti-CD47 siRNA driven by "glutamine trap" to inhibit lung cancer cell growth.

    PubMed

    Wu, JiaMin; Li, Zhi; Yang, Zeping; Guo, Ling; Zhang, Ye; Deng, Huihui; Wang, Cuifeng; Feng, Min

    2018-06-25

    It is not efficient enough using the current approaches for tumor-selective drug delivery based on the EPR effect and ligand-receptor interactions, and they have largely failed to translate into the clinic. So it is urgent to explore an enhanced strategy for effective delivery of anticancer agents. Clinically, many cancers require large amounts of glutamine for their continued growth and survival, resulting in circulating glutamine extraction by the tumor being much greater than that for any organs, behaving as a "glutamine trap". In the present study, we sought to elucidate whether the glutamine trap effect could be exploited to deliver therapeutic agents to selectively kill cancer cells. Here, a macromolecular glutamine analog, glutamine-functionalized branched polyethylenimine (GPI), was constructed as the carrier to deliver anti-CD47 siRNA for the blockage of CD47 "don't eat me" signals on cancer cells. The GPI/siRNA glutamine-rich polyplexes exhibited remarkably high levels of cellular uptake by glutamine-dependent lung cancer cells, wild-type A549 cells (A549WT) and its cisplatin-resistant cells (A549DDP), specifically under glutamine-depleted conditions. It was noted that the glutamine transporter ASCT2 was highly expressed both on A549WT and A549DDP, but almost no expression in normal human lung fibroblasts cells. Inhibition of ASCT2 significantly prevented the internalization of GPI polyplexes. These findings raised the intriguing possibility that the glutamine-rich GPI polyplexes utilize the ASCT2 pathway to selectively facilitate their cellular uptake by cancer cells. GPI further delivered anti-CD47 siRNA efficiently both in vitro and in vivo to down-regulate the intratumoral mRNA and protein expression levels of CD47. CD47 functions as a "don't eat me" signal and binds to the immunoreceptor SIRPα inducing evasion of phagocytic clearance. GPI/anti-CD47 siRNA polyplexes achieved significant antitumor activities both on A549WT and A549DDP tumor

  10. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication

    PubMed Central

    Thai, Minh; Thaker, Shivani K.; Feng, Jun; Du, Yushen; Hu, Hailiang; Ting Wu, Ting; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.

    2015-01-01

    Viruses rewire host cell glucose and glutamine metabolism to meet the bioenergetic and biosynthetic demands of viral propagation. However, the mechanism by which viruses reprogram glutamine metabolism and the metabolic fate of glutamine during adenovirus infection have remained elusive. Here, we show MYC activation is necessary for adenovirus-induced upregulation of host cell glutamine utilization and increased expression of glutamine transporters and glutamine catabolism enzymes. Adenovirus-induced MYC activation promotes increased glutamine uptake, increased use of glutamine in reductive carboxylation and increased use of glutamine in generating hexosamine pathway intermediates and specific amino acids. We identify glutaminase (GLS) as a critical enzyme for optimal adenovirus replication and demonstrate that GLS inhibition decreases replication of adenovirus, herpes simplex virus 1 and influenza A in cultured primary cells. Our findings show that adenovirus-induced reprogramming of glutamine metabolism through MYC activation promotes optimal progeny virion generation, and suggest that GLS inhibitors may be useful therapeutically to reduce replication of diverse viruses. PMID:26561297

  11. Initiation of Swarming Motility by Proteus mirabilis Occurs in Response to Specific Cues Present in Urine and Requires Excess l-Glutamine

    PubMed Central

    Armbruster, Chelsie E.; Hodges, Steven A.

    2013-01-01

    Proteus mirabilis, a leading cause of catheter-associated urinary tract infection (CaUTI), differentiates into swarm cells that migrate across catheter surfaces and medium solidified with 1.5% agar. While many genes and nutrient requirements involved in the swarming process have been identified, few studies have addressed the signals that promote initiation of swarming following initial contact with a surface. In this study, we show that P. mirabilis CaUTI isolates initiate swarming in response to specific nutrients and environmental cues. Thirty-three compounds, including amino acids, polyamines, fatty acids, and tricarboxylic acid (TCA) cycle intermediates, were tested for the ability to promote swarming when added to normally nonpermissive media. l-Arginine, l-glutamine, dl-histidine, malate, and dl-ornithine promoted swarming on several types of media without enhancing swimming motility or growth rate. Testing of isogenic mutants revealed that swarming in response to the cues required putrescine biosynthesis and pathways involved in amino acid metabolism. Furthermore, excess glutamine was found to be a strict requirement for swarming on normal swarm agar in addition to being a swarming cue under normally nonpermissive conditions. We thus conclude that initiation of swarming occurs in response to specific cues and that manipulating concentrations of key nutrient cues can signal whether or not a particular environment is permissive for swarming. PMID:23316040

  12. Glutamine: Precursor or nitrogen donor for citrulline synthesis?

    USDA-ARS?s Scientific Manuscript database

    Although glutamine is considered the main precursor for citrulline synthesis, the current literature does not differentiate between the contribution of glutamine carbon skeleton, versus nonspecific nitrogen (i.e., ammonia) and carbon derived from glutamine oxidation. To elucidate the role of glutami...

  13. Thirteen-week oral toxicity study of L-glutamine in rats.

    PubMed

    Tsubuku, Shoji; Hatayama, Kazuhisa; Mawatari, Kazunori; Smriga, Miro; Kimura, Takeshi

    2004-01-01

    L-Glutamine (Gln) is a semiessential amino acid used in enteral feeding in critically ill patients, and is contained in numerous dietary supplements available to the general public. This study evaluated toxicological effects of Gln in male and female Sprague-Dawley rats. Gln produced by Ajinomoto Co. (Tokyo, Japan) was incorporated into a standard diet at doses equal to 1.25%, 2.5%, and 5.0% (w/w), respectively. A control group of rats received only a standard diet. All diets were administered ad libitum for 13 consecutive weeks. To examine recoverability of any potential effects, the administration period was followed by a 5-week recovery period, during which only the standard diet was provided to all animals. Throughout the administration and recovery periods, no deaths were observed, and no changes in diet consumption, ophthalmologic findings, gross pathology, and histopathology were detected. Several changes in urine parameters (total protein, urine pH, and a positive incidence (+/-) of ketone bodies) were observed in the 2.5% and 5.0% groups at the end of the administration period. Minor increases were found in hematology parameters for the 5.0% group (platelet count, gamma-globulin, lactate dehydrogenase [LDH]), but all changes were within physiological range. No effects of administration were observed in the 1.25% group. The no-observed-adverse-effect level (NOAEL) for Gln was estimated at 1.25% for both genders (males 0.83 +/- 0.01 g/kg/day; females, 0.96 +/- 0.06 g/kg/day).

  14. Radiofrequency ablation during continuous saline infusion can extend ablation margins

    PubMed Central

    Ishikawa, Toru; Kubota, Tomoyuki; Horigome, Ryoko; Kimura, Naruhiro; Honda, Hiroki; Iwanaga, Akito; Seki, Keiichi; Honma, Terasu; Yoshida, Toshiaki

    2013-01-01

    AIM: To determine whether fluid injection during radiofrequency ablation (RFA) can increase the coagulation area. METHODS: Bovine liver (1-2 kg) was placed on an aluminum tray with a return electrode affixed to the base, and the liver was punctured by an expandable electrode. During RFA, 5% glucose; 50% glucose; or saline fluid was infused continuously at a rate of 1.0 mL/min through the infusion line connected to the infusion port. The area and volume of the thermocoagulated region of bovine liver were determined after RFA. The Joule heat generated was determined from the temporal change in output during the RFA experiment. RESULTS: No liquid infusion was 17.3 ± 1.6 mL, similar to the volume of a 3-cm diameter sphere (14.1 mL). Mean thermocoagulated volume was significantly larger with continuous infusion of saline (29.3 ± 3.3 mL) than with 5% glucose (21.4 ± 2.2 mL), 50% glucose (16.5 ± 0.9 mL) or no liquid infusion (17.3 ± 1.6 mL). The ablated volume for RFA with saline was approximately 1.7-times greater than for RFA with no liquid infusion, representing a significant difference between these two conditions. Total Joule heat generated during RFA was highest with saline, and lowest with 50% glucose. CONCLUSION: RFA with continuous saline infusion achieves a large ablation zone, and may help inhibit local recurrence by obtaining sufficient ablation margins. RFA during continuous saline infusion can extend ablation margins, and may be prevent local recurrence. PMID:23483097

  15. Determination of asparagine, glutamine and pyrrolidonecarboxylic acid in total enzymic hydrolysates of peptides and glycopeptides by gas–liquid chromatography

    PubMed Central

    Hediger, Hedy; Stevens, Richard L.; Brandenberger, Hans; Schmid, Karl

    1973-01-01

    A new procedure for the qualitative and quantitative determination of asparagine, glutamine and pyrrolidonecarboxylic acid in total enzymic hydrolysates of peptides and glycopeptides based on g.l.c. has been developed. Under the conditions of esterification and trifluoroacetylation N-trifluoroacetylaspartic acid mono-n-butyl ester was formed from asparagine and N-trifluoroacetylglutamic acid mono-n-butyl ester from both glutamine and pyrrolidonecarboxylic acid. To distinguish between the latter two compounds, the esterification was carried out at room temperature yielding 30% of esterified pyrrolidonecarboxylic acid but less than 1% of esterified glutamine. In extending the g.l.c. of amino acids, the previously unknown positions in the g.l.c. elution pattern of the following amino acids could also be reproducibly determined: carboxymethylcysteine, homoserine, hydroxylysine and ∈-methyl-lysine. Further, certain glycopeptides were investigated and the artifacts due to their carbohydrate moieties were determined. PMID:4733240

  16. Therapeutic strategies impacting cancer cell glutamine metabolism

    PubMed Central

    Lukey, Michael J; Wilson, Kristin F; Cerione, Richard A

    2014-01-01

    The metabolic adaptations that support oncogenic growth can also render cancer cells dependent on certain nutrients. Along with the Warburg effect, increased utilization of glutamine is one of the metabolic hallmarks of the transformed state. Glutamine catabolism is positively regulated by multiple oncogenic signals, including those transmitted by the Rho family of GTPases and by c-Myc. The recent identification of mechanistically distinct inhibitors of glutaminase, which can selectively block cellular transformation, has revived interest in the possibility of targeting glutamine metabolism in cancer therapy. Here, we outline the regulation and roles of glutamine metabolism within cancer cells and discuss possible strategies for, and the consequences of, impacting these processes therapeutically. PMID:24047273

  17. Functional Analysis of d-Alanylation of Lipoteichoic Acid in the Probiotic Strain Lactobacillus rhamnosus GG▿

    PubMed Central

    Vélez, Mónica Perea; Verhoeven, Tine L. A.; Draing, Christian; Von Aulock, Sonja; Pfitzenmaier, Markus; Geyer, Armin; Lambrichts, Ivo; Grangette, Corinne; Pot, Bruno; Vanderleyden, Jos; De Keersmaecker, Sigrid C. J.

    2007-01-01

    Lipoteichoic acid (LTA) is a macroamphiphile molecule which performs several functions in gram-positive bacteria, such as maintenance of cell wall homeostasis. d-Alanylation of LTA requires the proteins encoded by the dlt operon, and this process is directly related to the charge properties of this polymer strongly contributing to its function. The insertional inactivation of dltD of the probiotic strain Lactobacillus rhamnosus GG (ATCC 53103) resulted in the complete absence of d-alanyl esters in the LTA as confirmed by nuclear magnetic resonance analysis. This was reflected in modifications of the bacterial cell surface properties. The dltD strain showed 2.4-fold-increased cell length, a low survival capacity in response to gastric juice challenge, an increased sensitivity to human beta-defensin-2, an increased rate of autolysis, an increased capacity to initiate growth in the presence of an anionic detergent, and a decreased capacity to initiate growth in the presence of cationic peptides compared to wild-type results. However, in vitro experiments revealed no major differences for adhesion to human intestinal epithelial cells, biofilm formation, and immunomodulation. These properties are considered to be important for probiotics. The role of the dlt operon in lactobacilli is discussed in view of these results. PMID:17434999

  18. Dynamic O-linked N-acetylglucosamine modification of proteins affects stress responses and survival of mesothelial cells exposed to peritoneal dialysis fluids.

    PubMed

    Herzog, Rebecca; Bender, Thorsten O; Vychytil, Andreas; Bialas, Katarzyna; Aufricht, Christoph; Kratochwill, Klaus

    2014-12-01

    The ability of cells to respond and survive stressful conditions is determined, in part, by the attachment of O-linked N-acetylglucosamine (O-GlcNAc) to proteins (O-GlcNAcylation), a post-translational modification dependent on glucose and glutamine. This study investigates the role of dynamic O-GlcNAcylation of mesothelial cell proteins in cell survival during exposure to glucose-based peritoneal dialysis fluid (PDF). Immortalized human mesothelial cells and primary mesothelial cells, cultured from human omentum or clinical effluent of PD patients, were assessed for O-GlcNAcylation under normal conditions or after exposure to PDF. The dynamic status of O-GlcNAcylation and effects on cellular survival were investigated by chemical modulation with 6-diazo-5-oxo-L-norleucine (DON) to decrease or O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc) to increase O-GlcNAc levels. Viability was decreased by reducing O-GlcNAc levels by DON, which also led to suppressed expression of the cytoprotective heat shock protein 72. In contrast, increasing O-GlcNAc levels by PUGNAc or alanyl-glutamine led to significantly improved cell survival paralleled by higher heat shock protein 72 levels during PDF treatment. Addition of alanyl-glutamine increased O-GlcNAcylation and partly counteracted its inhibition by DON, also leading to improved cell survival. Immunofluorescent analysis of clinical samples showed that the O-GlcNAc signal primarily originates from mesothelial cells. In conclusion, this study identified O-GlcNAcylation in mesothelial cells as a potentially important molecular mechanism after exposure to PDF. Modulating O-GlcNAc levels by clinically feasible interventions might evolve as a novel therapeutic target for the preservation of peritoneal membrane integrity in PD. Copyright © 2014 by the American Society of Nephrology.

  19. Introduction to the Glutamate-Glutamine Cycle.

    PubMed

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain 14 C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor. This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion but more recent research has seriously questioned this.This volume of Advances in Neurobiology is intended to provide a detailed discussion of recent developments in research aimed at delineating the functional roles of the cycle taking into account that in order for this system to work there must be a tight coupling between metabolism of glutamate in astrocytes, transfer of glutamine to neurons and de novo synthesis of glutamine in astrocytes. To understand this, knowledge about the activity and regulation of the enzymes and transporters involved in these processes is required and as can be seen from the table of contents these issues will be dealt with in detail in the individual chapters of the book.

  20. Effects of various glutamine concentrations on gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni.

    PubMed

    Esmaeili, Fatemeh; Ghaheri, Matin; Kahrizi, Danial; Mansouri, Mohsen; Safavi, Seyed Mehdi; Ghorbani, Tayebeh; Muhammadi, Sarre; Rahmanian, Elham; Vaziri, Siavash

    2018-02-10

    Stevia rebaudiana Bertoni is one of the most important biologically sourced and low-calorie sweeteners that contains a lots of Steviol glycosides. Tissue culture is the best method for propagation of stevia and micro nutrients can affect both morphological traits and steviol glycosides production. In the present study, we investigated the effect of different concentrations of glutamine (10, 20, 30 and 40 g/l) on expression of UGT74G1 and UGT76G1 genes and stevioside and rebaudioside A accumulation in the leaves of stevia under in vitro conditions. The highest level of expression for UGT74G1 (1.000 Total lab unit) was seen at plants grown in MS media without glutamine and the highest gene expression level for UGT76G1 (1.321 Total lab unit) was observed at plants grown in 2% glutamine. Based on HPLC results, the highest amount of stevioside (22.74) was accumulated in plants which were under 3% glutamine treatment and the lowest production level of stevioside (16.19) was resulted under MS (0 glutamine) medium. The highest rebaudioside A (12.19) accumulation was observed under 2% glutamine treatment and the lowest accumulation of rebaudioside A (8.41) was seen at plants grown in MS medium.

  1. Investigation of Glutamine and GABA Levels in Patients With Idiopathic Generalized Epilepsy Using MEGAPRESS

    PubMed Central

    Chowdhury, Fahmida A.; O’Gorman, Ruth L.; Nashef, Lina; Elwes, Robert D.; Edden, Richard A.; Murdoch, James B.; Barker, Gareth J.; Richardson, Mark P.

    2015-01-01

    Purpose Idiopathic generalized epilepsies (IGE) comprise a group of clinical syndromes associated with spike wave discharges, putatively linked to alterations in neurotransmission. The purpose of this study was to investigate whether patients with IGE have altered glutamine and γ-aminobutyric acid (GABA) levels indicative of altered excitatory and inhibitory neurotransmission in frontal regions. Materials and Methods Single-voxel MEGA-edited PRESS magnetic resonance imaging (MRI) spectra were acquired from a 30-mL voxel in the dorsolateral prefrontal cortex in 13 patients with IGE (8 female) and 16 controls (9 female) at 3T. Metabolite concentrations were derived using LCModel. Differences between groups were investigated using an unpaired t-test. Results Patients with IGE were found to have significantly higher glutamine than controls (P = 0.02). GABA levels were also elevated in patients with IGE (P = 0.03). Conclusion Patients with IGE have increased frontal glutamine and GABA compared with controls. Since glutamine has been suggested to act as a surrogate for metabolically active glutamate, it may represent a marker for excitatory neurotransmission. PMID:24585443

  2. Glutamine: an obligatory parenteral nutrition substrate in critical care therapy.

    PubMed

    Stehle, Peter; Kuhn, Katharina S

    2015-01-01

    Critical illness is characterized by glutamine depletion owing to increased metabolic demand. Glutamine is essential to maintain intestinal integrity and function, sustain immunologic response, and maintain antioxidative balance. Insufficient endogenous availability of glutamine may impair outcome in critically ill patients. Consequently, glutamine has been considered to be a conditionally essential amino acid and a necessary component to complete any parenteral nutrition regimen. Recently, this scientifically sound recommendation has been questioned, primarily based on controversial findings from a large multicentre study published in 2013 that evoked considerable uncertainty among clinicians. The present review was conceived to clarify the most important questions surrounding glutamine supplementation in critical care. This was achieved by addressing the role of glutamine in the pathophysiology of critical illness, summarizing recent clinical studies in patients receiving parenteral nutrition with intravenous glutamine, and describing practical concepts for providing parenteral glutamine in critical care.

  3. Glutamine: An Obligatory Parenteral Nutrition Substrate in Critical Care Therapy

    PubMed Central

    Stehle, Peter; Kuhn, Katharina S.

    2015-01-01

    Critical illness is characterized by glutamine depletion owing to increased metabolic demand. Glutamine is essential to maintain intestinal integrity and function, sustain immunologic response, and maintain antioxidative balance. Insufficient endogenous availability of glutamine may impair outcome in critically ill patients. Consequently, glutamine has been considered to be a conditionally essential amino acid and a necessary component to complete any parenteral nutrition regimen. Recently, this scientifically sound recommendation has been questioned, primarily based on controversial findings from a large multicentre study published in 2013 that evoked considerable uncertainty among clinicians. The present review was conceived to clarify the most important questions surrounding glutamine supplementation in critical care. This was achieved by addressing the role of glutamine in the pathophysiology of critical illness, summarizing recent clinical studies in patients receiving parenteral nutrition with intravenous glutamine, and describing practical concepts for providing parenteral glutamine in critical care. PMID:26495301

  4. Glutamine and cancer: cell biology, physiology, and clinical opportunities

    PubMed Central

    Hensley, Christopher T.; Wasti, Ajla T.; DeBerardinis, Ralph J.

    2013-01-01

    Glutamine is an abundant and versatile nutrient that participates in energy formation, redox homeostasis, macromolecular synthesis, and signaling in cancer cells. These characteristics make glutamine metabolism an appealing target for new clinical strategies to detect, monitor, and treat cancer. Here we review the metabolic functions of glutamine as a super nutrient and the surprising roles of glutamine in supporting the biological hallmarks of malignancy. We also review recent efforts in imaging and therapeutics to exploit tumor cell glutamine dependence, discuss some of the challenges in this arena, and suggest a disease-focused paradigm to deploy these emerging approaches. PMID:23999442

  5. Effect of glutamine supplementation on neutrophil function in male judoists.

    PubMed

    Sasaki, Eiji; Umeda, Takashi; Takahashi, Ippei; Arata, Kojima; Yamamoto, Yousuke; Tanabe, Masaru; Oyamada, Kazuyuki; Hashizume, Erika; Nakaji, Shigeyuki

    2013-01-01

    Glutamine is an important amino acid for immune function. Though high intensity and prolonged exercise decreases plasma glutamine concentration and causes immune suppression, the relationship between neutrophil functions and glutamine has not yet been found. The purpose of this study was to investigate the impacts of glutamine supplementation on neutrophil function. Twenty-six male university judoists were recruited. Subjects were classified into glutamine and control groups. The glutamine group ingested 3000 mg of glutamine per day and the control group ingested placebo for 2 weeks. Examinations were performed at the start of preunified loading exercise (pre-ULE), then 1 and 2 weeks after ULE (post-ULE). Reactive oxygen species (ROS) production, phagocytic activity, serum opsonic activity and serum myogenic enzymes were measured. Differences between the levels obtained in pre-ULE and post-ULE for the two groups were compared. In the glutamine group, ROS production activity increased 1 week after ULE, whereas it was not observed in the control group (P < 0.001). Though myogenic enzymes increased significantly after ULE (P < 0.001), the glutamine group remained unchanged by supplementation during ULE. Glutamine supplementation has prevented excessive muscle damage and suppression of neutrophil function, especially in ROS production activity, even during an intensive training period. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Glutamine, glutamate, and other possible regulators of alpha-ketoglutarate and malate uptake by synaptic terminals.

    PubMed

    Shank, R P; Campbell, G L

    1984-04-01

    The uptake of alpha-ketoglutarate and malate by rat brain synaptosomal preparations was found to be affected by a variety of substances at physiologically relevant concentrations. Glutamine altered the uptake of alpha-ketoglutarate by causing an apparent reduction in the substrate-carrier affinity and an increase in Vmax. In contrast, glutamine did not appear to affect the Vmax of malate uptake, but it did increase markedly the uptake velocity at low concentrations of malate. L-Glutamate and L-aspartate were comparatively strong inhibitors of alpha-ketoglutarate and malate uptake. N-Acetylaspartate was a weak inhibitor of alpha-ketoglutarate uptake, a finding that contrasts with our previous observation that this compound potently inhibited alpha-ketoglutarate uptake by synaptosomes obtained from the cerebellum of 8- to 14-day-old mice. Ca2+ exhibited a variable effect but usually enhanced the uptake of alpha-ketoglutarate. The addition of small amounts of postmicrosomal supernatant to the incubation medium enhanced the uptake of alpha-ketoglutarate by low-density synaptosomes. By comparison, the uptake of glutamate, glutamine, gamma-aminobutyric acid, and several other amino acids was not affected. The enhancement of alpha-ketoglutarate uptake by the supernatant was due to a heat labile substance that was retained by dialysis tubing (MW cutoff = 8,000) and Amicon filter cones (CF 25), and was precipitated by ammonium sulfate at 60% saturation. In experiments in which the metabolic conversion of [U-14C] alpha-ketoglutarate to glutamate, aspartate, glutamine, and gamma-aminobutyric acid was determined, the presence of glutamine and glutamate in the incubation medium did not affect the pattern of labelling appreciably.

  7. When Is It Appropriate to Use Glutamine in Critical Illness?

    PubMed

    Mundi, Manpreet S; Shah, Meera; Hurt, Ryan T

    2016-08-01

    Glutamine is a nonessential amino acid, which under trauma or critical illness can become essential. A number of historic small single-center randomized controlled trials (RCTs) have demonstrated positive treatment effects on clinical outcomes with glutamine supplementation. Meta-analyses based on these trials demonstrated a significant reduction in hospital mortality, intensive care unit (ICU) length of stay (LOS), and hospital LOS with intravenous (IV) glutamine. Similar results were not noted in 2 large multicenter RCTs (REDOXS and MetaPlus) assessing the efficacy of glutamine supplementation in ventilated ICU patients. The REDOXS trial of 40 ICUs randomized 1223 ventilated ICU patients to glutamine (IV and enteral), antioxidants, both glutamine and antioxidants, or placebo. The main conclusions were a trend toward increased 28-day mortality and significant increased hospital and 6-month mortality in those who received glutamine. The MetaPlus trial of 14 ICUs, which randomized 301 ventilated ICU patients to glutamine-enriched enteral vs an isocaloric diet, noted increased 6-month mortality in the glutamine-supplemented group. Newer RCTs have focused on specific populations and have demonstrated benefits in burn and elective surgery patients with glutamine supplementation. Whether larger studies will confirm these findings is yet to be determined. Recent American Society for Parenteral and Enteral Nutrition guidelines recommend that IV and enteral glutamine should not be used in the critical care setting based on the moderate quality of evidence available. We agree with these recommendations and would encourage larger multicenter studies to evaluate the risks and benefits of glutamine in burn and elective surgery patients. © 2016 American Society for Parenteral and Enteral Nutrition.

  8. Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion

    PubMed Central

    Shanware, Naval P.; Bray, Kevin; Eng, Christina H.; Wang, Fang; Follettie, Maximillian; Myers, Jeremy; Fantin, Valeria R.; Abraham, Robert T.

    2014-01-01

    The non-essential amino acid, glutamine, exerts pleiotropic effects on cell metabolism, signalling and stress resistance. Here we demonstrate that short-term glutamine restriction triggers an endoplasmic reticulum (ER) stress response that leads to production of the pro-inflammatory chemokine, interleukin-8 (IL-8). Glutamine deprivation-induced ER stress triggers colocalization of autophagosomes, lysosomes and the Golgi into a subcellular structure whose integrity is essential for IL-8 secretion. The stimulatory effect of glutamine restriction on IL-8 production is attributable to depletion of tricarboxylic acid cycle intermediates. The protein kinase, mTOR, is also colocalized with the lysosomal membrane clusters induced by glutamine deprivation, and inhibition of mTORC1 activity abolishes both endomembrane reorganization and IL-8 secretion. Activated mTORC1 elicits IL8 gene expression via the activation of an IRE1-JNK signalling cascade. Treatment of cells with a glutaminase inhibitor phenocopies glutamine restriction, suggesting that these results will be relevant to the clinical development of glutamine metabolism inhibitors as anticancer agents. PMID:25254627

  9. Conformation-Specific IR and UV Spectroscopy of the Amino Acid Glutamine: Amide-Stacking and Hydrogen Bonding in AN Important Residue in Neurodegenerative Diseases

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; Dean, Jacob C.; Zwier, Timothy S.

    2014-06-01

    Glutamine plays an important role in several neurodegenerative diseases including Huntington's disease (HD) and Alzheimer's disease (AD). An intriguing aspect of the structure of glutamine is its incorporation of an amide group in its side chain, thereby opening up the possibility of forming amide-amide H-bonds between the peptide backbone and side chain. In this study the conformational preferences of two capped gluatamines Z(carboxybenzyl)-Glutamine-X (X=OH, NHMe) are studied under jet-cooled conditions in the gas phase in order to unlock the intrinsic structural motifs that are favored by this flexible sidechain. Conformational assignments are made by comparing the hydride stretch ( 3100-3700 cm-1) and amide I and II ( 1400-1800 cm-1) resonant ion-dip infrared spectra with predictions from harmonic frequency calculations. Assigned structures will be compared to previously published results on both natural and unnatural residues. Particular emphasis will be placed on the comparison between glutamine and unconstrained γ-peptides due to the similar three-carbon spacing between backbone and side chain in glutamine to the backbone spacing in γ-peptides. The ability of the glutamine side-chain to form amide stacked conformations will be a main focus, along with the prevalence of extended backbone type structures. W. H. James, III, C W. Müller, E. G. Buchanan, M. G. D. Nix, L. Guo, L. Roskop, M. S. Gordon, L. V. Slipchenko, S. H. Gellman, and T. S. Zwier, J. Am. Chem. Soc., 2009, 131(40), 14243-14245.

  10. Micronutrients (B, Co, Cu, Fe, Mn, Mo, and Zn) content in made tea (Camellia sinensis L.) and tea infusion with health prospect: A critical review.

    PubMed

    Karak, Tanmoy; Kutu, Funso Raphael; Nath, Jyoti Rani; Sonar, Indira; Paul, Ranjit Kumar; Boruah, Romesh Kumar; Sanyal, Sandip; Sabhapondit, Santanu; Dutta, Amrit Kumar

    2017-09-22

    Tea (Camellia sinensis L.) is a perennial acidophilic crop, and known to be a nonalcoholic stimulating beverage that is most widely consumed after water. The aim of this review paper is to provide a detailed documentation of selected micronutrient contents, viz. boron (B), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), and zinc (Zn) in made tea and tea infusion. Available data from the literature were used to calculate human health aspect associated with the consumption of tea infusion. A wide range of micronutrients reported in both made tea and tea infusion could be the major sources of micronutrients for human. The content of B, Co, Cu, Fe, Mn, Mo, and Zn in made tea are ranged from 3.04 to 58.44 μg g -1 , below detectable limit (BDL) to 122.4 μg g -1 , BDL to 602 μg g -1 , 0.275 to 13,040 μg g -1 , 0.004 to 15,866 μg g -1 , 0.04 to 570.80 μg g -1 and 0.01 to 1120 μg g -1 , respectively. Only 3.2 μg L -1 to 7.25 mg L -1 , 0.01 μg L -1 to 7 mg L -1 , 3.80 μg L -1 to 6.13 mg L -1 , 135.59 μg L -1 -11.05 mg L -1 , 0.05 μg L -1 to 1980.34 mg L -1 , 0.012 to 3.78 μg L -1 , and 1.12 μg L -1 to 2.32 μg L -1 of B, Co, Cu, Fe, Mn, Mo, and Zn, respectively, are found in tea infusion which are lower than the prescribed limit of micronutrients in drinking water by World Health Organization. Furthermore, micronutrient contents in tea infusion depend on infusion procedure as well as on the instrument used for analysis. The proportion of micronutrients found in different tea types are 1.0-88.9% for B, 10-60% for Co, 2.0-97.8% for Cu, 67.8-89.9% for Fe, 71.0-87.4% for Mn, 13.3-34% for Mo, and 34.9-83% for Zn. From the results, it can also be concluded that consumption of three cups of tea infusion per day does not have any adverse effect on human health with respect to the referred micronutrients rather got beneficial effects to human.

  11. The Influence of Manganese and Glutamine Intake on Antioxidants and Neurotransmitter Amino Acids Levels in Rats' Brain.

    PubMed

    Szpetnar, Maria; Luchowska-Kocot, Dorota; Boguszewska-Czubara, Anna; Kurzepa, Jacek

    2016-08-01

    Depending on the concentration, Mn can exert protective or toxic effect. Potential mechanism for manganese neurotoxicity is manganese-induced oxidative stress. Glutamine supplementation could reduce manganese-induced neurotoxicity and is able to influence the neurotransmission processes. The aim of this study was to investigate whether the long term administration of manganese (alone or in combination with glutamine) in dose and time dependent manner could affect the selected parameters of oxidative-antioxidative status (superoxide dismutase and glutathione peroxidase activities, concentrations of vitamin C and malonic dialdehyde) and concentrations of excitatory (Asp, Glu) and inhibitory amino acids (GABA, Gly) in the brain of rats. The experiments were carried out on 2-months-old albino male rats randomly divided into 6 group: Mn300 and Mn500-received solution of MnCl2 to drink (dose 300 and 500 mg/L, respectively), Gln group-solution of glutamine (4 g/L), Mn300-Gln and Mn500-Gln groups-solution of Mn at 300 and 500 mg/L and Gln at 4 g/L dose. The control group (C) received deionized water. Half of the animals were euthanized after three and the other half-after 6 weeks of experiment. The exposure of rats to Mn in drinking water contributes to diminishing of the antioxidant enzymes activity and the increase in level of lipid peroxidation. Glutamine in the diet admittedly increases SOD and GPx activity, but it is unable to restore the intracellular redox balance. The most significant differences in the examined amino acids levels in comparison to both control and Gln group were observed in the group of rats receiving Mn at 500 mg/L dose alone or with Gln. It seems that Gln is amino acid which could improve antioxidant status and affect the concentrations of the neurotransmitters.

  12. Is glutamine deficiency the link between inflammation, malnutrition, and fatigue in cancer patients?

    PubMed

    Schlemmer, Marcus; Suchner, Ulrich; Schäpers, Barbara; Duerr, Eva-Maria; Alteheld, Birgit; Zwingers, Thomas; Stehle, Peter; Zimmer, Heinz-Gerd

    2015-12-01

    Evaluation of potential associations between plasma glutamine levels and the incidence of cancer related fatigue, physical performance, poor nutritional status, and inflammation in patients with solid tumors. Mono-center cross-sectional study recruiting 100 (34 women) consecutive patients (September 2009-March 2011; ≥18 y) with solid tumors and causal tumor therapy. Fasting venous blood was harvested for routine clinical chemistry, amino acid (HPLC) and inflammation marker analyses. Clinical assessments included global, physical, affective and cognitive fatigue (questionnaire) and Karnofsky performance status. Nutritional status was evaluated using bioelectrical impedance analysis, the Prognostic Inflammatory and Nutritional Index and plasma protein levels. Regression analyses were performed to correlate continuous variables with plasma glutamine (95% confidence intervals). Nutritional status was impaired in 19% of the patients. Average plasma glutamine concentration (574.0 ± 189.6 μmol/L) was within normal range but decreased with impaired physical function. Plasma glutamine was linked to the ratio extracellular to body cell mass (p < 0.044), CRP (p < 0.001), physical (p = 0.014), affective (p = 0.041), and global fatigue (p = 0.030). Markers of inflammation increased with low physical performance. The data support our working hypothesis that in cancer patients systemic inflammation maintains a catabolic situation leading to malnutrition symptoms and glutamine deprivation, the latter being associated with cancer related fatigue. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Glutamine supplementation prevents collagen expression damage in healthy urinary bladder caused by radiotherapy.

    PubMed

    Rocha, Beatriz Rodrigues; Gombar, Flavia Meirelles; Barcellos, Leilane Maria; Costa, Waldemar Silva; Barcellos Sampaio, Francisco Jose; Ramos, Cristiane Fonte

    2011-01-01

    Patients who have had pelvic radiotherapy as part of their cancer therapy may develop subsequent urinary bladder effects such as hyperactive bladder, incontinence, and dysuria. Therefore, the goal of this study was to evaluate whether glutamine supplementation could prevent collagen expression damage in healthy urinary bladder caused by radiotherapy. Fifteen adult Wistar rats were separated into a control group that received food and water ad libitum (C group), an irradiated group that received a single pelvic radiation dose of 1164 cGy (I group), and an irradiated group supplemented with l-glutamine every day during the entire experimental period (0.65 g/kg of body weight; I+G group). All animals were sacrificed 15 d after irradiation. The extracellular matrix and muscle were quantified by a morphometric method. Picro Sirius Red was used to visualize the different collagen types. Reverse transcription-polymerase chain reaction and immunohistochemistry were used to determine collagen type I and III expressions. The extracellular matrix (C group 36.84±4.37, I group 31.64±5.00, I+G group 35.53±2.60, P=0.0001), muscle (C group 36.43±6.15, I group 29.39±7.08, I+G group 31.38±3.14, P=0.0001), and gene expressions of collagen type I (C group 1.067±0.31, I group 0.579±0.17, I+G group 1.816±0.66, P=0.0009) and type III (C group 0.99±0.28, I group 0.54±0.13, I+G group 1.07±0.28, P=0.0080) were decreased in the I group. Apart from muscle, glutamine supplementation prevented these alterations. Immunohistochemistry and Picro Sirius Red showed similar results. Supplementation with l-glutamine seems to prevent bladder wall damage in relation to extracellular matrix volumetric density and collagen expression. These results suggest that glutamine supplementation could be efficient in protecting healthy tissues from the adverse effects of radiotherapy. Copyright © 2011. Published by Elsevier Inc.

  14. Preoperative carbohydrate-rich beverage reduces hypothermia during general anesthesia in rats.

    PubMed

    Yatabe, Tomoaki; Kawano, Takashi; Yamashita, Koichi; Yokoyama, Masataka

    2011-08-01

    Intraoperative hypothermia is associated with several unfavorable events; therefore, it is important to prevent the development of hypothermia. Amino acid consumption and/or infusion have been reported to prevent hypothermia. We hypothesized that preoperative carbohydrate-rich beverage (Arginaid Water™) loading can reduce intraoperative hypothermia in rats under general anesthesia. We divided 18 rats into 3 groups (group A, 8 mL/kg of saline; group B, 8 mL/kg of a carbohydrate-rich beverage; and group C, 21 mL/kg of the carbohydrate-rich beverage). The rats were administered each beverage at the above mentioned doses via an oral gastric tube 30 min before the induction of anesthesia. During the 2-h general anesthesia, rectal temperature was measured at 20-min intervals. Serum ketone body concentration was measured at 0 and 120 min. The baseline temperature was not significantly different among the groups. At the end of the experiment, group A showed a significantly greater decrease in temperature from the baseline (5.4 ± 0.8°C) than group B (3.9 ± 0.7°C, P = 0.01) and group C (3.8 ± 0.8°C, P = 0.01). The temperatures in groups B and C were not significantly different. There was no significant change in the serum ketone body concentration from the baseline at the end of the experiment in group A. However, the serum ketone body concentrations in group B and group C were significantly decreased from the baseline. Preoperative carbohydrate loading reduces hypothermia in rats under general anesthesia.

  15. Glutamine supplementation does not improve protein synthesis rate by the jejunal mucosa of the malnourished rat.

    PubMed

    Tannus, Andrea Ferreira S; Darmaun, Dominique; Ribas, Durval F; Oliveira, José Eduardo D; Marchini, Julio Sergio

    2009-08-01

    It has been demonstrated that glutamine, a conditionally essential amino acid, improves nitrogen balance, acts as a stimulant of protein synthesis, and decreases proteolysis in myopathic children. In contrast, other studies have shown no beneficial effect of glutamine supplementation on burn victims or critically ill patients. Nonetheless, we hypothesized that glutamine supplementation would increase the fractional protein synthesis rate (FSR) in the jejunal mucosa of malnourished male Wistar rats. Thus, the objective of the present study was to test the effect of daily oral glutamine supplementation (0.42 g kg(-1) d(-1) for 14 days) on the FSR of the jejunal mucosa of healthy and malnourished rats. A 4-hour kinetic study with l-[1-(13)C]leucine was subsequently performed, and jejunal biopsies were obtained 1.5 cm from the Treitz angle and analyzed. Malnourished rats showed a 25% weight loss and increased urinary nitrogen excretion. Plasma amino acid concentration did not differ between groups. (13)C enrichment in plasma and jejunal cells was higher in the malnourished groups than in the healthy group. The FSR (percent per hour) was similar for the control and experimental groups (P > .05), with a mean range of 22%/h to 27%/h. Oral glutamine supplementation alone did not induce higher protein incorporation by the jejunal mucosa in malnourished rats, regardless of total food intake or the presence or absence of glutamine supplementation.

  16. Glutamine deprivation induces interleukin-8 expression in ataxia telangiectasia fibroblasts.

    PubMed

    Kim, Min-Hyun; Kim, Aryung; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2014-05-01

    To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. The cells were cultured with or without glutamine or GSH. ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and

  17. Inhibition of neutrophil elastase and metalloprotease-9 of human adenocarcinoma gastric cells by chamomile (Matricaria recutita L.) infusion.

    PubMed

    Bulgari, Michela; Sangiovanni, Enrico; Colombo, Elisa; Maschi, Omar; Caruso, Donatella; Bosisio, Enrica; Dell'Agli, Mario

    2012-12-01

    This study investigated whether the antiinflammatory effect of chamomile infusion at gastric level could be ascribed to the inhibition of metalloproteinase-9 and elastase. The infusions from capitula and sifted flowers (250-1500 µg/mL) and individual flavonoids (10 µM) were tested on phorbol 12-myristate 13-acetate-stimulated AGS cells and human neutrophil elastase. The results indicate that the antiinflammatory activity associated with chamomile infusions from both the capitula and sifted flowers is most likely due to the inhibition of neutrophil elastase and gastric metalloproteinase-9 activity and secretion; the inhibition occurring in a concentration dependent manner. The promoter activity was inhibited as well and the decrease of metalloproteinase-9 expression was found to be associated with the inhibition of NF-kB driven transcription. The results further indicate that the flavonoid-7-glycosides, major constituents of chamomile flowers, may be responsible for the antiinflammatory action of the chamomile infusion observed here. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Molecular interaction between lipoteichoic acids and Lactobacillus delbrueckii phages depends on D-alanyl and alpha-glucose substitution of poly(glycerophosphate) backbones.

    PubMed

    Räisänen, Liisa; Draing, Christian; Pfitzenmaier, Markus; Schubert, Karin; Jaakonsaari, Tiina; von Aulock, Sonja; Hartung, Thomas; Alatossava, Tapani

    2007-06-01

    Lipoteichoic acids (LTAs) have been shown to act as bacterial counterparts to the receptor binding proteins of LL-H, LL-H host range mutant LL-H-a21, and JCL1032. Here we have used LTAs purified by hydrophobic interaction chromatography from different phage-resistant and -sensitive strains of Lactobacillus delbrueckii subsp. lactis. Nuclear magnetic resonance analyses revealed variation in the degree of alpha-glucosyl and D-alanyl substitution of the 1,3-linked poly(glycerophosphate) LTAs between the phage-sensitive and phage-resistant strains. Inactivation of phages was less effective if there was a high level of D-alanine residues in the LTA backbones. Prior incubation of the LTAs with alpha-glucose-specific lectin inhibited the LL-H phage inactivation. The overall level of decoration or the specific spatial combination of alpha-glucosyl-substituted, D-alanyl-substituted, and nonsubstituted glycerol residues may also affect phage adsorption.

  19. Molecular Interaction between Lipoteichoic Acids and Lactobacillus delbrueckii Phages Depends on d-Alanyl and α-Glucose Substitution of Poly(Glycerophosphate) Backbones▿

    PubMed Central

    Räisänen, Liisa; Draing, Christian; Pfitzenmaier, Markus; Schubert, Karin; Jaakonsaari, Tiina; von Aulock, Sonja; Hartung, Thomas; Alatossava, Tapani

    2007-01-01

    Lipoteichoic acids (LTAs) have been shown to act as bacterial counterparts to the receptor binding proteins of LL-H, LL-H host range mutant LL-H-a21, and JCL1032. Here we have used LTAs purified by hydrophobic interaction chromatography from different phage-resistant and -sensitive strains of Lactobacillus delbrueckii subsp. lactis. Nuclear magnetic resonance analyses revealed variation in the degree of α-glucosyl and d-alanyl substitution of the 1,3-linked poly(glycerophosphate) LTAs between the phage-sensitive and phage-resistant strains. Inactivation of phages was less effective if there was a high level of d-alanine residues in the LTA backbones. Prior incubation of the LTAs with α-glucose-specific lectin inhibited the LL-H phage inactivation. The overall level of decoration or the specific spatial combination of α-glucosyl-substituted, d-alanyl-substituted, and nonsubstituted glycerol residues may also affect phage adsorption. PMID:17416656

  20. Further Concerns About Glutamine: A Case Report on Hyperammonemic Encephalopathy.

    PubMed

    Cioccari, Luca; Gautschi, Matthias; Etter, Reto; Weck, Anja; Takala, Jukka

    2015-10-01

    We report a case of a woman with hyperammonemic encephalopathy following glutamine supplementation. Case report. Plasma amino acid analysis suggestive of a urea cycle defect and initiation of a treatment with lactulose and the two ammonia scavenger drugs sodium benzoate and phenylacetate. Together with a restricted protein intake ammonia and glutamine plasma levels decreased with subsequent improvement of the neurological status. Massive catabolism and exogenous glutamine administration may have contributed to hyperammonemia and hyperglutaminemia in this patient. This case adds further concerns regarding glutamine administration to critically ill patients and implies the importance of monitoring ammonia and glutamine serum levels in such patients.

  1. Preoperative Localization of Mediastinal Parathyroid Adenoma with Intra-arterial Methylene Blue.

    PubMed

    Salman, Rida; Sebaaly, Mikhael G; Wehbe, Mohammad Rachad; Sfeir, Pierre; Khalife, Mohamad; Al-Kutoubi, Aghiad

    2017-06-01

    Ectopic parathyroid is found in 16% of patients with hyperparathyroidism. 2% of ectopic parathyroid adenomas are not accessible to standard cervical excision. In such cases, video-assisted thoracoscopic resection is the recommended definitive treatment. We present a case of mediastinal parathyroid adenoma localized preoperatively by injecting methylene blue within a branch of the internal mammary artery that is supplying the adenoma. Intra-arterial methylene blue injection facilitated visualization and resection of the adenoma. The preoperative intra-arterial infusion of methylene blue appears to be an effective and safe method for localization of ectopic mediastinal parathyroid adenomas and allows rapid identification during thoracoscopic resection.

  2. Preoperative Localization of Mediastinal Parathyroid Adenoma with Intra-arterial Methylene Blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salman, Rida; Sebaaly, Mikhael G.; Wehbe, Mohammad Rachad

    Ectopic parathyroid is found in 16% of patients with hyperparathyroidism. 2% of ectopic parathyroid adenomas are not accessible to standard cervical excision. In such cases, video-assisted thoracoscopic resection is the recommended definitive treatment. We present a case of mediastinal parathyroid adenoma localized preoperatively by injecting methylene blue within a branch of the internal mammary artery that is supplying the adenoma. Intra-arterial methylene blue injection facilitated visualization and resection of the adenoma. The preoperative intra-arterial infusion of methylene blue appears to be an effective and safe method for localization of ectopic mediastinal parathyroid adenomas and allows rapid identification during thoracoscopic resection.

  3. Glutamine--from conditionally essential to totally dispensable?

    PubMed

    Wernerman, Jan

    2014-07-02

    Recently a large multicentre randomised controlled trial in critically ill patients reported harm to the patients given supplementary glutamine. In the original publication, no explanation was offered for why this result was obtained; a large number of studies have reported beneficial effects or no effect, but never before reported harm. These results have been commented upon in a number of communications. Now some of the authors of the multicentre randomised controlled trial present a review and meta-analysis of glutamine supplementation, and the discrepancy of results is suggested to relate to intravenous administration to patients of supplementary glutamine via parenteral nutrition or a combination of enteral and parenteral nutrition in contrast to enteral administration of supplementation or a combination of enteral and parenteral supplementation. To explain results by epidemiological means only, by combining results into a meta-analysis, is perhaps not the best way to explain mechanisms behind results. Meta-analyses are primarily hypothesis generating. Launching treatment without a solid mechanistic explanation is always risky. Glutamine supplementation of the critically ill comes into that category. Now we will all have to do our homework and try to understand whether supplementation or omission of glutamine for patients fed parenterally is a good idea or not.

  4. Glutamine Transport and Mitochondrial Metabolism in Cancer Cell Growth

    PubMed Central

    Scalise, Mariafrancesca; Pochini, Lorena; Galluccio, Michele; Console, Lara; Indiveri, Cesare

    2017-01-01

    The concept that cancer is a metabolic disease is now well acknowledged: many cancer cell types rely mostly on glucose and some amino acids, especially glutamine for energy supply. These findings were corroborated by overexpression of plasma membrane nutrient transporters, such as the glucose transporters (GLUTs) and some amino acid transporters such as ASCT2, LAT1, and ATB0,+, which became promising targets for pharmacological intervention. On the basis of their sodium-dependent transport modes, ASCT2 and ATB0+ have the capacity to sustain glutamine need of cancer cells; while LAT1, which is sodium independent will have the role of providing cancer cells with some amino acids with plausible signaling roles. According to the metabolic reprogramming of many types of cancer cells, glucose is mainly catabolized by aerobic glycolysis in tumors, while the fate of Glutamine is completed at mitochondrial level where the enzyme Glutaminase converts Glutamine to Glutamate. Glutamine rewiring in cancer cells is heterogeneous. For example, Glutamate is converted to α-Ketoglutarate giving rise to a truncated form of Krebs cycle. This reprogrammed pathway leads to the production of ATP mainly at substrate level and regeneration of reducing equivalents needed for cells growth, redox balance, and metabolic energy. Few studies on hypothetical mitochondrial transporter for Glutamine are reported and indirect evidences suggested its presence. Pharmacological compounds able to inhibit Glutamine metabolism may represent novel drugs for cancer treatments. Interestingly, well acknowledged targets for drugs are the Glutamine transporters of plasma membrane and the key enzyme Glutaminase. PMID:29376023

  5. Role of glutamine in cobinamide biosynthesis in Propionibacterium shermanii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliseev, A.A.; Pushkin, A.V.; Belozerova, E.V.

    1987-01-10

    The role of glutamine as a possible donor of amide groups in the biosynthesis of vitamin B/sub 12/ was investigated. In the incubation of P. shermanii cells preliminarily exhausted with respect to nitrogen on media containing ammonium sulfate or asparagine, the glutamine synthetase inhibitor methionine sulfoximine suppressed the formation of cobinamide (factor B) from the monoamide of cobiric acid (by 75 and 59%, respectively). At the same time, the inhibitor did not affect cobinamide synthesis on a medium with glutamine. The amide group of glutamine, labeled with /sup 13/N, was used for the amidation of corrinoids four times as efficientlymore » as the amine group. It was concluded that a glutamine-dependent synthetase, which catalyzes the amidation of cobiric acids with the formation of cobinamide, functions in cells of propionic acid bacteria.« less

  6. Modulatory effects of arginine, glutamine and branched-chain amino acids on heat shock proteins, immunity and antioxidant response in exercised rats.

    PubMed

    Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Risso, Eder Muller; Amaya-Farfan, Jaime

    2017-09-20

    Heat shock proteins (HSPs) are endogenous proteins whose function is to maintain the cell's tolerance to insult, and glutamine supplementation is known to increase HSP expression during intense exercise. Since few studies have addressed the possibility that supplementation with other amino acids could have similar effects to that of glutamine, our objective was to evaluate the effects of leucine, valine, isoleucine and arginine as potential stimulators of HSPs 25, 60, 70 and 90 in rats subjected to acute exercise as a stressing factor. The immune markers, antioxidant system, blood parameters, glycogen and amino acid profile responses were also assessed. Male Wistar rats were divided into seven groups: control (rest, without gavage), vehicle (water), l-leucine, l-isoleucine, l-valine, l-arginine and l-glutamine. Except for the control, all animals were exercised and received every amino acid by oral gavage. Arginine supplementation up-regulated muscle HSP70 and HSP90 and serum HSP70, however, none of the amino acids affected the HSP25. All amino acids increased exercise-induced HSP60 expression, except for valine. Antioxidant enzymes were reduced by exercise, but both glutamine and arginine restored glutathione peroxidase, while isoleucine and valine restored superoxide dismutase. Exercise reduced monocyte, platelet, lymphocyte and erythrocyte levels, while leucine stimulated immune response, preserved the levels of the lymphocytes and increased leukocytes and maintained platelets at control levels. Plasma and muscle amino acid profiles showed specific metabolic features. The data suggest that the tissue-protecting effects of arginine could proceed by enhancing specific HSPs in the body.

  7. Glutamine supplementation to prevent morbidity and mortality in preterm infants.

    PubMed

    Moe-Byrne, Thirimon; Brown, Jennifer V E; McGuire, William

    2016-01-12

    Glutamine is a conditionally essential amino acid. Endogenous biosynthesis may be insufficient for tissue needs in states of metabolic stress. Evidence exists that glutamine supplementation improves clinical outcomes in critically ill adults. It has been suggested that glutamine supplementation may also benefit preterm infants. To determine the effects of glutamine supplementation on mortality and morbidity in preterm infants. We used the standard search strategy of the Cochrane Neonatal Review Group. This included searches of the Cochrane Central Register of Controlled Trials (CENTRAL, 2015, Issue 12), MEDLINE, EMBASE and Maternity and Infant Care (to December 2015), conference proceedings and previous reviews. Randomised or quasi-randomised controlled trials that compared glutamine supplementation versus no glutamine supplementation in preterm infants at any time from birth to discharge from hospital. We extracted data using the standard methods of the Cochrane Neonatal Review Group, with separate evaluation of trial quality and data extraction by two review authors. We synthesised data using a fixed-effect model and reported typical relative risk, typical risk difference and weighted mean difference. We identified 12 randomised controlled trials in which a total of 2877 preterm infants participated. Six trials assessed enteral glutamine supplementation and six trials assessed parenteral glutamine supplementation. The trials were generally of good methodological quality. Meta-analysis did not find an effect of glutamine supplementation on mortality (typical relative risk 0.97, 95% confidence interval 0.80 to 1.17; risk difference 0.00, 95% confidence interval -0.03 to 0.02) or major neonatal morbidities including the incidence of invasive infection or necrotising enterocolitis. Three trials that assessed neurodevelopmental outcomes in children aged 18 to 24 months and beyond did not find any effects. The available trial data do not provide evidence that glutamine

  8. Glutamine supplementation to prevent morbidity and mortality in preterm infants.

    PubMed

    Moe-Byrne, Thirimon; Brown, Jennifer V E; McGuire, William

    2016-04-18

    Glutamine is a conditionally essential amino acid. Endogenous biosynthesis may be insufficient for tissue needs in states of metabolic stress. Evidence exists that glutamine supplementation improves clinical outcomes in critically ill adults. It has been suggested that glutamine supplementation may also benefit preterm infants. To determine the effects of glutamine supplementation on mortality and morbidity in preterm infants. We used the standard search strategy of the Cochrane Neonatal Review Group. This included searches of the Cochrane Central Register of Controlled Trials (CENTRAL, 2015, Issue 12), MEDLINE, EMBASE and Maternity and Infant Care (to December 2015), conference proceedings and previous reviews. Randomised or quasi-randomised controlled trials that compared glutamine supplementation versus no glutamine supplementation in preterm infants at any time from birth to discharge from hospital. We extracted data using the standard methods of the Cochrane Neonatal Review Group, with separate evaluation of trial quality and data extraction by two review authors. We synthesised data using a fixed-effect model and reported typical relative risk, typical risk difference and weighted mean difference. We identified 12 randomised controlled trials in which a total of 2877 preterm infants participated. Six trials assessed enteral glutamine supplementation and six trials assessed parenteral glutamine supplementation. The trials were generally of good methodological quality. Meta-analysis did not find an effect of glutamine supplementation on mortality (typical relative risk 0.97, 95% confidence interval 0.80 to 1.17; risk difference 0.00, 95% confidence interval -0.03 to 0.02) or major neonatal morbidities including the incidence of invasive infection or necrotising enterocolitis. Three trials that assessed neurodevelopmental outcomes in children aged 18 to 24 months and beyond did not find any effects. The available trial data do not provide evidence that glutamine

  9. Oral glutamine in addition to parenteral nutrition improves mortality and the healing of high-output intestinal fistulas.

    PubMed

    de Aguilar-Nascimento, J E; Caporossi, C; Dock-Nascimento, D Borges; de Arruda, I S; Moreno, K; Moreno, W

    2007-01-01

    Anastomotic leakage is one of the most important causes of morbidity and mortality in gastrointestinal surgery. We investigated the effect of oral glutamine on the healing of high-output intestinal fistula. A tertiary Universitary Hospital of the University of Mato Grosso, Cuiaba, Brazil. 28 patients (25 males and 3 females; median age = 45 [18-71] years old) admitted with high output post-operative small bowel fistulas (median volume in 24 h: 850 [600-2,200] mL) during a 4 years period were retrospectively studied. In the first two years 19 (67.9%) patients received only TPN as the initial nutritional support. In the last two years however, due to a change in the protocol for the nutritional support in cases of intestinal fistula 9 patients (32.1%) received oral glutamine (0.3 g/kg/day; 150 mL/day) in addition to TPN. Endpoints of the study were mortality, resolution of the fistula, and length of hospital stay (LOS). The overall mortality was 46.4% (13 patients). Fistula closure was observed in all other 15 patients (53.6%) that survived. In the subset of survived patients LOS was similar in those who received or not received glutamine. The multivariate regression analysis showed that resolution of the fistula was 13 times greater in patients that received oral glutamine (OR = 13.2 (95% CI = 1.1-160.5); p = 0.04) and 15 times greater in non-malnourished patients (OR = 15.4 [95% CI = 1.1-215.5]; p = 0.04). We conclude that oral glutamine accelerated the healing and diminished the mortality in this series of patients with post-operative high-output intestinal fistula receiving TPN.

  10. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulationmore » of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.« less

  11. The Role of Glutamine Synthetase and Glutamate Dehydrogenase in Cerebral Ammonia Homeostasis

    PubMed Central

    Cooper, Arthur J. L.

    2012-01-01

    In the brain, glutamine synthetase (GS), which is located predominantly in astrocytes, is largely responsible for the removal of both blood-derived and metabolically generated ammonia. Thus, studies with [13N]ammonia have shown that about 25% of blood-derived ammonia is removed in a single pass through the rat brain and that this ammonia is incorporated primarily into glutamine (amide) in astrocytes. Major pathways for cerebral ammonia generation include the glutaminase reaction and the glutamate dehydrogenase (GDH) reaction. The equilibrium position of the GDH-catalyzed reaction in vitro favors reductive amination of α-ketoglutarate at pH 7.4. Nevertheless, only a small amount of label derived from [13N]ammonia in rat brain is incorporated into glutamate and the α-amine of glutamine in vivo. Most likely the cerebral GDH reaction is drawn normally in the direction of glutamate oxidation (ammonia production) by rapid removal of ammonia as glutamine. Linkage of glutamate/α-ketoglutarate-utilizing aminotransferases with the GDH reaction channels excess amino acid nitrogen toward ammonia for glutamine synthesis. At high ammonia levels and/or when GS is inhibited the GDH reaction coupled with glutamate/α-ketoglutarate-linked aminotransferases may, however, promote the flow of ammonia nitrogen toward synthesis of amino acids. Preliminary evidence suggests an important role for the purine nucleotide cycle (PNC) as an additional source of ammonia in neurons (Net reaction: L-Aspartate + GTP + H2O → Fumarate + GDP + Pi + NH3) and in the beat cycle of ependyma cilia. The link of the PNC to aminotransferases and GDH/GS and its role in cerebral nitrogen metabolism under both normal and pathological (e.g. hyperammonemic encephalopathy) conditions should be a productive area for future research. PMID:22618691

  12. Mentha spicata L. infusions as sources of antioxidant phenolic compounds: emerging reserve lots with special harvest requirements.

    PubMed

    Rita, Ingride; Pereira, Carla; Barros, Lillian; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2016-10-12

    Mentha spicata L., commonly known as spearmint, is widely used in both fresh and dry forms, for infusion preparation or in European and Indian cuisines. Recently, with the evolution of the tea market, several novel products with added value are emerging, and the standard lots have evolved to reserve lots, with special harvest requirements that confer them with enhanced organoleptic and sensorial characteristics. The apical leaves of these batches are collected in specific conditions having, then, a different chemical profile. In the present study, standard and reserve lots of M. spicata were assessed in terms of the antioxidants present in infusions prepared from the different lots. The reserve lots presented the highest concentration in all the compounds identified in relation to the standard lots, with 326 and 188 μg mL -1 of total phenolic compounds, respectively. Both types of samples presented rosmarinic acid as the most abundant phenolic compound, at concentrations of 169 and 101 μg mL -1 for reserve and standard lots, respectively. The antioxidant activity was higher in the reserve lots which had the highest total phenolic compounds content, with EC 50 values ranging from 152 to 336 μg mL -1 . The obtained results provide scientific information that may allow the consumer to make a conscientious choice.

  13. [Preoperative fluid management contributes to the prevention of intraoperative hypothermia].

    PubMed

    Yatabe, Tomoaki; Yokoyama, Masataka

    2011-07-01

    Intraoperative hypothermia causes several unfavorable events such as surgical site infection and cardiovascular events. Therefore, during anesthesia, temperature is routinely regulated, mainly by using external heating devices. Recently, oral amino acid intake and intravenous amino acid or fructose infusion have been reported to prevent intraoperative hypothermia during general and regional anesthesia. Diet (nutrient)-induced thermogenesis is considered to help prevent intraoperative hypothermia. Since the Enhanced Recovery After Surgery (ERAS) protocol has been introduced, it has been used in perioperative management in many hospitals. Prevention of intraoperative hypothermia is included in this protocol. According to the protocol, anesthesiologists play an important role in both intraoperative and perioperative management. Management of optimal body temperature by preoperative fluid management alone may be difficult. To this end, preoperative fluid management and nutrient management strategies such as preoperative oral fluid intake and carbohydrate loading have the potential to contribute to the prevention of intraoperative hypothermia.

  14. Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: a primary intestinal defect?

    PubMed

    Boutry, Claire; Matsumoto, Hideki; Bos, Cécile; Moinard, Christophe; Cynober, Luc; Yin, Yulong; Tomé, Daniel; Blachier, François

    2012-10-01

    Endotoxemia affects intestinal physiology. A decrease of circulating citrulline concentration is considered as a reflection of the intestinal function. Citrulline can be produced in enterocytes notably from glutamate and glutamine. The aim of this work was to determine if glutamate, glutamine and citrulline concentrations in blood, intestine and muscle are decreased by endotoxemia, and if supplementation with glutamate or glutamine can restore normal concentrations. We induced endotoxemia in rats by an intraperitoneal injection of 0.3 mg kg(-1) lipopolysaccharide (LPS). This led to a rapid anorexia, negative nitrogen balance and a transient increase of the circulating level of IL-6 and TNF-α. When compared with the values measured in pair fed (PF) animals, almost all circulating amino acids (AA) including citrulline decreased, suggesting a decrease of intestinal function. However, at D2 after LPS injection, most circulating AA concentrations were closed to the values recorded in the PF group. At that time, among AA, only glutamate, glutamine and citrulline were decreased in gastrocnemius muscle without change in intestinal mucosa. A supplementation with 4% monosodium glutamate (MSG) or an isomolar amount of glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscle. However, MSG supplementation led to an accumulation of glutamate in the intestinal mucosa. In conclusion, endotoxemia rapidly but transiently decreased the circulating concentrations of almost all AA and more durably of glutamate, glutamine and citrulline in muscle. Supplementation with glutamate or glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscles. The implication of a loss of the intestinal capacity for AA absorption and/or metabolism in endotoxemia (as judged from decreased citrulline plasma concentration) for explaining such results are discussed.

  15. DltX of Bacillus thuringiensis Is Essential for D-Alanylation of Teichoic Acids and Resistance to Antimicrobial Response in Insects

    PubMed Central

    Kamar, Rita; Réjasse, Agnès; Jéhanno, Isabelle; Attieh, Zaynoun; Courtin, Pascal; Chapot-Chartier, Marie-Pierre; Nielsen-Leroux, Christina; Lereclus, Didier; el Chamy, Laure; Kallassy, Mireille; Sanchis-Borja, Vincent

    2017-01-01

    The dlt operon of Gram-positive bacteria is required for the incorporation of D-alanine esters into cell wall-associated teichoic acids (TAs). Addition of D-alanine to TAs reduces the negative charge of the cell envelope thereby preventing cationic antimicrobial peptides (CAMPs) from reaching their target of action on the bacterial surface. In most gram-positive bacteria, this operon consists of five genes dltXABCD but the involvement of the first ORF (dltX) encoding a small protein of unknown function, has never been investigated. The aim of this study was to establish whether this protein is involved in the D-alanylation process in Bacillus thuringiensis. We, therefore constructed an in frame deletion mutant of dltX, without affecting the expression of the other genes of the operon. The growth characteristics of the dltX mutant and those of the wild type strain were similar under standard in vitro conditions. However, disruption of dltX drastically impaired the resistance of B. thuringiensis to CAMPs and significantly attenuated its virulence in two insect species. Moreover, high-performance liquid chromatography studies showed that the dltX mutant was devoid of D-alanine, and electrophoretic mobility measurements indicated that the cells carried a higher negative surface charge. Scanning electron microscopy experiments showed morphological alterations of these mutant bacteria, suggesting that depletion of D-alanine from TAs affects cell wall structure. Our findings suggest that DltX is essential for the incorporation of D-alanyl esters into TAs. Therefore, DltX plays a direct role in the resistance to CAMPs, thus contributing to the survival of B. thuringiensis in insects. To our knowledge, this work is the first report examining the involvement of dltX in the D-alanylation of TAs. PMID:28824570

  16. Outcomes of Preoperative Chemoradiotherapy and Combined Chemotherapy with Radiotherapy Without Surgery for Locally Advanced Rectal Cancer.

    PubMed

    Supaadirek, Chunsri; Pesee, Montien; Thamronganantasakul, Komsan; Thalangsri, Pimsiree; Krusun, Srichai; Supakalin, Narudom

    2016-01-01

    To evaluate the treatment outcomes of patients with locally advanced rectal cancer treated with preoperative concurrent chemoradiotherapy (CCRT) or combined chemotherapy together with radiotherapy (CMTRT) without surgery. A total of 84 patients with locally advanced rectal adenocarcinoma (stage II or III) between January 1st, 2003 and December 31st, 2013 were enrolled, 48 treated with preoperative CCRT (Gr.I) and 36 with combined chemotherapy and radiotherapy (CMTRT) without surgery (Gr.II). The chemotherapeutic agents used concurrent with radiotherapy were either 5fluorouracil short infusion plus leucovorin and/or capecitabine or 5fluorouracil infusion alone. All patients received pelvic irradiation. There were 5 patients (10.4%) with a complete pathological response. The 3 yearoverall survival rates were 83.2% in Gr.I and 24.8 % in Gr.II (p<0.01). The respective 5 yearoverall survival rates were 70.3% and 0% (p<0.01). The 5 yearoverall survival rates in Gr.I for patients who received surgery within 56 days after complete CCRT as compared to more than 56 days were 69.5% and 65.1% (p=0.91). Preoperative CCRT used for 12 of 30 patients in Gr.I (40%) with lower rectal cancer demonstrated that in preoperative CCRT a sphincter sparing procedure can be performed. The results of treatment with preoperative CCRT for locally advanced rectal cancer showed comparable rates of overall survival and sphincter sparing procedures as compared to previous studies.

  17. Mechanism for acivicin inactivation of triad glutamine amidotransferases.

    PubMed

    Chittur, S V; Klem, T J; Shafer, C M; Davisson, V J

    2001-01-30

    Acivicin [(alphaS,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid] was investigated as an inhibitor of the triad glutamine amidotransferases, IGP synthase and GMP synthetase. Nucleophilic substitution of the chlorine atom in acivicin results in the formation of an imine-thioether adduct at the active site cysteine. Cys 77 was identified as the site of modification in the heterodimeric IGPS from Escherichia coli (HisHF) by tryptic digest and FABMS. Distinctions in the glutaminase domains of IGPS from E. coli, the bifunctional protein from Saccharomyces cerevisiae (HIS7), and E. coli GMPS were revealed by the differential rates of inactivation. While the ammonia-dependent turnover was unaffected by acivicin, the glutamine-dependent reaction was inhibited with unit stoichiometry. In analogy to the conditional glutaminase activity seen in IGPS and GMPS, the rates of inactivation were accelerated > or =25-fold when a nucleotide substrate (or analogue) was present. The specificity (k(inact)/K(i)app) for acivicin is on the same order of magnitude as the natural substrate glutamine in all three enzymes. The (alphaS,5R) diastereomer of acivicin was tested under identical conditions as acivicin and showed little inhibitory effect on the enzymes indicating that acivicin binds in the glutamine reactive site in a specific conformation. The data indicate that acivicin undergoes a glutamine amidotransferase mechanism-based covalent bond formation in the presence of nucleotide substrates or products. Acivicin and its (alphaS,5R) diastereomer were modeled in the glutaminase active site of GMPS and CPS to confirm that the binding orientation of the dihydroisoxazole ring is identical in all three triad glutamine amidotransferases. Stabilization of the imine-thioether intermediate by the oxyanion hole in triad glutamine amidotransferases appears to confer the high degree of specificity for acivicin inhibition and relates to a common mechanism for inactivation.

  18. Impaired fatty acid oxidation in propofol infusion syndrome.

    PubMed

    Wolf, A; Weir, P; Segar, P; Stone, J; Shield, J

    2001-02-24

    Propofol infusion syndrome is a rare but frequently fatal complication in critically ill children given long-term propofol infusions. We describe a child who developed all the clinical features of propofol infusion syndrome and was treated successfully with haemofiltration. Biochemical analysis before haemofiltration showed a large rise in plasma concentrations of malonylcarnitine (3.3 micromol/L) and C5-acylcarnitine (8.4 micromol/L), which returned to normal after recovery. Abnormalities are consistent with specific disruption of fatty-acid oxidation caused by impaired entry of long-chain acylcarnitine esters into the mitochondria and failure of the mitochondrial respiratory chain at complex 11.

  19. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis*

    PubMed Central

    Hauf, Ksenia; Kayumov, Airat; Gloge, Felix; Forchhammer, Karl

    2016-01-01

    TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated l-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The A- and Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GS-TnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA. PMID:26635369

  20. Glutamine metabolism in a holostean (Amia calva) and teleost fish (Salvelinus namaycush).

    PubMed

    Chamberlin, M E; Glemet, H C; Ballantyne, J S

    1991-01-01

    Amino acid metabolism was examined in mitochondria from the lateral red muscle of a teleost (lake char, Salvelinus namaycush) and a nonteleost fish (bowfin, Amia calva). Isolated mitochondria oxidize a wide variety of substrates and have high respiratory control ratios. In both species, glutamine is oxidized more rapidly than any other amino acid. The rate of glutamine oxidation by bowfin mitochondria exceeds that of lake char mitochondria, and the bowfin displays correspondingly higher levels of mitochondrial phosphate-dependent glutaminase. It is suggested that amino acids in general, and glutamine in particular, are important oxidative substrates for nonteleost red muscle. The teleost red muscle, however, may rely on both glutamine and fatty acids as oxidative substrates. It appears that glutamate derived from glutamine is oxidized primarily via glutamate dehydrogenase, whereas exogenous glutamate is oxidized primarily via aspartate aminotransferase. Complete oxidation of glutamine may be accomplished in the absence of other substrates by conversion of glutamine-derived malate to pyruvate via malic enzyme. To assess the relative abilities of various tissues to synthesize and oxidize glutamine, the activities of glutamine synthetase and glutaminase were measured. The results of these studies indicate that the organization of glutamine metabolism of fish differs markedly from that in mammals.

  1. α-Ketoglutaramate: An overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle

    PubMed Central

    Cooper, Arthur J. L.; Kuhara, Tomiko

    2013-01-01

    Glutamine metabolism is generally regarded as proceeding via glutaminase-catalyzed hydrolysis to glutamate and ammonia, followed by conversion of glutamate to α-ketoglutarate catalyzed by glutamate dehydrogenase or by a glutamate-linked aminotransferase (transaminase). However, another pathway exists for the conversion of glutamine to α-ketoglutarate that is often overlooked, but is widely distributed in nature. This pathway, referred to as the glutaminase II pathway, consists of a glutamine transaminase coupled to ω-amidase. Transamination of glutamine results in formation of the corresponding α-keto acid, namely, α-ketoglutaramate (KGM). KGM is hydrolyzed by ω-amidase to α-ketoglutarate and ammonia. The net glutaminase II reaction is: L-Glutamine + α-keto acid + H2O → α-ketoglutarate + L-amino acid + ammonia. In this mini-review the biochemical importance of the glutaminase II pathway is summarized, with emphasis on the key component KGM. Forty years ago it was noted that the concentration of KGM is increased in the cerebrospinal fluid (CSF) of patients with hepatic encephalopathy (HE) and that the level of KGM in the CSF correlates well with the degree of encephalopathy. In more recent work, we have shown that KGM is markedly elevated in the urine of patients with inborn errors of the urea cycle. It is suggested that KGM may be a useful biomarker for many hyperammonemic diseases including hepatic encephalopathy, inborn errors of the urea cycle, citrin deficiency and lysinuric protein intolerance. PMID:24234505

  2. Regulation of the cellular and physiological effects of glutamine.

    PubMed

    Chwals, Walter J

    2004-10-01

    Glutamine is the most abundant amino acid in humans and possesses many functions in the body. It is the major transporter of amino-nitrogen between cells and an important fuel source for rapidly dividing cells such as cells of the immune and gastrointestinal systems. It is important in the synthesis of nucleic acids, glutathione, citrulline, arginine, gamma aminobutyric acid, and glucose. It is important for growth, gastrointestinal integrity, acid-base homeostasis, and optimal immune function. The regulation of glutamine levels in cells via glutaminase and glutamine synthetase is discussed. The cellular and physiologic effects of glutamine upon the central nervous system, gastrointestinal function, during metabolic support, and following tissue injury and critical illness is also discussed.

  3. Influence of Preoperative Peripheral Parenteral Nutrition with Micronutrients after Colorectal Cancer Patients

    PubMed Central

    Tang, Hsiu-Chih; Hu, Shu-Hui; Yang, Hui-Lan

    2015-01-01

    Background. The inflammatory reactions are stronger after surgery of malnourished preoperative patients. Many studies have shown vitamin and trace element deficiencies appear to affect the functioning of immune cells. Enteral nutrition is often inadequate for malnourished patients. Therefore, total parenteral nutrition (TPN) is considered an effective method for providing preoperative nutritional support. TPN needs a central vein catheter, and there are more risks associated with TPN. However, peripheral parenteral nutrition (PPN) often does not provide enough energy or nutrients. Purpose. This study investigated the inflammatory response and prognosis for patients receiving a modified form of PPN with added fat emulsion infusion, multiple vitamins (MTV), and trace elements (TE) to assess the feasibility of preoperative nutritional support. Methods. A cross-sectional design was used to compare the influence of PPN with or without adding MTV and TE on malnourished abdominal surgery patients. Results. Both preoperative groups received equal calories and protein, but due to the lack of micronutrients, patients in preoperative Group B exhibited higher inflammation, lower serum albumin levels, and higher anastomotic leak rates and also required prolonged hospital stays. Conclusion. Malnourished patients who receive micronutrient supplementation preoperatively have lower postoperative inflammatory responses and better prognoses. PPN with added fat emulsion, MTV, and TE provides valid and effective preoperative nutritional support. PMID:26000296

  4. Influence of preoperative peripheral parenteral nutrition with micronutrients after colorectal cancer patients.

    PubMed

    Liu, Ming-Yi; Tang, Hsiu-Chih; Hu, Shu-Hui; Yang, Hui-Lan; Chang, Sue-Joan

    2015-01-01

    The inflammatory reactions are stronger after surgery of malnourished preoperative patients. Many studies have shown vitamin and trace element deficiencies appear to affect the functioning of immune cells. Enteral nutrition is often inadequate for malnourished patients. Therefore, total parenteral nutrition (TPN) is considered an effective method for providing preoperative nutritional support. TPN needs a central vein catheter, and there are more risks associated with TPN. However, peripheral parenteral nutrition (PPN) often does not provide enough energy or nutrients. This study investigated the inflammatory response and prognosis for patients receiving a modified form of PPN with added fat emulsion infusion, multiple vitamins (MTV), and trace elements (TE) to assess the feasibility of preoperative nutritional support. Methods. A cross-sectional design was used to compare the influence of PPN with or without adding MTV and TE on malnourished abdominal surgery patients. Both preoperative groups received equal calories and protein, but due to the lack of micronutrients, patients in preoperative Group B exhibited higher inflammation, lower serum albumin levels, and higher anastomotic leak rates and also required prolonged hospital stays. Malnourished patients who receive micronutrient supplementation preoperatively have lower postoperative inflammatory responses and better prognoses. PPN with added fat emulsion, MTV, and TE provides valid and effective preoperative nutritional support.

  5. Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway

    PubMed Central

    Yuan, Lingqin; Sheng, Xiugui; Willson, Adam K; Roque, Dario R; Stine, Jessica E; Guo, Hui; Jones, Hannah M; Zhou, Chunxiao; Bae-Jump, Victoria L

    2015-01-01

    Glutamine is one of the main nutrients used by tumor cells for biosynthesis. Therefore, targeted inhibition of glutamine metabolism may have anti-tumorigenic implications. In the present study, we aimed to evaluate the effects of glutamine on ovarian cancer cell growth. Three ovarian cancer cell lines, HEY, SKOV3, and IGROV-1, were assayed for glutamine dependence by analyzing cytotoxicity, cell cycle progression, apoptosis, cell stress, and glucose/glutamine metabolism. Our results revealed that administration of glutamine increased cell proliferation in all three ovarian cancer cell lines in a dose dependent manner. Depletion of glutamine induced reactive oxygen species and expression of endoplasmic reticulum stress proteins. In addition, glutamine increased the activity of glutaminase (GLS) and glutamate dehydrogenase (GDH) by modulating the mTOR/S6 and MAPK pathways. Inhibition of mTOR activity by rapamycin or blocking S6 expression by siRNA inhibited GDH and GLS activity, leading to a decrease in glutamine-induced cell proliferation. These studies suggest that targeting glutamine metabolism may be a promising therapeutic strategy in the treatment of ovarian cancer. PMID:26045471

  6. Glutamate-Dependent Translational Control of Glutamine Synthetase in Bergmann Glia Cells.

    PubMed

    Tiburcio-Félix, Reynaldo; Escalante-López, Miguel; López-Bayghen, Bruno; Martínez, Daniel; Hernández-Kelly, Luisa C; Zinker, Samuel; Hernández-Melchor, Dinorah; López-Bayghen, Esther; Olivares-Bañuelos, Tatiana N; Ortega, Arturo

    2018-06-01

    Glutamate is the major excitatory transmitter of the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed both in neurons and in glial cells. Recent evidence has shown that glutamate uptake systems, particularly enriched in glia cells, trigger biochemical cascades in a similar fashion as receptors. A tight regulation of glutamate extracellular levels prevents neuronal overstimulation and cell death, and it is critically involved in glutamate turnover. Glial glutamate transporters are responsible of the majority of the brain glutamate uptake activity. Once internalized, this excitatory amino acid is rapidly metabolized to glutamine via the astrocyte-enriched enzyme glutamine synthetase. A coupling between glutamate uptake and glutamine synthesis and release has been commonly known as the glutamate/glutamine shuttle. Taking advantage of the established model of cultured Bergmann glia cells, in this contribution, we explored the gene expression regulation of glutamine synthetase. A time- and dose-dependent regulation of glutamine synthetase protein and activity levels was found. Moreover, glutamate exposure resulted in the transient shift of glutamine synthetase mRNA from the monosomal to the polysomal fraction. These results demonstrate a novel mode of glutamate-dependent glutamine synthetase regulation and strengthen the notion of an exquisite glia neuronal interaction in glutamatergic synapses.

  7. Regulation of protein metabolism by glutamine: implications for nutrition and health.

    PubMed

    Xi, Pengbin; Jiang, Zongyong; Zheng, Chuntian; Lin, Yingcai; Wu, Guoyao

    2011-01-01

    Glutamine is the most abundant free alpha-amino acid in plasma and skeletal muscle. This nutrient plays an important role in regulating gene expression, protein turnover, anti-oxidative function, nutrient metabolism, immunity, and acid-base balance. Interestingly, intracellular and extracellular concentrations of glutamine exhibit marked reductions in response to infection, sepsis, severe burn, cancer, and other pathological factors. This raised an important question of whether glutamine may be a key mediator of muscle loss and negative nitrogen balance in critically ill and injured patients. Therefore, since the initial reports in late 1980s that glutamine could stimulate protein synthesis and inhibit proteolysis in rat skeletal muscle, there has been growing interest in the use of this functional amino acid to improve protein balance under various physiological and disease conditions. Although inconsistent results have appeared in the literature regarding a therapeutic role of glutamine in clinical medicine, a majority of studies indicate that supplementing appropriate doses of glutamine to enteral diets or parenteral solutions is beneficial for improving nitrogen balance in animals or humans with glutamine deficiency.

  8. Characterization of a possible amyloidogenic precursor in glutamine-repeat neurodegenerative diseases

    PubMed Central

    Armen, Roger S.; Bernard, Brady M.; Day, Ryan; Alonso, Darwin O. V.; Daggett, Valerie

    2005-01-01

    Several neurodegenerative diseases are linked to expanded repeats of glutamine residues, which lead to the formation of amyloid fibrils and neuronal death. The length of the repeats correlates with the onset of Huntington's disease, such that healthy individuals have <38 residues and individuals with >38 repeats exhibit symptoms. Because it is difficult to obtain atomic-resolution structural information for poly(l-glutamine) (polyQ) in aqueous solution experimentally, we performed molecular dynamics simulations to investigate the conformational behavior of this homopolymer. In simulations of 20-, 40-, and 80-mer polyQ, we observed the formation of the “α-extended chain” conformation, which is characterized by alternating residues in the αL and αR conformations to yield a sheet. The structural transition from disordered random-coil conformations to the α-extended chain conformation exhibits modest length and temperature dependence, in agreement with the experimental observation that aggregation depends on length and temperature. We propose that fibril formation in polyQ may occur through an α-sheet structure, which was proposed by Pauling and Corey [Pauling, L. & Corey, R. B. (1951) Proc. Natl. Acad. Sci. USA 37, 251-256]. Also, we propose an atomic-resolution model of how the inhibitory peptide QBP1 (polyQ-binding peptide 1) may bind to polyQ in an α-extended chain conformation to inhibit fibril formation. PMID:16157882

  9. Corticosteroids increase glutamine utilization in human splanchnic bed

    USDA-ARS?s Scientific Manuscript database

    Glutamine is the most abundant amino acid in the body and is extensively taken up in gut and liver in healthy humans. To determine whether glucocorticosteroids alter splanchnic glutamine metabolism, the effect of prednisone was assessed in healthy volunteers using isotope tracer methods. Two groups ...

  10. Evaluation of propylene glycol and glycerol infusions as treatments for ketosis in dairy cows.

    PubMed

    Piantoni, P; Allen, M S

    2015-08-01

    To evaluate propylene glycol (PG) and glycerol (G) as potential treatments for ketosis, we conducted 2 experiments lasting 4 d each in which cows received one bolus infusion per day. Blood was collected before infusion, over 240min postinfusion, as well as 24 h postinfusion. Experiment 1 used 6 ruminally cannulated cows (26±7 d in milk) randomly assigned to 300-mL infusions of PG or G (both ≥99.5% pure) in a crossover design experiment with 2 periods. Within each period, cows were assigned randomly to infusion site sequence: abomasum (A)-cranial reticulorumen (R) or the reverse, R-A. Glucose precursors were infused into the R to simulate drenching and the A to prevent metabolism by ruminal microbes. Glycerol infused in the A increased plasma glucose concentration the most (15.8mg/dL), followed by PG infused in the R (12.6mg/dL), PG infused in the A (9.11mg/dL), and G infused in the R (7.3mg/dL). Infusion of PG into the R increased plasma insulin and insulin area under the curve (AUC) the most compared with all other treatments (7.88 vs. 2.13μIU/mL and 321 vs. 31.9min×μIU/mL, respectively). Overall, PG decreased plasma BHBA concentration after infusion (-6.46 vs. -4.55mg/dL) and increased BHBA AUC (-1,055 vs. -558min ×mg/dL) compared with G. Plasma NEFA responses were not different among treatments. Experiment 2 used 8 ruminally cannulated cows (22±5 d in milk) randomly assigned to treatment sequence in a Latin square design experiment balanced for carryover effects. Treatments were 300mL of PG, 300mL of G, 600mL of G (2G), and 300mL of PG + 300mL of G (GPG), all infused into the R. Treatment contrasts compared PG with each treatment containing glycerol (G, 2G, and GPG). Propylene glycol increased plasma glucose (14.0 vs. 5.35mg/dL) and insulin (7.59 vs. 1.11μIU/mL) concentrations compared with G, but only tended to increase glucose and insulin concentrations compared with 2G. Propylene glycol increased AUC for glucose (1,444 vs. 94.3mg/dL) and insulin (326

  11. Simultaneous measurement of neuronal and glial metabolism in rat brain in vivo using co-infusion of [1,6- 13C 2]glucose and [1,2- 13C 2]acetate

    NASA Astrophysics Data System (ADS)

    Deelchand, Dinesh K.; Nelson, Christopher; Shestov, Alexander A.; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2009-02-01

    In this work the feasibility of measuring neuronal-glial metabolism in rat brain in vivo using co-infusion of [1,6- 13C 2]glucose and [1,2- 13C 2]acetate was investigated. Time courses of 13C spectra were measured in vivo while infusing both 13C-labeled substrates simultaneously. Individual 13C isotopomers (singlets and multiplets observed in 13C spectra) were quantified automatically using LCModel. The distinct 13C spectral pattern observed in glutamate and glutamine directly reflected the fact that glucose was metabolized primarily in the neuronal compartment and acetate in the glial compartment. Time courses of concentration of singly and multiply-labeled isotopomers of glutamate and glutamine were obtained with a temporal resolution of 11 min. Although dynamic metabolic modeling of these 13C isotopomer data will require further work and is not reported here, we expect that these new data will allow more precise determination of metabolic rates as is currently possible when using either glucose or acetate as the sole 13C-labeled substrate.

  12. Thymidine kinase 2 and alanyl-tRNA synthetase 2 deficiencies cause lethal mitochondrial cardiomyopathy: case reports and review of the literature.

    PubMed

    Mazurova, Stella; Magner, Martin; Kucerova-Vidrova, Vendula; Vondrackova, Alzbeta; Stranecky, Viktor; Pristoupilova, Anna; Zamecnik, Josef; Hansikova, Hana; Zeman, Jiri; Tesarova, Marketa; Honzik, Tomas

    2017-07-01

    Cardiomyopathy is a common manifestation in neonates and infants with mitochondrial disorders. In this study, we report two cases manifesting with fatal mitochondrial hypertrophic cardiomyopathy, which include the third known patient with thymidine kinase 2 deficiency and the ninth patient with alanyl-tRNA synthetase 2 deficiency. The girl with thymidine kinase 2 deficiency had hypertrophic cardiomyopathy together with regression of gross motor development at the age of 13 months. Neurological symptoms and cardiac involvement progressed into severe myopathy, psychomotor arrest, and cardiorespiratory failure at the age of 22 months. The imaging methods and autoptic studies proved that she suffered from unique findings of leucoencephalopathy, severe, mainly cerebellar neuronal degeneration, and hepatic steatosis. The girl with alanyl-tRNA synthetase 2 deficiency presented with cardiac failure and underlying hypertrophic cardiomyopathy within 12 hours of life and subsequently died at 9 weeks of age. Muscle biopsy analyses demonstrated respiratory chain complex I and IV deficiencies, and histological evaluation revealed massive mitochondrial accumulation and cytochrome c oxidase-negative fibres in both cases. Exome sequencing in the first case revealed compound heterozygozity for one novel c.209T>C and one previously published c.416C>T mutation in the TK2 gene, whereas in the second case homozygozity for the previously described mutation c.1774C>T in the AARS2 gene was determined. The thymidine kinase 2 mutations resulted in severe mitochondrial DNA depletion (to 12% of controls) in the muscle. We present, for the first time, severe leucoencephalopathy and hepatic steatosis in a patient with thymidine kinase 2 deficiency and the finding of a ragged red fibre-like image in the muscle biopsy in a patient with alanyl-tRNA synthetase 2 deficiency.

  13. Glutamine supplementation for young infants with severe gastrointestinal disease.

    PubMed

    Brown, Jennifer V E; Moe-Byrne, Thirimon; McGuire, William

    2014-12-15

    Endogenous glutamine biosynthesis may be insufficient to meet the needs of people with severe gastrointestinal disease. Results from studies using experimental animal models of gastrointestinal disease have suggested that glutamine supplementation improves clinical outcomes. This review examines evidence on the effect of glutamine supplementation in young infants with severe gastrointestinal disease. To assess the effect of supplemental glutamine on mortality and morbidity in young infants with severe gastrointestinal disease. We searcheed the Cochrane Central Register of Controlled Trials (The Cochrane Library, 2014, Issue 8), MEDLINE, EMBASE, and CINAHL (from inception to September 2014), conference proceedings, and reference lists from previous reviews. Randomised or quasi-randomised controlled trials that compared glutamine supplementation versus no glutamine supplementation in infants up to three months old (corrected for preterm birth if necessary) with severe gastrointestinal disease defined as a congenital or acquired gastrointestinal condition that is likely to necessitate providing parenteral nutrition for at least 24 hours. Two review authors assessed trial eligibility and risk of bias and undertook data extraction independently. We analysed the treatment effects in the individual trials and reported the risk ratio (RR) and risk difference (RD) for dichotomous data and mean difference for continuous data, with 95% confidence intervals (CI). We used a fixed-effect model in meta-analyses and explored the potential causes of heterogeneity in sensitivity analyses. We found three trials in which a total of 274 infants participated. The trials were of good methodological quality but were too small to detect clinically important effects of glutamine supplementation. Meta-analyses did not reveal a statistically significant difference in the risk of death before hospital discharge (typical RR 0.79, 95% CI 0.19 to 3.20; typical RD -0.01, 95% CI -0.05 to 0.03) or

  14. Comparative Aspects of Tissue Glutamine and Proline Metabolism

    USDA-ARS?s Scientific Manuscript database

    The cellular metabolism of glutamine and proline are closely interrelated since they can be interconverted with glutamate and ornithine via the mitochondrial pathway involving pyrolline-5-carboxylate (P5C). In adults, glutamine and proline are converted via P5C to citrulline in the gut, then citrul...

  15. Protective effects of glutamine on human melanocyte oxidative stress model.

    PubMed

    Jiang, Liya; Guo, Zhen; Kong, Yulong; Liang, Jianhua; Wang, Yi; Wang, Keyu

    2018-01-01

    Vitiligo is a disorder caused by the loss of the melanocyte activity on melanin pigment generation. Studies show that oxidative-stress induced apoptosis in melanocytes is closely related to the pathogenesis of vitiligo. Glutamine is a well known antioxidant with anti-apoptotic effects, and is used in a variety of diseases. However, it is unclear whether glutamine has an antioxidant or anti-apoptotic effect on melanocytes. The aim of this study was to investigate the protective effects of glutamine on a human melanocyte oxidative stress model. The oxidative stress model was established on human melanocytes using hydrogen peroxide. The morphology and viability of melanocytes, levels of oxidants [reactive oxygen species and malondialdehyde], levels of antioxidants [superoxide dismutase and glutathione-S-transferase], and apoptosis-related indicators (caspase-3, bax and bcl-2) were examined after glutamine exposure at various concentrations. Expressions of nuclear factor-E2-related factor 2, heme oxygenase-1, and heat shock protein 70 were detected using western blot technique after glutamine exposure at various concentrations. Our results demonstrate that pre-treatment and post-treatment with glutamine promoted melanocyte viability, increased levels of superoxide dismutase, glutathione-S-transferase and bcl-2, decreased levels of reactive oxygen species, malondialdehyde, bax and caspase-3, and enhanced nuclear factor-E2-related factor 2, heme oxygenase-1, and heat shock protein 70 expression in a dose dependent manner. The effect of pre-treatment was more significant than post-treatment, at the same concentration. The mechanisms of glutamine activated nuclear factor-E2-related factor 2 antioxidant responsive element signaling pathway need further investigation. Glutamine enhances the antioxidant and anti-apoptotic capabilities of melanocytes and protects them against oxidative stress.

  16. Glutamine supplementation, but not combined glutamine and arginine supplementation, improves gut barrier function during chemotherapy-induced intestinal mucositis in rats.

    PubMed

    Beutheu, Stéphanie; Ouelaa, Wassila; Guérin, Charlène; Belmonte, Liliana; Aziz, Moutaz; Tennoune, Naouel; Bôle-Feysot, Christine; Galas, Ludovic; Déchelotte, Pierre; Coëffier, Moïse

    2014-08-01

    Increased intestinal permeability occurs during chemotherapy-induced intestinal mucositis. Previous data suggest that glutamine and arginine may have additive or synergic effects to limit intestinal damage. The present study aimed to evaluate the effects of glutamine and arginine, each alone or in combination, on gut barrier function during methotrexate (MTX)-induced mucositis in rats. Eighty Sprague Dawley rats received during 7 days (d) standard chow supplemented with protein powder (PP), glutamine (G, 2%), arginine (A, 1.2%) or glutamine plus arginine (GA). All diets were isonitrogenous. Rats received subcutaneous injections of MTX (2.5 mg/kg) from d0 to d2. The intestinal permeability and tight junction proteins were assessed at d4 and d9 in the jejunum by FITC-dextran and by western blot and immunohistochemistry, respectively. At d4, intestinal permeability was increased in MTX-PP, MTX-A and MTX-GA rats compared with controls but not in MTX-G rats. The expression of claudin-1, occludin and ZO-1 was decreased in MTX-PP group compared with controls but was restored in MTX-G and MTX-A rats. In MTX-GA rats, occludin expression remained decreased. These effects could be explained by an increase of erk phosphorylation and a decrease of IκBα expression in MTX-PP and MTX-GA rats. At d9, Intestinal permeability remained higher only in MTX-GA rats. This was associated with a persistent decrease of occludin expression. Glutamine prevents MTX-induced gut barrier disruption by regulating occludin and claudin-1 probably through erk and NF-κB pathways. In contrast, combined glutamine and arginine has no protective effect in this model. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  17. Glutamine and antioxidants: status of their use in critical illness.

    PubMed

    van Zanten, Arthur R H

    2015-03-01

    Many studies in critically ill patients have addressed enteral or parenteral supplementation of glutamine and antioxidants to counteract assumed deficiencies and induce immune-modulating effects to reduce infections and improve outcome. Older studies showed marked reductions in mortality, infectious morbidity and length of stay. Recent studies no longer show beneficial effects and in contrast even demonstrated increased mortality. This opiniating review focuses on the latest information and the consequences for the use of glutamine and antioxidants in critically ill patients. Positive effects in systematic reviews and meta-analyses are based on results from older, smaller and mainly single-centre studies. New information has challenged the conditional deficiency hypothesis concerning glutamine in critically ill patients. The recent REDOXS and MetaPlus trials studying the effects of glutamine, selenium and other antioxidants have shown no benefits and increased mortality. Given that the first dictum in medicine is to do no harm, we cannot be confident that immune-modulating nutrient supplementation with glutamine and antioxidants is effective and well tolerated for critically ill patients. Until more data are available, it is probably better not to routinely administer glutamine and antioxidants in nonphysiological doses to mechanically ventilated critically ill patients.

  18. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases

    PubMed Central

    Kim, Min-Hyun; Kim, Hyeyoung

    2017-01-01

    Glutamine, the most abundant free amino acid in the human body, is a major substrate utilized by intestinal cells. The roles of glutamine in intestinal physiology and management of multiple intestinal diseases have been reported. In gut physiology, glutamine promotes enterocyte proliferation, regulates tight junction proteins, suppresses pro-inflammatory signaling pathways, and protects cells against apoptosis and cellular stresses during normal and pathologic conditions. As glutamine stores are depleted during severe metabolic stress including trauma, sepsis, and inflammatory bowel diseases, glutamine supplementation has been examined in patients to improve their clinical outcomes. In this review, we discuss the physiological roles of glutamine for intestinal health and its underlying mechanisms. In addition, we discuss the current evidence for the efficacy of glutamine supplementation in intestinal diseases. PMID:28498331

  19. Role of glucocorticoids in increased muscle glutamine production in starvation

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Henriksen, Erik J.; Cook, Paul H.

    1988-01-01

    The role of glucocorticoids in the synthesis of muscle glutamine during starvation was investigated in adrenalectomized fasted rats injected with cortisol (1 mg/100 g body weight). It was found that administration of cortisol in vivo increased (compared to nontreated starved adrenalectomized controls) the glutamine/glutamate ratio and the activity of glutamine synthetase in the diaphragm and the extensor digitorum muscles, and that these effects were abolished by prior treatment with actinomycin D or proflavine. The results obtained in in vitro experiments, using fresh-frozen soleus, extensor digitorum longus, and diaphragm muscle preparations, supported the in vivo indications of the cortisol-enhanced glutamine synthesis and protein turnover in starved adrenalectomized animals.

  20. A study investigating the association of dermatological and infusion reactions to infliximab and infliximab trough levels

    PubMed Central

    Huang, Vivian Wai-Mei; Dhami, Neil; Fedorak, Darryl; Prosser, Connie; Shalapay, Carol; Kroeker, Karen Ivy; Halloran, Brendan Phillip; Dieleman, Levinus Albert; Fedorak, Richard Neil

    2015-01-01

    BACKGROUND: Although infliximab is an effective therapy for inflammatory bowel disease (IBD), it is associated with dermatological events and infusion reactions. It is not known whether a relationship between these adverse events (AEs) and infliximab trough levels (ITLs) exists. OBJECTIVES: To report the prevalence of infliximab-associated AEs in IBD patients receiving stable maintenance infliximab therapy, and to correlate ITLs with dermatological and infusion reactions to infliximab. METHODS: Adult IBD patients receiving stable maintenance infliximab therapy were recruited from the University of Alberta Infusion Clinic (Edmonton, Alberta). ITLs were measured in blood samples collected before infusion, and the patients’ records were reviewed for dermatological and infusion reactions to infliximab. RESULTS: One-quarter (18 of 71 [25.4%]) of patients experienced dermatological or infusion reactions to infliximab: nine (12.7%) dermatological events and nine (12.7%) infusion reactions. The median ITL was similar among patients with and without these AEs (7.2 μg/mL [interquartile range (IQR) 2.0 μg/mL to 13.3 μg/mL] versus 6.6 μg/mL [IQR 3.2 μg/mL to 12.7 μg/mL]; P=0.648). The median ITL of patients who experienced infusion reactions (2.0 μg/mL [IQR 0.1 μg/mL to 5.7 μg/mL]) was lower than that of patients who experienced no such AEs (6.6 μg/mL [IQR 3.2 μg/mL to 12.7 μg/mL]; P=0.008]) and lower than that of patients who experienced dermatological AEs (13.3 μg/mL [IQR 8.8 μg/mL to 17.4 μg/mL]; P<0.001). CONCLUSION: One-quarter of IBD outpatients receiving stable maintenance infliximab therapy experienced dermatological and infusion reactions. Low ITLs were correlated with infusion reactions, and normal or high ITLs with dermatological events. PMID:25706572

  1. The effect of tubing dwell time on insulin adsorption during intravenous insulin infusions.

    PubMed

    Thompson, Cecilia D; Vital-Carona, Jessica; Faustino, E Vincent S

    2012-10-01

    Insulin adsorbs to plastic tubing, which decreases the concentration of an insulin solution delivered from an intravenous infusion set. Dwelling insulin within tubing before starting the infusion decreases adsorption but delays treatment initiation and wastes time in infusion preparation. The lack of data on dwell time effects results in wide variability in practice. We aim to determine the effect of dwell time on insulin concentration from intravenous infusion tubing. In this in vitro study, we used insulin solutions with concentrations of 0.1 unit/mL, 1 unit/mL, and 10 units/mL. Each solution dwelled in intravenous infusion sets for 0, 15, 30, or 60 min. After the dwell, we measured insulin concentrations from the solution bags and tubing. We repeated each insulin concentration-dwell time combination five times. Comparisons were performed using analyses of variance. For each of the three insulin concentrations, the mean insulin concentrations from the tubing were not significantly different between dwell times. Duration of dwell time did not affect insulin adsorption in polypropylene intravenous infusion sets. We recommend that following a 20-mL flush, insulin infusions can be started without any dwell time. Removal of dwell times may improve clinical practice by minimizing preparation time and will allow faster initiation of insulin infusion therapy.

  2. Glutamine Transporters in Mammalian Cells and Their Functions in Physiology and Cancer

    PubMed Central

    Bhutia, Yangzom D.; Ganapathy, Vadivel

    2016-01-01

    The SLC (solute carrier)-type transporters (∼400 in number) in mammalian cells consist of 52 distinct gene families, grouped solely based on the amino acid sequence (primary structure) of the transporter proteins and not on their transport function. Among them are the transporters for amino acids. Fourteen of them, capable of transporting glutamine across the plasma membrane, are found in four families: SLC1, SLC6, SLC7, and SLC38. However, it is generally thought that the members of the SLC38 family are the principal transporters for glutamine. Some of the glutamine transporters are obligatory exchangers whereas some function as active transporters in one direction. While most glutamine transporters mediate the influx of the amino acid into cells, some actually mediate the efflux of the amino acid out of the cells. Glutamine transporters play important roles in a variety of tissues, including the liver, brain, kidney, and placenta, as clearly evident from the biological and biochemical phenotypes resulting from the deletion of specific glutamine transporters in mice. Owing to the obligatory role of glutamine in growth and proliferation of tumor cells, there is increasing attention on glutamine transporters in cancer biology as potential drug targets for cancer treatment. Selective blockers of certain glutamine transporters might be effective in preventing the entry of glutamine and other important amino acids into tumor cells, thus essentially starving these cells to death. This could represent the beginning of a new era in the discovery of novel anticancer drugs with a previously unexplored mode of action. PMID:26724577

  3. Carbohydrate and glutamine supplementation modulates the Th1/Th2 balance after exercise performed at a simulated altitude of 4500 m.

    PubMed

    Caris, Aline V; Lira, Fábio S; de Mello, Marco T; Oyama, Lila M; dos Santos, Ronaldo V T

    2014-01-01

    The aim of this study was to evaluate the effect of carbohydrate or glutamine supplementation, or a combination of the two, on the immune system and inflammatory parameters after exercise in simulated hypoxic conditions at 4500 m. Nine men underwent three sessions of exercise at 70% VO2peak until exhaustion as follows: 1) hypoxia with a placebo; 2) hypoxia with 8% maltodextrin (200 mL/20 min) during exercise and for 2 h after; and 3) hypoxia after 6 d of glutamine supplementation (20 g/d) and supplementation with 8% maltodextrin (200 mL/20 min) during exercise and for 2 h after. All procedures were randomized and double blind. Blood was collected at rest, immediately before exercise, after the completion of exercise, and 2 h after recovery. Glutamine, cortisol, cytokines, glucose, heat shock protein-70, and erythropoietin were measured in serum, and the cytokine production from lymphocytes was measured. Erythropoietin and interleukin (IL)-6 increased after exercise in the hypoxia group compared with baseline. IL-6 was higher in the hypoxia group than pre-exercise after exercise and after 2 h recovery. Cortisol did not change, whereas glucose was elevated post-exercise in the three groups compared with baseline and pre-exercise. Glutamine increased in the hypoxia + carbohydrate + glutamine group after exercise compared with baseline. Heat shock protein-70 increased post-exercise compared with baseline and pre-exercise and after recovery compared with pre-exercise, in the hypoxia + carbohydrate group. No difference was observed in IL-2 and IL-6 production from lymphocytes. IL-4 was reduced in the supplemented groups. Carbohydrate or glutamine supplementation shifts the T helper (Th)1/Th2 balance toward Th1 responses after exercise at a simulated altitude of 4500 m. The nutritional strategies increased in IL-6, suggesting an important anti-inflammatory effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A highly active and negatively charged Streptococcus pyogenes lysin with a rare D-alanyl-L-alanine endopeptidase activity protects mice against streptococcal bacteremia.

    PubMed

    Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W; Fischetti, Vincent A

    2014-06-01

    Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. A Highly Active and Negatively Charged Streptococcus pyogenes Lysin with a Rare d-Alanyl-l-Alanine Endopeptidase Activity Protects Mice against Streptococcal Bacteremia

    PubMed Central

    Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W.

    2014-01-01

    Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. PMID:24637688

  6. Characterization of a possible amyloidogenic precursor in glutamine-repeat neurodegenerative diseases.

    PubMed

    Armen, Roger S; Bernard, Brady M; Day, Ryan; Alonso, Darwin O V; Daggett, Valerie

    2005-09-20

    Several neurodegenerative diseases are linked to expanded repeats of glutamine residues, which lead to the formation of amyloid fibrils and neuronal death. The length of the repeats correlates with the onset of Huntington's disease, such that healthy individuals have <38 residues and individuals with >38 repeats exhibit symptoms. Because it is difficult to obtain atomic-resolution structural information for poly(l-glutamine) (polyQ) in aqueous solution experimentally, we performed molecular dynamics simulations to investigate the conformational behavior of this homopolymer. In simulations of 20-, 40-, and 80-mer polyQ, we observed the formation of the "alpha-extended chain" conformation, which is characterized by alternating residues in the alpha(L) and alpha(R) conformations to yield a sheet. The structural transition from disordered random-coil conformations to the alpha-extended chain conformation exhibits modest length and temperature dependence, in agreement with the experimental observation that aggregation depends on length and temperature. We propose that fibril formation in polyQ may occur through an alpha-sheet structure, which was proposed by Pauling and Corey. Also, we propose an atomic-resolution model of how the inhibitory peptide QBP1 (polyQ-binding peptide 1) may bind to polyQ in an alpha-extended chain conformation to inhibit fibril formation.

  7. Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2

    PubMed Central

    Keresztessy, Zsolt; Csősz, Éva; Hársfalvi, Jolán; Csomós, Krisztián; Gray, Joe; Lightowlers, Robert N.; Lakey, Jeremy H.; Balajthy, Zoltán; Fésüs, László

    2006-01-01

    Understanding substrate specificity and identification of natural targets of transglutaminase 2 (TG2), the ubiquitous multifunctional cross-linking enzyme, which forms isopeptide bonds between protein-linked glutamine and lysine residues, is crucial in the elucidation of its physiological role. As a novel means of specificity analysis, we adapted the phage display technique to select glutamine-donor substrates from a random heptapeptide library via binding to recombinant TG2 and elution with a synthetic amine-donor substrate. Twenty-six Gln-containing sequences from the second and third biopanning rounds were susceptible for TG2-mediated incorporation of 5-(biotinamido)penthylamine, and the peptides GQQQTPY, GLQQASV, and WQTPMNS were modified most efficiently. A consensus around glutamines was established as pQX(P,T,S)l, which is consistent with identified substrates listed in the TRANSDAB database. Database searches showed that several proteins contain peptides similar to the phage-selected sequences, and the N-terminal glutamine-rich domain of SWI1/SNF1-related chromatin remodeling proteins was chosen for detailed analysis. MALDI/TOF and tandem mass spectrometry-based studies of a representative part of the domain, SGYGQQGQTPYYNQQSPHPQQQQPPYS (SnQ1), revealed that Q6, Q8, and Q22 are modified by TG2. Kinetic parameters of SnQ1 transamidation (KMapp = 250 μM, kcat = 18.3 sec−1, and kcat/KMapp = 73,200) classify it as an efficient TG2 substrate. Circular dichroism spectra indicated that SnQ1 has a random coil conformation, supporting its accessibility in the full-length parental protein. Added together, here we report a novel use of the phage display technology with great potential in transglutaminase research. PMID:17075129

  8. Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2.

    PubMed

    Keresztessy, Zsolt; Csosz, Eva; Hársfalvi, Jolán; Csomós, Krisztián; Gray, Joe; Lightowlers, Robert N; Lakey, Jeremy H; Balajthy, Zoltán; Fésüs, László

    2006-11-01

    Understanding substrate specificity and identification of natural targets of transglutaminase 2 (TG2), the ubiquitous multifunctional cross-linking enzyme, which forms isopeptide bonds between protein-linked glutamine and lysine residues, is crucial in the elucidation of its physiological role. As a novel means of specificity analysis, we adapted the phage display technique to select glutamine-donor substrates from a random heptapeptide library via binding to recombinant TG2 and elution with a synthetic amine-donor substrate. Twenty-six Gln-containing sequences from the second and third biopanning rounds were susceptible for TG2-mediated incorporation of 5-(biotinamido)penthylamine, and the peptides GQQQTPY, GLQQASV, and WQTPMNS were modified most efficiently. A consensus around glutamines was established as pQX(P,T,S)l, which is consistent with identified substrates listed in the TRANSDAB database. Database searches showed that several proteins contain peptides similar to the phage-selected sequences, and the N-terminal glutamine-rich domain of SWI1/SNF1-related chromatin remodeling proteins was chosen for detailed analysis. MALDI/TOF and tandem mass spectrometry-based studies of a representative part of the domain, SGYGQQGQTPYYNQQSPHPQQQQPPYS (SnQ1), revealed that Q(6), Q(8), and Q(22) are modified by TG2. Kinetic parameters of SnQ1 transamidation (K(M)(app) = 250 microM, k(cat) = 18.3 sec(-1), and k(cat)/K(M)(app) = 73,200) classify it as an efficient TG2 substrate. Circular dichroism spectra indicated that SnQ1 has a random coil conformation, supporting its accessibility in the full-length parental protein. Added together, here we report a novel use of the phage display technology with great potential in transglutaminase research.

  9. Derepression of nitrogenase activity in glutamine auxotrophs of Rhodopseudomonas capsulata.

    PubMed Central

    Wall, J D; Gest, H

    1979-01-01

    In contrast to wild-type cells, glutamine auxotrophs of the photosynthetic bacterium Rhodopseudomonas capsulata synthesize nitrogenase, produce H2 (catalyzed by nitrogenase), and continue to reduce dinitrogen to ammonia in the presence of exogenous NH4+. The glutamine synthetase activity of such mutants is less than 2% of that observed in the wild type. It appears that glutamine synthetase plays a significant role in regulation of nitrogenase synthesis in R. capsulata. PMID:35518

  10. Efficacy and safety of an insulin infusion protocol in a surgical ICU.

    PubMed

    Taylor, Beth E; Schallom, Marilyn E; Sona, Carrie S; Buchman, Timothy G; Boyle, Walter A; Mazuski, John E; Schuerer, Douglas E; Thomas, James M; Kaiser, Christy; Huey, Way Y; Ward, Myrna R; Zack, Jeanne E; Coopersmith, Craig M

    2006-01-01

    Hyperglycemia is associated with complications in the surgical intensive care unit. The purpose of this study was to determine the efficacy and safety of nurse-driven insulin infusion protocols in lowering blood glucose (BG) in critical illness. All patients in a 24-bed surgical intensive care unit who required i.v. insulin infusions during 3 noncontiguous 6-month periods from 2002 to 2004 were evaluated. In the preintervention phase, 71 patients received a physician-initiated insulin infusion without a developed protocol. They were compared with 95 patients who received a nurse-driven insulin infusion protocol with a target BG of 120 to 150 mg/dL and to 119 patients who received a more stringent protocol with a target BG of 80 to 110 mg/dL. There was a stepwise decrease in average daily BG levels, from 190 to 163 to 132 mg/dL (p < 0.001). The less stringent protocol decreased the time to achieve a BG level < 150 mg/dL from 14.1 to 7.4 hours compared with physician-driven management (p < 0.05) resulting in similar time on an insulin infusion (53 versus 48 hours). The more intensive protocol brought BG levels < 150 mg/dL in 7.2 hours and < 111 mg/dL in 13.6 hours, but increased the length of time a patient was on an insulin infusion to 77 hours. The incidence of severe hypoglycemia (BG < 40 mg/dL) was statistically similar between the groups, ranging between 1.1% and 3.4%. Implementation of a nurse-driven protocol led to more rapid and more effective BG control in critically ill surgical patients compared with physician management. Tighter BG control can be obtained without a significant increase in hypoglycemia, although this is associated with increased time on an insulin infusion.

  11. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax.

    PubMed

    Bajpai, R; Matulis, S M; Wei, C; Nooka, A K; Von Hollen, H E; Lonial, S; Boise, L H; Shanmugam, M

    2016-07-28

    Multiple myeloma (MM) is a plasma cell malignancy that is largely incurable due to development of resistance to therapy-elicited cell death. Nutrients are intricately connected to maintenance of cellular viability in part by inhibition of apoptosis. We were interested to determine if examination of metabolic regulation of BCL-2 proteins may provide insight on alternative routes to engage apoptosis. MM cells are reliant on glucose and glutamine and withdrawal of either nutrient is associated with varying levels of apoptosis. We and others have demonstrated that glucose maintains levels of key resistance-promoting BCL-2 family member, myeloid cell leukemic factor 1 (MCL-1). Cells continuing to survive in the absence of glucose or glutamine were found to maintain expression of MCL-1 but importantly induce pro-apoptotic BIM expression. One potential mechanism for continued survival despite induction of BIM could be due to binding and sequestration of BIM to alternate pro-survival BCL-2 members. Our investigation revealed that cells surviving glutamine withdrawal in particular, enhance expression and binding of BIM to BCL-2, consequently sensitizing these cells to the BH3 mimetic venetoclax. Glutamine deprivation-driven sensitization to venetoclax can be reversed by metabolic supplementation with TCA cycle intermediate α-ketoglutarate. Inhibition of glucose metabolism with the GLUT4 inhibitor ritonavir elicits variable cytotoxicity in MM that is marginally enhanced with venetoclax treatment, however, targeting glutamine metabolism with 6-diazo-5-oxo-l-norleucine uniformly sensitized MM cell lines and relapse/refractory patient samples to venetoclax. Our studies reveal a potent therapeutic strategy of metabolically driven synthetic lethality involving targeting glutamine metabolism for sensitization to venetoclax in MM.

  12. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax

    PubMed Central

    Bajpai, R; Matulis, SM; Wei, C; Nooka, AK; Von Hollen, HE; Lonial, S; Boise, LH; Shanmugam, M

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy that is largely incurable due to development of resistance to therapy-elicited cell death. Nutrients are intricately connected to maintenance of cellular viability in part by inhibition of apoptosis. We were interested to determine if examination of metabolic regulation of BCL-2 proteins may provide insight on alternative routes to engage apoptosis. MM cells are reliant on glucose and glutamine and withdrawal of either nutrient is associated with varying levels of apoptosis. We and others have demonstrated that glucose maintains levels of key resistance-promoting BCL-2 family member, myeloid cell leukemic factor 1 (MCL-1). Cells continuing to survive in the absence of glucose or glutamine were found to maintain expression of MCL-1 but importantly induce pro-apoptotic BIM expression. One potential mechanism for continued survival despite induction of BIM could be due to binding and sequestration of BIM to alternate pro-survival BCL-2 members. Our investigation revealed that cells surviving glutamine withdrawal in particular, enhance expression and binding of BIM to BCL-2, consequently sensitizing these cells to the BH3 mimetic venetoclax. Glutamine deprivation-driven sensitization to venetoclax can be reversed by metabolic supplementation with TCA cycle intermediate α-ketoglutarate. Inhibition of glucose metabolism with the GLUT4 inhibitor ritonavir elicits variable cytotoxicity in MM that is marginally enhanced with venetoclax treatment, however, targeting glutamine metabolism with 6-diazo-5-oxo-l-norleucine uniformly sensitized MM cell lines and relapse/refractory patient samples to venetoclax. Our studies reveal a potent therapeutic strategy of metabolically driven synthetic lethality involving targeting glutamine metabolism for sensitization to venetoclax in MM. PMID:26640142

  13. The Effect of Tubing Dwell Time on Insulin Adsorption During Intravenous Insulin Infusions

    PubMed Central

    Vital-Carona, Jessica; Faustino, E. Vincent S.

    2012-01-01

    Abstract Background Insulin adsorbs to plastic tubing, which decreases the concentration of an insulin solution delivered from an intravenous infusion set. Dwelling insulin within tubing before starting the infusion decreases adsorption but delays treatment initiation and wastes time in infusion preparation. The lack of data on dwell time effects results in wide variability in practice. We aim to determine the effect of dwell time on insulin concentration from intravenous infusion tubing. Materials and Methods In this in vitro study, we used insulin solutions with concentrations of 0.1 unit/mL, 1 unit/mL, and 10 units/mL. Each solution dwelled in intravenous infusion sets for 0, 15, 30, or 60 min. After the dwell, we measured insulin concentrations from the solution bags and tubing. We repeated each insulin concentration–dwell time combination five times. Comparisons were performed using analyses of variance. Results For each of the three insulin concentrations, the mean insulin concentrations from the tubing were not significantly different between dwell times. Duration of dwell time did not affect insulin adsorption in polypropylene intravenous infusion sets. Conclusions We recommend that following a 20-mL flush, insulin infusions can be started without any dwell time. Removal of dwell times may improve clinical practice by minimizing preparation time and will allow faster initiation of insulin infusion therapy. PMID:22746979

  14. Modulation of the nuclear factor-kappa B (NF-κB) signalling pathway by glutamine in peritoneal macrophages of a murine model of protein malnutrition.

    PubMed

    da Silva Lima, Fabiana; Rogero, Marcelo Macedo; Ramos, Mayara Caldas; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-06-01

    Protein malnutrition affects resistance to infection by impairing the inflammatory response, modifying the function of effector cells, such as macrophages. Recent studies have revealed that glutamine-a non-essential amino acid, which could become conditionally essential in some situations like trauma, infection, post-surgery and sepsis-is able to modulate the synthesis of cytokines. The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappa B (NF-κB) signalling pathway of peritoneal macrophages from malnourished mice. Two-month-old male Balb/c mice were submitted to protein-energy malnutrition (n = 10) with a low-protein diet containing 2 % protein, whereas control mice (n = 10) were fed a 12 % protein-containing diet. The haemogram and analysis of plasma glutamine and corticosterone were evaluated. Peritoneal macrophages were pre-treated in vitro with glutamine (0, 0.6, 2 and 10 mmol/L) for 24 h and then stimulated with 1.25 μg LPS for 30 min, and the synthesis of TNF-α and IL-1α and the expression of proteins related to the NF-κB pathway were evaluated. Malnourished animals had anaemia, leucopoenia, lower plasma glutamine and increased corticosterone levels. TNF-α production of macrophages stimulated with LPS was significantly lower in cells from malnourished animals when cultivated in supraphysiological (2 and 10 mmol/L) concentrations of glutamine. Further, glutamine has a dose-dependent effect on the activation of macrophages, in both groups, when stimulated with LPS, inducing a decrease in TNF-α and IL-1α production and negatively modulating the NF-κB signalling pathway. These data lead us to infer that the protein malnutrition state interferes with the activation of macrophages and that higher glutamine concentrations, in vitro, have the capacity to act negatively in the NF-κB signalling pathway.

  15. Massive glutamine cyclization to pyroglutamic acid in human serum discovered using NMR spectroscopy.

    PubMed

    Nagana Gowda, G A; Gowda, Yashas N; Raftery, Daniel

    2015-04-07

    Glutamine is one of the most abundant metabolites in blood and is a precursor as well as end product central to numerous important metabolic pathways. A number of surprising and unexpected roles for glutamine, including cancer cell glutamine addiction discovered recently, stress the importance of accurate analysis of glutamine concentrations for understanding its role in health and numerous diseases. Utilizing a recently developed NMR approach that offers access to an unprecedented number of quantifiable blood metabolites, we have identified a surprising glutamine cyclization to pyroglutamic acid that occurs during protein removal. Intact, ultrafiltered and protein precipitated samples from the same pool of human serum were comprehensively investigated using (1)H NMR spectroscopy at 800 MHz to detect and quantitatively evaluate the phenomenon. Interestingly, although glutamine cyclization occurs in both ultrafiltered and protein precipitated serum, the cyclization was not detected in intact serum. Strikingly, due to cyclization, the apparent serum glutamine level drops by up to 75% and, concomitantly, the pyroglutamic acid level increases proportionately. Further, virtually under identical conditions, the magnitude of cyclization is vastly different for different portions of samples from the same pool of human serum. However, the sum of glutamine and pyroglutamic acid concentrations in each sample remains the same for all portions. These unexpected findings indicate the importance of considering the sum of apparent glutamine and pyroglutamic acid levels, obtained from the contemporary analytical methods, as the actual blood glutamine level for biomarker discovery and biological interpretations.

  16. A Phase II study of preoperative radiotherapy and concomitant weekly irinotecan in combination with protracted venous infusion 5-fluorouracil, for resectable locally advanced rectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, Matilde; Dotor, Emma; Rivera, Fernando

    Purpose: The aim of this study was to evaluate the efficacy and tolerance of preoperative chemoradiotherapy (CRT) with irinotecan (CPT-11) and 5-fluorouracil (5-FU) in patients with resectable rectal cancer. Methods and Materials: Patients with resectable T3-T4 rectal cancer and Eastern Cooperative Oncology Group performance status <2 were included. CPT-11 (50 mg/m{sup 2} weekly) and 5-FU (225 mg/m{sup 2}/day continuous infusion, 5 days/week) were concurrently administered with radiation therapy (RT) (45 Gy, 1.8 Gy/day, 5 days/week), during 5 weeks. Results: A total of 74 patients were enrolled: mean age, 59 years (20-74 years; SD, 11.7). Planned treatment was delivered to mostmore » patients (median relative dose intensity for both drugs was 100%). Grade 3/4 lymphocytopenia occurred in 35 patients (47%), neutropenia in 5 (7%), and anemia in 2 (3%). Main Grade 3 nonhematologic toxicities were diarrhea (14%), asthenia (9%), rectal mucositis (8%), and abdominal pain (8%). Of the 73 resected specimens, 13.7% (95% confidence interval [CI], 6.8-23.7) had a pathologic complete response and 49.3% (95% CI, 37.4-61.3) were downstaged. Additionally, 66.7% (95% CI, 51.1-80.0) of patients with ultrasound staged N1/N2 disease had no pathologic evidence of nodal involvement after CRT. Conclusions: This preoperative CRT schedule has been shown to be effective and feasible in a large population of patients with resectable rectal cancer.« less

  17. Plasma glutamine and upper respiratory tract infection during intensified training in swimmers.

    PubMed

    Mackinnon, L T; Hooper, S L

    1996-03-01

    The purposes of this study were to determine the effects of 4 wk of intensified training on resting plasma glutamine concentration, and to determine whether changes in plasma glutamine concentration relate to the appearance of upper respiratory tract infection (URTI) in swimmers during intensified training. Resting plasma glutamine concentration was measured by high performance liquid chromatography in 24 elite swimmers (8 male, 16 female, ages 15-26 yr) during 4 wk of intensified training (increased volume). Symptoms of overtraining syndrome (OT) were identified in eight swimmers (2 male, 6 female) based on decrements in swim performance and persistent high fatigue ratings; non-overtrained subjects were considered well-trained (WT). Ten of 24 swimmers (42%, 1 OT and 9 WT) exhibited URTI during the study. Plasma glutamine concentration increased significantly (P = 0.04, ANOVA) over the 4 wk, but the increase was significant only in WT swimmers (P < 0.05, post-hoc analysis). Compared with WT, plasma glutamine was significantly lower in OT at the mid-way timepoint only (P < 0.025, t-test with Bonferroni correction). There was no significant difference in glutamine levels between athletes who developed URTI and those who did not. These data suggest that plasma glutamine levels may not necessarily decrease during periods of intensified training, and that the appearance of URTI is not related to changes in plasma glutamine concentration in overtrained swimmers.

  18. Transition rates of selected metals determined in various types of teas (Camellia sinensis L. Kuntze) and herbal/fruit infusions.

    PubMed

    Schulzki, Grit; Nüßlein, Birgit; Sievers, Hartwig

    2017-01-15

    Teas and raw materials used as ingredients of herbal and fruit infusions (HFI) were analysed by means of ICP-MS for their content of aluminium, arsenic, cadmium, copper, lead and mercury in the dry product and in the infusion. Samples of tea (Camellia sinensis L. Kuntze) were selected to include different origins, types (black, green), leaf grades (whole leaf, broken, fannings, dust) and manufacturing techniques (orthodox, "crush, tear, curl"). The selected HFI raw materials (chamomile, elderberries, fennel, hibiscus, mate, peppermint, rooibos and rose hip) cover the most important matrices (flower, fruit, seed, herb, leaf) and reflect the economic significance of these HFI materials in trade. Infusions were prepared under standardised conditions representing typical household brewing. Transition rates for the investigated metals vary significantly but are mostly well below 100%. We propose default transition rates for metals to avoid overestimation of exposure levels from tea/HFI consumption. Copyright © 2016. Published by Elsevier Ltd.

  19. Glutamine supplementation in cystic fibrosis: A randomized placebo-controlled trial.

    PubMed

    Forrester, Doug L; Knox, Alan J; Smyth, Alan R; Barr, Helen L; Simms, Rebecca; Pacey, Sarah J; Pavord, Ian D; Honeybourne, David; Dewar, Jane; Clayton, Andy; Fogarty, Andrew W

    2016-03-01

    Pulmonary infection and malnutrition in cystic fibrosis are associated with decreased survival. Glutamine has a possible anti-microbial effect, with a specific impact against Pseudomonas aeruginosa. We aimed to test the hypothesis that oral glutamine supplementation (21 g/day) for 8 weeks in adults with cystic fibrosis would decrease pulmonary inflammation and improve clinical status. The study design was a randomized double-blind placebo-controlled study design with an iso-nitrogenous placebo. The primary analysis was intention to treat, and the primary outcome was change in induced sputum neutrophils. Thirty-nine individuals were recruited and thirty-six completed the study. Glutamine supplementation had no impact on any of the outcome measures in the intention-to-treat analysis. In the per protocol analysis, glutamine supplementation was associated with an increase in induced sputum neutrophils (P = 0.046), total cells (P = 0.03), and in Pseudomonas isolation agar colony forming units (P = 0.04) compared to placebo. There was no effect of glutamine supplementation on markers of pulmonary inflammation in the intention-to-treat analysis. © 2015 Wiley Periodicals, Inc.

  20. Influence of capsaicin infusion on secondary peristalsis in patients with gastroesophageal reflux disease

    PubMed Central

    Yi, Chih-Hsun; Lei, Wei-Yi; Hung, Jui-Sheng; Liu, Tso-Tsai; Chen, Chien-Lin; Pace, Fabio

    2016-01-01

    AIM To determine whether capsaicin infusion could influence heartburn perception and secondary peristalsis in patients with gastroesophageal reflux disease (GERD). METHODS Secondary peristalsis was performed with slow and rapid mid-esophageal injections of air in 10 patients with GERD. In a first protocol, saline and capsaicin-containing red pepper sauce infusions were randomly performed, whereas 2 consecutive sessions of capsaicin-containing red pepper sauce infusions were performed in a second protocol. Tested solutions including 5 mL of red pepper sauce diluted with 15 mL of saline and 20 mL of 0.9% saline were infused into the mid-esophagus via the manometric catheter at a rate of 10 mL/min with a randomized and double-blind fashion. During each study protocol, perception of heartburn, threshold volumes and peristaltic parameters for secondary peristalsis were analyzed and compared between different stimuli. RESULTS Infusion of capsaicin significantly increased heartburn perception in patients with GERD (P < 0.001), whereas repeated capsaicin infusion significantly reduced heartburn perception (P = 0.003). Acute capsaicin infusion decreased threshold volume of secondary peristalsis (P = 0.001) and increased its frequency (P = 0.01) during rapid air injection. The prevalence of GERD patients with successive secondary peristalsis during slow air injection significantly increased after capsaicin infusion (P = 0.001). Repeated capsaicin infusion increased threshold volume of secondary peristalsis (P = 0.002) and reduced the frequency of secondary peristalsis (P = 0.02) during rapid air injection. CONCLUSION Acute esophageal exposure to capsaicin enhances heartburn sensation and promotes secondary peristalsis in gastroesophageal reflux disease, but repetitive capsaicin infusion reverses these effects. PMID:28018112

  1. Hepatic response to increased exogenous supply of plasma amino acids by infusion into the mesenteric vein of Holstein-Friesian cows in late gestation.

    PubMed

    Wray-Cahen, D; Metcalf, J A; Backwell, F R; Bequette, B J; Brown, D S; Sutton, J D; Lobley, G E

    1997-12-01

    The hepatic responses of late gestation, dry dairy cows to acute (6 h) infusions of an amino acid (AA) mixture (Synthamin; 0.0, 1.1, 2.2, 4.4, 8.8 and 17.6 mumol/min) into the mesenteric vein were determined. Neither blood flow nor O2 consumption across the portal-drained viscera (PDV) and liver was significantly altered by infusion. Similarly, there were no effects on net absorption, or hepatic removal, of acetate, propionate, butyrate or NH3. Glucose PDV appearance was unchanged but hepatic glucose production increased (P = 0.032) by 0.2 mumol/min per mumol/min of AA infused. Additional extraction of alanine, glycine (both infused) and glutamine (not infused) by the liver was sufficient to account for most of the extra C required for glucose synthesis. The N that would be liberated from these glucogenic AA would also account for a large proportion of the increase in urea-N produced in response to the AA infusion. This supports the concept of a correlation between gluconeogenesis and ureagenesis. Furthermore, the amide-N liberated from the extracted glutamine would contribute up to 0.17 of hepatic NH3 flux and assist in balancing N inputs into the carbamoyl phosphate and arginosuccinate entry points of the ornithine cycle. Rates of fractional extraction of the various AA by the liver were best fitted by linear equations, indicating that even at the highest rates of administration (approximately twice maximal physiological absorption) the transport systems were not saturated. Hepatic fractional extractions of infused essential AA were highest for methionine (0.83) and phenylalanine (0.87) with the lowest proportion removed observed for valine (0.25), leucine (0.30), lysine (0.31) and isoleucine (0.49). For the non-essential AA, the highest apparent fractional extractions were for glycine (0.73), arginine (0.79) and tyrosine (0.63) followed by alanine (0.54), proline (0.47) and serine (0.37). Hepatic removal of AA-N exceeded the increase in urea-N formation such

  2. L-Glutamine Supplementation Alleviates Constipation during Late Gestation of Mini Sows by Modifying the Microbiota Composition in Feces

    PubMed Central

    Lu, Taofeng; Han, Lingxia; Zhao, Lili; Niu, Yinjie

    2017-01-01

    Constipation occurs frequently in both sows and humans, particularly, during late gestation. The microbial community of the porcine gut, the enteric microbiota, plays a critical role in functions that sustain intestinal health. Hence, microbial regulation during pregnancy may be important to prevent host constipation. The present study was conducted to determine whether L-glutamine (Gln) supplementation improved intestinal function and alleviated constipation by regulation of enteric microbiota. 16S rRNA sequences obtained from fecal samples from 9 constipated sows (3 in the constipation group and 6 in the 1.0% Gln group) were assessed from gestational day 70 to 84. Comparative analysis showed that the abundance of intestinal-friendly microbiota, that is, Bacteroidetes (P = 0.007) and Actinobacteria (P = 0.037), was comparatively increased in the 1.0% Gln group, while the abundance of pernicious bacteria, Oscillospira (P < 0.001) and Treponema (P = 0.011), was decreased. Dietary supplementation with 1.0% Gln may ameliorate constipation of sows by regulated endogenous gut microbiota. PMID:28386552

  3. Albumin infusion in humans does not model exercise induced hypervolaemia after 24 hours

    NASA Technical Reports Server (NTRS)

    Haskell, A.; Gillen, C. M.; Mack, G. W.; Nadel, E. R.

    1998-01-01

    We rapidly infused 234 +/- 3 mL of 5% human serum albumin in eight men while measuring haematocrit, haemoglobin concentration, plasma volume (PV), albumin concentration, total protein concentration, osmolality, sodium concentration, renin activity, aldosterone concentration, and atrial natriuretic peptide concentration to test the hypotheses that plasma volume expansion and plasma albumin content expansion will not persist for 24 h. Plasma volume and albumin content were expanded for the first 6 h after infusion (44.3 +/- 1.9-47.2 +/- 2.0 mL kg-1 and 1.9 +/- 0.1-2.1 +/- 0.1 g kg-1 at pre-infusion and 1 h, respectively, P < 0.05), but by 24 h plasma volume and albumin content decreased significantly from 1 h post-infusion and were not different from pre-infusion (44.8 +/- 1.9 mL kg-1 and 1.9 +/- 0.1 g kg-1, respectively). Plasma aldosterone concentration showed a significant effect of time over the 24 h after infusion (P < 0.05), and showed a trend to decrease at 2 h after infusion (167.6 +/- 32.5(-1) 06.2 +/- 13.4 pg mL-1, P = 0.07). These data demonstrate that a 6.8% expansion of plasma volume and 10.5% expansion of plasma albumin content by infusion does not remain in the vascular space for 24 h and suggest a redistribution occurs between the intravascular space and interstitial fluid space.

  4. Preoperative oral carbohydrate treatment attenuates endogenous glucose release 3 days after surgery.

    PubMed

    Soop, Mattias; Nygren, Jonas; Thorell, Anders; Weidenhielm, Lars; Lundberg, Mari; Hammarqvist, Folke; Ljungqvist, Olle

    2004-08-01

    Postoperative metabolism is characterised by insulin resistance and a negative whole-body nitrogen balance. Preoperative carbohydrate treatment reduces insulin resistance in the first day after surgery. We hypothesised that preoperative oral carbohydrate treatment attenuates insulin resistance and improves whole-body nitrogen balance 3 days after surgery. Fourteen patients undergoing total hip replacement were double-blindly randomised to preoperative oral carbohydrate treatment (12.5%, 800 + 400 ml, n = 8) or placebo (n = 6). Glucose kinetics (6,6-D2-glucose), substrate utilisation (indirect calorimetry) and insulin sensitivity (hyperinsulinaemic-euglycaemic clamp) were measured preoperatively and on the third day after surgery. Nitrogen losses were monitored for 3 days after surgery. Values are mean (SEM). Analysis of variance (ANOVA) statistics were used. Endogenous glucose release during insulin infusion increased after surgery in the placebo group. Preoperative carbohydrate treatment, as compared to placebo, significantly attenuated postoperative endogenous glucose release (0.69 (0.07) vs. 1.21 (0.13)mg kg(-1) x min(-1), P < 0.01), while whole-body glucose disposal and nitrogen balance were similar between groups. While insulin resistance in the first day after surgery has previously been characterised by reduced glucose disposal, enhanced endogenous glucose release was the main component of postoperative insulin resistance on the third postoperative day. Preoperative carbohydrate treatment attenuated endogenous glucose release on the third postoperative day. Copyright 2004 Elsevier Ltd.

  5. Effects of glutamine, taurine and their association on inflammatory pathway markers in macrophages.

    PubMed

    Sartori, Talita; Galvão Dos Santos, Guilherme; Nogueira-Pedro, Amanda; Makiyama, Edson; Rogero, Marcelo Macedo; Borelli, Primavera; Fock, Ricardo Ambrósio

    2018-06-01

    The immune system is essential for the control and elimination of infections, and macrophages are cells that act as important players in orchestrating the various parts of the inflammatory/immune response. Amino acids play important role in mediating functionality of the inflammatory response, especially mediating macrophages functions and cytokines production. We investigated the influence of glutamine, taurine and their association on the modulation of inflammatory pathway markers in macrophages. The RAW 264.7 macrophage cell line was cultivated in the presence of glutamine and taurine and proliferation rates, cell viability, cell cycle phases, IL-1α, IL-6, IL-10 and TNF-α as well as H 2 O 2 production and the expression of the transcription factor, NFκB, and its inhibitor, IκBα, were evaluated. Our results showed an increase in viable cells and increased proliferation rates of cells treated with glutamine concentrations over 2 mM, as well as cells treated with both glutamine and taurine. The cell cycle showed a higher percentage of cells in the phases S, G2 and M when they were treated with 2 or 10 mM glutamine, or with glutamine and taurine in cells stimulated with lipopolysaccharide. The pNFκB/NFκB showed reduced ratio expression when cells were treated with 10 mM of glutamine or with glutamine in association with taurine. These conditions also resulted in reduced TNF-α, IL-1α and H 2 O 2 production, and higher production of IL-10. These findings demonstrate that glutamine and taurine are able to modulate macrophages inflammatory pathways, and that taurine can potentiate the effects of glutamine, illustrating their immunomodulatory properties.

  6. Glutamine prevents oxidative stress in a model of portal hypertension.

    PubMed

    Zabot, Gilmara Pandolfo; Carvalhal, Gustavo Franco; Marroni, Norma Possa; Licks, Francielli; Hartmann, Renata Minuzzo; da Silva, Vinícius Duval; Fillmann, Henrique Sarubbi

    2017-07-07

    To evaluate the protective effects of glutamine in a model of portal hypertension (PH) induced by partial portal vein ligation (PPVL). Male Wistar rats were housed in a controlled environment and were allowed access to food and water ad libitum . Twenty-four male Wistar rats were divided into four experimental groups: (1) control group (SO) - rats underwent exploratory laparotomy; (2) control + glutamine group (SO + G) - rats were subjected to laparotomy and were treated intraperitoneally with glutamine; (3) portal hypertension group (PPVL) - rats were subjected to PPVL; and (4) PPVL + glutamine group (PPVL + G) - rats were treated intraperitoneally with glutamine for seven days. Local injuries were determined by evaluating intestinal segments for oxidative stress using lipid peroxidation and the activities of glutathione peroxidase (GPx), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) after PPVL. Lipid peroxidation of the membrane was increased in the animals subjected to PH ( P < 0.01). However, the group that received glutamine for seven days after the PPVL procedure showed levels of lipid peroxidation similar to those of the control groups ( P > 0.05). The activity of the antioxidant enzyme GTx was decreased in the gut of animals subjected to PH compared with that in the control group of animals not subjected to PH ( P < 0.01). However, the group that received glutamine for seven days after the PPVL showed similar GTx activity to both the control groups not subjected to PH ( P > 0.05). At least 10 random, non-overlapping images of each histological slide with 200 × magnification (44 pixel = 1 μm) were captured. The sum means of all areas, of each group were calculated. The mean areas of eNOS staining for both of the control groups were similar. The PPVL group showed the largest area of staining for eNOS. The PPVL + G group had the second highest amount of staining, but the mean value was much lower than that of the PPVL

  7. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase.

    PubMed

    Hu, Liyan; Ibrahim, Khalid; Stucki, Martin; Frapolli, Michele; Shahbeck, Noora; Chaudhry, Farrukh A; Görg, Boris; Häussinger, Dieter; Penberthy, W Todd; Ben-Omran, Tawfeg; Häberle, Johannes

    2015-11-01

    Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.

  8. Improvement of the ammonia assimilation for enhancing L-arginine production of Corynebacterium crenatum.

    PubMed

    Guo, Jing; Man, Zaiwei; Rao, Zhiming; Xu, Meijuan; Yang, Taowei; Zhang, Xian; Xu, Zhenghong

    2017-03-01

    There are four nitrogen atoms in L-arginine molecule and the nitrogen content is 32.1%. By now, metabolic engineering for L-arginine production strain improvement was focused on carbon flux optimization. In previous work, we obtained an L-arginine-producing Corynebacterium crenatum SDNN403 (ARG) through screening and mutation breeding. In this paper, a strain engineering strategy focusing on nitrogen supply and ammonium assimilation for L-arginine production was performed. Firstly, the effects of nitrogen atom donor (L-glutamate, L-glutamine and L-aspartate) addition on L-arginine production of ARG were studied, and the addition of L-glutamine and L-aspartate was beneficial for L-arginine production. Then, the glutamine synthetase gene glnA and aspartase gene aspA from E. coli were overexpressed in ARG for increasing the L-glutamine and L-aspartate synthesis, and the L-arginine production was effectively increased. In addition, the L-glutamate supply re-emerged as a limiting factor for L-arginine biosynthesis. Finally, the glutamate dehydrogenase gene gdh was co-overexpressed for further enhancement of L-arginine production. The final strain could produce 53.2 g l -1 of L-arginine, which was increased by 41.5% compared to ARG in fed-batch fermentation.

  9. Investigation of Phenolic Acids in Suspension Cultures of Vitis vinifera Stimulated with Indanoyl-Isoleucine, N-Linolenoyl-L-Glutamine, Malonyl Coenzyme A and Insect Saliva

    PubMed Central

    Riedel, Heidi; Akumo, Divine N.; Saw, Nay Min Min Thaw; Smetanska, Iryna; Neubauer, Peter

    2012-01-01

    Vitis vinifera c.v. Muscat de Frontignan (grape) contains various high valuable bioactive phenolic compounds with pharmaceutical properties and industrial interest which are not fully exploited. The focus of this investigation consists in testing the effects of various biological elicitors on a non-morphogenic callus suspension culture of V. vinifera. The investigated elicitors: Indanoyl-isoleucine (IN), N-linolenoyl-L-glutamine (LG), insect saliva (IS) and malonyl coenzyme A (MCoA) were aimed at mimicking the influence of environmental pathogens on plants in their natural habitats and at provoking exogenous induction of the phenylpropanoid pathway. The elicitors’ indanoyl-isoleucine (IN), N-linolenoyl-L-glutamine (LG) and insect saliva (IS), as well as malonyl coenzyme A (MCoA), were independently inoculated to stimulate the synthesis of phenylpropanoids. All of the enhancers positively increased the concentration of phenolic compounds in grape cells. The highest concentration of phenolic acids was detected after 2 h for MCoA, after 48 h for IN and after 24 h for LG and IS respectively. At the maximum production time, treated grape cells had a 3.5-fold (MCoA), 1.6-fold (IN) and 1.5-fold (IS) higher phenolic acid content compared to the corresponding control samples. The HPLC results of grape cells showed two major resveratrol derivatives: 3-O-Glucosyl-resveratrol and 4-(3,5-dihydroxyphenyl)-phenol. Their influences of the different elicitors, time of harvest and biomass concentration (p < 0.0001) were statistically significant on the synthesis of phenolic compounds. The induction with MCoA was found to demonstrate the highest statistical effect corresponding to the strongest stress response within the phenylpropanoid pathway in grape cells. PMID:24957372

  10. IKKβ promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3

    PubMed Central

    Reid, Michael A.; Lowman, Xazmin H.; Pan, Min; Tran, Thai Q.; Warmoes, Marc O.; Ishak Gabra, Mari B.; Yang, Ying; Locasale, Jason W.; Kong, Mei

    2016-01-01

    Glutamine is an essential nutrient for cancer cell survival and proliferation. Enhanced utilization of glutamine often depletes its local supply, yet how cancer cells adapt to low glutamine conditions is largely unknown. Here, we report that IκB kinase β (IKKβ) is activated upon glutamine deprivation and is required for cell survival independently of NF-κB transcription. We demonstrate that IKKβ directly interacts with and phosphorylates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase isoform 3 (PFKFB3), a major driver of aerobic glycolysis, at Ser269 upon glutamine deprivation to inhibit its activity, thereby down-regulating aerobic glycolysis when glutamine levels are low. Thus, due to lack of inhibition of PFKFB3, IKKβ-deficient cells exhibit elevated aerobic glycolysis and lactate production, leading to less glucose carbons contributing to tricarboxylic acid (TCA) cycle intermediates and the pentose phosphate pathway, which results in increased glutamine dependence for both TCA cycle intermediates and reactive oxygen species suppression. Therefore, coinhibition of IKKβ and glutamine metabolism results in dramatic synergistic killing of cancer cells both in vitro and in vivo. In all, our results uncover a previously unidentified role of IKKβ in regulating glycolysis, sensing low-glutamine-induced metabolic stress, and promoting cellular adaptation to nutrient availability. PMID:27585591

  11. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect

    PubMed Central

    Damiani, Chiara; Colombo, Riccardo; Gaglio, Daniela; Mastroianni, Fabrizia; Westerhoff, Hans Victor; Vanoni, Marco; Alberghina, Lilia

    2017-01-01

    Cancer cells share several metabolic traits, including aerobic production of lactate from glucose (Warburg effect), extensive glutamine utilization and impaired mitochondrial electron flow. It is still unclear how these metabolic rearrangements, which may involve different molecular events in different cells, contribute to a selective advantage for cancer cell proliferation. To ascertain which metabolic pathways are used to convert glucose and glutamine to balanced energy and biomass production, we performed systematic constraint-based simulations of a model of human central metabolism. Sampling of the feasible flux space allowed us to obtain a large number of randomly mutated cells simulated at different glutamine and glucose uptake rates. We observed that, in the limited subset of proliferating cells, most displayed fermentation of glucose to lactate in the presence of oxygen. At high utilization rates of glutamine, oxidative utilization of glucose was decreased, while the production of lactate from glutamine was enhanced. This emergent phenotype was observed only when the available carbon exceeded the amount that could be fully oxidized by the available oxygen. Under the latter conditions, standard Flux Balance Analysis indicated that: this metabolic pattern is optimal to maximize biomass and ATP production; it requires the activity of a branched TCA cycle, in which glutamine-dependent reductive carboxylation cooperates to the production of lipids and proteins; it is sustained by a variety of redox-controlled metabolic reactions. In a K-ras transformed cell line we experimentally assessed glutamine-induced metabolic changes. We validated computational results through an extension of Flux Balance Analysis that allows prediction of metabolite variations. Taken together these findings offer new understanding of the logic of the metabolic reprogramming that underlies cancer cell growth. PMID:28957320

  12. The effect of glutamine supplementation on athletic performance, body composition, and immune function: A systematic review and a meta-analysis of clinical trials.

    PubMed

    Ramezani Ahmadi, Amirhossein; Rayyani, Elham; Bahreini, Mehdi; Mansoori, Anahita

    2018-05-09

    This systematic review and meta-analysis of available evidence was conducted to obtain a conclusive result on the effects of glutamine supplementation on athletes. Systematic review and meta-analysis. Data related to body mass, lean body mass, body fat percentage, Vo2 max, lymphocytes, leukocytes and neutrophil counts were extracted to determine the effects of GLN on performance outcomes. The literature search was conducted across the databases Pubmed, Scopus, ISI Web of Science, SID (Scientific Information Database) and Cochrane Central Register of Controlled Trials, covering a period up to January 2017. Clinical trials evaluating glutamine supplementation outcomes on athletes aged over 18 were included. A total of 47 studies were included in the systematic review, and 25 trials matched the inclusion criteria for the meta-analysis. According to the meta-analysis, glutamine has a significant effect on weight reduction (WMD = -1.36 [95% CI: -2.55 to -0.16], p = 0.02). Moreover, neutrophil numbers were reduced following glutamine intake at doses greater than 200 mg/kg body weight (WMD = -605.77 [95% CI: -1200.0 to 52.1]; P = 0.03). Also, supplementation by glutamine dipeptide resulted in higher blood glucose after exercise (WMD = 0.51 [95% CI: 0.18, 0.83] mmol/l; P = 0.002). There was no association between glutamine ingestion and other outcomes investigated. According to this meta-analysis, generally, glutamine supplementation has no effect on athletics immune system, aerobic performance, and body composition. However, the current study showed that glutamine resulted in greater weight reduction. In addition, the present study suggests that the efficacy of glutamine supplementation on neutrophil numbers could be affected by supplement type and dose. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Ovarian cancer therapeutic potential of glutamine depletion based on GS expression.

    PubMed

    Furusawa, Akiko; Miyamoto, Morikazu; Takano, Masashi; Tsuda, Hitoshi; Song, Yong Sang; Aoki, Daisuke; Miyasaka, Naoyuki; Inazawa, Johji; Inoue, Jun

    2018-05-28

    Amino acids (AAs) are biologically important nutrient compounds necessary for the survival of any cell. Of the 20 AAs, cancer cells depend on the uptake of several extracellular AAs for survival. However, which extracellular AA is indispensable for the survival of cancer cells and the molecular mechanism involved have not been fully defined. In this study, we found that the reduction of cell survival caused by glutamine (Gln) depletion is inversely correlated with the expression level of glutamine synthetase (GS) in ovarian cancer (OVC) cells. GS expression was downregulated in 45 of 316 OVC cases (14.2%). The depletion of extracellular Gln by treatment with l-asparaginase, in addition to inhibiting Gln uptake via the knockdown of a Gln transporter, led to the inhibition of cell growth in OVC cells with low expression of GS (GSlow-OVC cells). Furthermore, the re-expression of GS in GSlow-OVC cells induced the inhibition of tumor growth in vitro and in vivo. Thus, these findings provide novel insight into the development of an OVC therapy based on the requirement of Gln.

  14. Time to wound closure in trauma patients with disorders in wound healing is shortened by supplements containing antioxidant micronutrients and glutamine: a PRCT.

    PubMed

    Blass, Sandra C; Goost, Hans; Tolba, René H; Stoffel-Wagner, Birgit; Kabir, Koroush; Burger, Christof; Stehle, Peter; Ellinger, Sabine

    2012-08-01

    : We hypothesize that wound closure in trauma patients with disorders in wound healing is accelerated by supplementation of antioxidant micronutrients and glutamine. In a randomized, double-blind, placebo-controlled trial, 20 trauma patients with disorders in wound healing were orally supplemented with antioxidant micronutrients (ascorbic acid, α-tocopherol, β-carotene, zinc, selenium) and glutamine (verum) or they received isoenergetic amounts of maltodextrine (placebo) for 14 days. Plasma/serum levels of micronutrients, glutamine, and vascular endothelial growth factor-A (VEGF-A) were determined before and after supplementation. In the wound, several parameters of microcirculation were measured. Time from study entry to wound closure was recorded. Micronutrients in plasma/serum did not change except for selenium which increased in the verum group (1.1 ± 0.2 vs. 1.4 ± 0.2 μmol/l; P = 0.009). Glutamine decreased only in the placebo group (562 ± 68 vs. 526 ± 55 μmol/l; P = 0.047). The prevalence of hypovitaminoses and the concentration of VEGF-A did not change. Considering microcirculation, only O(2)-saturation decreased in the placebo group (56.7 ± 23.4 vs. 44.0 ± 24.0 [arbitrary units]; P = 0.043). Wound closure occurred more rapidly in the verum than in the placebo group (35 ± 22 vs. 70 ± 35 d; P = 0.01). Time to wound closure can be shortened by oral antioxidant and glutamine containing supplements in trauma patients with disorders in wound healing. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  15. Intrahippocampal glutamine administration inhibits mTORC1 signaling and impairs long-term memory

    PubMed Central

    Rozas, Natalia S.; Redell, John B.; Pita-Almenar, Juan D.; Mckenna, James; Moore, Anthony N.; Gambello, Michael J.

    2015-01-01

    The mechanistic Target of Rapamycin Complex 1 (mTORC1), a key regulator of protein synthesis and cellular growth, is also required for long-term memory formation. Stimulation of mTORC1 signaling is known to be dependent on the availability of energy and growth factors, as well as the presence of amino acids. In vitro studies using serum- and amino acid-starved cells have reported that glutamine addition can either stimulate or repress mTORC1 activity, depending on the particular experimental system that was used. However, these experiments do not directly address the effect of glutamine on mTORC1 activity under physiological conditions in nondeprived cells in vivo. We present experimental results indicating that intrahippocampal administration of glutamine to rats reduces mTORC1 activity. Moreover, post-training administration of glutamine impairs long-term spatial memory formation, while coadministration of glutamine with leucine had no influence on memory. Intracellular recordings in hippocampal slices showed that glutamine did not alter either excitatory or inhibitory synaptic activity, suggesting that the observed memory impairments may not result from conversion of glutamine to either glutamate or GABA. Taken together, these findings indicate that glutamine can decrease mTORC1 activity in the brain and may have implications for treatments of neurological diseases associated with high mTORC1 signaling. PMID:25878136

  16. Glutamine: commercially essential or conditionally essential? A critical appraisal of the human data.

    PubMed

    Buchman, A L

    2001-07-01

    Glutamine is a nonessential amino acid that can be synthesized from glutamate and glutamic acid by glutamate-ammonia ligase. Glutamine is an important fuel source for the small intestine. It was proposed that glutamine is necessary for the maintenance of normal intestinal morphology and function in the absence of luminal nutrients. However, intestinal morphologic and functional changes related to enteral fasting and parenteral nutrition are less significant in humans than in animal models and may not be clinically significant. Therefore, it is unclear whether glutamine is necessary for the preservation of normal intestinal morphology and function in humans during parenteral nutrition. It was suggested that both glutamine-supplemented parenteral nutrition and enteral diets may pre-vent bacterial translocation via the preservation and augmentation of small bowel villus morphology, intestinal permeability, and intestinal immune function. However, it is unclear whether clinically relevant bacterial translocation even occurs in humans, much less whether there is any value in the prevention of such occurrences. Results of the therapeutic use of glutamine in humans at nonphysiologic doses indicate limited efficacy. Although glutamine is generally recognized to be safe on the basis of relatively small studies, side effects in patients receiving home parenteral nutrition and in those with liver-function abnormalities have been described. Therefore, on the basis of currently available clinical data, it is inappropriate to recommend glutamine for therapeutic use in any condition.

  17. Effects of hyperthyroidism and hypothyroidism on glutamine metabolism by skeletal muscle of the rat.

    PubMed Central

    Parry-Billings, M; Dimitriadis, G D; Leighton, B; Bond, J; Bevan, S J; Opara, E; Newsholme, E A

    1990-01-01

    1. The effects of hyperthyroidism and hypothyroidism on the concentrations of glutamine and other amino acids in the muscle and plasma and on the rates of glutamine and alanine release from incubated isolated stripped soleus muscle of the rat were investigated. 2. Hyperthyroidism decreased the concentration of glutamine in soleus muscle but was without effect on that in the gastrocnemius muscle or in the plasma. Hyperthyroidism also increased markedly the rate of release of glutamine from the incubated soleus muscle. 3. Hypothyroidism decreased the concentrations of glutamine in the gastrocnemius muscle and plasma but was without effect on that in soleus muscle. Hypothyroidism also decreased markedly the rate of glutamine release from the incubated soleus muscle. 4. Thyroid status was found to have marked effects on the rate of glutamine release by skeletal muscle per se, and may be important in the control of this process in both physiological and pathological conditions. PMID:2268261

  18. Vascular effects of intravenous intralipid and dextrose infusions in obese subjects

    PubMed Central

    Gosmanov, Aidar R.; Smiley, Dawn D.; Peng, Limin; Siquiera, Joselita; Robalino, Gonzalo; Newton, Christopher; Umpierrez, Guillermo E.

    2013-01-01

    Hyperglycemia and elevated free fatty acids (FFA) are implicated in the development of endothelial dysfunction. Infusion of soy-bean oil-based lipid emulsion (Intralipid®) increases FFA levels and results in elevation of blood pressure (BP) and endothelial dysfunction in obese healthy subjects. The effects of combined hyperglycemia and high FFA on BP, endothelial function and carbohydrate metabolism are not known. Twelve obese healthy subjects received four random, 8-h IV infusions of saline, Intralipid 40 mL/h, Dextrose 10% 40 mL/h, or combined Intralipid and dextrose. Plasma levels of FFA increased by 1.03±0.34 mmol/L (p=0.009) after Intralipid, but FFAs remained unchanged during saline, dextrose, and combined Intralipid and dextrose infusion. Plasma glucose and insulin concentrations significantly increased after dextrose and combined Intralipid and dextrose (all, p<0.05) and were not different from baseline during saline and lipid infusion. Intralipid increased systolic BP by 12±9 mmHg (p<0.001) and diastolic BP by 5±6 mmHg (p=0.022), and decreased flow-mediated dilatation (FMD) from baseline by 3.2%±1.4% (p<0.001). Saline and dextrose infusion had neutral effects on BP and FMD. The co-administration of lipid and dextrose decreased FMD by 2.4%±2.1% (p=0.002) from baseline, but did not significantly increase systolic or diastolic BP. Short-term Intralipid infusion significantly increased FFA and BP; in contrast, FFA and BP were unchanged during combined infusion of Intralipid and dextrose. Combined Intralipid and dextrose infusion resulted in endothelial dysfunction similar to Intralipid alone. PMID:22483976

  19. Effect of intermittent glutamine supplementation on skeletal muscle is not long-lasting in very old rats.

    PubMed

    Meynial-Denis, D; Beaufrère, A-M; Mignon, M; Patureau Mirand, P

    2013-01-01

    Muscle is the major site for glutamine synthesis via glutamine synthetase (GS). This enzyme is increased 1.5-2 fold in 25-27-mo rats and may be a consequence of aging-induced stress. This stimulation is similar to the induction observed following a catabolic state such as glucocorticoid treatment (6 to 24 months). Although oral glutamine supply regulates the plasma glutamine level, nothing is known if this supplementation is interrupted before the experiment. Adult (8-mo) and very old (27-mo) female rats were exposed to intermittent glutamine supplementation for 50 % of their age lifetime. Treated rats received glutamine added to their drinking water and control rats water alone but the effect of glutamine supplementation was only studied 15 days after the last supplementation. Glutamine pretreatment discontinued 15 days before the experiment increased plasma glutamine to ~ 0.6 mM, a normal value in very old rats. However, it failed to decrease the up-regulated GS activity in skeletal muscle from very old rats. Our results suggest that long-term treatment with glutamine started before advanced age but discontinued 15 days before rat sacrifice is effective in increasing plasma glutamine to recover basal adult value and in maintaining plasma glutamine in very old rats, but has no long-lasting effect on the GS activity of skeletal muscle with advanced age.

  20. Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer.

    PubMed

    Yu, Yang; Yu, Xiaohui; Fan, Chenling; Wang, Hong; Wang, Renee; Feng, Chen; Guan, Haixia

    2018-06-25

    Papillary thyroid cancer is a prevalent endocrine malignancy. Although alterations in glutamine metabolism have been reported in several types of hematological and solid tumors, little is known about the functions of glutamine and glutaminolysis-associated proteins in papillary thyroid cancer. Here, we demonstrated the glutamine dependence of papillary thyroid cancer cells, and with the use of RT 2 -PCR arrays, we screened for the aberrant overexpression of glutaminase in human papillary thyroid cancer tissues and cells. These results were later confirmed via real-time PCR, Western blots, and immunohistochemical staining. We found that the levels of glutaminase were significantly correlated with extrathyroidal extension. Inhibition of GLS suppressed glutaminolysis and reduced mitochondrial respiration. The proliferative, viable, migratory, and invasive abilities of papillary thyroid cancer cells were impaired by both the pharmacological inhibition and the genetic knockdown of glutaminase. Additionally, the inhibition of glutaminase deactivated the mechanistic target of the rapamycin complex 1 (mTORC1) signaling pathway, promoting autophagy and apoptosis. Collectively, these findings show that glutaminase-mediated glutamine dependence may be a potential therapeutic target for papillary thyroid cancer. PTC cells are glutamine-dependent, and GLS is aberrantly overexpressed in PTC. Inhibition of GLS suppressed glutaminolysis and reduced mitochondrial respiration. Inhibition of GLS impairs the viability of PTC cells. GLS blockade causes deactivation of mTORC1 and induction of autophagy and apoptosis. GLS may be a potential therapeutic target for PTC.

  1. The impact of glutamine supplementation on the symptoms of ataxia-telangiectasia: a preclinical assessment.

    PubMed

    Chen, Jianmin; Chen, Yanping; Vail, Graham; Chow, Heiman; Zhang, Yang; Louie, Lauren; Li, Jiali; Hart, Ronald P; Plummer, Mark R; Herrup, Karl

    2016-08-18

    Our previous studies of Alzheimer's disease (AD) suggested that glutamine broadly improves cellular readiness to respond to stress and acts as a neuroprotectant both in vitro and in AD mouse models. We now expand our studies to a second neurodegenerative disease, ataxia-telangiectasia (A-T). Unlike AD, where clinically significant cognitive decline does not typically occur before age 65, A-T symptoms appear in early childhood and are caused exclusively by mutations in the ATM (A-T mutated) gene. Genetically ATM-deficient mice and wild type littermates were maintained with or without 4 % glutamine in their drinking water for several weeks. In ATM mutants, glutamine supplementation restored serum glutamine and glucose levels and reduced body weight loss. Lost neurophysiological function assessed through the magnitude of hippocampal long term potentiation was significantly restored. Glutamine supplemented mice also showed reduced thymus pathology and, remarkably, a full one-third extension of lifespan. In vitro assays revealed that ATM-deficient cells are more sensitive to glutamine deprivation, while supra-molar glutamine (8 mM) partially rescued the reduction of BDNF expression and HDAC4 nuclear translocation of genetically mutant Atm(-/-) neurons. Analysis of microarray data suggested that glutamine metabolism is significantly altered in human A-T brains as well. Glutamine is a powerful part of an organism's internal environment. Changes in its concentrations can have a huge impact on the function of all organ systems, especially the brain. Glutamine supplementation thus bears consideration as a therapeutic strategy for the treatment of human A-T and perhaps other neurodegenerative diseases.

  2. Hydrophilic Association in a Dilute Glutamine Solution Persists Independent of Increasing Temperature.

    PubMed

    Rhys, Natasha H; Soper, Alan K; Dougan, Lorna

    2015-12-24

    Recent studies suggest that hydrophilic interactions play an important role in controlling self-assembly in biological processes. To explore the effect of temperature on this interaction, we extend our previous work on the glutamine-water system at 24 °C (at a mole ratio of 1 glutamine to 269 water molecules) and present additional neutron diffraction data, at the same concentration, at 37 and 60 °C, using hydrogen/deuterium substitution on the water and glutamine, coupled with further extensive empirical potential structure refinement computer simulations. Taking all the possible hydrophilic couplings between glutamine molecules into account, we find that nearly one-fifth of the glutamines in solution are linked by hydrogen bonds at any one time. This number contrasts strongly with the ∼3-4% fraction found in the same simulation with random packing and no hydrogen bonds. Within the uncertainties imposed by dilute solution statistics, we find no temperature dependence in these values. The clusters are highly transitory, forming and disappearing rapidly as the simulations proceed. Hydrophobic association of the alkyl groups on glutamine without concomitant hydrophilic association of the charged head and side-chain groups is only weakly observed.

  3. BNIP3 contributes to the glutamine-driven aggressive behavior of melanoma cells.

    PubMed

    Vara-Perez, Monica; Maes, Hannelore; Van Dingenen, Sarah; Agostinis, Patrizia

    2018-06-01

    Aerobic glycolysis (Warburg effect) is used by cancer cells to fuel tumor growth. Interestingly, metastatic melanoma cells rely on glutaminolysis rather than aerobic glycolysis for their bioenergetic needs through the tricarboxylic acid cycle. Here, we compared the effects of glucose or glutamine on melanoma cell proliferation, migration and oxidative phosphorylation in vitro. We found that glutamine-driven melanoma cell's aggressive traits positively correlated with increased expression of HIF1α and its pro-autophagic target BNIP3. BNIP3 silencing reduced glutamine-mediated effects on melanoma cell growth, migration and bioenergetics. Hence, BNIP3 is a vital component of the mitochondria quality control required for glutamine-driven melanoma aggressiveness.

  4. Glutamine Randomized Studies in Early Life: The Unsolved Riddle of Experimental and Clinical Studies

    PubMed Central

    Briassouli, Efrossini; Briassoulis, George

    2012-01-01

    Glutamine may have benefits during immaturity or critical illness in early life but its effects on outcome end hardpoints are controversial. Our aim was to review randomized studies on glutamine supplementation in pups, infants, and children examining whether glutamine affects outcome. Experimental work has proposed various mechanisms of glutamine action but none of the randomized studies in early life showed any effect on mortality and only a few showed some effect on inflammatory response, organ function, and a trend for infection control. Although apparently safe in animal models (pups), premature infants, and critically ill children, glutamine supplementation does not reduce mortality or late onset sepsis, and its routine use cannot be recommended in these sensitive populations. Large prospectively stratified trials are needed to better define the crucial interrelations of “glutamine-heat shock proteins-stress response” in critical illness and to identify the specific subgroups of premature neonates and critically ill infants or children who may have a greater need for glutamine and who may eventually benefit from its supplementation. The methodological problems noted in the reviewed randomized experimental and clinical trials should be seriously considered in any future well-designed large blinded randomized controlled trial involving glutamine supplementation in critical illness. PMID:23019424

  5. Bioactive compounds and antioxidant activity of wolfberry infusion

    PubMed Central

    Sun, Yujing; Rukeya, Japaer; Tao, Wenyang; Sun, Peilong; Ye, Xingqian

    2017-01-01

    An infusion of the wolfberry (Lycium barbarum L.) is a traditional Asian herbal tea. This is the most commonly consumed form of dried wolfberry worldwide, yet little scientific information on wolfberry infusions is available. We investigated the effects of making infusions with hot water on the color, the content of bioactive compounds (polysaccharides, polyphenols, flavonoids and carotenoids) and the antioxidant ability of wolfberry infusions. The contents of bioactive compounds and the antioxidant activity of a wolfberry infusion increased with increased infusion temperature and time. Total polysaccharides content (TPOC), total polyphenols (TPC), total flavonoids (TFC) and total carotenoids contents (TCC) were important for determining the antioxidant capacity of wolfberry infusions with the contribution to antioxidant activity in the order TPC > TFC > TCC > TPOC. Hierarchical cluster analysis indicated preparation conditions of 100 °C for 1~3 h, 90 °C for 2~3 h and 80 °C for 2.5~3 h were equivalent as regards the value of TPC, TPOC, TFC, TCC, FRAP, DPPH and ABTS. The results of this study suggest the length of time of making a wolfberry infusion in actual real life practice is too short and different dietary habits associated with the intake of wolfberry infusion might provide the same bioactive nutrients. PMID:28102295

  6. Immediate hypersensitivity reaction associated with the rapid infusion of Crotalidae polyvalent immune Fab (ovine).

    PubMed

    Holstege, Christopher P; Wu, Jeffrey; Baer, Alexander B

    2002-06-01

    A 16-year-old boy presented to the emergency department with rapidly progressing extremity pain, edema, and ecchymosis after envenomation by a copperhead. Crotalidae polyvalent immune Fab (ovine) (CroFab; FabAV) was infused. Six vials were placed in 250 mL of normal saline solution, and the infusion was gradually increased. Fifty minutes after beginning, the infusion was increased to 640 mL/h. Within minutes of the rate increase, the patient experienced full-body urticaria, facial edema, voice change, and tachycardia. The infusion was stopped. Hydroxyzine pamoate, famotidine, methylprednisolone, and a 1-L bolus of normal saline solution were administered intravenously. The symptoms abated, and the remaining FabAV was infused at a slower rate without return of this reaction. This immediate hypersensitivity reaction was most likely a rate-related anaphylactoid reaction that has not been previously reported with FabAV.[Holstege CP, Wu J, Baer AB. Immediate hypersensitivity reaction associated with the rapid infusion of Crotalidae polyvalent immune Fab (ovine). Ann Emerg Med. June 2002;39:677-679.

  7. The haemodynamic effects of bolus versus slower infusion of intravenous crystalloid in healthy volunteers.

    PubMed

    Ukor, Ida F; Hilton, Andrew K; Bailey, Michael J; Bellomo, Rinaldo

    2017-10-01

    This pilot study aimed to characterise the haemodynamic effect of 1L of IV normal saline (NS) administered as a rapid versus slow infusion on cardiac output (CO), heart rate (HR), systemic blood pressures, and carotid blood flow in six healthy volunteers. Six healthy male volunteers aged 18-65years were randomized to receive 1L NS given over 30min or 120min. On a subsequent study session the alternate fluid regimen was administered. Haemodynamic data was gathered using a non-invasive finger arterial pressure monitor (Nexfin®), echocardiography and carotid duplex sonography. Time to micturition and urine volume was also assessed. Compared to baseline, rapid infusion of 1L of saline over 30min produced a fall in Nexfin®-measured CO by 0.62L/min (p<0.001), whereas there was a marginal but significant increase during infusion of 1L NS over 120min of 0.02L/min (p<0.001). This effect was mirrored by changes in HR and blood pressure (BP) (p<0.001). There were no significant changes in carotid blood flow, time to micturition, or urine volume produced. Slower infusion of 1L NS in healthy male volunteers produced a greater increase in CO, HR and BP than rapid infusion. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  8. Effect of oral glutamine on enterocyte turnover during methotrexate-induced mucositis in rats.

    PubMed

    Sukhotnik, Igor; Mogilner, Jorge G; Karry, Rahel; Shamian, Benhoor; Lurie, Michael; Kokhanovsky, Natalie; Ure, Benno M; Coran, Arnold G

    2009-01-01

    The objective of this study was to evaluate the effects of oral glutamine in preventing intestinal mucosal damage caused by methotrexate (MTX) in rats. Male Sprague-Dawley rats were divided into 3 experimental groups: control rats, rats treated intraperitoneally with MTX (MTX rats) and rats treated with oral glutamine in the drinking water (2%) 72 h following intraperitoneal injection of a single dose of MTX (MTX-glutamine rats). Intestinal mucosal damage (Park's injury score), mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 h following MTX injection. RT-PCR was used to determine Bax and Bcl-2 mRNA expression. MTX-glutamine rats demonstrated greater jejunal and ileal mucosal weight and mucosal DNA, greater ileal villus height and crypt depth, and a greater index of proliferation in the jejunum and ileum compared to MTX animals. A significant decrease in enterocyte apoptosis in the ileum of MTX-glutamine rats (vs. MTX) was accompanied by decreased Bax and increased Bcl-2 mRNA expression. Treatment with oral glutamine prevents mucosal injury and improves intestinal recovery following MTX injury in the rat.

  9. Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture.

    PubMed Central

    Gebhardt, R; Mecke, D

    1983-01-01

    The distribution of glutamine synthetase [L-glutamate: ammonia ligase (ADP-forming), EC 6.3.1.1)] among rat liver parenchymal cells in situ and in primary culture was investigated by indirect immunofluorescence using a specific antiserum. In intact liver, the enzyme was found to be localized exclusively within a very small population of the parenchymal cells surrounding the terminal hepatic venules. Other parts of the parenchyma including non-parenchymal cell types did not stain for this enzyme. Heterogeneity was preserved during isolation of liver parenchymal cells and persisted in cultured cells for at least 3 days. Despite alterations in enzyme activity due to the adaptation of the cells to the culture conditions or due to the hormonal stimulation of the enzyme activity, no change in the relative number of cells expressing this enzyme could be detected. This rather peculiar localization of glutamine synthetase demonstrates an interesting aspect of liver zonation and might have important implications for liver glutamine and, more generally, nitrogen metabolism. Furthermore, it raises the question of whether there might be a phenotypic difference among liver parenchymal cells. Images Fig. 1. PMID:6138251

  10. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells

    PubMed Central

    Pérez-Escuredo, Jhudit; Dadhich, Rajesh K; Dhup, Suveera; Cacace, Andrea; Van Hée, Vincent F; De Saedeleer, Christophe J; Sboarina, Martina; Rodriguez, Fabien; Fontenille, Marie-Joséphine; Brisson, Lucie; Porporato, Paolo E; Sonveaux, Pierre

    2016-01-01

    ABSTRACT Oxygenated cancer cells have a high metabolic plasticity as they can use glucose, glutamine and lactate as main substrates to support their bioenergetic and biosynthetic activities. Metabolic optimization requires integration. While glycolysis and glutaminolysis can cooperate to support cellular proliferation, oxidative lactate metabolism opposes glycolysis in oxidative cancer cells engaged in a symbiotic relation with their hypoxic/glycolytic neighbors. However, little is known concerning the relationship between oxidative lactate metabolism and glutamine metabolism. Using SiHa and HeLa human cancer cells, this study reports that intracellular lactate signaling promotes glutamine uptake and metabolism in oxidative cancer cells. It depends on the uptake of extracellular lactate by monocarboxylate transporter 1 (MCT1). Lactate first stabilizes hypoxia-inducible factor-2α (HIF-2α), and HIF-2α then transactivates c-Myc in a pathway that mimics a response to hypoxia. Consequently, lactate-induced c-Myc activation triggers the expression of glutamine transporter ASCT2 and of glutaminase 1 (GLS1), resulting in improved glutamine uptake and catabolism. Elucidation of this metabolic dependence could be of therapeutic interest. First, inhibitors of lactate uptake targeting MCT1 are currently entering clinical trials. They have the potential to indirectly repress glutaminolysis. Second, in oxidative cancer cells, resistance to glutaminolysis inhibition could arise from compensation by oxidative lactate metabolism and increased lactate signaling. PMID:26636483

  11. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats.

    PubMed

    Lambertucci, Adriana C; Lambertucci, Rafael H; Hirabara, Sandro M; Curi, Rui; Moriscot, Anselmo S; Alba-Loureiro, Tatiana C; Guimarães-Ferreira, Lucas; Levada-Pires, Adriana C; Vasconcelos, Diogo A A; Sellitti, Donald F; Pithon-Curi, Tania C

    2012-01-01

    In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.

  12. Glutamine Supplementation Stimulates Protein-Synthetic and Inhibits Protein-Degradative Signaling Pathways in Skeletal Muscle of Diabetic Rats

    PubMed Central

    Lambertucci, Adriana C.; Lambertucci, Rafael H.; Hirabara, Sandro M.; Curi, Rui; Moriscot, Anselmo S.; Alba-Loureiro, Tatiana C.; Guimarães-Ferreira, Lucas; Levada-Pires, Adriana C.; Vasconcelos, Diogo A. A.; Sellitti, Donald F.; Pithon-Curi, Tania C.

    2012-01-01

    In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes. PMID:23239980

  13. [2,4-13C2]-β-Hydroxybutyrate Metabolism in Human Brain

    PubMed Central

    Pan, Jullie W.; de Graaf, Robin A.; Petersen, Kitt F.; Shulman, Gerald I.; Hetherington, Hoby P.; Rothman, Douglas L.

    2010-01-01

    Summary Infusions of [2,4-13C2]-β-hydroxybutyrate and 1H–13C polarization transfer spectroscopy were used in normal human subjects to detect the entry and metabolism of β-hydroxybutyrate in the brain. During the 2-hour infusion study, 13C label was detectable in the β-hydroxybutyrate resonance positions and in the amino acid pools of glutamate, glutamine, and aspartate. With a plasma concentration of 2.25 ± 0.24 mmol/L (four volunteers), the apparent tissue β-hydroxybutyrate concentration reached 0.18 ± 0.06 mmol/L during the last 20 minutes of the study. The relative fractional enrichment of 13C-4-glutamate labeling was 6.78 ± 1.71%, whereas 13C-4-glutamine was 5.68 ± 1.84%. Steady-state modeling of the 13C label distribution in glutamate and glutamine suggests that, under these conditions, the consumption of the β-hydroxybutyrate is predominantly neuronal, used at a rate of 0.032 ± 0.009 mmol · kg−1 · min−1, and accounts for 6.4 ± 1.6% of total acetyl coenzyme A oxidation. These results are consistent with minimal accumulation of cerebral ketones with rapid utilization, implying blood–brain barrier control of ketone oxidation in the nonfasted adult human brain. PMID:12142574

  14. Long-term stability study of clofarabine injection concentrate and diluted clofarabine infusion solutions.

    PubMed

    Kaiser, Jeanette; Krämer, Irene

    2012-06-01

    The aim of this study was to investigate the physicochemical stability of clofarabine (CAFdA) injection concentrate and ready-to-use CAFdA infusion solutions over a prolonged period of 28 days. To determine the stability of CAFdA infusion solutions, the injection concentrate (Evoltra®, 1 mg/mL, Genzyme) was diluted either with 0.9% sodium chloride or 5% glucose infusion solution. The resulting concentrations of 0.2 mg/mL or 0.6 mg/mL, respectively, were chosen to represent the lower and upper limit of the ordinary concentration range. Test solutions were stored under refrigeration (2-8°C) or at room temperature either light protected or exposed to light. CAFdA concentrations and pH values were determined at different time intervals throughout a 28-day storage period. Compatibility of diluted CAFdA infusion solutions (0.1-0.4 mg/mL) with different container materials (polyvinyl chloride (PVC), glass, and polypropylene/polyethylene (PP/PE)) was tested over a 48-h storage period. CAFdA concentrations were measured by a stability-indicating reversed phase high-performance liquid chromatography (HPLC) assay with ultraviolet detection. CAFdA injection concentrate and CAFdA infusion solutions remained physicochemically stable (>90% CAFdA) for 4 weeks. Results are independent of storage conditions, drug concentrations (0.2, 0.6, and 1.0 mg/mL) and diluents (0.9% sodium chloride, 5% glucose infusion solution). Adsorption of CAFdA to container material can be excluded. CAFdA injection concentrate and diluted infusion solutions in commonly used vehicles are stable for at least 28 days either refrigerated or at room temperature. Physicochemical stability favors pharmacy-based centralized preparation. Due to microbiological reasons, strict aseptic handling and storage of the products under refrigeration is recommended.

  15. Triennial Growth Symposium: important roles for L-glutamine in swine nutrition and production.

    PubMed

    Wu, G; Bazer, F W; Johnson, G A; Knabe, D A; Burghardt, R C; Spencer, T E; Li, X L; Wang, J J

    2011-07-01

    L-Glutamine (Gln) has traditionally not been considered a nutrient needed in diets for livestock species or even mentioned in classic animal nutrition textbooks. This is due to previous technical difficulties in Gln analysis and the unsubstantiated assumption that animals can synthesize sufficient amounts of Gln to meet their needs. Consequently, the current (1998) version of NRC does not recommend dietary Gln requirements for swine. This lack of knowledge about Gln nutrition has contributed to suboptimal efficiency of global pig production. Because of recent advances in research, Gln is now known to be an abundant AA in physiological fluids and proteins and a key regulator of gene expression. Additionally, Gln can regulate cell signaling via the mammalian target of rapamycin pathway, adenosine monophosphate-activated protein kinase, extracellular signal-related kinase, Jun kinase, mitogen-activated protein kinase, and nitric oxide. The exquisite integration of Gln-dependent regulatory networks has profound effects on cell proliferation, differentiation, migration, metabolism, homeostasis, survival, and function. As a result of translating basic research into practice, dietary supplementation with 1% Gln maintains gut health and prevents intestinal dysfunction in low-birth-weight or early-weaned piglets while increasing their growth performance and survival. In addition, supplementing 1% Gln to a corn- and soybean-meal-based diet between d 90 and 114 of gestation ameliorates fetal growth retardation in gilts and reduces preweaning mortality of piglets. Furthermore, dietary supplementation with 1% Gln enhances milk production by lactating sows. Thus, adequate amounts of dietary Gln, a major nutrient, are necessary to support the maximum growth, development, and production performance of swine. © 2011 American Society of Animal Science. All rights reserved.

  16. Mass spectrometric measurements of norepinephrine synthesis in man from infusion of stable isotope-labelled L-threo-3,4-dihydroxyphenylserine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, T.; Sakoda, S.; Ueji, M.

    The kinetics of stable isotope-labelled L-threo-3,4-dihydroxyphenylserine (L-threo-DOPS), an immediate precursor of (-)-norepinephrine, was studied to investigate the pharmacologic mechanism of its therapeutic effect on orthostatic hypotension in familial amyloid polyneuropathy (FAP) and on akinesia and freezing in parkinsonism. (/sup 13/C,D)-L-threo-DOPS was synthesized, and 100 mg of the compound was infused for 2 h into two normal subjects, two FAP patients and two patients with the degenerative diseases of the central nervous system. Labelled and endogenous norepinephrine in urine and plasma was assayed simultaneously by gas chromatography/mass spectrometry. The results indicate that the increase in norepinephrine in biological fluids after administrationmore » of L-threo-DOPS is attributable mostly to norepinephrine derived from L-threo-DOPS, not to pre-formed endogenous norepinephrine released by L-threo-DOPS.« less

  17. TAp73 is a marker of glutamine addiction in medulloblastoma

    PubMed Central

    Niklison-Chirou, Maria Victoria; Erngren, Ida; Engskog, Mikael; Haglöf, Jakob; Picard, Daniel; Remke, Marc; McPolin, Phelim Hugh Redmond; Selby, Matthew; Williamson, Daniel; Clifford, Steven C.; Michod, David; Hadjiandreou, Michalis; Arvidsson, Torbjörn; Pettersson, Curt; Melino, Gerry; Marino, Silvia

    2017-01-01

    Medulloblastoma is the most common solid primary brain tumor in children. Remarkable advancements in the understanding of the genetic and epigenetic basis of these tumors have informed their recent molecular classification. However, the genotype/phenotype correlation of the subgroups remains largely uncharacterized. In particular, the metabolic phenotype is of great interest because of its druggability, which could lead to the development of novel and more tailored therapies for a subset of medulloblastoma. p73 plays a critical role in a range of cellular metabolic processes. We show overexpression of p73 in a proportion of non-WNT medulloblastoma. In these tumors, p73 sustains cell growth and proliferation via regulation of glutamine metabolism. We validated our results in a xenograft model in which we observed an increase in survival time in mice on a glutamine restriction diet. Notably, glutamine starvation has a synergistic effect with cisplatin, a component of the current medulloblastoma chemotherapy. These findings raise the possibility that glutamine depletion can be used as an adjuvant treatment for p73-expressing medulloblastoma. PMID:28971956

  18. Rapid analysis of glutamate, glutamine and GABA in mice frontal cortex microdialysis samples using HPLC coupled to electrospray tandem mass spectrometry.

    PubMed

    Defaix, Celine; Solgadi, Audrey; Pham, Thu Ha; Gardier, Alain M; Chaminade, Pierre; Tritschler, Laurent

    2018-04-15

    In vivo measurement of multiple neurotransmitters is highly interesting but remains challenging in the field of neuroscience. GABA and l-glutamic acid are the major inhibitory and excitatory neurotransmitters, respectively, in the central nervous system, and their changes are related to a variety of diseases such as anxiety and major depressive disorder. This study described a simple method allowing the simultaneous LC-MS/MS quantification of l-glutamic acid, glutamine and GABA. Analytes were acquired from samples of the prefrontal cortex by microdialysis technique in freely moving mice. The chromatographic separation was performed by hydrophilic interaction liquid chromatography (HILIC) with a core-shell ammonium-sulfonic acid modified silica column using a gradient elution with mobile phases consisting of a 25 mM pH 3.5 ammonium formate buffer and acetonitrile. The detection of l-glutamic acid, glutamine and GABA, as well as the internal standards [d6]-GABA and [d5]-glutamate was performed on a triple quadrupole mass spectrometer in positive electrospray ionization and multiple reaction monitoring mode. The limit of quantification was 0.63 ng/ml for GABA, 1.25 ng/ml for l-glutamic acid and 3.15 ng/ml for glutamine, and the intra-day and inter-day accuracy and precision have been assessed for the three analytes. Therefore, the physiological relevance of the method was successfully applied for the determination of basal extracellular levels and potassium-evoked release of these neuroactive substances in the prefrontal cortex in adult awake C57BL/6 mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Response to weaning and dietary L-glutamine supplementation: metabolomic analysis in piglets by gas chromatography/mass spectrometry.

    PubMed

    Xiao, Ying-ping; Wu, Tian-xing; Hong, Qi-hua; Sun, Jiang-ming; Chen, An-guo; Yang, Cai-mei; Li, Xiao-yan

    2012-07-01

    A novel metabolomic method based on gas chromatography/mass spectrometry (GC-MS) was applied to determine the metabolites in the serum of piglets in response to weaning and dietary L-glutamine (Gln) supplementation. Thirty-six 21-d-old piglets were randomly assigned into three groups. One group continued to suckle from the sows (suckling group), whereas the other two groups were weaned and their diets were supplemented with 1% (w/w) Gln or isonitrogenous L-alanine, respectively, representing Gln group or control group. Serum samples were collected to characterize metabolites after a 7-d treatment. Results showed that twenty metabolites were down-regulated significantly (P<0.05) in control piglets compared with suckling ones. These data demonstrated that early weaning causes a wide range of metabolic changes across arginine and proline metabolism, aminosugar and nucleotide metabolism, galactose metabolism, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acid, and fatty acid metabolism. Dietary Gln supplementation increased the levels of creatinine, D-xylose, 2-hydroxybutyric acid, palmitelaidic acid, and α-L-galactofuranose (P<0.05) in early weaned piglets, and were involved in the arginine and proline metabolism, carbohydrate metabolism, and fatty acid metabolism. A leave-one-out cross-validation of random forest analysis indicated that creatinine was the most important metabolite among the three groups. Notably, the concentration of creatinine in control piglets was decreased (P=0.00001) compared to the suckling piglets, and increased (P=0.0003) in Gln-supplemented piglets. A correlation network for weaned and suckling piglets revealed that early weaning changed the metabolic pathways, leading to the abnormality of carbohydrate metabolism, amino acid metabolism, and lipid metabolism, which could be partially improved by dietary Gln supplementation. These findings provide fresh insight into the complex metabolic changes in response to early

  20. Response to weaning and dietary L-glutamine supplementation: metabolomic analysis in piglets by gas chromatography/mass spectrometry*

    PubMed Central

    Xiao, Ying-ping; Wu, Tian-xing; Hong, Qi-hua; Sun, Jiang-ming; Chen, An-guo; Yang, Cai-mei; Li, Xiao-yan

    2012-01-01

    A novel metabolomic method based on gas chromatography/mass spectrometry (GC-MS) was applied to determine the metabolites in the serum of piglets in response to weaning and dietary L-glutamine (Gln) supplementation. Thirty-six 21-d-old piglets were randomly assigned into three groups. One group continued to suckle from the sows (suckling group), whereas the other two groups were weaned and their diets were supplemented with 1% (w/w) Gln or isonitrogenous L-alanine, respectively, representing Gln group or control group. Serum samples were collected to characterize metabolites after a 7-d treatment. Results showed that twenty metabolites were down-regulated significantly (P<0.05) in control piglets compared with suckling ones. These data demonstrated that early weaning causes a wide range of metabolic changes across arginine and proline metabolism, aminosugar and nucleotide metabolism, galactose metabolism, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acid, and fatty acid metabolism. Dietary Gln supplementation increased the levels of creatinine,D-xylose, 2-hydroxybutyric acid, palmitelaidic acid, and α-L-galactofuranose (P<0.05) in early weaned piglets, and were involved in the arginine and proline metabolism, carbohydrate metabolism, and fatty acid metabolism. A leave-one-out cross-validation of random forest analysis indicated that creatinine was the most important metabolite among the three groups. Notably, the concentration of creatinine in control piglets was decreased (P=0.00001) compared to the suckling piglets, and increased (P=0.0003) in Gln-supplemented piglets. A correlation network for weaned and suckling piglets revealed that early weaning changed the metabolic pathways, leading to the abnormality of carbohydrate metabolism, amino acid metabolism, and lipid metabolism, which could be partially improved by dietary Gln supplementation. These findings provide fresh insight into the complex metabolic changes in response to early

  1. Glucose Limitation Alters Glutamine Metabolism in MUC1-Overexpressing Pancreatic Cancer Cells.

    PubMed

    Gebregiworgis, Teklab; Purohit, Vinee; Shukla, Surendra K; Tadros, Saber; Chaika, Nina V; Abrego, Jaime; Mulder, Scott E; Gunda, Venugopal; Singh, Pankaj K; Powers, Robert

    2017-10-06

    Pancreatic cancer cells overexpressing Mucin 1 (MUC1) rely on aerobic glycolysis and, correspondingly, are dependent on glucose for survival. Our NMR metabolomics comparative analysis of control (S2-013.Neo) and MUC1-overexpressing (S2-013.MUC1) cells demonstrates that MUC1 reprograms glutamine metabolism upon glucose limitation. The observed alteration in glutamine metabolism under glucose limitation was accompanied by a relative decrease in the proliferation of MUC1-overexpressing cells compared with steady-state conditions. Moreover, glucose limitation induces G1 phase arrest where S2-013.MUC1 cells fail to enter S phase and synthesize DNA because of a significant disruption in pyrimidine nucleotide biosynthesis. Our metabolomics analysis indicates that glutamine is the major source of oxaloacetate in S2-013.Neo and S2-013.MUC1 cells, where oxaloacetate is converted to aspartate, an important metabolite for pyrimidine nucleotide biosynthesis. However, glucose limitation impedes the flow of glutamine carbons into the pyrimidine nucleotide rings and instead leads to a significant accumulation of glutamine-derived aspartate in S2-013.MUC1 cells.

  2. Glutamine-mediated protection from neuronal cell death depends on mitochondrial activity.

    PubMed

    Stelmashook, E V; Lozier, E R; Goryacheva, E S; Mergenthaler, P; Novikova, S V; Zorov, D B; Isaev, N K

    2010-09-27

    The specific aim of this study was to elucidate the role of mitochondria in a neuronal death caused by different metabolic effectors and possible role of intracellular calcium ions ([Ca(2+)](i)) and glutamine in mitochondria- and non-mitochondria-mediated cell death. Inhibition of mitochondrial complex I by rotenone was found to cause intensive death of cultured cerebellar granule neurons (CGNs) that was preceded by an increase in intracellular calcium concentration ([Ca(2+)](i)). The neuronal death induced by rotenone was significantly potentiated by glutamine. In addition, inhibition of Na/K-ATPase by ouabain also caused [Ca(2+)](i) increase, but it induced neuronal cell death only in the absence of glucose. Treatment with glutamine prevented the toxic effect of ouabain and decreased [Ca(2+)](i). Blockade of ionotropic glutamate receptors prevented neuronal death and significantly decreased [Ca(2+)](i), demonstrating that toxicity of rotenone and ouabain was at least partially mediated by activation of these receptors. Activation of glutamate receptors by NMDA increased [Ca(2+)](i) and decreased mitochondrial membrane potential leading to markedly decreased neuronal survival under glucose deprivation. Glutamine treatment under these conditions prevented cell death and significantly decreased the disturbances of [Ca(2+)](i) and changes in mitochondrial membrane potential caused by NMDA during hypoglycemia. Our results indicate that glutamine stimulates glutamate-dependent neuronal damage when mitochondrial respiration is impaired. However, when mitochondria are functionally active, glutamine can be used by mitochondria as an alternative substrate to maintain cellular energy levels and promote cell survival. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Glutamate and CO2 production from glutamine in incubated enterocytes of adult and very old rats.

    PubMed

    Meynial-Denis, Dominique; Bielicki, Guy; Beaufrère, Anne-Marie; Mignon, Michelle; Mirand, Philippe Patureau; Renou, Jean-Pierre

    2013-04-01

    Glutamine is the major fuel for enterocytes and promotes the growth of intestinal mucosa. Although oral glutamine exerts a positive effect on intestinal villus height in very old rats, how glutamine is used by enterocytes is unclear. Adult (8 months) and very old (27 months) female rats were exposed to intermittent glutamine supplementation for 50% of their age lifetime. Treated rats received glutamine added to their drinking water, and control rats received water alone. Jejunal epithelial cells (~300×10(6) cells) were incubated in oxygenated Krebs-Henseleit buffer for 30 min containing [1-(13)C] glutamine (~17 M) for analysis of glutamine metabolites by (13)C nuclear magnetic resonance ((13)C NMR). An aliquot fraction was incubated in the presence of [U-(14)C] glutamine to measure produced CO2. Glutamine pretreatment increased glutamate production and decreased CO2 production in very old rats. The ratio CO2/glutamate, which was very high in control very old rats, was similar at both ages after glutamine pretreatment, as if enterocytes from very old rats recovered the metabolic abilities of enterocytes from adult rats. Our results suggest that long-term treatment with glutamine started before advanced age (a) prevented the loss of rat body weight without limiting sarcopenia and (b) had a beneficial effect on enterocytes from very old rats probably by favoring the role of glutamate as a precursor for glutathione, arginine and proline biosynthesis, which was not detected in (13)C NMR spectra in our experimental conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. In vivo 13C MRS in the mouse brain at 14.1 Tesla and metabolic flux quantification under infusion of [1,6-13C2]glucose.

    PubMed

    Lai, Marta; Lanz, Bernard; Poitry-Yamate, Carole; Romero, Jackeline F; Berset, Corina M; Cudalbu, Cristina; Gruetter, Rolf

    2017-01-01

    In vivo 13 C magnetic resonance spectroscopy (MRS) enables the investigation of cerebral metabolic compartmentation while, e.g. infusing 13 C-labeled glucose. Metabolic flux analysis of 13 C turnover previously yielded quantitative information of glutamate and glutamine metabolism in humans and rats, while the application to in vivo mouse brain remains exceedingly challenging. In the present study, 13 C direct detection at 14.1 T provided highly resolved in vivo spectra of the mouse brain while infusing [1,6- 13 C 2 ]glucose for up to 5 h. 13 C incorporation to glutamate and glutamine C4, C3, and C2 and aspartate C3 were detected dynamically and fitted to a two-compartment model: flux estimation of neuron-glial metabolism included tricarboxylic acid cycle (TCA) flux in astrocytes (V g  = 0.16 ± 0.03 µmol/g/min) and neurons (V TCA n  = 0.56 ± 0.03 µmol/g/min), pyruvate carboxylase activity (V PC  = 0.041 ± 0.003 µmol/g/min) and neurotransmission rate (V NT  = 0.084 ± 0.008 µmol/g/min), resulting in a cerebral metabolic rate of glucose (CMR glc ) of 0.38 ± 0.02 µmol/g/min, in excellent agreement with that determined with concomitant 18 F-fluorodeoxyglucose positron emission tomography ( 18 FDG PET).We conclude that modeling of neuron-glial metabolism in vivo is accessible in the mouse brain from 13 C direct detection with an unprecedented spatial resolution under [1,6- 13 C 2 ]glucose infusion.

  5. IT infusion

    NASA Technical Reports Server (NTRS)

    Feather, M. S.

    2002-01-01

    Infusing IT technology is a perennial challenge. The Technology Infusion and Maturity Assessment approach of Cornford & Hicks is shown applied to an example of IT infusion: moedl-based V&V of spacecraft software.

  6. Effect of glutamine supplementation on changes in the immune system induced by repeated exercise.

    PubMed

    Rohde, T; MacLean, D A; Pedersen, B K

    1998-06-01

    The ability of lymphocytes to proliferate and generate lymphokine activated killer (LAK) cell activity in vitro is dependent on glutamine. In relation to intense exercise the lymphocyte concentration, the proliferative response, the natural killer and LAK cell activity, and the plasma glutamine concentration decline. It has been hypothesized that in relation to physical activity a lack of glutamine may temporarily affect the function of the immune system. The purpose of this study was to examine the influence of glutamine supplementation on exercise-induced immune changes. In a randomized cross-over placebo-controlled study, eight healthy male subjects performed three bouts of ergometer bicycle exercise lasting 60, 45, and 30 min at 75% of their VO2max separated by 2 h of rest. The arterial plasma glutamine concentration declined from 508 +/- 35 (pre-exercise) to 402 +/- 38 microM (2 h after the last exercise bout) in the placebo trial and was maintained above pre-exercise levels in the glutamine supplementation trial. The numbers of circulating lymphocytes and the phytohemagglutinin-stimulated lymphocyte proliferative response declined 2 h after, respectively, during each bout of exercise, whereas the LAK cell activity declined 2 h after the third bout. Glutamine supplementation in vivo, given in the described doses at the specific times, did not influence these changes. The present study does not appear to support the hypothesis that those aspects of postexercise immune changes studied are caused by decreased plasma glutamine concentrations.

  7. A multi-ingredient containing carbohydrate, proteins L-glutamine and L-carnitine attenuates fatigue perception with no effect on performance, muscle damage or immunity in soccer players.

    PubMed

    Naclerio, Fernando; Larumbe-Zabala, Eneko; Cooper, Robert; Allgrove, Judith; Earnest, Conrad P

    2015-01-01

    We investigated the effects of ingesting a multi-ingredient (53 g carbohydrate, 14.5 g whey protein, 5 g glutamine, 1.5 g L-carnitine-L-tartrate) supplement, carbohydrate only, or placebo on intermittent performance, perception of fatigue, immunity, and functional and metabolic markers of recovery. Sixteen amateur soccer players ingested their respective treatments before, during and after performing a 90-min intermittent repeated sprint test. Primary outcomes included time for a 90-min intermittent repeated sprint test (IRS) followed by eleven 15 m sprints. Measurements included creatine kinase, myoglobin, interleukine-6, Neutrophil; Lymphocytes and Monocyte before (pre), immediately after (post), 1 h and 24 h after exercise testing period. Overall, time for the IRS and 15 m sprints was not different between treatments. However, the perception of fatigue was attenuated (P<0.001) for the multi-ingredient (15.9±1.4) vs. placebo (17.8±1.4) but not for the carbohydrate (17.0±1.9) condition. Several changes in immune/inflammatory indices were noted as creatine kinase peaked at 24 h while Interleukin-6 and myoglobin increased both immediately after and at 1 h compared with baseline (P<0.05) for all three conditions. However, Myoglobin (P<0.05) was lower 1 h post-exercise for the multi-ingredient (241.8±142.6 ng·ml(-1)) and CHO (265.4±187.8 ng·ml(-1)) vs. placebo (518.6±255.2 ng·ml(-1)). Carbohydrate also elicited lower neutrophil concentrations vs. multi-ingredient (3.9±1.5 10(9)/L vs. 4.9±1.8 10(9)/L, P = 0.016) and a reduced (P<0.05) monocytes count (0.36±0.09 10(9)/L) compared to both multi-ingredient (0.42±0.09 10(9)/L) and placebo (0.42±0.12 10(9)/L). In conclusion, multi-ingredient and carbohydrate supplements did not improve intermittent performance, inflammatory or immune function. However, both treatments did attenuate serum myoglobin, while only carbohydrate blunted post-exercise leukocytosis.

  8. A Multi-Ingredient Containing Carbohydrate, Proteins L-Glutamine and L-Carnitine Attenuates Fatigue Perception with No Effect on Performance, Muscle Damage or Immunity in Soccer Players

    PubMed Central

    Naclerio, Fernando; Larumbe-Zabala, Eneko; Cooper, Robert; Allgrove, Judith; Earnest, Conrad P.

    2015-01-01

    We investigated the effects of ingesting a multi-ingredient (53g carbohydrate, 14.5g whey protein, 5g glutamine, 1.5g L-carnitine-L-tartrate) supplement, carbohydrate only, or placebo on intermittent performance, perception of fatigue, immunity, and functional and metabolic markers of recovery. Sixteen amateur soccer players ingested their respective treatments before, during and after performing a 90-min intermittent repeated sprint test. Primary outcomes included time for a 90-min intermittent repeated sprint test (IRS) followed by eleven 15 m sprints. Measurements included creatine kinase, myoglobin, interleukine-6, Neutrophil; Lymphocytes and Monocyte before (pre), immediately after (post), 1h and 24h after exercise testing period. Overall, time for the IRS and 15 m sprints was not different between treatments. However, the perception of fatigue was attenuated (P<0.001) for the multi-ingredient (15.9±1.4) vs. placebo (17.8±1.4) but not for the carbohydrate (17.0±1.9) condition. Several changes in immune/inflammatory indices were noted as creatine kinase peaked at 24h while Interleukin-6 and myoglobin increased both immediately after and at 1h compared with baseline (P<0.05) for all three conditions. However, Myoglobin (P<0.05) was lower 1h post-exercise for the multi-ingredient (241.8±142.6 ng·ml-1) and CHO (265.4±187.8 ng·ml-1) vs. placebo (518.6±255.2 ng·ml-1). Carbohydrate also elicited lower neutrophil concentrations vs. multi-ingredient (3.9±1.5 109/L vs. 4.9±1.8 109/L, P = 0.016) and a reduced (P<0.05) monocytes count (0.36±0.09 109/L) compared to both multi-ingredient (0.42±0.09 109/L) and placebo (0.42±0.12 109/L). In conclusion, multi-ingredient and carbohydrate supplements did not improve intermittent performance, inflammatory or immune function. However, both treatments did attenuate serum myoglobin, while only carbohydrate blunted post-exercise leukocytosis. PMID:25915424

  9. A Survey of Glutamine Synthetase Activities in Tissues from Three Classes of Fish.

    DTIC Science & Technology

    1980-09-01

    reveree side it necessay end identify by block enamaber) Glutamine synthetase, gamma-glutamyl transferase, osmoregulation , glutamate, glutamine...aspects of osmoregulation as well. The only known route of glutanmine synthesis n all species is activity of glutamine synthetase (EC 6.3.1.2) which...for osmoregulation . There is a relatively small difference n species which retain urea for osmoregulation . This may help to explain the relationship of

  10. In-use Stability of Ceftaroline Fosamil in Elastomeric Home Infusion Systems and MINI-BAG Plus Containers.

    PubMed

    Bhattacharya, Sisir; Parekh, Satish; Dedhiya, Mahendra

    2015-01-01

    The objective of this study was to determine in-use stability of ceftaroline fosamil infusion solution of concentrations up to 12 mg/mL in elastomeric home infusion system prefilled with 0.9% Sodium Chloride Injection USP or 5% Dextrose Injection USP and MINI-BAG Plus Container delivery devices prefilled with 0.9% sodium chloride injection. In-use ceftaroline fosamil infusion solution (12 mg/mL) was prepared for elastomeric home infusion systems (Homepump Eclipse, Baxter Intermate, and AccuRx Elastomeric Pump) pre-filled with either 0.9% sodium chloride injection or 5% dextrose; or Baxter MINI-BAG Plus Containers pre-filled with 0.9% Sodium Chloride Injection USP (4 mg/mL to 12 mg/mL ceftaroline fosamil in final solution). The systems were stored refrigerated for 24 hours followed by up to 6 hours of storage at room temperature. Samples were analyzed at various time points for assay and degradation product by a validated stability-indicating high-performance liquid chromatography method. In-use ceftaroline fosamil infusion solution, ranging from 4-mg/mL to a maximum of 12-mg/mL concentration, in elastomeric home infusion systems prefilled with 0.9% sodium chloride injection or 5% dextrose, and MINI-BAG Plus Containers prefilled with 0.9% sodium chloride injection were chemically stable for up to 24 hours refrigerated at 2°C to 8°C (36°F to 46°F) and up to 6 hours at room temperature and had acceptable compatibility with material used. Ceftaroline fosamil (4 mg/mL to 12 mg/mL) maintains its potency for up to 24 hours refrigerated at 2°C to 8°C (36°F to 46°F) and up to 6 hours of storage at room temperature upon reconstitution in infusion solution with 0.9% sodium chloride or 5% dextrose when used in elastomeric home infusion system and MINI-BAG Plus Containers delivery devices prefilled with 0.9% sodium chloride injection.

  11. Residual gastric volume evaluation with ultrasonography after ingestion of carbohydrate- or carbohydrate plus glutamine-enriched beverages: a randomized, crossover clinical trial with healthy volunteers.

    PubMed

    Gomes, Paulo Cesar; Caporossi, Cervantes; Aguilar-Nascimento, Jose Eduardo; Silva, Ageo Mario Candido da; Araujo, Viviane Maeve Tavares de

    2017-01-01

    - Abbreviation of preoperative fasting to 2 hours with maltodextrin (CHO)-enriched beverage is a safe procedure and may enhance postoperative recovery. Addition of glutamine (GLN) to CHO beverages may include potential benefits to the metabolism. However, by adding a nitrogenous source to CHO beverages, gastric emptying may be delayed and increase the risk of bronchoaspiration during anesthesia. - In this study of safety, we aimed at investigating the residual gastric volume (RGV) 2 hours after the intake of either CHO beverage alone or CHO beverage combined with GLN. - We performed a randomized, crossover clinical trial. We assessed RGV by means of abdominal ultrasonography (US) in 20 healthy volunteers (10 males and 10 females) after an overnight fast of 8 hours. Then, they were randomized to receive 600 mL (400 mL immediately after US followed by another 200 mL 2 hours afterwards) of either CHO (12.5% maltodextrin) or CHO-GLN (12.5% maltodextrin plus 15 g GLN). Two sequential US evaluations were done at 120 and 180 minutes after ingestion of the second dose. The interval of time between ingestion of the two types of beverages was 2 weeks. - The mean (SD) RGV observed after 8 hours fasting (13.56±13.25 mL) did not statistically differ (P>0.05) from the RGV observed after ingesting CHO beverage at both 120 (16.32±11.78 mL) and 180 minutes (14.60±10.39 mL). The RGV obtained at 120 (15.63±18.83 mL) and 180 (13.65±10.27 mL) minutes after CHO-GLN beverage also was not significantly different from the fasting condition. - The RGV at 120 and 180 minutes after ingestion of CHO beverage combined with GLN is similar to that observed after an overnight fast.

  12. Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival

    PubMed Central

    Sanchez, Erica L.; Carroll, Patrick A.; Thalhofer, Angel B.; Lagunoff, Michael

    2015-01-01

    Kaposi’s Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of Kaposi’s Sarcoma (KS). KSHV establishes a predominantly latent infection in the main KS tumor cell type, the spindle cell, which is of endothelial cell origin. KSHV requires the induction of multiple metabolic pathways, including glycolysis and fatty acid synthesis, for the survival of latently infected endothelial cells. Here we demonstrate that latent KSHV infection leads to increased levels of intracellular glutamine and enhanced glutamine uptake. Depletion of glutamine from the culture media leads to a significant increase in apoptotic cell death in latently infected endothelial cells, but not in their mock-infected counterparts. In cancer cells, glutamine is often required for glutaminolysis to provide intermediates for the tri-carboxylic acid (TCA) cycle and support for the production of biosynthetic and bioenergetic precursors. In the absence of glutamine, the TCA cycle intermediates alpha-ketoglutarate (αKG) and pyruvate prevent the death of latently infected cells. Targeted drug inhibition of glutaminolysis also induces increased cell death in latently infected cells. KSHV infection of endothelial cells induces protein expression of the glutamine transporter, SLC1A5. Chemical inhibition of SLC1A5, or knockdown by siRNA, leads to similar cell death rates as glutamine deprivation and, similarly, can be rescued by αKG. KSHV also induces expression of the heterodimeric transcription factors c-Myc-Max and related heterodimer MondoA-Mlx. Knockdown of MondoA inhibits expression of both Mlx and SLC1A5 and induces a significant increase in cell death of only cells latently infected with KSHV, again, fully rescued by the supplementation of αKG. Therefore, during latent infection of endothelial cells, KSHV activates and requires the Myc/MondoA-network to upregulate the glutamine transporter, SLC1A5, leading to increased glutamine uptake for glutaminolysis. These findings expand our

  13. A Computational Method to Determine Glucose Infusion Rates for Isoglycemic Intravenous Glucose Infusion Study.

    PubMed

    Choi, Karam; Lee, Jung Chan; Oh, Tae Jung; Kim, Myeungseon; Kim, Hee Chan; Cho, Young Min; Kim, Sungwan

    2016-01-01

    The results of the isoglycemic intravenous glucose infusion (IIGI) study need to mimic the dynamic glucose profiles during the oral glucose tolerance test (OGTT) to accurately calculate the incretin effect. The glucose infusion rates during IIGI studies have historically been determined by experienced research personnel using the manual ad-hoc method. In this study, a computational method was developed to automatically determine the infusion rates for IIGI study based on a glucose-dynamics model. To evaluate the computational method, 18 subjects with normal glucose tolerance underwent a 75 g OGTT. One-week later, Group 1 (n = 9) and Group 2 (n = 9) underwent IIGI studies using the ad-hoc method and the computational method, respectively. Both methods were evaluated using correlation coefficient, mean absolute relative difference (MARD), and root mean square error (RMSE) between the glucose profiles from the OGTT and the IIGI study. The computational method exhibited significantly higher correlation (0.95 ± 0.03 versus 0.86 ± 0.10, P = 0.019), lower MARD (8.72 ± 1.83% versus 13.11 ± 3.66%, P = 0.002), and lower RMSE (10.33 ± 1.99 mg/dL versus 16.84 ± 4.43 mg/dL, P = 0.002) than the ad-hoc method. The computational method can facilitate IIGI study, and enhance its accuracy and stability. Using this computational method, a high-quality IIGI study can be accomplished without the need for experienced personnel.

  14. Air elimination capability in rapid infusion systems.

    PubMed

    Zoremba, N; Gruenewald, C; Zoremba, M; Rossaint, R; Schaelte, G

    2011-11-01

    Pressure infusion devices are used in clinical practice to apply large volumes of fluid over a short period of time. Although air infusion is a major complication, they have limited capability to detect and remove air during pressure infusion. In this investigation, we tested the air elimination capabilities of the Fluido(®) (The Surgical Company), Level 1(®) (Level 1 Technologies Inc.) and Ranger(®) (Augustine Medical GmbH) pressure infusion devices. Measurements were undertaken with a crystalloid solution during an infusion flow of 100, 200, 400 and 800 ml.min(-1). Four different volumes of air (25, 50, 100 and 200 ml) were injected as boluses in one experimental setting, or infused continuously over the time needed to perfuse 2 l saline in the other setting. The perfusion fluid was collected in an airtight infusion bag and the amount of air obtained in the bag was measured. The delivered air volume was negligible and would not cause any significant air embolism in all experiments. In our experimental setting, we found, during high flow, an increased amount of uneliminated air in all used devices compared with lower perfusion flows. All tested devices had a good air elimination capability. The use of ultrasonic air detection coupled with an automatic shutoff is a significant safety improvement and can reliably prevent accidental air embolism at rapid flows. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  15. Dietary glutamine supplementation affects macrophage function, hematopoiesis and nutritional status in early weaned mice.

    PubMed

    Rogero, Marcelo Macedo; Borelli, Primavera; Vinolo, Marco Aurélio Ramirez; Fock, Ricardo Ambrósio; de Oliveira Pires, Ivanir Santana; Tirapegui, Julio

    2008-06-01

    To investigate the effect that early weaning associated with the ingestion of either a glutamine-free or supplemented diet has on the functioning of peritoneal macrophages, hematopoiesis and nutritional status of mice. Swiss Webster mice were early weaned on their 14th day of life and distributed to two groups, being fed either a glutamine-free diet (-GLN) or a glutamine-supplemented diet (+GLN). Animals belonging to a control group (CON) were weaned on their 21st day of life. The -GLN and +GLN groups had a lower lean body mass, carcass protein and ash content, plasma glutamine concentration and lymphocyte counts both in the peripheral blood and bone marrow when compared to the CON group (P<0.05). Dietary supplementation with glutamine reversed both the lower concentrations of protein and DNA in the muscle and liver, as well as the reduced capacity of spreading and synthesizing nitric oxide, hydrogen peroxide, TNF-alpha, IL-1 beta and IL-6 in cultures of peritoneal macrophages obtained from the -GLN group (P<0.05). These data indicate that the ingestion of glutamine modulates the function of peritoneal macrophages in early weaned mice. However, a glutamine-supplemented diet cannot substitute maternal milk in respect to immunological and metabolic parameters.

  16. Effects of Supplementation with BCAA and L-glutamine on Blood Fatigue Factors and Cytokines in Juvenile Athletes Submitted to Maximal Intensity Rowing Performance.

    PubMed

    Koo, Ga Hee; Woo, Jinhee; Kang, Sungwhun; Shin, Ki Ok

    2014-08-01

    [Purpose] This study was conducted to understand the impacts of BCAA (branched-chain amino acid) and glutamine supplementation on the degree of blood fatigue factor stimulation and cytokines along with performance of exercise at the maximal intensity. [Subjects] Five male juvenile elite rowing athletes participated in this study as the subjects; they took 3 tests and received placebo supplementation (PS), BCAA supplementation (BS), and glutamine supplementation (GS). [Methods] The exercise applied in the tests was 2,000 m of rowing at the maximal intensity using an indoor rowing machine, and blood samples were collected 3 times, while resting, at the end of exercise, and after 30 min of recovery, to analyze the blood fatigue factors (lactate, phosphorous, ammonia, creatine kinase (CK)) and blood cytokines (IL (interleukin)-6, 8, 15). [Results] The results of the analysis showed that the levels of blood phosphorous in the BS and GS groups at the recovery stage were decreased significantly compared with at the end of exercise, and the level of CK appeared lower in the GS group alone at recovery stage than at the end of exercise. The level of blood IL-15 in the PS and BS groups appeared higher at the end of exercise compared with the resting stage. [Conclusion] It seemed that glutamine supplementation had a positive effect on the decrease in fatigue factor stimulation at the recovery stage after maximal intensity exercise compared with supplementation with the placebo or BCAA. Besides, pre-exercise glutamine supplementation seemed to help enhance immune function and the defensive inflammatory reaction.

  17. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions.

    PubMed

    Singh, Kamal Krishna; Ghosh, Shilpi

    2013-02-01

    KEY MESSAGE : The regulation of GS isoforms by WD was organ specific. Two GS isoforms i.e. OsGS1;1 and OsGS2 were differentially regulated in IR-64 (drought-sensitive) and Khitish (drought-tolerant) cultivars of rice. Water deficit (WD) has adverse effect on rice (Oryza sativa L.) and acclimation requires essential reactions of primary metabolism to continue. Rice plants utilize ammonium as major nitrogen source, which is assimilated into glutamine by the reaction of Glutamine synthetase (GS, EC 6.3.1.2). Rice plants possess one gene (OsGS2) for chloroplastic GS2 and three genes (OsGS1;1, OsGS1;2 and OsGS1;3) for cytosolic GS1. Here, we report the effect of WD on regulation of GS isoforms in drought-sensitive (cv. IR-64) and drought-tolerant (cv. Khitish) rice cultivars. Under WD, total GS activity in root and leaf decreased significantly in IR-64 seedlings in comparison to Khitish seedlings. The reduced GS activity in IR-64 leaf was mainly due to decrease in GS2 activity, which correlated with decrease in corresponding transcript and polypeptide contents. GS1 transcript and polypeptide accumulated in leaf during WD, however, GS1 activity was maintained at a constant level. Total GS activity in stem of both the varieties was insensitive to WD. Among GS1 genes, OsGS1;1 expression was differently regulated by WD in the two rice varieties. Its transcript accumulated more abundantly in IR-64 leaf than in Khitish leaf. Following WD, OsGS1;1 mRNA level in stem and root tissues declined in IR-64 and enhanced in Khitish. A steady OsGS1;2 expression patterns were noted in leaf, stem and root of both the cultivars. Results suggest that OsGS2 and OsGS1;1 expression may contribute to drought tolerance of Khitish cultivar under WD conditions.

  18. [Advances in the research of effects of glutamine on immune function of burn patients].

    PubMed

    Liu, Y H; Guo, P F; Chen, G Y; Bo, Y C; Ma, Y; Cui, Z J

    2018-04-20

    Glutamine is the most abundant amino acid found in plasma and cells. It is the preferred fuel for enterocytes in the small intestine, macrophages, and lymphocytes. After serious burn, increased requirement of glutamine by the gastrointestinal tract, kidney and lymphocytes, and relatively insufficient self synthesis likely contribute to the rapid decline of glutamine in circulation and cells. Glutamine supplementation can not only protect intestinal mucosa, maintain normal intestinal barrier function, reduce bacterial translocation, and enhance the intestinal immune function, but also increase the number of lymphocytes, enhance the phagocytic function of macrophage, promote the synthesis of immunoglobulin, and reduce the body's inflammatory response, so as to enhance the immune function. Therefore, glutamine supplementation can improve and enhance the immune function, reduce complications and promote the prognosis of severely burned patients.

  19. Management of Chemoradiation-Induced Mucositis in Head and Neck Cancers With Oral Glutamine

    PubMed Central

    Panda, Niharika; Dash, Manoj Kumar; Mohanty, Sumita; Samantaray, Sagarika

    2016-01-01

    Purpose Head and neck cancers are the third most common cancers worldwide. Oral mucositis is the most common toxicity seen in patients who receive chemoradiation to treat head and neck cancer. The aim of this study was to evaluate the efficacy and safety of oral glutamine supplementation in these patients. Materials and Methods From December 2013 to December 2014, we randomly assigned to two arms 162 patients who had squamous cell carcinoma of the head and neck. Patients in arm A were given oral glutamine once per day, whereas those in arm B served as negative control subjects. All patients received radiotherapy given as 70 Gy in 35 fractions over 7 weeks with an injection of cisplatin once per week. Patients were assessed once per week to evaluate for the onset and severity of mucositis, pain, use of analgesics, and for Ryle tube feeding. Results We observed that 53.1% of patients developed mucositis toward the fifth week in the glutamine arm compared with 55.5% of patients in the control arm at the third week. None in the glutamine arm compared with 92.35% of patients in the control arm developed G3 mucositis. Rates of adverse events like pain, dysphagia, nausea, edema, and cough, as well as use of analgesics and Ryle tube feeding, were significantly lower in the glutamine arm than in the control arm. Conclusion This study highlights that the onset as well as the severity of mucositis in patients receiving glutamine was significantly delayed. None of the patients receiving glutamine developed G3 mucositis. Hence, the findings emphasize the use of oral glutamine supplementation as a feasible and affordable treatment option for mucositis in patients with head and neck cancers who are receiving chemoradiation. PMID:28717702

  20. Effects of a Glutamine Enema on Anastomotic Healing in an Animal Colon Anastomosis Model

    PubMed Central

    Oner, Osman Zekai; Oruc, Mehmet Tahir; Bulbuller, Nurullah; Ozdem, Sebahat; Ozdemir, Sukru; Alikanooglu, Arsenal Sezgin; Karakoyun, Rojbin; Dogan, Ugur; Ongen, Ayper; Koc, Umit

    2015-01-01

    Purpose Anastomotic leakage in colorectal surgery is a very important issue. Although many studies have shown the positive effects of enteral glutamine (Gln) on anastomotic healing, none has assessed the effects of administering Gln via an enema for anastomotic healing. To fill this study gap, this study investigated the intraluminal effect of administration of Gln enema on the healing of colonic anastomosis in a rat model. Methods Thirty Wistar albino rats were divided into three groups containing 10 rats each and were subjected to distal left colon transection and anastomosis. Postoperatively, group I (the control group) was administered no treatment, group II was administered daily placebo enemas containing physiological saline, and group III was administered daily 2% L-Gln enemas. After sacrifice on postoperative day 5, anastomotic healing, burst pressure, tissue hydroxyproline levels, and histological parameters were measured, and group values were compared via statistical analysis. Results Group III was found to have the highest mean bursting pressure and tissue hydroxyproline levels and the lowest mean ischemia score. While the values of these parameters were not found to differ significantly among the groups, the lack of significance may have been due to the limited number of subjects examined. Conclusion Administration of a Gln enema may have a positive effect on anastomosis in terms of bursting pressure and histopathological parameters. Future research should examine administration of a preoperative Gln enema as a means of decreasing the traumatic effects of the enema and identifying its applicability in surgical practice. PMID:26817016

  1. [Methods of preventing phlebitis induced by infusion of fosaprepitant].

    PubMed

    Kohno, Emiko; Kanematsu, Sayaka; Okazaki, Satoshi; Ogata, Makoto; Kanemitsu, Meiko; Yamashita, Hiromi; Syuntou, Kaori; Sekita, Masako; Nishioka, Ryoko; Yoshida, Hideyuki

    2015-03-01

    At our hospital, we use aprepitant for nausea and vomiting when administering highly emetic anticancer agents, according to "Guidelines for the Appropriate Use of Antiemetic Agents" given by the Japan Society of Clinical Oncology. We initiated the intravenous administration of fosaprepitant for better compliance compared with aprepitant; however, we observed phlebitis after the infusion of fosaprepitant. Therefore, we investigated measures to reduce phlebitis associated with the infusion of fosaprepitant. For the first premedication, fosaprepitant (150 mg) was dissolved in 100 mL of saline and administered for 30 minutes; 1 of 2 patients showed grade 4 phlebitis. For the modified premedication, fosaprepitant, dexamethasone, and 5- HT(3) antagonist were dissolved in 100 mL of saline and administered for 30 minutes. The modified premedication was administered to a total of 27 patients; 5 patients developed mild phlebitis (grade 1), but infusion could be continued by treating their phlebitis with a hot pack. We used a combination of dexamethasone and 5-HT(3) antagonist with fosaprepitant as a modified premedication in order to avoid drug-induced vascular damage, which resulted in the pH decreasing to 6.20-7.55 (close to neutral) and a shorter infusion time.

  2. [Imbalance of system of glutamin - glutamic acid in the placenta and amniotic fluid at placental insufficiency].

    PubMed

    Pogorelova, T N; Gunko, V O; Linde, V A

    2014-01-01

    Metabolism of glutamine and glutamic acid has been investigated in the placenta and amniotic fluid under conditions of placental insufficiency. The development of placental insufficiency is characterized by the increased content of glutamic acid and a decrease of glutamine in both placenta and amniotic fluid. These changes changes were accompanied by changes in the activity of enzymes involved in the metabolism of these amino acids. There was a decrease in glutamate dehydrogenase activity and an increase in glutaminase activity with the simultaneous decrease of glutamine synthetase activity. The compensatory decrease in the activity of glutamine keto acid aminotransferase did not prevent a decrease in the glutamine level. The impairments in the system glutamic acid-glutamine were more pronounced during the development of premature labor.

  3. Novel antibiofilm chemotherapies target nitrogen from glutamate and glutamine.

    PubMed

    Hassanov, Tal; Karunker, Iris; Steinberg, Nitai; Erez, Ayelet; Kolodkin-Gal, Ilana

    2018-05-08

    Bacteria in nature often reside in differentiated communities termed biofilms, which are an active interphase between uni-cellular and multicellular life states for bacteria. Here we demonstrate that the development of B. subtilis biofilms is dependent on the use of glutamine or glutamate as a nitrogen source. We show a differential metabolic requirement within the biofilm; while glutamine is necessary for the dividing cells at the edges, the inner cell mass utilizes lactic acid. Our results indicate that biofilm cells preserve a short-term memory of glutamate metabolism. Finally, we establish that drugs that target glutamine and glutamate utilization restrict biofilm development. Overall, our work reveals a spatial regulation of nitrogen and carbon metabolism within the biofilm, which contributes to the fitness of bacterial complex communities. This acquired metabolic division of labor within biofilm can serve as a target for novel anti-biofilm chemotherapies.

  4. Glutamine Acts as a Neuroprotectant against DNA Damage, Beta-Amyloid and H2O2-Induced Stress

    PubMed Central

    Chen, Jianmin; Herrup, Karl

    2012-01-01

    Glutamine is the most abundant free amino acid in the human blood stream and is ‘conditionally essential’ to cells. Its intracellular levels are regulated both by the uptake of extracellular glutamine via specific transport systems and by its intracellular synthesis by glutamine synthetase (GS). Adding to the regulatory complexity, when extracellular glutamine is reduced GS protein levels rise. Unfortunately, this excess GS can be maladaptive. GS overexpression is neurotoxic especially if the cells are in a low-glutamine medium. Similarly, in low glutamine, the levels of multiple stress response proteins are reduced rendering cells hypersensitive to H2O2, zinc salts and DNA damage. These altered responses may have particular relevance to neurodegenerative diseases of aging. GS activity and glutamine levels are lower in the Alzheimer's disease (AD) brain, and a fraction of AD hippocampal neurons have dramatically increased GS levels compared with control subjects. We validated the importance of these observations by showing that raising glutamine levels in the medium protects cultured neuronal cells against the amyloid peptide, Aβ. Further, a 10-day course of dietary glutamine supplementation reduced inflammation-induced neuronal cell cycle activation, tau phosphorylation and ATM-activation in two different mouse models of familial AD while raising the levels of two synaptic proteins, VAMP2 and synaptophysin. Together, our observations suggest that healthy neuronal cells require both intracellular and extracellular glutamine, and that the neuroprotective effects of glutamine supplementation may prove beneficial in the treatment of AD. PMID:22413000

  5. Glutamine supplementation favors weight loss in nondieting obese female patients. A pilot study.

    PubMed

    Laviano, A; Molfino, A; Lacaria, M T; Canelli, A; De Leo, S; Preziosa, I; Rossi Fanelli, F

    2014-11-01

    Glutamine supplementation improves insulin sensitivity in critically ill patients, and prevents obesity in animals fed a high-fat diet. We hypothesized that glutamine supplementation favors weight loss in humans. Obese and overweight female patients (n=6) were enrolled in a pilot, cross-over study. After recording anthropometric (that is, body weight, waist circumference) and metabolic (that is, glycemia, insulinemia, homeostatic model of insulin resistance (HOMA-IR)) characteristics, patients were randomly assigned to 4-week supplementation with glutamine or isonitrogenous protein supplement (0.5 g/KgBW/day). During supplementation, patients did not change their dietary habits nor lifestyle. At the end, anthropometric and metabolic features were assessed, and after 2 weeks of washout, patients were switched to the other supplement for 4 weeks. Body weight and waist circumference significantly declined only after glutamine supplementation (85.0±10.4 Kg vs 82.2±10.1 Kg, and 102.7±2.0 cm vs 98.9±2.9 cm, respectively; P=0.01). Insulinemia and HOMA-IR declined by 20% after glutamine, but not significantly so. This pilot study shows that glutamine is safe and effective in favoring weight loss and possibly enhancing glucose metabolism.

  6. TAp73 is a marker of glutamine addiction in medulloblastoma.

    PubMed

    Niklison-Chirou, Maria Victoria; Erngren, Ida; Engskog, Mikael; Haglöf, Jakob; Picard, Daniel; Remke, Marc; McPolin, Phelim Hugh Redmond; Selby, Matthew; Williamson, Daniel; Clifford, Steven C; Michod, David; Hadjiandreou, Michalis; Arvidsson, Torbjörn; Pettersson, Curt; Melino, Gerry; Marino, Silvia

    2017-09-01

    Medulloblastoma is the most common solid primary brain tumor in children. Remarkable advancements in the understanding of the genetic and epigenetic basis of these tumors have informed their recent molecular classification. However, the genotype/phenotype correlation of the subgroups remains largely uncharacterized. In particular, the metabolic phenotype is of great interest because of its druggability, which could lead to the development of novel and more tailored therapies for a subset of medulloblastoma. p73 plays a critical role in a range of cellular metabolic processes. We show overexpression of p73 in a proportion of non-WNT medulloblastoma. In these tumors, p73 sustains cell growth and proliferation via regulation of glutamine metabolism. We validated our results in a xenograft model in which we observed an increase in survival time in mice on a glutamine restriction diet. Notably, glutamine starvation has a synergistic effect with cisplatin, a component of the current medulloblastoma chemotherapy. These findings raise the possibility that glutamine depletion can be used as an adjuvant treatment for p73-expressing medulloblastoma. © 2017 Niklison-Chirou et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Infusion Extractor

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1988-01-01

    Apparatus and method of removing desirable constituents from an infusible material by infusion extraction, where a piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, and where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber.

  8. Effects of glutamine supplementation on the immune status in weaning piglets with intrauterine growth retardation.

    PubMed

    Zhong, Xiang; Li, Wei; Huang, Xuexin; Wang, Yuanxiao; Zhang, Lili; Zhou, Yanmin; Hussain, Ahmad; Wang, Tian

    2012-10-01

    Neonates with intrauterine growth retardation (IUGR) often suffer from impaired cellular immunity, and weaning may further aggravate adverse effects of IUGR on development and function of the immune system. In this study, we investigated effects of glutamine supplementation on immune status in the intestines of weaning pigs with IUGR, focusing on molecular mechanisms underlying altered immune response. Piglets with IUGR were weaned at 21 days of age and received orally 1.22 g alanine or 1 g glutamine per kg body weight every 12 h. Weight gain and intestinal weight of weaning piglets were increased by glutamine supplementation. Levels of serum IgG in piglets supplemented with glutamine were increased compared with Control piglets. The production of IL-1 and IL-8 in the serum and jejunum was decreased by glutamine supplementation, whereas the levels of IL-4 in the serum and the concentrations of IL-4 and IL-10 in the jejunum were increased. The expression of heat shock protein 70 (Hsp70) in the jejunum was increased by glutamine supplementation, but the degradation of inhibitor κB and the activity of nuclear factor-κB (NF-κB) were decreased. In conclusion, glutamine supplementation enhanced immune response in weaning piglets with IUGR. The effects of glutamine in IUGR are associated with increased Hsp70 expression and suppression of NF-κB activation.

  9. Dysfunctional BMPR2 signaling drives an abnormal endothelial requirement for glutamine in pulmonary arterial hypertension.

    PubMed

    Egnatchik, Robert A; Brittain, Evan L; Shah, Amy T; Fares, Wassim H; Ford, H James; Monahan, Ken; Kang, Christie J; Kocurek, Emily G; Zhu, Shijun; Luong, Thong; Nguyen, Thuy T; Hysinger, Erik; Austin, Eric D; Skala, Melissa C; Young, Jamey D; Roberts, L Jackson; Hemnes, Anna R; West, James; Fessel, Joshua P

    2017-03-01

    Pulmonary arterial hypertension (PAH) is increasingly recognized as a systemic disease driven by alteration in the normal functioning of multiple metabolic pathways affecting all of the major carbon substrates, including amino acids. We found that human pulmonary hypertension patients (WHO Group I, PAH) exhibit systemic and pulmonary-specific alterations in glutamine metabolism, with the diseased pulmonary vasculature taking up significantly more glutamine than that of controls. Using cell culture models and transgenic mice expressing PAH-causing BMPR2 mutations, we found that the pulmonary endothelium in PAH shunts significantly more glutamine carbon into the tricarboxylic acid (TCA) cycle than wild-type endothelium. Increased glutamine metabolism through the TCA cycle is required by the endothelium in PAH to survive, to sustain normal energetics, and to manifest the hyperproliferative phenotype characteristic of disease. The strict requirement for glutamine is driven by loss of sirtuin-3 (SIRT3) activity through covalent modification by reactive products of lipid peroxidation. Using 2-hydroxybenzylamine, a scavenger of reactive lipid peroxidation products, we were able to preserve SIRT3 function, to normalize glutamine metabolism, and to prevent the development of PAH in BMPR2 mutant mice. In PAH, targeting glutamine metabolism and the mechanisms that underlie glutamine-driven metabolic reprogramming represent a viable novel avenue for the development of potentially disease-modifying therapeutics that could be rapidly translated to human studies.

  10. Effects of intraduodenal infusion of L-tryptophan on ad libitum eating, antropyloroduodenal motility, glycemia, insulinemia, and gut peptide secretion in healthy men.

    PubMed

    Steinert, Robert E; Luscombe-Marsh, Natalie D; Little, Tanya J; Standfield, Scott; Otto, Bärbel; Horowitz, Michael; Feinle-Bisset, Christine

    2014-09-01

    Changes in gut motor and hormonal function contribute to the eating-inhibitory and glucose-lowering effects of protein. The effect of amino acids, the digestive products of protein, on gastrointestinal function, eating, and glycemia has not been investigated comprehensively. We tested the hypothesis that L-tryptophan (L-Trp) stimulates gastrointestinal motor and hormonal functions, inhibits eating, and modulates glycemia. Design, Settings, Participants, and Intervention: Ten healthy, normal-weight men were studied in randomized, double-blind fashion, each receiving a 90-minute intraduodenal infusion of L-Trp at 0.075 (total 6.75 kcal) or 0.15 (total 13.5 kcal) kcal/min or saline (control). Antropyloroduodenal motility, plasma ghrelin, cholecystokinin, glucagon-like peptide-1, peptide tyrosine tyrosine, insulin, glucagon, blood glucose, and appetite perceptions were measured. Food intake was quantified from a buffet meal after the infusion. Intraduodenal L-Trp suppressed antral pressures (P < .05) and stimulated pyloric pressures (P < .01) and markedly increased cholecystokinin and glucagon (both P < .001). Glucagon-like peptide-1 and peptide tyrosine tyrosine increased modestly (both P < .001), but there was no effect on total ghrelin. Insulin increased slightly (P < .05) without affecting blood glucose. Plasma L-Trp increased substantially (P < .001). All effects were dose-related and associated with increased fullness and substantially decreased energy intake (P < .001). There was a strong inverse correlation between energy intake and plasma L-Trp (r = -0.70; P < .001). Low caloric intraduodenal loads of L-Trp affect gut motor and hormonal function and markedly reduce energy intake. A strong inverse correlation between energy intake and plasma L-Trp suggests that, beyond gut mechanisms, direct effects of circulating L-Trp mediate its eating-inhibitory effect.

  11. Effect of increasing Helicobacter pylori ammonia production by urea infusion on plasma gastrin concentrations.

    PubMed Central

    Chittajallu, R S; Neithercut, W D; Macdonald, A M; McColl, K E

    1991-01-01

    It has been proposed that the hypergastrinaemia in subjects with Helicobacter pylori infection is caused by the action of the ammonia produced by the organism's urease activity on the antral G cells. To investigate this hypothesis we examined the effect on plasma gastrin of increasing the bacterium's ammonia production by infusing urea intragastrically to eight H pylori positive duodenal ulcer patients. After a 60 minute control intragastric infusion of dextrose solution at 2 ml/minute, a similar infusion containing urea (50 mmol/l) was continued for four hours. During the urea infusion, the median gastric juice urea concentration rose from 1.1 mmol/l (range 0.3-1.6) to 15.5 mmol/l (range 7.9-21.3) and this resulted in an increase in the ammonium concentration from 2.3 mmol/l (range 1.3-5.9) to 6.1 mmol/l (range 4.2-11.9) (p less than 0.01). This appreciable rise in ammonia production did not result in any change in the plasma gastrin concentration. The experiment was repeated one month after eradication of H pylori, at which time the median basal gastrin was 20 ng/l (range 15-25), significantly less than the value before eradication (30 ng/l range 15-60) (p less than 0.05). On this occasion, the gastric juice ammonium concentration was considerably reduced at 0.4 mmol/l (range 0.1-0.9) and the urea infusion did not raise the ammonium concentration or change the plasma gastrin concentration. In conclusion, augmenting H pylori ammonia production does not cause any early change in plasma gastrin. PMID:1991633

  12. Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells

    PubMed Central

    Ko, Ying-Hui; Lin, Zhao; Flomenberg, Neal; Pestell, Richard G; Howell, Anthony; Sotgia, Federica

    2011-01-01

    Glutamine metabolism is crucial for cancer cell growth via the generation of intermediate molecules in the tricarboxylic acid (TCA) cycle, antioxidants and ammonia. The goal of the current study was to evaluate the effects of glutamine on metabolism in the breast cancer tumor microenvironment, with a focus on autophagy and cell death in both epithelial and stromal compartments. For this purpose, MCF7 breast cancer cells were cultured alone or co-cultured with nontransformed fibroblasts in media containing high glutamine and low glucose (glutamine +) or under control conditions, with no glutamine and high glucose (glutamine −). Here, we show that MCF7 cells maintained in co-culture with glutamine display increased mitochondrial mass, as compared with control conditions. Importantly, treatment with the autophagy inhibitor chloroquine abolishes the glutamine-induced augmentation of mitochondrial mass. It is known that loss of caveolin-1 (Cav-1) expression in fibroblasts is associated with increased autophagy and an aggressive tumor microenvironment. Here, we show that Cav-1 downregulation which occurs in fibroblasts maintained in co-culture specifically requires glutamine. Interestingly, glutamine increases the expression of autophagy markers in fibroblasts, but decreases expression of autophagy markers in MCF7 cells, indicating that glutamine regulates the autophagy program in a compartment-specific manner. Functionally, glutamine protects MCF7 cells against apoptosis, via the upregulation of the anti-apoptotic and anti-autophagic protein TIGAR. Also, we show that glutamine cooperates with stromal fibroblasts to confer tamoxifen-resistance in MCF7 cancer cells. Finally, we provide evidence that co-culture with fibroblasts (1) promotes glutamine catabolism, and (2) decreases glutamine synthesis in MCF7 cancer cells. Taken together, our findings suggest that autophagic fibroblasts may serve as a key source of energy-rich glutamine to fuel cancer cell mitochondrial

  13. Evidence for an operative glutamine translocator in chloroplasts from maritime pine (Pinus pinaster Ait.) cotyledons.

    PubMed

    Claros, M G; Aguilar, M L; Cánovas, F M

    2010-09-01

    In higher plants, ammonium is assimilated into amino acids through the glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle. This metabolic cycle is distributed in different cellular compartments in conifer seedlings: glutamine synthesis occurs in the cytosol and glutamate synthesis within the chloroplast. A method for preparing intact chloroplasts of pine cotyledons is presented with the aim of identifying a glutamine-glutamate translocator. Glutamine-glutamate exchange has been studied using the double silicone layer system, suggesting the existence of a translocator that imports glutamine into the chloroplast and exports glutamate to the cytoplasm. The translocator identified is specific for glutamine and glutamate, and the kinetic constants for both substrates indicate that it is unsaturated at intracellular concentrations. Thus, the experimental evidence obtained supports the model of the GS/GOGAT cycle in developing pine seedlings that accounts for the stoichiometric balance of metabolites. As a result, the efficient assimilation of free ammonia produced by photorespiration, nitrate reduction, storage protein mobilisation, phenylpropanoid pathway or S-adenosylmethionine synthesis is guaranteed.

  14. Leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent regeneration.

    PubMed

    Takayama, Kazuya; Muto, Akihiko; Kikuchi, Yutaka

    2018-05-29

    In animal regeneration, control of position-dependent cell proliferation is crucial for the complete restoration of patterned appendages in terms of both, shape and size. However, detailed mechanisms of this process are largely unknown. In this study, we identified leucine/glutamine and v-ATPase/lysosomal acidification, via mechanistic target of rapamycin complex 1 (mTORC1) activation, as effectors of amputation plane-dependent zebrafish caudal fin regeneration. mTORC1 activation, which functions in cell proliferation, was regulated by lysosomal acidification possibly via v-ATPase activity at 3 h post amputation (hpa). Inhibition of lysosomal acidification resulted in reduced growth factor-related gene expression and suppression of blastema formation at 24 and 48 hpa, respectively. Along the proximal-distal axis, position-dependent lysosomal acidification and mTORC1 activation were observed from 3 hpa. We also report that Slc7a5 (L-type amino acid transporter), whose gene expression is position-dependent, is necessary for mTORC1 activation upstream of lysosomal acidification during fin regeneration. Furthermore, treatment with leucine and glutamine, for both proximal and distal fin stumps, led to an up-regulation in cell proliferation via mTORC1 activation, indicating that leucine/glutamine signaling possesses the ability to change the position-dependent regeneration. Our findings reveal that leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent zebrafish fin regeneration.

  15. Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines

    PubMed Central

    Sappington, Daniel R.; Siegel, Eric R.; Hiatt, Gloria; Desai, Abhishek; Penney, Rosalind B.; Jamshidi-Parsian, Azemat; Griffin, Robert J.; Boysen, Gunnar

    2016-01-01

    Background Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Glutamine provides additional carbon and nitrogen sources for cell growth. The first step in glutamine utilization is its conversion to glutamate by glutaminase (GLS). Glutamate is a precursor for glutathione synthesis, and we investigated the hypothesis that glutamine drives glutathione synthesis and thereby contributes to cellular defense systems. Methods The importance of glutamine for glutathione synthesis was studied in H460 and A549 lung cancer cell lines using glutamine-free medium and Bis-2-(5-phenyl-acetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) a GLS inhibitor. Metabolic activities were determined by targeted mass spectrometry. Results A significant correlation between glutamine consumption and glutathione excretion was demonstrated in H460 and A549 tumor cells. Culturing in the presence of [13C5]glutamine demonstrated that by 12 hrs >50% of excreted glutathione is derived from glutamine. Culturing in glutamine-free medium or treatment with BPTES, a glutaminase (GLS)-specific inhibitor, reduced cell proliferation and viability, and abolished glutathione excretion. Treatment with glutathione-ester prevented BPTES induced cytotoxicity. Inhibition of GLS markedly radiosensitized the lung tumor cell lines, suggesting an important role of glutamine-derived glutathione in determining radiation sensitivity. Conclusions We demonstrate here for the first time that a significant amount of extracellular glutathione is directly derived from glutamine. This finding adds yet another important function to the already known glutamine dependence of tumor cells and probably tumors as well. General significance Glutamine is essential for synthesis and excretion of glutathione to promote cell growth and viability. PMID:26825773

  16. Conventional insulin vs insulin infusion therapy in acute coronary syndrome diabetic patients

    PubMed Central

    Arvia, Caterina; Siciliano, Valeria; Chatzianagnostou, Kyriazoula; Laws, Gillian; Quinones Galvan, Alfredo; Mammini, Chiara; Berti, Sergio; Molinaro, Sabrina; Iervasi, Giorgio

    2014-01-01

    AIM: To evaluate the impact on glucose variability (GLUCV) of an nurse-implemented insulin infusion protocol when compared with a conventional insulin treatment during the day-to-day clinical activity. METHODS: We enrolled 44 type 2 diabetic patients (n = 32 males; n = 12 females) with acute coronary syndrome (ACS) and randomy assigned to standard a subcutaneous insulin treatment (n = 23) or a nurse-implemented continuous intravenous insulin infusion protocol (n = 21). We utilized some parameters of GLUCV representing well-known surrogate markers of prognosis, i.e., glucose standard deviation (SD), the mean daily δ glucose (mean of daily difference between maximum and minimum glucose), and the coefficient of variation (CV) of glucose, expressed as percent glucose (SD)/glucose (mean). RESULTS: At the admission, first fasting blood glucose, pharmacological treatments (insulin and/or anti-diabetic drugs) prior to entering the study and basal glycated hemoglobin (HbA1c) were observed in the two groups treated with subcutaneous or intravenous insulin infusion, respectively. When compared with patients submitted to standard therapy, insulin-infused patients showed both increased first 24-h (median 6.9 mmol/L vs 5.7 mmol/L P < 0.045) and overall hospitalization δ glucose (median 10.9 mmol/L vs 9.3 mmol/L, P < 0.028), with a tendency to a significant increase in first 24-h glycaemic CV (23.1% vs 19.6%, P < 0.053). Severe hypoglycaemia was rare (14.3%), and it was observed only in 3 patients receiving insulin infusion therapy. HbA1c values measured during hospitalization and 3 mo after discharge did not differ in the two groups of treatment. CONCLUSION: Our pilot data suggest that no real benefit in terms of GLUCV is observed when routinely managing blood glucose by insulin infusion therapy in type 2 diabetic ACS hospitalized patients in respect to conventional insulin treatment PMID:25126402

  17. Partitioning of glutamine synthesised by the isolated perfused human placenta between the maternal and fetal circulations☆

    PubMed Central

    Day, P.E.L.; Cleal, J.K.; Lofthouse, E.M.; Goss, V.; Koster, G.; Postle, A.; Jackson, J.M.; Hanson, M.A.; Jackson, A.A.; Lewis, R.M.

    2013-01-01

    Introduction Placental glutamine synthesis has been demonstrated in animals and is thought to increase the availability of this metabolically important amino acid to the fetus. Glutamine is of fundamental importance for cellular replication, cellular function and inter-organ nitrogen transfer. The objective of this study was to investigate the role of glutamate/glutamine metabolism by the isolated perfused human placenta in the provision of glutamine to the fetus. Methods Glutamate metabolism was investigated in the isolated dually perfused human placental cotyledon. U–13C-glutamate was used to investigate the movement of carbon and 15N-leucine to study movement of amino-nitrogen. Labelled amino acids were perfused via maternal or fetal arteries at defined flow rates. The enrichment and concentration of amino acids in the maternal and fetal veins were measured following 5 h of perfusion. Results Glutamate taken up from the maternal and fetal circulations was primarily converted into glutamine the majority of which was released into the maternal circulation. The glutamine transporter SNAT5 was localised to the maternal-facing membrane of the syncytiotrophoblast. Enrichment of 13C or 15N glutamine in placental tissue was lower than in either the maternal or fetal circulation, suggesting metabolic compartmentalisation within the syncytiotrophoblast. Discussion Placental glutamine synthesis may help ensure the placenta's ability to supply this amino acid to the fetus does not become limiting to fetal growth. Glutamine synthesis may also influence placental transport of other amino acids, metabolism, nitrogen flux and cellular regulation. Conclusions Placental glutamine synthesis may therefore be a central mechanism in ensuring that the human fetus receives adequate nutrition and is able to maintain growth. PMID:24183194

  18. EWS-FLI1 reprograms the metabolism of Ewing sarcoma cells via positive regulation of glutamine import and serine-glycine biosynthesis.

    PubMed

    Sen, Nirmalya; Cross, Allison M; Lorenzi, Philip L; Khan, Javed; Gryder, Berkley E; Kim, Suntae; Caplen, Natasha J

    2018-06-06

    Ewing sarcoma (EWS) is a soft tissue and bone tumor that occurs primarily in adolescents and young adults. In most cases of EWS, the chimeric transcription factor, EWS-FLI1 is the primary oncogenic driver. The epigenome of EWS cells reflects EWS-FLI1 binding and activation or repression of transcription. Here, we demonstrate that EWS-FLI1 positively regulates the expression of proteins required for serine-glycine biosynthesis and uptake of the alternative nutrient source glutamine. Specifically, we show that EWS-FLI1 activates expression of PHGDH, PSAT1, PSPH, and SHMT2. Using cell-based studies, we also establish that EWS cells are dependent on glutamine for cell survival and that EWS-FLI1 positively regulates expression of the glutamine transporter, SLC1A5 and two enzymes involved in the one-carbon cycle, MTHFD2 and MTHFD1L. Inhibition of serine-glycine biosynthesis in EWS cells impacts their redox state leading to an accumulation of reactive oxygen species, DNA damage, and apoptosis. Importantly, analysis of EWS primary tumor transcriptome data confirmed that the aforementioned genes we identified as regulated by EWS-FLI1 exhibit increased expression compared with normal tissues. Furthermore, retrospective analysis of an independent data set generated a significant stratification of the overall survival of EWS patients into low- and high-risk groups based on the expression of PHGDH, PSAT1, PSPH, SHMT2, SLC1A5, MTHFD2, and MTHFD1L. In summary, our study demonstrates that EWS-FLI1 reprograms the metabolism of EWS cells and that serine-glycine metabolism or glutamine uptake are potential targetable vulnerabilities in this tumor type. © 2018 The Authors. Molecular Carcinogenesis Published by WileyPeriodicals, Inc.

  19. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform

    PubMed Central

    Theron, A.; Roth, R. L.; Hoppe, H.; Parkinson, C.; van der Westhuyzen, C. W.; Stoychev, S.; Wiid, I.; Pietersen, R. D.; Baker, B.

    2017-01-01

    Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay. PMID:28972974

  20. Glutamine Enhances the Hypoglycemic Effect of Insulin in L6 Cells via Phosphatidylinositol-3-Kinase (PI3K)/Protein Kinase B (AKT)/Glucose Transporter 4 (GLUT4) Signaling Pathway.

    PubMed

    Wang, Caijuan; Deng, Yujiao; Yue, Yenan; Chen, Wenting; Zhang, Yu; Shi, Guifang; Wu, Zhongming

    2018-03-01

    BACKGROUND Diabetes mellitus (DM) is characterized by a decreased blood level of glutamine (Gln), which may contribute to the disturbance in the effect of insulin on skeletal muscle. Therefore, it is crucial to study how to improve the effect of insulin on skeletal muscle by increasing Gln. In the present study, we investigated the effect of Gln on the hypoglycemic action of insulin in skeletal muscle L6 cells at high glucose levels through the insulin signaling pathway and glycogen synthesis pathway. MATERIAL AND METHODS The L6 cells were cultured in and stimulated by Gln and insulin. The glutamine analogue, L-Gamma-Glutamyl-p-nitroanilide (GPNA), was used for verifying the effect of Gln. The expression of insulin signaling molecules, including phosphatidylinositol-3-kinase (PI3K), 3-phosphoinositide-dependent protein kinase-1 (PDK1), protein kinase B (AKT), protein kinase C zeta (PKCz), and glucose transporter 4 (GLUT4), were detected by real-time PCR and Western blot analysis, GLUT4 translocation was observed by immunofluorescence staining, glycogen synthase kinase (GSK) was analyzed by Western blotting, and glucose uptake was measured by glucose oxidase method (GOD). RESULTS The results demonstrated that Gln combined with insulin remarkably up-regulated PI3K and PDK1 and also increased AKT and PKCz phosphorylation. The present study shows that Gln enhanced the impact of insulin on GLUT4 and its translocation. The results of glucose uptake and GSK phosphorylation further confirmed the hypoglycemic effect of Gln accompanied with insulin. The hypoglycemic effect of Gln was reversed by GPNA. CONCLUSIONS These findings suggest that Gln enhances the hypoglycemic role of insulin through the PI3K/AKT/GLUT4 signaling pathway and glycogen synthesis pathway.

  1. Effects of glutamine administration on inflammatory responses in chronic ethanol-fed rats.

    PubMed

    Peng, Hsiang-Chi; Chen, Ya-Ling; Chen, Jiun-Rong; Yang, Sien-Sing; Huang, Kuan-Hsun; Wu, Yi-Chin; Lin, Yun-Ho; Yang, Suh-Ching

    2011-03-01

    The purpose of this study was to investigate the effects of glutamine supplementation on inflammatory responses in chronic ethanol-fed rats. Male Wistar rats weighing about 160 g were divided into five groups. Two groups were fed a normal liquid diet and three groups were fed a glutamine-containing liquid diet. After 1 week, one of the normal liquid diet groups was fed an ethanol-containing liquid diet (CE), and the other group served as the control (CC) group. At the same time, one of the glutamine-containing liquid diet groups was continually fed the same diet (GCG), but the other two groups were fed ethanol-containing diet supplemented with glutamine (GEG) or without glutamine (GE). The following items were analyzed: (1) liver function, (2) cytokine contents, and (3) hepatic oxidative stress. The activities of aspartate transaminase (AST) and alanine transaminase (ALT) and levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the CE group had significantly increased. In addition, hepatic cytochrome P450 2E1 (CYP2E1) expression had significantly increased in the CE, GE and GEG groups. However, the activities of AST and ALT and levels of TNF-α and IL-1β in the GE group were significantly lower than those of the CE group. The results suggest that the plasma inflammatory responses of rats fed an ethanol-containing liquid diet for 7 weeks significantly increased. However, pretreatment with glutamine improved the plasma inflammatory responses induced by ethanol. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Infusion extractor

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R. (Inventor)

    1986-01-01

    This invention relates to an apparatus and method of removing desirable constituents from an infusible material by infusion extraction. A piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber. The method is applicable to operation in low or micro-gravity environments.

  3. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuillemenot, Brian R., E-mail: bvuillemenot@bmrn.com; Kennedy, Derek; Reed, Randall P.

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mildmore » increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV

  4. Parenteral glutamine supplement has synergic effects in minimally invasive surgery of subtotal gastrectomy patients.

    PubMed

    Chen, Chien-Chia; Chang, Tung-Cheng; Wang, Ming-Yang; Wu, Ming-Hsun; Lin, Ming-Tsan

    2012-09-01

    Exogenous glutamine supplement is known to improve morbidity and mortality of critically-ill patients. This study was conducted to elucidate the role of glutamine in minimally invasive surgery. We retrospectively reviewed subtotal gastrectomy patients in National Taiwan University Hospital from Dec 2005 to Dec 2008. The patients were divided into three groups. Group 1 underwent subtotal gastrectomy by laparotomy without glutamine supplement, group 2 underwent subtotal gastrectomy by laparotomy with glutamine supplement and group 3 underwent gasless laparoscopy-assisted subtotal gastrectomy with parenteral glutamine supplement. There were 155 patients in total; 85 patients in group 1, 17 in group 2 and 53 in group 3. The mean flatus days after operation are 3.6, 3.1 and 2.8 for groups 1, 2 and 3, respectively (p=0.001). Oral intake after operation was commenced after 6.7, 5.0 and 4.7 days (p=0.006). The body temperature had borderline differences between groups 3 and 1. There were significant differences in postoperative systemic responses including heart rates (p<0.001) and tenderness (p=0.011) 5 days after operation for group 3 vs. group 1. Minimally invasive surgery was a negative factor for postoperative body temperature change. Glutamine was a significant factor for postoperative heart rate change and reduction of tenderness. Glutamine supplement may have synergic effects of rapid recovery in minimal invasive surgery for subtotal gastrectomy patients by minimizing the postoperative systemic response and accelerating recovery.

  5. Preoperative fluid and electrolyte management with oral rehydration therapy.

    PubMed

    Taniguchi, Hideki; Sasaki, Toshio; Fujita, Hisae; Takamori, Mina; Kawasaki, Rieko; Momiyama, Yukinori; Takano, Osami; Shibata, Toshinari; Goto, Takahisa

    2009-01-01

    We hypothesized that oral rehydration therapy using an oral rehydration solution may be effective for preoperative fluid and electrolyte management in surgical patients before the induction of general anesthesia, and we investigated the safety and effectiveness of oral rehydration therapy as compared with intravenous therapy. Fifty female patients who underwent breast surgery were randomly allocated to two groups. Before entry to the operation room and the induction of general anesthesia, 25 patients drank 1000 ml of an oral rehydration solution ("oral group") and 25 patients were infused with 1000 ml of an intravenous electrolyte solution ("intravenous group"). Parameters such as electrolyte concentrations in serum and urine, urine volume, vital signs, vomiting and aspiration, volumes of esophageal-pharyngeal fluid and gastric fluid (EPGF), and patient satisfaction with the therapy (as surveyed by a questionnaire) were assessed. After treatment, the serum sodium concentration and the hematocrit value, which both declined within the normal limits, were significantly higher in the oral group than in the intravenous group (sodium, 140.8 +/- 2.9 mEq x l(-1) in the oral group and 138.7 +/- 1.9 mEq x l(-1) in the intravenous group; P = 0.005; hematocrit, 39.03 +/- 4.16% in the oral group and 36.15 +/- 3.41% in the intravenous group; P = 0.01). No significant difference was observed in serum glucose values. Urine volume was significantly larger in the oral group (864.9 +/- 211.5 ml) than in the intravenous group (561.5 +/- 216.0 ml; P < 0.001). The fractional excretion of sodium (FENa), as an index of renal blood flow, was increased in both groups following treatment (0.8 +/- 0.5 in the oral group and 0.8 +/- 0.3 in the intravenous group). Patient satisfaction with the therapy favored the oral rehydration therapy, as judged by factors such as "feeling of hunger", "occurrence of dry mouth", and "less restriction in physical activity". The volume of EPGF collected

  6. Targeting glutamine metabolism in myeloproliferative neoplasms

    PubMed Central

    Zhan, Huichun; Ciano, Kristen; Dong, Katherine; Zucker, Stanley

    2016-01-01

    JAK2V617F mutation can be detected in the majority of myeloproliferative neoplasm (MPN) patients. The JAK2 inhibitor Ruxolitinib is the first FDA-approved treatment for MPNs. However, its use is limited by various dose related toxicities. Here, we studied the metabolic state and glutamine metabolism of BaF3-hEPOR-JAK2V617F and BaF3-hEPOR-JAK2WT cells. We found that the JAK2V617F-mutant cells were associated with increased oxygen consumption rate and extracellular acidification rate than the JAK2WT cells and there was an increased glutamine metabolism in JAK2V617F-mutant cells compared to wild-type cells. Glutaminase (GLS), the key enzyme in gluta-mine metabolism, was upregulated in the JAK2V617F-mutant BaF3 cells compared to the JAK2WT BaF3 cells. In MPN patient peripheral blood CD34+ cells, GLS expression was increased in JAK2V617F-mutant progenitor cells compared to JAK2 wild-type progenitor cells from the same patients and GLS levels were increased at the time of disease progression compared to at earlier time points. Moreover, GLS inhibitor increased the growth inhibitory effect of Ruxolitinib in both JAK2V617F-mutant cell lines and peripheral blood CD34+ cells from MPN patients. Therefore, GLS inhibitor should be further explored to enhance the therapeutic effectiveness of JAK2 inhibitor and allow the administration of lower doses of the drug to avoid its toxicity. PMID:26227854

  7. Evidence for Altered Glutamine Metabolism in Human Immunodeficiency Virus Type 1 Infected Primary Human CD4+ T Cells

    PubMed Central

    Hegedus, Andrea; Kavanagh Williamson, Maia; Khan, Mariam B.; Dias Zeidler, Julianna; Da Poian, Andrea T.; El-Bacha, Tatiana; Struys, Eduard A.

    2017-01-01

    Abstract Glutamine is a conditionally essential amino acid that is an important metabolic resource for proliferating tissues by acting as a proteinogenic amino acid, a nitrogen donor for biosynthetic reactions and as a substrate for the citric acid or tricarboxylic acid cycle. The human immunodeficiency virus type 1 (HIV-1) productively infects activated CD4+ T cells that are known to require glutamine for proliferation and for carrying out effector functions. As a virus, HIV-1 is furthermore entirely dependent on host metabolism to support its replication. In this study, we compared HIV-1 infected with uninfected activated primary human CD4+ T cells with regard to glutamine metabolism. We report that glutamine concentrations are elevated in HIV-1-infected cells and that glutamine is important to support HIV-1 replication, although the latter is closely linked to the glutamine dependency of cell survival. Metabolic tracer experiments showed that entry of glutamine-derived carbon into the citric acid cycle is unaffected by HIV-1 infection, but that there is an increase in the secretion of glutamine-derived glutamic acid from HIV-1-infected cells. Western blotting of key enzymes that metabolize glutamine revealed marked differences in the expression of glutaminase isoforms, KGA and CAG, as well as the PPAT enzyme that targets glutamine-derived nitrogen toward nucleotide synthesis. Altogether, this demonstrates that infection of CD4+ T cells with HIV-1 leads to considerable changes in the cellular glutamine metabolism. PMID:28844150

  8. Evidence for Altered Glutamine Metabolism in Human Immunodeficiency Virus Type 1 Infected Primary Human CD4+ T Cells.

    PubMed

    Hegedus, Andrea; Kavanagh Williamson, Maia; Khan, Mariam B; Dias Zeidler, Julianna; Da Poian, Andrea T; El-Bacha, Tatiana; Struys, Eduard A; Huthoff, Hendrik

    2017-12-01

    Glutamine is a conditionally essential amino acid that is an important metabolic resource for proliferating tissues by acting as a proteinogenic amino acid, a nitrogen donor for biosynthetic reactions and as a substrate for the citric acid or tricarboxylic acid cycle. The human immunodeficiency virus type 1 (HIV-1) productively infects activated CD4 + T cells that are known to require glutamine for proliferation and for carrying out effector functions. As a virus, HIV-1 is furthermore entirely dependent on host metabolism to support its replication. In this study, we compared HIV-1 infected with uninfected activated primary human CD4 + T cells with regard to glutamine metabolism. We report that glutamine concentrations are elevated in HIV-1-infected cells and that glutamine is important to support HIV-1 replication, although the latter is closely linked to the glutamine dependency of cell survival. Metabolic tracer experiments showed that entry of glutamine-derived carbon into the citric acid cycle is unaffected by HIV-1 infection, but that there is an increase in the secretion of glutamine-derived glutamic acid from HIV-1-infected cells. Western blotting of key enzymes that metabolize glutamine revealed marked differences in the expression of glutaminase isoforms, KGA and CAG, as well as the PPAT enzyme that targets glutamine-derived nitrogen toward nucleotide synthesis. Altogether, this demonstrates that infection of CD4 + T cells with HIV-1 leads to considerable changes in the cellular glutamine metabolism.

  9. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B-cells

    PubMed Central

    Le, Anne; Lane, Andrew N.; Hamaker, Max; Bose, Sminu; Gouw, Arvin; Barbi, Joseph; Tsukamoto, Takashi; Rojas, Camilio J.; Slusher, Barbara S.; Zhang, Haixia; Zimmerman, Lisa J.; Liebler, Daniel C.; Slebos, Robbert J.C.; Lorkiewicz, Pawel K.; Higashi, Richard M.; Fan, Teresa W. M.; Dang, Chi V.

    2012-01-01

    Summary Because MYC plays a causal role in many human cancers, including those with hypoxic and nutrient-poor tumor microenvironments, we have determined the metabolic responses of a MYC-inducible human Burkitt lymphoma model P493 cell line to aerobic and hypoxic conditions, and to glucose deprivation, using Stable Isotope Resolved Metabolomics. Using [U-13C]-glucose as the tracer, both glucose consumption and lactate production were increased by MYC expression and hypoxia. Using [U-13C,15N]-glutamine as the tracer, glutamine import and metabolism through the TCA cycle persisted under hypoxia, and glutamine contributed significantly to citrate carbons. Under glucose deprivation, glutamine-derived fumarate, malate, and citrate were significantly increased. Their 13C labeling patterns demonstrate an alternative energy-generating glutaminolysis pathway involving a glucose-independent TCA cycle. The essential role of glutamine metabolism in cell survival and proliferation under hypoxia and glucose deficiency, makes them susceptible to the glutaminase inhibitor BPTES, and hence could be targeted for cancer therapy. PMID:22225880

  10. Glutamine starvation enhances PCV2 replication via the phosphorylation of p38 MAPK, as promoted by reducing glutathione levels.

    PubMed

    Chen, Xingxiang; Shi, Xiuli; Gan, Fang; Huang, Da; Huang, Kehe

    2015-03-18

    Glutamine has a positive effect on ameliorating reproductive failure caused by porcine circovirus type 2 (PCV2). However, the mechanism by which glutamine affects PCV2 replication remains unclear. This study was conducted to investigate the effects of glutamine on PCV2 replication and its underlying mechanisms in vitro. The results show that glutamine promoted PK-15 cell viability. Surprisingly, glutamine starvation significantly increased PCV2 replication. The promotion of PCV2 replication by glutamine starvation disappeared after fresh media with 4 mM glutamine was added. Likewise, promotion of PCV2 was observed after adding buthionine sulfoximine (BSO). Glutamine starvation or BSO treatment increased the level of p38 MAPK phosphorylation and PCV2 replication in PK-15 cells. Meanwhile, p38 MAPK phosphorylation and PCV2 replication significantly decreased in p38-knockdown PK-15 cells. Promotion of PCV2 replication caused by glutamine starvation could be blocked in p38-knockdown PK-15 cells. Therefore, glutamine starvation increased PCV2 replication by promoting p38 MAPK activation, which was associated with the down regulation of intracellular glutathione levels. Our findings may contribute toward interpreting the possible pathogenic mechanism of PCV2 and provide a theoretical reference for application of glutamine in controlling porcine circovirus-associated diseases.

  11. Convection Enhanced Delivery: A Comparison of infusion characteristics in ex vivo and in vivo non-human primate brain tissue.

    PubMed

    Miranpuri, Gurwattan; Hinchman, Angelica; Wang, Anyi; Schomberg, Dominic; Kubota, Ken; Brady, Martin; Raghavan, Raghu; Bruner, Kevin; Brodsky, Ethan; Block, Walter; Grabow, Ben; Raschke, Jim; Alexander, Andrew; Ross, Chris; Simmons, Heather; Sillay, Karl

    2013-07-01

    Convection enhanced delivery (CED) is emerging as a promising infusion toolto facilitate delivery of therapeutic agents into the brain via mechanically controlled pumps. Infusion protocols and catheter design have an important impact on delivery. CED is a valid alternative for systemic administration of agents in clinical trials for cell and gene therapies. Where gel and ex vivo models are not sufficient in modeling the disease, in vivo models allow researchers to better understand the underlying mechanisms of neuron degeneration, which is helpful in finding novel approaches to control the process or reverse the progression. Determining the risks, benefits, and efficacy of new gene therapies introduced via CED will pave a way to enter human clinical trial. The objective of this study is to compare volume distribution (Vd)/ volume infused (Vi) ratios and backflow measurements following CED infusions in ex vivo versus in vivo non-human primate brain tissue, based on infusion protocols developed in vitro. In ex vivo infusions, the first brain received 2 infusions using a balloon catheter at rates of 1 μL/min and 2 μL/min for 30 minutes. The second and third brains received infusions using a valve-tip (VT) catheter at 1 μL/min for 30 minutes. The fourth brain received a total of 45 μL infused at a rate of 1 μL/min for 15 minutes followed by 2 μL/min for 15 minutes. Imaging was performed (SPGR FA34) every 3 minutes. In the in vivo group, 4 subjects received a total of 8 infusions of 50 μL. Subjects 1 and 2 received infusions at 1.0 μL/min using a VT catheter in the left hemisphere and a smart-flow (SF) catheter in the right hemisphere. Subjects 3 and 4 each received 1 infusion in the left and right hemisphere at 1.0 μL/min. MRI calculations of Vd/Vi did not significantly differ from those obtained on post-mortem pathology. The mean measured Vd/Vi of in vivo (5.23 + /-1.67) compared to ex vivo (2.17 + /-1.39) demonstrated a significantly larger Vd/Vi for in vivo

  12. Glutamine effects on heat shock protein 70 and interleukines 6 and 10: Randomized trial of glutamine supplementation versus standard parenteral nutrition in critically ill children.

    PubMed

    Jordan, Iolanda; Balaguer, Mònica; Esteban, M Esther; Cambra, Francisco José; Felipe, Aida; Hernández, Lluïsa; Alsina, Laia; Molero, Marta; Villaronga, Miquel; Esteban, Elisabeth

    2016-02-01

    To determine whether glutamine (Gln) supplementation would have a role modifying both the oxidative stress and the inflammatory response of critically ill children. Prospective, randomized, double-blind, interventional clinical trial. Selection criteria were children requiring parenteral nutrition for at least 5 days diagnosed with severe sepsis or post major surgery. Patients were randomly assigned to standard parenteral nutrition (SPN, 49 subjects) or standard parenteral nutrition with glutamine supplementation (SPN + Gln, 49 subjects). Glutamine levels failed to show statistical differences between groups. At day 5, patients in the SPN + Gln group had significantly higher levels of HSP-70 (heat shock protein 70) as compared with the SPN group (68.6 vs 5.4, p = 0.014). In both groups, IL-6 (interleukine 6) levels showed a remarkable descent from baseline and day 2 (SPN: 42.24 vs 9.39, p < 0.001; SPN + Gln: 35.20 vs 13.80, p < 0.001) but only the treatment group showed a statistically significant decrease between day 2 and day 5 (13.80 vs 10.55, p = 0.013). Levels of IL-10 (interleukine 10) did not vary among visits except in the SPN between baseline and day 2 (9.55 vs 5.356, p < 0.001). At the end of the study, no significant differences between groups for PICU and hospital stay were observed. No adverse events were detected in any group. Glutamine supplementation in critically-ill children contributed to maintain high HSP-70 levels for longer. Glutamine supplementation had no influence on IL-10 and failed to show a significant reduction of IL-6 levels. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Brain MRS glutamine as a biomarker to guide therapy of hyperammonemic coma.

    PubMed

    O'Donnell-Luria, Anne H; Lin, Alexander P; Merugumala, Sai K; Rohr, Frances; Waisbren, Susan E; Lynch, Rebecca; Tchekmedyian, Vatche; Goldberg, Aaron D; Bellinger, Andrew; McFaline-Figueroa, J Ricardo; Simon, Tracey; Gershanik, Esteban F; Levy, Bruce D; Cohen, David E; Samuels, Martin A; Berry, Gerard T; Frank, Natasha Y

    2017-05-01

    Acute idiopathic hyperammonemia in an adult patient is a life-threatening condition often resulting in a rapid progression to irreversible cerebral edema and death. While ammonia-scavenging therapies lower blood ammonia levels, in comparison, clearance of waste nitrogen from the brain may be delayed. Therefore, we used magnetic resonance spectroscopy (MRS) to monitor cerebral glutamine levels, the major reservoir of ammonia, in a gastric bypass patient with hyperammonemic coma undergoing therapy with N-carbamoyl glutamate and the ammonia-scavenging agents, sodium phenylacetate and sodium benzoate. Improvement in mental status mirrored brain glutamine levels, as coma persisted for 48h after plasma ammonia normalized. We hypothesize that the slower clearance for brain glutamine levels accounts for the delay in improvement following initiation of treatment in cases of chronic hyperammonemia. We propose MRS to monitor brain glutamine as a noninvasive approach to be utilized for diagnostic and therapeutic monitoring purposes in adult patients presenting with idiopathic hyperammonemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Intravenous Tranexamic Acid Bolus plus Infusion Is Not More Effective than a Single Bolus in Primary Hip Arthroplasty: A Randomized Controlled Trial.

    PubMed

    Zufferey, Paul J; Lanoiselée, Julien; Chapelle, Céline; Borisov, Dmitry B; Bien, Jean-Yves; Lambert, Pierre; Philippot, Rémi; Molliex, Serge; Delavenne, Xavier

    2017-09-01

    Preoperative administration of the antifibrinolytic agent tranexamic acid reduces bleeding in patients undergoing hip arthroplasty. Increased fibrinolytic activity is maintained throughout the first day postoperation. The objective of the study was to determine whether additional perioperative administration of tranexamic acid would further reduce blood loss. This prospective, double-blind, parallel-arm, randomized, superiority study was conducted in 168 patients undergoing unilateral primary hip arthroplasty. Patients received a preoperative intravenous bolus of 1 g of tranexamic acid followed by a continuous infusion of either tranexamic acid 1 g (bolus-plus-infusion group) or placebo (bolus group) for 8 h. The primary outcome was calculated perioperative blood loss up to day 5. Erythrocyte transfusion was implemented according to a restrictive transfusion trigger strategy. The mean perioperative blood loss was 919 ± 338 ml in the bolus-plus-infusion group (84 patients analyzed) and 888 ± 366 ml in the bolus group (83 patients analyzed); mean difference, 30 ml (95% CI, -77 to 137; P = 0.58). Within 6 weeks postsurgery, three patients in each group (3.6%) underwent erythrocyte transfusion and two patients in the bolus group experienced distal deep-vein thrombosis. A meta-analysis combining data from this study with those of five other trials showed no incremental efficacy of additional perioperative administration of tranexamic acid. A preoperative bolus of tranexamic acid, associated with a restrictive transfusion trigger strategy, resulted in low erythrocyte transfusion rates in patients undergoing hip arthroplasty. Supplementary perioperative administration of tranexamic acid did not achieve any further reduction in blood loss.

  15. Solubility and Stability of Baclofen 3 mg/mL Intrathecal Formulation and Its Compatibility With Implantable Programmable Intrathecal Infusion Systems.

    PubMed

    Yue, Baohua; Brendel, Ron; Lukitsch, Amelia; Prentice, Thomas; Doty, Brian

    2017-06-01

    Commercial baclofen formulations used with infusion pumps are available at therapeutic concentrations of 0.5-2.0 mg/mL. However, patients who receive higher daily doses of baclofen may benefit from products with greater baclofen concentrations since their refill frequency would be reduced (up to a maximum of 180 days). We evaluated baclofen solubility, baclofen 3 mg/mL intrathecal (IT) formulation stability, and chemical and physical compatibility with Medtronic SynchroMed ® II and Codman Medstream ® programmable IT infusion pumps. For solubility evaluations, baclofen powder was dissolved into isotonic saline and tested at 5°C, 25°C, and 40°C. To demonstrate drug product stability, both physical and chemical stability attributes of baclofen 3 mg/mL in prefilled syringes were evaluated over 36 months with storage at 25°C. For a simulated in-use stability (compatibility) study, a 3 mg/mL baclofen IT formulation was placed in SynchroMed II and Codman Medstream pumps at 37ºC for study durations, and evaluated at different flow rates. Pump effluent was collected at various times and analyzed by high-performance liquid chromatography for baclofen content. On completion of the in-use stability study, pumps exposed to baclofen 3 mg/mL were dissected and visually evaluated for signs of deterioration. Baclofen solubility was found to be 3.2 mg/mL at 5°C, 3.6 mg/mL at 25°C, and 3.9 mg/mL at 40°C. During the 36-month stability study of prefilled syringes stored at 25°C, baclofen content remained unchanged and no precipitation was observed. The simulated in-use pump study performed at 37ºC showed that a baclofen 3 mg/mL IT formulation was stable at different flow rates and throughout different expected residence times for both pump models. Components from both pumps exhibited no noticeable deterioration after exposure to the 3 mg/mL formulation. Baclofen 3 mg/mL IT formulation was stable during long-term storage at 25°C and remained stable under conditions matching

  16. Oral glutamine challenge and magnetic resonance spectroscopy in three patients with congenital portosystemic shunts.

    PubMed

    Ortiz, María; Córdoba, Juan; Alonso, Juli; Rovira, Alex; Quiroga, Sergi; Jacas, Carlos; Esteban, Rafael; Guardia, Jaume

    2004-03-01

    Congenital portosystemic shunts are rare abnormalities of liver vasculature that can cause neurological symptoms, probably secondarily to the effects of the metabolism of ammonia in the brain. Our aim was to investigate the relationship between capillary blood ammonia after oral glutamine challenge and magnetic resonance spectroscopy in three patients with congenital portosystemic shunts. Neuropsychological tests, oral glutamine challenge and magnetic resonance spectroscopy were performed at baseline and after 6 months of follow-up in three patients with congenital portosystemic shunts. The results were compared to those obtained in a group of six cirrhotic patients with prior episodes of hepatic encephalopathy and healthy controls. Patients with congenital portosystemic shunts exhibited abnormalities of neuropsychological tests, magnetic resonance spectroscopy and a response to the oral glutamine challenge similar to those observed in patients with cirrhosis. The intensity of the rise of brain glutamine was correlated to the area under the curve of ammonia after the oral glutamine challenge (R=0.72). Neurological manifestations of patients with congenital portosystemic shunts are mediated through similar mechanisms that are involved in the pathogenesis of hepatic encephalopathy. The area under the curve appears to be the better parameter that defines the response to the oral glutamine challenge.

  17. Novel therapy for insulin-dependent diabetes mellitus: infusion of in vitro-generated insulin-secreting cells.

    PubMed

    Dave, S D; Vanikar, A V; Trivedi, H L; Thakkar, U G; Gopal, S C; Chandra, T

    2015-02-01

    Insulin-dependent diabetes mellitus (IDDM) is a metabolic disease usually resulting from autoimmune-mediated β-cell destruction requiring lifetime exogenous insulin replacement. Mesenchymal stem cells (MSC) hold promising therapy. We present our experience of treating IDDM with co-infusion of in vitro autologous adipose tissue-derived MSC-differentiated insulin-secreting cells (ISC) with hematopoietic stem cells (HSC). This was an Institutional Review Board approved prospective non-randomized open-labeled clinical trial after informed consent from ten patients. ISC were differentiated from autologous adipose tissue-derived MSC and were infused with bone marrow-derived HSC in portal, thymic circulation by mini-laparotomy and in subcutaneous circulation. Patients were monitored for blood sugar levels, serum C-peptide levels, glycosylated hemoglobin (Hb1Ac) and glutamic acid decarboxylase (GAD) antibodies. Insulin administration was made on sliding scale with an objective of maintaining FBS < 150 mg/dL and PPBS around 200 mg/dL. Mean 3.34 mL cell inoculums with 5.25 × 10(4) cells/μL were infused. No untoward effects were observed. Over a mean follow-up of 31.71 months, mean serum C-peptide of 0.22 ng/mL before infusion had sustained rise of 0.92 ng/mL with decreased exogenous insulin requirement from 63.9 international units (IU)/day to 38.6 IU/day. Improvement in mean Hb1Ac was observed from 10.99 to 6.72%. Mean GAD antibodies were positive in all patients with mean of 331.10 IU/mL, which decreased to mean of 123 IU/mL. Co-infusion of autologous ISC with HSC represents a viable novel therapeutic option for IDDM.

  18. Evaluation of total-dose iron sucrose infusions in patients with iron deficiency anemia.

    PubMed

    Wall, Geoffrey C; Pauly, Rebecca A

    2008-01-15

    The safety and efficacy of a total-dose iron sucrose infusion protocol used in a large, tertiary care teaching hospital were studied. Nondialysis-dependent patients ages 18 years or older who received > or =250 mg of iron sucrose as a single i.v. infusion between January 2005 and January 2007 were eligible for study inclusion. The protocol for total-dose iron sucrose infusion was the same for all patients. The total dose of iron sucrose for each patient was calculated using an equation that included the desired hemoglobin (Hb) value, observed Hb level, ideal body weight, and sex. The calculated dose was divided into portions, rounded to the nearest 250 mg, and administered over four hours every other day. Outcomes measured included Hb, transferrin saturation, and serum ferritin values. A total of 26 patients met the inclusion criteria. The mean +/- S.D. Hb concentration before total-dose iron sucrose infusion was 9.37 +/- 0.9 g/dL, and the mean +/- S.D. corpuscular volume was 75 +/- 7.1 mum(3). The mean +/- S.D. postinfusion Hb concentration for 19 patients for whom follow-up Hb levels were available was 11.4 +/- 1.2 g/dL, significantly higher than the 9.45 +/- 0.8 g/dL measured before the first infusion (p = 0.03). No significant adverse effects were reported in 47 of 49 infusions, with 2 patients experiencing mild nausea. A treatment protocol consisting of alternate-day total-dose iron sucrose infusions was well tolerated and appeared to be effective in improving Hb concentrations in patients with iron deficiency anemia and without chronic kidney disease.

  19. Outgrowth of Rice Tillers Requires Availability of Glutamine in the Basal Portions of Shoots.

    PubMed

    Ohashi, Miwa; Ishiyama, Keiki; Kojima, Soichi; Konishi, Noriyuki; Sasaki, Kazuhiro; Miyao, Mitsue; Hayakawa, Toshihiko; Yamaya, Tomoyuki

    2018-05-09

    Our previous studies concluded that metabolic disorder in the basal portions of rice shoots caused by a lack of cytosolic glutamine synthetase1;2 (GS1;2) resulted in a severe reduction in the outgrowth of tillers. Rice mutants lacking GS1;2 (gs1;2 mutants) showed a remarkable reduction in the contents of both glutamine and asparagine in the basal portions of shoots. In the current study, we attempted to reveal the mechanisms for this decrease in asparagine content using rice mutants lacking either GS1;2 or asparagine synthetase 1 (AS1). The contributions of the availability of glutamine and asparagine to the outgrowth of rice tillers were investigated. Rice has two AS genes, and the enzymes catalyse asparagine synthesis from glutamine. In the basal portions of rice shoots, expression of OsAS1, the major species in this tissue, was reduced in gs1;2 mutants, whereas OsAS2 expression was relatively constant. OsAS1 was expressed in phloem companion cells of the nodal vascular anastomoses connected to the axillary bud vasculatures in the basal portions of wild-type shoots, whereas cell-specific expression was markedly reduced in gs1;2 mutants. OsAS1 was up-regulated significantly by NH 4 + supply in the wild type but not in gs1;2 mutants. When GS reactions were inhibited by methionine sulfoximine, OsAS1 was up-regulated by glutamine but not by NH 4 + . The rice mutants lacking AS1 (as1 mutants) showed a decrease in asparagine content in the basal portions of shoots. However, glutamine content and tiller number were less affected by the lack of AS1. These results indicate that in phloem companion cells of the nodal vascular anastomoses, asparagine synthesis is largely dependent on glutamine or its related metabolite-responsive AS1. Thus, the decrease in glutamine content caused by a lack of GS1;2 is suggested to result in low expression of OsAS1, decreasing asparagine content. However, the availability of asparagine generated from AS1 reactions is apparently less

  20. Effects of Carbohydrate and Glutamine Supplementation on Oral Mucosa Immunity after Strenuous Exercise at High Altitude: A Double-Blind Randomized Trial.

    PubMed

    Caris, Aline Venticinque; Da Silva, Edgar Tavares; Dos Santos, Samile Amorim; Tufik, Sergio; Dos Santos, Ronaldo Vagner Thomatieli

    2017-07-03

    This study analyzed the effects of carbohydrate and glutamine supplementation on salivary immunity after exercise at a simulated altitude of 4500 m. Fifteen volunteers performed exercise of 70% of VO 2peak until exhaustion and were divided into three groups: hypoxia placebo, hypoxia 8% maltodextrin (200 mL/20 min), and hypoxia after six days glutamine (20 g/day) and 8% maltodextrin (200 mL/20 min). All procedures were randomized and double-blind. Saliva was collected at rest (basal), before exercise (pre-exercise), immediately after exercise (post-exercise), and two hours after exercise. Analysis of Variance (ANOVA) for repeated measures and Tukey post hoc test were performed. Statistical significance was set at p < 0.05. SaO₂% reduced when comparing baseline vs. pre-exercise, post-exercise, and after recovery for all three groups. There was also a reduction of SaO₂% in pre-exercise vs. post-exercise for the hypoxia group and an increase was observed in pre-exercise vs. recovery for both supplementation groups, and between post-exercise and for the three groups studied. There was an increase of salivary flow in post-exercise vs. recovery in Hypoxia + Carbohydrate group. Immunoglobulin A (IgA) decreased from baseline vs. post-exercise for Hypoxia + Glutamine group. Interleukin 10 (IL-10) increased from post-exercise vs. after recovery in Hypoxia + Carbohydrate group. Reduction of tumor necrosis factor alpha (TNF-α) was observed from baseline vs. post-exercise and after recovery for the Hypoxia + Carbohydrate group; a lower concentration was observed in pre-exercise vs. post-exercise and recovery. TNF-α had a reduction from baseline vs. post-exercise for both supplementation groups, and a lower secretion between baseline vs. recovery, and pre-exercise vs. post-exercise for Hypoxia + Carbohydrate group. Five hours of hypoxia and exercise did not change IgA. Carbohydrates, with greater efficiency than glutamine, induced anti-inflammatory responses.

  1. Effect of glutamine supplementation on cardiovascular risk factors in patients with type 2 diabetes.

    PubMed

    Mansour, Asieh; Mohajeri-Tehrani, Mohammad Reza; Qorbani, Mostafa; Heshmat, Ramin; Larijani, Bagher; Hosseini, Saeed

    2015-01-01

    The aim of this study was to assess clinical relevance of long-term oral glutamine supplementation on lipid profile and inflammatory and metabolic factors in patients with diabetes. Sixty-six patients with type 2 diabetes between the ages of 18 and 65 y were randomized to receive glutamine 30 g/d (10 g powder, three times a day) or placebo, in a double-blind, placebo-controlled trial during a 6-wk treatment period. Fifty-three patients completed the trial. Independent samples t test and analysis of covariance were used. After a 6-wk treatment period, a significant difference was observed between the two groups in body fat mass (P = 0.01) and percentage of body fat (P = 0.008). Moreover, a significant reduction in waist circumference (P < 0.001) and a tendency for an increase in fat-free mass (P = 0.03), with no change in body weight and body mass index (BMI) was found. Enhancement in body fat-free mass was mainly attributed to trunk (P = 0.03). There was a downward trend in systolic blood pressure (P = 0.005) but not diastolic. Fasting blood glucose (mmol/L) concentration significantly decreased after the 6-wk intervention (P = 0.04). Mean hemoglobin A1c was significantly different between the groups at week 6 (P = 0.04). No significant difference was detected for fasting insulin, homeostasis model assessment for insulin resistance and quantitative insulin sensitivity index between groups (P > 0.05). No significant difference was observed between groups in total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride. No treatment effect on C-reactive protein was found (P = 0.44). We demonstrated that the 6-wk supplementation with 30 g/d glutamine markedly improved some cardiovascular risk factors, as well as body composition, in patients with type 2 diabetes. Future glutamine dose-response studies are warranted in these areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Prevention of Radiochemotherapy-Induced Esophagitis With Glutamine: Results of a Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algara, Manuel; Universitat Pompeu Fabra, Barcelona; Rodriguez, Nuria

    2007-10-01

    Purpose: To assess the usefulness of oral glutamine to prevent radiochemotherapy-induced esophagitis in patients with lung cancer, and to determine the dosimetric parameter predictive of esophagitis. Methods and Materials: Seventy-five patients were enrolled; 34.7% received sequential radiochemotherapy, and 65.3% received concomitant radiochemotherapy. Every patient received prophylactic glutamine powder in doses of 10 g/8 h. Prescribed radiation doses were 45-50 Gy to planning target volume (PTV)1 (gross tumor volume plus wide margins) and 65-70 Gy to PTV2 (reduced margins). The primary endpoint was the incidence of Grade 2 or greater acute esophagitis. Results: No patient experienced glutamine intolerance or glutamine-related toxicity.more » Seventy-three percent of patients who received sequential chemotherapy and 49% of those who received concomitant chemotherapy did not present any form of esophagitis. V50 was the dosimetric parameter with better correlation between esophagitis and its duration. A V50 of {<=}30% had a 22% risk of esophagitis Grade {>=}2, which increased to 71% with a V50 of >30% (p = 0.0009). Conclusions: The use of oral glutamine may have an important role in the prevention of esophageal complications of concomitant radiochemotherapy in lung cancer patients. However, randomized trials are needed to corroborate that effect. V50 is the dosimetric parameter with better correlation with esophagitis grade and duration.« less

  3. Poly-L-glutamate/glutamine synthesis in the cell wall of Mycobacterium bovis is regulated in response to nitrogen availability

    PubMed Central

    2013-01-01

    Background The cell wall of pathogenic mycobacteria is known to possess poly-L-glutamine (PLG) layer. PLG synthesis has been directly linked to glutamine synthetase (GS) enzyme. glnA1 gene encodes for GS enzyme in mycobacteria. PLG layer is absent in cell wall of avirulent Mycobacterium smegmatis, although M. smegmatis strain expressing GS enzyme of pathogenic mycobacteria can synthesize PLG layer in the cell wall. The role of GS enzyme has been extensively studied in Mycobacterium tuberculosis, however, little is known about GS enzyme in other mycobacterial species. Mycobacterium bovis, as an intracellular pathogen encounters nitrogen stress inside macrophages, thus it has developed nitrogen assimilatory pathways to survive in adverse conditions. We have investigated the expression and activity of M. bovis GS in response to nitrogen availability and effect on synthesis of PLG layer in the cell wall. M. smegmatis was used as a model to study the behaviour of glnA1 locus of M. bovis. Results We observed that GS expression and activity decreased significantly in high nitrogen grown conditions. In high nitrogen conditions, the amount of PLG in cell wall was drastically reduced (below detectable limits) as compared to low nitrogen condition in M. bovis and in M. smegmatis strain complemented with M. bovis glnA1. Additionally, biofilm formation by M. smegmatis strain complemented with M. bovis glnA1 was increased than the wild type M. smegmatis strain. Conclusions The physiological regulation of GS in M. bovis was found to be similar to that reported in other mycobacteria but this data revealed that PLG synthesis in the cell wall of pathogenic mycobacteria occurs only in nitrogen limiting conditions and on the contrary high nitrogen conditions inhibit PLG synthesis. This indicates that PLG synthesis may be a form of nitrogen assimilatory pathway during ammonium starvation in virulent mycobacteria. Also, we have found that M. smegmatis complemented with M. bovis glnA1

  4. Structure-Function Relationship of Transporters in the Glutamate-Glutamine Cycle of the Central Nervous System.

    PubMed

    Hayashi, Mariko Kato

    2018-04-12

    Many kinds of transporters contribute to glutamatergic excitatory synaptic transmission. Glutamate is loaded into synaptic vesicles by vesicular glutamate transporters to be released from presynaptic terminals. After synaptic vesicle release, glutamate is taken up by neurons or astrocytes to terminate the signal and to prepare for the next signal. Glutamate transporters on the plasma membrane are responsible for transporting glutamate from extracellular fluid to cytoplasm. Glutamate taken up by astrocyte is converted to glutamine by glutamine synthetase and transported back to neurons through glutamine transporters on the plasma membranes of the astrocytes and then on neurons. Glutamine is converted back to glutamate by glutaminase in the neuronal cytoplasm and then loaded into synaptic vesicles again. Here, the structures of glutamate transporters and glutamine transporters, their conformational changes, and how they use electrochemical gradients of various ions for substrate transport are summarized. Pharmacological regulations of these transporters are also discussed.

  5. Glutamine synthetase 2 is not essential for biosynthesis of compatible solutes in Halobacillus halophilus

    PubMed Central

    Shiyan, Anna; Thompson, Melanie; Köcher, Saskia; Tausendschön, Michaela; Santos, Helena; Hänelt, Inga; Müller, Volker

    2014-01-01

    Halobacillus halophilus, a moderately halophilic bacterium isolated from salt marshes, produces various compatible solutes to cope with osmotic stress. Glutamate and glutamine are dominant compatible solutes at mild salinities. Glutamine synthetase activity in cell suspensions of Halobacillus halophilus wild type was shown to be salt dependent and chloride modulated. A possible candidate to catalyze glutamine synthesis is glutamine synthetase A2, whose transcription is stimulated by chloride. To address the role of GlnA2 in the biosynthesis of the osmolytes glutamate and glutamine, a deletion mutant (ΔglnA2) was generated and characterized in detail. We compared the pool of compatible solutes and performed transcriptional analyses of the principal genes controlling the solute production in the wild type strain and the deletion mutant. These measurements did not confirm the hypothesized role of GlnA2 in the osmolyte production. Most likely the presence of another, yet to be identified enzyme has the main contribution in the measured activity in crude extracts and probably determines the total chloride-modulated profile. The role of GlnA2 remains to be elucidated. PMID:24782854

  6. Safety and efficacy of gas-forced infusion (air pump) in coaxial phacoemulsification.

    PubMed

    Chaudhry, Prashaant; Prakash, Gaurav; Jacob, Soosan; Narasimhan, Smita; Agarwal, Sunita; Agarwal, Amar

    2010-12-01

    To evaluate the safety and efficacy of gas-forced infusion (air pump) in uncomplicated coaxial phacoemulsification. Dr. Agarwal's Eye Hospital, Chennai, India. Comparative case series. Specular microscopy and optical coherence tomography were used to analyze the endothelium, central macular thickness (CMT), and peripapillary retinal nerve fiber layer (RNFL) thickness before and approximately 1, 7, 30, and 90 days after coaxial phacoemulsification with (infusion group) or without (control group) gas-forced infusion. Surgical time, surge, phaco energy, irrigation fluid volume, surgical ease, complications, and visual gain in the 2 groups were compared. The mean endothelial cell loss was lower in the infusion group than in the control group (6.98% ± 8.46% [SD] versus 10.54% ± 11.24%; P = .045) and the irrigation/aspiration time significantly shorter (54 ± 39 seconds versus 105 ± 84 seconds; P = .0001). The surgery was rated as easier with gas-forced infusion (scale 1 to 10: mean 8.3 ± 2.1 versus 6.6 ± 1.6; P = .00002). However, the amount of irrigating fluid volume was higher in the infusion group (117 ± 37 mL versus 94 ± 41 mL; P = .003). No surge occurred in the infusion group; it occurred a mean of 3.00 ± 4.16 times in the control group (P<.0001). The rate of visual gain, CMT, peripapillary RNFL thickness, phaco time, and amount of phaco energy were comparable in the 2 groups. Gas-forced infusion was safe and effective in controlling surge and increased the safety, ease, and speed of coaxial phacoemulsification. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Response to dietary supplementation of L-glutamine and L-glutamate in broiler chickens reared at different stocking densities under hot, humid tropical conditions.

    PubMed

    Shakeri, M; Zulkifli, I; Soleimani, A F; O'Reilly, E L; Eckersall, P D; Anna, A A; Kumari, S; Abdullah, F F J

    2014-11-01

    A study was conducted to determine whether supplementing AminoGut (a commercial dietary supplement containing a mixture of l-glutamine and l-glutamic acid) to broiler chickens stocked at 2 different densities affected performance, physiological stress responses, foot pad dermatitis incidence, and intestinal morphology and microflora. A randomized design in a factorial arrangement with 4 diets [basal diet, basal diet + 0.5% AminoGut from d 1 to 21, basal diet + 0.5% AminoGut from d 1 to 42, and basal diet + virginiamycin (0.02%) for d 1 to 42] and 2 stocking densities [0.100 m(2)/bird (23 birds/pen; LD) or 0.067 m(2)/bird (35 birds/pen; HD)]. Results showed that villi length and crypt depth were not changed by different dietary treatments. However, birds in the HD group had smaller villi (P = 0.03) compared with those of the LD group. Regardless of diet, HD consistently increased the serum concentrations of ceruloplasmin, α-1 acid glycoprotein, ovotransferin, and corticosterone (P = 0.0007), and elevated heterophil to lymphocyte ratio (0.0005). Neither AminoGut supplementation nor stocking density affected cecal microflora counts. In conclusion, under the conditions of this study, dietary supplementation of AminoGut, irrespective of stocking density, had no beneficial effect on growth performance, intestinal morphology, and physiological adaptive responses of broiler chickens raised under hot and humid tropical conditions. However, AminoGut supplementation from d 1 to 42 was beneficial in reducing mortality rate. Also, the increased serum concentrations of a wide range of acute phase proteins together with elevated corticosterone and heterophil to lymphocyte ratio suggested that high stocking density induced an acute phase response either indirectly as a result of increased incidence of inflammatory diseases such as foot pad dermatitis or possibly as a direct physiological response to the stress of high stocking density. ©2014 Poultry Science Association Inc.

  8. Randomised trial of glutamine and selenium supplemented parenteral nutrition for critically ill patients. Protocol Version 9, 19 February 2007 known as SIGNET (Scottish Intensive care Glutamine or seleNium Evaluative Trial).

    PubMed

    Andrews, Peter J D; Avenell, Alison; Noble, David W; Campbell, Marion K; Battison, Claire G; Croal, Bernard L; Simpson, William G; Norrie, John; Vale, Luke D; Cook, Jonathon; de Verteuil, Robyn; Milne, Anne C

    2007-09-20

    Mortality rates in the Intensive Care Unit and subsequent hospital mortality rates in the UK remain high. Infections in Intensive Care are associated with a 2-3 times increased risk of death. It is thought that under conditions of severe metabolic stress glutamine becomes "conditionally essential". Selenium is an essential trace element that has antioxidant and anti-inflammatory properties. Approximately 23% of patients in Intensive Care require parenteral nutrition and glutamine and selenium are either absent or present in low amounts. Both glutamine and selenium have the potential to influence the immune system through independent biochemical pathways. Systematic reviews suggest that supplementing parenteral nutrition in critical illness with glutamine or selenium may reduce infections and mortality. Pilot data has shown that more than 50% of participants developed infections, typically resistant organisms. We are powered to show definitively whether supplementation of PN with either glutamine or selenium is effective at reducing new infections in critically ill patients. 2 x 2 factorial, pragmatic, multicentre, double-blind, randomised controlled trial. The trial has an enrollment target of 500 patients. Inclusion criteria include: expected to be in critical care for at least 48 hours, aged 16 years or over, patients who require parenteral nutrition and are expected to have at least half their daily nutritional requirements given by that route. Allocation is to one of four iso-caloric, iso-nitrogenous groups: glutamine, selenium, both glutamine & selenium or no additional glutamine or selenium. Trial supplementation is given for up to seven days on the Intensive Care Unit and subsequent wards if practicable. The primary outcomes are episodes of infection in the 14 days after starting trial nutrition and mortality. Secondary outcomes include antibiotic usage, length of hospital stay, quality of life and cost-effectiveness. To date more than 285 patients have been

  9. Randomised trial of glutamine and selenium supplemented parenteral nutrition for critically ill patients. Protocol Version 9, 19 February 2007 known as SIGNET (Scottish Intensive care Glutamine or seleNium Evaluative Trial)

    PubMed Central

    Andrews, Peter JD; Avenell, Alison; Noble, David W; Campbell, Marion K; Battison, Claire G; Croal, Bernard L; Simpson, William G; Norrie, John; Vale, Luke D; Cook, Jonathon; de Verteuil, Robyn; Milne, Anne C

    2007-01-01

    Background Mortality rates in the Intensive Care Unit and subsequent hospital mortality rates in the UK remain high. Infections in Intensive Care are associated with a 2–3 times increased risk of death. It is thought that under conditions of severe metabolic stress glutamine becomes "conditionally essential". Selenium is an essential trace element that has antioxidant and anti-inflammatory properties. Approximately 23% of patients in Intensive Care require parenteral nutrition and glutamine and selenium are either absent or present in low amounts. Both glutamine and selenium have the potential to influence the immune system through independent biochemical pathways. Systematic reviews suggest that supplementing parenteral nutrition in critical illness with glutamine or selenium may reduce infections and mortality. Pilot data has shown that more than 50% of participants developed infections, typically resistant organisms. We are powered to show definitively whether supplementation of PN with either glutamine or selenium is effective at reducing new infections in critically ill patients. Methods/design 2 × 2 factorial, pragmatic, multicentre, double-blind, randomised controlled trial. The trial has an enrolment target of 500 patients. Inclusion criteria include: expected to be in critical care for at least 48 hours, aged 16 years or over, patients who require parenteral nutrition and are expected to have at least half their daily nutritional requirements given by that route. Allocation is to one of four iso-caloric, iso-nitrogenous groups: glutamine, selenium, both glutamine & selenium or no additional glutamine or selenium. Trial supplementation is given for up to seven days on the Intensive Care Unit and subsequent wards if practicable. The primary outcomes are episodes of infection in the 14 days after starting trial nutrition and mortality. Secondary outcomes include antibiotic usage, length of hospital stay, quality of life and cost-effectiveness. Discussion

  10. In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-13C]glutamine

    NASA Astrophysics Data System (ADS)

    Cabella, C.; Karlsson, M.; Canapè, C.; Catanzaro, G.; Colombo Serra, S.; Miragoli, L.; Poggi, L.; Uggeri, F.; Venturi, L.; Jensen, P. R.; Lerche, M. H.; Tedoldi, F.

    2013-07-01

    Glutamine metabolism is, with its many links to oncogene expression, considered a crucial step in cancer metabolism and it is thereby a key target for alteration in cancer development. In particular, strong correlations have been reported between oncogene expression and expression and activity of the enzyme glutaminase. This mitochondrial enzyme, which is responsible for the deamidation of glutamine to form glutamate, is overexpressed in many tumour tissues. In animal models, glutaminase expression is correlated with tumour growth rate and it is readily possible to limit tumour growth by suppression of glutaminase activity. In principle, hyperpolarized 13C MR spectroscopy can provide insight to glutamine metabolism and should hence be a valuable tool to study changes in glutaminase activity as tumours progress. However, no such successful in vivo studies have been reported, even though several good biological models have been tested. This may, at least partly, be due to problems in preparing glutamine for hyperpolarization. This paper reports a new and improved preparation of hyperpolarized [5-13C]glutamine, which provides a highly sensitive 13C MR marker. With this preparation of hyperpolarized [5-13C]glutamine, glutaminase activity in vivo in a rat liver tumour was investigated. Moreover, this marker was also used to measure response to drug treatment in vitro in cancer cells. These examples of [5-13C]glutamine used in tumour models warrant the new preparation to allow metabolic studies with this conditionally essential amino acid.

  11. Effect of amino acids and dipeptides on the acrosome reaction and accumulation of ammonia in porcine spermatozoa.

    PubMed

    Tareq, K M A; Hossain, Md Sharoare; Akter, Quzi Sharmin; Sawada, Tomio; Afrose, Sadia; Hamano, Koh-Ichi; Tsujii, Hirotada

    2008-09-01

    Aim :  The present study was designed to investigate the effect of amino acids and their dipeptides in the medium related to the urea cycle on the motility, viability, acrosome reaction (AR) and accumulation of ammonia in the medium over different incubation periods in porcine spermatozoa and to assess the utilization of glucose. Methods :  Porcine spermatozoa were washed, swim-up and incubated at 37°C for 0-4 h in mTALP medium supplemented with 75-600 µmol/L ammonia. Amino acids (1.0 mmol) or their dipeptides (2.0 mmol) were added individually to the mTALP medium containing either no ammonia or 300 µmol/L of ammonia. The viability and AR of porcine spermatozoa were assessed using the triple-staining technique and the accumulation of ammonia in the medium was measured using the indophenol method. Results :  The motility, viability and AR were adversely affected ( P  < 0.05) by concentrations of ammonia ≥300 µmol/L compared with the control. Supplementation of l-alanyl-l-glutamine (AlaGln), l-glycyl-l-glutamine (GlyGln) and AlaGln + GlyGln in the presence of 300 µmol/L ammonia significantly increase ( P  < 0.05) the rate of motility, viability, AR, incorporation, accumulation of ammonia and oxidation of 14 C(U)-glucose compared with the ammonia supplement control. Conclusion :  AlaGln and GlyGln in mTALP medium were more stable and effective than the individual amino acids in reducing the accumulation of ammonia, and subsequently increasing the rate of AR and the utilization of glucose in porcine spermatozoa. (Reprod Med Biol 2008; 7 : 123-131).

  12. Glutamine and arginine improve permeability and tight junction protein expression in methotrexate-treated Caco-2 cells.

    PubMed

    Beutheu, Stéphanie; Ghouzali, Ibtissem; Galas, Ludovic; Déchelotte, Pierre; Coëffier, Moïse

    2013-10-01

    Chemotherapy induces an increase of intestinal permeability that is partially related to an alteration of tight junction proteins, occludin and zonula occludens-1 (ZO-1). Protective effects of glutamine on intestinal barrier function have been previously shown but the effects of other amino acids remained poorly documented. Thus, we aimed to evaluate the effects of nine amino acids on intestinal permeability during methotrexate (MTX) treatment in Caco-2 cells. Caco-2 cells were incubated in culture medium supplemented with glutamine, arginine, glutamate, leucine, taurine, citrulline, glycine, histidine or cysteine during 24 h and then treated with MTX (100 ng/ml). The dose of each amino acid was 16.6 fold the physiological plasma concentrations. Barrier function was assessed by transepithelial electrical resistance (TEER), FITC-dextran paracellular flux, occludin and ZO-1 expression and localization. Signaling pathways were also studied. Only glutamine, glutamate, arginine and leucine reversed the decrease of TEER observed after MTX treatment (P < 0.05). Interestingly, the addition of 6-diazo-5-oxo-1-norleucine, an inhibitor of glutaminase, blunted the effect of glutamine on MTX-treated cells (P < 0.05). Glutamine and arginine combination restored TEER and FITC-dextran flux to a similar extent than glutamine alone. In addition, pretreatment of Caco-2 cells with glutamine and arginine, alone or combined, differently limited the decrease of ZO-1 and occludin expression (P < 0.05) and the alteration of their cellular distribution, through c-Jun N-terminal kinase (JNK), Extracellular signal-regulated kinase (ERK) and nuclear factor kappa B (NF-κB) pathways. Glutamine prevented MTX-induced barrier disruption in Caco-2 cells. Arginine also had protective effects but in a lesser extent. The effect of glutamine and arginine should be evaluated in vivo. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health.

    NASA Astrophysics Data System (ADS)

    Pochini, Lorena; Scalise, Mariafrancesca; Galluccio, Michele; Indiveri, Cesare

    2014-08-01

    Glutamine together with glucose is essential for body’s homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7 and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5 and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologues. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention.

  14. Cerebral glutamine metabolism under hyperammonemia determined in vivo by localized 1H and 15N NMR spectroscopy

    PubMed Central

    Cudalbu, Cristina; Lanz, Bernard; Duarte, João MN; Morgenthaler, Florence D; Pilloud, Yves; Mlynárik, Vladimir; Gruetter, Rolf

    2012-01-01

    Brain glutamine synthetase (GS) is an integral part of the glutamate–glutamine cycle and occurs in the glial compartment. In vivo Magnetic Resonance Spectroscopy (MRS) allows noninvasive measurements of the concentrations and synthesis rates of metabolites. 15N MRS is an alternative approach to 13C MRS. Incorporation of labeled 15N from ammonia in cerebral glutamine allows to measure several metabolic reactions related to nitrogen metabolism, including the glutamate–glutamine cycle. To measure 15N incorporation into the position 5N of glutamine and position 2N of glutamate and glutamine, we developed a novel 15N pulse sequence to simultaneously detect, for the first time, [5-15N]Gln and [2-15N]Gln+Glu in vivo in the rat brain. In addition, we also measured for the first time in the same experiment localized 1H spectra for a direct measurement of the net glutamine accumulation. Mathematical modeling of 1H and 15N MRS data allowed to reduce the number of assumptions and provided reliable determination of GS (0.30±0.050 μmol/g per minute), apparent neurotransmission (0.26±0.030 μmol/g per minute), glutamate dehydrogenase (0.029±0.002 μmol/g per minute), and net glutamine accumulation (0.033±0.001 μmol/g per minute). These results showed an increase of GS and net glutamine accumulation under hyperammonemia, supporting the concept of their implication in cerebral ammonia detoxification. PMID:22167234

  15. Influence of l-pyroglutamic acid on the color formation process of non-enzymatic browning reactions.

    PubMed

    Wegener, Steffen; Kaufmann, Martin; Kroh, Lothar W

    2017-10-01

    Heating aqueous d-glucose model reactions with l-glutamine and l-alanine yielded similar colored solutions. However, size-exclusion chromatography (SEC) revealed that both non-enzymatic browning reactions proceeded differently. Due to a fast occurring cyclization of l-glutamine to pyroglutamic acid, the typical amino-carbonyl reaction was slowed down. However, l-glutamine and l-alanine model reactions showed the same browning index. Closer investigations could prove that l-pyroglutamic acid was able to influence non-enzymatic browning reactions. SEC analyses of d-glucose model reactions with and without l-pyroglutamic acid revealed an increase of low molecular colored compounds in the presence of l-pyroglutamic acid. Polarimetric measurements showed a doubling of d-glucose mutarotation velocity and HPLC analyses of d-fructose formation during thermal treatment indicated a tripling of aldose-ketose transformation in the presence of l-pyroglutamic acid, which are signs of a faster proceeding non-enzymatic browning process. 2-Pyrrolidone showed no such behavior, thus the additional carboxylic group should be responsible for the observed effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Glutamine and antioxidants in the critically ill patient: a post hoc analysis of a large-scale randomized trial.

    PubMed

    Heyland, Daren K; Elke, Gunnar; Cook, Deborah; Berger, Mette M; Wischmeyer, Paul E; Albert, Martin; Muscedere, John; Jones, Gwynne; Day, Andrew G

    2015-05-01

    The recent large randomized controlled trial of glutamine and antioxidant supplementation suggested that high-dose glutamine is associated with increased mortality in critically ill patients with multiorgan failure. The objectives of the present analyses were to reevaluate the effect of supplementation after controlling for baseline covariates and to identify potentially important subgroup effects. This study was a post hoc analysis of a prospective factorial 2 × 2 randomized trial conducted in 40 intensive care units in North America and Europe. In total, 1223 mechanically ventilated adult patients with multiorgan failure were randomized to receive glutamine, antioxidants, both glutamine and antioxidants, or placebo administered separate from artificial nutrition. We compared each of the 3 active treatment arms (glutamine alone, antioxidants alone, and glutamine + antioxidants) with placebo on 28-day mortality. Post hoc, treatment effects were examined within subgroups defined by baseline patient characteristics. Logistic regression was used to estimate treatment effects within subgroups after adjustment for baseline covariates and to identify treatment-by-subgroup interactions (effect modification). The 28-day mortality rates in the placebo, glutamine, antioxidant, and combination arms were 25%, 32%, 29%, and 33%, respectively. After adjusting for prespecified baseline covariates, the adjusted odds ratio of 28-day mortality vs placebo was 1.5 (95% confidence interval, 1.0-2.1, P = .05), 1.2 (0.8-1.8, P = .40), and 1.4 (0.9-2.0, P = .09) for glutamine, antioxidant, and glutamine plus antioxidant arms, respectively. In the post hoc subgroup analysis, both glutamine and antioxidants appeared most harmful in patients with baseline renal dysfunction. No subgroups suggested reduced mortality with supplements. After adjustment for baseline covariates, early provision of high-dose glutamine administered separately from artificial nutrition was not beneficial and may be

  17. Whole-body and splanchnic amino acid metabolism in sheep during an acute endotoxin challenge.

    PubMed

    McNeil, C J; Hoskin, S O; Bremner, D M; Holtrop, G; Lobley, G E

    2016-07-01

    Supplemented protein or specific amino acids (AA) are proposed to help animals combat infection and inflammation. The current study investigates whole-body and splanchnic tissue metabolism in response to a lipopolysaccharide (LPS) challenge with or without a supplement of six AA (cysteine, glutamine, methionine, proline, serine and threonine). Eight sheep were surgically prepared with vascular catheters across the gut and liver. On two occasions, four sheep were infused through the jugular vein for 20 h with either saline or LPS from Escherichia coli (2 ng/kg body weight per min) in a random order, plus saline infused into the mesenteric vein; the other four sheep were treated with saline or LPS plus saline or six AA infused via the jugular vein into the mesenteric vein. Whole-body AA irreversible loss rate (ILR) and tissue protein metabolism were monitored by infusion of [ring-2H2]phenylalanine. LPS increased (P<0·001) ILR (+17 %), total plasma protein synthesis (+14 %) and lymphocyte protein synthesis (+386 %) but decreased albumin synthesis (-53 %, P=0·001), with no effect of AA infusion. Absorption of dietary AA was not reduced by LPS, except for glutamine. LPS increased the hepatic removal of leucine, lysine, glutamine and proline. Absolute hepatic extraction of supplemented AA increased, but, except for glutamine, this was less than the amount infused. This increased net appearance across the splanchnic bed restored arterial concentrations of five AA to, or above, values for the saline-infused period. Infusion of key AA does not appear to alter the acute period of endotoxaemic response, but it may have benefits for the chronic or recovery phases.

  18. Dependence of intestinal glucose absorption on sodium, studied with a new arterial infusion technique

    PubMed Central

    Fisher, R. B.; Gardner, M. L. G.

    1974-01-01

    1. A new preparation of isolated rat jejunum plus ileum (ca. 100 cm) is described in which a saline infusate is pumped into the superior mesenteric artery, the superior mesenteric vein having been ligated. 2. The arterial infusate washes out the tissue spaces: the lumen is perfused in a single pass with a segmented flow as by Fisher & Gardner (1974). 3. At an arterial infusion rate of 3 ml./min, steady states are set up in the tissue fluid within 10-15 min: the compositions of the fluids bathing both sides of the mucosa can therefore be controlled. 4. The rate of glucose absorption from the lumen falls only gradually when the luminal sodium is replaced by choline abruptly while the tissue fluid sodium is maintained at 144 m-equiv/l. by arterial infusion. 5. The rate of glucose absorption from the lumen is unaffected by replacement of sodium in the arterial infusate by choline. 6. Ouabain (10-4 M) in an arterial infusate containing sodium 144 m-equiv/l. causes inhibition of glucose and water absorption from the lumen. There is no effect of ouabain when the arterial infusate contains sodium, 0 or 72 m-equiv/l. 7. Arterial ouabain does not reverse the effects of depletion of luminal sodium. Simultaneous removal of luminal sodium and application of arterial ouabain causes faster inhibition of glucose absorption than does either treatment alone. 8. Glucose absorption is more likely to depend on rate of efflux of sodium from mucosal cell to tissue fluid than on a sodium gradient at the brush border or on intracellular sodium concentration. PMID:4422318

  19. How to understand the results of studies of glutamine supplementation.

    PubMed

    Wernerman, Jan

    2015-11-03

    The lack of understanding of the mechanisms behind possible beneficial and possible harmful effects of glutamine supplementation makes the design of interventional studies of glutamine supplementations difficult, perhaps even hazardous. What is the interventional target, and how might it relate to outcomes? Taking one step further and aggregating results from interventional studies into meta-analyses does not diminish the difficulties. Therefore, conducting basic research seems to be a better idea than groping in the dark and exposing patients to potential harm in this darkness.

  20. Selenium and glutamine supplements: where are we heading? A critical care perspective.

    PubMed

    Andrews, Peter J D

    2010-03-01

    There is considerable interest in glutamine and selenium in critical care as both offer the potential to enhance host defences, through different but complimentary mechanisms and may reduce subsequent infections and mortality. The SIGNET trial (randomized controlled factorial trial) is the largest, critical care study of both supplements. The data have been presented publicly, but the data are not published or available for review and will therefore not be discussed fully in this update. In the present review I will explore the recently available (past 1-2 years) published literature. The current literature demonstrates that there are currently insufficient data to enable confident recommendations on the optimal route, timing, duration and dosage of each of these nutritional supplements. The pending results of SIGNET, the largest critical care trial of parenteral nutrition supplemented by glutamine and or selenium promises to clarify some of the current ambiguities and inform future practice. To be able to confidently establish or refute the hypothesis that either glutamine or selenium alone or in combination improves outcome in critical care requires a well designed prospective randomized controlled trial. To design such a trial we require the optimal dose and duration of the nutritional supplement (balancing efficacy and toxicity, ease of administration and cost) and then conduct an adequately powered trial. Such a trial is still lacking for these two agents. There are some supportive data for selenium but the case is less strong for parenteral glutamine and weakest for enteral glutamine.

  1. Efficacy of preoperative biliary tract decompression in patients with obstructive jaundice.

    PubMed

    Gundry, S R; Strodel, W E; Knol, J A; Eckhauser, F E; Thompson, N W

    1984-06-01

    Fifty consecutive matched patients with benign or malignant biliary tract obstruction were compared to determine the efficacy of preoperative percutaneous biliary drainage (PBD). Twenty-five patients underwent PBD for an average of nine days before operation; 25 patients underwent percutaneous transhepatic cholangiography ( PTHC ) followed immediately by operation. Serum bilirubin levels before PTHC were 16.5 +/- 7.6 mg/dL and 14.9 +/- 7.6 mg/dL in PBD and non-PBD groups, respectively. Serum bilirubin levels decreased to 6.5 +/- 6.2 mg/dL preoperatively in patients having PBD. One week after operation, bilirubin levels were 4.2 +/- 4.3 mg/dL and 9.0 +/- 5.2 mg/dL in the PBD and non-PBD groups, respectively. Major morbidity (sepsis, abscess, renal failure, or bleeding) occurred in two patients (8%) having PBD and in 13 patients (52%) without PBD. One patient (4%) with PBD, and five patients (20%) without PBD, died. The mean hospital stay was shorter for the PBD group. Preoperative PBD reduces operative mortality and morbidity and results in a more rapid resolution of hyperbilirubinemia during the postoperative period.

  2. Pilot Experimental Study on the Effect of Arginine, Glutamine, and β-Hydroxy β-Methylbutyrate on Secondary Wound Healing.

    PubMed

    Bozkırlı, Bahadır Osman; Gündoğdu, Rıza H; Ersoy, Eren; Lortlar, Neşe; Yıldırım, Zuhal; Temel, Hande; Oduncu, Mehmet; Karakaya, Jale

    2015-07-01

    Wound healing is a complex process, dependent on available nutrition substrates. When used together with β-hydroxy β-methylbutyrate, arginine and glutamine have been shown to increase collagen deposition in human subjects. However, there are no experimental investigations on the influence of this amino acid mixture with regard to secondary wound healing. The aim of this study is to investigate the effects of the supplementation of these 3 amino acids on the healing of open wounds in otherwise healthy animals. Twelve rats were divided into control and treatment groups. Two 2-cm × 1-cm full-thickness skin defects were prepared on each subject. The rats in both groups received a diet containing 1.2 g of protein per 100 g of body weight per day. The treatment group, in addition, received 200 mg/kg L-arginine, 200 mg/kg L-glutamine, and 40 mg/kg β-hydroxy β-methylbutyrate every day. Wound sizes were measured every 2 days. On the 10th day, tissue samples were taken for histopathologic evaluation and also for the measurement of hydroxyproline concentrations. There was no statistically significant difference between mean wound sizes for the 2 groups (P > .05). There was also no statistically significant difference between the groups with regard to histological healing parameters (reepithelialization [P = 1.00], granulation tissue [P = 1.00], collagen accumulation [P = .455], inflammatory cell accumulation [P = .455], angiogenesis [P = .242]) or tissue hydroxyproline concentrations (P = .240). Diet supplemented with arginine, glutamine, and β-hydroxy β-methylbutyrate is not beneficial in enhancing secondary healing of open wounds in rats. Further research regarding this topic is warranted. © 2014 American Society for Parenteral and Enteral Nutrition.

  3. Preoperative Renal Volume: A Surrogate Measure for Radical Nephrectomy-Induced Chronic Kidney Disease.

    PubMed

    Wu, Fiona Mei Wen; Tay, Melissa Hui Wen; Tai, Bee Choo; Chen, Zhaojin; Tan, Lincoln; Goh, Benjamin Yen Seow; Raman, Lata; Tiong, Ho Yee

    2015-12-01

    Surgically induced chronic kidney disease (CKD) has been found to have less impact on survival as well as function when compared to medical causes for CKD. The aim of this study is to evaluate whether preoperative remaining kidney volume correlates with renal function after nephrectomy, which represents an individual's renal reserve before surgically induced CKD. A retrospective review of 75 consecutive patients (29.3% females) who underwent radical nephrectomy (RN) (2000-2010) was performed. Normal side kidney parenchyma, excluding renal vessels and central sinus fat, was manually outlined in each transverse slice of CT image and multiplied by slice thickness to calculate volume. Estimated glomerular filtration rate (eGFR) was determined using the Modification of Diet in Renal Disease equation. CKD is defined as eGFR < 60 mL/min/1.73 m(2). Mean preoperative normal kidney parenchymal volume (mean age 55 [SD 13] years) is 150.7 (SD 36.4) mL. Over median follow-up of 36 months postsurgery, progression to CKD occurred in 42.6% (n = 32) of patients. On multivariable analysis, preoperative eGFR and preoperative renal volume <144 mL are independent predictors for postoperative CKD. On Kaplan-Meier analysis, median time to reach CKD postnephrectomy is 12.7 (range 0.03-43.66) months for renal volume <144 mL but not achieved if renal volume is >144 mL. Normal kidney parenchymal volume and preoperative eGFR are independent predictive factors for postoperative CKD after RN and may represent renal reserve for both surgically and medically induced CKD, respectively. Preoperative remaining kidney volume may be an adjunct representation of renal reserve postsurgery and predict later renal function decline due to perioperative loss of nephrons.

  4. Single-dose carbohydrate treatment in the immediate preoperative phase diminishes development of postoperative peripheral insulin resistance.

    PubMed

    Gjessing, Petter Fosse; Hagve, Martin; Fuskevåg, Ole-Martin; Revhaug, Arthur; Irtun, Øivind

    2015-02-01

    Preoperative oral carbohydrate (CHO) treatment is known to reduce postoperative insulin resistance, but the necessity of a preoperative evening dose is uncertain. We investigated the effect of single-dose CHO treatment two hours before surgery on postoperative insulin sensitivity. Thirty two pigs (∼ 30 kg) were randomized to 4 groups (n = 8) followed by D-[6,6-(2)H2] glucose infusion and hyperinsulinemic-euglycemic step clamping. Two groups received a morning drink of 25 g carbohydrate (CHO/surgery and CHO/control). Animals in the other two groups were fasted overnight (fasting/surgery and fasting/control). Counter-regulatory hormones, free fatty acids (FFA) and liver and muscle glycogen content were measured serially. Glucose infusion rates needed to maintain euglycemia were higher after CHO/surgery than fasting/surgery during low (8.54 ± 0.82 vs. 6.15 ± 0.27 mg/kg/min, P < 0.05), medium (17.26 ± 1.08 vs. 14.02 ± 0.56 mg/kg/min, P < 0.02) and high insulin clamping (19.83 ± 0.95 vs. 17.16 ± 0.58 mg/kg/min, P < 0.05). The control groups exhibited identical insulin sensitivity. Compared to their respective controls, insulin-stimulated whole-body glucose disposal was significantly reduced after fasting/surgery (-41%, P < 0.001), but not after CHO/surgery (-16%, P = 0.180). CHO reduced FFA perioperatively (P < 0.05) and during the clamp procedures (P < 0.02), but did not affect hepatic insulin sensitivity, liver and muscle glycogen content or counter-regulatory hormone profiles. A strong negative correlation between peripheral insulin sensitivity and mean cortisol levels was seen in fasted (R = -0.692, P = 0.003), but not in CHO loaded pigs. Single-dose preoperative CHO treatment is sufficient to reduce postoperative insulin resistance, possibly due to the antilipolytic effects and antagonist properties of preoperative hyperinsulinemia on the suppressant actions of cortisol on carbohydrate oxidation. Copyright © 2014 Elsevier Ltd and European Society for

  5. Paediatric electronic infusion calculator: An intervention to eliminate infusion errors in paediatric critical care.

    PubMed

    Venkataraman, Aishwarya; Siu, Emily; Sadasivam, Kalaimaran

    2016-11-01

    Medication errors, including infusion prescription errors are a major public health concern, especially in paediatric patients. There is some evidence that electronic or web-based calculators could minimise these errors. To evaluate the impact of an electronic infusion calculator on the frequency of infusion errors in the Paediatric Critical Care Unit of The Royal London Hospital, London, United Kingdom. We devised an electronic infusion calculator that calculates the appropriate concentration, rate and dose for the selected medication based on the recorded weight and age of the child and then prints into a valid prescription chart. Electronic infusion calculator was implemented from April 2015 in Paediatric Critical Care Unit. A prospective study, five months before and five months after implementation of electronic infusion calculator, was conducted. Data on the following variables were collected onto a proforma: medication dose, infusion rate, volume, concentration, diluent, legibility, and missing or incorrect patient details. A total of 132 handwritten prescriptions were reviewed prior to electronic infusion calculator implementation and 119 electronic infusion calculator prescriptions were reviewed after electronic infusion calculator implementation. Handwritten prescriptions had higher error rate (32.6%) as compared to electronic infusion calculator prescriptions (<1%) with a p  < 0.001. Electronic infusion calculator prescriptions had no errors on dose, volume and rate calculation as compared to handwritten prescriptions, hence warranting very few pharmacy interventions. Use of electronic infusion calculator for infusion prescription significantly reduced the total number of infusion prescribing errors in Paediatric Critical Care Unit and has enabled more efficient use of medical and pharmacy time resources.

  6. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; Ma, Xinming; Theg, Steven M.

    2015-01-01

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development. PMID:26307137

  7. New isoforms and assembly of glutamine synthetase in the leaf of wheat ( Triticum aestivum L.)

    DOE PAGES

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; ...

    2015-08-24

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat ( Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSIImore » and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Lastly, our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.« less

  8. Inhibition of mTOR complexes protects cancer cells from glutamine starvation induced cell death by restoring Akt stability.

    PubMed

    Khan, Md Wasim; Layden, Brian T; Chakrabarti, Partha

    2018-06-01

    Glutamine, a well-established oncometabolite, anaplerotically fuels mitochondrial energy metabolism and modulates activity of mammalian/mechanistic target of rapamycin complexes (mTOR). Currently, mTOR inhibitors are in clinical use for certain types of cancer but with limited success. Since glutamine is essential for growth of many cancers, we reasoned that glutamine deprivation under conditions of mTOR inhibition should be more detrimental to cancer cell survival. However, our results show that when cells are deprived of glutamine concomitant with mTOR inhibition, hepatocarcinoma cells elicit an adaptive response which aids in their survival due to enhanced autophagic flux. Moreover, inhibition of mTOR promotes Akt ubiquitination and its proteasomal degradation however we show that Akt degradation is abrogated by increased autophagy following glutamine withdrawal. Under conditions of glutamine deficiency and mTOR inhibition, the enhanced stability of Akt protein may provide survival cues to cancer cells. Thus, our data uncovers a novel molecular link between glutamine metabolism, autophagy and stability of Akt with cancer cell survival. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Safety of preoperative ibuprofen in pediatric tonsillectomy.

    PubMed

    Michael, Alexander; Buchinsky, Farrel J; Isaacson, Glenn

    2018-05-14

    Oral ibuprofen is believed to be safe and effective after pediatric adenotonsillectomy. There has been little study of its use as a preoperative analgesic. We attempt to document its safety in this setting. Individual case control study. Children who underwent tonsillectomy or adenotonsillectomy from January 2013 to December 2015 did not receive preoperative ibuprofen. Those who underwent tonsillectomy or adenotonsillectomy from January 2016 to December 2017 received oral ibuprofen 7 mg/kg preoperatively. Pre- and postoperative records were reviewed. Intraoperative bleeding > 50 mL or early postoperative bleeding requiring surgical control were outcome measures. Delayed bleeding events were also recorded. A total of 217 children met inclusion criteria. Of those, 112 patients did not receive preoperative ibuprofen, and 105 patients did receive preoperative ibuprofen. Mean age was 8.7 years (range: 1-18) in the control/non-ibuprofen cohort and 8.3 years (range: 1-18) in the ibuprofen cohort. No child experienced significant intraoperative or early postoperative bleeding in the non-ibuprofen (95% confidence interval [CI] 0-0.027) or in the ibuprofen cohort (95% CI 0- 0.029). Delayed bleeding rates were similar in both groups. In this series, children treated with preoperative ibuprofen did not experience increased bleeding during or soon after tonsillectomy compared to controls. Pain control was not studied in these patients. These favorable safety data argue for a future prospective randomized study of preoperative ibuprofen's effectiveness in reducing pain and opioid requirement after pediatric tonsillectomy. 3B. Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  10. [Preoperative fasting guidelines: an update].

    PubMed

    López Muñoz, A C; Busto Aguirreurreta, N; Tomás Braulio, J

    2015-03-01

    Anesthesiology societies have issued various guidelines on preoperative fasting since 1990, not only to decrease the incidence of lung aspiration and anesthetic morbidity, but also to increase patient comfort prior to anesthesia. Some of these societies have been updating their guidelines, as such that, since 2010, we now have 2 evidence-based preoperative fasting guidelines available. In this article, an attempt is made to review these updated guidelines, as well as the current instructions for more controversial patients such as infants, the obese, and a particular type of ophthalmic surgery. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Association between continuous peripheral i.v. infusion of 3% sodium chloride injection and phlebitis in adults.

    PubMed

    Meng, Lina; Nguyen, Cherwyn M; Patel, Samit; Mlynash, Michael; Caulfield, Anna Finley

    2018-03-01

    One institution's experience with use of peripheral i.v. (PIV) catheters for prolonged infusions of 3% sodium chloride injection at rates up to 100 mL/hr is described. A prospective, observational, 13-month quality assurance project was conducted at an academic medical center to evaluate frequencies of patient and catheter phlebitis among adult inpatients who received both an infusion of 3% sodium chloride injection for a period of ≥4 hours through a dedicated PIV catheter and infusions of routine-care solutions (RCSs) through separate PIV catheters during the same hospital stay. Sixty patients received PIV infusions through a total of 291 catheters during the study period. The majority of patients (78%) received infusions of 3% sodium chloride injection for intracranial hypertension, with 30% receiving such infusions in the intensive care unit. Phlebitis occurred in 28 patients (47%) during infusions of 3% sodium chloride and 26 patients (43%) during RCS infusions ( p = 0.19). Catheter phlebitis occurred in 73 catheters (25%), with no significant difference in the frequencies of catheter phlebitis with infusion of 3% sodium chloride versus RCSs (30% [32 of 106 catheters]) versus 22% [41 of 185 catheters]), p = 0.16). Patient and catheter phlebitis rates were not significantly different with infusions of 3% sodium chloride injection versus RCSs, suggesting that an osmolarity cutoff value of 900 mOsm/L for peripheral infusions of hypertonic saline solutions may not be warranted. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  12. The effect of glutamine therapy on outcomes in critically ill patients: a meta-analysis of randomized controlled trials

    PubMed Central

    2014-01-01

    Introduction Glutamine supplementation is supposed to reduce mortality and nosocomial infections in critically ill patients. However, the recently published reducing deaths due to oxidative stress (REDOX) trials did not provide evidence supporting this. This study investigated the impact of glutamine-supplemented nutrition on the outcomes of critically ill patients using a meta-analysis. Methods We searched for and gathered data from the Cochrane Central Register of Controlled Trials, MEDLINE, Elsevier, Web of Science and ClinicalTrials.gov databases reporting the effects of glutamine supplementation on outcomes in critically ill patients. We produced subgroup analyses of the trials according to specific patient populations, modes of nutrition and glutamine dosages. Results Among 823 related articles, eighteen Randomized Controlled Trials (RCTs) met all inclusion criteria. Mortality events among 3,383 patients were reported in 17 RCTs. Mortality showed no significant difference between glutamine group and control group. In the high dosage subgroup (above 0.5 g/kg/d), the mortality rate in the glutamine group was significantly higher than that of the control group (relative risk (RR) 1.18; 95% confidence interval (CI), 1.02 to 1.38; P = 0.03). In 15 trials, which included a total of 2,862 patients, glutamine supplementation reportedly affected the incidence of nosocomial infections in the critically ill patients observed. The incidence of nosocomial infections in the glutamine group was significantly lower than that of the control group (RR 0.85; 95% CI, 0.74 to 0.97; P = 0.02). In the surgical ICU subgroup, glutamine supplementation statistically reduced the rate of nosocomial infections (RR 0.70; 95% CI, 0.52 to 0.94; P = 0.04). In the parental nutrition subgroup, glutamine supplementation statistically reduced the rate of nosocomial infections (RR 0.83; 95% CI, 0.70 to 0.98; P = 0.03). The length of hospital stay was reported in 14 trials, in

  13. Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium.

    PubMed Central

    Mérida, A; Candau, P; Florencio, F J

    1991-01-01

    Glutamine synthetase activity from Synechocystis sp. strain PCC 6803 is regulated as a function of the nitrogen source available in the medium. Addition of 0.25 mM NH4Cl to nitrate-grown cells promotes a clear short-term inactivation of glutamine synthetase, whose enzyme activity decreases to 5 to 10% of the initial value in 25 min. The intracellular levels of glutamine, determined under various conditions, taken together with the results obtained with azaserine (an inhibitor of transamidases), rule out the possibility that glutamine per se is responsible for glutamine synthetase inactivation. Nitrogen starvation attenuates the ammonium-mediated glutamine synthetase inactivation, indicating that glutamine synthetase regulation is modulated through the internal balance between carbon-nitrogen compounds and carbon compounds. The parallelism observed between the glutamine synthetase activity and the internal concentration of alpha-ketoglutarate suggests that this metabolite could play a role as a positive effector of glutamine synthetase activity in Synechocystis sp. Despite the similarities of this physiological system to that described for enterobacteria, the lack of in vivo 32P labeling of glutamine synthetase during the inactivation process excludes the existence of an adenylylation-deadenylylation system in this cyanobacterium. Images PMID:1676397

  14. An In Vitro TORC1 Kinase Assay That Recapitulates the Gtr-Independent Glutamine-Responsive TORC1 Activation Mechanism on Yeast Vacuoles

    PubMed Central

    Tanigawa, Mirai

    2017-01-01

    ABSTRACT Evolutionarily conserved target of rapamycin (TOR) complex 1 (TORC1) responds to nutrients, especially amino acids, to promote cell growth. In the yeast Saccharomyces cerevisiae, various nitrogen sources activate TORC1 with different efficiencies, although the mechanism remains elusive. Leucine, and perhaps other amino acids, was reported to activate TORC1 via the heterodimeric small GTPases Gtr1-Gtr2, the orthologues of the mammalian Rag GTPases. More recently, an alternative Gtr-independent TORC1 activation mechanism that may respond to glutamine was reported, although its molecular mechanism is not clear. In studying the nutrient-responsive TORC1 activation mechanism, the lack of an in vitro assay hinders associating particular nutrient compounds with the TORC1 activation status, whereas no in vitro assay that shows nutrient responsiveness has been reported. In this study, we have developed a new in vitro TORC1 kinase assay that reproduces, for the first time, the nutrient-responsive TORC1 activation. This in vitro TORC1 assay recapitulates the previously predicted Gtr-independent glutamine-responsive TORC1 activation mechanism. Using this system, we found that this mechanism specifically responds to l-glutamine, resides on the vacuolar membranes, and involves a previously uncharacterized Vps34-Vps15 phosphatidylinositol (PI) 3-kinase complex and the PI-3-phosphate [PI(3)P]-binding FYVE domain-containing vacuolar protein Pib2. Thus, this system was proved to be useful for dissecting the glutamine-responsive TORC1 activation mechanism. PMID:28483912

  15. Infusion pressure and pain during microneedle injection into skin of human subjects.

    PubMed

    Gupta, Jyoti; Park, Sohyun S; Bondy, Brian; Felner, Eric I; Prausnitz, Mark R

    2011-10-01

    Infusion into skin using hollow microneedles offers an attractive alternative to hypodermic needle injections. However, the fluid mechanics and pain associated with injection into skin using a microneedle have not been studied in detail before. Here, we report on the effect of microneedle insertion depth into skin, partial needle retraction, fluid infusion flow rate and the co-administration of hyaluronidase on infusion pressure during microneedle-based saline infusion, as well as on associated pain in human subjects. Infusion of up to a few hundred microliters of fluid required pressures of a few hundred mmHg, caused little to no pain, and showed weak dependence on infusion parameters. Infusion of larger volumes up to 1 mL required pressures up to a few thousand mmHg, but still usually caused little pain. In general, injection of larger volumes of fluid required larger pressures and application of larger pressures caused more pain, although other experimental parameters also played a significant role. Among the intradermal microneedle groups, microneedle length had little effect; microneedle retraction lowered infusion pressure but increased pain; lower flow rate reduced infusion pressure and kept pain low; and use of hyaluronidase also lowered infusion pressure and kept pain low. We conclude that microneedles offer a simple method to infuse fluid into the skin that can be carried out with little to no pain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns: a randomized, double-blind, controlled clinical trial.

    PubMed

    Zhou, Ye-Ping; Jiang, Zhu-Ming; Sun, Yong-Hua; Wang, Xiu-Rong; Ma, En-Ling; Wilmore, Douglas

    2003-01-01

    This research was conducted to evaluate the effect of enterally administered glutamine (gln) dipeptide on metabolic, gastrointestinal, and outcome parameters after severe burn injury. Forty thermally injured patients with total body surface burns ranging between 50% and 80%, and third-degree burns ranging between 20% and 40% and without respiratory injuries, were randomized into a prospective, double-blind, controlled clinical trial. One group received gln-enriched enteral nutrition and the other group received the standard enteral formulation. Tube feedings were initiated on postburn day 1 (PBD +1), and isocaloric and isonitrogenous feedings were administered to both groups until PBD +12. The gln was given as the dipeptide of alanyl-gln (Ajinomoto, Tokyo, Japan), which provided 0.35 g gln/kg body weight/d. Plasma amino acid profiles, serum endotoxin concentrations, and the lactulose/mannitol absorption ratio (which reflects gut permeability) were measured at specific times throughout the clinical course. Wound healing at day 30 was assessed, and length of hospital stay and total costs were determined at discharge. The 2 groups were similar in terms of age and extent of injury. Plasma gln concentrations were approximately 300 umol/L in both groups on PBD +1 and remained low in the control group (399 +/- 40 umol/L, mean +/- SD) but increased toward normal in the supplemented group to 591 +/- 74 (p = .048). Lactulose/mannitol ratios were increased above normal on POD +1 (control, 0.221 +/- 0.169; gln, 0.268 +/- 0.202; not significant), reflecting increased intestinal permeability after burn injury. On POD +3, the ratio in the gln group was lower than control (0.025 +/- 0.008 versus 0.049 +/- 0.016; p = .0001), and both groups returned toward normal ratios with time. Endotoxin levels on PBD +1 were elevated in both groups (control, 0.089 +/- 0.023 EU/mL; gln, 0.103 +/- 0.037 EU/mL; NS) but decreased significantly on PBD +3 in the patients receiving gln. Hospital stay

  17. Iron therapy for pre-operative anaemia.

    PubMed

    Ng, Oliver; Keeler, Barrie D; Mishra, Amitabh; Simpson, Alastair; Neal, Keith; Brookes, Matthew J; Acheson, Austin G

    2015-12-22

    Pre-operative anaemia is common and occurs in up to 76% of patients. It is associated with increased peri-operative allogeneic blood transfusions, longer hospital lengths of stay and increased morbidity and mortality. Iron deficiency is one of the most common causes of this anaemia. Oral iron therapy has traditionally been used to treat anaemia but newer, safer parenteral iron preparations have been shown to be more effective in other conditions such as inflammatory bowel disease, chronic heart failure and post-partum haemorrhage. A limited number of studies look at iron therapy for the treatment of pre-operative anaemia. The aim of this Cochrane review is to summarise the evidence for use of iron supplementation, both enteral and parenteral, for the management of pre-operative anaemia. The objective of this review is to evaluate the effects of pre-operative iron therapy (enteral or parenteral) in reducing the need for allogeneic blood transfusions in anaemic patients undergoing surgery. We ran the search on 25 March 2015. We searched the Cochrane Injuries Group's Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library), Ovid MEDLINE(R), Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid OLDMEDLINE(R), EMBASE Classic and EMBASE (Ovid), CINAHL Plus (EBSCO), PubMed, clinical trials registries, conference abstracts, and we screened reference lists. We included all randomised controlled trials (RCTs) which compared pre-operative iron monotherapy to placebo, no treatment, standard of care or another form of iron therapy for anaemic adults undergoing surgery. Anaemia was defined by haemoglobin values less than 13 g/dL for males and 12 g/dL for non-pregnant females. Data were collected by two authors on the proportion of patients who receive a blood transfusion, amount of blood transfused per patient (units) and haemoglobin measured as continuous variables at pre-determined time-points: pre

  18. Influence of the rate of infusion on cyclosporine nephrotoxicity in the rat.

    PubMed

    Finn, W F; McCormack, A J; Sullivan, B A; Hak, L J; Clark, R L

    1989-01-01

    The effect of the rate of infusion of single and multiple doses of cyclosporine (CsA) on renal function was evaluated in Sprague-Dawley rats. CsA was dissolved in cremophore (Crem) or Tween 80 (Tween) and infused over consecutive 10-min periods at doses of 10, 20, 30 and 40 mg/kg. CsA-Crem and CsA-Tween produced similar and progressive changes in MAP, RBF, and RVR. By the end of the infusion, the mean values (% of control) of MAP (122 +/- 16% and 131 +/- 22%), RBF (56 +/- 11% and 66 +/- 20%), and RVR (222 +/- 38% and 232 +/- 134%) were significantly different from their respective preinfusion values. Infusion of Crem alone resulted in renal vasodilation at low doses and renal vasoconstriction at high doses. Vasoconstriction was not produced by infusion of Tween alone. In addition, animals were treated with vehicle alone (Gp 1), CsA 10 mg/kg/day by injection (Gp 2), or CsA 20 mg/kg/day by i.v. infusion over 4 hr (Gp 3), and were studied at 1 week. Systemic toxicity was greater with the 4-hr infusion as judged by an increase in MAP. The mean values of MAP were 107 +/- 8 (Gp 1), 101 +/- 13 (Gp 2), and 135 +/- 5 mm Hg (Gp 3; p less than 0.05). However, renal function was less severely affected with the 4-hr infusion. The mean values of CIn were 434 +/- 99 (Gp 1), 298 +/- 101 (Gp 2; p less than 0.05), and 425 +/- 114 microL/min/100 g BW (Gp 3); and the mean values for RBF were 2.72 +/- 0.74 (Gp 1), 2.08 +/- 0.17 (Gp 2; p less than 0.05), and 3.35 +/- 0.61 mL/min/100 g BW (Gp 3), respectively. Microangiograms showed marked abnormalities in the intrarenal perfusion pattern in the rats injected with CsA, 10 mg/kg BW. In rats infused over 4 hr with CsA, 20 mg/kg BW, the microangiographic pattern was normal. These studies demonstrate that the acute hemodynamic effects of CsA are directly related to the rate of infusion. Furthermore, the renal toxicity which follows repetitive injection of CsA can be minimized or avoided by administering CsA as a slow infusion. In addition to

  19. Immunolocalization of a Unique Form of Maize Kernel Glutamine Synthetase Using a Monoclonal Antibody.

    PubMed Central

    Muhitch, M. J.; Felker, F. C.; Taliercio, E. W.; Chourey, P. S.

    1995-01-01

    The pedicel (basal maternal tissue) of maize (Zea mays L.) kernels contains a physically and kinetically unique form of glutamine synthetase (GSp1) that is involved in the conversion of transport forms of nitrogen into glutamine for uptake by the developing endosperm (M.J. Muhitch [1989] Plant Physiol 91: 868-875). A monoclonal antibody has been raised against this kernel-specific GS that does not cross-react either with a second GS isozyme found in the pedicel or with the GS isozymes from the embryo, roots, or leaves. When used as a probe for tissue printing, the antibody labeled the pedicel tissue uniformly and also labeled some of the pericarp surrounding the lower endosperm. Silver-enhanced immunogold staining of whole-kernel paraffin sections revealed the presence of GSp1 in both the vascular tissue that terminates in the pedicel and the pedicel parenchyma cells, which are located between the vascular tissue and the basal endosperm transfer cells. Light staining of the subaleurone was also noted. The tissue-specific localization of GSp1 within the pedicel is consistent with its role in the metabolism of nitrogenous transport compounds as they are unloaded from the phloem. PMID:12228400

  20. Preoperative haemoglobin cut-off values for the prediction of post-operative transfusion in total knee arthroplasty.

    PubMed

    Yeh, Jared Ze Yang; Chen, Jerry Yongqiang; Bin Abd Razak, Hamid Rahmatullah; Loh, Bryan Huai Gu; Hao, Ying; Yew, Andy Khye Soon; Chia, Shi-Lu; Lo, Ngai Nung; Yeo, Seng Jin

    2016-10-01

    The purpose of this study is to determine preoperative haemoglobin cut-off values that could accurately predict post-operative transfusion outcome in patients undergoing primary unilateral total knee arthroplasty (TKA). This will allow surgeons to provide selective preoperative type and screen to only patients at high risk of transfusion. A total of 1457 patients diagnosed with osteoarthritis and underwent primary unilateral TKA between January 2012 and December 2014 were retrospectively reviewed. Logistic regression analyses were applied to identify factors that could predict transfusion outcome. A total of 37 patients (2.5 %) were transfused postoperatively. Univariate analysis revealed preoperative haemoglobin (p < 0.001), age (p < 0.001), preoperative haematocrit (p < 0.001), and preoperative creatinine (p < 0.001) to be significant predictors. In the multivariate analysis with patients dichotomised at 70 years of age, preoperative haemoglobin remained significant with adjusted odds ratio of 0.33. Receiver operating characteristic curve identified the preoperative haemoglobin cut-off values to be 12.4 g/dL (AUC = 0.86, sensitivity = 87.5 %, specificity = 77.2 %) and 12.1 g/dL (AUC = 0.85, sensitivity = 69.2 %, specificity = 87.1 %) for age above and below 70, respectively. The authors recommend preoperative haemoglobin cut-off values of 12.4 g/dL for age above 70 and 12.1 g/dL for age below 70 to be used to predict post-operative transfusion requirements in TKA. To maximise the utilisation of blood resources, the authors recommend that only patients with haemoglobin level below the cut-off should receive routine preoperative type and screen before TKA. IV.

  1. Dual-emitting biosensors for glucose and glutamine from genertically engineered E. coli binding proteins

    NASA Astrophysics Data System (ADS)

    Tolosa, Leah; Ge, Xudong; Kostov, Yordan; Lakowicz, Joseph R.; Rao, Govind

    2003-07-01

    Glucose is the major source of carbon, and glutamine is the major source of nitrogen in cell culture media. Thus, glucose and glutamine monitoring are important in maintaining optimal conditions in industrial bioprocesses. Here we report reagentless glucose and glutamine sensors using the E. coli glucose binding protein (GBP) and the glutamine binding protein (GlnBP). Both of these proteins are derived from the permease system of the gram-negative bacteria. The Q26C variant of GBP was labeled at the 26-position with anilino-naphthalene sulfonate (ANS), while the S179C variant of GlnBP was labeled at the 179-position with acrylodan. The ANS and acrylodan emissions are quenched in the presence of glucose and glutamine, respectively. The acrylodan-labeled GlnBP was labeled at the N-terminal with ruthenium bis-(2,2"-bipyridyl)-1,10-phenanthroline-9-isothiocyanate. The ruthenium acts as a non-responsive long-lived reference. The apparent binding constant, Kd", of 8.0 μM glucose was obtained from the decrease in intensity of ANS in GBP. The reliability of the method in monitoring glucose during yeast fermentation was determined by comparison with the YSI Biochemistry Analyzer. The apparent binding constant, Kd", of 0.72 μM glutamine was calculated from the ratio of emission intensities of acrylodan and ruthenium (I515/I610) in GlnBP. The presence of the long-lived ruthenium allowed for modulation sensing at lower frequencies (1-10 MHz) approaching an accuracy of +/- 0.02 μM. The conversion of the GBP into a similar ratiometric sensor was described.

  2. Preoperative albumin level is a marker of alveolar echinococcosis recurrence after hepatectomy

    PubMed Central

    Joliat, Gaëtan-Romain; Labgaa, Ismail; Demartines, Nicolas; Halkic, Nermin

    2017-01-01

    AIM To identify a preoperative blood marker predictive of alveolar echinococcosis (AE) recurrence after hepatectomy. METHODS All consecutive patients who underwent operation for liver AE at the Lausanne University Hospital (CHUV) between January 1992 and December 2015 were included in this retrospective study. Preoperative laboratory values of leukocytes, mean corpuscular volume (MCV), red blood cell distribution width (RDW), thrombocytes, C-reactive protein (CRP) and albumin were collected and analyzed. Univariate and multivariate Cox regression analyses were performed to determine the risk factors for AE recurrence after liver resection. A receiver operating characteristic (ROC) curve was used to define the best discrimination threshold of the blood marker. Moreover, recurrence-free survival curves were calculated using the Kaplan-Meier method. RESULTS The cohort included 68 adult patients (37 females) with median age of 61 years [interquartile range (IQR): 46-71]. Eight of the patients (12%) presented a recurrence over a median follow-up time of 76 mo (IQR: 34-128). Median time to recurrence was 10 mo (IQR: 6-11). Median preoperative leukocyte, MCV, RDW, thrombocyte and CRP levels were similar between recurrent and non-recurrent cases. Median preoperative albumin level was 43 g/L (IQR: 41-45) for non-recurrent cases and 36 g/L (IQR: 33-42) for recurrent cases (P = 0.005). The area under the ROC curve for preoperative albumin level to predict recurrence was 0.840 (95%CI: 0.642-1, P = 0.002). The cut-off albumin level value was 37.5 g/L for sensitivity of 94.5% and specificity of 75%. In multivariate analysis, preoperative albumin and surgical resection margins were independent predictors of AE recurrence (HR = 0.099, P = 0.007 and HR = 0.182, P = 0.045 respectively). CONCLUSION Low preoperative albumin level was associated with AE recurrence in the present cohort. Thus, preoperative albumin may be a useful biomarker to guide follow-up. PMID:28223729

  3. Indications and contraindications for infusing specific amino acids (leucine, glutamine, arginine, citrulline, and taurine) in critical illness.

    PubMed

    Ginguay, Antonin; De Bandt, Jean-Pascal; Cynober, Luc

    2016-03-01

    The review assesses the utility of supplementing parenteral or enteral nutrition of ICU patients with each of five specific amino acids that display pharmacological properties. Specifying indications implies also stating contraindications.Combined supplementation of amino acids with ω3-fatty acids and/or trace elements (immune-enhancing diets) will not be considered in this review because these mixtures do not allow the role of amino acids in the effect (positive or negative) of the mixture to be isolated, and so cannot show whether or not supplementation of a given amino acid is indicated. After decades of unbridled use of glutamine (GLN) supplementation in critically ill patients, recent large trials have brought a note of caution, indicating for example that GLN should not be used in patients with multiple organ failure. Yet these large trials do not change the conclusions of recent meta-analyses. Arginine (ARG), as a single dietary supplement, is probably not harmful in critical illness, in particular in a situation of ARG deficiency syndrome with low nitric oxide production. Citrulline supplementation strongly improves microcirculation in animal models with gut injury, but clinical studies are lacking. Taurine has a potent protective effect against ischemic reperfusion injury. Amino acid-based pharmaconutrition has displayed familiar 'big project' stages: enthusiasm (citrulline and taurine), doubt (GLN), hunt for the guilty (ARG), and backpedalling (leucine). Progress in this field is very slow, and sometimes gives way to retreat, as demonstrated by recent large trials on GLN supplementation.

  4. Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation.

    PubMed

    Pardo, Beatriz; Rodrigues, Tiago B; Contreras, Laura; Garzón, Miguel; Llorente-Folch, Irene; Kobayashi, Keiko; Saheki, Takeyori; Cerdan, Sebastian; Satrústegui, Jorgina

    2011-01-01

    The glutamate-glutamine cycle faces a drain of glutamate by oxidation, which is balanced by the anaplerotic synthesis of glutamate and glutamine in astrocytes. De novo synthesis of glutamate by astrocytes requires an amino group whose origin is unknown. The deficiency in Aralar/AGC1, the main mitochondrial carrier for aspartate-glutamate expressed in brain, results in a drastic fall in brain glutamine production but a modest decrease in brain glutamate levels, which is not due to decreases in neuronal or synaptosomal glutamate content. In vivo (13)C nuclear magnetic resonance labeling with (13)C(2)acetate or (1-(13)C) glucose showed that the drop in brain glutamine is due to a failure in glial glutamate synthesis. Aralar deficiency induces a decrease in aspartate content, an increase in lactate production, and lactate-to-pyruvate ratio in cultured neurons but not in cultured astrocytes, indicating that Aralar is only functional in neurons. We find that aspartate, but not other amino acids, increases glutamate synthesis in both control and aralar-deficient astrocytes, mainly by serving as amino donor. These findings suggest the existence of a neuron-to-astrocyte aspartate transcellular pathway required for astrocyte glutamate synthesis and subsequent glutamine formation. This pathway may provide a mechanism to transfer neuronal-born redox equivalents to mitochondria in astrocytes.

  5. Ability of L-canavanine to support nitrogen metabolism in the jack bean, Canavalia ensiformis (L. ) DC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, G.A.; Berge, M.A.; Ozinskas, A.J.

    The ability of L-canavanine, a nonprotein amino acid of certain leguminous plants, to support the nitrogen metabolism of jack bean, Canavalia ensiformis (Leguminosae), was assessed by administration of L-(guanidino-N{sup 3}-{sup 15}N)arginine, L-(guanidinooxy-N{sup 3}-{sup 15}N)canavanine, or L-(guanidinooxy-N{sup 1}-{sup 15}N)canavanine into the cotyledons of 9-day-old plants. A strikingly similar pattern of {sup 15}N assimilation into de novo synthesized amino and imino acids resulted from feeding L-(guanidino-N{sup 3}-{sup 15}N)arginine and L-(guanidinooxy-N{sup 3}-{sup 15}N)canavanine. Glutamic acid plus glutamine and alanine were the most heavily labeled of the detected compounds. Some transfer of {sup 15}N from L-(gluanidino-N{sup 3}-{sup 15}N)arginine to canavanine was noted. This maymore » occur by a transamidination reaction between L-canaline and L-arginine. L-(guanidinooxy-N{sup 1}-{sup 15}N)Canavanine also supported amino and imino acid biosynthesis in this plant, but much more alanine and less glutamic acid and glutamine were labeled. These experiments provide substantive experimental evidence for the long-reputed hypothesis that canavanine functions as a nitrogen-storing metabolite.« less

  6. Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: different performances regarding bioactivity and phenolic compounds.

    PubMed

    Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Henriques, Mariana; Silva, Sónia; Ferreira, Isabel C F R

    2014-09-01

    Bioactivity of oregano methanolic extracts and essential oils is well known. Nonetheless, reports using aqueous extracts are scarce, mainly decoction or infusion preparations used for therapeutic applications. Herein, the antioxidant and antibacterial activities, and phenolic compounds of the infusion, decoction and hydroalcoholic extract of oregano were evaluated and compared. The antioxidant activity is related with phenolic compounds, mostly flavonoids, since decoction presented the highest concentration of flavonoids and total phenolic compounds, followed by infusion and hydroalcoholic extract. The samples were effective against gram-negative and gram-positive bacteria. It is important to address that the hydroalcoholic extract showed the highest efficacy against Escherichia coli. This study demonstrates that the decoction could be used for antioxidant purposes, while the hydroalcoholic extract could be incorporated in formulations for antimicrobial features. Moreover, the use of infusion/decoction can avoid the toxic effects showed by oregano essential oil, widely reported for its antioxidant and antimicrobial properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Use of Preoperative Functional MRI to Predict Verbal Memory Decline After Temporal Lobe Epilepsy Surgery

    PubMed Central

    Binder, Jeffrey R.; Sabsevitz, David S.; Swanson, Sara J.; Hammeke, Thomas A.; Raghavan, Manoj; Mueller, Wade M.

    2010-01-01

    Purpose Verbal memory decline is a frequent complication of left anterior temporal lobectomy (L-ATL). The goal of this study was to determine whether preoperative language mapping using functional magnetic resonance imaging (fMRI) is useful for predicting which patients are likely to experience verbal memory decline after L-ATL. Methods Sixty L-ATL patients underwent preoperative language mapping with fMRI, preoperative intracarotid amobarbital (Wada) testing for language and memory lateralization, and pre- and postoperative neuropsychological testing. Demographic, historical, neuropsychological, and imaging variables were examined for their ability to predict pre- to postoperative memory change. Results Verbal memory decline occurred in over 30% of patients. Good preoperative performance, late age at onset of epilepsy, left dominance on fMRI, and left dominance on the Wada test were each predictive of memory decline. Preoperative performance and age at onset together accounted for roughly 50% of the variance in memory outcome (p < .001), and fMRI explained an additional 10% of this variance (p ≤ .003). Neither Wada memory asymmetry nor Wada language asymmetry added additional predictive power beyond these noninvasive measures. Discussion Preoperative fMRI is useful for identifying patients at high risk for verbal memory decline prior to L-ATL surgery. Lateralization of language is correlated with lateralization of verbal memory, whereas Wada memory testing is either insufficiently reliable or insufficiently material-specific to accurately localize verbal memory processes. PMID:18435753

  8. Improved arterial blood oxygenation following intravenous infusion of cold supersaturated dissolved oxygen solution.

    PubMed

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.

  9. Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored product pests

    USDA-ARS?s Scientific Manuscript database

    Cereals have storage proteins with high amounts of the amino acids glutamine and proline. Therefore, storage pests need to have digestive enzymes that are efficient in hydrolyzing these types of proteins. Post-glutamine cleaving peptidases (PGP) were isolated from the midgut of the stored product pe...

  10. Effects of Carbohydrate and Glutamine Supplementation on Oral Mucosa Immunity after Strenuous Exercise at High Altitude: A Double-Blind Randomized Trial

    PubMed Central

    Caris, Aline Venticinque; Da Silva, Edgar Tavares; Dos Santos, Samile Amorim; Tufik, Sergio

    2017-01-01

    This study analyzed the effects of carbohydrate and glutamine supplementation on salivary immunity after exercise at a simulated altitude of 4500 m. Fifteen volunteers performed exercise of 70% of VO2peak until exhaustion and were divided into three groups: hypoxia placebo, hypoxia 8% maltodextrin (200 mL/20 min), and hypoxia after six days glutamine (20 g/day) and 8% maltodextrin (200 mL/20 min). All procedures were randomized and double-blind. Saliva was collected at rest (basal), before exercise (pre-exercise), immediately after exercise (post-exercise), and two hours after exercise. Analysis of Variance (ANOVA) for repeated measures and Tukey post hoc test were performed. Statistical significance was set at p < 0.05. SaO2% reduced when comparing baseline vs. pre-exercise, post-exercise, and after recovery for all three groups. There was also a reduction of SaO2% in pre-exercise vs. post-exercise for the hypoxia group and an increase was observed in pre-exercise vs. recovery for both supplementation groups, and between post-exercise and for the three groups studied. There was an increase of salivary flow in post-exercise vs. recovery in Hypoxia + Carbohydrate group. Immunoglobulin A (IgA) decreased from baseline vs. post-exercise for Hypoxia + Glutamine group. Interleukin 10 (IL-10) increased from post-exercise vs. after recovery in Hypoxia + Carbohydrate group. Reduction of tumor necrosis factor alpha (TNF-α) was observed from baseline vs. post-exercise and after recovery for the Hypoxia + Carbohydrate group; a lower concentration was observed in pre-exercise vs. post-exercise and recovery. TNF-α had a reduction from baseline vs. post-exercise for both supplementation groups, and a lower secretion between baseline vs. recovery, and pre-exercise vs. post-exercise for Hypoxia + Carbohydrate group. Five hours of hypoxia and exercise did not change IgA. Carbohydrates, with greater efficiency than glutamine, induced anti-inflammatory responses. PMID:28671626

  11. miR-137 inhibits glutamine catabolism and growth of malignant melanoma by targeting glutaminase.

    PubMed

    Luan, Wenkang; Zhou, Zhou; Zhu, Yan; Xia, Yun; Wang, Jinlong; Xu, Bin

    2018-01-01

    Glutamine catabolism is considered to be an important metabolic pathway for cancer cells. Glutaminase (GLS) is the important rate-limiting enzyme of glutamine catabolism. miR-137 functions as a tumor suppressor in many human malignant tumors. However, the role and molecular mechanism of miR-137 and GLS in malignant melanoma has not been reported. In this study, we showed that miR-137 was decreased in melanoma tissue, and the low miR-137 level and high GLS expression are independent risk factor in melanoma. miR-137 suppressed the proliferation and glutamine catabolism of melanoma cells. GLS is crucial for glutamine catabolism and growth of malignant melanoma. We also demonstrated that miR-137 acts as a tumor suppressor in melanoma by targeting GLS. This result elucidates a new mechanism for miR-137 in melanoma development and provides a survival indicator and potential therapeutic target for melanoma patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Zoledronic acid infusion for lumbar interbody fusion in osteoporosis.

    PubMed

    Tu, Chao-Wei; Huang, Kuo-Feng; Hsu, Hsien-Ta; Li, Hung-Yu; Yang, Stephen Shei-Dei; Chen, Yi-Chu

    2014-11-01

    Clinical outcomes of intravenous (IV) infusion of zoledronic acid (ZOL) for lumbar interbody fusion surgery (LIFS) remain unknown. We investigated the efficacy of IV ZOL on clinical outcome and bone fusion after LIFS. We retrospectively analyzed 64 patients with both degenerative lumbar spondylolisthesis and osteoporosis who underwent LIFS from January 2007 to April 2010. All patients were followed up for 2 y. Thirty-two were treated with an IV infusion of ZOL 3 d after surgery and a second injection 1 y later, and the other 32 patients did not receive ZOL. Preoperatively and every 3 mo postoperatively, oswestry disability index questionnaire and visual analog scale (VAS) scores for back and leg were compared. Preoperative and final postoperative follow-up to evaluate for subsequent compression fractures were also performed. Pedicle screw loosening, cage subsidence, and fusion rate were documented 2 y after surgery. At 2-y follow-up, a solid fusion was achieved in 75% of the ZOL group and only 56% of the control group. At final follow up, the incidence of final subsequent vertebral compression fractures (19% of the ZOL group and 51% of the control group, P = 0.006), pedicle screw loosening (18% of the ZOL group and 45% of the control group, P = 0.03), and cage subsidence >2 mm (28% of the ZOL group and only 54% of the control group, P = 0.04) were significantly lower in the ZOL group than in the control group. The ZOL group demonstrated improvement in VAS (for leg pain VAS, 2/10 for the ZOL group and 5/10 for the control group; for back pain VAS, 2/10 for the ZOL group and 6/10 for the control group) and oswestry disability index scores (7/25 for the ZOL group and 16/25 for the control group). ZOL treatment has beneficial effects on instrumented LIFS both radiographic and clinically. Thus, ZOL treatment can be recommended for osteoporosis patients undergoing LIFS. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Retinoic acid-related orphan receptor alpha reprograms glucose metabolism in glutamine-deficient hepatoma cells.

    PubMed

    Byun, Jun-Kyu; Choi, Yeon-Kyung; Kang, Yu Na; Jang, Byoung Kuk; Kang, Koo Jeong; Jeon, Yong Hyun; Lee, Ho-Won; Jeon, Jae-Han; Koo, Seung-Hoi; Jeong, Won-Il; Harris, Robert A; Lee, In-Kyu; Park, Keun-Gyu

    2015-03-01

    The metabolism of glutamine and glucose is recognized as a promising therapeutic target for the treatment of cancer; however, targeted molecules that mediate glutamine and glucose metabolism in cancer cells have not been addressed. Here, we show that restricting the supply of glutamine in hepatoma cells, including HepG2 and Hep3B cells, markedly increased the expression of retinoic acid-related orphan receptor alpha (RORα). Up-regulation of RORα in glutamine-deficient hepatoma cells resulted from an increase in the level of cellular reactive oxygen species and in the nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide phosphate reduced (NADP+ /NADPH) ratio, which was consistent with a reduction in the glutathione/glutathione disulfide (GSH/GSSG) ratio. Adenovirus (Ad)-mediated overexpression of RORα (Ad-RORα) or treatment with the RORα activator, SR1078, reduced aerobic glycolysis and down-regulated biosynthetic pathways in hepatoma cells. Ad-RORα and SR1078 reduced the expression of pyruvate dehydrogenase kinase 2 (PDK2) and inhibited the phosphorylation of pyruvate dehydrogenase and subsequently shifted pyruvate to complete oxidation. The RORα-mediated decrease in PDK2 levels was caused by up-regulation of p21, rather than p53. Furthermore, RORα inhibited hepatoma growth both in vitro and in a xenograft model in vivo. We also found that suppression of PDK2 inhibited hepatoma growth in a xenograft model. These findings mimic the altered glucose utilization and hepatoma growth caused by glutamine deprivation. Finally, tumor tissue from 187 hepatocellular carcinoma patients expressed lower levels of RORα than adjacent nontumor tissue, supporting a potential beneficial effect of RORα activation in the treatment of liver cancer. RORα mediates reprogramming of glucose metabolism in hepatoma cells in response to glutamine deficiency. The relationships established here between glutamine metabolism, RORα expression and signaling, and

  14. Overexpression of a glutamine synthetase gene affects growth and development in sorghum.

    PubMed

    Urriola, Jazmina; Rathore, Keerti S

    2015-06-01

    Nitrogen is a primary macronutrient in plants, and nitrogen fertilizers play a critical role in crop production and yield. In this study, we investigated the effects of overexpressing a glutamine synthetase (GS) gene on nitrogen metabolism, and plant growth and development in sorghum (Sorghum bicolor L., Moench). GS catalyzes the ATP dependent reaction between ammonia and glutamate to produce glutamine. A 1,071 bp long coding sequence of a sorghum cytosolic GS gene (Gln1) under the control of the maize ubiquitin (Ubq) promoter was introduced into sorghum immature embryos by Agrobacterium-mediated transformation. Progeny of the transformants exhibited higher accumulation of the Gln1 transcripts and up to 2.2-fold higher GS activity compared to the non-transgenic controls. When grown under optimal nitrogen conditions, these Gln1 transgenic lines showed greater tillering and up to 2.1-fold increase in shoot vegetative biomass. Interestingly, even under greenhouse conditions, we observed a seasonal component to both these parameters and the grain yield. Our results, showing that the growth and development of sorghum Gln1 transformants are also affected by N availability and other environmental factors, suggest complexity of the relationship between GS activity and plant growth and development. A better understanding of other control points and the ability to manipulate these will be needed to utilize the transgenic technology to improve nitrogen use efficiency of crop plants.

  15. Effect of Intravenous Infusion Solutions on Bioelectrical Impedance Spectroscopy.

    PubMed

    Yap, Jason; Rafii, Mahroukh; Azcue, Maria; Pencharz, Paul

    2017-05-01

    Bioelectrical impedance (BIA) is often used to measure body fluid spaces and thereby body composition. However, in acute animal studies, we found that impedance was driven by the saline content of intravenous (IV) fluids and not by the volume. The aim of the study was to investigate the effect of 3 different fluids acutely administered on the change in impedance, specifically resistance (R). Nine healthy adults participated in 3 treatment (0.9% saline, 5% dextrose, and a mixture of 0.3% saline + 3.3% dextrose) experiments on nonconsecutive days. They all received 1 L of one of the treatments intravenously over a 1-hour period. Repeated BIA measurements were performed prior to IV infusion and then every 5 minutes for the 1-hour infusion period, plus 3 more measurements up to 15 minutes after the completion of the infusion. The change in R in the 0.9% saline infusion experiment was significantly lower than that of the glucose and mixture treatment ( P < .001). Bioelectrical impedance spectroscopy and BIA measure salt rather than the volume changes over the infusion period. Hence, in patients receiving IV fluids, BIA of any kind (single frequency or multifrequency) cannot be used to measure body fluid spaces or body composition.

  16. Plasma glutamine is a minor precursor for the synthesis of citrulline: A multispecies study

    USDA-ARS?s Scientific Manuscript database

    Glutamine is considered the main precursor for citrulline synthesis in many species, including humans. The transfer of 15N from 2[15N]-glutamine to citrulline has been used as evidence for this precursor-product relationship. However, work in mice has shown that nitrogen and carbon tracers follow di...

  17. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers.

    PubMed

    Chowdhury, Abeed H; Cox, Eleanor F; Francis, Susan T; Lobo, Dileep N

    2012-07-01

    We compared the effects of intravenous infusions of 0.9% saline ([Cl] 154 mmol/L) and Plasma-Lyte 148 ([Cl] 98 mmol/L, Baxter Healthcare) on renal blood flow velocity and perfusion in humans using magnetic resonance imaging (MRI). Animal experiments suggest that hyperchloremia resulting from 0.9% saline infusion may affect renal hemodynamics adversely, a phenomenon not studied in humans. Twelve healthy adult male subjects received 2-L intravenous infusions over 1 hour of 0.9% saline or Plasma-Lyte 148 in a randomized, double-blind manner. Crossover studies were performed 7 to 10 days apart. MRI scanning proceeded for 90 minutes after commencement of infusion to measure renal artery blood flow velocity and renal cortical perfusion. Blood was sampled and weight recorded hourly for 4 hours. Sustained hyperchloremia was seen with saline but not with Plasma-Lyte 148 (P < 0.0001), and fall in strong ion difference was greater with the former (P = 0.025). Blood volume changes were identical (P = 0.867), but there was greater expansion of the extravascular fluid volume after saline (P = 0.029). There was a significant reduction in mean renal artery flow velocity (P = 0.045) and renal cortical tissue perfusion (P = 0.008) from baseline after saline, but not after Plasma-Lyte 148. There was no difference in concentrations of urinary neutrophil gelatinase-associated lipocalin after the 2 infusions (P = 0.917). This is the first human study to demonstrate that intravenous infusion of 0.9% saline results in reductions in renal blood flow velocity and renal cortical tissue perfusion. This has implications for intravenous fluid therapy in perioperative and critically ill patients. NCT01087853.

  18. Antagonizing Bcl-2 Family Members Sensitizes Neuroblastoma and Ewing’s Sarcoma to an Inhibitor of Glutamine Metabolism

    PubMed Central

    Olsen, Rachelle R.; Mary-Sinclair, Michelle N.; Yin, Zhirong; Freeman, Kevin W.

    2015-01-01

    Neuroblastomas (NBL) and Ewing’s sarcomas (EWS) together cause 18% of all pediatric cancer deaths. Though there is growing interest in targeting the dysregulated metabolism of cancer as a therapeutic strategy, this approach has not been fully examined in NBL and EWS. In this study, we first tested a panel of metabolic inhibitors and identified the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON) as the most potent chemotherapeutic across all NBL and EWS cell lines tested. Myc, a master regulator of metabolism, is commonly overexpressed in both of these pediatric malignancies and recent studies have established that Myc causes cancer cells to become “addicted” to glutamine. We found DON strongly inhibited tumor growth of multiple tumor lines in mouse xenograft models. In vitro, inhibition of caspases partially reversed the effects of DON in high Myc expressing cell lines, but not in low Myc expressing lines. We further showed that induction of apoptosis by DON in Myc-overexpressing cancers is via the pro-apoptotic factor Bax. To relieve inhibition of Bax, we tested DON in combination with the Bcl-2 family antagonist navitoclax (ABT-263). In vitro, this combination caused an increase in DON activity across the entire panel of cell lines tested, with synergistic effects in two of the N-Myc amplified neuroblastoma cell lines. Our study supports targeting glutamine metabolism to treat Myc overexpressing cancers, such as NBL and EWS, particularly in combination with Bcl-2 family antagonists. PMID:25615615

  19. Rapid-infusion rituximab in lymphoma treatment: 2-year experience in a single institution.

    PubMed

    Atay, Sevcan; Barista, Ibrahim; Gundogdu, Fatma; Akgedik, Kiymet; Arpaci, Afey

    2012-05-01

    Rituximab is a chimeric anti-CD20 monoclonal antibody. We aimed to explore the safety and tolerability of rapid infusion rituximab, (over 90 minutes) in patients with non-Hodgkin's lymphoma at Hacettepe University Department of Medical Oncology. Adult patients diagnosed with non-Hodgkin's lymphoma who were to receive rituximab were included in the study. The schedule of administration for cycle 1 was unaltered and delivered according to the product monograph. All subsequent cycles were administered over a total infusion time of 90 minutes (20% of the dose in the first 30 minutes, then the remaining 80% over 60 minutes, total dose delivered in 500 mL). All patients were observed for infusion-related reactions during the rituximab infusion, and vital signs were recorded every 15 minutes. From July 2006 to December 2008, 75 patients with non-Hodgkin's lymphoma were treated with rituximab-based chemotherapy. A total of 372 infusions were administered. The majority of patients were treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone, or rituximab only. The 90-minute rituximab infusion schedule was well tolerated, with no grade 3 or 4 infusion-related adverse events observed. A rapid infusion rituximab over 90 minutes is well tolerated and safe when administered as the second and subsequent infusions in the course of therapy.

  20. Targeted benefits of prolonged-infusion piperacillin-tazobactam in an in vitro infection model of Pseudomonas aeruginosa.

    PubMed

    Zelenitsky, S; Nash, J; Weber, Z; Iacovides, H; Ariano, R

    2016-10-01

    Given the inconsistent clinical findings, our goal was to characterize the pharmacodynamics (PDs) of prolonged-infusion piperacillin-tazobactam (TZP) in an in vitro pharmacodynamic model of Pseudomonas aeruginosa. Specifically, the study was designed to investigate the influence of MIC on the activity of prolonged-infusion TZP using pharmacokinetics (PKs) consistent with a non-critically ill patient population. There was no benefit with prolonged- compared with standard-infusion TZP against isolates with susceptible MICs of 8 or 16 mg/L. However, prolonged-infusion TZP produced more than two times the final bacterial kill against less susceptible isolates with an intermediate MIC of 32 mg/L. The PDs of TZP were well described by a sigmoid Emax model (r(2) = 0.84) where %ƒT>MIC thresholds of 27 and 75% were associated with bacteriostatic and bactericidal effects, respectively. However, the well-established PD relationship with %ƒT>MIC was not observed with prolonged-infusion TZP. In conclusion, this study characterizes the targeted benefits of prolong-infusion TZP based on pathogen MIC, and supports the assertion that the benefits are selective and most likely observed in patients with less susceptible pathogens or altered PKs.

  1. [The impact of preoperative biliary drainage on surgical morbidity in hilar cholangiocarcinoma patients].

    PubMed

    Li, Shao-qiang; Chen, Dong; Liang, Li-jian; Peng, Bao-gang; Yin, Xiao-yu

    2009-08-01

    To evaluate the impact of preoperative biliary drainage on surgical morbidity in hilar cholangiocarcinoma patients underwent surgery. One hundred and eleven consecutive patients with hilar cholangiocarcinoma whose serum total bilirubin (TBIL) level > 85 micromol/L and underwent surgery in the period from June 1998 to August 2007 were enrolled. There were 67 male and 44 female patients, aged from 26 to 82 years old with a mean of 56 years old. Fifty-five patients underwent preoperative biliary drainage with a mean of 11.4 d of drainage period (drainage group), the other (n = 56) were the non-drainage group. The preoperative TBIL level of drainage group was (154 +/- 69) micromol/L, which was significantly lower than the value of pre-drainage (256 +/- 136) micromol/L (P = 0.000) and the value of non-drainage group (268 +/- 174) micromol/L (P = 0.005). ALT and GGT levels could be lowered by preoperative biliary drainage. The postoperative complications of these two groups were comparable (36.3% vs. 28.6%, P = 0.381). Four patients in drainage group and 5 patients in non-drainage group died of liver failure. Multivariate logistic regression indicated that hepatectomy (OR = 0.284, P = 0.003) was the independent risk factor associated with postoperative morbidity. Bismuth-Corlette classification (OR = 0.211, P = 0.028) was the independent risk factor linked to postoperative mortality. Preoperative biliary drainage could alleviate liver injury due to hyperbilirubin, but it could not decrease the surgical morbidity and postoperative mortality. Concomitant hepatectomy and Bismuth-Corlette classification were independent risk factors linked to surgical risks.

  2. Assessment of right liver graft perfusion effectiveness between one and two-catheter infusion methods.

    PubMed

    Jung, Bo-Hyun; Hwang, Shin; Ha, Tae-Yong; Song, Gi-Won; Jung, Dong-Hwan; Kim, Ki-Hun; Ahn, Chul-Soo; Moon, Deok-Bog; Park, Gil-Chun; Kang, Sung-Hwa; Yoon, Young-In; Lee, Sung-Gyu

    2014-05-01

    Conventional graft perfusion method using one small-caliber catheter takes a relatively long time for right liver graft perfusion, thus some modification is needed. In this study, we intended to assess the effectiveness of right liver graft perfusion methods through comparison of different infusion catheters. The study consisted of two parts including one bench experiment to obtain data of hydraulic infusion and one clinical trial of 40 cases on graft perfusion with one- versus two-catheter infusion methods. These two graft infusion methods were compared in terms of the perfusion time and washing-out efficiency. At bench experiment, the infusion flow rate and infusion pressure were 3.3 ml/sec and 1.9 cmH20 in one blood transfusion catheter group, and 11.7 ml/sec and 3.1 cmH20 in single transurethral resection of prostate irrigation catheter group, and 6.6 ml/sec and 2.0 cmH20 in two blood transfusion catheters group, respectively. In clinical trial with 40 right liver grafts, two-catheter group had a shorter graft portal perfusion time for the first 2 L of histidine-tryptophan-ketoglutarate (HTK) solution than the conventional one-catheter group (375±25 seconds vs. 662±34 seconds; p=0.001) and a lower rate of incomplete blood washing-out after the initial 2 L portal perfusion (40% vs. 85%; p=0.03). The two-catheter infusion method appears to be more effective than the conventional one-catheter infusion method for right liver graft perfusion at the back table. Large size of right liver grafts seems to be its good indication.

  3. [High dose L-dopa infusion during general anesthesia for gastrectomy in a patient with parkinsonism].

    PubMed

    Horai, Tetsuya; Nishiyama, Tomoki; Yamamoto, Hirotoshi; Hanaoka, Kazuo

    2002-01-01

    A 68-year-old man with parkinsonism was scheduled for gastrectomy. Levodopa 1400 mg, droxidopa 300 mg and bromocriptine-mesylate 7.5 mg had been administered orally per day to control the symptom before surgery. On the day before surgery, oral medication was stopped and intravenous infusion of levodopa 100 mg.h-1 was started. Without any premedication but with levodopa infusion, anesthesia was induced with thiopental 175 mg and fentanyl 0.05 mg. Tracheal intubation was facilitated with vecuronium 6 mg and an epidural catheter was inserted. Anesthesia was maintained with O2, N2O and sevoflurane, combined with epidural block using mepivacaine. When blood pressure decreased, phenylephrine but not ephedrine was effective to increase blood pressure. Intravenous infusion of levodopa was continued for 19 days with decreasing doses from 8th postoperative day when injection of levodopa into the intestinal tube was started. On the 53rd day, he left the hospital without any complications. Serum concentrations of levodopa during and after surgery were 50 to 100 times higher than the therapeutic levels. However, he developed no complications, which suggests a wide safety range of levodopa. In conclusion, high dose levodopa infusion was effective in controlling the symptoms of Parkinsonism during general anesthesia.

  4. Proline oxidase controls proline, glutamate, and glutamine cellular concentrations in a U87 glioblastoma cell line.

    PubMed

    Cappelletti, Pamela; Tallarita, Elena; Rabattoni, Valentina; Campomenosi, Paola; Sacchi, Silvia; Pollegioni, Loredano

    2018-01-01

    L-Proline is a multifunctional amino acid that plays an essential role in primary metabolism and physiological functions. Proline is oxidized to glutamate in the mitochondria and the FAD-containing enzyme proline oxidase (PO) catalyzes the first step in L-proline degradation pathway. Alterations in proline metabolism have been described in various human diseases, such as hyperprolinemia type I, velo-cardio-facial syndrome/Di George syndrome, schizophrenia and cancer. In particular, the mutation giving rise to the substitution Leu441Pro was identified in patients suffering of schizophrenia and hyperprolinemia type I. Here, we report on the expression of wild-type and L441P variants of human PO in a U87 glioblastoma human cell line in an attempt to assess their effect on glutamate metabolism. The subcellular localization of the flavoenzyme is not altered in the L441P variant, for which specific activity is halved compared to the wild-type PO. While this decrease in activity is significantly less than that previously proposed, an effect of the substitution on the enzyme stability is also apparent in our studies. At 24 hours of growth from transient transfection, the intracellular level of proline, glutamate, and glutamine is decreased in cells expressing the PO variants as compared to control U87 cells, reaching a similar figure at 72 h. On the other hand, the extracellular levels of the three selected amino acids show a similar time course for all clones. Furthermore, PO overexpression does not modify to a significant extent the expression of GLAST and GLT-1 glutamate transporters. Altogether, these results demonstrate that the proline pathway links cellular proline levels with those of glutamate and glutamine. On this side, PO might play a regulatory role in glutamatergic neurotransmission by affecting the cellular concentration of glutamate.

  5. Complication Rates of 3% Hypertonic Saline Infusion Through Peripheral Intravenous Access.

    PubMed

    Perez, Claudia Andira; Figueroa, Stephen A

    2017-06-01

    Hyperosmolar therapy with hypertonic saline (HTS) is a cornerstone in the management of intracranial hypertension and hyponatremia in the neurological intensive care unit. Theoretical safety concerns remain for infiltration, thrombophlebitis, tissue ischemia, and venous thrombosis associated with continuous 3% HTS administered via peripheral intravenous (pIV) catheters. It is common practice at many institutions to allow only central venous catheter infusion of 3% HTS. Hospital policy was changed to allow the administration of 3% HTS via 16- to 20-gauge pIVs to a maximum infusion rate of 50 mL/h in patients without central venous access. We prospectively monitored patients who received peripheral 3% HTS as part of a quality improvement project. We documented gauge, location, maximum infusion rate, and total hours of administration. Patients were assessed for infiltration, erythema, swelling, phlebitis, thrombosis, and line infection. There were 28 subjects across 34 peripheral lines monitored. Overall, subjects received 3% HTS for a duration between 1 and 124 hours with infusion rates of 30 to 50 mL/h. The rate of complications observed was 10.7% among all subjects. Documented complications included infiltration (n = 2), with an incidence of 6%, and thrombophlebitis (n = 1), with an incidence of 3%. There has been a long concern among healthcare providers, including nursing staff, in regard to pIV administration of prolonged 3% HTS infusion therapy. Our study indicates that peripheral administration of 3% HTS carries a low risk of minor, nonlimb, or life-threatening complications. Although central venous infusion may reduce the risk of these minor complications, it may increase the risk of more serious complications such as large vessel thrombosis, bloodstream infection, pneumothorax, and arterial injury. The concern regarding the risks of pIV administration of 3% HTS may be overstated and unfounded.

  6. Successful Preoperative Chemoembolization in the Treatment of a Giant Malignant Phyllodes Tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Kazuki, E-mail: kazkik1980@gmail.com; Mimura, Hidefumi; Arai, Yasunori

    The malignant phyllodes tumor is a relatively rare neoplasm and has not previously been a therapeutic target of interventional radiology. Herein, we report a successful case of preoperative chemoembolization of a giant malignant phyllodes tumor. The objective was to achieve sufficient tumor shrinkage before surgery to avoid the requirement for skin grafting after resection. Intra-arterial epirubicin infusion and subsequent embolization with Embosphere Microspheres (BioSphere Medical, Rockland, MA, USA) was undertaken three times over the course of 6 weeks and was well tolerated. The patient underwent surgery without skin grafting. Neither local recurrence nor distant metastasis was observed at 6 months after surgery.

  7. The prophylactic and therapeutic effects of glutamine- and arginine-enriched diets on radiation-induced enteritis in rats.

    PubMed

    Ersin, S; Tuncyurek, P; Esassolak, M; Alkanat, M; Buke, C; Yilmaz, M; Telefoncu, A; Kose, T

    2000-04-01

    Recent studies indicated that glutamine and arginine support the mucosal barrier in several ways. This experimental study hypothesized that administration of glutamine- and arginine-enriched diets before abdominal radiation therapy would provide a radioprotective effect on intestinal mucosa, and this would augment the therapeutic effectiveness provided by postirradiation administration. A rat model of radiation enteritis was designed with a single dose of 1100 cGy to the abdomen. Thirty-five rats were randomized into five groups of seven. A 7-day glutamine-enriched diet for Group I and a 7-day arginine-enriched diet for Group II were administered both pre- and postradiation. For Groups III and IV, the same glutamine and arginine diets were given, respectively, postradiation only. Group V was fed a glutamine- and arginine-free diet and was the control group. The rats underwent laparotomy for culture of mesenteric lymph nodes and removal of segments of ileum, jejenum, and colon for microscopic examination. Bacterial translocation was significantly higher in Group V (P < 0.05), while intestinal villus count and villus height were significantly higher in all of the groups fed glutamine and arginine when compared with the control group (P < 0.0001 and P < 0.05, respectively). Both arginine- and glutamine-enriched diets have protective effects on gut mucosa in the postirradiation state; however, pre- and postirradiation administration together does not provide superior protection versus postradiation administration alone. Copyright 2000 Academic Press.

  8. Cerebral glucose metabolism and the glutamine cycle as detected by in vivo and in vitro 13C NMR spectroscopy.

    PubMed

    García-Espinosa, María A; Rodrigues, Tiago B; Sierra, Alejandra; Benito, Marina; Fonseca, Carla; Gray, Heather L; Bartnik, Brenda L; García-Martín, María L; Ballesteros, Paloma; Cerdán, Sebastián

    2004-01-01

    We review briefly 13C NMR studies of cerebral glucose metabolism with an emphasis on the roles of glial energetics and the glutamine cycle. Mathematical modeling analysis of in vivo 13C turnover experiments from the C4 carbons of glutamate and glutamine are consistent with: (i) the glutamine cycle being the major cerebral metabolic route supporting glutamatergic neurotransmission, (ii) glial glutamine synthesis being stoichiometrically coupled to glycolytic ATP production, (iii) glutamine serving as the main precursor of neurotransmitter glutamate and (iv) glutamatergic neurotransmission being supported by lactate oxidation in the neurons in a process accounting for 60-80% of the energy derived from glucose catabolism. However, more recent experimental approaches using inhibitors of the glial tricarboxylic acid (TCA) cycle (trifluoroacetic acid, TFA) or of glutamine synthase (methionine sulfoximine, MSO) reveal that a considerable portion of the energy required to support glutamine synthesis is derived from the oxidative metabolism of glucose in the astroglia and that a significant amount of the neurotransmitter glutamate is produced from neuronal glucose or lactate rather than from glial glutamine. Moreover, a redox switch has been proposed that allows the neurons to use either glucose or lactate as substrates for oxidation, depending on the relative availability of these fuels under resting or activation conditions, respectively. Together, these results suggest that the coupling mechanisms between neuronal and glial metabolism are more complex than initially envisioned.

  9. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structure of the Cell Wall of Bacillus stearothermophilus: Mode of Action of a Thermophilic Bacteriophage Lytic Enzyme

    PubMed Central

    Welker, N. E.

    1971-01-01

    The mode of action of a bacteriophage lytic enzyme on cell walls of Bacillus stearothermophilus (NCA 1503-4R) has been investigated. The enzyme is an endopeptidase which catalyzes the hydrolysis of the l-alanyl-d-glutamyl linkage in peptide subunits of the cell wall peptidoglycan. Preliminary studies on the soluble components in lytic cell wall digests indicate that the glycan moiety is composed of alternating glucosamine and muramic acid; one half of the muramic acid residues contain the tripeptide, l-alanyl-d-glutamyldiaminopimelic acid, and the remaining residues contain the tetrapeptide, l-alanyl-d-glutamyldiaminopimeyl-d-alanine. Almost one half of the peptide subunits are involved in cross-linkages of chemotype I. A structure for the cell wall peptidoglycan is proposed in the light of these findings. PMID:4255338

  11. Function of a Glutamine Synthetase-Like Protein in Bacterial Aniline Oxidation via γ-Glutamylanilide

    PubMed Central

    Ohara, Akira; Sakae, Shinji; Okamoto, Yasuhiro; Kitamura, Chitoshi; Kato, Dai-ichiro; Negoro, Seiji

    2013-01-01

    Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell. PMID:23893114

  12. Function of a glutamine synthetase-like protein in bacterial aniline oxidation via γ-glutamylanilide.

    PubMed

    Takeo, Masahiro; Ohara, Akira; Sakae, Shinji; Okamoto, Yasuhiro; Kitamura, Chitoshi; Kato, Dai-ichiro; Negoro, Seiji

    2013-10-01

    Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell.

  13. Effect of flow rate and insulin priming on the recovery of insulin from microbore infusion tubing.

    PubMed

    Fuloria, M; Friedberg, M A; DuRant, R H; Aschner, J L

    1998-12-01

    A retrospective medical record review of 13 consecutive, hyperglycemic, extremely low birth weight (ELBW) infants treated with continuous insulin infusions revealed a 14- to 24-hour delay (mean, 19 hours) in blood glucose normalization despite stepwise increases in insulin infusion rates. This in vitro study examined the effects of flow rate and insulin priming on insulin recovery from polyvinyl chloride (PVC) tubing and polyethylene (PE)-lined PVC tubing infused with a standard insulin stock solution. Stock insulin solution (0.2 U/mL) was infused through microbore PVC or PE-lined tubing at flow rates of 0.05 and 0.2 mL/h. To determine if saturation of nonspecific binding sites would alter effluent insulin concentration, we compared insulin recovery from tubing previously flushed with the stock solution and tubing primed with 5 U/mL of insulin for 20 minutes. Effluent samples, which were collected at baseline and at six time points during a 24-hour period, were immediately frozen at -20 degreesC. Insulin concentration was measured by IMx immunoassay. Data were analyzed using general linear modeling with repeated measures. At 0.05 mL/h flow rate, insulin recovery from unprimed PVC tubing at 1, 2, 4, and 8 hours was 17%, 11%, 27%, and 55%, respectively, with 100% recovery at 24 hours. From insulin-primed tubing, insulin recovery was approximately 70% at 1, 2, and 4 hours, and close to 100% at 8 hours. At a faster flow rate of 0.2 mL/h, insulin recovery at 1, 2, 4, and 8 hours was 22%, 38%, 67%, and 75% vs 42%, 85%, 91% and 95% from unprimed and insulin-primed PVC tubing, respectively. Similar results were obtained from unprimed and insulin-primed PE-lined tubing at 0.2 mL/h flow rate. Priming of microbore tubing with 5 U/mL of insulin solution for 20 minutes to block nonspecific binding sites enhances delivery of a standard insulin stock at infusion rates typically used to treat hyperglycemic ELBW infants. We conclude that priming the tubing with a higher

  14. Safety of high volume lipid emulsion infusion: a first approximation of LD50 in rats.

    PubMed

    Hiller, David B; Di Gregorio, Guido; Kelly, Kemba; Ripper, Richard; Edelman, Lucas; Boumendjel, Redouane; Drasner, Kenneth; Weinberg, Guy L

    2010-01-01

    Lipid infusion reverses systemic local anesthetic toxicity. The acceptable upper limit for lipid administration is unknown and has direct bearing on clinical management. We hypothesize that high volumes of lipid could have undesirable effects and sought to identify the dose required to kill 50% of the animals (LD(50)) of large volume lipid administration. Intravenous lines and electrocardiogram electrodes were placed in anesthetized, male Sprague-Dawley rats. Twenty percent lipid emulsion (20, 40, 60, or 80 mL/kg) or saline (60 or 80 mL/kg), were administered over 30 mins; lipid dosing was assigned by the Dixon "up-and-down" method. Rats were recovered and observed for 48 hrs then euthanized for histologic analysis of major organs. Three additional rats were administered 60 mL/kg lipid emulsion and euthanized at 1, 4, and 24 hrs to identify progression of organ damage. The maximum likelihood estimate for LD(50) was 67.72 (SE, 10.69) mL/kg. Triglycerides were elevated immediately after infusion but returned to baseline by 48 hrs when laboratory abnormalities included elevated amylase, aspartate aminotransferase, and serum urea nitrogen for all lipid doses. Histologic diagnosis of myocardium, brain, pancreas, and kidneys was normal at all doses. Microscopic abnormalities in lung and liver were observed at 60 and 80 mL/kg; histopathology in the lung and liver was worse at 1 hr than at 4 and 24 hrs. The LD(50) of rapid, high volume lipid infusion is an order of magnitude greater than doses typically used for lipid rescue in humans and supports the safety of lipid infusion at currently recommended doses for toxin-induced cardiac arrest. Lung and liver histopathology was observed at the highest infused volumes.

  15. Effects of exercise on leukocyte death: prevention by hydrolyzed whey protein enriched with glutamine dipeptide.

    PubMed

    Cury-Boaventura, Maria Fernanda; Levada-Pires, Adriana C; Folador, Alessandra; Gorjão, Renata; Alba-Loureiro, Tatiana C; Hirabara, Sandro M; Peres, Fabiano P; Silva, Paulo R S; Curi, Rui; Pithon-Curi, Tania C

    2008-06-01

    Lymphocyte and neutrophil death induced by exercise and the role of hydrolyzed whey protein enriched with glutamine dipeptide (Gln) supplementation was investigated. Nine triathletes performed two exhaustive exercise trials with a 1-week interval in a randomized, double blind, crossover protocol. Thirty minutes before treadmill exhaustive exercise at variable speeds in an inclination of 1% the subjects ingested 50 g of maltodextrin (placebo) or 50 g of maltodextrin plus 4 tablets of 700 mg of hydrolyzed whey protein enriched with 175 mg of glutamine dipeptide dissolved in 250 mL water. Cell viability, DNA fragmentation, mitochondrial transmembrane potential and production of reactive oxygen species (ROS) were determined in lymphocytes and neutrophils. Exhaustive exercise decreased viable lymphocytes but had no effect on neutrophils. A 2.2-fold increase in the proportion of lymphocytes and neutrophils with depolarized mitochondria was observed after exhaustive exercise. Supplementation of maltodextrin plus Gln (MGln) prevented the loss of lymphocyte membrane integrity and the mitochondrial membrane depolarization induced by exercise. Exercise caused an increase in ROS production by neutrophils, whereas supplementation of MGln had no additional effect. MGln supplementation partially prevented lymphocyte apoptosis induced by exhaustive exercise possibly by a protective effect on mitochondrial function.

  16. Improved Arterial Blood Oxygenation Following Intravenous Infusion of Cold Supersaturated Dissolved Oxygen Solution

    PubMed Central

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    BACKGROUND One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. METHODS Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer’s lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. RESULTS Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. CONCLUSIONS A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model. PMID:25249764

  17. Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids.

    PubMed

    Pereira, Carla; Barros, Lillian; Carvalho, Ana Maria; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2015-01-01

    Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn (milk thistle) are two herbs well-known for their efficiency in the prevention/treatment of liver injuries, among other chronic diseases. Therefore, the aim of this work was to characterize specific bioactive components, phenolic compounds, in hydromethanolic extracts but also in infusions (the most commonly used preparations) obtained from the whole plant of milk thistle and artichoke. The phenolic profiles were accessed using HPLC-DAD-MS/ESI. Infusions of both species presented higher phenolic contents than the hydromethanolic extracts. Milk thistle presented a similar phenolic composition between the two preparations, revealing only differences in the quantities obtained. Nevertheless, artichoke revealed a slightly different profile considering infusion and hydromethanolic extracts. Apigenin-7-O-glucuronide was the major flavonoid found in milk thistle, while luteolin-7-O-glucuronide was the most abundant in artichoke. Therefore, infusions of both artichoke and milk thistle represent a good source of bioactive compounds, especially phenolic acids and flavonoids.

  18. Method of infusion extraction

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R. (Inventor)

    1989-01-01

    Apparatus and method of removing desirable constituents from an infusible material by infusion extraction, where a piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, and where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber.

  19. Evolution of glutamine amidotransferase genes. Nucleotide sequences of the pabA genes from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens.

    PubMed

    Kaplan, J B; Merkel, W K; Nichols, B P

    1985-06-05

    The amide group of glutamine is a source of nitrogen in the biosynthesis of a variety of compounds. These reactions are catalyzed by a group of enzymes known as glutamine amidotransferases; two of these, the glutamine amidotransferase subunits of p-aminobenzoate synthase and anthranilate synthase have been studied in detail and have been shown to be structurally and functionally related. In some micro-organisms, p-aminobenzoate synthase and anthranilate synthase share a common glutamine amidotransferase subunit. We report here the primary DNA and deduced amino acid sequences of the p-aminobenzoate synthase glutamine amidotransferase subunits from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. A comparison of these glutamine amidotransferase sequences to the sequences of ten others, including some that function specifically in either the p-aminobenzoate synthase or anthranilate synthase complexes and some that are shared by both synthase complexes, has revealed several interesting features of the structure and organization of these genes, and has allowed us to speculate as to the evolutionary history of this family of enzymes. We propose a model for the evolution of the p-aminobenzoate synthase and anthranilate synthase glutamine amidotransferase subunits in which the duplication and subsequent divergence of the genetic information encoding a shared glutamine amidotransferase subunit led to the evolution of two new pathway-specific enzymes.

  20. Preoperative pulmonary rehabilitation for marginal-function lung cancer patients.

    PubMed

    Hashmi, Asra; Baciewicz, Frank A; Soubani, Ayman O; Gadgeel, Shirish M

    2017-01-01

    Background This study aimed to evaluate the impact of preoperative pulmonary rehabilitation in lung cancer patients undergoing pulmonary resection surgery with marginal lung function. Methods Short-term outcomes of 42 patients with forced expiratory volume in 1 s < 1.6 L who underwent lung resection between 01/2006 and 12/2010 were reviewed retrospectively. They were divided into group A (no preoperative pulmonary rehabilitation) and group B (receiving pulmonary rehabilitation). In group B, a second set of pulmonary function tests was obtained. Results There were no significant differences in terms of sex, age, race, pathologic stage, operative procedure, or smoking years. Mean forced expiratory volume in 1 s and diffusing capacity for carbon monoxide in group A was 1.40 ± 0.22 L and 10.28 ± 2.64 g∙dL -1 vs. 1.39 ± 0.13 L and 10.75 ± 2.08 g∙dL -1 in group B. Group B showed significant improvement in forced expiratory volume in 1 s from 1.39 ± 0.13 to 1.55 ± 0.06 L ( p = 0.02). Mean intensive care unit stay was 6 ± 5 days in group A vs. 9 ± 9 days in group B ( p = 0.22). Mean hospital stay was 10 ± 4 days in group A vs. 14 ± 9 days in group B ( p = 0.31). There was no significant difference in morbidity or mortality between groups. Conclusion Preoperative pulmonary rehabilitation can significantly improve forced expiratory volume in 1 s in some marginal patients undergoing lung cancer resection. However, it does not improve length of stay, morbidity, or mortality.

  1. Saline infusion sonohysterography.

    PubMed

    2004-01-01

    Saline infusion sonohysterography consists of ultrasonographic imaging of the uterus and uterocervical cavity, using real-time ultrasonography during injection of sterile saline into the uterus. When properly performed, saline infusion sonohysterography can provide information about the uterus and endometrium. The most common indication for sonohysterography is abnormal uterine bleeding. sonohysterography should not be performed in a woman who is pregnant or could be pregnant or in a woman with a pelvic infection or unexplained pelvic tenderness. Physicians who perform or supervise diagnostic saline infusion sonohysterograpy should have training, experience, and demonstrated competence in gynecologic ultrasonography and saline infusion sonohysterography. Portions of this document were developed jointly with the American College of Radiology and the American Institute of Ultrasound in Medicine.

  2. De Novo Glutamine Synthesis

    PubMed Central

    He, Qiao; Shi, Xinchong; Zhang, Linqi; Yi, Chang; Zhang, Xuezhen

    2016-01-01

    Purpose: The aim of this study was to investigate the role of de novo glutamine (Gln) synthesis in the proliferation of C6 glioma cells and its detection with 13N-ammonia. Methods: Chronic Gln-deprived C6 glioma (0.06C6) cells were established. The proliferation rates of C6 and 0.06C6 cells were measured under the conditions of Gln deprivation along with or without the addition of ammonia or glutamine synthetase (GS) inhibitor. 13N-ammonia uptake was assessed in C6 cells by gamma counting and in rats with C6 and 0.06C6 xenografts by micro–positron emission tomography (PET) scanning. The expression of GS in C6 cells and xenografts was assessed by Western blotting and immunohistochemistry, respectively. Results: The Gln-deprived C6 cells showed decreased proliferation ability but had a significant increase in GS expression. Furthermore, we found that low concentration of ammonia was sufficient to maintain the proliferation of Gln-deprived C6 cells, and 13N-ammonia uptake in C6 cells showed Gln-dependent decrease, whereas inhibition of GS markedly reduced the proliferation of C6 cells as well as the uptake of 13N-ammoina. Additionally, microPET/computed tomography exhibited that subcutaneous 0.06C6 xenografts had higher 13N-ammonia uptake and GS expression in contrast to C6 xenografts. Conclusion: De novo Gln synthesis through ammonia–glutamate reaction plays an important role in the proliferation of C6 cells. 13N-ammonia can be a potential metabolic PET tracer for Gln-dependent tumors. PMID:27118759

  3. Infusion volume control and calculation using metronome and drop counter based intravenous infusion therapy helper.

    PubMed

    Park, Kyungnam; Lee, Jangyoung; Kim, Soo-Young; Kim, Jinwoo; Kim, Insoo; Choi, Seung Pill; Jeong, Sikyung; Hong, Sungyoup

    2013-06-01

    This study assessed the method of fluid infusion control using an IntraVenous Infusion Controller (IVIC). Four methods of infusion control (dial flow controller, IV set without correction, IV set with correction and IVIC correction) were used to measure the volume of each technique at two infusion rates. The infused fluid volume with a dial flow controller was significantly larger than other methods. The infused fluid volume was significantly smaller with an IV set without correction over time. Regarding the concordance correlation coefficient (CCC) of infused fluid volume in relation to a target volume, IVIC correction was shown to have the highest level of agreement. The flow rate measured in check mode showed a good agreement with the volume of collected fluid after passing through the IV system. Thus, an IVIC could assist in providing an accurate infusion control. © 2013 Wiley Publishing Asia Pty Ltd.

  4. Rapid-Infusion Rituximab in Lymphoma Treatment: 2-Year Experience in a Single Institution

    PubMed Central

    Atay, Sevcan; Barista, Ibrahim; Gundogdu, Fatma; Akgedik, Kiymet; Arpaci, Afey

    2012-01-01

    Purpose: Rituximab is a chimeric anti-CD20 monoclonal antibody. We aimed to explore the safety and tolerability of rapid infusion rituximab, (over 90 minutes) in patients with non-Hodgkin's lymphoma at Hacettepe University Department of Medical Oncology. Patients and Methods: Adult patients diagnosed with non-Hodgkin's lymphoma who were to receive rituximab were included in the study. The schedule of administration for cycle 1 was unaltered and delivered according to the product monograph. All subsequent cycles were administered over a total infusion time of 90 minutes (20% of the dose in the first 30 minutes, then the remaining 80% over 60 minutes, total dose delivered in 500 mL). All patients were observed for infusion-related reactions during the rituximab infusion, and vital signs were recorded every 15 minutes. Results: From July 2006 to December 2008, 75 patients with non-Hodgkin's lymphoma were treated with rituximab-based chemotherapy. A total of 372 infusions were administered. The majority of patients were treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone, or rituximab only. The 90-minute rituximab infusion schedule was well tolerated, with no grade 3 or 4 infusion-related adverse events observed. Conclusion: A rapid infusion rituximab over 90 minutes is well tolerated and safe when administered as the second and subsequent infusions in the course of therapy. PMID:22942806

  5. Periosteal infusion of bupivacaine/morphine post sternal fracture: a new analgesic technique.

    PubMed

    Duncan, Michael A; McNicholas, Walter; O'Keeffe, Declan; O'Reilly, Maeve

    2002-01-01

    Sternal fracture pain is severe and is difficult to alleviate due to the forces acting on the chest wall during respiration. We describe a continuous infusion regional analgesic technique for pain due to sternal fracture. A 47-year-old woman presented with a spontaneous sternal fracture, precluding effective coughing. Diclofenac and increasing doses of opioids did not give adequate pain relief and led to opioid toxicity. Two brief periods of analgesia were achieved with deep subcutaneous infiltration of bupivacaine. An epidural catheter was positioned periosteally, and an infusion of bupivacaine was commenced at 5 mL/h, achieving long-lasting analgesia. The bupivacaine concentration was reduced in a stepwise fashion from 0.5% to 0.25% and was changed to levobupivacaine after 3 days. Adding morphine (5 mg/60 mL levobupivicaine) permitted a reduction in infusion rate. The catheter was removed after 14 days because a local infection developed that resolved uneventfully with antibiotic therapy. Continuous infusion of local anesthetic and opioid to a sternal fracture site using a periosteally positioned catheter led to successful analgesia and hence improved respiratory function. Clinicians should consider placing a periosteal catheter when pain associated with sternal fracture cannot be adequately controlled with conventional methods.

  6. Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome.

    PubMed

    Soto, María Elena; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Duran-Hernández, Erendira Janet; Pérez-Torres, Israel

    2016-01-01

    Marfan syndrome (MFS) is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL) calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GSSG-R), glutathione (GSH), lipid peroxidation (LPO) index, total antioxidant capacity (TAC), and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p = 0.03), EGPx (p = 0.04), GST (p = 0.03), GSH (p = 0.01), and TAC and ascorbic acid (p = 0.02) but GSSG-R activity (p = 0.04) and LPO (p = 0.02) were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients.

  7. Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome

    PubMed Central

    Soto, María Elena; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Duran-Hernández, Erendira Janet; Pérez-Torres, Israel

    2016-01-01

    Marfan syndrome (MFS) is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL) calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GSSG-R), glutathione (GSH), lipid peroxidation (LPO) index, total antioxidant capacity (TAC), and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p = 0.03), EGPx (p = 0.04), GST (p = 0.03), GSH (p = 0.01), and TAC and ascorbic acid (p = 0.02) but GSSG-R activity (p = 0.04) and LPO (p = 0.02) were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients. PMID:27413258

  8. Metabolic active-high density VERO cell cultures on microcarriers following apoptosis prevention by galactose/glutamine feeding.

    PubMed

    Mendonça, Ronaldo Z; Arrózio, Sara J; Antoniazzi, Marta M; Ferreira, Jorge M C; Pereira, Carlos A

    2002-07-17

    The control of cell death occurring in high density cultures performed in bioreactors is an important factor in production processes. In this work, medium nutrient removal or feeding was used to determine at which extension apoptosis could be, respectively, involved or prevented in VERO cell cultures on microcarriers. Glutamine and galactose present in the VERO cell culture medium was consumed after, respectively, 6 and 12 days of culture. Kinetics studies showed that fresh medium replacement and, to some extent, galactose or glutamine depleted-fresh medium replacement provided a nutritional environment, allowing the VERO cell cultures to attain high densities. Galactose was shown to be a more critical nutrient when cultures reached a high density. In agreement with that, VERO cell cultures supplemented with galactose and/or glutamine were shown to confirm previous findings and, again at high densities, galactose was shown to be a critical nutrient for VERO cell growth. These observations also indicated that in VERO cell cultures, for feeding purposes, the glutamine could be replaced by galactose. The inverse was not true and led, at high densities, to a decrease of cell viability. In the absence of glutamine and galactose, apoptosis was observed in VERO cell cultures by cytofluorometry, Acridine orange staining or light and electron microscopy, reaching high levels when compared to cultures performed with complete medium. VERO cells apoptosis process could be prevented by the galactose and/or glutamine feeding and, at high densities, galactose was more efficient in protecting the cultures. These cultures, prevented from apoptosis, were shown to synthesize high levels of measles virus following infection. Our data show that apoptosis prevention by glutamine/galactose feeding, led to high productive and metabolic active VERO cell cultures, as indicated by the high cell density obtained and the virus multiplication leading to higher virus titers.

  9. Physical and chemical stability of high-dose ifosfamide and mesna for prolonged 14-day continuous infusion.

    PubMed

    Zhang, YanPing; Kawedia, Jitesh D; Myers, Alan L; McIntyre, Chelsey M; Anderson, Peter M; Kramer, Mark A; Culotta, Kirk S

    2014-02-01

    Ifosfamide plus mesna have been used recently in a high-dose regimen that allows this chemotherapy to be given to outpatients with less toxicity over 14 days using a portable pump. However, there is a need for published stability information. The aim of this study was to investigate the physicochemical stability of ifosfamide with mesna in normal saline at room temperature over a prolonged period of 14 days. Infusion solutions of 1:1 ifosfamide and mesna at final concentrations of 10, 20 and 30 mg/mL were prepared with 0.9% sodium chloride in PVC bags. Solutions were stored at room temperature. Concentrations of ifosfamide and mesna were measured at 0 and 1, 3, 7 and 14 days using a stability-indicating reversed phase high-performance liquid chromatography (HPLC) assay with ultraviolet detection. Ifosfamide and mesna were both physicochemically stable (>94%) for 14 days in all tested infusion solutions (10, 20 and 30 mg/mL). Our stability data indicate that ifosfamide and mesna (1:1) combination can be administered as a prolonged continuous infusion with portable pump in an outpatient setting without replacement of the infusion bag. We suggest 20 mg/mL as a reasonable concentration for infusion rates of about 2-4 cc/hr over prolonged periods of time.

  10. Glutamine supplemented parenteral nutrition to prevent ventilator-associated pneumonia in the intensive care unit.

    PubMed

    Aydoğmuş, Meltem Türkay; Tomak, Yakup; Tekin, Murat; Katı, Ismail; Hüseyinoğlu, Urfettin

    2012-12-01

    Ventilator-associated pneumonia (VAP) is a form of nosocomial pneumonia that increases patient morbidity and mortality, length of hospital stay, and healthcare costs. Glutamine preserves the intestinal mucosal structure, increases immune function, and reduces harmful changes in gut permeability in patients receiving total parenteral nutrition (TPN). We hypothesized that TPN supplemented by glutamine might prevent the development of VAP in patients on mechanical ventilator support in the intensive care unit (ICU). With the approval of the ethics committee and informed consent from relatives, 60 patients who were followed in the ICU with mechanical ventilator support were included in our study. Patients were divided into three groups. The first group received enteral nutrition (n=20), and the second was prescribed TPN (n=20) while the third group was given glutamine-supplemented TPN (n=20). C-reactive protein (CRP), sedimentation rate, body temperature, development of purulent secretions, increase in the amount of secretions, changes in the characteristics of secretions and an increase in requirement of deep tracheal aspiration were monitored for seven days by daily examination and radiographs. No statistically significant difference was found among groups in terms of development of VAP (p=0.622). Although VAP developed at a lower rate in the glutamine-supplemented TPN group, no statistically significant difference was found among any of the groups. Glutamine-supplemented TPN may have no superiority over unsupplemented enteral and TPN in preventing VAP.

  11. Epigenetic silencing of microRNA-137 enhances ASCT2 expression and tumor glutamine metabolism

    PubMed Central

    Dong, J; Xiao, D; Zhao, Z; Ren, P; Li, C; Hu, Y; Shi, J; Su, H; Wang, L; Liu, H; Li, B; Gao, P; Qing, G

    2017-01-01

    Tumor cells must activate specific transporters to meet their increased glutamine metabolic demands. Relative to other glutamine transporters, the ASC family transporter 2 (ASCT2, also called SLC1A5) is profoundly elevated in a wide spectrum of human cancers to coordinate metabolic reprogramming and malignant transformation. Understanding the molecular mechanisms whereby tumor cells frequently upregulate this transporter is therefore vital to develop potential strategies for transporter-targeted therapies. Combining in-silico algorithms with systemic experimental screening, we herein identify the tumor suppressor microRNA, miR-137, as an essential regulator that targets ASCT2 and cancer cell glutamine metabolism. Metabolic analysis shows that miR-137 derepression, similar to ASCT2 inactivation, significantly inhibits glutamine consumption and TCA cycle anaplerosis. Mechanistically, methyl-CpG-binding protein 2 (MeCP2) and DNA methyltransferases (DNMTs) cooperate to promote active methylation of the miR-137 promoter and inhibit its transcription, conversely reactivating ASCT2 expression and glutamine metabolism. Moreover, expression between miR-137 and ASCT2 is inversely correlated in tumor specimens from multiple cancer types, and ectopic ASCT2 expression markedly rescued miR-137 suppression of tumorigenesis. These findings thus elucidate a previously unreported mechanism responsible for ASCT2 deregulation in human cancers and identify ASCT2 as a critical downstream effector of miR-137, revealing a molecular link between DNA methylation, microRNA and tumor metabolism. PMID:28692032

  12. Experimental intraperitoneal infusion of OK-432 in rats: evaluation of peritoneal complications and pathology.

    PubMed

    Kim, Dong Wook; Kim, Hak Jin; Lee, Jun Woo

    2010-06-01

    OK-432 is known to be a potent sclerosant of cystic lesions. The purpose of this study was to evaluate both its safety and pathologic effects after the infusion of OK-432 into the peritoneal cavity of rats. Twenty male rats were used in this study. Twelve rats were infused intraperitoneally with 0.2 Klinishe Einheit of OK-432 melted in 2 mL of normal saline (group 1: the treated group); four rats each were infused intraperitoneally with 0.5 mL of 99% ethanol (group 2) and normal saline (group 3), and served as the control groups. An abdominal ultrasonographic examination was performed both before and after the infusions in all rats. Three rats in group 1 and one rat in each of groups 2 and 3 were sacrificed each week following the infusion. Gross and microscopic evaluations of the peritoneum and abdominal cavity were performed on each rat. In group 1, the abdomen was clear on gross inspection and the peritoneum was unremarkable on microscopic examination. In group 2, mild-to-moderate peritoneal adhesions were revealed grossly, and inflammation and fibrosis of the peritoneum were demonstrated microscopically. In group 3, no specific abnormalities were noted on gross or microscopic examinations. Leakage or abnormal infusion of OK-432 solution into the peritoneal cavity during sclerotherapy of intra-abdominal or retroperitoneal cystic lesions does not result in any significant complications. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  13. Dipeptide transport and hydrolysis in isolated loops of rat small intestine: effects of stereospecificity.

    PubMed Central

    Lister, N; Sykes, A P; Bailey, P D; Boyd, C A; Bronk, J R

    1995-01-01

    1. Isolated jejunal loops of rat small intestine were perfused by a single pass of bicarbonate Krebs-Ringer solution containing either D- or L-phenylalanine or one of eight dipeptides formed from D- or L-alanine plus D- or L-phenylalanine. 2. At 0.5 mM L-phenylalanyl-L-alanine increased serosal phenylalanine appearance to forty times the control rate giving a value similar to that found with 0.5 mM free L-phenylalanine. No serosal dipeptide could be detected. 3. Perfusions with the two mixed dipeptides with N-terminal D-amino acids (D-alanyl-L-phenylalanine and D-phenylalanyl-L-alanine) gave rise to the appearance of intact dipeptides in the serosal secretions although there were substantial differences in their rates of absorption and subsequent hydrolysis. 4. L-Alanyl-D-phenylalanine was absorbed from the lumen three to five times as fast as L-phenylalanyl-D-alanine. At 1 mM L-alanyl-D-phenylalanine transferred D-phenylalanine across the epithelial layer at more than seven times the rate found with the same concentration of the free D-amino acid. 5. Perfusions with D-alanyl-D-phenylalanine or D-phenylalanyl-D-alanine showed that these two dipeptides are poor substrates for both transport and hydrolysis by the rat small intestine. 6. Analysis of mucosal tissue extracts after perfusion with the two mixed dipeptides with N-terminal D-amino acids revealed that both dipeptides were accumulated within the mucosa and suggested that exit across the basolateral membrane was rate limiting for transepithelial dipeptide transport. Images Figure 5 PMID:7602518

  14. Application of in ovo injection of L-Glutamine for improving productivity of Indonesian native chicken: hatchability and hatching time

    NASA Astrophysics Data System (ADS)

    Rahardja, D. P.; Hakim, A. R.; Sri Lestari, V.

    2018-05-01

    A study was aimed to improve productivity of the Indonesian Native Chicken (INC) by the technique of in ovo injection (IOI) of L-Glutamine (Gln), which hatchability and hatching time were measured. A 300 fertile egg (45.26±3.65 g) of INC were used and arranged as Randomized Block Design within 3 different incubators as blocks, and 5 treatment groups of 20 eggs: negative control (P0), positive control (P1-0.5 ml sterilized saline), 2.50 (P2), 5.0 (P3) and 7.5 (P4) mg Gln in 0.5 ml sterilized saline. The injections were conducted into the albumen at d 7 of incubation. IOI of Gln resulted in a significantly heavier weight of the newly hatched chickens (NHC), Hatchability of the P1 (60.83 ± 7.52%) and P2 (62.50 ± 2.89 %) was significantly higher (P<0.01) compared to those of the other groups; On the other hand, the embryo mortality in P1 and P2 were significantly lower compared with the other three groups, which mostly occurred before d 17 of incubation. It is concluded that IOI of 2.5 mg Gln of INC increased hatchability, decreased the duration of incubation time and the heavier weight of NHC would apparently have a better performance compared to that of the untreated eggs.

  15. Asparagine and Glutamine: Co-conspirators Fueling Metastasis.

    PubMed

    Luo, Ming; Brooks, Michael; Wicha, Max S

    2018-05-01

    Cancer cells frequently hijack normal metabolic pathways to promote their growth and metastasis. Two recent papers by Knott et al. (2018) and Pavlova et al. (2018) demonstrate that asparagine and glutamine work in concert to drive tumor growth and metastasis through modulation of cell survival, growth, and EMT regulatory pathways. Copyright © 2018. Published by Elsevier Inc.

  16. p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates

    PubMed Central

    Nguyen, Thang Van; Li, Jing; Lu, Chin-Chun (Jean); Mamrosh, Jennifer L.; Lu, Gang; Cathers, Brian E.; Deshaies, Raymond J.

    2017-01-01

    Glutamine synthetase (GS) plays an essential role in metabolism by catalyzing the synthesis of glutamine from glutamate and ammonia. Our recent study showed that CRBN, a direct protein target for the teratogenic and antitumor activities of immunomodulatory drugs such as thalidomide, lenalidomide, and pomalidomide, recognizes an acetyl degron of GS, resulting in ubiquitylation and degradation of GS in response to glutamine. Here, we report that valosin-containing protein (VCP)/p97 promotes the degradation of ubiquitylated GS, resulting in its accumulation in cells with compromised p97 function. Notably, p97 is also required for the degradation of all four known CRBN neo-substrates [Ikaros family zinc finger proteins 1 (IKZF1) and 3 (IKZF3), casein kinase 1α (CK1α), and the translation termination factor GSPT1] whose ubiquitylation is induced by immunomodulatory drugs. Together, these data point to an unexpectedly intimate relationship between the E3 ubiquitin ligase CRL4CRBN and p97 pathways. PMID:28320958

  17. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth.

    PubMed

    Cox, Andrew G; Hwang, Katie L; Brown, Kristin K; Evason, Kimberley; Beltz, Sebastian; Tsomides, Allison; O'Connor, Keelin; Galli, Giorgio G; Yimlamai, Dean; Chhangawala, Sagar; Yuan, Min; Lien, Evan C; Wucherpfennig, Julia; Nissim, Sahar; Minami, Akihiro; Cohen, David E; Camargo, Fernando D; Asara, John M; Houvras, Yariv; Stainier, Didier Y R; Goessling, Wolfram

    2016-08-01

    The Hippo pathway is an important regulator of organ size and tumorigenesis. It is unclear, however, how Hippo signalling provides the cellular building blocks required for rapid growth. Here, we demonstrate that transgenic zebrafish expressing an activated form of the Hippo pathway effector Yap1 (also known as YAP) develop enlarged livers and are prone to liver tumour formation. Transcriptomic and metabolomic profiling identify that Yap1 reprograms glutamine metabolism. Yap1 directly enhances glutamine synthetase (glul) expression and activity, elevating steady-state levels of glutamine and enhancing the relative isotopic enrichment of nitrogen during de novo purine and pyrimidine biosynthesis. Genetic or pharmacological inhibition of GLUL diminishes the isotopic enrichment of nitrogen into nucleotides, suppressing hepatomegaly and the growth of liver cancer cells. Consequently, Yap-driven liver growth is susceptible to nucleotide inhibition. Together, our findings demonstrate that Yap1 integrates the anabolic demands of tissue growth during development and tumorigenesis by reprogramming nitrogen metabolism to stimulate nucleotide biosynthesis.

  18. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth

    PubMed Central

    Brown, Kristin K.; Evason, Kimberley; Beltz, Sebastian; Tsomides, Allison; O'Connor, Keelin; Galli, Giorgio G.; Yimlamai, Dean; Chhangawala, Sagar; Yuan, Min; Lien, Evan C.; Wucherpfennig, Julia; Nissim, Sahar; Minami, Akihiro; Cohen, David E.; Camargo, Fernando D.; Asara, John M.; Houvras, Yariv; Stainier, Didier Y.R.; Goessling, Wolfram

    2016-01-01

    The Hippo pathway is an important regulator of organ size and tumorigenesis. It is unclear, however, how Hippo signaling provides the cellular building blocks required for rapid growth. Here, we demonstrate that transgenic zebrafish expressing an activated form of the Hippo pathway effector Yap1 (also known as YAP) develop enlarged livers and are prone to liver tumor formation. Transcriptomic and metabolomic profiling identify that Yap1 reprograms glutamine metabolism. Yap1 directly enhances glutamine synthetase (glul) expression and activity, elevating steady-state levels of glutamine and enhancing the relative isotopic enrichment of nitrogen during de novo purine and pyrimidine biosynthesis. Genetic or pharmacological inhibition of GLUL diminishes the isotopic enrichment of nitrogen into nucleotides, suppresses hepatomegaly and the growth of liver cancer cells. Consequently, Yap-driven liver growth is susceptible to nucleotide inhibition. Together, our findings demonstrate that Yap1 integrates the anabolic demands of tissue growth during development and tumorigenesis by reprogramming nitrogen metabolism to stimulate nucleotide biosynthesis. PMID:27428308

  19. Enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase.

    PubMed

    Chen, Yi-Yu; Lo, Huei-Fen; Wang, Tzu-Fan; Lin, Min-Guan; Lin, Long-Liu; Chi, Meng-Chun

    2015-01-01

    In the practical application of Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT), we describe a straightforward enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine (GSAC), a naturally occurring organosulfur compound found in garlic, based on a transpeptidation reaction involving glutamine as the γ-glutamyl donor and S-allyl-L-cysteine as the acceptor. With the help of thin layer chromatography technique and computer-assisted image analysis, we performed the quantitative determination of GSAC. The optimum conditions for a biocatalyzed synthesis of GSAC were 200 mM glutamine, 200 mM S-allyl-L-cysteine, 50 mM Tris-HCl buffer (pH 9.0), and BlGGT at a final concentration of 1.0 U/mL. After a 15-h incubation of the reaction mixture at 60 °C, the GSAC yield for the free and immobilized enzymes was 19.3% and 18.3%, respectively. The enzymatic synthesis of GSAC was repeated under optimal conditions at 1-mmol preparative level. The reaction products together with the commercially available GSAC were further subjected to an ESI-MS/MS analysis. A significant signal with m/z of 291.1 and the protonated fragments at m/z of 73.0, 130.1, 145.0, and 162.1 were observed in the positive ESI-MS/MS spectrum, which is consistent with those of the standard compound. These results confirm the successful synthesis of GSAC from glutamine and S-allyl-L-cysteine by BlGGT. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Enhanced vasculotoxic metal excretion in post-myocardial infarction patients following a single edetate disodium-based infusion.

    PubMed

    Arenas, Ivan A; Navas-Acien, Ana; Ergui, Ian; Lamas, Gervasio A

    2017-10-01

    Toxic metals have been associated with cardiovascular mortality and morbidity. We have hypothesized that enhanced excretion of vasculotoxic metals might explain the positive results of the Trial to Assess Chelation Therapy (TACT). The purpose of this study was to determine whether a single infusion of the edetate disodium- based infusion used in TACT led to enhanced excretion of toxic metals known to be associated with cardiovascular events. Twenty six patients (post-MI, age > 50 years, serum creatinine ≤ 2.0mg/dL) were enrolled in this open-label study. Urinary levels of 20 toxic metals normalized to urinary creatinine concentrations were measured at baseline in overnight urine collections, for 6h following a placebo infusion of 500mL normal saline and 1.2% dextrose, and for 6h following a 3g edetate disodium-based infusion. Self-reported metal exposure, smoking status, food frequency, occupational history, drinking water source, housing and hobbies were collected at baseline by a metal exposure questionnaire. The mean age was 65 years (range 51-81 years). All patients were male. 50% had diabetes mellitus and 58% were former smokers. Mean (SD) serum creatinine was 0.95 (0.31) mg/dL. Toxic metals were detected in the baseline urine of >80% of patients. After placebo infusion there were no significant changes in total urinary metal levels. After edetate infusion, total urinary metal level increased by 71% compared to baseline (1500 vs. 2580µg/g creatinine; P<0.0001). The effect of edetate was particularly large for lead (3835% increase) and cadmium (633% increase). Edetate disodium-based infusions markedly enhanced the urinary excretion of lead and cadmium, toxic metals with established epidemiologic evidence and mechanisms linking them to coronary and vascular events. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes.

    PubMed

    Shrestha, Nirajan; Chand, Lokendra; Han, Myung Kwan; Lee, Seung Ok; Kim, Chan Young; Jeong, Yeon Jun

    2016-07-01

    Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF-β1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF-β1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF-β1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF-β1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF-β1 induced EMT progression and apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Glutamine and ornithine alpha-ketoglutarate supplementation on malate dehydrogenases expression in hepatectomized rats.

    PubMed

    Guimarães Filho, Artur; Cunha, Rodrigo Maranguape Silva da; Vasconcelos, Paulo Roberto Leitão de; Guimarães, Sergio Botelho

    2014-06-01

    To evaluate the relative gene expression (RGE) of cytosolic (MDH1) and mitochondrial (MDH2) malate dehydrogenases enzymes in partially hepatectomized rats after glutamine (GLN) or ornithine alpha-ketoglutarate (OKG) suplementation. One-hundred and eight male Wistar rats were randomly distributed into six groups (n=18): CCaL, GLNL and OKGL and fed calcium caseinate (CCa), GLN and OKG, 0.5 g/Kg by gavage, 30 minutes before laparotomy. CCaH, GLNH and OKGH groups were likewise fed 30 minutes before 70% partial hepatectomy. Blood and liver samples were collected three, seven and 14 days after laparotomy/hepatectomy for quantification of MDH1/MDH2 enzymes using the real-time polymerase chain reaction (PCR) methodology. Relative enzymes expression was calculated by the 2-(ΔΔC)T method using the threshold cycle (CT) value for normalization. MDH1/MDH2 RGE was not different in hepatectomized rats treated with OKG compared to rats treated with CCa. However, MDH1/MDH2 RGE was greater on days 3 (321:1/26.48:1) and 7 (2.12:1/2.48:1) while MDH2 RGE was greater on day 14 (7.79:1) in hepatectomized rats treated with GLN compared to control animals. Glutamine has beneficial effects in liver regeneration in rats by promoting an up-regulation of the MDH1 and MDH2 relative gene expression.

  3. Alanyl-tRNA synthetase mutation in a family with dominant distal hereditary motor neuropathy

    PubMed Central

    Zhao, Z.; Hashiguchi, A.; Sakiyama, Y.; Okamoto, Y.; Tokunaga, S.; Zhu, L.; Shen, H.; Takashima, H.

    2012-01-01

    Objective: To identify a new genetic cause of distal hereditary motor neuropathy (dHMN), which is also known as a variant of Charcot-Marie-Tooth disease (CMT), in a Chinese family. Methods: We investigated a Chinese family with dHMN clinically, electrophysiologically, and genetically. We screened for the mutations of 28 CMT or related pathogenic genes using an originally designed microarray resequencing DNA chip. Results: Investigation of the family history revealed an autosomal dominant transmission pattern. The clinical features of the family included mild weakness and wasting of the distal muscles of the lower limb and foot deformity, without clinical sensory involvement. Electrophysiologic studies revealed motor neuropathy. MRI of the lower limbs showed accentuated fatty infiltration of the gastrocnemius and vastus lateralis muscles. All 4 affected family members had a heterozygous missense mutation c.2677G>A (p.D893N) of alanyl-tRNA synthetase (AARS), which was not found in the 4 unaffected members and control subjects. Conclusion: An AARS mutation caused dHMN in a Chinese family. AARS mutations result in not only a CMT phenotype but also a dHMN phenotype. PMID:22573628

  4. Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1.

    PubMed

    Cardaci, Simone; Rizza, Salvatore; Filomeni, Giuseppe; Bernardini, Roberta; Bertocchi, Fabio; Mattei, Maurizio; Paci, Maurizio; Rotilio, Giuseppe; Ciriolo, Maria Rosa

    2012-09-01

    Anticancer drug efficacy might be leveraged by strategies to target certain biochemical adaptations of tumors. Here we show how depriving cancer cells of glutamine can enhance the anticancer properties of 3-bromopyruvate, a halogenated analog of pyruvic acid. Glutamine deprival potentiated 3-bromopyruvate chemotherapy by increasing the stability of the monocarboxylate transporter-1, an effect that sensitized cells to metabolic oxidative stress and autophagic cell death. We further elucidated mechanisms through which resistance to chemopotentiation by glutamine deprival could be circumvented. Overall, our findings offer a preclinical proof-of-concept for how to employ 3-bromopyruvate or other monocarboxylic-based drugs to sensitize tumors to chemotherapy. ©2012 AACR.

  5. Targeting of glutamine transporter ASCT2 and glutamine synthetase suppresses gastric cancer cell growth.

    PubMed

    Ye, Jianxin; Huang, Qiang; Xu, Jie; Huang, Jinsheng; Wang, Jinzhou; Zhong, Wenjing; Chen, Wannan; Lin, Xinjian; Lin, Xu

    2018-05-01

    Glutamine (Gln) is essential for the proliferation of most cancer cells, making it an appealing target for cancer therapy. However, the role of Gln in gastric cancer (GC) metabolism is unknown and Gln-targeted therapy against GC remains scarce. The aim of this study was to investigate the relevance of Gln in GC growth and targeting. Expression of Gln transporter ASCT2 and glutamine synthetase (GS) in the parental and molecularly engineered GC cells or in human GC specimens was determined by RT-PCR and western blot analysis or immunohistochemistry. Cell proliferation and survival was assessed by CCK-8 assay and colony formation assay. Intracellular Gln content was measured by a HPLC system. Effects of ASCT2 and/or GS inhibitor on tumor growth were investigated in xenograft models. A significant heterogeneity of GC cells was observed with respect to their response to the treatment of ASCT2 inhibitor benzylserine (BenSer). Gln deprivation did not affect the BenSer-resistant cell growth due to endogenous GS expression, whose inhibition remarkably reduced cell proliferation. The differential in vitro sensitivity correlated with overall intracellular Gln content. Combined therapy with both ASCT2 and GS inhibitors produced a greater therapeutic efficacy than the treatment of either inhibitor alone. Furthermore, 77% human GC tissues were found to express moderate and high levels of ASCT2, 12% of which also co-expressed relatively high levels of GS. Gln mediates GC growth and the therapeutic efficacy of Gln-targeted treatment relies on distinct ASCT2 and GS expression pattern in specific gastric cancer groups.

  6. Dietary glutamine supplementation effects on amino acid metabolism, intestinal nutrient absorption capacity and antioxidant response of gilthead sea bream (Sparus aurata) juveniles.

    PubMed

    Coutinho, F; Castro, C; Rufino-Palomares, E; Ordóñez-Grande, B; Gallardo, M A; Oliva-Teles, A; Peres, H

    2016-01-01

    A study was undertaken to evaluate dietary glutamine supplementation effects on gilthead sea bream performance, intestinal nutrient absorption capacity, hepatic and intestinal glutamine metabolism and oxidative status. For that purpose gilthead sea bream juveniles (mean weight 13.0g) were fed four isolipidic (18% lipid) and isonitrogenous (43% protein) diets supplemented with 0, 0.5, 1 and 2% glutamine for 6weeks. Fish performance, body composition and intestinal nutrient absorption capacity were not affected by dietary glutamine levels. Hepatic and intestinal glutaminase (GlNase), glutamine synthetase (GSase), alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase activities were also unaffected by dietary glutamine supplementation. In the intestine GlNase activity was higher and GSase/GlNase ratio was two-fold lower than in the liver, suggesting a higher use of glutamine for energy production by the intestine than by the liver. The liver showed higher catalase and glucose-6-phosphate dehydrogenase activities, while the intestine presented higher glutathione peroxidase and glutathione reductase activities and oxidised glutathione content, which seems to reveal a higher glutathione dependency of the intestinal antioxidant response. Total and reduced glutathione contents in liver and intestine and superoxide dismutase activity in the intestine were enhanced by dietary glutamine, though lipid peroxidation values were not affected. Overall, differences between liver and intestine glutamine metabolism and antioxidant response were identified and the potential of dietary glutamine supplementation to gilthead sea bream's antioxidant response was elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Effect of corticosteroids on phlebitis induced by intravenous infusion of antineoplastic agents in rabbits

    PubMed Central

    Kohno, Emiko; Murase, Saori; Matsuyama, Kenji; Okamura, Noboru

    2009-01-01

    Purpose: Phlebitis caused by intravenous infusion of antineoplastic agents is one of the critical problems when anticancer therapy is prolonged. We have already reported that both rapid infusion and dilution of the injection solution were effective methods for reducing phlebitis caused by vinorelbine (VNR) in rabbits. The aim of this study was to explore other practical methods for preventing phlebitis caused by VNR and doxorubicin (DXR) in a rabbit model. VNR is often used with cisplatin, and dexamethasone (DEX) has been co-administered for prevention of cisplatin-induced nausea. DXR is used with prednisolone (PSL) in the CHOP regimen for the treatment of non-Hodgkin's lymphoma. Therefore, the present study investigated the prevention of phlebitis due to VNR with DEX and that due to DXR with PSL. Methods: VNR and DXR were diluted with normal saline to prepare test solutions at concentrations of 0.6 mg/mL and 1.4 mg/mL, respectively. Each test solution was infused into the auricular veins of rabbits. Two days after VNR infusion and three days after DXR infusion, the veins were evaluated histopathologically. The effect of DEX on VNR-induced phlebitis was evaluated by infusion of DEX before or after VNR. The effect of PSL on DXR-induced phlebitis was similarly evaluated by co-infusion of PSL. Results: The histopathological features of phlebitis caused by the antineoplastic agents differed between VNR and DXR: VNR did not cause the loss of venous endothelial cells, but caused inflammatory cell infiltration, edema, and epidermal degeneration. In contrast, DXR caused the loss of venous endothelial cells and chrondrocyte necrosis. Pre-treatment and post-treatment with DEX significantly decreased VNR-induced phlebitis compared with the control group and pre-treatment was particularly effective. Co-infusion of PSL also significantly decreased phlebitis caused by DXR, but its effect was less marked. Conclusion: The present findings suggested that pre-treatment with DEX may

  8. Effect of corticosteroids on phlebitis induced by intravenous infusion of antineoplastic agents in rabbits.

    PubMed

    Kohno, Emiko; Murase, Saori; Matsuyama, Kenji; Okamura, Noboru

    2009-08-06

    Phlebitis caused by intravenous infusion of antineoplastic agents is one of the critical problems when anticancer therapy is prolonged. We have already reported that both rapid infusion and dilution of the injection solution were effective methods for reducing phlebitis caused by vinorelbine (VNR) in rabbits. The aim of this study was to explore other practical methods for preventing phlebitis caused by VNR and doxorubicin (DXR) in a rabbit model. VNR is often used with cisplatin, and dexamethasone (DEX) has been co-administered for prevention of cisplatin-induced nausea. DXR is used with prednisolone (PSL) in the CHOP regimen for the treatment of non-Hodgkin's lymphoma. Therefore, the present study investigated the prevention of phlebitis due to VNR with DEX and that due to DXR with PSL. VNR and DXR were diluted with normal saline to prepare test solutions at concentrations of 0.6 mg/mL and 1.4 mg/mL, respectively. Each test solution was infused into the auricular veins of rabbits. Two days after VNR infusion and three days after DXR infusion, the veins were evaluated histopathologically. The effect of DEX on VNR-induced phlebitis was evaluated by infusion of DEX before or after VNR. The effect of PSL on DXR-induced phlebitis was similarly evaluated by co-infusion of PSL. The histopathological features of phlebitis caused by the antineoplastic agents differed between VNR and DXR: VNR did not cause the loss of venous endothelial cells, but caused inflammatory cell infiltration, edema, and epidermal degeneration. In contrast, DXR caused the loss of venous endothelial cells and chrondrocyte necrosis. Pre-treatment and post-treatment with DEX significantly decreased VNR-induced phlebitis compared with the control group and pre-treatment was particularly effective. Co-infusion of PSL also significantly decreased phlebitis caused by DXR, but its effect was less marked. The present findings suggested that pre-treatment with DEX may be a useful method for preventing

  9. 21 CFR 880.6990 - Infusion stand.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Infusion stand. 880.6990 Section 880.6990 Food and....6990 Infusion stand. (a) Identification. The infusion stand is a stationary or movable stand intended to hold infusion liquids, infusion accessories, and other medical devices. (b) Classification. Class...

  10. 21 CFR 880.6990 - Infusion stand.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infusion stand. 880.6990 Section 880.6990 Food and....6990 Infusion stand. (a) Identification. The infusion stand is a stationary or movable stand intended to hold infusion liquids, infusion accessories, and other medical devices. (b) Classification. Class...

  11. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium.

    PubMed

    Gamboa-Gómez, Claudia I; González-Laredo, Rubén F; Gallegos-Infante, José Alberto; Pérez, Mş Del Mar Larrosa; Moreno-Jiménez, Martha R; Flores-Rueda, Ana G; Rocha-Guzmán, Nuria E

    2016-09-01

    Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profile measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50% of DPPH radical ( i . e . lower IC 50 ). Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14% of E. camaldulensis and 49% of L. glaucescens ); whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC 50 than positive control (captopril). The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages.

  12. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium

    PubMed Central

    Gamboa-Gómez, Claudia I.; González-Laredo, Rubén F.; Gallegos-Infante, José Alberto; Pérez, MŞ del Mar Larrosa; Moreno-Jiménez, Martha R.; Flores-Rueda, Ana G.

    2016-01-01

    Summary Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profile measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50% of DPPH radical (i.e. lower IC50). Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14% of E. camaldulensis and 49% of L. glaucescens); whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC50 than positive control (captopril). The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages. PMID:27956869

  13. Gas-Phase Folding of Small Glutamine Containing Peptides: Sidechain Hydrogen Bonding Stabilizes β-turns

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; Blodgett, Karl N.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    Glutamine is vitally important to a class of neurodegenerative diseases called poly-glutamine (poly-Q) repeat diseases such as Huntington's Disease (HD). Recent studies have revealed a pathogenic pathway that proceeds through misfolding of poly-Q regions into characteristic β-turn/ β-hairpin structures that are highly correlated with toxicity. The inherent conformational preferences of small glutamine containing peptides (Ac-Q-Q-NHBn and Ac-A-Q-NHBn) were studied using conformation-specific IR and UV spectroscopies, with the goal of probing the delicate interplay between three competitive hydrogen bonding motifs: backbone-backbone, sidechain-backbone, and sidechain-sidechain hydrogen bonds. Laser desorption, coupled with a supersonic expansion, was used to introduce the non-thermally labile sample into the gas-phase. Resonant ion-dip infrared (RIDIR) spectroscopy is a powerful tool for recording the vibrational spectra of single conformational isomers and was used here to reveal the innate structural preferences of the glutamine containing peptides. Experimental results are compared against density functional calculations to arrive at firm conformational assignments. Our results demonstrate a striking preference for β-turn formation in the non-polar environment of the gas-phase. Previous Affiliation: Purdue University, Department of Chemistry.

  14. Dietary supplementation of L-glutamine and L-glutamate in broiler chicks subjected to delayed placement.

    PubMed

    Zulkifli, I; Shakeri, M; Soleimani, A F

    2016-12-01

    This study was conducted to investigate the effect of dietary glutamine (Gln) + glutamic acid (Glu) supplementation on growth performance and physiological stress response in broiler chickens subjected to 24 h delay in placement. Equal number of day-old broiler chicks were assigned to either immediate placement or with 24 h delay in placement with no access to feed and water. Chicks from each placement group were fed either standard starter diet (control) or standard starter diet +1% AminoGut (AG; mixture of 10% Gln and 10% Glu) from 1 to 21 d. Blood and duodenal samples were collected at 21 d for analysis of serum levels of ceruloplasmin (CER), ovotransferin (OVT) and α-1 acid glycoprotein (AGP), duodenal heat shock protein (HSP) 70 expression, and villi length and crypt depth. Results showed that delayed placement for 24 h was detrimental to weight gain during the starter phase (1 to 21 d) but not thereafter. AG supplementation was not able to eliminate that reduction in weight gain and feed intake during the starter stage. However, the observed enhancement in villi length and crypt depth at d 21 resulted in improvement of FCR and weight gain during the finisher stage (22 to 42 d) and consequently the overall period (1 to 42 d). Broiler chickens supplemented with AG also showed lower mortality rate, and higher AGP, OVT, CER, and HSP 70 expression compared to their control counterparts. Based on AGP, OVT, CER, and HSP 70 expression, there is no indication that delayed placement was physiologically stressful to the broiler chickens at 21 d of age. © 2016 Poultry Science Association Inc.

  15. Effects of glutamine treatment on myocardial damage and cardiac function in rats after severe burn injury.

    PubMed

    Yan, Hong; Zhang, Yong; Lv, Shang-jun; Wang, Lin; Liang, Guang-ping; Wan, Qian-xue; Peng, Xi

    2012-01-01

    Treatment with glutamine has been shown to reduce myocardial damage associated with ischemia/reperfusion injury. However, the cardioprotective effect of glutamine specifically after burn injury remains unclear. The present study explores the ability of glutamine to protect against myocardial damage in rats that have been severely burned. Seventy-two Wistar rats were randomly divided into three groups: normal controls (C), burned controls (B) and a glutamine-treated group (G). Groups B and G were subjected to full thickness burns comprising 30% of total body surface area. Group G was administered 1.5 g/ (kg•d) glutamine and group B was given the same dose of alanine via intragastric administration for 3 days. Levels of serum creatine kinase (CK), lactate dehydrogenase (LDH), aspartate transaminase (AST) and blood lactic acid were measured, as well as myocardial ATP and glutathione (GSH) contents. Cardiac function indices and histopathological changes were analyzed at 12, 24, 48 and 72 post-burn hours. In both burned groups, levels of serum CK, LDH, AST and blood lactic acid increased significantly, while myocardial ATP and GSH contents decreased. Compared with group B, CK, LDH, and AST levels were lower and blood lactic acid, myocardial ATP and GSH levels were higher in group G. Moreover, cardiac contractile function inhibition and myocardial histopathological damage were significantly reduced in group G compared to B. Taken together, these results show that glutamine supplementation protects myocardial structure and function after burn injury by improving energy metabolism and by promoted the synthesis of ATP and GSH in cardiac myocytes.

  16. Effects of glutamine treatment on myocardial damage and cardiac function in rats after severe burn injury

    PubMed Central

    Yan, Hong; Zhang, Yong; Lv, Shang-jun; Wang, Lin; Liang, Guang-ping; Wan, Qian-xue; Peng, Xi

    2012-01-01

    Treatment with glutamine has been shown to reduce myocardial damage associated with ischemia/reperfusion injury. However, the cardioprotective effect of glutamine specifically after burn injury remains unclear. The present study explores the ability of glutamine to protect against myocardial damage in rats that have been severely burned. Seventy-two Wistar rats were randomly divided into three groups: normal controls (C), burned controls (B) and a glutamine-treated group (G). Groups B and G were subjected to full thickness burns comprising 30% of total body surface area. Group G was administered 1.5 g/ (kg•d) glutamine and group B was given the same dose of alanine via intragastric administration for 3 days. Levels of serum creatine kinase (CK), lactate dehydrogenase (LDH), aspartate transaminase (AST) and blood lactic acid were measured, as well as myocardial ATP and glutathione (GSH) contents. Cardiac function indices and histopathological changes were analyzed at 12, 24, 48 and 72 post-burn hours. In both burned groups, levels of serum CK, LDH, AST and blood lactic acid increased significantly, while myocardial ATP and GSH contents decreased. Compared with group B, CK, LDH, and AST levels were lower and blood lactic acid, myocardial ATP and GSH levels were higher in group G. Moreover, cardiac contractile function inhibition and myocardial histopathological damage were significantly reduced in group G compared to B. Taken together, these results show that glutamine supplementation protects myocardial structure and function after burn injury by improving energy metabolism and by promotedthe synthesis of ATP and GSH in cardiac myocytes. PMID:22977661

  17. Effect of infusion of equine plasma or 6% hydroxyethyl starch (600/0.75) solution on plasma colloid osmotic pressure in healthy horses.

    PubMed

    McKenzie, Erica C; Esser, Melissa M; McNitt, Sarah E; Payton, Mark E

    2016-07-01

    OBJECTIVE To compare the effects of equivalent volumes of equine plasma and 6% hydroxyethyl starch (600/0.75) solution (hetastarch) administered IV on plasma colloid osmotic pressure (pCOP) and commonly monitored clinicopathologic variables in horses. ANIMALS 6 healthy mares. PROCEDURES In a randomized, crossover study, horses were administered hetastarch or plasma (both 10 mL/kg, IV) 18 months apart. The pCOP and variables of interest were measured before (baseline), immediately after, and at intervals up to 96 or 120 hours after infusion. Prothrombin and activated partial thromboplastin times were measured before and at 2 and 8 hours after each infusion. RESULTS Prior to hetastarch and plasma infusions, mean ± SEM pCOP was 19.4 ± 0.5 mm Hg and 19.4 ± 0.8 mm Hg, respectively. In general, hetastarch and plasma infusions comparably increased pCOP from baseline for 48 hours, with maximum increases of 2.0 and 2.3 mm Hg, respectively. Mean Hct and hemoglobin, total protein, and albumin concentrations were decreased for a period of 72, 96, or 120 hours after hetastarch infusion with maximum decrements of 8.8%, 3.2 g/dL, 1.2 g/dL, and 0.6 g/dL, respectively. Plasma infusion decreased (albeit not always significantly) hemoglobin concentration and Hct for 20 and 24 hours (maximum changes of 1.5 g/dL and 6.6%, respectively) and increased total solids concentration (maximum change of 0.6 g/dL) for 48 hours. Platelet count and coagulation times were minimally affected. CONCLUSIONS AND CLINICAL RELEVANCE Overall, the hetastarch and plasma infusions comparably increased pCOP in healthy horses for up to 48 hours. Hetastarch induced greater, more persistent perturbations in clinicopathologic variables.

  18. [Effect of glutamine on small intestinal repair in weanling rats after chronic diarrhea].

    PubMed

    Huang, Zu-xiong; Ye, Li-yan; Zheng, Zhi-yong; Chen, Xin-min; Ren, Rong-na; Tong, Guo-yuan

    2005-05-01

    To investigate the nutrient effect of glutamine on small intestinal repair in weanling rats after chronic diarrhea. Forty 21-day-old wistar rats were randomly divided into five groups (8 in each). Animal model of chronic diarrhea was induced by a lactose enriched diet in the weanling Wistar rat, normal control group was fed with a standard semipurified diet, and after 14 days the rats in both groups were killed to test the establishment of the model. After the establishment of the model, the other groups were fed with the standard semipurified diet to recover for 7 days, and were randomly divided into three groups: non-intervention group, glutamine (Gln)-intervention group and control group. Glutamine concentrations in blood was detected by high-performance liquid chromatography (HPLC). Morphological changes including villus height and villus surface area of the jejunum were measured under a light microscope and electron microscope, expression of proliferating cell nuclear antigen (PCNA) as an index of cell proliferation was observed using immunohistochemical staining and image analysis. The diarrhea rate in model group was 100 percent, average diarrhea index was 1.16 +/- 0.06, but both diarrhea rate and average diarrhea index in control group were 0 (P < 0.01), which affirmed establishment of the model. There was significant decrease of body weight, plasma Gln concentration, villus height, villus surface area and expression of PCNA in non-intervened group compared with the control group (P < 0.01). There was still significant decrease of body weight, villus height and villus surface area in Gln-intervened group compared with control group (P < 0.01), but plasma Gln concentration and expression of PCNA in Gln-intervened group had recovered to normal (P > 0.05). And compared with non-intervened group, except for body weight (P > 0.05), plasma glutamine, villus height, villus surface area and expression of PCNA were all significantly increased in Gln-intervened group

  19. Milk and serum concentration of ceftiofur following intramammary infusion in goats.

    PubMed

    Garrett, E F; Dirikolu, L; Grover, G S

    2015-12-01

    Five dairy goats were used to determine the milk and serum concentrations along with elimination characteristics of ceftiofur following intramammary administration. One udder half of each goat was infused twice with 125 mg ceftiofur with a 24-h interval between infusions. Milk samples were collected at 1, 2, 8, and 12 h after the last infusion and then every 12 h for a total of 7 days. Blood was collected from each animal at 3, 8, 12, and 24 h after infusion and then every 24 h for 6 days. Following a washout period of 1 week, the experiment was repeated using the opposite udder half. The elimination half-life of ceftiofur from the mammary gland was 4.7 h. The concentration of ceftiofur was greater than published MIC90 values for Staphylococcus spp. bacteria for 24 h. Ceftiofur was absorbed into systemic circulation from the mammary gland. The maximum concentration was 552 ng/mL at 3 h after infusion, and the serum elimination half-life was 10 h. Intramammary infusion of 125 mg ceftiofur every 24 h can be expected to maintain drug concentration in milk above published MIC90 for Staphylococcus spp. © 2015 John Wiley & Sons Ltd.

  20. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torreira, Eva; Seabra, Ana Rita; Marriott, Hazel

    The experimental models of dicotyledonous cytoplasmic and plastid-located glutamine synthetases unveil a conserved eukaryotic-type decameric architecture, with subtle structural differences in M. truncatula isoenzymes that account for their distinct herbicide resistance. The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of cropmore » yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.« less

  1. A double-blind, placebo-controlled, glutamine-supplementation trial in growth-faltering Gambian infants.

    PubMed

    Williams, Elizabeth A; Elia, Marinos; Lunn, Peter G

    2007-08-01

    Growth faltering during infancy is a characteristic of life in developing countries. Previous studies have shown that small-intestine mucosal enteropathy, accompanied by endotoxemia and a persistent systemic inflammatory response, accounts for up to 64% of the growth faltering in Gambian infants. The objective was to test whether glutamine, with its putative trophic effects on enterocytes, immune cells, and intestinal integrity, can accelerate the repair of the intestine, lower immunostimulation, and reduce growth faltering. Ninety-three infants aged 4-10 mo from the West Kiang region of The Gambia were studied in a double-blind, double-placebo, controlled trial. Glutamine (0.25 mg/kg body wt) or a placebo that contained an isonitrogenous, isoenergetic mix of nonessential amino acids was orally administered twice daily throughout the 5-mo rainy season. Anthropometric measurements were made monthly during the supplementation period and for 6 mo after supplementation. Intestinal permeability was measured monthly (by determining the ratio of lactulose to mannitol), and finger-prick blood samples were collected for the analysis of plasma proteins on 3 occasions. Gambian infants showed a seasonal deterioration in growth and persistently elevated acute phase protein concentrations and intestinal permeability. Oral supplementation with glutamine did not improve growth (x +/- SE: weight gain, 60 +/- 19 and 69 +/- 20 g/mo; length gain, 1.01 +/- 0.05 and 0.95 +/- 0.03 cm/mo) or intestinal permeability [lactulose:mannitol ratio: 0.29 (95% CI: 0.23, 0.35) and 0.26 (95% CI: 0.21, 0.32)] in the glutamine and placebo groups, respectively. It also had no effect on infant morbidity or on plasma concentrations of immunoglobulins or acute phase proteins. Glutamine supplementation failed to improve growth or intestinal status in malnourished Gambian infants.

  2. Production of L-asparaginase by filamentous fungi.

    PubMed

    Sarquis, Maria Inez de Moura; Oliveira, Edna Maria Morais; Santos, Alberdan Silva; Costa, Gisela Lara da

    2004-08-01

    L-asparaginase production was investigated in the filamentous fungi Aspergillus tamarii and Aspergillus terreus. The fungi were cultivated in medium containing different nitrogen sources. A. terreus showed the highest L-asparaginase (activity) production level (58 U/L) when cultivated in a 2% proline medium. Both fungi presented the lowest level of L-asparaginase production in the presence of glutamine and urea as nitrogen sources. These results suggest that L-asparaginase production by of filamentous fungi is under nitrogen regulation.

  3. Effects of Glutamine on Gastric Emptying of Low- and High-Nutrient Drinks in Healthy Young Subjects-Impact on Glycaemia.

    PubMed

    Du, Yang T; Piscitelli, Diana; Ahmad, Saima; Trahair, Laurence G; Greenfield, Jerry R; Samocha-Bonet, Dorit; Rayner, Christopher K; Horowitz, Michael; Jones, Karen L

    2018-06-07

    Glutamine is a potent stimulus for the release of glucagon-like peptide-1, which increases postprandial insulin and slows gastric emptying (GE). We determined the effects of glutamine on GE of, and glycaemic responses to, low- and high-nutrient drinks in eight healthy males (mean age 21.6 ± 0.7 years and BMI 22.9 ± 0.7 kg/m²). Participants were studied on four occasions on which they consumed either a low-nutrient (beef soup; 18 kcal) or high-nutrient (75 g dextrose; 255 kcal) drink, each with or without 30 g of glutamine (120 kcal), in a randomised, crossover design. GE (2D ultrasound), blood glucose and plasma insulin concentrations were measured concurrently. Glutamine slowed GE (half emptying time (T50)) of both low- (45 ± 3 min vs. 26 ± 2 min, p < 0.001), and high-nutrient, (100 ± 5 min vs. 77 ± 5 min, p = 0.03) drinks, however, there was no effect on GE of the high nutrient drinks when expressed as kcal/min (3.39 ± 0.21 kcal/min vs. 3.81 ± 0.20 kcal/min, p = 0.25). There was no change in blood glucose after the low-nutrient drinks with or without glutamine, despite a slight increase in plasma insulin with glutamine ( p = 0.007). The rise in blood glucose following the high-nutrient drink ( p = 0.0001) was attenuated during the first 60 min by glutamine ( p = 0.007). We conclude that in healthy subjects, glutamine slows GE of both low- and high-nutrient drinks comparably and attenuates the rise in blood glucose after the high-nutrient glucose drink.

  4. Glutamine-enriched enteral nutrition in very low birthweight infants and allergic and infectious diseases at 6 years of age.

    PubMed

    van Zwol, Annelies; Moll, Henriëtte A; Fetter, Willem P F; van Elburg, Ruurd M

    2011-01-01

    In a previous randomised controlled trial, we found that glutamine-enriched enteral nutrition in 102 very low birthweight (VLBW) infants decreased both the incidence of serious infections in the neonatal period and the risk of atopic dermatitis during the first year of life. We hypothesised that glutamine-enriched enteral nutrition in VLBW infants in the neonatal period influences the risk of allergic and infectious disease at 6 years of age. Eighty-eight of the 102 infants were eligible for the follow-up study (13 died, 1 chromosomal abnormality). Doctor-diagnosed allergic and infectious diseases were assessed by means of validated questionnaires. The association between glutamine-enriched enteral nutrition in the neonatal period and allergic and infectious diseases at 6 years of age was based on univariable and multivariable logistic regression analyses. Seventy-six of the 89 (85%) infants participated, 38 in the original glutamine-supplemented group and 38 in the control group. After adjustment, we found a decreased risk of atopic dermatitis in the glutamine-supplemented group: adjusted odds ratio (aOR) 0.23 [95% CI 0.06, 0.95]. No association between glutamine supplementation and hay fever, recurrent wheeze and asthma was found. A decreased risk of gastrointestinal tract infections was found in the glutamine-supplemented group (aOR) 0.10 [95% CI 0.01, 0.93], but there was no association with upper respiratory, lower respiratory or urinary tract infections. We concluded that glutamine-enriched enteral nutrition in the neonatal period in VLBW infants decreased the risk of atopic dermatitis and gastrointestinal tract infections at 6 years of age. © 2010 Blackwell Publishing Ltd.

  5. Effects of glutamine supplementation on gut barrier, glutathione content and acute phase response in malnourished rats during inflammatory shock.

    PubMed

    Belmonte, Liliana; Coëffier, Moïse; Le Pessot, Florence; Miralles-Barrachina, Olga; Hiron, Martine; Leplingard, Antony; Lemeland, Jean-François; Hecketsweiler, Bernadette; Daveau, Maryvonne; Ducrotté, Philippe; Déchelotte, Pierre

    2007-05-28

    To evaluate the effect of glutamine on intestinal mucosa integrity, glutathione stores and acute phase response in protein-depleted rats during an inflammatory shock. Plasma acute phase proteins (APP), jejunal APP mRNA levels, liver and jejunal glutathione concentrations were measured before and one, three and seven days after turpentine injection in 4 groups of control, protein-restricted, protein-restricted rats supplemented with glutamine or protein powder. Bacterial translocation in mesenteric lymph nodes and intestinal morphology were also assessed. Protein deprivation and turpentine injection significantly reduced jejunal villus height, and crypt depths. Mucosal glutathione concentration significantly decreased in protein-restricted rats. Before turpentine oil, glutamine supplementation restored villus heights and glutathione concentration (3.24 +/- 1.05 vs 1.72 +/- 0.46 mumol/g tissue, P<0.05) in the jejunum, whereas in the liver glutathione remained low. Glutamine markedly increased jejunal alpha1-acid glycoprotein mRNA level after turpentine oil but did not affect its plasma concentration. Bacterial translocation in protein-restricted rats was not prevented by glutamine or protein powder supplementation. Glutamine restored gut glutathione stores and villus heights in malnourished rats but had no preventive effect on bacterial translocation in our model.

  6. Glutamine: precursor or nitrogen donor for citrulline synthesis?

    USDA-ARS?s Scientific Manuscript database

    Glutamine (Gln) is considered the main precursor for citrulline (Cit) synthesis, but no attempts have been made to differentiate the contribution of Gln carbon (Gln-C) skeleton vs. the nonspecific contribution through NH3 and CO2. To study the contribution of dietary Gln-N to the synthesis of Cit, t...

  7. Preoperative oral carbohydrate administration to ASA III-IV patients undergoing elective cardiac surgery.

    PubMed

    Breuer, Jan-P; von Dossow, Vera; von Heymann, Christian; Griesbach, Markus; von Schickfus, Michael; Mackh, Elise; Hacker, Cornelia; Elgeti, Ulrike; Konertz, Wolfgang; Wernecke, Klaus-D; Spies, Claudia D

    2006-11-01

    In this study we investigated the effects of preoperative oral carbohydrate administration on postoperative insulin resistance (PIR), gastric fluid volume, preoperative discomfort, and variables of organ dysfunction in ASA physical status III-IV patients undergoing elective cardiac surgery, including those with noninsulin-dependent Type-2 diabetes mellitus. Before surgery, 188 patients were randomized to receive a clear 12.5% carbohydrate drink (CHO), flavored water (placebo), or to fast overnight (control). CHO and placebo were treated in double-blind format and received 800 mL of the corresponding beverage in the evening and 400 mL 2 h before surgery. Patients were monitored from induction of general anesthesia until 24 h postoperatively. Exogenous insulin requirements to control blood glucose levels L were used as a marker for PIR. Gastric fluid volume was measured by passive gastric reflux and preoperative discomfort using visual analog scales. Postoperative clinical and surgical data were recorded. Blood glucose levels and insulin requirements did not differ between groups. Patients receiving CHO and placebo were less thirsty compared with controls (P < 0.01 and P = 0.06, respectively). Ingested liquids did not cause increased gastric fluid volume or other adverse events. The CHO group required less intraoperative inotropic support after initiation of cardiopulmonary bypass weaning (P < 0.05). In conclusion, preoperative CHO administration before cardiac surgery does not affect PIR. Clear fluids reduce thirst and may be recommended as a safe procedure in ASA III-IV patients. Further research is indicated to investigate possible cardioprotective effects of preoperative CHO intake.

  8. Alanine infusion during hypoglycaemia partly supports cognitive performance in healthy human subjects.

    PubMed

    Evans, M L; Hopkins, D; Macdonald, I A; Amiel, S A

    2004-05-01

    To investigate the potential for the non-glucose metabolic substrate alanine to support brain function during glucose deprivation in man. Seven healthy men were studied on two occasions using a hyperinsulinaemic glucose clamp to lower arterialized plasma glucose to 2.5 mmol/l, in the presence of either 2 mmol/kg/h alanine infusion or saline, measuring counter-regulatory hormonal responses, symptoms generated and cognitive function with a mini-battery of tests sensitive to hypoglycaemia. Alanine infusion elevated plasma alanine (peak value 1481 +/- 1260 vs. 138 +/- 32 micro mol/l, P = 0.02 alanine vs. saline) and lactate (peak value 3.09 +/- 0.14 vs. 2.05 +/- 0.12 mmol/l, P = 0.02). Cognitive function assessed by the Stroop word and colour subtests deteriorated less with alanine than saline (P < 0.01 for both). Other cognitive function tests deteriorated equally and counter-regulatory hormones rose equally during hypoglycaemia in both studies (P > 0.34) except for increased glucagon with alanine (peak 260 +/- 53 vs. 91 + 8 ng/l, P = 0.03). There was no significant effect of alanine on either autonomic or neuroglycopenic symptom scores. Some, but not all, aspects of cognitive performance may be supported by an alanine infusion during hypoglycaemia. It is not clear whether alanine supports brain function directly or via increased availability of lactate. These data contribute to the growing evidence that regional metabolic differences exist in the brain's ability to use non-glucose fuels during hypoglycaemia.

  9. Distribution of crystalloid fluid changes with the rate of infusion: a population-based study.

    PubMed

    Hahn, R G; Drobin, D; Zdolsek, J

    2016-05-01

    Crystalloid fluid requires 30 min for complete distribution throughout the extracellular fluid space and tends to cause long-standing peripheral edema. A kinetic analysis of the distribution of Ringer's acetate with increasing infusion rates was performed to obtain a better understanding of these characteristics of crystalloids. Data were retrieved from six studies in which 76 volunteers and preoperative patients had received between 300 ml and 2375 ml of Ringer's acetate solution at a rate of 20-80 ml/min (0.33-0.83 ml/min/kg). Serial measurements of the blood hemoglobin concentration were used as inputs in a kinetic analysis based on a two-volume model with micro-constants, using software for nonlinear mixed effects. The micro-constants describing distribution (k12) and elimination (k10) were unchanged when the rate of infusion increased, with half-times of 16 and 26 min, respectively. In contrast, the micro-constant describing how rapidly the already distributed fluid left the peripheral space (k21) decreased by 90% when the fluid was infused more rapidly, corresponding to an increase in the half-time from 3 to 30 min. The central volume of distribution (V(c)) doubled. The return of Ringer's acetate from the peripheral fluid compartment to the plasma was slower with high than with low infusion rates. Edema is a normal consequence of plasma volume expansion with this fluid, even in healthy volunteers. The results are consistent with the view that the viscoelastic properties of the interstitial matrix are responsible for the distribution and redistribution characteristics of crystalloid fluid. © 2016 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. Glutamine-derived 2-hydroxyglutarate is associated with disease progression in plasma cell malignancies

    PubMed Central

    Gonsalves, Wilson I.; Hitosugi, Taro; Ghosh, Toshi; Jevremovic, Dragan; Petterson, Xuan-Mai; Wellik, Linda; Kumar, Shaji K.; Nair, K. Sreekumaran

    2018-01-01

    The production of the oncometabolite 2-hydroxyglutarate (2-HG) has been associated with c-MYC overexpression. c-MYC also regulates glutamine metabolism and drives progression of asymptomatic precursor plasma cell (PC) malignancies to symptomatic multiple myeloma (MM). However, the presence of 2-HG and its clinical significance in PC malignancies is unknown. By performing 13C stable isotope resolved metabolomics (SIRM) using U[13C6]Glucose and U[13C5]Glutamine in human myeloma cell lines (HMCLs), we show that 2-HG is produced in clonal PCs and is derived predominantly from glutamine anaplerosis into the TCA cycle. Furthermore, the 13C SIRM studies in HMCLs also demonstrate that glutamine is preferentially utilized by the TCA cycle compared with glucose. Finally, measuring the levels of 2-HG in the BM supernatant and peripheral blood plasma from patients with precursor PC malignancies such as smoldering MM (SMM) demonstrates that relatively elevated levels of 2-HG are associated with higher levels of c-MYC expression in the BM clonal PCs and with a subsequent shorter time to progression (TTP) to MM. Thus, measuring 2-HG levels in BM supernatant or peripheral blood plasma of SMM patients offers potential early identification of those patients at high risk of progression to MM, who could benefit from early therapeutic intervention. PMID:29321378

  11. Effect of Preoperative Pain on Inferior Alveolar Nerve Block.

    PubMed

    Aggarwal, Vivek; Singla, Mamta; Subbiya, Arunajatesan; Vivekanandhan, Paramasivam; Sharma, Vikram; Sharma, Ritu; Prakash, Venkatachalam; Geethapriya, Nagarajan

    2015-01-01

    The present study tested the hypothesis that the amount and severity of preoperative pain will affect the anesthetic efficacy of inferior alveolar nerve block (IANB) in patients with symptomatic irreversible pulpitis. One-hundred seventy-seven adult volunteer subjects, actively experiencing pain in a mandibular molar, participated in this prospective double-blind study carried out at 2 different centers. The patients were classified into 3 groups on the basis of severity of preoperative pain: mild, 1-54 mm on the Heft-Parker visual analog scale (HP VAS); moderate, 55-114 mm; and severe, greater than 114 mm. After IANB with 1.8 mL of 2% lidocaine, endodontic access preparation was initiated. Pain during treatment was recorded using the HP VAS. The primary outcome measure was the ability to undertake pulp access and canal instrumentation with no or mild pain. The success rates were statistically analyzed by multiple logistic regression test. There was a significant difference between the mild and severe preoperative pain group (P = .03). There was a positive correlation between the values of preoperative and intraoperative pain (r = .2 and .4 at 2 centers). The amount of preoperative pain can affect the anesthetic success rates of IANB in patients with symptomatic irreversible pulpitis.

  12. A gravimetric technique for evaluating flow continuity from two infusion devices.

    PubMed

    Leff, R D; True, W R; Roberts, R J

    1987-06-01

    A computerized gravimetric technique for examining the flow continuity from infusion devices was developed, and two infusion devices with different mechanisms of pump operation were evaluated to illustrate this technique. A BASIC program that records serial weight measurements and calculates weight change from previous determinations was written for and interfaced with a gravimetric balance and IBM PC. A plot of effused weight (normalized weight change that reflects the difference between desired timed-sample interval and actual time) versus time (desired timed-sample interval) was constructed. The gravimetric technique was evaluated using both a peristaltic-type and a piston-type infusion pump. Intravenous solution (5% dextrose and 0.9% sodium chloride) was effused at 10 mL/hr and collected in a beaker. Weights were measured at 10-second intervals over a two-hour infusion period, and the weights of the effused solution were plotted versus time. Flow continuity differed between the two infusion devices. Actual effused weight decreased to 0.007 g/10 sec during the refill cycle of the piston-type pump; the mean (+/- S.D.) effused weight was 0.029 +/- 0.002 g/10 sec. The desired effusion rate was 0.028 g/10 sec. The peristaltic pump had greater flow continuity, with a mean effusion weight of 0.028 +/- 0.003 g/10 sec. The gravimetric technique described in this report can be used to quantitatively depict the effusion profiles of infusion devices. Further studies are needed to identify the degree of flow continuity that is clinically acceptable for infusion devices.

  13. Preoperative overnight parenteral nutrition (TPN) improves skeletal muscle protein metabolism indicated by microarray algorithm analyses in a randomized trial.

    PubMed

    Iresjö, Britt-Marie; Engström, Cecilia; Lundholm, Kent

    2016-06-01

    Loss of muscle mass is associated with increased risk of morbidity and mortality in hospitalized patients. Uncertainties of treatment efficiency by short-term artificial nutrition remain, specifically improvement of protein balance in skeletal muscles. In this study, algorithmic microarray analysis was applied to map cellular changes related to muscle protein metabolism in human skeletal muscle tissue during provision of overnight preoperative total parenteral nutrition (TPN). Twenty-two patients (11/group) scheduled for upper GI surgery due to malignant or benign disease received a continuous peripheral all-in-one TPN infusion (30 kcal/kg/day, 0.16 gN/kg/day) or saline infusion for 12 h prior operation. Biopsies from the rectus abdominis muscle were taken at the start of operation for isolation of muscle RNA RNA expression microarray analyses were performed with Agilent Sureprint G3, 8 × 60K arrays using one-color labeling. 447 mRNAs were differently expressed between study and control patients (P < 0.1). mRNAs related to ribosomal biogenesis, mRNA processing, and translation were upregulated during overnight nutrition; particularly anabolic signaling S6K1 (P < 0.01-0.1). Transcripts of genes associated with lysosomal degradation showed consistently lower expression during TPN while mRNAs for ubiquitin-mediated degradation of proteins as well as transcripts related to intracellular signaling pathways, PI3 kinase/MAPkinase, were either increased or decreased. In conclusion, muscle mRNA alterations during overnight standard TPN infusions at constant rate altered mRNAs associated with mTOR signaling; increased initiation of protein translation; and suppressed autophagy/lysosomal degradation of proteins. This indicates that overnight preoperative parenteral nutrition is effective to promote muscle protein metabolism. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The

  14. Preoperative Low Serum Bicarbonate Levels Predict Acute Kidney Injury After Cardiac Surgery.

    PubMed

    Jung, Su-Young; Park, Jung Tak; Kwon, Young Eun; Kim, Hyung Woo; Ryu, Geun Woo; Lee, Sul A; Park, Seohyun; Jhee, Jong Hyun; Oh, Hyung Jung; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2016-03-01

    Acute kidney injury (AKI) after cardiac surgery is a common and serious complication. Although lower than normal serum bicarbonate levels are known to be associated with consecutive renal function deterioration in patients with chronic kidney injury, it is not well-known whether preoperative low serum bicarbonate levels are associated with the development of AKI in patients who undergo cardiac surgery. Therefore, the clinical implication of preoperative serum bicarbonate levels on AKI occurrence after cardiac surgery was investigated. Patients who underwent coronary artery bypass or valve surgery at Yonsei University Health System from January 2013 to December 2014 were enrolled. The patients were divided into 3 groups based on preoperative serum bicarbonate levels, which represented group 1 (below normal levels) <23 mEq/L; group 2 (normal levels) 23 to 24 mEq/L; and group 3 (elevated levels) >24 mEq/L. The primary outcome was the predicated incidence of AKI 48 hours after cardiac surgery. AKI was defined according to Acute Kidney Injury Network criteria. Among 875 patients, 228 (26.1%) developed AKI within 48 hours after cardiac surgery. The incidence of AKI was higher in group 1 (40.9%) than in group 2 (26.5%) and group 3 (19.5%) (P < 0.001). In addition, the duration of postoperative stay in a hospital intensive care unit (ICU) was longer for AKI patients and for those in the low-preoperative-serum-bicarbonate-level groups. A multivariate logistic regression analysis showed that low preoperative serum bicarbonate levels were significantly associated with AKI even after adjustment for age, sex, hypertension, diabetes mellitus, operation type, preoperative hemoglobin, and estimated glomerular filtration rate. In conclusion, low serum bicarbonate levels were associated with higher incidence of AKI and prolonged ICU stay. Further studies are needed to clarify whether strict correction of bicarbonate levels close to normal limits may have a protective

  15. Sustained resveratrol infusion increases natriuresis independent of renal vasodilation.

    PubMed

    Gordish, Kevin L; Beierwaltes, William H

    2014-09-01

    Resveratrol is reported to exert cardio-renal protective effects in animal models of pathology, yet the mechanisms underlying these effects are poorly understood. Previously, we reported an i.v. bolus of resveratrol induces renal vasodilation by increasing nitric oxide bioavailability and inhibiting reactive oxygen species. Thus, we hypothesized a sustained infusion of resveratrol would also increase renal blood flow (RBF), and additionally glomerular filtration rate (GFR). We infused vehicle for 30 min followed by 30 min resveratrol at either: 0, 0.5, 1.0, 1.5 mg/min, and measured RBF, renal vascular resistance (RVR), GFR, and urinary sodium excretion. At all three doses, blood pressure and GFR remained unchanged. Control RBF was 7.69 ± 0.84 mL/min/gkw and remained unchanged by 0.5 mg/min resveratrol (7.88 ± 0.94 mL/min/gkw, n = 9), but urinary sodium excretion increased from 2.19 ± 1.1 to 5.07 ± 0.92 μmol/min/gkw (n = 7, P < 0.01). In separate experiments, 1.0 mg/min resveratrol increased RBF by 17%, from 7.16 ± 0.29 to 8.35 ± 0.42 mL/min/gkw (P < 0.01, n = 10), decreased RVR 16% from 13.63 ± 0.65 to 11.36 ± 0.75 ARU (P < 0.003) and increased sodium excretion from 1.57 ± 0.46 to 3.10 ± 0.80 μmol/min/gkw (n = 7, P < 0.04). At the 1.5 mg/min dose, resveratrol increased RBF 12% from 6.76 ± 0.57 to 7.58 ± 0.60 mL/min/gkw (n = 8, P < 0.003), decreased RVR 15% (15.58 ± 1.35 to 13.27 ± 1.14 ARU, P < 0.003) and increased sodium excretion (3.99 ± 1.71 to 7.80 ± 1.51 μmol/min/gkw, n = 8, P < 0.04). We conclude that a constant infusion of resveratrol can induce significant renal vasodilation while not altering GFR or blood pressure. Also, resveratrol infusion produced significant natriuresis at all doses, suggesting it may have a direct effect on renal tubular sodium handling independent of renal perfusion pressure or flow. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and

  16. Contribution of extracellular glutamine as an anaplerotic substrate to neuronal metabolism: a re-evaluation by multinuclear NMR spectroscopy in primary cultured neurons.

    PubMed

    Shokati, Touraj; Zwingmann, Claudia; Leibfritz, Dieter

    2005-10-01

    Multinuclear NMR spectroscopy is used to investigate the effect of glutamine on neuronal glucose metabolism. Primary neurons were incubated with [1-(13C)]glucose in the absence or presence of glutamine (2 mM) and/or NH4Cl (5 mM). After ammonia-treatment, the concentrations of high-energy phosphates decreased up to 84% of control, which was aggravated in glutamine-containing medium (up to 42% of control). These effects could not be attributed to changes in mitochondrial glucose oxidation. Withdrawal of glutamine decreased amino acid concentrations, e.g. of glutamate to 53%, but also considerably lessened the 13C enrichment in [4-(13C)]glutamate to 8.3% of control, and decreased the 13C-enrichment in acetyl-CoA entering the Krebs cycle (P < 0.001). Thus, although glutamine is potent in replenishing neuronal glutamate stores, glutamate formation is mainly attributed to its de novo synthesis from glucose. Furthermore, mitochondrial glucose metabolism strongly depends on the supply of carbons from glutamine, indicating that exogenous glutamine is a well-suited substrate to replenish neuronal Krebs cycle intermediates.

  17. Multidisciplinary team-based approach for comprehensive preoperative pulmonary rehabilitation including intensive nutritional support for lung cancer patients.

    PubMed

    Harada, Hiroaki; Yamashita, Yoshinori; Misumi, Keizo; Tsubokawa, Norifumi; Nakao, Junichi; Matsutani, Junko; Yamasaki, Miyako; Ohkawachi, Tomomi; Taniyama, Kiyomi

    2013-01-01

    To decrease the risk of postoperative complication, improving general and pulmonary conditioning preoperatively should be considered essential for patients scheduled to undergo lung surgery. The aim of this study is to develop a short-term beneficial program of preoperative pulmonary rehabilitation for lung cancer patients. From June 2009, comprehensive preoperative pulmonary rehabilitation (CHPR) including intensive nutritional support was performed prospectively using a multidisciplinary team-based approach. Postoperative complication rate and the transitions of pulmonary function in CHPR were compared with historical data of conventional preoperative pulmonary rehabilitation (CVPR) conducted since June 2006. The study population was limited to patients who underwent standard lobectomy. Postoperative complication rate in the CVPR (n = 29) and CHPR (n = 21) were 48.3% and 28.6% (p = 0.2428), respectively. Those in patients with Charlson Comorbidity Index scores ≥2 were 68.8% (n = 16) and 27.3% (n = 11), respectively (p = 0.0341) and those in patients with preoperative risk score in Estimation of Physiologic Ability and Surgical Stress scores >0.3 were 57.9% (n = 19) and 21.4% (n = 14), respectively (p = 0.0362). Vital capacities of pre- and post intervention before surgery in the CHPR group were 2.63±0.65 L and 2.75±0.63 L (p = 0.0043), respectively; however, their transition in the CVPR group was not statistically significant (p = 0.6815). Forced expiratory volumes in one second of pre- and post intervention before surgery in the CHPR group were 1.73±0.46 L and 1.87±0.46 L (p = 0.0012), respectively; however, their transition in the CVPR group was not statistically significant (p = 0.6424). CHPR appeared to be a beneficial and effective short-term preoperative rehabilitation protocol, especially in patients with poor preoperative conditions.

  18. Accuracy of noninvasive haemoglobin measurement by pulse oximetry depends on the type of infusion fluid.

    PubMed

    Bergek, Christian; Zdolsek, Joachim H; Hahn, Robert G

    2012-12-01

    Measurement of blood haemoglobin concentration by pulse oximetry could be of value in determining when erythrocytes should be transfused during surgery, but the effect of infusion fluids on the results is unclear. To study the effect of crystalloid and colloid fluid on the accuracy (bias) and precision of pulse oximetry haemoglobin estimation to indicate the venous haemoglobin concentration in volunteers. Open interventional crossover study. Single university hospital. Ten male volunteers aged 18-28 (mean 22) years. Each volunteer underwent three infusion experiments on separate days and in random order. The infusions were Ringer's acetate (20 ml kg), hydroxyethyl starch 130/0.4 (10 ml kg) and a combination of both. At the end of the infusions of Ringer's acetate, pulse oximetry haemoglobin concentration had decreased more than the true haemoglobin concentration (15 vs. 8%; P < 0.005; n = 10) whereas starch solution decreased pulse oximetry haemoglobin concentration less than true haemoglobin concentration (7 vs. 11%; P < 0.02; n = 20). The same differences were seen when the fluids were infused separately and when they were combined. The overall difference between all 956 pairs of pulse oximetry haemoglobin concentration and true haemoglobin concentrations (the bias) averaged only -0.7 g l whereas the 95% prediction interval was wide, ranging from -24.9 to 23.7 g l. In addition to the choice of infusion fluid, the bias was strongly dependent on the volunteer (each factor, P < 0.001). The bias of measuring haemoglobin concentration by pulse oximetry is dependent on whether a crystalloid or a colloid fluid is infused. Trial registration ClinicalTrials identifier: NCT01195025.

  19. [Diuretic activity of the infusion of flowers from Lavandula officinalis].

    PubMed

    Elhajili, M; Baddouri, K; Elkabbaj, S; Meiouat, F; Settaf, A

    2001-01-01

    The diuretic activity of an infusion of Lavandula officinalis was studied in the Wistar rat. Thus, the kinetics of hydroelectrolytic elimination in response to the oral administration of an infusion of pharmaceutical lavender flowers were measured in the rats. Experiments were completed under similar conditions using a synthetic pharmacological diuretic, Diamox. The aqueous extract of this aromatic plant accelerated the elimination of the water overload. At the peak of the diuretic response, urinary osmolarity was significantly less than that of controls (111+/-14 vs. 195+/-11 mosmol x kg(-1)). Sodium excretion was moderate following administration of the infusion when compared to the synthetic diuretic. The stability of the aldosterone concentrations in the plasma and the absence of correlation with plasma sodium concentrations, coupled with the observed clearance of the free water (0.055+/-0.007 vs. 0.045+/-0.012 mL x min(-1)) show that the increase in diuresis and the moderate increase in sodium excretion are of tubular origin. The result of the phytochemical analysis of hexane extracts in the infusion and in urine indicated that four or five chemical factors may be involved in the diuretic effect of lavender.

  20. Glutamine-utilizing transaminases are a metabolic vulnerability of TAZ/YAP-activated cancer cells.

    PubMed

    Yang, Chih-Sheng; Stampouloglou, Eleni; Kingston, Nathan M; Zhang, Liye; Monti, Stefano; Varelas, Xaralabos

    2018-06-01

    The transcriptional regulators TAZ and YAP (TAZ/YAP) have emerged as pro-tumorigenic factors that drive many oncogenic traits, including induction of cell growth, resistance to cell death, and activation of processes that promote migration and invasion. Here, we report that TAZ/YAP reprogram cellular energetics to promote the dependence of breast cancer cell growth on exogenous glutamine. Rescue experiments with glutamine-derived metabolites suggest an essential role for glutamate and α-ketoglutarate (AKG) in TAZ/YAP-driven cell growth in the absence of glutamine. Analysis of enzymes that mediate the conversion of glutamate to AKG shows that TAZ/YAP induce glutamic-oxaloacetic transaminase (GOT1) and phosphoserine aminotransferase (PSAT1) expression and that TAZ/YAP activity positively correlates with transaminase expression in breast cancer patients. Notably, we find that the transaminase inhibitor aminooxyacetate (AOA) represses cell growth in a TAZ/YAP-dependent manner, identifying transamination as a potential vulnerable metabolic requirement for TAZ/YAP-driven breast cancer. © 2018 The Authors.