Sample records for l-grade stainless steel

  1. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

    PubMed Central

    Hryniewicz, Tadeusz; Rokosz, Krzysztof; Filippi, Massimiliano

    2009-01-01

    The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing), in comparison with those obtained under standard/conventional process (EP) conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material − medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size), EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP) process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.

  2. Sintered Intermetallic Reinforced 434L Ferritic Stainless Steel Composites

    NASA Astrophysics Data System (ADS)

    Upadhyaya, A.; Balaji, S.

    2009-03-01

    The present study examines the effect of aluminide (Ni3Al, Fe3Al) additions on the sintering behavior of ferritic 434L stainless steels during solid-state sintering (SSS) and supersolidus liquid-phase sintering (SLPS). 434L stainless steel matrix composites containing 5 and 10 wt pct of each aluminide were consolidated at 1200 °C (SSS) and 1400 °C (SLPS). The effects of sintering and aluminide additions on the densification, microstructural evolution, mechanical, tribological, and corrosion behavior of sintered ferritic (434L) stainless steels were investigated. The performances of the 434L-aluminide composites were compared with the straight 434L stainless steels processed at similar conditions. Supersolidus sintering resulted in significant improvement in densification, mechanical, wear, and corrosion resistance in both straight 434L and 434L-aluminide composites. Fe3Al additions to 434L stainless steels result in improved wear resistance without significant degradation of corrosion resistance in 3.56 wt pct NaCl solution.

  3. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    NASA Astrophysics Data System (ADS)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  4. Effect of Temperature on the Fracture Toughness of Hot Isostatically Pressed 304L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-03-01

    Herein, we have performed J- Resistance multi-specimen fracture toughness testing of hot isostatically pressed (HIP'd) and forged 304L austenitic stainless steel, tested at elevated (300 °C) and cryogenic (- 140 °C) temperatures. The work highlights that although both materials fail in a pure ductile fashion, stainless steel manufactured by HIP displays a marked reduction in fracture toughness, defined using J 0.2BL, when compared to equivalently graded forged 304L, which is relatively constant across the tested temperature range.

  5. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Kai; Wang, Yibo; Li, Zhuguo, E-mail: lizg@sjtu.edu.cn

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enrichedmore » region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.« less

  6. Effect of Cyclic Thermal Process on Ultrafine Grain Formation in AISI 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, B.; Mahato, B.; Sharma, Sailaja; Sahu, J. K.

    2009-12-01

    As-received hot-rolled commercial grade AISI 304L austenitic stainless steel plates were solution treated at 1060 °C to achieve chemical homogeneity. Microstructural characterization of the solution-treated material revealed polygonal grains of about 85- μm size along with annealing twins. The solution-treated plates were heavily cold rolled to about 90 pct of reduction in thickness. Cold-rolled specimens were then subjected to thermal cycles at various temperatures between 750 °C and 925 °C. X-ray diffraction showed about 24.2 pct of strain-induced martensite formation due to cold rolling of austenitic stainless steel. Strain-induced martensite formed during cold rolling reverted to austenite by the cyclic thermal process. The microstructural study by transmission electron microscope of the material after the cyclic thermal process showed formation of nanostructure or ultrafine grain austenite. The tensile testing of the ultrafine-grained austenitic stainless steel showed a yield strength 4 to 6 times higher in comparison to its coarse-grained counterpart. However, it demonstrated very poor ductility due to inadequate strain hardenability. The poor strain hardenability was correlated with the formation of strain-induced martensite in this steel grade.

  7. Corrosion behavior of 2205 duplex stainless steel.

    PubMed

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.

  8. [Stainless steels for medical instruments].

    PubMed

    Feofilov, R N

    1981-01-01

    Both in the USSR and abroad similar types of martensitic and austenitic stainless steel are used for the manufacture of medical instruments. Martensitic steel, the cheapest and most economically alloyed, has the best combination of properties necessary for medical instruments. The analysis of the Soviet and foreign experience in using different grades of steel for the production of medical instruments demonstrates the expediency and possibility of improving the quality of martensitic steel and rolled stock, as well as that of medical instruments manufactured from these materials, by improving, the operations of the metallurgical and technological processes and by specifying more precisely the requirements for medical instruments. The possibility and expediency of using, in some technically justified cases, lower grades of alloyed steel instead of grade 12X18H9T for clamps and other instruments made of stainless steel, as well as highly corrosive grades of steel for microinstruments, have been established.

  9. An Assessment of the Ductile Fracture Behavior of Hot Isostatically Pressed and Forged 304L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, A. J.; Smith, R. J.; Sherry, A. H.

    2017-05-01

    Type 300 austenitic stainless steel manufactured by hot isostatic pressing (HIP) has recently been shown to exhibit subtly different fracture behavior from that of equivalent graded forged steel, whereby the oxygen remaining in the component after HIP manifests itself in the austenite matrix as nonmetallic oxide inclusions. These inclusions facilitate fracture by acting as nucleation sites for the initiation, growth, and coalescence of microvoids in the plastically deforming austenite matrix. Here, we perform analyses based on the Rice-Tracey (RT) void growth model, supported by instrumented Charpy and J-integral fracture toughness testing at ambient temperature, to characterize the degree of void growth ahead of both a V-notch and crack in 304L stainless steel. We show that the hot isostatically pressed (HIP'd) 304L steel exhibits a lower critical void growth at the onset of fracture than that observed in forged 304L steel, which ultimately results in HIP'd steel exhibiting lower fracture toughness at initiation and impact toughness. Although the reduction in toughness of HIP'd steel is not detrimental to its use, due to the steel's sufficiently high toughness, the study does indicate that HIP'd and forged 304L steel behave as subtly different materials at a microstructural level with respect to their fracture behavior.

  10. Demonstration and Validation of Stainless Steel Materials for Critical Above Grade Piping in Highly Corrosive Locations

    DTIC Science & Technology

    2017-05-01

    Protecting And Bonding Reinforcing Steel In Cement -Based Composites, Corrosion 2009, Atlanta, GA, 22-26 March 2009. 7. Hock, V., O. Marshall, S...ER D C/ CE RL T R- 17 -1 3 DoD Corrosion Prevention and Control Program Demonstration and Validation of Stainless Steel Materials for...ERDC/CERL TR-17-13 May 2017 Demonstration and Validation of Stainless Steel Materials for Critical Above-Grade Piping in Highly Corrosive

  11. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.

    PubMed

    Li, Menghua; Yin, Tieying; Wang, Yazhou; Du, Feifei; Zou, Xingzheng; Gregersen, Hans; Wang, Guixue

    2014-10-01

    Adverse effects of nickel ions being released into the living organism have resulted in development of high nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also improves steel properties. The cell cytocompatibility, blood compatibility and cell response of high nitrogen nickel-free austenitic stainless steel were studied in vitro. The mechanical properties and microstructure of this stainless steel were compared to the currently used 316L stainless steel. It was shown that the new steel material had comparable basic mechanical properties to 316L stainless steel and preserved the single austenite organization. The cell toxicity test showed no significant toxic side effects for MC3T3-E1 cells compared to nitinol alloy. Cell adhesion testing showed that the number of MC3T3-E1 cells was more than that on nitinol alloy and the cells grew in good condition. The hemolysis rate was lower than the national standard of 5% without influence on platelets. The total intracellular protein content and ALP activity and quantification of mineralization showed good cell response. We conclude that the high nitrogen nickel-free austenitic stainless steel is a promising new biomedical material for coronary stent development. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Identification of the mechanism that confers superhydrophobicity on 316L stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar, Ana M.; Llorca-Isern, Nuria; Rius-Ayra, Oriol

    This study develops a rapid method to confer superhydrophobicity on 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. The highest contact angle (approaching 173°) was obtained after forming hierarchical structures with a non-aqueous electrolyte by an electrolytic process. Our goal was to induce superhydrophobicity directly on 316L stainless steel substrates and to establish which molecules cause the effect. The superhydrophobic behaviour is analysed by contact angle measurements, scanning electron microscopy (SEM), IR spectroscopy and atomic force microscopy (AFM). The growth mechanism is analysed using FE-SEM, TOF-SIMS and XPS in order to determine the molecules involved inmore » the reaction and the growth. The TOF-SIMS analysis revealed that the Ni{sup 2+} ions react with lauric acid to create an ester on the stainless steel surface. - Highlights: • This study develops a rapid and facile approach to impart superhydrophobicity properties to 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. Surface character changes from superhydrophilicity to superhydrophobicity. • This process changes the surface character from superhydrophilicity to superhydrophobicity. • The process based on electrolysis of a nickel salt in lauric acid provides superhydrophobic behaviour in 316L stainless steel. • The growth mechanism is proposed as a mode island (Volmert- Weber mode). • TOF-SIMS and XPS provided the identification of the molecules involved in the surface modification reaction on AISI 316L inducing superhydrophobicity.« less

  13. Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release.

    PubMed

    Hedberg, Y; Wang, X; Hedberg, J; Lundin, M; Blomberg, E; Wallinder, I Odnevall

    2013-04-01

    Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed.

  14. Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Moroz, A.; Alrbaey, K.

    2014-02-01

    Stainless steel is one of the most popular materials used for selective laser melting (SLM) processing to produce nearly fully dense components from 3D CAD models. The tribological and corrosion properties of stainless steel components are important in many engineering applications. In this work, the wear behaviour of SLM 316L stainless steel was investigated under dry sliding conditions, and the corrosion properties were measured electrochemically in a chloride containing solution. The results show that as compared to the standard bulk 316L steel, the SLM 316L steel exhibits deteriorated dry sliding wear resistance. The wear rate of SLM steel is dependent on the vol.% porosity in the steel and by obtaining full density it is possible achieve wear resistance similar to that of the standard bulk 316L steel. In the tested chloride containing solution, the general corrosion behaviour of the SLM steel is similar to that of the standard bulk 316L steel, but the SLM steel suffers from a reduced breakdown potential and is more susceptible to pitting corrosion. Efforts have been made to correlate the obtained results with porosity in the SLM steel.

  15. Laser Rewelding of 304L Stainless Steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, Michael Christopher; Rodelas, Jeffrey

    Laser welding of 304L stainless steel during component fabrication has been found to alter the chemical composition of the steel due to material evaporation. During repair or rework, or during potential reuse/ rewelding of certain components, the potential exists to alter the composition to the extent that the material becomes prone to solidification cracking. This work aims to characterize the extent of this susceptibility in order to make informed decisions regarding rewelding practice and base metal chemistry allowances.

  16. Welding Metallurgy and Weldability of Stainless Steels

    NASA Astrophysics Data System (ADS)

    Lippold, John C.; Kotecki, Damian J.

    2005-03-01

    Welding Metallurgy and Weldability of Stainless Steels, the first book in over twenty years to address welding metallurgy and weldability issues associated with stainless steel, offers the most up-to-date and comprehensive treatment of these topics currently available. The authors emphasize fundamental metallurgical principles governing microstructure evolution and property development of stainless steels, including martensistic, ferric, austenitic, duplex, and precipitation hardening grades. They present a logical and well-organized look at the history, evolution, and primary uses of each stainless steel, including detailed descriptions of the associated weldability issues.

  17. Effects of simulated inflammation on the corrosion of 316L stainless steel.

    PubMed

    Brooks, Emily K; Brooks, Richard P; Ehrensberger, Mark T

    2017-02-01

    Stainless steel alloys, including 316L, find use in orthopaedics, commonly as fracture fixation devices. Invasive procedures involved in the placement of these devices will provoke a local inflammatory response that produces hydrogen peroxide (H 2 O 2 ) and an acidic environment surrounding the implant. This study assessed the influence of a simulated inflammatory response on the corrosion of 316L stainless steel. Samples were immersed in an electrolyte representing either normal or inflammatory physiological conditions. After 24h of exposure, electrochemical impedance spectroscopy (EIS) and inductively coupled plasma mass spectroscopy (ICPMS) were used to evaluate differences in corrosion behavior and ion release induced by the inflammatory conditions. Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX) were used to evaluate surface morphology and corrosion products formed on the sample surface. Inflammatory conditions, involving the presence of H 2 O 2 and an acidic pH, significantly alter the corrosion processes of 316L stainless steel, promoting aggressive and localized corrosion. It is demonstrated that particular consideration should be given to 316L stainless steel implants with crevice susceptible areas (ex. screw-head/plate interface), as those areas may have an increased probability of rapid and aggressive corrosion when exposed to inflammatory conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium--a comparison.

    PubMed

    Herting, G; Wallinder, I Odnevall; Leygraf, C

    2008-09-01

    Metal release rates from stainless steel grade 316L were investigated in artificial lysosomal fluid (ALF), simulating a human inflammatory cell response. The main focus was placed on release rates of main alloying elements using graphite furnace atomic absorption spectroscopy, and changes in surface oxide composition by means of X-ray photoelectron spectroscopy. To emphasise that alloys and pure metals possess totally different intrinsic properties, comparative studies were performed on the pure alloying constituents: iron, nickel and chromium. Significant differences in release rates were observed due to the presence of a passive surface film on stainless steel. Iron and nickel were released at rates more than 300 times lower from the 316L alloy compared with the pure metals whereas the release rate of chromium was similar. Iron was preferentially released compared with nickel and chromium. Immersion in ALF resulted in the gradual enrichment of chromium in the surface film, a small increase of nickel, and the reduction of oxidized iron with decreasing release rates of alloy constituents as a result. As expected, released metals from stainless steel grade 316L were neither in proportion to the bulk alloy composition nor to the surface film composition.

  19. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  20. Stainless steel leaches nickel and chromium into foods during cooking.

    PubMed

    Kamerud, Kristin L; Hobbie, Kevin A; Anderson, Kim A

    2013-10-02

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan, cooking times of 2-20 h, 10 consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After 6 h of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold, respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34-fold and Cr increased approximately 35-fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, although significant metal contributions to foods were still observed. The tenth cooking cycle resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage.

  1. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    PubMed Central

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2014-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan; cooking times of 2 to 20 hours, ten consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After six hours of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34 fold and Cr increased approximately 35 fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, though significant metal contributions to foods were still observed. The tenth cooking cycle, resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage. PMID:23984718

  2. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity.

    PubMed

    Bayraktaroglu, Esra; Gulsoy, H Ozkan; Gulsoy, Nagihan; Er, Ozay; Kilic, Hasan

    2012-01-01

    The research was investigated the effect of boron additions on sintering characteristics, mechanical, corrosion properties and biocompatibility of injection molded austenitic grade 316L stainless steel. Addition of boron is promoted to get high density of sintered 316L stainless steels. The amount of boron plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders have been used with the elemental NiB powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperature. The debinded samples were sintered at different temperature for 60 min. Mechanical property, microstructural characterization and electrochemical property of the sintered samples were performed using tensile testing, hardness, optical, scanning electron microscopy and electrochemical corrosion experiments. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. Results of study showed that sintered 316L and 316L with NiB addition samples exhibited high mechanical and corrosion properties in a physiological environment. Especially, 316L with NiB addition can be used in some bioapplications.

  3. Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts

    PubMed Central

    Hiromoto, Sachiko; Hanawa, Takao

    2005-01-01

    Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells. PMID:16849246

  4. Erosion-corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangfeng; Wang, Jun; Fan, Hongyuan; Pan, Dong

    2018-05-01

    The low-temperature liquid nitriding of stainless steels can result in the formation of a surface zone of so-called expanded austenite (S-phase) by the dissolution of large amounts of nitrogen in the solid solution and formation of a precipitate-free layer supersaturated with high hardness. Erosion-corrosion measurements were performed on low-temperature nitrided and non-nitrided 316L stainless steels. The total erosion-corrosion, erosion-only, and corrosion-only wastages were measured directly. As expected, it was shown that low-temperature nitriding dramatically reduces the degree of erosion-corrosion in stainless steels, caused by the impingement of particles in a corrosive medium. The nitrided 316L stainless steels exhibited an improvement of almost 84% in the erosion-corrosion resistance compared to their non-nitrided counterparts. The erosion-only rates and synergistic levels showed a general decline after low-temperature nitriding. Low-temperature liquid nitriding can not only reduce the weight loss due to erosion but also significantly reduce the weight loss rate of interactions, so that the total loss of material decreased evidently. Therefore, 316L stainless steels displayed excellent erosion-corrosion behaviors as a consequence of their highly favorable corrosion resistances and superior wear properties.

  5. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  6. Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility.

    PubMed

    Nagarajan, Srinivasan; Mohana, Marimuthu; Sudhagar, Pitchaimuthu; Raman, Vedarajan; Nishimura, Toshiyasu; Kim, Sanghyo; Kang, Yong Soo; Rajendran, Nallaiyan

    2012-10-24

    The 316 L stainless steel is one of the most commonly available commercial implant materials with a few limitations in its ease of biocompatibility and long-standing performance. Hence, porous TiO(2)/ZrO(2) nanocomposite coated over 316 L stainless steels was studied for their enhanced performance in terms of its biocompatibility and corrosion resistance, following a sol-gel process via dip-coating technique. The surface composition and porosity texture was studied to be uniform on the substrate. Biocompatibility studies on the TiO(2)/ZrO(2) nanocomposite coatings were investigated by placing the coated substrate in a simulated body fluid (SBF). The immersion procedure resulted in the complete coverage of the TiO(2)/ZrO(2) nanocomposite (coated on the surface of 316 L stainless steel) with the growth of a one-dimensional (1D) rod-like carbonate-containing apatite. The TiO(2)/ZrO(2) nanocomposite coated specimens showed a higher corrosion resistance in the SBF solution with an enhanced biocompatibility, surpassing the performance of the pure oxide coatings. The cell viability of TiO(2)/ZrO(2) nanocomposite coated implant surface was examined under human dermal fibroblasts culture, and it was observed that the composite coating enhances the proliferation through effective cellular attachment compared to pristine 316 L SS surface.

  7. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel

    PubMed Central

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-01-01

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance. PMID:28773067

  8. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.

    PubMed

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-06-27

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.

  9. The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainless steel human body implant

    NASA Astrophysics Data System (ADS)

    Sharifnabi, A.; Fathi, M. H.; Eftekhari Yekta, B.; Hossainalipour, M.

    2014-01-01

    In this study, Mg-substituted fluorapatite coatings were deposited on medical grade AISI 316L stainless steel via sol-gel dip coating method. Phase composition, crystallite size and degree of crystallinity of the obtained coatings were evaluated by X-ray diffraction (XRD) analysis. Fourier transform infrared (FTIR) spectroscopy was also used to evaluate functional groups of the obtained coatings. The surface morphology and cross-section of the final coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy was used to determine elemental chemical composition of the obtained coatings. In order to determine and compare the corrosion behavior of uncoated and Mg-substituted fluorapatite coated 316L stainless steel, electrochemical potentiodynamic polarization tests were performed in physiological solutions at 37 ± 1 °C. Moreover, the released metallic ions from uncoated and coated substrates were measured by inductively coupled plasma-optical emission spectrometry (ICP-OES) within 2 months of immersing in Ringer's solution at 36.5 ± 1 °C as an indication of biocompatibility. The results showed that fluoride and magnesium were successfully incorporated into apatite lattice structure and the prepared coatings were nanostructured with crystallinity of about 70%. Obtained coatings were totally crack-free and uniform and led to decrease in corrosion current densities of 316L stainless steel in physiological solutions. In addition, coated sample released much less ions such as Fe, Cr and Ni in physiological media. Therefore, it was concluded that Mg-substituted fluorapatite coatings could improve the corrosion resistance and biocompatibility of 316L stainless steel human body implants.

  10. A study on corrosion resistance of dissimilar welds between Monel 400 and 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Mani, Cherish; Karthikeyan, R.; Vincent, S.

    2018-04-01

    An attempt has been made to study the corrosion resistance of bi-metal weld joints of Monel 400 tube to stainless steel 316 tube by GTAW process. The present research paper contributes to the ongoing research work on the use of Monel400 and 316L austenitic stainless steel in industrial environments. Potentiodynamic method is used to investigate the corrosion behavior of Monel 400 and 316L austenitic stainless steel welded joints. The analysis has been performed on the base metal, heat affected zone and weld zone after post weld heat treatment. Optical microscopy was also performed to correlate the results. The heat affected zone of Monel 400 alloy seems to have the lowest corrosion resistance whereas 316L stainless steel base metal has the highest corrosion resistance.

  11. Ennoblement, corrosion, and biofouling in brackish seawater: Comparison between six stainless steel grades.

    PubMed

    Huttunen-Saarivirta, E; Rajala, P; Marja-Aho, M; Maukonen, J; Sohlberg, E; Carpén, L

    2018-04-01

    In this work, six common stainless steel grades were compared with respect to ennoblement characteristics, corrosion performance and tendency to biofouling in brackish sea water in a pilot-scale cooling water circuit. Two tests were performed, each employing three test materials, until differences between the materials were detected. Open circuit potential (OCP) was measured continuously in situ. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements were conducted before and after the tests. Exposed specimens were further subjected to examinations by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), and the biofouling was studied using epifluorescence microscopy, quantitative polymerase chain reaction (qPCR) and high-throughput sequencing (HTP sequencing). The results revealed dissimilarities between the stainless steel grades in corrosion behaviour and biofouling tendency. The test material that differed from the most of the other studied alloys was grade EN 1.4162. It experienced fastest and most efficient ennoblement of OCP, its passive area shrank to the greatest extent and the cathodic reaction was accelerated to a significant degree by the development of biofilm. Furthermore, microbiological analyses revealed that bacterial community on EN 1.4162 was dominated by Actinobacteria, whereas on the other five test materials Proteobacteria was the main bacterial phylum. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nickel-free austenitic stainless steels for medical applications.

    PubMed

    Yang, Ke; Ren, Yibin

    2010-02-01

    The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels.

  13. Nickel-free austenitic stainless steels for medical applications

    PubMed Central

    Yang, Ke; Ren, Yibin

    2010-01-01

    The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels. PMID:27877320

  14. Electrochemical Carbonitriding of 316L Stainless Steel in Molten Salt System

    NASA Astrophysics Data System (ADS)

    Ren, Yanjie; Xiao, Bo; Chen, Yaqing; Chen, Jian; Chen, Jianlin

    This paper reports an electrochemical route for carbonitriding 316L stainless steel in molten salts. Carbonitriding process was accomplished in molten alkaline chloride (LiCl/KCl) with the addition of KNO2 at 480∘C using a three-electrode system in which a carbon sheet was the counter electrode. The carbonitriding layer of 316L stainless steel obtained by potentiostatic electrolysis was analyzed by several physical techniques. The results showed that a compact layer with a thickness of about 7μm formed after the treatment. According to X-ray diffraction analysis, chromium nitride and carbide formed on the surface of carbonitriding layer. The microhardness of the carbonitriding layer is HV 336, as compared to HV 265 for the substrate.

  15. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shenglong; Zhang, Mingxian; Wu, Huanchun

    In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment performed on a Gleeble-1500 simulator at temperatures of 900–1250 °C and strain rates of 0.01–1 s{sup −1}. By multiple linear regressions of the flow stress-strain data, the dynamic recrystallization mathematical models of this steel as functions of strain rate, strain and temperature were developed. Then these models were verified in a real experiment. Furthermore, the dynamic recrystallization mechanism of the steel was determined. The results indicated that the subgrains in this steel are formed through dislocations polygonization and thenmore » grow up through subgrain boundaries migration towards high density dislocation areas and subgrain coalescence mechanism. Dynamic recrystallization nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. The nuclei grow up through high angle grain boundaries migration. - Highlights: •Establish the DRX mathematical models of nuclear grade 316LN stainless steel •Determine the DRX mechanism of this steel •Subgrains are formed through dislocations polygonization. •Subgrains grow up through subgrain boundaries migration and coalescence mechanism. •DRX nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism.« less

  16. Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition.

    PubMed

    Li, Lester; Breedveld, Victor; Hess, Dennis W

    2012-09-26

    In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance.

  17. Recrystallization and modification of the stainless-steel surface relief under photonic heat load in powerful plasma discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budaev, V. P., E-mail: budaev@mail.ru; Martynenko, Yu. V.; Khimchenko, L. N.

    Targets made of ITER-grade 316L(N)-IG stainless steel and Russian-grade 12Cr18Ni10Ti stainless steel with a close composition were exposed at the QSPA-T plasma gun to plasma photonic radiation pulses simulating conditions of disruption mitigation in ITER. After a large number of pulses, modification of the stainless-steel surface was observed, such as the formation of a wavy structure, irregular roughness, and cracks on the target surface. X-ray and optic microscopic analyses of targets revealed changes in the orientation and dimensions of crystallites (grains) over a depth of up to 20 μm for 316L(N)-IG stainless steel after 200 pulses and up to 40more » μm for 12Cr18Ni10Ti stainless steel after 50 pulses, which is significantly larger than the depth of the layer melted in one pulse (∼10 μm). In a series of 200 tests of ITER-grade 316L(N)-IG ITER stainless steel, a linear increase in the height of irregularity (roughness) with increasing number of pulses at a rate of up to ∼1 μm per pulse was observed. No alteration in the chemical composition of the stainless-steel surface in the series of tests was revealed. A model is developed that describes the formation of wavy irregularities on the melted metal surface with allowance for the nonlinear stage of instability of the melted layer with a vapor/plasma flow above it. A decisive factor in this case is the viscous flow of the melted metal from the troughs to tops of the wavy structure. The model predicts saturation of the growth of the wavy structure when its amplitude becomes comparable with its wavelength. Approaches to describing the observed stochastic relief and roughness of the stainless-steel surface formed in the series of tests are considered. The recurrence of the melting-solidification process in which mechanisms of the hill growth compete with the spreading of the material from the hills can result in the formation of a stochastic relief.« less

  18. Anomalous Annealing Response of Directed Energy Deposited Type 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Smith, Thale R.; Sugar, Joshua D.; Schoenung, Julie M.; San Marchi, Chris

    2018-03-01

    Directed energy deposited (DED) and forged austenitic stainless steels possess dissimilar microstructures but can exhibit similar mechanical properties. In this study, annealing was used to evolve the microstructure of both conventional wrought and DED type 304L austenitic stainless steels, and significant differences were observed. In particular, the density of geometrically necessary dislocations and hardness were used to probe the evolution of the microstructure and properties. Forged type 304L exhibited the expected decrease in measured dislocation density and hardness as a function of annealing temperature. The more complex microstructure-property relationship observed in the DED type 304L material is attributed to compositional heterogeneities in the solidification microstructure.

  19. 77 FR 28568 - Grant of Authority for Subzone Status; North American Stainless, (Stainless Steel), Ghent, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... Status; North American Stainless, (Stainless Steel), Ghent, KY Pursuant to its authority under the... application to the Board for authority to establish a special-purpose subzone at the stainless steel mill of... stainless steel at the facility of North American Stainless, located in Ghent, Kentucky (Subzone 29L), as...

  20. Long-Term Effects of Temperature Exposure on SLM 304L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Amine, Tarak; Kriewall, Caitlin S.; Newkirk, Joseph W.

    2018-03-01

    Austenitic stainless steel is extensively used in industries that operate at elevated temperatures. This work investigates the high-temperature microstructure stability as well as elevated-temperature properties of 304L stainless steel fabricated using the selective laser melting (SLM) process. Significant microstructural changes were seen after a 400°C aging process for as little as 25 h. This dramatic change in microstructure would not be expected based on the ferrite decomposition studied in conventional 304L materials. The as-built additively manufactured alloy has much faster kinetic response to heat treatment at 400°C. An investigation of the structures which occur, the kinetics of the various transformations, and the mechanical properties is presented. The impact of this on the application of SLM 304L is discussed.

  1. Experimental Investigation of Friction and Wear Behavior of 304L Stainless Steel Sliding Against Different Counterface in Dry Contact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olofinjana, Bolutife; Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta

    In this study, friction and wear behavior of 304L stainless steel sliding against different ball counterface under dry contact was investigated. Tests were conducted using a ball-on-flat contact configuration in reciprocating sliding with 440C stainless steel, Al alloy (2017) and bronze ball counterfaces under different loads. Detailed surface analysis was also done using 3-D profilometry technique and optical microscopy in order to determine wear mechanism and dimension. All the pairs exhibited initial rapid increase in coefficient of friction after which a variety of friction behavior, depending on the ball counterface, was observed. The flat and the ball counterface in 304Lmore » stainless steel-440C stainless steel pair showed wear that was proportional to applied load. In both 304L stainless steel-Al alloy (2017) and 304L stainless steel-bronze pairs, ball samples showed severe wear that was proportional to the applied load while material transfer from the different balls occurred in the flat. The study concluded that friction and wear were not material properties but a kind of responses that characterize a pair of surfaces in contact undergoing relative motion.« less

  2. Tensile Fracture Behavior of 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-02-01

    Herein we investigate how the oxygen content in hot isostatically pressed (HIP'd) 316L stainless steel affects the mechanical properties and tensile fracture behavior. This work follows on from previous studies, which aimed to understand the effect of oxygen content on the Charpy impact toughness of HIP'd steel. We expand on the work by performing room-temperature tensile testing on different heats of 316L stainless steel, which contain different levels of interstitial elements (carbon and nitrogen) as well as oxygen in the bulk material. Throughout the work we repeat the experiments on conventionally forged 316L steel as a reference material. The analysis of the work indicates that oxygen does not contribute to a measureable solution strengthening mechanism, as is the case with carbon and nitrogen in austenitic stainless steels (Werner in Mater Sci Eng A 101:93-98, 1988). Neither does oxygen, in the form of oxide inclusions, contribute to precipitation hardening due to the size and spacing of particles. However, the oxide particles do influence fracture behavior; fractography of the failed tension test specimens indicates that the average ductile dimple size is related to the oxygen content in the bulk material, the results of which support an on-going hypothesis relating oxygen content in HIP'd steels to their fracture mechanisms by providing additional sites for the initiation of ductile damage in the form of voids.

  3. Mechanical characteristics of welded joints between different stainless steels grades

    NASA Astrophysics Data System (ADS)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Investigation of mechanical characteristics of welded joints is one of the most important tasks that allow determining their functional properties. Due to the very high, still rising, cost of some stainless steels it is justified, on economic grounds, welding austenitic stainless steel with steels that are corrosion-resistant like duplex ones. According to forecasts the price of corrosion resistant steels stil can increase by 26 ÷ 30%. For technical reasons welded joints require appropriate mechanical properties such as: tensile strength, bending, ductility, toughness, and resistance to aggressive media. Such joints are applied in the construction of chemical tankers, apparatus and chemical plants and power steam stations. Using the proper binder makes possible the welds directly between the elements of austenitic stainless steels and duplex ones. It causes that such joits behave satisfactorily in service in such areas like maritime constructions and steam and chemical plants. These steels have high mechanical properties such as: the yield strength, the tensile strength and the ductility as well as the resistance to general corrosion media. They are resistant to both pitting and stress corrosions. The relatively low cost of production of duplex steels, in comparison with standard austenitic steels, is inter alia, the result of a reduced amount of scarce and expensive Nickel, which is seen as a further advantage of these steels.

  4. Corrosion-free precast prestressed concrete piles made with stainless steel reinforcement : construction, test and evaluation.

    DOT National Transportation Integrated Search

    2015-03-01

    The use of duplex high-strength stainless steel (HSSS) grade 2205 prestressing strand and : austenitic stainless steel (SS) grade 304 spiral wire reinforcement is proposed as a replacement of : conventional prestressing steel, in order to provide a 1...

  5. Vacuum brazing of 316L stainless steel based on additively manufactured and conventional material grades

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Henning, T.; Wojarski, L.

    2018-06-01

    Many industrial applications require components with an increasing geometric complexity and specific material properties. Furthermore, the production costs and the affordable production time have to be minimized in order to ensure competitiveness. These divergent objectives are difficult to achieve with a single manufacturing technology. Therefore, joining of selective laser melted (SLM) complex shaped parts to conventionally produced high-volume components provides a high potential. The current investigation focuses on vacuum brazing conventionally manufactured to non-hipped SLM generated AISI 316L stainless steel. Cylindrical samples (Ø 14 mm) were brazed using a B-Ni2 foil (50 µm) at 1050 °C for 30 minutes in vacuum (< 4.5·10-5 mbar) and directly cooled down to room temperature with 4 bar overpressure to prevent the formation of chromium carbides within the base material. It could be proven that the brazing quality is extremely sensitive to even marginal porosities (< 0.2 %) and/or oxide inclusions of the SLM microstructure. Therefore, the fracture mirror in SLM/conventional steel brazements was at the joint braze/SLM steel interface, leading to a joint strength of 317.4 MPa. This corresponds to only 67.4 % of the joint strength obtained with conventional steel, where the fracture propagated through the diffusion area.

  6. Microstructure and Mechanical Properties of 316L Stainless Steel Filling Friction Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Nakata, K.; Tsumura, T.; Fujii, H.; Ikeuchi, K.; Michishita, Y.; Fujiya, Y.; Morimoto, M.

    2014-10-01

    Keyhole left at 316L stainless steel friction stir welding/friction stir processing seam was repaired by filling friction stir welding (FFSW). Both metallurgical and mechanical bonding characteristics were obtained by the combined plastic deformation and flow between the consumable filling tool and the wall of the keyhole. Two ways based on the original conical and modified spherical keyholes, together with corresponding filling tools and process parameters were investigated. Microstructure and mechanical properties of 316L stainless steel FFSW joints were evaluated. The results showed that void defects existed at the bottom of the refilled original conical keyhole, while excellent bonding interface was obtained on the refilled modified spherical keyhole. The FFSW joint with defect-free interface obtained on the modified spherical keyhole fractured at the base metal side during the tensile test due to microstructural refinement and hardness increase in the refilled keyhole. Moreover, no σ phase but few Cr carbides were formed in the refilled zone, which would not result in obvious corrosion resistance degradation of 316L stainless steel.

  7. Analysis of in vivo corrosion of 316L stainless steel posterior thoracolumbar plate systems: a retrieval study.

    PubMed

    Majid, Kamran; Crowder, Terence; Baker, Erin; Baker, Kevin; Koueiter, Denise; Shields, Edward; Herkowitz, Harry N

    2011-12-01

    One hundred eighteen patients retrieved 316L stainless steel thoracolumbar plates, of 3 different designs, used for fusion in 60 patients were examined for evidence of corrosion. A medical record review and statistical analysis were also carried out. This study aims to identify types of corrosion and examine preferential metal ion release and the possibility of statistical correlation to clinical effects. Earlier studies have found that stainless steel spine devices showed evidence of mild-to-severe corrosion; fretting and crevice corrosion were the most commonly reported types. Studies have also shown the toxicity of metal ions released from stainless steel corrosion and how the ions may adversely affect bone formation and/or induce granulomatous foreign body responses. The retrieved plates were visually inspected and graded based on the degree of corrosion. The plates were then analyzed with optical microscopy, scanning electron microscopy, and energy dispersive x-ray spectroscopy. A retrospective medical record review was performed and statistical analysis was carried out to determine any correlations between experimental findings and patient data. More than 70% of the plates exhibited some degree of corrosion. Both fretting and crevice corrosion mechanisms were observed, primarily at the screw plate interface. Energy dispersive x-ray spectroscopy analysis indicated reductions in nickel content in corroded areas, suggestive of nickel ion release to the surrounding biological environment. The incidence and severity of corrosion was significantly correlated with the design of the implant. Stainless steel thoracolumbar plates show a high incidence of corrosion, with statistical dependence on device design.

  8. [Study of a new medical stainless steel].

    PubMed

    Ren, Yibin; Yang, Ke; Zhang, Bingchun; Yang, Huibin

    2006-10-01

    Medical implantable stainless steels are widely used in medical field due to their excellent properties, besides its allergic response to human body, the nickel ion released from the steels due to corrosion has the harm of malformation and carcingenesis. The mechanical property, corrosion resistance and blood compatibility of a new nickel-free stainless steel (BIOSSN4) is researched in this paper. Compared with the traditional 316L medical stainless steel, BIOSSN4 shows wide future applications because of its better combination of strength and toughness, good corrosion resistance and biocompatibility.

  9. The Synergistic Effect of Proteins and Reactive Oxygen Species on Electrochemical Behaviour of 316L Stainless Steel for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Simionescu, N.; Benea, L.; Dumitrascu, V. M.

    2018-06-01

    The stainless steels, especially 316L type is the most used metallic biomaterials for biomedical applications due to their good biocompatibility, low price, excellent corrosion resistance, availability, easy processing and high strength. Due to these favorable properties 316L stainless steel has become the most attractive biomaterial for dental implants, stents and orthopedic implants. However an implant material in the human body is exposed to an action effect of other molecules, including proteins (such as albumin) and reactive oxygen species (such as hydrogen peroxide - H2O2 ) produced by bacteria and immune cells. In the literature there are few studies to follow the effect of proteins and reactive oxygen species on 316L stainless steel used as implant material and are still unclear. The degree of corrosion resistance is the first criterion in the use of a metallic biomaterial in the oral or body environment. The aim of this research work is to investigate the influence of proteins (albumin) and reactive oxygen species (H2O2 ) in combination, taking into account the synergistic effect of these two factors on 316L stainless steel. Albumin is present in the body near implants and reactive oxygen species could appear in inflammatory processes as well. The study shows that the presence of albumin and reactive species influences the corrosion resistance of 316L stainless steel in biological solutions. In this research work the corrosion behavior of 316L stainless steel is analyzed by electrochemical methods such as: open circuit potential (OCP), Electrochemical Impedance Spectroscopy (EIS). It was found that, the electrochemical results are in a good agreement with micro photographs taken before and after corrosion assays. The albumin and reactive oxygen species have influence on 316L stainless steel behavior.

  10. Electrochemical study on the corrosion resistance of plasma nanocoated 316L stainless steel in albumin- and lysozyme-containing electrolytes

    PubMed Central

    Jones, John Eric; Chen, Meng; Chou, Ju; Yu, Qingsong

    2017-01-01

    The physiological corrosion resistance of plasma nanocoated 316L stainless steel was studied in protein-containing electrolytes using electrochemical methods. Plasma nanocoatings with thicknesses of 20–30 nm were deposited onto 316L stainless steel coupons in a glow discharge of trimethylsilane (TMS) or its mixture with oxygen gas under various gas ratios. The surface chemistries of the plasma nanocoatings were characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Corrosion properties of the plasma nanocoated 316L stainless steel coupons were assessed using potentiodynamic polarization, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) in phosphate-buffered saline (PBS) electrolytes that contain bovine serum albumin (BSA) or lysozyme. It was found that BSA adsorption on the plasma nanocoated 316L coupons was heavily favored. BSA adsorption on the plasma nanocoating surfaces could block charge-transfer reactions between the electrolyte and 316L substrate, and thus stabilize the 316L substrates from further corrosion. In contrast, lysozyme adsorption on the plasma nanocoated specimens was not as pronounced and mildly influenced the corrosion properties of the plasma nanocoated 316L stainless steel. PMID:29422723

  11. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-04-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  12. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-06-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  13. Measuring secondary phases in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  14. Articles comprising ferritic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakowski, James M.

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the articlemore » of manufacture is a fuel cell interconnect for a solid oxide fuel cell.« less

  15. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.

    PubMed

    Tang, Yee-Chin; Katsuma, Shoji; Fujimoto, Shinji; Hiromoto, Sachiko

    2006-11-01

    The electrochemical corrosion behaviour of Type 304 and 316L stainless steels was studied in Hanks' solution, Eagle's minimum essential medium (MEM), serum containing medium (MEM with 10% of fetal bovine serum) without cells, and serum containing medium with cells over a 1-week period. Polarization resistance measurements indicated that the stainless steels were resistant to Hanks' and MEM solutions. Type 304 was more susceptible to pitting corrosion than Type 316L in Hanks' and MEM solutions. The uniform corrosion resistance of stainless steels, determined by R(p), was lower in culturing medium than in Hanks' and MEM. The low corrosion resistance was due to surface passive film with less protective to reveal high anodic dissolution rate. When cells were present, the initial corrosion resistance was low, but gradually increased after 3 days, consistent with the trend of cell coverage. The presence of cells was found to suppress the cathodic reaction, that is, oxygen reduction, and increase the uniform corrosion resistance as a consequence. On the other hand, both Type 304 and 316L stainless steels became more susceptible to pitting corrosion when they were covered with cells.

  16. Properties of super stainless steels for orthodontic applications.

    PubMed

    Oh, Keun-Taek; Kim, Young-Sik; Park, Yong-Soo; Kim, Kyoung-Nam

    2004-05-15

    Orthodontic stainless-steel appliances are considered to be corrosion resistant, but localized corrosion can occur in the oral cavity. This study was undertaken to evaluate the properties of super stainless steels in orthodontic applications. Accordingly, the metallurgical properties, mechanical properties, corrosion resistance, amount of the released nickel, cytotoxicity, and characteristics of the passive film were investigated. Corrosion resistances of the specimens were high and in the following order: super austenitic stainless steel (SR-50A) > super ferritic stainless steel (SFSS) = super duplex stainless steel (SR-6DX) > 316L SS > super martensitic stainless steel (SR-3Mo) in artificial saliva, 37 degrees C. At 500 mV (SCE), current densities of SR-50A, SFSS, SR-6DX, 316L SS, and SR-3Mo were 5.96 microA/cm(2), 20.3 microA/cm(2), 31.9 microA/cm(2), 805 microA/cm(2), and 5.36 mA/cm(2), respectively. Open circuit potentials of SR-50A, 316L SS, SR-6DX, SR-3Mo, and SFSS were - 0.2, - 0.22, - 0.24, - 0.43, and - 0.46 V (SCE), respectively. SR-50A, SFSS, and SR-6DX released below 3 ng/ml nickel for 8 weeks, and increased a little with immersion time, and 316L SS released about 3.5 ng/ml nickel, but SR-3Mo released a large amount of nickel, which increased with immersion time. The study demonstrated that SR-50A, SR-6DX, and SFSS have high corrosion resistance and mild or no cytotoxicity, due to the passive film enhanced by synergistic effect of Mo + N or by high addition effect of Cr + W. All super stainless steels showed very low cytotoxicity regardless of their nickel contents, although SR-3Mo was found to be relatively cytotoxic. From these studies, these steels are considered suitable for orthodontic applications. Copyright 2004 Wiley Periodicals, Inc.

  17. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  18. Colorimetric values of esthetic stainless steel crowns.

    PubMed

    Hosoya, Yumiko; Omachi, Koichi; Staninec, Michal

    2002-01-01

    The colorimetric values of two different kinds of esthetic stainless steel crowns were measured and compared with the colorimetric values of primary anterior teeth in Japanese children. The colorimetric values of resin composite-faced stainless steel crowns (Kinder Krown) and epoxy-coated stainless steel crowns (White Steel Crown) were measured with a color difference meter. The Commission Internationale de Eclairage L*, a*, b*, and delta E*ab values and Munsell value, chroma, and hue were calculated. The data were compared with previously reported colorimetric values of Japanese primary anterior teeth measured with the same color difference meter used in this study. Compared to Japanese primary anterior teeth, Kinder Krown Pedo I and Pedo II showed much higher L* values and lower hue; on the other hand, White Steel Crown showed much higher L*, a*, b* values, much higher value and chroma, and much lower hue. Color analysis revealed that the colors of the White Steel Crown and Kinder Krown Pedo I were substantially different from the color of Japanese primary anterior teeth. The color difference between Pedo II crowns and Japanese primary anterior teeth was relatively high, but the color of Pedo II might be acceptable for clinical use.

  19. Influence of the field humiture environment on the mechanical properties of 316L stainless steel repaired with Fe314

    NASA Astrophysics Data System (ADS)

    Zhang, Lianzhong; Li, Dichen; Yan, Shenping; Xie, Ruidong; Qu, Hongliang

    2018-04-01

    The mechanical properties of 316L stainless steel repaired with Fe314 under different temperatures and humidities without inert gas protection were studied. Results indicated favorable compatibility between Fe314 and 316L stainless steel. The average yield strength, tensile strength, and sectional contraction percentage were higher in repaired samples than in 316L stainless steel, whereas the elongation rate was slightly lower. The different conditions of humiture environment on the repair sample exerted minimal influence on tensile and yield strengths. The Fe314 cladding layer was mainly composed of equiaxed grains and mixed with randomly oriented columnar crystal and tiny pores or impurities in the tissue. Results indicated that the hardness value of Fe314 cladding layer under different humiture environments ranged within 419-451.1 HV0.2. The field humiture environment also showed minimal impact on the average hardness of Fe314 cladding layers. Furthermore, 316L stainless steel can be repaired through laser cladding by using Fe314 powder without inert gas protection under different temperatures and humidity environments.

  20. Influence of Heat Input on the Content of Delta Ferrite in the Structure of 304L Stainless Steel GTA Welded Joints

    NASA Astrophysics Data System (ADS)

    Sejč, Pavol; Kubíček, Rastislav

    2011-12-01

    Welding of austenitic stainless steel has its specific issues, even when the weldability is considered good. The main problems of austenitic stainless steel welding are connected with its metallurgical weldability. The amount of the components presented in the structure of stainless steel welded joint affect its properties, therefore the understanding of the behavior of stainless steel during its welding is important for successful processing and allows the fabricators the possibility to manage the resulting issues. This paper is focused on the influence of heat input on the structural changes in GTA welded joints of austenitic stainless steel designated: ASTM SA TP 304L.

  1. Phase Separation in Lean Grade Duplex Stainless Steel 2101

    DOE PAGES

    Garfinkel, D.; Poplawsky, Jonathan D.; Guo, Wei; ...

    2015-08-19

    The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C - 538°C. New lean grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1-10,000 hours). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α-α’ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205 weremore » used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard grade DSS alloy, 2205, but inferior to the lean grade alloy, 2003, in mechanical testing. APT data demonstrates that the degree of α-α’ separation found in alloy 2101 closely resembles that of 2205, and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, though precipitates were not as abundant as was observed in 2205.« less

  2. Performance of ferritic stainless steels for automobile muffler corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarutani, Y.; Hashizume, T.

    1995-11-01

    Corrosion behavior of ferritic stainless steels was studied in artificial exhaust gas condensates containing corrosive ions such as Cl{sup {minus}} and SO{sub 3}{sup 2{minus}}. Continuous immersion tests in flasks and Dip and Dry tests by using the alternate corrosion tester with a heating system clarified the effects of chromium and molybdenum additions on the corrosion resistance of a ferritic stainless steel in the artificial exhaust gas condensates. Effects of surface oxidation on the corrosion behavior were investigated in a temperature range of 573K to 673K. Oxidation of 673K reduced the corrosion resistance of the ferritic stainless steels in the artificialmore » environment of the automobile muffler. Particulate matter deposited on the muffler inner shell from the automobile exhaust gas was also examined. Deposited particulate matter increased the corrosion rate of the ferritic stainless steel. Finally, the authors also investigated the corrosion of the automobile mufflers made of Type 436L ferritic stainless steel with 18% chromium-1.2% molybdenum after 24 months, in Japan. The sets of results clarified that Type 436L ferritic stainless steel as the material for the automobile muffler exhibited acceptable corrosion resistance.« less

  3. Nanohardness, corrosion and protein adsorption properties of CuAlO2 films deposited on 316L stainless steel for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Hang; Chen, Jian-Zhang; Hsiao, Sou-Hui; Lin, Guan-Wei

    2014-01-01

    This study preliminarily assesses the biomedical applications of CuAlO2 coatings according to nanoindentation, electrochemical, and protein adsorption tests. Nanoindentation results revealed that the surface hardness of 316L stainless steel increased markedly after coating with CuAlO2 films. Electrochemical tests of corrosion potential, breakdown potential, and corrosion current density showed that the corrosion resistance properties of 316L stainless steel are considerably improved by CuAlO2 coatings. Bicinchoninic acid (BCA) protein assay results revealed that the protein adsorption behavior of 316L stainless steel did not exhibit notable differences with or without CuAlO2 coatings. A CuAlO2 coating of 100 nm thickness improved the surface nanohardness and corrosion resistance ability of 316L stainless steel. CuAlO2 is a potential candidate for biomaterial coating applications, particularly for surface modification of fine, delicate implants.

  4. Temperature effects on the mechanical properties of annealed and HERF 304L stainless steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoun, Bonnie R.

    2004-11-01

    The effect of temperature on the tensile properties of annealed 304L stainless steel and HERF 304L stainless steel forgings was determined by completing experiments over the moderate range of -40 F to 160 F. Temperature effects were more significant in the annealed material than the HERF material. The tensile yield strength of the annealed material at -40 F averaged twenty two percent above the room temperature value and at 160 F averaged thirteen percent below. The tensile yield strength for the three different geometry HERF forgings at -40 F and 160 F changed less than ten percent from room temperature.more » The ultimate tensile strength was more temperature dependent than the yield strength. The annealed material averaged thirty six percent above and fourteen percent below the room temperature ultimate strength at -40 F and 160 F, respectively. The HERF forgings exhibited similar, slightly lower changes in ultimate strength with temperature. For completeness and illustrative purposes, the stress-strain curves are included for each of the tensile experiments conducted. The results of this study prompted a continuation study to determine tensile property changes of welded 304L stainless steel material with temperature, documented separately.« less

  5. Microstructure, Properties and Weldability of Duplex Stainless Steel 2101

    NASA Astrophysics Data System (ADS)

    Ma, Li; Hu, Shengsun; Shen, Junqi

    2017-01-01

    The continuous development of duplex stainless steels (DSSs) is due to their excellent corrosion resistance in aggressive environments and their mechanical strength, which is usually twice of conventional austenitic stainless steels (ASSs). In this paper, a designed lean duplex stainless steel 2101, with the alloy design of reduced nickel content and increased additions of manganese and nitrogen, is studied by being partly compared with typical ASS 304L steels. The microstructure, mechanical properties, impact toughness, corrosion resistance and weldability of the designed DSS 2101 were conducted. The results demonstrated that both 2101 steel and its weldment show excellent mechanical properties, impact toughness and corrosion resistance, so DSS 2101 exhibits good comprehensive properties and can be used to replace 304L in numerous applications.

  6. Antimicrobial Cu-bearing stainless steel scaffolds.

    PubMed

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B; Yang, Ke

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Investigation of corrosion of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.

  8. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  9. Parylene coatings on stainless steel 316L surface for medical applications--mechanical and protective properties.

    PubMed

    Cieślik, Monika; Kot, Marcin; Reczyński, Witold; Engvall, Klas; Rakowski, Wiesław; Kotarba, Andrzej

    2012-01-01

    The mechanical and protective properties of parylene N and C coatings (2-20 μm) on stainless steel 316L implant materials were investigated. The coatings were characterized by scanning electron and confocal microscopes, microindentation and scratch tests, whereas their protective properties were evaluated in terms of quenching metal ion release from stainless steel to simulated body fluid (Hanks solution). The obtained results revealed that for parylene C coatings, the critical load for initial cracks is 3-5 times higher and the total metal ions release is reduced 3 times more efficiently compared to parylene N. It was thus concluded that parylene C exhibits superior mechanical and protective properties for application as a micrometer coating material for stainless steel implants. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Fatigue life assessment of 316L stainless steel and DIN-1.4914 martensitic steel before and after TEXTOR exposure

    NASA Astrophysics Data System (ADS)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Schmitz, W.; Faulkner, R. G.; Chung, T. E.

    1992-09-01

    The effects of plasma exposure in the TEXTOR tokomak on elevated temperature fatigue lifetime and failure micromechanisms of 316L austenitic stainless steel and DIN 1.4914 martensitic steel (NET reference heats) have been evaluated. Fatigue tests were carried out in vacuum in the temperature range 150°-450°C and compared with data from reference specimens.Plasma-induced surface modifications lead to significant deterioration in fatigue life of 316L steel, whereas the lifetime of 1.4914 steel is unaffected. Fatigue in the 1.4914 steel is surface-initiated only at high stresses. At low stress amplitudes internal fatigue initiation at inclusions was observed.

  11. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents.

    PubMed

    Bayram, Cem; Mizrak, Alpay Koray; Aktürk, Selçuk; Kurşaklioğlu, Hurkan; Iyisoy, Atila; Ifran, Ahmet; Denkbaş, Emir Baki

    2010-10-01

    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test.

  12. Coating of Bio-mimetic Minerals-Substituted Hydroxyapatite on Surgical Grade Stainless Steel 316L by Electrophoretic Deposition for Hard tissue Applications

    NASA Astrophysics Data System (ADS)

    Govindaraj, Dharman; Rajan, Mariappan

    2018-02-01

    Third-era bio-implant materials intend to empower particular live cell reactions at the atomic level, these materials represented with a resorbable and biocompatibility that bodies recuperate once they have been embedded. Necessitate to decrease expenses in public health services has required the utilization of surgical grade stainless steel (SS 316L) as the most inexpensive choice for orthodontic and orthopaedic implants. 316L SS is one of the broadly used implant biomaterials in orthodontic and orthopaedic surgeries. Yet, frequently those discharge for toxic metal ions is confirm from the implants and hence a second surgery is required will remove those implant material. One approach to managing the discharge of toxic metal ions is to coat the implant substance with bio-mimetic minerals in hydroxyapatite (HA). Bio-mimetic minerals such as magnesium (Mg), strontium (Sr), also zinc (Zn) were revealed with animate bone growth furthermore restrain bone resorption both in vitro and in vivo. The present work deals with the electrophoretic deposition (EPD) for multi minerals substituted hydroxyapatite (M-HA) on the surface treated 316L SS under distinctive temperatures (27°C, (room temperature), 60 and 80°C). The resultant coatings were characterized by FT-IR, XRD, SEM-EDX, adhesion strength and leach out analysis.

  13. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  14. Corrosion behavior of sensitized duplex stainless steel.

    PubMed

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  15. Stainless Steel Permeability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchenauer, Dean A.; Karnesky, Richard A.

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of themore » role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.« less

  16. Improved quantitative recovery of Listeria monocytogenes from stainless steel surfaces using a one-ply composite tissue.

    PubMed

    Vorst, Keith L; Todd, Ewen C D; Rysert, Elliot T

    2004-10-01

    Four sampling devices, a sterile environmental sponge (ES), a sterile cotton-tipped swab (CS), a sterile calcium alginate fiber-tipped swab (CAS), and a one-ply composite tissue (CT), were evaluated for quantitative recovery of Listeria monocytogenes from a food-grade stainless steel surface. Sterile 304-grade stainless steel plates (6 by 6 cm) were inoculated with approximately 106 CFU/cm2 L. monocytogenes strain Scott A and dried for 1 h. The ES and CT sampling devices were rehydrated in phosphate buffer solution. After plate swabbing, ES and CT were placed in 40 ml of phosphate buffer solution, stomached for 1 min and hand massaged for 30 s. Each CS and CAS device was rehydrated in 0.1% peptone before swabbing. After swabbing, CS and CAS were vortexed in 0.1% peptone for 1 min. Samples were spiral plated on modified Oxford agar with modified Oxford agar Rodac Contact plates used to recover any remaining cells from the stainless steel surface. Potential inhibition from CT was examined in both phosphate buffer solution and in a modified disc-diffusion assay. Recovery was 2.70, 1.34, and 0.62 log greater using CT compared with ES, CS, and CAS, respectively, with these differences statistically significant (P < 0.001) for ES and CT and for CAS, CS, and CT (P < 0.05). Rodac plates were typically overgrown following ES, positive after CS and CAS, and negative after CT sampling. CT was noninhibitory in both phosphate buffer solution and the modified disc-diffusion assay. Using scanning electron microscopy, Listeria cells were observed on stainless steel plates sampled with each sampling device except CT. The CT device, which is inexpensive and easy to use, represents a major improvement over other methods in quantifying L. monocytogenes on stainless steel surfaces and is likely applicable to enrichment of environmental samples.

  17. European developments in the application of structural austenitic and duplex stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochrane, D.J.

    1995-12-31

    Stainless steel is increasingly being specified for structural applications. Principally, this is due to the aesthetic appeal of the material, no need for surface protection, durability, and the growing awareness, and use, of Life Cycle Cost analysis for assessing costs over the longer term, However, use of stainless steel in the U.K. offshore oil and gas platforms for fire and blast walls, has highlighted valuable properties of stainless steel that may be unfamiliar to structural designers. It is the purpose of this paper to demonstrate these properties. Additionally, new design guidance has become available in Europe as a result ofmore » a 4 year research program into the structural use of stainless steel. The ``Design Manual for Structural Stainless Steel`` was issued by Euro Inox and the Nickel Development Institute in 1994. This new manual will be outlined in this paper together with its influence on new European Building Standards and new European material standards for structural stainless steel. Currently in preparation, these include high strength grades with significantly higher strength than structural carbon steels. Finally, this paper will address the use of stainless steel for the reinforcement of concrete structures.« less

  18. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    NASA Astrophysics Data System (ADS)

    Al-Hamarneh, Ibrahim; Pedrow, Patrick; Eskhan, Asma; Abu-Lail, Nehal

    2012-10-01

    Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O2 gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kVRMS) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O2 plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  19. High Nitrogen Stainless Steel

    DTIC Science & Technology

    2011-07-19

    STAINLESS STEEL by E. U. Lee R. Taylor 19 July 2011 Approved for...NAWCADPAX/TR-2011/162 19 July 2011 HIGH NITROGEN STAINLESS STEEL by E. U. Lee R. Taylor RELEASED BY...REPORT TYPE Technical Report 3. DATES COVERED 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER High Nitrogen Stainless Steel 5b. GRANT

  20. Low-Temperature Aging Characteristics of Type 316L Stainless Steel Welds: Dependence on Solidification Mode

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Watanabe, Yutaka

    2008-06-01

    Thermal aging embrittlement of light water reactor (LWR) components made of stainless steel cast has been recognized as a potential degradation issue, and careful attention has been paid to it. Although welds of austenitic stainless steels have γ-δ duplex microstructure, which is similar to that of the stainless steel cast, examination of the thermal aging characteristics of the stainless steel welds is very limited. In this investigation, two types of type 316L stainless steel weld metal with different solidification modes were prepared using two kinds of filler metals having tailored Ni equivalent and Cr equivalent. Differences between the two weld metals in the morphology of microstructure, in the composition of δ-ferrite, and in hardening behaviors with isothermal aging at 335 °C have been investigated. The hardness of the ferrite phase has increased with aging time, while the hardness of austenite phase has stayed the same. The mottled aspect has been observed in δ-ferrite of aged samples by transmission electron microscopy (TEM) observation. These characteristics suggest that spinodal decomposition has occurred in δ-ferrite by aging at 335 °C. The age-hardening rate of δ-ferrite was faster for the primary austenite solidification mode (AF mode) sample than the primary ferrite solidification mode (FA mode) sample in the initial stage of the aging up to 2000 hours. It has been suggested that the solidification mode can affect the kinetics of spinodal decomposition.

  1. Nickel-free stainless steel avoids neointima formation following coronary stent implantation

    PubMed Central

    Fujiu, Katsuhito; Manabe, Ichiro; Sasaki, Makoto; Inoue, Motoki; Iwata, Hiroshi; Hasumi, Eriko; Komuro, Issei; Katada, Yasuyuki; Taguchi, Tetsushi; Nagai, Ryozo

    2012-01-01

    SUS316L stainless steel and cobalt–chromium and platinum–chromium alloys are widely used platforms for coronary stents. These alloys also contain nickel (Ni), which reportedly induces allergic reactions in some subjects and is known to have various cellular effects. The effects of Ni on neointima formation after stent implantation remain unknown, however. We developed coronary stents made of Ni-free high-nitrogen austenitic stainless steel prepared using a N2-gas pressurized electroslag remelting (P-ESR) process. Neointima formation and inflammatory responses following stent implantation in porcine coronary arteries were then compared between the Ni-free and SUS316L stainless steel stents. We found significantly less neointima formation and inflammation in arteries implanted with Ni-free stents, as compared to SUS316L stents. Notably, Ni2+ was eluted into the medium from SUS316L but not from Ni-free stainless steel. Mechanistically, Ni2+ increased levels of hypoxia inducible factor protein-1α (HIF-1α) and its target genes in cultured smooth muscle cells. HIF-1α and their target gene levels were also increased in the vascular wall at SUS316L stent sites but not at Ni-free stent sites. The Ni-free stainless steel coronary stent reduces neointima formation, in part by avoiding activation of inflammatory processes via the Ni-HIF pathway. The Ni-free-stainless steel stent is a promising new coronary stent platform. PMID:27877545

  2. Nickel-free stainless steel avoids neointima formation following coronary stent implantation.

    PubMed

    Fujiu, Katsuhito; Manabe, Ichiro; Sasaki, Makoto; Inoue, Motoki; Iwata, Hiroshi; Hasumi, Eriko; Komuro, Issei; Katada, Yasuyuki; Taguchi, Tetsushi; Nagai, Ryozo

    2012-12-01

    SUS316L stainless steel and cobalt-chromium and platinum-chromium alloys are widely used platforms for coronary stents. These alloys also contain nickel (Ni), which reportedly induces allergic reactions in some subjects and is known to have various cellular effects. The effects of Ni on neointima formation after stent implantation remain unknown, however. We developed coronary stents made of Ni-free high-nitrogen austenitic stainless steel prepared using a N 2 -gas pressurized electroslag remelting (P-ESR) process. Neointima formation and inflammatory responses following stent implantation in porcine coronary arteries were then compared between the Ni-free and SUS316L stainless steel stents. We found significantly less neointima formation and inflammation in arteries implanted with Ni-free stents, as compared to SUS316L stents. Notably, Ni 2+ was eluted into the medium from SUS316L but not from Ni-free stainless steel. Mechanistically, Ni 2+ increased levels of hypoxia inducible factor protein-1 α (HIF-1 α ) and its target genes in cultured smooth muscle cells. HIF-1 α and their target gene levels were also increased in the vascular wall at SUS316L stent sites but not at Ni-free stent sites. The Ni-free stainless steel coronary stent reduces neointima formation, in part by avoiding activation of inflammatory processes via the Ni-HIF pathway. The Ni-free-stainless steel stent is a promising new coronary stent platform.

  3. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol-gel treatment.

    PubMed

    Vallet-Regí, M; Izquierdo-Barba, I; Gil, F J

    2003-11-01

    Sol-gel films on austenitic stainless steel (AISI 316L) polished wafer were prepared from sono-sols obtained from tetraethylorthosilane and hydrated calcium nitrate. However, pitting was observed in different places on the stainless steel surfaces. The corrosion resistance was evaluated by the polarization resistance in simulated body fluid environment at 37 degrees C. The critical current density, the passive current density, the corrosion potential, and the critical pitting potential were studied. The austenitic stainless steel 316L treated presents important electrochemical corrosion and consequently its application as endosseous implants is not possible. Copyright 2003 Wiley Periodicals, Inc.

  4. Physical properties and microstructure study of stainless steel 316L alloy fabricated by selective laser melting

    NASA Astrophysics Data System (ADS)

    Islam, Nurul Kamariah Md Saiful; Harun, Wan Sharuzi Wan; Ghani, Saiful Anwar Che; Omar, Mohd Asnawi; Ramli, Mohd Hazlen; Ismail, Muhammad Hussain

    2017-12-01

    Selective Laser Melting (SLM) demonstrates the 21st century's manufacturing infrastructure in which powdered raw material is melted by a high energy focused laser, and built up layer-by-layer until it forms three-dimensional metal parts. SLM process involves a variation of process parameters which affects the final material properties. 316L stainless steel compacts through the manipulation of building orientation and powder layer thickness parameters were manufactured by SLM. The effect of the manipulated parameters on the relative density and dimensional accuracy of the 316L stainless steel compacts, which were in the as-build condition, were experimented and analysed. The relationship between the microstructures and the physical properties of fabricated 316L stainless steel compacts was investigated in this study. The results revealed that 90° building orientation has higher relative density and dimensional accuracy than 0° building orientation. Building orientation was found to give more significant effect in terms of dimensional accuracy, and relative density of SLM compacts compare to build layer thickness. Nevertheless, the existence of large number and sizes of pores greatly influences the low performances of the density.

  5. Corrosion Resistance of Stainless Steels in Biodiesel

    NASA Astrophysics Data System (ADS)

    Román, Alejandra S.; Méndez, Claudia M.; Ares, Alicia E.

    The aim of this work was to study the corrosion behavior of stainless steels in biodiesel of vegetal origin, at room temperature, evaluating its properties according to the differences in the structures (austenitic, ferritic and austenitic — ferritic) and compositions of the materials. The biodiesel employed was obtained by industrially manufactured based on soybean oil as main raw material. The stainless steels used as samples for the tests were: AISI 304L, Sea Cure and Duplex 2205. For obtaining the desired data potentiodynamic polarization and weight loss trials were carried out. These studies were complemented by observations using an optical microscope. The weight loss study allowed the identification of low corrosion rates to the three stainless steels studied.

  6. Effect of polishing process on corrosion behavior of 308L stainless steel in high temperature water

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Han, En-Hou; Peng, Qunjia; Ke, Wei

    2018-06-01

    Effect of change in surface composition and roughness by different polishing processes on corrosion of 308L stainless steel in high temperature water was investigated. The investigation was conducted by comparing the corrosion behavior of electropolished specimens with that of the 40 nm-colloidal silica slurry polished specimens. The result revealed that the electropolished specimens had a higher corrosion rate than the colloidal silica slurry polished specimens, which was attributed to formation of an amount of chromium hydroxide and higher roughness of the electropolished surface. Moreover, the ferrite in 308L stainless steel was found to have a higher resistance to corrosion than the austenite matrix.

  7. Release of nickel and chromium in common foods during cooking in 18/10 (grade 316) stainless steel pots.

    PubMed

    Guarneri, Fabrizio; Costa, Chiara; Cannavò, Serafinella P; Catania, Stefania; Bua, Giuseppe D; Fenga, Concettina; Dugo, Giacomo

    2017-01-01

    Literature data on the release of nickel and chromium from stainless steel cookware during food preparation are contrasting, have often been obtained with uncommon foods and/or procedures, and are thus not widely applicable. To assess the release of nickel and chromium from 18/10 (grade 316) stainless steel pots in cooking conditions that are common in an urban lifestyle. Tomato sauce and lemon marmalade were cooked for 1 h, alone or with added EDTA, in used or unused stainless steel pots from different manufacturers. Additionally, aqueous solutions at pH 2.3, 7.7 and 9 were boiled for 1 h in the same pots. Metal release was assessed with inductively coupled plasma mass spectrometry. The release of nickel and chromium increased with cooking/boiling time, was higher with unused pots, at low pH or with EDTA, and was sometimes remarkably different between manufacturers. In all experiments, the amounts released were below known allergy-triggering thresholds. Under common conditions, the use of 18/10 stainless steel pots is considered to be safe for the majority of nickel-allergic and/or chromium-allergic subjects. However, the total amount of nickel contained in foods and released from pots may exceed the individual threshold for triggering allergy, potentially causing problems for highly sensitive patients, or, conversely, contribute to induction of immunotolerance by oral low-dose exposure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Evaluation of ion release, cytotoxicity, and platelet adhesion of electrochemical anodized 316 L stainless steel cardiovascular stents.

    PubMed

    Díaz, M; Sevilla, P; Galán, A M; Escolar, G; Engel, E; Gil, F J

    2008-11-01

    316L Stainless steel is one of the most used metallic material in orthopedical prosthesis, osteosinthesis plates, and cardiovascular stents. One of the main problems this material presents is the nickel and chromium release, specially the Ni ion release that provokes allergy in a high number of patients. Recently, experimental applications in vitro and in vivo seem to indicate that the thickness of the nature oxide of the stainless steel results in very strong reinforcement of the biological response and reduce the ion release due to the thicker surface oxide. It is possible to grow the natural chromium oxide layer by electrolytic method such anodization. In this study, two main anodization methods to grow chromium oxide on the 316L stainless steel have been evaluated. Nickel and Chromium ions release in human blood at 37 degrees C were detected at times of 1, 6, 11, and 15 days by means of atomic absorption in a graphite furnace (GAAF). Moreover, cytocompatibility tests were carried out. Perfusion experiments were performed to evaluate morphometrically platelet interaction with the material and to explore the potential thrombogenicity. The results showed a good cytocompatibility between the material and the osteoblast-like cells. However, these anodization methods released between 2 and 10 times more nickel and chromium than the original stainless steel, depending on the method used. Besides, anodized samples shown an increase of the percentage of surface covered by platelets. Consequently, the anodization methods studied do not improve the long-term behavior of the stainless steel for its application as cardiovascular stents.

  9. Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance

    PubMed Central

    Wang, Yanfei; Zhou, Zhiling; Wu, Weijie; Gong, Jianming

    2017-01-01

    Plastic pre-strains were applied to the metastable 304L austenitic stainless steel at both room temperature (20 °C) and higher temperatures (i.e., 50, 80 and 100 °C), and then the hydrogen embrittlement (HE) susceptibility of the steel was evaluated by cathodically hydrogen-charging and tensile testing. The 20 °C pre-strain greatly strengthened the steel, but simultaneously significantly increased the HE susceptibility of the steel, since α′ martensite was induced by the pre-strain, causing the pre-existence of α′ martensite, which provided “highways” for hydrogen to transport deep into the steel during the hydrogen-charging. Although the warm pre-strains did not strengthen the steel as significantly as the 20 °C pre-strain, they retained the HE resistance of the steel. This is because the higher temperatures, particularly 80 and 100 °C, suppressed the α′ martensite transformation during the pre-straining. Pre-strain at a temperature slightly higher than room temperature has a potential to strengthen the metastable 304L austenitic stainless steel without compromising its initial HE resistance. PMID:29160830

  10. Mechanical Behavior of Additive Manufactured Layered Materials, Part 2: Stainless Steels

    DTIC Science & Technology

    2015-04-30

    and/or excellent cyclic fatigue behavior: stainless - steel 316L and 17-4PH. Additive materials were fabricated at a leading-edge facility using their...Tensile deformation Representative engineering stress- strain data from measurements obtained with our stainless steel specimens are shown in... fatigue behavior Cyclic fatigue strengths demonstrated by the DMLS stainless steels fabricated in the horizontal orientation were almost equal to

  11. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates

    PubMed Central

    Ganesh, VK; Ramakrishna, K; Ghista, Dhanjoo N

    2005-01-01

    Background In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress-shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress-shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress-shielding of the layer of the bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. Method In order to address this problem, we propose to use stiffness-graded plates. Accordingly, we have computed (by finite-element analysis) the stress distribution in the fractured bone fixed by composite plates, whose stiffness is graded both longitudinally and transversely. Results It can be seen that the stiffness-graded composite-plates cause less stress-shielding (as an example: at 50% of the healing stage, stress at the fracture interface is compressive in nature i.e. 0.002 GPa for stainless steel plate whereas stiffness graded plates provides tensile stress of 0.002 GPa. This means that stiffness graded plate is allowing the 50% healed bone to participate in loadings). Stiffness-graded plates are more flexible, and hence permit more bending of the fractured bone. This results in higher compressive stresses induced at the fractured faces accelerate bone-healing. On the other hand, away from the fracture interface the reduced stiffness and elastic modulus of the plate causes the neutral axis of the composite structure to be lowered into the bone resulting in the higher tensile stress in the bone-layer underneath the plate, wherein is conducive to the bone preserving its tensile strength. Conclusion Stiffness graded plates (with in-built variable stiffness) are deemed to offer less stress-shielding to the bone, providing higher compressive stress at the fractured interface (to induce accelerated healing) as well as higher tensile

  12. Abnormal grain growth in AISI 304L stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir; Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir; Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran

    2014-11-15

    The microstructural evolution during abnormal grain growth (secondary recrystallization) in 304L stainless steel was studied in a wide range of annealing temperatures and times. At relatively low temperatures, the grain growth mode was identified as normal. However, at homologous temperatures between 0.65 (850 °C) and 0.7 (900 °C), the observed transition in grain growth mode from normal to abnormal, which was also evident from the bimodality in grain size distribution histograms, was detected to be caused by the dissolution/coarsening of carbides. The microstructural features such as dispersed carbides were characterized by optical metallography, X-ray diffraction, scanning electron microscopy, energy dispersivemore » X-ray analysis, and microhardness. Continued annealing to a long time led to the completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another instance of abnormal grain growth was observed at homologous temperatures higher than 0.8, which may be attributed to the grain boundary faceting/defaceting phenomenon. It was also found that when the size of abnormal grains reached a critical value, their size will not change too much and the grain growth behavior becomes practically stagnant. - Highlights: • Abnormal grain growth (secondary recrystallization) in AISI 304L stainless steel • Exaggerated grain growth due to dissolution/coarsening of carbides • The enrichment of carbide particles by titanium • Abnormal grain growth due to grain boundary faceting at very high temperatures • The stagnancy of abnormal grain growth by annealing beyond a critical time.« less

  13. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting

    NASA Astrophysics Data System (ADS)

    Sun, Zhongji; Tan, Xipeng; Tor, Shu Beng; Chua, Chee Kai

    2018-04-01

    Laser-based powder-bed fusion additive manufacturing or three-dimensional printing technology has gained tremendous attention due to its controllable, digital, and automated manufacturing process, which can afford a refined microstructure and superior strength. However, it is a major challenge to additively manufacture metal parts with satisfactory ductility and toughness. Here we report a novel selective laser melting process to simultaneously enhance the strength and ductility of stainless steel 316L by in-process engineering its microstructure into a <011> crystallographic texture. We find that the tensile strength and ductility of SLM-built stainless steel 316L samples could be enhanced by 16% and 40% respectively, with the engineered <011> textured microstructure compared to the common <001> textured microstructure. This is because the favorable nano-twinning mechanism was significantly more activated in the <011> textured stainless steel 316L samples during plastic deformation. In addition, kinetic simulations were performed to unveil the relationship between the melt pool geometry and crystallographic texture. The new additive manufacturing strategy of engineering the crystallographic texture can be applied to other metals and alloys with twinning-induced plasticity. This work paves the way to additively manufacture metal parts with high strength and high ductility.

  14. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential.

    PubMed

    de Oliveira, Maíra Maciel Mattos; Brugnera, Danilo Florisvaldo; Alves, Eduardo; Piccoli, Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 °C and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM) after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  15. Enhanced cell adhesion on severe peened-plasma nitrided 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, M.; Bhat, Badekai Ramachandra; Bhat, K. Udaya

    2018-04-01

    Plasma nitriding is an effective technique to enhance the wear resistance of austenitic stainless steels. Recently, severe surface deformation techniques are extensively used prior to nitriding to enhance diffusion kinetics. In the present study, AISI 316L austenitic stainless steel is subjected to peening-nitriding duplex treatment and biocompatibility of treated surfaces is assessed through adhesion of the fibroblast cells. Three-fold increase in the surface microhardness is observed from the un-peened sample to the peened-nitrided sample; with severe peened sample showing intermediate hardness. Similar trend is observed in the number of the fibroblast cells attached to the sample surface. Spreading of some of the fibroblast cells is observed on the sample subjected to duplex treatment; while the other two samples showed only the spindle shaped fibroblasts. Combined influence of surface nanocrystallization and presence of nitride layer is responsible for the improved biocompatibility.

  16. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  17. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  18. Linear Friction Welding of Dissimilar Materials 316L Stainless Steel to Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Wanjara, P.; Naik, B. S.; Yang, Q.; Cao, X.; Gholipour, J.; Chen, D. L.

    2018-02-01

    In the nuclear industry, there are a number of applications where the transition of stainless steel to Zircaloy is of technological importance. However, due to the differences in their properties there are considerable challenges associated with developing a joining process that will sufficiently limit the heat input and welding time—so as to minimize the extent of interaction at the joint interface and the resulting formation of intermetallic compounds—but still render a functional metallurgical bond between these two alloys. As such, linear friction welding, a solid-state joining technology, was selected in the present study to assess the feasibility of welding 316L stainless steel to Zircaloy-4. The dissimilar alloy welds were examined to evaluate their microstructural characteristics, microhardness evolution across the joint interface, static tensile properties, and fatigue behavior. Microstructural observations revealed a central intermixed region and, on the Zircaloy-4 side, dynamically recrystallized and thermomechanically affected zones were present. By contrast, deformation on the 316L stainless steel side was limited. In the intermixed region a drastic change in the composition was observed along with a local increase in hardness, which was attributed to the presence of intermetallic compounds, such as FeZr3 and Cr2Zr. The average yield (316 MPa) and ultimate tensile (421 MPa) strengths met the minimum strength properties of Zircaloy-4, but the elongation was relatively low ( 2 pct). The tensile and fatigue fracture of the welds always occurred at the interface in the mode of partial cohesive failure.

  19. Investigation of the Microstructural, Mechanical and Corrosion Properties of Grade A Ship Steel-Duplex Stainless Steel Composites Produced via Explosive Welding

    NASA Astrophysics Data System (ADS)

    Kaya, Yakup; Kahraman, Nizamettin; Durgutlu, Ahmet; Gülenç, Behçet

    2017-08-01

    Grade A ship-building steel-AISI 2304 duplex stainless steel composite plates were manufactured via explosive welding. The AISI 2304 plates were used to clad the Grade A plates. Optical microscopy studies were conducted on the joining interface for characterization of the manufactured composite plates. Notch impact, tensile-shear, microhardness, bending and twisting tests were carried out to determine the mechanical properties of the composites. In addition, the surfaces of fractured samples were examined by scanning electron microscopy (SEM), and neutral salt spray (NSS) and potentiodynamic polarization tests were performed to examine corrosion behavior. Near the explosion zone, the interface was completely flat, but became wavy as the distance from the explosion zone increased. The notch impact tests indicated that the impact strength of the composites decreased with increasing distance from the explosion zone. The SEM studies detected brittle behavior below the impact transition temperature and ductile behavior above this temperature. Microhardness tests revealed that the hardness values increased with increasing distance from the explosion zone and mechanical tests showed that no visible cracking or separation had occurred on the joining interface. The NSS and potentiodynamic polarization tests determined that the AISI 2304 exhibited higher corrosion resistance than the Grade A steel.

  20. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  1. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.

    PubMed

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2015-09-01

    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of current and travel speed variation of TIG welding on microstructure and hardness of stainless steel SS 316L

    NASA Astrophysics Data System (ADS)

    Jatimurti, Wikan; Abdillah, Fakhri Aulia; Kurniawan, Budi Agung; Rochiem, Rochman

    2018-04-01

    One of the stainless steel types that widely used in industry is SS 316L, which is austenitic stainless steel. One of the welding methods to join stainless steel is Tungsten Inert Gas (TIG), which can affect its morphology, microstructure, strength, hardness, and even lead to cracks in the weld area due to the given heat input. This research has a purpose of analyzing the relationship between microstructure and hardness value of SS 316L stainless steel after TIG welding with the variation of current and travel speed. The macro observation shows a distinct difference in the weld metal and base metal area, and the weld form is not symmetrical. The metallographic test shows the phases that formed in the specimen are austenite and ferrite, which scattered in three welding areas. The hardness test showed that the highest hardness value found in the variation of travel speed 12 cm/min with current 100 A. Welding process and variation were given do not cause any defects in the microstructure, such as carbide precipitation and sigma phase, means that it does not affect the hardness and corrosion resistance of all welded specimen.

  3. Corrosion of stainless steels in lead-bismuth eutectic up to 600 °C

    NASA Astrophysics Data System (ADS)

    Soler, L.; Martín, F. J.; Hernández, F.; Gómez-Briceño, D.

    2004-11-01

    An experimental program has been carried out to understand the differences in the corrosion behaviour between different stainless steels: the austenitic steels 304L and 316L, the martensitic steels F82Hmod, T91 and EM10, and the low alloy steel P22. The influence of oxygen level in Pb-Bi, temperature and exposure time is studied. At 600 °C, the martensitic steels and the P22 steel exhibit thick oxide scales that grow with time, following a linear law for the wet environment and a parabolic law for the dry one. The austenitic stainless steels show a better corrosion behaviour, especially AISI 304L. Under reducing conditions, the steels exhibit dissolution, more severe for the austenitic stainless steels. At 450 °C, all the materials show an acceptable behaviour provided a sufficient oxygen level in the Pb-Bi. At reducing conditions, the martensitic steels and the P22 steel have a good corrosion resistance, while the austenitic steels exhibit already dissolution at the longer exposures.

  4. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-04-01

    In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  5. An assessment of ultra fine grained 316L stainless steel for implant applications.

    PubMed

    Muley, Sachin Vijay; Vidvans, Amey N; Chaudhari, Gajanan P; Udainiya, Sumit

    2016-01-01

    Ultra fine-grained metals obtained by severe plastic deformation exhibit higher specific strength that is useful for many applications and show promise for use as body implants. This work studied the microstructural evolution, mechanical and sliding wear behavior and corrosion behavior of 316L stainless steel warm multi axially forged at 600°C. Microstructural evolution studied using electron backscatter diffraction technique and transmission electron microscopy confirmed the formation of ultra fine-grained structure. Average grain size reduced from 30μm to 0.86μm after nine strain steps. A combination of Hall-Petch strengthening and strain hardening increased the hardness. Improved sliding wear resistance is attributed to a transition from micro cutting to wedge-forming mode of abrasive wear. Load-bearing orthopedic implants often fail from pitting initiated corrosion fatigue. Potentiodynamic tests, cyclic polarization, and FeCl3 immersion tests revealed enhanced pitting resistance of forged steel that is confirmed by Mott-Schottky analysis. This is ascribed to an increase in the grain boundary volume, and homogenization of pit inducing impurities and non-metallic phases due to severe deformation, which influenced the passive film properties. These model studies on 316L steel demonstrate that severely deformed ultra fine-grained metals have potential to deliver improved implant performance. This model study on 316L steel demonstrates that severely deformed ultra fine-grained (UFG) metals have potential to deliver improved load-bearing implant performance. It is as interesting as is unclear as to how such severely deformed UFG material behaves electrochemically in the corrosive body fluids. This work is on studying the inter-relationship between structure, and mechanical, wear, and corrosion behavior of warm multiaxially forged (MAFed) UFG 316L stainless steel. Warm MAF is a bulk processing method capable of yielding large volume of UFG material and is an easily

  6. Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role of cell surface hydrophobicity.

    PubMed Central

    Vanhaecke, E; Remon, J P; Moors, M; Raes, F; De Rudder, D; Van Peteghem, A

    1990-01-01

    Fifteen different isolates of Pseudomonas aeruginosa were used to study the kinetics of adhesion to 304 and 316-L stainless steel. Stainless steel plates were incubated with approximately 1.5 X 10(7) CFU/ml in 0.01 M phosphate-buffered saline (pH 7.4). After the plates were rinsed with the buffer, the number of adhering bacteria was determined by a bioluminescence assay. Measurable adhesion, even to the electropolished surfaces, occurred within 30 s. Bacterial cell surface hydrophobicity, as determined by the bacterial adherence to hydrocarbons test and the contact angle measurement test, was the major parameter influencing the adhesion rate constant for the first 30 min of adhesion. A parabolic relationship between the CAM values and the logarithm of the adhesion rate constants (In k) was established. No correlation between either the salt aggregation or the improved salt aggregation values and the bacterial adhesion rate constants could be found. Since there was no significant correlation between the bacterial electrophoretic mobilities and the In k values, the bacterial cell surface charge seemed of minor importance in the process of adhesion of P. aeruginosa to 304 and 316-L stainless steel. PMID:2107796

  7. In-Pile Tests for IASCC Growth Behavior of Irradiated 316L Stainless Steel under Simulated BWR Condition in JMTR

    NASA Astrophysics Data System (ADS)

    Chimi, Yasuhiro; Kasahara, Shigeki; Ise, Hideo; Kawaguchi, Yoshihiko; Nakano, Junichi; Nishiyama, Yutaka

    The Japan Atomic Energy Agency (JAEA) has an in-pile irradiation test plan to evaluate in-situ effects of neutron/γ-ray irradiation on stress corrosion crack (SCC) growth of irradiated stainless steels using the Japan Materials Testing Reactor (JMTR). SCC growth rate and its dependence on electrochemical corrosion potential (ECP) are different between in-pile test and post irradiation examination (PIE). These differences are not fully understood because of a lack of in-pile data. This paper presents a systematic review on SCC growth data of irradiated stainless steels, an in-pile test plan for crack growth of irradiated SUS316L stainless steel under simulated BWR conditions in the JMTR, and the development of the in-pile test techniques.

  8. Characterization of friction stir welded joint of low nickel austenitic stainless steel and modified ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar

    2017-09-01

    Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.

  9. The corrosion performance of high chromium stainless steels and titanium alloys at a reverse osmosis plant in Arabian Gulf seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Odwani, A.; Al-Tabatabaei, M.; Carew, J.

    1997-08-01

    Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion performance of four high chromium stainless steels and Grade 2 titanium in flowing Arabian Gulf natural seawater. The EIS provided information concerning the changes to the interfacial impedance as a function of exposure time for these alloys. The impedance spectra for all the alloys showed slight changes at the low frequency region over the exposure period. The open-circuit potentials (OCP) of these alloys were also monitored as a function of exposure time. The stainless steel alloys exhibited slight fluctuation in potential around the initial exposure potential. However, Grade 2 titaniummore » initial potential was more active and then gradually shifted towards the noble direction. The linear polarization resistance (LPR) method indicated that Grade 2 titanium exhibited the lowest corrosion rate with respect to the stainless steel alloys. The results of the EIS analysis and OCP indicated that Grade 2 titanium performed better than the four high chromium stainless steel alloys.« less

  10. Evaluation of Additive Manufacturing for Stainless Steel Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, William H.; Lou, Xiaoyuan; List, III, Frederick Alyious

    This collaboration between Oak Ridge National Laboratory and General Electric Company aimed to evaluate the mechanical properties, microstructure, and porosity of the additively manufactured 316L stainless steel by ORNL’s Renishaw AM250 machine for nuclear application. The program also evaluated the stress corrosion cracking and corrosion fatigue crack growth rate of the same material in high temperature water environments. Results show the properties of this material to be similar to the properties of 316L stainless steel fabricated additively with equipment from other manufacturers with slightly higher porosity. The stress corrosion crack growth rate is similar to that for wrought 316L stainlessmore » steel for an oxygenated high temperature water environment and slightly higher for a hydrogenated high temperature water environment. Optimized heat treatment of this material is expected to improve performance in high temperature water environments.« less

  11. Biocompatibly Coated 304 Stainless Steel as Superior Corrosion-Resistant Implant Material to 316L Steel

    NASA Astrophysics Data System (ADS)

    Paul, Subir; Mandal, Chandranath

    2013-10-01

    Surface treatments of 304 stainless steel by electro-coating and passivating in few inorganic electrolytes were found to be very effective in drastically reducing the corrosion rate of the material in stimulated body fluid (SBF) by several orders in comparison to that of 316L steel, presently being used for orthopedic implants. Polarization studies of electrodeposited hydroxyl apatite coating on 304 steel showed remarkably improved corrosion current. Cyclic polarization of the material in SBF reflected the broadened passivity region, much lower passive current, and narrower hysteresis loops. Similar effects were also found through the formation of inorganic coatings by passivation in NaF, CaNO3, and calcium phosphate buffer solutions. Surface characterization by XRD showed the peaks of the respective coating crystals. The morphology of the coatings studied by SEM showed a flake-type structure for hydroxyapatite coating and fine spherical-subspherical particles for other coatings.

  12. Respiratory status of stainless steel and mild steel welders.

    PubMed

    Kalliomäki, P L; Kalliomäki, K; Korhonen, O; Nordman, H; Rahkonen, E; Vaaranen, V

    1982-01-01

    Eighty-three full-time stainless steel and 29 mild steel welders from one shipyard were examined clinically, and their lung function was measured. The stainless steel welders had used both tungsten inert-gas (low-fume concentration) and manual metal-arc (MMA) (high-fume concentration) welding methods. The individual exposure of the welders was estimated based on the time spent doing MMA welding, the amount of retained contaminants in the lungs (magnetopulmography), and urinary chromium excretion. The results suggest that there is a greater prevalence of small airway disease among shipyard mild steel MMA welders than among stainless steel welders. Among the stainless steel welders the impairment of lung function parameters was associated with the MMA welding method. The type of welding, then, is important when the health hazards of welders are studied, and welders cannot be regarded as a single, homogeneous group.

  13. Pitting and stress corrosion cracking of stainless steel

    NASA Astrophysics Data System (ADS)

    Saithala, Janardhan R.

    An investigation has been performed to determine the pitting resistance of stainless steels and stress corrosion cracking of super duplex stainless steels in water containing chloride ions from 25 - 170°C. The steels studied are 12% Cr, FV520B, FV566, 304L, Uranus65, 2205, Ferallium Alloy 255, and Zeron 100. All these commercial materials used in very significant industrial applications and suffer from pitting and stress corrosion failures. The design of a new experimental setup using an autoclave enabled potentiodynamic polarisation experiments and slow strain rate tests in dilute environments to be conducted at elevated temperatures. The corrosion potentials were controlled using a three electrode cell with computer controlled potentiostat.The experimental programme to determine pitting potentials was designed to simulate the service conditions experienced in most industrial plants and develop mathematical model equations to help a design engineer in material selection decision. Stress corrosion resistance of recently developed Zeron100 was evaluated in dilute environments to propose a mechanism in chloride solutions at high' temperatures useful for the nuclear and power generation industry. Results have shown the significance of the composition of alloying elements across a wide range of stainless steels and its influence on pitting. Nitrogen and molybdenum added to modern duplex stainless steels was found to be unstable at higher temperatures. The fractographic results obtained using the scanning electron microscope (SEM) has given insight in the initiation of pitting in modem duplex and super duplex stainless steels. A mathematical model has been proposed to predict pitting in stainless steels based on the effect of environmental factors (temperature, chloride concentration, and chemical composition). An attempt has been made to identify the mechanism of SCC in Zeron100 super duplex stainless steel.The proposed empirical models have shown good correlation

  14. Temperature Effects on Stainless Steel 316L Corrosion in the Environment of Sulphuric Acid (H2SO4)

    NASA Astrophysics Data System (ADS)

    Ayu Arwati, I. G.; Herianto Majlan, Edy; Daud, Wan Ramli Wan; Shyuan, Loh Kee; Arifin, Khuzaimah Binti; Husaini, Teuku; Alfa, Sagir; Ashidiq, Fakhruddien

    2018-03-01

    In its application, metal is always in contact with its environment whether air, vapor, water, and other chemicals. During contact, chemical interactions emerge between metals and their respective environments such that the metal surface corrodes. This study aims to determine the corrosion rate of 316L stainless steel sulphuric acid environment (H2SO4) with weight loss and electrochemical methods. The corrosion rate (CR) is value of 316L stainless steel by weight loss method with sulfuric acid (H2SO4) with concentration of 0.5 M. The result obtained in conjunction with the increase of temperature the rate of erosion obtained appears to be larger, with a consecutive 3 hour the temperature of 50°C is 0.27 mg/cm2h, temperature 70°C 0.38 mg/cm2h, and temperature 90 °C 0.52 mg/cm2h. With the electrochemical method, the current value increases by using a C350 potentiostal tool. The higher the current, the longer the time the corrosion rate increases, where the current is at 90 °C with a 10-minute treatment time of 0.0014736 A. The 316L stainless steel in surface metal morphology is shown by using a Scanning Electron Microscope (SEM).

  15. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    PubMed

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Electron Backscatter Diffraction Analysis of Joints Between AISI 316L Austenitic/UNS S32750 Dual-Phase Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shamanian, Morteza; Mohammadnezhad, Mahyar; Amini, Mahdi; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-01

    Stainless steels are among the most economical and highly practicable materials widely used in industrial areas due to their mechanical and corrosion resistances. In this study, a dissimilar weld joint consisting of an AISI 316L austenitic stainless steel (ASS) and a UNS S32750 dual-phase stainless steel was obtained under optimized welding conditions by gas tungsten arc welding technique using AWS A5.4:ER2594 filler metal. The effect of welding on the evolution of the microstructure, crystallographic texture, and micro-hardness distribution was also studied. The weld metal (WM) was found to be dual-phased; the microstructure is obtained by a fully ferritic solidification mode followed by austenite precipitation at both ferrite boundaries and ferrite grains through solid-state transformation. It is found that welding process can affect the ferrite content and grain growth phenomenon. The strong textures were found in the base metals for both steels. The AISI 316L ASS texture is composed of strong cube component. In the UNS S32750 dual-phase stainless steel, an important difference between the two phases can be seen in the texture evolution. Austenite phase is composed of a major cube component, whereas the ferrite texture mainly contains a major rotated cube component. The texture of the ferrite is stronger than that of austenite. In the WM, Kurdjumov-Sachs crystallographic orientation relationship is found in the solidification microstructure. The analysis of the Kernel average misorientation distribution shows that the residual strain is more concentrated in the austenite phase than in the other phase. The welding resulted in a significant hardness increase in the WM compared to initial ASS.

  17. Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel

    NASA Astrophysics Data System (ADS)

    Gopi, D.; Rajeswari, D.; Ramya, S.; Sekar, M.; R, Pramod; Dwivedi, Jishnu; Kavitha, L.; Ramaseshan, R.

    2013-12-01

    The surface of 316L stainless steel (316L SS) is irradiated by high energy low current DC electron beam (HELCDEB) with energy of 500 keV and beam current of 1.5 mA followed by the electrodeposition of strontium hydroxyapatite (Sr-HAp) to enhance its corrosion resistance in physiological fluid. The coatings were characterised by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and High resolution scanning electron microscopy (HRSEM). The Sr-HAp coating on HELCDEB treated 316L SS exhibits micro-flower structure. Electrochemical results show that the Sr-HAp coating on HELCDEB treated 316L SS possesses maximum corrosion resistance in Ringer's solution.

  18. Preformed posterior stainless steel crowns: an update.

    PubMed

    Croll, T P

    1999-02-01

    For almost 50 years, dentists have used stainless steel crowns for primary and permanent posterior teeth. No other type of restoration offers the convenience, low cost, durability, and reliability of such crowns when interim full-coronal coverage is required. Preformed stainless steel crowns have improved over the years. Better luting cements have been developed and different methods of crown manipulation have evolved. This article reviews stainless steel crown procedures for primary and permanent posterior teeth. Step-by-step placement of a primary molar stainless steel crown is documented and permanent molar stainless steel crown restoration is described. A method for repairing a worn-through crown also is reviewed.

  19. Influence of shot peening on surface quality of austenitic and duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Vinoth Jebaraj, A.; Sampath Kumar, T.; Ajay Kumar, L.; Deepak, C. R.

    2017-11-01

    In the present investigation, an attempt has been made to enhance the surface quality of austenitic stainless steel 316L and duplex stainless steel 2205 through shot peening process. The study mainly focuses the surface morphology, microstructural changes, surface roughness and microhardness of the peened layers. Metallography analysis was carried out and compared with the unpeened surface characteristics. As result of peening process, surface recrystallization was achieved on the layers of the peened samples. It was found that shot peening plays significant role in enhancing the surface properties of 316L and 2205. Particularly it has greater influence on the work hardening of austenitic stainless steel than the duplex stainless steel due to its more ductility nature under the investigated shot peening parameters. The findings of the present study will be useful with regard to the enhancement of surface texture achieved through peening.

  20. Contribution to chromium and nickel enrichment during cooking of foods in stainless steel utensils.

    PubMed

    Accominotti, M; Bost, M; Haudrechy, P; Mantout, B; Cunat, P J; Comet, F; Mouterde, C; Plantard, F; Chambon, P; Vallon, J J

    1998-06-01

    Nickel ingestion can cause exacerbation of dermatitis in patients who are already nickel-sensitive; Chromium (Cr VI) is the 2nd allergen, after nickel. However, stainless steel is widely used in home cookware. In this study, we determined nickel and chromium levels by atomic absorption spectrometry in 11 habitual menus cooked in different grades of stainless steel utensils. We noted a great difference in nickel and chromium intake depending on the menu, and a significant difference between the glass and stainless steel saucepans, but this was very low compared with the levels of nickel and chromium contained in the menus; mean intakes of these elements were under the tolerable daily intake (TDI) recommended by the World Health Organization. Hence, there is no advantage for nickel-sensitive patients in switching to materials other than stainless steel, provided that this is of good quality.

  1. Effects of Grain Size on Ultrasonic Attenuation in Type 316L Stainless Steel

    PubMed Central

    Wan, Tao; Wakui, Takashi; Futakawa, Masatoshi; Obayashi, Hironari

    2017-01-01

    A lead bismuth eutectic (LBE) spallation target will be installed in the Target Test Facility (TEF-T) in the Japan Proton Accelerator Research Complex (J-PARC). The spallation target vessel filled with LBE is made of type 316L stainless steel. However, various damages, such as erosion/corrosion damage and liquid metal embrittlement caused by contact with flowing LBE at high temperature, and irradiation hardening caused by protons and neutrons, may be inflicted on the target vessel, which will deteriorate the steel and might break the vessel. To monitor the target vessel for prevention of an accident, an ultrasonic technique has been proposed to establish off-line evaluation for estimating vessel material status during the target maintenance period. Basic R&D must be carried out to clarify the dependency of ultrasonic wave propagation behavior on material microstructures and obtain fundamental knowledge. As a first step, ultrasonic waves scattered by the grains of type 316L stainless steel are investigated using new experimental and numerical approaches in the present study. The results show that the grain size can be evaluated exactly and quantitatively by calculating the attenuation coefficient of the ultrasonic waves scattered by the grains. The results also show that the scattering regimes of ultrasonic waves depend heavily on the ratio of wavelength to average grain size, and are dominated by grains of extraordinarily large size along the wave propagation path. PMID:28773115

  2. Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Yang, Se-fei; Wen, Ying; Yi, Pan; Xiao, Kui; Dong, Chao-fang

    2017-11-01

    The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, temperature, and chitosan concentration on the corrosion inhibition performance of chitosan were investigated. The optimum parameters of water-soluble chitosan on the corrosion inhibition performance of 2205 duplex stainless steel were also determined. The water-soluble chitosan showed excellent corrosion inhibition performance on the 2205 duplex stainless steel. Polarization curves demonstrated that chitosan acted as a mixed-type inhibitor. When the stainless steel specimen was immersed in the 0.2 g/L chitosan solution for 4 h, a dense and uniform adsorption film covered the sample surface and the inhibition efficiency (IE) reached its maximum value. Moreover, temperature was found to strongly influence the corrosion inhibition of chitosan; the inhibition efficiency gradually decreased with increasing temperature. The 2205 duplex stainless steel specimen immersed in 0.4 g/L water-soluble chitosan at 30°C displayed the best corrosion inhibition among the investigated specimens. Moreover, chitosan decreased the corrosion rate of the 2205 duplex stainless steel in an FeCl3 solution.

  3. Partially degradable friction-welded pure iron-stainless steel 316L bone pin.

    PubMed

    Nasution, A K; Murni, N S; Sing, N B; Idris, M H; Hermawan, H

    2015-01-01

    This article describes the development of a partially degradable metal bone pin, proposed to minimize the occurrence of bone refracture by avoiding the creation of holes in the bone after pin removal procedure. The pin was made by friction welding and composed of two parts: the degradable part that remains in the bone and the nondegradable part that will be removed as usual. Rods of stainless steel 316L (nondegradable) and pure iron (degradable) were friction welded at the optimum parameters: forging pressure = 33.2 kPa, friction time = 25 s, burn-off length = 15 mm, and heat input = 4.58 J/s. The optimum tensile strength and elongation was registered at 666 MPa and 13%, respectively. A spiral defect formation was identified as the cause for the ductile fracture of the weld joint. A 40-µm wide intermetallic zone was identified along the fusion line having a distinct composition of Cr, Ni, and Mo. The corrosion rate of the pin gradually decreased from the undeformed zone of pure iron to the undeformed zone of stainless steel 316L. All metallurgical zones of the pin showed no toxic effect toward normal human osteoblast cells, confirming the ppb level of released Cr and Ni detected in the cell media were tolerable. © 2014 Wiley Periodicals, Inc.

  4. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    NASA Astrophysics Data System (ADS)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  5. Embrittlement in CN3MN Grade Superaustenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Başkan, Mertcan; Chumbley, Scott L.; Kalay, Yunus Eren

    2014-05-01

    Superaustenitic stainless steels (SSS) are widely used in extreme environments such as off-shore oil wells, chemical and food processing equipment, and seawater systems due to their excellent corrosion resistance and superior toughness. The design of the corresponding heat treatment process is crucial to create better mechanical properties. In this respect, the short-term annealing behavior of CN3MN grade SSS was investigated by a combined study of Charpy impact tests, hardness measurements, scanning and transmission electron microscopy. Specimens were heat treated at 1200 K (927 °C) for up to 16 minutes annealing time and their impact strengths and hardnesses were tested. The impact toughness was found to decrease to less than the half of the initial values while hardness stayed the same. Detailed fracture surface analyses revealed a ductile to brittle failure transition for relatively short annealing times. Brittle fracture occurred in both intergranular and transgranular modes. SEM and TEM indicated precipitation of nano-sized intermetallics, accounting for the intergranular embrittlement, along the grain boundaries with respect to annealing time. The transgranular fracture originated from linear defects seen to exist within the grains. Close observation of such defects revealed stacking-fault type imperfections, which lead to step-like cracking observed in microlength scales.

  6. Tritium and decay helium effects on the fracture toughness properties of types 316L, 304L and 21Cr-6Ni-9Mn stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M.J.; Tosten, M.H

    1994-10-01

    J-integral fracture mechanics techniques and electron microscopy observations were used to investigate the effects of tritium and its radioactive decay product, {sup 3}He, on Types 316L, 304L and 21Cr-6Ni-9Mn stainless steels. Tritium-exposed-and-aged steels had lower fracture-toughness values and shallower sloped crack-growth-resistance curves than unexposed steels. Both fracture-toughness parameters decreased with increasing concentrations of {sup 3}He. The fracture-toughness reductions were accompanied by a change in fracture mode from microvoid-nucleation-and-growth processes in control samples to grain-and-twin-boundary fracture in tritium-charged-and-aged samples. Type 316L stainless steel had the highest fracture-toughness values and Type 21Cr-6Ni-9Mn had the lowest. Samples containing {sup 3}He but degassed ofmore » tritium had fracture toughness properties that were similar to uncharged samples. The results indicate that helium bubbles enhance the embrittlement effects of hydrogen by affecting the deformation properties and by increasing localized hydrogen concentrations through trapping effects.« less

  7. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. 2014 Accomplishments-Tritium aging studies on stainless steel: Fracture toughness properties of forged stainless steels-Effect of hydrogen, forging strain rate, and forging temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Michael J.

    Forged stainless steels are used as the materials of construction for tritium reservoirs. During service, tritium diffuses into the reservoir walls and radioactively decays to helium-3. Tritium and decay helium cause a higher propensity for cracking which could lead to a tritium leak or delayed failure of a tritium reservoir. The factors that affect the tendency for crack formation and propagation include: Environment; steel type and microstructure; and, vessel configuration (geometry, pressure, residual stress). Fracture toughness properties are needed for evaluating the long-term effects of tritium on their structural properties. Until now, these effects have been characterized by measuring themore » effects of tritium on the tensile and fracture toughness properties of specimens fabricated from experimental forgings in the form of forward-extruded cylinders. A key result of those studies is that the long-term cracking resistance of stainless steels in tritium service depends greatly on the interaction between decay helium and the steels’ forged microstructure. New experimental research programs are underway and are designed to measure tritium and decay helium effects on the cracking properties of stainless steels using actual tritium reservoir forgings instead of the experimental forgings of past programs. The properties measured should be more representative of actual reservoir properties because the microstructure of the specimens tested will be more like that of the tritium reservoirs. The programs are designed to measure the effects of key forging variables on tritium compatibility and include three stainless steels, multiple yield strengths, and four different forging processes. The effects on fracture toughness of hydrogen and crack orientation were measured for type 316L forgings. In addition, hydrogen effects on toughness were measured for Type 304L block forgings having two different yield strengths. Finally, fracture toughness properties of type

  9. Investigation of Hot Deformation Behavior of Duplex Stainless Steel Grade 2507

    NASA Astrophysics Data System (ADS)

    Kingklang, Saranya; Uthaisangsuk, Vitoon

    2017-01-01

    Recently, duplex stainless steels (DSSs) are being increasingly employed in chemical, petro-chemical, nuclear, and energy industries due to the excellent combination of high strength and corrosion resistance. Better understanding of deformation behavior and microstructure evolution of the material under hot working process is significant for achieving desired mechanical properties. In this work, plastic flow curves and microstructure development of the DSS grade 2507 were investigated. Cylindrical specimens were subjected to hot compression tests for different elevated temperatures and strain rates by a deformation dilatometer. It was found that stress-strain responses of the examined steel strongly depended on the forming rate and temperature. The flow stresses increased with higher strain rates and lower temperatures. Subsequently, predictions of the obtained stress-strain curves were done according to the Zener-Hollomon equation. Determination of material parameters for the constitutive model was presented. It was shown that the calculated flow curves agreed well with the experimental results. Additionally, metallographic examinations of hot compressed samples were performed by optical microscope using color tint etching. Area based phase fractions of the existing phases were determined for each forming condition. Hardness of the specimens was measured and discussed with the resulted microstructures. The proposed flow stress model can be used to design and optimize manufacturing process at elevated temperatures for the DSS.

  10. Dislocation evolution in 316 L stainless steel during multiaxial ratchetting deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Yawei; Kang Guozheng, E-mail: guozhengkang@yahoo.com.cn; Liu Yujie

    2012-03-15

    Dislocation patterns and their evolutions in 316 L stainless steel during the multiaxial ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations indicate that the dislocation evolution presented during the multiaxial ratchetting with four kinds of multiaxial loading paths is similar to that in the uniaxial case [G. Z. Kang et al., Mater Sci Eng A 527 (2010) 5952]. That is, dislocation networks and dislocation tangles are formed quickly by the multiple-slip and cross-slip of dislocation activated by applied multiaxial stress; and then polarized patterns such as dislocation walls and elongated incipient dislocation cells are formed atmore » the last stage of multiaxial ratchetting. The dislocation patterns evolve more quickly from the modes at low dislocation density to the ones at high density during the multiaxial ratchetting than that in the uniaxial case, and some traces of multiple-slip are observed in the multiaxial ones. The dislocation evolution during the multiaxial ratchetting deformation is summarized by comparing the observed dislocation patterns with those presented in the multiaxial strain-controlled and symmetrical stress-controlled cyclic tests. The multiaxial ratchetting of 316 L stainless steel can be microscopically and qualitatively explained by the observed evolution of dislocation patterns. - Highlights: Black-Right-Pointing-Pointer Dislocation patterns change from lines and nets to tangles, walls and cells. Black-Right-Pointing-Pointer Dislocation patterns evolve quicker in the multiaxial case. Black-Right-Pointing-Pointer Aligned dislocation arrays and some traces of multiple slips are observed. Black-Right-Pointing-Pointer Heterogeneous dislocation patterns result in the multiaxial ratchetting.« less

  11. Modeling Periodic Adiabatic Shear Bands Evolution in a 304L Stainless Steel Thick-Walled Cylinder

    NASA Astrophysics Data System (ADS)

    Liu, Mingtao; Hu, Haibo; Fan, Cheng; Tang, Tiegang

    2015-06-01

    The self-organization of multiple shear bands in a 304L stainless steel thick-walled cylinder (TWC) was numerically studied. The microstructures of material lead to the non-uniform distribution of local yield stress, which plays a key role in the formation of spontaneous shear localization. We introduced a probability factor satisfied Gauss distribution into the macroscopic constitutive relationship to describe the non-uniformity of local yield stress. Using the probability factor, the initiation and propagation of multiple shear bands in TWC were numerically replicated in our 2D FEM simulation. Experimental results in the literature indicate that the machined surface at the internal boundary of a 304L stainless steel cylinder provides a work-hardened layer (about 20 μm) which has significantly different microstructures from base material. The work-hardened layer leads to the phenomenon that most shear bands are in clockwise or counterclockwise direction. In our simulation, periodic oriented perturbations were applied to describe the grain orientation in the work-hardened layer, and the spiral pattern of shear bands was successfully replicated.

  12. Fume generation rates for stainless steel, nickel and aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castner, H.R.

    1996-12-01

    This paper describes a study of the effects of pulsed welding current on fume produced during gas metal arc welding (GMAW) of stainless steel, nickel, and aluminum alloys. This is an extension of earlier studies of mild steel electrode wire. Reduction of welding fume is important because steady current GMAW of stainless steels and nickel alloys may produce fume that exceeds recommended worker exposure limits for some of the fume constituents. Fume generation from aluminum alloy ER5356 was studied because steady current welding with this alloy produces much higher fume generation rates than ER4043 alloy electrode wire. This work showsmore » that pulsed current can reduce GMAW fume generation rates for Er308L, ER310, and ER312 stainless steel, ERNiCr-3 nickel alloy, and ER5356 aluminum-magnesium alloy electrode wires.« less

  13. The effect of cyclic loading on the irradiation hardening of type 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Scholz, R.

    1997-01-01

    Strain controlled fatigue tests have been performed in torsion on annealed type 316L stainless steel irradiated with 19 MeV deuterons at 400°C for shear strain ranges between 0.95% and 1.4%. The irradiation hardening of the material was suppressed to a great extent for continuous cycling conditions in comparison to hold time tests.

  14. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions.

    PubMed

    López, Danián Alejandro; Durán, Alicia; Ceré, Silvia Marcela

    2008-05-01

    Titanium and cobalt alloys, as well as some stainless steels, are among the most frequently used materials in orthopaedic surgery. In industrialized countries, stainless steel devices are used only for temporary implants due to their lower corrosion resistance in physiologic media when compared to other alloys. However, due to economical reasons, the use of stainless steel alloys for permanent implants is very common in developing countries. The implantation of foreign bodies is sometimes necessary in the modern medical practice. However, the complex interactions between the host and the can implant weaken the local immune system, increasing the risk of infections. Therefore, it is necessary to further study these materials as well as the characteristics of the superficial film formed in physiologic media in infection conditions in order to control their potential toxicity due to the release of metallic ions in the human body. This work presents a study of the superficial composition and the corrosion resistance of AISI 316L stainless steel and the influence of its main alloying elements when they are exposed to an acidic solution that simulates the change of pH that occurs when an infection develops. Aerated simulated body fluid (SBF) was employed as working solution at 37 degrees C. The pH was adjusted to 7.25 and 4 in order to reproduce normal body and disease state respectively. Corrosion resistance was measured by means of electrochemical impedance spectroscopy (EIS) and anodic polarization curves.

  15. In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels.

    PubMed

    Alvarez, Kelly; Hyun, Soong-Keun; Fujimoto, Shinji; Nakajima, Hideo

    2008-11-01

    The corrosion behavior of three kinds of austenitic high nitrogen Lotus-type porous Ni-free stainless steels was examined in acellular simulated body fluid solutions and compared with type AISI 316L stainless steel. The corrosion resistance was evaluated by electrochemical techniques, the analysis of released metal ions was performed by inductively coupled plasma mass spectrometry (ICP-MS) and the cytotoxicity was investigated in a culture of murine osteoblasts cells. Total immunity to localized corrosion in simulated body fluid (SBF) solutions was exhibited by Lotus-type porous Ni-free stainless steels, while Lotus-type porous AISI 316L showed very low pitting corrosion resistance evidenced by pitting corrosion at a very low breakdown potential. Additionally, Lotus-type porous Ni-free stainless steels showed a quite low metal ion release in SBF solutions. Furthermore, cell culture studies showed that the fabricated materials were non-cytotoxic to mouse osteoblasts cell line. On the basis of these results, it can be concluded that the investigated alloys are biocompatible and corrosion resistant and a promising material for biomedical applications.

  16. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.; Korinko, P.; Spencer, W.

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivitymore » with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H 2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H 2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH 3) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H 2 and adsorbed H 2O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H 2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10 -14 l mbar/s cm 2, while H 2O off-gas rate was on the level of 10 -15 l mbar/s cm 2, consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their SilTek coated bottles tested under a different research project exhibited very little hydrogen off-gassing and

  17. Studies on microstructure, mechanical and pitting corrosion behaviour of similar and dissimilar stainless steel gas tungsten arc welds

    NASA Astrophysics Data System (ADS)

    Mohammed, Raffi; Dilkush; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    In the present study, an attempt has been made to weld dissimilar alloys of 5mm thick plates i.e., austenitic stainless steel (316L) and duplex stainless steel (2205) and compared with that of similar welds. Welds are made with conventional gas tungsten arc welding (GTAW) process with two different filler wires namely i.e., 309L and 2209. Welds were characterized using optical microscopy to observe the microstructural changes and correlate with mechanical properties using hardness, tensile and impact testing. Potentio-dynamic polarization studies were carried out to observe the pitting corrosion behaviour in different regions of the welds. Results of the present study established that change in filler wire composition resulted in microstructural variation in all the welds with different morphology of ferrite and austenite. Welds made with 2209 filler showed plate like widmanstatten austenite (WA) nucleated at grain boundaries. Compared to similar stainless steel welds inferior mechanical properties was observed in dissimilar stainless steel welds. Pitting corrosion resistance is observed to be low for dissimilar stainless steel welds when compared to similar stainless steel welds. Overall study showed that similar duplex stainless steel welds having favorable microstructure and resulted in better mechanical properties and corrosion resistance. Relatively dissimilar stainless steel welds made with 309L filler obtained optimum combination of mechanical properties and pitting corrosion resistance when compared to 2209 filler and is recommended for industrial practice.

  18. Lifespan estimation of seal welded super stainless steels for water condenser of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kim, Young Sik; Park, Sujin; Chang, Hyun Young

    2014-01-01

    When sea water was used as cooling water for water condenser of nuclear power plants, commercial stainless steels can not be applied because chloride concentration exceeds 20,000 ppm. There are many opinions for the materials selection of tube and tube sheets of a condenser. This work reviewed the application guide line of stainless steels for sea-water facilities and the estimation equations of lifespan were proposed from the analyses of both field data for sea water condenser and experimental results of corrosion. Empirical equations for lifespan estimation were derived from the pit initiation time and re-tubing time of stainless steel tubing in sea water condenser of nuclear power plants. The lifespan of seal-welded super austenitic stainless steel tube/tube sheet was calculated from these equations. Critical pitting temperature of seal-welded PRE 50 grade super stainless steel was evaluated as 60 °C. Using the proposed equation in engineering aspect, tube pitting corrosion time of seal-welded tube/tube sheet was calculated as 69.8 years and re-tubing time was estimated as 82.0 years.

  19. Stainless Steel to Titanium Bimetallic Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels andmore » is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.« less

  20. Effect of Heat Input on Geometry of Austenitic Stainless Steel Weld Bead on Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Saha, Manas Kumar; Hazra, Ritesh; Mondal, Ajit; Das, Santanu

    2018-05-01

    Among different weld cladding processes, gas metal arc welding (GMAW) cladding becomes a cost effective, user friendly, versatile method for protecting the surface of relatively lower grade structural steels from corrosion and/or erosion wear by depositing high grade stainless steels onto them. The quality of cladding largely depends upon the bead geometry of the weldment deposited. Weld bead geometry parameters, like bead width, reinforcement height, depth of penetration, and ratios like reinforcement form factor (RFF) and penetration shape factor (PSF) determine the quality of the weld bead geometry. Various process parameters of gas metal arc welding like heat input, current, voltage, arc travel speed, mode of metal transfer, etc. influence formation of bead geometry. In the current experimental investigation, austenite stainless steel (316) weld beads are formed on low alloy structural steel (E350) by GMAW using 100% CO2 as the shielding gas. Different combinations of current, voltage and arc travel speed are chosen so that heat input increases from 0.35 to 0.75 kJ/mm. Nine number of weld beads are deposited and replicated twice. The observations show that weld bead width increases linearly with increase in heat input, whereas reinforcement height and depth of penetration do not increase with increase in heat input. Regression analysis is done to establish the relationship between heat input and different geometrical parameters of weld bead. The regression models developed agrees well with the experimental data. Within the domain of the present experiment, it is observed that at higher heat input, the weld bead gets wider having little change in penetration and reinforcement; therefore, higher heat input may be recommended for austenitic stainless steel cladding on low alloy steel.

  1. Corrosion of type 316L stainless steel in a mercury thermal convection loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiStefano, J.R.; Manneschmidt, E.T.; Pawel, S.J.

    1999-04-01

    Two thermal convection loops fabricated from 316L stainless steel containing mercury (Hg) and Hg with 1000 wppm gallium (Ga), respectively, were operated continuously for about 5000 h. In each case, the maximum loop temperature was constant at about 305 degrees C and the minimum temperature was constant at about 242 degrees C. Coupons in the hot leg of the Hg-loop developed a posous surface layer substantially depleted of nickel and chromium, which resulted in a transformation to ferrite. The coupon exposed at the top of the hot leg in the Hg-loop experienced the maximum degradation, exhibiting a surface layer extendingmore » an average of 9-10 mu m after almost 5000 h. Analysis of the corrosion rate data as a function of temperature (position) in the Hg-loop suggests wetting by the mer cury occurred only above about 255 degrees C and that the rate limiting step in the corrosion process above 255 degrees C is solute diffusion through the saturated liquid boundary layer adjacent to the corroding surface. The latter factor suggests that the corrosion of 316L stainless steel in a mercury loop may be velocity dependent. No wetting and no corrosion were observed on the coupons and wall specimens removed from the Hg/Ga loop after 5000 h of operation.« less

  2. Improving Corrosion Resistance of 316L Austenitic Stainless Steel Using ZrO2 Sol-Gel Coating in Nitric Acid Solution

    NASA Astrophysics Data System (ADS)

    Kazazi, Mahdi; Haghighi, Milad; Yarali, Davood; Zaynolabedini, Masoomeh H.

    2018-03-01

    In this study, thin-film coating of zirconium oxide (ZrO2) was prepared by sol-gel method and subsequent heat treatment process. The sol was prepared by controlled hydrolysis of zirconium tetrapropoxide using acetic acid and ethanol/acetylacetone mixture as catalyst and chelating agent, respectively, and finally deposited onto the 316L austenitic stainless steel (316L SS) using dip coating method in order to improve its corrosion resistance in nitric acid medium. The composition, structure, and morphology of the coated surface were investigated by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The obtained results from XRD and FTIR state the formation of tetragonal and monoclinic ZrO2 phase. Also, the obtained results from surface morphology investigation by SEM and AFM indicate the formation of smooth, homogeneous and uniform coatings on the steel substrate. Then, the corrosion behavior of stainless steel was investigated in a 1 and 10 M nitric acid solutions using electrochemical impedance spectroscopy and linear polarization test. The obtained results from these tests for ZrO2-coated specimens indicated a considerable improvement in the corrosion resistance of 316L stainless steel by an increase in corrosion potential and transpassive potential, and a decrease in passive current density and corrosion current density. The decrease in passive current density in both the concentration of solutions was two orders of magnitude from bare to coated specimens.

  3. Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures

    NASA Astrophysics Data System (ADS)

    Razi, Sepehr; Madanipour, Khosro; Mollabashi, Mahmoud

    2016-06-01

    Laser processing of materials in water contact is sometimes employed for improving the machining, cutting or welding quality. Here, we demonstrate surface patterning of stainless steel grade 316L by nano-second laser processing in air and water. Suitable adjustments of laser parameters offer a variety of surface patterns on the treated targets. Furthermore alterations of different surface features such as surface chemistry and wettability are investigated in various processing circumstances. More than surface morphology, remarkable differences are observed in the surface oxygen content and wettability of the samples treated in air and water at the same laser processing conditions. Mechanisms of the changes are discussed extensively.

  4. Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite.

    PubMed

    Balla, Vamsi Krishna; Das, Mitun; Bose, Sreyashree; Ram, G D Janaki; Manna, Indranil

    2013-12-01

    Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 μm to 355±6 μm, while the average surface hardness decreased marginally from 403±18 HV0.3 to 372±8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples. © 2013.

  5. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates.

    PubMed

    Krischak, G D; Gebhard, F; Mohr, W; Krivan, V; Ignatius, A; Beck, A; Wachter, N J; Reuter, P; Arand, M; Kinzl, L; Claes, L E

    2004-03-01

    Stainless steel and commercially pure titanium are widely used materials in orthopedic implants. However, it is still being controversially discussed whether there are significant differences in tissue reaction and metallic release, which should result in a recommendation for preferred use in clinical practice. A comparative study was performed using 14 stainless steel and 8 commercially pure titanium plates retrieved after a 12-month implantation period. To avoid contamination of the tissue with the elements under investigation, surgical instruments made of zirconium dioxide were used. The tissue samples were analyzed histologically and by inductively coupled plasma atomic emission spectrometry (ICP-AES) for accumulation of the metals Fe, Cr, Mo, Ni, and Ti in the local tissues. Implant corrosion was determined by the use of scanning electron microscopy (SEM). With grades 2 or higher in 9 implants, steel plates revealed a higher extent of corrosion in the SEM compared with titanium, where only one implant showed corrosion grade 2. Metal uptake of all measured ions (Fe, Cr, Mo, Ni) was significantly increased after stainless steel implantation, whereas titanium revealed only high concentrations for Ti. For the two implant materials, a different distribution of the accumulated metals was found by histological examination. Whereas specimens after steel implantation revealed a diffuse siderosis of connective tissue cells, those after titanium exhibited occasionally a focal siderosis due to implantation-associated bleeding. Neither titanium- nor stainless steel-loaded tissues revealed any signs of foreign-body reaction. We conclude from the increased release of toxic, allergic, and potentially carcinogenic ions adjacent to stainless steel that commercially pure Ti should be treated as the preferred material for osteosyntheses if a removal of the implant is not intended. However, neither material provoked a foreign-body reaction in the local tissues, thus cpTi cannot be

  6. Corrosion Performance of Stainless Steels in a Simulated Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Vinje, Rubiela D.; MacDowell, Louis

    2004-01-01

    At the Kennedy Space Center, NASA relies on stainless steel (SS) tubing to supply the gases and fluids required to launch the Space Shuttle. 300 series SS tubing has been used for decades but the highly corrosive environment at the launch pad has proven to be detrimental to these alloys. An upgrade with higher alloy content materials has become necessary in order to provide a safer and long lasting launch facility. In the effort to find the most suitable material to replace the existing AISI 304L SS ([iNS S30403) and AISI 316L SS (UNS S31603) shuttle tubing, a study involving atmospheric exposure at the corrosion test site near the launch pads and electrochemical measurements is being conducted. This paper presents the results of an investigation in which stainless steels of the 300 series, 304L, 316L, and AISI 317L SS (UNS S31703) as well as highly alloyed stainless steels 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C ([iNS S44735) were evaluated using direct current (DC) electrochemical techniques under conditions designed to simulate those found at the Space Shuttle Launch pad. The electrochemical results were compared to the atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the alloys.

  7. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    NASA Astrophysics Data System (ADS)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  8. Electrochemical Corrosion Behavior of Spray-Formed Boron-Modified Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Zepon, Guilherme; Nogueira, Ricardo P.; Kiminami, Claudio S.; Botta, Walter J.; Bolfarini, Claudemiro

    2017-04-01

    Spray-formed boron-modified supermartensitic stainless steel (SMSS) grades are alloys developed to withstand severe wear conditions. The addition of boron to the conventional chemical composition of SMSS, combined with the solidification features promoted by the spray forming process, leads to a microstructure composed of low carbon martensitic matrix reinforced by an eutectic network of M2B-type borides, which considerably increases the wear resistance of the stainless steel. Although the presence of borides in the microstructure has a very beneficial effect on the wear properties of the alloy, their effect on the corrosion resistance of the stainless steel was not comprehensively evaluated. The present work presents a study of the effect of boron addition on the corrosion resistance of the spray-formed boron-modified SMSS grades by means of electrochemical techniques. The borides fraction seems to have some influence on the repassivation kinetics of the spray-formed boron-modified SMSS. It was shown that the Cr content of the martensitic matrix is the microstructural feature deciding the corrosion resistance of this sort of alloys. Therefore, if the Cr content in the alloy is increased to around 14 wt pct to compensate for the boron consumed by the borides formation, the corrosion resistance of the alloy is kept at the same level of the alloy without boron addition.

  9. Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions

    PubMed Central

    Singh Raman, R. K.; Siew, Wai Hoong

    2014-01-01

    This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC) in a nitrite-containing chloride solution. Slow strain rate testing (SSRT) in 30 wt. % MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless steels, was found to increase SCC susceptibility. The susceptibility was also found to increase with nitrite concentration. This behaviour is explained on the basis of the passivation and pitting characteristics of 316L steel in chloride solution. PMID:28788276

  10. Long-term corrosion evaluation of stainless steels in Space Shuttle iodinated resin and water

    NASA Technical Reports Server (NTRS)

    Krohn, Douglas D.

    1992-01-01

    The effects of stainless steel exposure to iodinated water is a concern in developing the Integrated Water System (IWS) for Space Station Freedom. The IWS has a life requirement of 30 years, but the effects of general and localized corrosion over such a long period have not been determined for the candidate materials. In 1978, Umpqua Research Center immersed stainless steel 316L, 321, and 347 specimens in a solution of deionized water and the Space Shuttle microbial check valve resin. In April 1990, the solution was chemically analyzed to determine the level of corrosion formed, and the surface of each specimen was examined with scanning electron microscopy and metallography to determine the extent of general and pitting corrosion. This examination showed that the attack on the stainless steels was negligible and never penetrated past the first grain boundary layer. Of the three alloys, 316L performed the best; however, all three materials proved to be compatible with an aqueous iodine environment. In addition to the specimens exposed to aqueous iodine, a stainless steel specimen (unspecified alloy) was exposed to moist microbial check valve resin and air for a comparable period. This environment allowed contact of the metal to the resin as well as to the iodine vapor. Since the particular stainless steel alloy was not known, energy dispersive spectroscopy was used to determine that this alloy was stainless steel 301. The intergranular corrosion found on the specimen was limited to the first grain boundary layer.

  11. Analytical and Electrochemical Study of Passive Films in Stainless Steels Subjected to Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Jahangiribabavi, Negin

    The objective of this research is to study the corrosion behavior of the stainless steel centrifugal contactor used in the spent nuclear fuel treatment process called UREX+ process. AISI type 304L stainless steel was suggested as the material of construction for this contactor. Corrosion of 304L stainless steel in three acidic aqueous solutions of 5.0M HNO3, 5.0M HNO 3 + 0.1M HF, and 5.0M HNO3 + 0.1M HF + 0.1M Zr4+ was studied. Immersion, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) corrosion tests were conducted at test temperatures of 25, 40, and 80°C and three different rotational speeds (0, 1000, 2000 rpm) in order to mimic the operating conditions of the centrifugal contactor. The results showed that the 5.0M HNO3 + 0.1M HF solution was the most corrosive environment as the fluoride ions dissolved the passive film present on the surface of the stainless steel. The addition of 0.1M Zr 4+ ions to this acidic mixture reduced the corrosion caused by HF to levels similar to those found in HNO3 solutions and allowed the stainless steel to preserve its passive film. Further addition of zirconium ion did not result in better corrosion resistance of the stainless steel. Besides, higher corrosion rates were obtained as the solutions temperatures increased while the hydrodynamic conditions had less significant effect on corrosion rates.

  12. Microstructure and corrosion behavior of shielded metal arc-welded dissimilar joints comprising duplex stainless steel and low alloy steel

    NASA Astrophysics Data System (ADS)

    Srinivasan, P. Bala; Muthupandi, V.; Sivan, V.; Srinivasan, P. Bala; Dietzel, W.

    2006-12-01

    This work describes the results of an investigation on a dissimilar weld joint comprising a boiler-grade low alloy steel and duplex stainless steel (DSS). Welds produced by shielded metal arc-welding with two different electrodes (an austenitic and a duplex grade) were examined for their microstructural features and properties. The welds were found to have overmatching mechanical properties. Although the general corrosion resistance of the weld metals was good, their pitting resistance was found to be inferior when compared with the DSS base material.

  13. Yb-fibre Laser Welding of 6 mm Duplex Stainless Steel 2205

    NASA Astrophysics Data System (ADS)

    Bolut, M.; Kong, C. Y.; Blackburn, J.; Cashell, K. A.; Hobson, P. R.

    Duplex stainless steel (DSS) is one of the materials of choice for structural and nuclear applications, having high strength and good corrosion resistance when compared with other grades of stainless steel. The welding process used to join these materials is critical as transformation of the microstructure during welding directly affects the material properties. High power laser welding has recently seen an increase in research interest as it offers both speed and flexibility. This paper presents an investigation into the important parameters affecting laser welding of DSS grade 2205, with particular focus given to the critical issue of phase transformation during welding. Bead-on-plate melt-run trials without filler material were performed on 6mm thick plates using a 5 kW Yb-fibre laser. The laser beam was characterized and a Design of Experiment approach was used to quantify the impact of the process parameters. Optical metallographic methods were used to examine the resulting microstructures.

  14. Serrated Flow Behavior of Aisi 316l Austenitic Stainless Steel for Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Li, Qingshan; Shen, Yinzhong; Han, Pengcheng

    2017-10-01

    AISI 316L austenitic stainless steel is a candidate material for Generation IV reactors. In order to investigate the influence of temperature on serrated flow behavior, tensile tests were performed at temperatures ranging from 300 to 700 °C at an initial strain rate of 2×10-4 s-1. Another group of tensile tests were carried out at strain rates ranging from 1×10-4 to 1×10-2 s-1 at 600 °C to examine the influence of strain rates on serrated flow behavior. The steel exhibited serrated flow, suggesting the occurrence of dynamic strain ageing at 450-650°C. No plateau of yield stresses of the steel was observed at an initial strain rate of 2×10-4 s-1. The effective activation energy for serrated flow occurrence was calculated to be about 254.72 kJ/mol-1. Cr, Mn, Ni and Mo solute atoms are expected to be responsible for dynamic strain ageing at high temperatures of 450-650 °C in the steel.

  15. Delta-Ferrite Distribution in a Continuous Casting Slab of Fe-Cr-Mn Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Cheng, Guoguang

    2017-10-01

    The delta-ferrite distribution in a continuous casting slab of Fe-Cr-Mn stainless steel grade (200 series J4) was analyzed. The results showed that the ferrite fraction was less than 3 pct. The "M" type distribution was observed in the thickness direction. For the distribution at the centerline, the maximum ferrite content was found in the triangular zone of the macrostructure. In addition, in this zone, the carbon and sulfur were severely segregated. Furthermore, an equilibrium solidification calculation by Thermo-Calc® software indicates that the solidification mode of the composition in this triangular zone is the same as the solidification mode of the averaged composition, i.e., the FA (ferrite-austenite) mode. None of the nickel-chromium equivalent formulas combined with the Schaeffler-type diagram could predict the ferrite fraction of the Cr-Mn stainless steel grade in a reasonable manner. The authors propose that more attention should be paid to the development of prediction models for the ferrite fraction of stainless steels under continuous casting conditions.

  16. Quasi-Isentropic Compression of Wrought and Additively Manufactures 304L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Specht, Paul; Brown, Justin; Wise, Jack; Furnish, Michael; Adams, David

    2017-06-01

    The thermodynamic and constitutive responses of both additively manufactured (AM) and traditional wrought processed 304L stainless steel (SS) were investigated through quasi-isentropic compression to peak stresses near 1Mbar using Sandia National Laboratories' Z machine. The AM 304L SS samples were made with a laser engineered net shaping (LENS™) technique. Compared to traditional wrought processed 304L SS, the AM samples were highly textured with larger grain sizes (i.e.near 1mm) and residual stresses (> 100 MPa). Interferometric measurements of interface velocities enabled inference of the quasi-isentropes for each fabrication type of 304L SS. Release from peak stress provided flow strength measurements of the wrought and AM 304L SS. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved For Unclassified Unlimited Release SAND2017-2040A.

  17. The Influence of Porosity on Corrosion Attack of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Abdullah, Z.; Ismail, A.; Ahmad, S.

    2017-10-01

    Porous metals also known as metal foams is a metallic body having spaces orpores through which liquid or air may pass. Porous metals get an attention from researchers nowadays due to their unique combination of properties includes excellent mechanical and electrical, high energy absorption, good thermal and sound insulation and water and gas permeability. Porous metals have been applied in numerous applications such as in automotive, aerospace and also in biomedical applications. This research reveals the influence of corrosion attack in porous austenitic stainless steel 316L. The cyclic polarization potential analysis was performed on the porous austenitic stainless steel 316L in 3.5% NaCl solution. The morphology and the element presence on the samples before and after corrosion attack was examined using scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) respectively to determine the corrosion mechanism structure. The cyclic polarization potential analysis showed the result of (E corr ) for porous austenitic stainless steel type 316L in the range of -0.40v to -0.60v and breakdown potential (E b ) is -0.3v to -0.4v in NaCl solution.

  18. MECHANICAL PROPERTIES OF IRRADIATED STAINLESS STEELS. A Compilation of Data in the Literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, R.E.

    1961-09-01

    Changes in the mechanical properties of stainless steels that are caused by fast neutron irradiation are presented aphic form. These data were abstracted from classified and unclassified reports published since 1948 by USAEC, AECL, and AERE. Data are included for the following stainless steels: AM- 350, Boron stainless, 301, 302, 43l, 440C, 442, 446, Armco 17-4PH (AMS5643), Armco 177PH, and Stainless W. The mechanical properties for which data are reported include hardness, yield strength, tensile strength, total elongation, reduction of area, elastic modulus, fatigue strength, notch factor, creep, stress relaxation, impact energy, and transition temperature. (auth)

  19. Resistance Element Welding of Magnesium Alloy/austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Manladan, S. M.; Yusof, F.; Ramesh, S.; Zhang, Y.; Luo, Z.; Ling, Z.

    2017-09-01

    Multi-material design is increasingly applied in the automotive and aerospace industries to reduce weight, improve crash-worthiness, and reduce environmental pollution. In the present study, a novel variant of resistance spot welding technique, known as resistance element welding was used to join AZ31 Mg alloy to 316 L austenitic stainless steel. The microstructure and mechanical properties of the joints were evaluated. It was found that the nugget consisted of two zones, including a peripheral fusion zone on the stainless steel side and the main fusion zone. The tensile shear properties of the joints are superior to those obtained by traditional resistance spot welding.

  20. Evaluation of stainless steel reinforcement construction project

    DOT National Transportation Integrated Search

    2003-02-01

    Stainless steel reinforcement has greater corrosion resistance than that of the conventional reinforcement. In this project, bridge A6059, the first in Missouri utilizing stainless steel reinforcement in the deck, was constructed, along with bridge A...

  1. 77 FR 1504 - Stainless Steel Wire Rod From India

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-638 (Third Review)] Stainless Steel Wire... stainless steel wire rod From India would be likely to lead to continuation or recurrence of material injury... USITC Publication 4300 (January 2012), entitled Stainless Steel Wire Rod From India: Investigation No...

  2. Effect of SiC particle impact nano-texturing on tribological performance of 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Lorenzo-Martin, C.; Ajayi, O. O.

    2014-10-01

    Topographical features on sliding contact surfaces are known to have a significant impact on friction and wear. Indeed, various forms of surface texturing are being used to improve and/or control the tribological performance of sliding surfaces. In this paper, the effect of random surface texturing produced by a mechanical impact process is studied for friction and wear behavior of 304L stainless steel (SS) under dry and marginal oil lubrication. The surface processing was applied to 304L SS flat specimens and tested under reciprocating ball-on-flat sliding contact, with a 440C stainless steel ball. Under dry contact, the impact textured surface exhibited two order of magnitude lower wear than the isotropically ground surface of the same material. After 1500 s of sliding and wearing through of the processed surface layer following occurring of scuffing, the impact textured surface underwent a transition in wear and friction behavior. Under marginal oil lubrication, however, no such transition occurred, and the wear for the impact textured surface was consistently two orders of magnitude lower than that for the ground material. Mechanisms for the tribological performance enhancement are proposed.

  3. Chromium-Makes stainless steel stainless

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  4. Protection of 310l Stainless Steel from Wear at Elevated Temperatures using Conicraly Thermal Spray Coatings with and without Sic Addition

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zhang, Tao; Li, Kaiyang; Li, Dongyang

    2017-10-01

    Due to its high oxidation resistance, 310L stainless steel is often used for thermal facilities working at high-temperatures. However, the steel may fail prematurely at elevated temperatures when encounter surface mechanical attacks such as wear. Thermal spray coatings have been demonstrated to be effective in protecting the steel from wear at elevated temperatures. In this study, we investigated the effectiveness of high velocity oxy-fuel(HVOF) spraying CoNiCrAlY/SiC coatings in resisting wear of 310L stainless steel at elevated temperature using a pin-on-disc wear tester. In order to further improve the performance of the coating, 5%SiC was added to the coating. It was demonstrated that the CoNiCrAlY/SiC coating after heat treatment markedly suppressed wear. However, the added SiC particles did not show benefits to the wear resistance of the coating. Microstructures of CoNiCrAlY coatings with and without the SiC addition were characterized in order to understand the mechanism responsible for the observed phenomena.

  5. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOEpatents

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  6. Surface Conditioning of Cardiovascular 316L Stainless Steel Stents: a Review

    NASA Astrophysics Data System (ADS)

    Navarro, Lucila; Luna, Julio; Rintoul, Ignacio

    2017-07-01

    Cardiovascular disease is the leading cause of death worldwide and 90% of coronary interventions consists in stenting procedures. Most of the implanted stents are made of AISI 316L stainless steel (SS). Excellent mechanical properties, biocompatibility, corrosion resistance, workability and statistically demonstrated medical efficiency are the reasons for the preference of 316L SS over any other material for stent manufacture. However, patients receiving 316L SS bare stents are reported with 15-20% of restenosis probability. The decrease of the restenosis probability is the driving force for a number of strategies for surface conditioning of 316L SS stents. This review reports the latest advances in coating, passivation and the generation of controlled topographies as strategies for increasing the corrosion resistance and reducing the ion release and restenosis probability on 316L SS stents. Undoubtedly, the future of technique is related to the elimination of interfaces with abrupt change of properties, the elimination of molecules and any other phase somehow linked to the metal substrate. And leaving the physical, chemical and topographical smart modification of the outer part of the 316L SS stent for enhancing the biocompatiblization with endothelial tissues.

  7. Stainless steel reinforcement as a replacement for epoxy coated steel in bridge decks : final report.

    DOT National Transportation Integrated Search

    2013-08-01

    The corrosion resistance of 2304 stainless steel reinforcement and stainless steel clad reinforcement was compared to conventional and epoxy-coated reinforcement (ECR). 2304 stainless steel was tested in both the as-received condition (dark mottled f...

  8. Enhancement of cavitation erosion resistance of 316 L stainless steel by adding molybdenum.

    PubMed

    Li, D G; Chen, D R; Liang, P

    2017-03-01

    The influence of Mo on ultrasonic cavitation erosion of 316 L stainless steel in 3.5% NaCl solution were investigated using an ultrasonic cavitation erosion (CE) facility. The morphologies of specimen after cavitation erosion were observed by scanning electron microscopy (SEM). The results showed that the addition of Mo can sharply decrease the mean depth of erosion (MDE) of 316 L SS, implying the increased resistance of cavitation erosion. In order to better understanding the influence of Mo on the cavitation erosion of 316 L SS, the semi-conductive property of passive films on 316 L SS containing different concentrations of Mo were studied by Mott-Schottky plot. Based on Mott-Schottky results and semiconductor physics, a physical model was proposed to explain the effect mechanism of Mo on cavitation erosion of 316 L SS. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    PubMed

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  10. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or alloys...

  11. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or alloys...

  12. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or alloys...

  13. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or alloys...

  14. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or alloys...

  15. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  16. High temperature chlorosilane corrosion of iron and AISI 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Aller, Joshua Loren

    Chlorosilane gas streams are used at high temperatures (>500°C) throughout the semiconductor, polycrystalline silicon, and fumed silica industries, primarily as a way to refine, deposit, and produce silicon and silicon containing materials. The presence of both chlorine and silicon in chlorosilane species creates unique corrosion environments due to the ability of many metals to form both metal-chlorides and metal-silicides, and it is further complicated by the fact that many metal-chlorides are volatile at high-temperatures while metal-silicides are generally stable. To withstand the uniquely corrosive environments, expensive alloys are often utilized, which increases the cost of final products. This work focuses on the corrosion behavior of iron, the primary component of low-cost alloys, and AISI 316L, a common low-cost stainless steel, in environments representative of industrial processes. The experiments were conducted using a customized high temperature chlorosilane corrosion system that exposed samples to an atmospheric pressure, high temperature, chlorosilane environment with variable input amounts of hydrogen, silicon tetrachloride, and hydrogen chloride plus the option of embedding samples in silicon during the exposure. Pre and post exposure sample analysis including scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and gravimetric analysis showed the surface corrosion products varied depending on the time, temperature, and environment that the samples were exposed to. Most commonly, a volatile chloride product formed first, followed by a stratified metal silicide layer. The chlorine and silicon activities in the corrosion environment were changed independently and were found to significantly alter the corrosion behavior; a phenomenon supported by computational thermodynamic equilibrium simulations. It was found that in comparable environments, the stainless steel corroded significantly less than the pure iron. This

  17. Electrochemical Corrosion of Stainless Steel in Thiosulfate Solutions Relevant to Gold Leaching

    NASA Astrophysics Data System (ADS)

    Choudhary, Lokesh; Wang, Wei; Alfantazi, Akram

    2016-01-01

    This study aims to characterize the electrochemical corrosion behavior of stainless steel in the ammoniacal thiosulfate gold leaching solutions. Electrochemical corrosion response was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy, while the semi-conductive properties and the chemical composition of the surface film were characterized using Mott-Schottky analysis and X-ray photoelectron spectroscopy, respectively. The morphology of the corroded specimens was analyzed using scanning electron microscopy. The stainless steel 316L showed no signs of pitting in the ammoniacal thiosulfate solutions.

  18. Stainless steels for cryogenic bolts and nuts (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, F.; Rabbe, P.; Odin, G.

    1975-03-01

    Stainless steel for cryogenic applications are generally austenitic steels which, under the effect of cold-drawing, can or cannot undergo a partial martensitic transformation according to their composition. It has been shown that very high ductility and endurance characteristics at low temperatures, together with very high yield strength and resistances values, can be attained with grades of nitrogenous steels of types Z2CN18-10N and Z3CMN18-8-6N. Optimum ductility values are obtained by employing to the best possible, the martensitic transformations which develop during cold-drawing. From the plotting of the rational traction curves, it is possible to analyse very simply the influence of themore » composition on the martensitic transformations. (FR)« less

  19. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    PubMed Central

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-01-01

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred. PMID:28773285

  20. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    PubMed

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  1. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    NASA Astrophysics Data System (ADS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-02-01

    Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  2. Corrosion of stainless steel sternal wire after long-term implantation.

    PubMed

    Tomizawa, Yasuko; Hanawa, Takao; Kuroda, Daisuke; Nishida, Hiroshi; Endo, Masahiro

    2006-01-01

    A variety of metallic components have been used in medical devices where lifelong durability and physical strength are demanded. To investigate the in vivo changes of implanted metallic medical devices in humans, stainless steel sternal wires removed from patients were evaluated. Stainless steel (316L) sternal wires removed from four patients after 10, 13, 22, and 30 years of implantation were evaluated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Macroscopically, the removed specimens maintained their metallic luster and color. Under SEM, small holes were observed sporadically at 10 years and they tended to connect in the drawing direction. The longer the implanted duration, the more numerous and deeper were the crevices observed. By EDS, sulfur, phosphorus, and calcium were identified in all areas at 10 years, in addition to the component elements of stainless steel, comprising iron, chromium, nickel, and manganese. Corrosion products observed at 30 years were identified as calcium phosphate. In conclusion, stainless steel sternal wires develop corroded pores that grow larger and deeper with time after implantation; however, the pores remain shallow even after decades of implantation and they may not be a cause of mechanical failure. An amount of metal ions equivalent to the corroded volume must have been released into the human body, but the effect of these metal ions on the body is not apparent.

  3. Biofilm initiation and growth of Pseudomonas aeruginosa on 316L stainless steel in low gravity in orbital space flight

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Pierson, Duane L.; Allen, Britt; Silverstein, JoAnn

    The formation of biofilms by water microorganisms such as Pseudomonas aeruginosa in spacecraft water systems has been a matter of concern for long-duration space flight. Crewed spacecraft plumbing includes internal surfaces made of 316L stainless steel. Experiments were therefore undertaken to compare the ability of P. aeruginosa to grow in suspension, attach to stainless steel and to grow on stainless steel in low gravity on the space shuttle. Four categories of cultures were studied during two space shuttle flights (STS-69 and STS-77). Cultures on the ground were held in static horizontal or vertical cylindrical containers or were tumbled on a clinostat and activated under conditions identical to those for the flown cultures. The containers used on the ground and in flight were BioServe Space Technologies’ Fluid Processing Apparatus (FPA), an open-ended test tube with rubber septa that allows robotic addition of bacteria to culture media to initiate experiments and the addition of fixative to conclude experiments. Planktonic growth was monitored by spectrophotometry, and biofilms were characterized quantitatively by epifluorescence and scanning electron microscopy. In these experiments it was found that: (1) Planktonic growth in flown cultures was more extensive than in static cultures, as seen repeatedly in the history of space microbiology, and closely resembled the growth of tumbled cultures. (2) Conversely, the attachment of cells in flown cultures was as much as 8 times that in tumbled cultures but not significantly different from that in static horizontal and vertical cultures, consistent with the notion that flowing fluid reduces microbial attachment. (3) The final surface coverage in 8 days was the same for flown and static cultures but less by a factor of 15 in tumbled cultures, where coverage declined during the preceding 4 days. It is concluded that cell attachment to 316L stainless steel in the low gravity of orbital space flight is similar to that

  4. Features of residual stresses in duplex stainless steel butt welds

    NASA Astrophysics Data System (ADS)

    Um, Tae-Hwan; Lee, Chin-Hyung; Chang, Kyong-Ho; Nguyen Van Do, Vuong

    2018-04-01

    Duplex stainless steel finds increasing use as an alternative to austenitic stainless steel, particularly where chloride or sulphide stress corrosion cracking is of primary concern, due to the excellent combination of strength and corrosion resistance. During welding, duplex stainless steel does not create the same magnitude or distribution of weld-induced residual stresses as those in welded austenitic stainless steel due to the different physical and mechanical properties between them. In this work, an experimental study on the residual stresses in butt-welded duplex stainless steel is performed utilizing the layering technique to investigate the characteristics of residual stresses in the weldment. Three-dimensional thermos-mechanical-metallurgical finite element analysis is also performed to confirm the residual stress measurements.

  5. Corrosion and wear behaviors of boronized AISI 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Kayali, Yusuf; Büyüksaǧiş, Aysel; Yalçin, Yılmaz

    2013-09-01

    In this study, the effects of a boronizing treatment on the corrosion and wear behaviors of AISI 316L austenitic stainless steel (AISI 316L) were examined. The corrosion behavior of the boronized samples was studied via electrochemical methods in a simulation body fluid (SBF) and the wear behavior was examined using the ball-on-disk wear method. It was observed that the boride layer that formed on the AISI 316L surface had a flat and smooth morphology. Furthermore, X-ray diffraction analyses show that the boride layer contained FeB, Fe2B, CrB, Cr2B, NiB, and Ni2B phases. Boride layer thickness increased with an increasing boronizing temperature and time. The boronizing treatment also increased the surface hardness of the AISI 316L. Although there was no positive effect of the coating on the corrosion resistance in the SBF medium. Furthermore, a decrease in the friction coefficient was recorded for the boronized AISI 316L. As the boronizing temperature increased, the wear rate decreased in both dry and wet mediums. As a result, the boronizing treatment contributed positively to the wear resistance by increasing the surface hardness and by decreasing the friction coefficient of the AISI 316L.

  6. Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal

    NASA Astrophysics Data System (ADS)

    Hosseini, Vahid A.; Thuvander, Mattias; Wessman, Sten; Karlsson, Leif

    2018-04-01

    Low-temperature phase separations (T < 500 °C), resulting in changes in mechanical and corrosion properties, of super duplex stainless steel (SDSS) base and weld metals were investigated for short heat treatment times (0.5 to 600 minutes). A novel heat treatment technique, where a stationary arc produces a steady state temperature gradient for selected times, was employed to fabricate functionally graded materials. Three different initial material conditions including 2507 SDSS, remelted 2507 SDSS, and 2509 SDSS weld metal were investigated. Selective etching of ferrite significantly decreased in regions heat treated at 435 °C to 480 °C already after 3 minutes due to rapid phase separations. Atom probe tomography results revealed spinodal decomposition of ferrite and precipitation of Cu particles. Microhardness mapping showed that as-welded microstructure and/or higher Ni content accelerated decomposition. The arc heat treatment technique combined with microhardness mapping and electrolytical etching was found to be a successful approach to evaluate kinetics of low-temperature phase separations in SDSS, particularly at its earlier stages. A time-temperature transformation diagram was proposed showing the kinetics of 475 °C-embrittlement in 2507 SDSS.

  7. Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal

    NASA Astrophysics Data System (ADS)

    Hosseini, Vahid A.; Thuvander, Mattias; Wessman, Sten; Karlsson, Leif

    2018-07-01

    Low-temperature phase separations (T < 500 °C), resulting in changes in mechanical and corrosion properties, of super duplex stainless steel (SDSS) base and weld metals were investigated for short heat treatment times (0.5 to 600 minutes). A novel heat treatment technique, where a stationary arc produces a steady state temperature gradient for selected times, was employed to fabricate functionally graded materials. Three different initial material conditions including 2507 SDSS, remelted 2507 SDSS, and 2509 SDSS weld metal were investigated. Selective etching of ferrite significantly decreased in regions heat treated at 435 °C to 480 °C already after 3 minutes due to rapid phase separations. Atom probe tomography results revealed spinodal decomposition of ferrite and precipitation of Cu particles. Microhardness mapping showed that as-welded microstructure and/or higher Ni content accelerated decomposition. The arc heat treatment technique combined with microhardness mapping and electrolytical etching was found to be a successful approach to evaluate kinetics of low-temperature phase separations in SDSS, particularly at its earlier stages. A time-temperature transformation diagram was proposed showing the kinetics of 475 °C-embrittlement in 2507 SDSS.

  8. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a...

  9. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a...

  10. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a...

  11. 21 CFR 878.4495 - Stainless steel suture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Stainless steel suture. 878.4495 Section 878.4495 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a...

  12. A novel public health threat - high lead solder in stainless steel rainwater tanks in Tasmania.

    PubMed

    Lodo, Kerryn; Dalgleish, Cameron; Patel, Mahomed; Veitch, Mark

    2018-02-01

    We identified two water tanks in Tasmania with water lead concentrations exceeding the Australian Drinking Water Guidelines (ADWG) limit; they had been constructed with stainless steel and high-lead solder from a single manufacturer. An investigation was initiated to identify all tanks constructed by this manufacturer and prevent further exposure to contaminated water. To identify water tanks we used sales accounts, blood and water lead results from laboratories, and media. We analysed blood and water lead concentration results from laboratories and conducted a nested cohort study of blood lead concentrations in children aged <18 years. We identifed 144 tanks constructed from stainless steel and high lead solder. Median water lead concentrations were significantly higher in the stainless steel tanks (121µg/L) than in the galvanised tanks (1µg/L). Blood lead concentrations ranged from 1 to 26µg/dL (median 5µg/dL); of these, 77% (n=50) were below the then-recommended health-related concentration of 10µg/dL. Concentrations in the 15 people (23%) above this limit ranged from 10-26µg/dL, with a median of 14µg/dL. The median blood lead concentration in the nested cohort of children was initially 8.5µg/dL, dropping to 4.5µg/dL after follow-up. Lead concentrations in the water tanks constructed from stainless steel and high-lead solder were up to 200 times above the recommended ADWG limits. Implications for public health: This investigation highlights the public health risk posed by use of non-compliant materials in constructing water tanks. © 2017 Department of Health and Human Services Tasmania.

  13. Structure and mechanical properties of improved cast stainless steels for nuclear applications

    NASA Astrophysics Data System (ADS)

    Kenik, E. A.; Busby, J. T.; Gussev, M. N.; Maziasz, P. J.; Hoelzer, D. T.; Rowcliffe, A. F.; Vitek, J. M.

    2017-01-01

    Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. In the present work, a series of modified high-nitrogen cast stainless steels has been developed and characterized. The steels, based on the cast equivalent of the composition of 316 stainless steel, have increased N (0.14-0.36%) and Mn (2-5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and 0.7 dpa neutron irradiated specimens. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganese tended to decrease yield stress but increased radiation hardening. The role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. No ferrite formation or significant precipitation were observed in the modified steels. It was shown that the modified steels, compared to reference material (commercial cast 316L steel), had better strength level, exhibit significantly reduced elemental inhomogeneity and only minor second phase formation.

  14. Reduction of liquid metal embrittlement in copper-brazed stainless steel joints

    NASA Astrophysics Data System (ADS)

    Uhlig, T.; Fedorov, V.; Elßner, M.; Wagner, G.; Weis, S.

    2017-03-01

    Due to its very good formability and the low raw material cost, pure copper in form of foils is commonly used to braze plate heat exchangers made of stainless steel. The difference in the electrochemical potentials of brazing filler and base material leads to corrosion effects in contact with electrolytes. This may lead to leakages, which decrease the reliability of the heat exchanger during service in potable water. The dissolution of the emerging corrosion products of brazing filler and base material induces the migration of heavy metal ions, such as Cu2+ and Ni2+, into the potable water. The so-called liquid metal embrittlement, which takes place during the brazing process, may intensify the corrosion. The brazing filler infiltrates the stainless steel along the grain boundaries and causes an embrittlement. This paper deals with the determination of the grain boundary erosion dependent on the degree of deformation and heat treatment of the stainless steel AISI 316L.

  15. Adhesion of Salmonella Enteritidis and Listeria monocytogenes on stainless steel welds.

    PubMed

    Casarin, Letícia Sopeña; Brandelli, Adriano; de Oliveira Casarin, Fabrício; Soave, Paulo Azevedo; Wanke, Cesar Henrique; Tondo, Eduardo Cesar

    2014-11-17

    Pathogenic microorganisms are able to adhere on equipment surfaces, being possible to contaminate food during processing. Salmonella spp. and Listeria monocytogenes are important pathogens that can be transmitted by food, causing severe foodborne diseases. Most surfaces of food processing industry are made of stainless steel joined by welds. However currently, there are few studies evaluating the influence of welds in the microorganism's adhesion. Therefore the purpose of the present study was to investigate the adhesion of Salmonella Enteritidis and L. monocytogenes on surface of metal inert gas (MIG), and tungsten inert gas (TIG) welding, as well as to evaluate the cell and surface hydrophobicities. Results demonstrated that both bacteria adhered to the surface of welds and stainless steel at same levels. Despite this, bacteria and surfaces demonstrated different levels of hydrophobicity/hydrophilicity, results indicated that there was no correlation between adhesion to welds and stainless steel and the hydrophobicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  17. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    NASA Astrophysics Data System (ADS)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  18. Low-temperature creep of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  19. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  20. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for themore » advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.« less

  1. A New Vacuum Brazing Route for Niobium-316L Stainless Steel Transition Joints for Superconducting RF Cavities

    NASA Astrophysics Data System (ADS)

    Kumar, Abhay; Ganesh, P.; Kaul, R.; Bhatnagar, V. K.; Yedle, K.; Ram Sankar, P.; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Singh, M. K.; Rai, S. K.; Bose, A.; Veerbhadraiah, T.; Ramteke, S.; Sridhar, R.; Mundra, G.; Joshi, S. C.; Kukreja, L. M.

    2015-02-01

    The paper describes a new approach for vacuum brazing of niobium-316L stainless steel transition joints for application in superconducting radiofrequency cavities. The study exploited good wettability of titanium-activated silver-base brazing alloy (CuSil-ABA®), along with nickel as a diffusion barrier, to suppress brittle Fe-Nb intermetallic formation, which is well reported during the established vacuum brazing practice using pure copper filler. The brazed specimens displayed no brittle intermetallic layers on any of its interfaces, but instead carried well-distributed intermetallic particles in the ductile matrix. The transition joints displayed room temperature tensile and shear strengths of 122-143 MPa and 80-113 MPa, respectively. The joints not only exhibited required hermeticity (helium leak rate <1.1 × 10-10 mbar l/s) for service in ultra-high vacuum but also withstood twelve hour degassing heat treatment at 873 K (suppresses Q-disease in niobium cavities), without any noticeable degradation in the microstructure and the hermeticity. The joints retained their leak tightness even after undergoing ten thermal cycles between the room temperature and the liquid nitrogen temperature, thereby establishing their ability to withstand service-induced low cycle fatigue conditions. The study proposes a new lower temperature brazing route to form niobium-316L stainless steel transition joints, with improved microstructural characteristics and acceptable hermeticity and mechanical properties.

  2. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    NASA Astrophysics Data System (ADS)

    Lambrinou, Konstantina; Charalampopoulou, Evangelia; Van der Donck, Tom; Delville, Rémi; Schryvers, Dominique

    2017-07-01

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10-8 mass%) static liquid lead-bismuth eutectic (LBE) for 253-3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.

  3. Fatigue crack propagation behavior of stainless steel welds

    NASA Astrophysics Data System (ADS)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  4. Arc brazing of austenitic stainless steel to similar and dissimilar metals

    NASA Astrophysics Data System (ADS)

    Moschini, Jamie Ian

    There is a desire within both the stainless steel and automotive industries to introduce stainless steel into safety critical areas such as the crumple zone of modem cars as a replacement for low carbon mild steel. The two main reasons for this are stainless steel's corrosion resistance and its higher strength compared with mild steel. It has been anticipated that the easiest way to introduce stainless steel into the automotive industry would be to incorporate it into the existing design. The main obstacle to be overcome before this can take place is therefore how to join the stainless steel to the rest of the car body. In recent times arc brazil g has been suggested as a joining technique which will eliminate many of the problems associated with fusion welding of zinc coated mild steel to stainless steel.Similar and dissimilar parent material arc brazed joints were manufactured using three copper based filler materials and three shielding gases. The joints were tested in terms of tensile strength, impact toughness and fatigue properties. It was found that similar parent material stainless steel joints could be produced with a 0.2% proof stress in excess of the parent material and associated problems such as Liquid Metal Embrittlement were not experienced. Dissimilar parent material joints were manufactured with an ultimate tensile strength in excess of that of mild steel although during fatigue testing evidence of Liquid Metal Embrittlement was seen lowering the mean fatigue load.At the interface of the braze and stainless steel in the similar material butt joints manufactured using short circuit transfer, copper appeared to penetrate the grain boundaries of the stainless steel without embrittling the parent material. Further microscopic investigation of the interface showed that the penetration could be described by the model proposed by Mullins. However, when dissimilar metal butt joints were manufactured using spray arc transfer, penetration of copper into the

  5. Fibrinogen adsorption onto 316L stainless steel under polarized conditions.

    PubMed

    Gettens, Robert T T; Gilbert, Jeremy L

    2008-04-01

    Adsorption of the plasma protein fibrinogen onto electrically polarized 316L stainless steel was observed and quantified using both in situ and ex situ atomic force microscopy (AFM) techniques. Significant differences in fibrinogen adsorption were observed across voltages. Ex situ studies showed significantly lower area coverage (theta) and height of adsorbed Fb on cathodically polarized surfaces when compared to anodically polarized surfaces. Conformational differences in the protein may explain the distinctions in Fb surface area coverage (theta) and height between the anodic and cathodic cases. In situ studies showed significantly slower kinetics of Fb adsorption onto surfaces below -100 mV (vs. Ag/AgCl) compared to surfaces polarized above -100 mV. Electrochemical current density data showed large charge transfer processes (approximately 1 x 10(-5) to 1 x 10(-4) A/cm(2)) taking place on the 316L SS surfaces at voltages below -100 mV (vs. Ag/AgCl). These relatively large current densities point to flux of ionic species away from the surface as a major source of the reduction in adsorption kinetics rather than just hydrophilic or electrostatic effects. Copyright 2007 Wiley Periodicals, Inc.

  6. Irradiation creep-fatigue interaction of type 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Mueller, R.

    1996-10-01

    Type 316L stainless steel samples in both, 20% cold-worked (cw) and recrystallised (rc) conditions were exposed to strain controlled fatigue cycling in torsion at 400°C during an irradiation with 19 MeV deuterons. The effect of irradiation creep induced stress relaxation on the fatigue life was studied by imposing a hold time at the minimum strain value in the loading cycle. For the cw material at strain ranges of 1.13% and 1.3%, the absolute stress values, τ H, maintained during the hold time decreased with the number of cycles due to the irradiation creep induced stress relaxation. A mean stress was built up. The number of cycles to failure was considerably reduced in comparison to continuous cycling tests under thermal conditions. For the rc material at strain ranges of 1.03% and 1.4%, the values of τ H increased with the number of cycles, despite the hold time imposed, due to irradiation and/or cyclic hardening.

  7. X-ray attenuation properties of stainless steel (u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lily L; Berry, Phillip C

    2009-01-01

    Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainlessmore » steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.« less

  8. Improvement of mechanical properties on metastable stainless steels by reversion heat treatments

    NASA Astrophysics Data System (ADS)

    Mateo, A.; Zapata, A.; Fargas, G.

    2013-12-01

    AISI 301LN is a metastable austenitic stainless steel that offers an excellent combination of high strength and ductility. This stainless grade is currently used in applications where severe forming operations are required, such as automotive bodies. When these metastable steels are plastically deformed at room temperature, for example by cold rolling, austenite transforms to martensite and, as a result, yield strength increases but ductility is reduced. Grain refinement is the only method that allows improving strength and ductility simultaneously. Several researchers have demonstrated that fine grain AISI 301LN can be obtained by heat treatment after cold rolling. This heat treatment is called reversion because it provokes the reversion of strain induced martensite to austenite. In the present work, sheets of AISI 301LN previously subjected to 20% of cold rolling reduction were treated and a refined grain austenitic microstructure was obtained. Mechanical properties, including fatigue limit, were determined and compared with those corresponding to the steel both before and after the cold rolling.

  9. Mechanical and histological analysis of bone-pedicle screw interface in vivo: titanium versus stainless steel.

    PubMed

    Sun, C; Huang, G; Christensen, F B; Dalstra, M; Overgaard, S; Bünger, C

    1999-05-01

    To investigate the differences in bone interface between titanium and stainless steel pedicle screws in the lumbar spine. Eighteen adult mini-pigs that underwent total laminectomy, posterolateral spinal fusion (L4-L5) were randomly selected to receive stainless steel (9) or titanium pedicle screw devices (9). In both groups, the devices were CCD (Sofamore Danek) type with the same size and shape. The postoperative observation time was 3 months. Screws from L4 were harvested along their long axis of pedicle for histomorphometric study. Bone-screw interface and bone volume from thread were examined using linear intercept techniques. Mechanical testing (torsional test and pull-out test) was performed on the screws from L5. The titanium screw group had a significantly higher maximum torque (P < 0.05) and angle related stiffness (P < 0.05) measured by torsional test. In the pull-out tests, no differences were found between the two groups in relation to the maximum load, stiffness and energy to failure. Direct bone contact with the screw in percentage was 29.4% for stainless steel and 43.8% for titanium (P < 0.05). No differences in the bone purchase between the vertebral body part and pedicle part were found. Pedicle screws made of titanium have a better bone-screw interface binding than screws made of stainless steel. Torsional tests are more informative for bone-screw interface study. Pull-out tests seem less valuable when comparing bone purchase of screws made from different materials.

  10. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.

    PubMed

    Shahryari, Arash; Omanovic, Sasha; Szpunar, Jerzy A

    2009-06-15

    Passivation of stainless steel implants is a common procedure used to increase their biocompatibility. The results presented in this work demonstrate that the electrochemical cyclic potentiodynamic polarization (CPP) of a biomedical grade 316LVM stainless steel surface is a very efficient passivation method that can be used to significantly improve the material's general corrosion resistance and thus its biocompatibility. The influence of a range of experimental parameters on the passivation/corrosion protection efficiency is discussed. The passive film formed on a 316LVM surface by using the CPP method offers a significantly higher general corrosion resistance than the naturally grown passive film. The corresponding relative corrosion protection efficiency measured in saline during a 2-month period was 97% +/- 1%, which demonstrates a very high stability of the CPP-formed passive film. Its high corrosion protection efficiency was confirmed also at temperatures and chloride concentrations well above normal physiological levels. It was also shown that the CPP is a significantly more effective passivation method than some other surface-treatment methods commonly used to passivate biomedical grade stainless steels. In addition, the CPP-passivated 316LVM surface showed an enhanced biocompatibility in terms of preosteoblast (MC3T3) cells attachment. An increased thickness of the CPP-formed passive film and its enrichment with Cr(VI) and oxygen was determined to be the origin of the material's increased general corrosion resistance, whereas the increased surface roughness and surface (Volta) potential were suggested to be the origin of the enhanced preosteoblast cells attachment. Copyright 2008 Wiley Periodicals, Inc.

  11. MECHANICAL PROPERTIES OF TYPE 410 EXPERIMENTAL MOTOR TUBES TEMPERED AT 1150 F. Includes WAPD CTA(MEE)-510, Attachment (A): 1150 F TEMPERED TYPE 410 STAINLESS STEEL CORROSION PROGRAM. Attachment (B): 1150 F TEMPERED TYPE 410 STAINLESS STEEL METALLURGICAL EVALUATION PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faduska, A.; Rau, E.; Alger, J.V.

    Data are given on the corrosion properties of type 410 stainless steel tempered at 1150 d F. Control mechanismn-drive motor tubes and some outer housings are constructed of 650 d F tempered type 410 stainless steel. Since the stress corrosion resistance of type 410 in the 1150 d F tempered condition is superior, the utilization of the 1150 d F tempered material is more desirable for this application. The properties of 410 stainless steel hardened and tempered at 1150 d F are given. (W.L.H.)

  12. 2016 Accomplishments. Tritium aging studies on stainless steel. Forging process effects on the fracture toughness properties of tritium-precharged stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Michael J.

    Forged austenitic stainless steels are used as the materials of construction for pressure vessels designed to contain tritium at high pressure. These steels are highly resistant to tritium-assisted fracture but their resistance can depend on the details of the forging microstructure. During FY16, the effects of forging strain rate and deformation temperature on the fracture toughness properties of tritium-exposed-and-aged Type 304L stainless steel were studied. Forgings were produced from a single heat of steel using four types of production forging equipment – hydraulic press, mechanical press, screw press, and high-energy-rate forging (HERF). Each machine imparted a different nominal strain ratemore » during the deformation. The objective of the study was to characterize the J-Integral fracture toughness properties as a function of the industrial strain rate and temperature. The second objective was to measure the effects of tritium and decay helium on toughness. Tritium and decay helium effects were measured by thermally precharging the as-forged specimens with tritium gas at 34.5 MPa and 350°C and aging for up to five years at -80°C to build-in decay helium prior to testing. The results of this study show that the fracture toughness properties of the as-forged steels vary with forging strain rate and forging temperature. The effect is largely due to yield strength as the higher-strength forgings had the lower toughness values. For non-charged specimens, fracture toughness properties were improved by forging at 871°C versus 816°C and Screw-Press forgings tended to have lower fracture toughness values than the other forgings. Tritium exposures reduced the fracture toughness values remarkably to fracture toughness values averaging 10-20% of as-forged values. However, forging strain rate and temperature had little or no effect on the fracture toughness after tritium precharging and aging. The result was confirmed by fractography which indicated that

  13. The effects of parametric changes in electropolishing process on surface properties of 316L stainless steel

    NASA Astrophysics Data System (ADS)

    ur Rahman, Zia; Deen, K. M.; Cano, Lawrence; Haider, Waseem

    2017-07-01

    Corrosion resistance and biocompatibility of 316L stainless steel implants depend on the surface features and the nature of the passive film. The influence of electropolishing on the surface topography, surface free energy and surface chemistry was determined by atomic force microscopy, contact angle meter and X-ray photoelectron spectroscopy, respectively. The electropolishing of 316L stainless steel was conducted at the oxygen evolution potential (EPO) and below the oxygen evolution potential (EPBO). Compared to mechanically polished (MP) and EPO, the EPBO sample depicted lower surface roughness (Ra = 6.07 nm) and smaller surface free energy (44.21 mJ/m2). The relatively lower corrosion rate (0.484 mpy) and smaller passive current density (0.619 μA/cm2) as determined from cyclic polarization scans was found to be related with the presence of OH, Cr(III), Fe(0), Fe(II) and Fe(III) species at the surface. These species assured the existence of relatively uniform passive oxide film over EPBO surface. Moreover, the relatively large charge transfer (Rct) and passive film resistance (Rf) registered by EPBO sample from impedance spectroscopy analysis confirmed its better electrochemical performance. The in vitro response of these polished samples toward MC3T3 pre-osteoblast cell proliferation was determined to be directly related with their surface and electrochemical properties.

  14. Investigation of Boron addition and compaction pressure on the compactibility, densification and microhardness of 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ali, S.; Rani, A. M. A.; Altaf, K.; Baig, Z.

    2018-04-01

    Powder Metallurgy (P/M) is one of the continually evolving technologies used for producing metal materials of various sizes and shapes. However, some P/M materials have limited use in engineering for their performance deficiency including fully dense components. AISI 316L Stainless Steel (SS) is one of the promising materials used in P/M that combines outstanding corrosion resistance, strength and ductility for numerous applications. It is important to analyze the material composition along with the processing conditions that lead to a superior behaviour of the parts manufactured with P/M technique. This research investigates the effect of Boron addition on the compactibility, densification, sintering characteristics and microhardness of 316L SS parts produced with P/M. In this study, 0.25% Boron was added to the 316L Stainless Steel matrix to study the increase in densification of the 316L SS samples. The samples were made at different compaction pressures ranging from 100 MPa to 600 MPa and sintered in Nitrogen atmosphere at a temperature of 1200°C. The effect of compaction pressure and sintering temperature and atmosphere on the density and microhardness was evaluated. The microstructure of the samples was examined by optical microscope and microhardness was found using Vickers hardness machine. Results of the study showed that sintered samples with Boron addition exhibited high densification with increase in microhardness as compared to pure 316L SS sintered samples.

  15. The effects of surface pretreatment and nitrogen tetroxide purification on the corrosion rate of Type 304L stainless steel

    NASA Technical Reports Server (NTRS)

    Blue, G. D.; Moran, C. M.

    1985-01-01

    Corrosion rates of 304L stainless steel coupons in MON-1 oxidizer have been measured as a function of cleaning procedures employed, surface layer positions, propellant impurity levels, and short-term exposure durations (14 to 90 days). Of special interest was propellant contamination by buildup of soluble iron, which may cause flow decay. Surface treatments employed were combinations of cleaning, pickling, and passivation procedures. Propellants used were MIL-SPEC MON-1 and several types of purified NTO (i.e., low water, low chloride) which may, at a later time, be specified as spacecraft grade. Pretest coupon surface analysis by X-ray photoelectron spectroscopy (XPS-ESCA) has revealed important differences, for the different cleaning procedures, in the make-up of the surface layer, both in composition and state of chemical combination of the elements involved. Comparisons will be made of XPS/ESCA data, for different cleaning procedures, for specimens before and after propellant exposure.

  16. 78 FR 21417 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in the subject... steel sinks from China, provided for in subheading 7324.10.00 of the Harmonized Tariff Schedule of the... notification of a preliminary determinations by Commerce that imports of drawn stainless steel sinks from China...

  17. Summary of available data for estimating chloride-induced SCC crack growth rates for 304/316 stainless steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David

    The majority of existing dry storage systems used for spent nuclear fuel (SNF) consist of a welded 304 stainless steel container placed within a passively-ventilated concrete or steel overpack. More recently fielded systems are constructed with dual certified 304/304L and in some cases, 316 or 316L. In service, atmospheric salts, a portion of which will be chloride bearing, will be deposited on the surface of these containers. Initially, the stainless steel canister surface temperatures will be high (exceeding the boiling point of water in many cases) due to decay heat from the SNF. As the SNF cools over time, themore » container surface will also cool, and deposited salts will deliquesce to form potentially corrosive chloride-rich brines. Because austenitic stainless steels are prone to chloride-induced stress corrosion cracking (CISCC), the concern has been raised that SCC may significantly impact long-term canister performance. While the susceptibility of austenitic stainless steels to CISCC in the general sense is well known, the behavior of SCC cracks (i.e., initiation and propagation behavior) under the aforementioned atmospheric conditions is poorly understood.« less

  18. Characterization of the austenitic stability of metastable austenitic stainless steel with regard to its formability

    NASA Astrophysics Data System (ADS)

    Schneider, Matthias; Liewald, Mathias

    2018-05-01

    During the last decade, the stainless steel market showed a growing volume of 3-5% p.a.. The austenitic grades are losing market shares to ferritic or 200-series grades due to the high nickel price, but still playing the most important role within the stainless steel market. Austenitic stainless steel is characterized by the strain-induced martensite formation, causing the TRIP-effect (Transformation Induced Plasticity) which is responsible for good formability and high strength. The TRIP-effect itself is highly dependent on the forming temperature, the strain as well as the chemical composition which has a direct influence on the stability of the austenite. Today the austenitic stability is usually characterized by the so called Md30-temperature, which was introduced by Angel and enhanced by several researches, particularly Nohara. It is an empirical formula based on the chemical composition and the grain size of a given material, calculating the temperature which is necessary to gain a 50 % martensite formation after 30 % of elongation in a tensile test. A higher Md30-temperature indicates a lower stability and therefore a higher tendency towards martensite formation. The main disadvantage of Md30 -temperature is the fact that it is not based on forming parameters and only describes a single point instead of the whole forming process. In this paper, an experimental set up for measuring martensite and temperature evolution in a non-isothermal tensile test is presented, which is based on works of Hänsel and Schmid. With this set up, the martensite formation rate for different steels of the steel grade EN 1.4301 and EN 1.4310 is measured. Based on these results a new austenitic stability criterion is defined. This criterion and the determined Md30-temperatures are related to the stretch formability of the materials. The results show that the new IFU criterion is with regard to the formability a much more useful characteristic number for metastable austenitic steels

  19. Comparison of titanium and Robinson stainless steel stapes piston prostheses.

    PubMed

    Lippy, William H; Burkey, John M; Schuring, Arnold G; Berenholz, Leonard P

    2005-09-01

    Although stainless steel stapes prostheses have generally been considered magnetic resonance imaging safe, there is concern that this may change with the development of more powerful imaging systems. The objective of the study was to determine whether a titanium piston stapes prosthesis would be audiometrically and surgically equivalent to a Robinson stainless steel piston for stapedectomy. Retrospective chart review. Private otology practice. In all, 50 patients underwent stapedectomy with a Gyrus titanium piston prosthesis. These patients were matched on the basis of age and preoperative bone-conduction scores with patients who underwent stapedectomy with a Robinson stainless steel piston prosthesis. Audiometric results are analyzed, and surgical complications noted. There was no significant difference between groups in hearing improvement or postoperative air-bone gap. The mean four-frequency hearing improvement was 27.7 dB for the stainless steel group and 27.8 dB for the titanium group. The mean postoperative air-bone gap was 2.65 dB for the stainless steel group and 2.60 for the titanium group. Neither group had a surgical complication. The titanium stapes prosthesis is a good alternative to a stainless steel prosthesis.

  20. Adsorptive behavior and solid-phase microextraction of bare stainless steel sample loop in high performance liquid chromatography.

    PubMed

    Zhang, Wenpeng; Zhang, Zixin; Meng, Jiawei; Zhou, Wei; Chen, Zilin

    2014-10-24

    In this work, we interestingly happened to observe the adsorption of stainless steel sample loop of HPLC. The adsorptive behaviors of the stainless steel loop toward different kinds of compounds were studied, including polycyclic aromatic hydrocarbons (PAHs), halogeno benzenes, aniline derivatives, benzoic acid derivatives, phenols, benzoic acid ethyl ester, benzaldehyde, 1-phenyl-ethanone and phenethyl alcohol. The adsorptive mechanism was probably related to hydrophobic interaction, electron-rich element-metal interaction and hydrogen bond. Universal adsorption of stainless steels was also testified. Inspired by its strong adsorptive capability, bare stainless steel loop was developed as a modification-free in-tube device for solid-phase microextraction (SPME), which served as both the substrate and sorbent and possessed ultra-high strength and stability. Great extraction efficiency toward PAHs was obtained by stainless steel loop without any modification, with enrichment factors of 651-834. By connecting the stainless steel loop onto a six-port valve, an online SPME-HPLC system was set up and an SPME-HPLC method has been validated for determination of PAHs. The method has exceptionally low limits of detection of 0.2-2pg/mL, which is significantly lower than that of reported methods with different kinds of sorbents. Wide linear range (0.5-500 and 2-1000pg/mL), good linearity (R(2)≥0.9987) and good reproducibility (RSD≤2.9%) were also obtained. The proposed method has been applied to determine PAHs in environmental samples. Good recoveries were obtained, ranging from 88.5% to 93.8%. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces

    NASA Technical Reports Server (NTRS)

    Pyle, B. H.; McFeters, G. A.

    1990-01-01

    Pseudomonads were adapted to grow in phosphate-buffered water and on stainless steel surfaces to study the iodine sensitivity of attached and planktonic cells. Cultures adapted to low nutrient growth were incubated at room temperature in a circulating reactor system with stainless steel coupons to allow biofilm formation on the metal surfaces. In some experiments, the reactor was partially emptied and refilled with buffer at each sampling time to simulate a "fill-and-draw" water system. Biofilms of attached bacteria, resuspended biofilm bacteria, and reactor suspension, were exposed to 1 mg l-1 iodine for 2 min. Attached bacterial populations which established on coupons within 3 to 5 days displayed a significant increase in resistance to iodine. Increased resistance was also observed for resuspended cells from the biofilm and planktonic bacteria in the system suspension. Generally, intact biofilms and resuspended biofilm cells were most resistant, followed by planktonic bacteria and phosphate buffer cultures. Thus, biofilm formation on stainless steel surfaces within water systems can result in significantly increased disinfection resistance of commonly-occurring water-borne bacteria that may enhance their ability to colonise water treatment and distribution systems.

  2. Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Prabha, B.; Sundaramoorthy, P.; Suresh, S.; Manimozhi, S.; Ravishankar, B.

    2009-12-01

    Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.

  3. Electrochemically induced annealing of stainless-steel surfaces.

    PubMed

    Burstein, G T; Hutchings, I M; Sasaki, K

    2000-10-19

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  4. Quantitative Evaluation of Aged AISI 316L Stainless Steel Sensitization to Intergranular Corrosion: Comparison Between Microstructural Electrochemical and Analytical Methods

    NASA Astrophysics Data System (ADS)

    Sidhom, H.; Amadou, T.; Sahlaoui, H.; Braham, C.

    2007-06-01

    The evaluation of the degree of sensitization (DOS) to intergranular corrosion (IGC) of a commercial AISI 316L austenitic stainless steel aged at temperatures ranging from 550 °C to 800 °C during 100 to 80,000 hours was carried out using three different assessment methods. (1) The microstructural method coupled with the Strauss standard test (ASTM A262). This method establishes the kinetics of the precipitation phenomenon under different aging conditions, by transmission electronic microscope (TEM) examination of thin foils and electron diffraction. The subsequent chromium-depleted zones are characterized by X-ray microanalysis using scanning transmission electronic microscope (STEM). The superimposition of microstructural time-temperature-precipitation (TTP) and ASTM A262 time-temperature-sensitization (TTS) diagrams provides the relationship between aged microstructure and IGC. Moreover, by considering the chromium-depleted zone characteristics, sensitization and desensitization criteria could be established. (2) The electrochemical method involving the double loop-electrochemical potentiokinetic reactivation (DL-EPR) test. The operating conditions of this test were initially optimized using the experimental design method on the bases of the reliability, the selectivity, and the reproducibility of test responses for both annealed and sensitized steels. The TTS diagram of the AISI 316L stainless steel was established using this method. This diagram offers a quantitative assessment of the DOS and a possibility to appreciate the time-temperature equivalence of the IGC sensitization and desensitization. (3) The analytical method based on the chromium diffusion models. Using the IGC sensitization and desensitization criteria established by the microstructural method, numerical solving of the chromium diffusion equations leads to a calculated AISI 316L TTS diagram. Comparison of these three methods gives a clear advantage to the nondestructive DL-EPR test when it is

  5. Peculiar Features of Thermal Aging and Degradation of Rapidly Quenched Stainless Steels under High-Temperature Exposures

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.

    2017-12-01

    This article presents the results of comparative studies of mechanical properties and microstructure of nuclear fuel tubes and semifinished stainless steel items fabricated by consolidation of rapidly quenched powders and by conventional technology after high-temperature exposures at 600 and 700°C. Tensile tests of nuclear fuel tube ring specimens of stainless austenitic steel of grade AISI 316 and ferritic-martensitic steel are performed at room temperature. The microstructure and distribution of carbon and boron are analyzed by metallography and autoradiography in nuclear fuel tubes and semifinished items. Rapidly quenched powders of the considered steels are obtained by the plasma rotating electrode process. Positive influence of consolidation of rapidly quenched powders on mechanical properties after high-temperature aging is confirmed. The correlation between homogeneous distribution of carbon and boron and mechanical properties of the considered steel is determined. The effects of thermal aging and degradation of the considered steels are determined at 600°C and 700°C, respectively.

  6. Microstructure and mechanical properties of nickel coated multi walled carbon nanotube reinforced stainless steel 316L matrix composites by laser sintering process

    NASA Astrophysics Data System (ADS)

    Mahanthesha, P.; Mohankumar, G. C.

    2018-04-01

    Electroless Ni coated Multi-walled Carbon nanotubes reinforced with Stainless Steel 316L matrix composite was developed by Direct Metal Laser Sintering process (DMLS). Homogeneous mixture of Stainless Steel 316L powder and carbon nanotubes in different vol. % was obtained by using double cone blender machine. Characterization of electroless Ni coated carbon nanotubes was done by using X-ray diffraction, FESEM and EDS. Test samples were fabricated at different laser scan speeds. Effect of process parameters and CNT vol. % content on solidification microstructure and mechanical properties of test samples was investigated by using Optical microscopy, FESEM, and Hounsfield tensometer. Experimental results reveal DMLS process parameters affect the density and microstructure of sintered parts. Dense parts with minimum porosity when processed at low laser scan speeds and low CNT vol. %. Tensile fractured surface of test specimens evidences the survival of carbon nanotubes under high temperature processing condition.

  7. Long-term stability of self-assembled monolayers on 316L stainless steel.

    PubMed

    Kaufmann, C R; Mani, G; Marton, D; Johnson, D M; Agrawal, C M

    2010-04-01

    316L stainless steel (316L SS) has been extensively used for making orthopedic, dental and cardiovascular implants. The use of phosphonic acid self-assembled monolayers (SAMs) on 316L SS has been previously explored for potential biomedical applications. In this study, we have investigated the long-term stability of methyl (-CH(3)) and carboxylic acid (-COOH)-terminated phosphonic acid SAMs on 316L under physiological conditions. The stability of SAMs on mechanically polished and electropolished 316L SS was also investigated as a part of this study. Well-ordered and uniform -CH(3)- and -COOH-terminated SAMs were coated on mechanically polished and electropolished 316L SS surfaces. The long-term stability of SAMs on 316L SS was investigated for up to 28 days in Tris-buffered saline (TBS) at 37 degrees C using x-ray photoelectron spectroscopy, atomic force microscopy and contact angle goniometry. A significant amount of phosphonic acid molecules was desorbed from the 316L SS surfaces within 1 to 7 days of TBS immersion followed by a slow desorption of molecules over the remaining days. The -COOH-terminated SAM was found to be more stable than the -CH(3)-terminated SAM on both mechanically and electropolished surfaces. No significant differences in the desorption behavior of SAMs were observed between mechanically and electropolished 316L SS surfaces.

  8. Decomposition of energetic chemicals contaminated with iron or stainless steel.

    PubMed

    Chervin, Sima; Bodman, Glenn T; Barnhart, Richard W

    2006-03-17

    Contamination of chemicals or reaction mixtures with iron or stainless steel is likely to take place during chemical processing. If energetic and thermally unstable chemicals are involved in a manufacturing process, contamination with iron or stainless steel can impact the decomposition characteristics of these chemicals and, subsequently, the safety of the processes, and should be investigated. The goal of this project was to undertake a systematic approach to study the impact of iron or stainless steel contamination on the decomposition characteristics of different chemical classes. Differential scanning calorimetry (DSC) was used to study the decomposition reaction by testing each chemical pure, and in mixtures with iron and stainless steel. The following classes of energetic chemicals were investigated: nitrobenzenes, tetrazoles, hydrazines, hydroxylamines and oximes, sulfonic acid derivatives and monomers. The following non-energetic groups were investigated for contributing effects: halogens, hydroxyls, amines, amides, nitriles, sulfonic acid esters, carbonyl halides and salts of hydrochloric acid. Based on the results obtained, conclusions were drawn regarding the sensitivity of the decomposition reaction to contamination with iron and stainless steel for the chemical classes listed above. It was demonstrated that the most sensitive classes are hydrazines and hydroxylamines/oximes. Contamination of these chemicals with iron or stainless steel not only destabilizes them, leading to decomposition at significantly lower temperatures, but also sometimes causes increased severity of the decomposition. The sensitivity of nitrobenzenes to contamination with iron or stainless steel depended upon the presence of other contributing groups: the presence of such groups as acid chlorides or chlorine/fluorine significantly increased the effect of contamination on decomposition characteristics of nitrobenzenes. The decomposition of sulfonic acid derivatives and tetrazoles

  9. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.

    PubMed

    Eric Jones, John; Chen, Meng; Yu, Qingsong

    2014-10-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20-25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH₃/O₂ plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O- and N-contents on the surfaces were substantially increased after NH₃/O₂ plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH₃/O₂ plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. © 2014 Wiley Periodicals, Inc.

  10. Trial use of a stainless steel-clad steel bar in a new concrete bridge deck in Virginia.

    DOT National Transportation Integrated Search

    2003-01-01

    As part of the Virginia Transportation Research Council's effort to identify cost-effective, corrosion-resistant reinforcing bars that can be used in concrete bridges exposed to heavy salting, a 316L stainless steel-clad bar was tested in a new bridg...

  11. Enhanced Mechanical Properties of 316L Stainless Steel Prepared by Aluminothermic Reaction Subjected to Multiple Warm Rolling

    NASA Astrophysics Data System (ADS)

    Li, Z. N.; Wei, F. A.; La, P. Q.; Ma, F. L.

    2018-05-01

    Large dimensional bulk 316L stainless steels were prepared by aluminothermic reaction method and rolled at 973 K (700 °C) with different deformation, the microstructures evolution and mechanical properties were characterized in detail. The results showed that the microstructure of casting steel consists of nanocrystalline/submicrocrystalline/microcrystalline austenite and submicrocrystalline ferrite. After rolling to thickness reduction of 30, 50 and 70%, the submicrocrystalline austenite grains were crushed and dispersed more uniformly in the matrix of the steel, the grain size of submicrocrystalline austenite decreased from 246 to 136 nm. The mechanical properties of the rolled steels were significantly enhanced, with the thickness reduction increased from 30 to 70%, the tensile strength increased from 632 to 824 MPa, the yield strength increased from 425 to 615 MPa, and the elongation increased from 11 to 24%. After rolling to thickness reduction of 70%, the optimized combination of high strength and high ductility was obtained.

  12. The nitrogen effect on Type 304L austenitic stainless steel weld metal welded with a GTA (Gas Tungsten Arc) system under ambient and hyperbaric conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okagawa, R.K.

    1984-01-01

    Small amounts of nitrogen were injected into Type 304L austenitic stainless steel weld metal. This was accomplished by using an Ar-N/sub 2/ shield gas mixture in combination with a controlled argon atmosphere on autogeneous Gas Tungsten Arc (GTA) welds. Weld metal nitrogen as a function of nitrogen shield gas content and applied pressure was examined. Nitrogen shield gas contents above 4% were found to have a major effect on the weld metal microstructure. The base metal nitrogen did not influence the nitrogen solubility reaction or solidification behavior during welding. For Type 304L austenitic stainless steel, a nitrogen coefficient of 13.4more » was determined for the nickel equivalent expression. 63 refs., 19 figs., 4 tabs.« less

  13. A preliminary ferritic-martensitic stainless steel constitution diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmforth, M.C.; Lippold, J.C.

    1998-01-01

    This paper describes preliminary research to develop a constitution diagram that will more accurately predict the microstructure of ferritic and martensitic stainless steel weld deposits. A button melting technique was used to produce a wide range of compositions using mixtures of conventional ferritic and martensitic stainless steels, including types 403, 409, 410, 430, 439 and 444. These samples were prepared metallographically, and the vol-% ferrite and martensite was determined quantitatively. In addition, the hardness and ferrite number (FN) were measured. Using this data, a preliminary constitution diagram is proposed that provides a more accurate method for predicting the microstructures ofmore » arc welds in ferritic and martensitic stainless steels.« less

  14. Microstructural studies of hydrogen damage in metastable stainless steels. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.

    1994-12-31

    The primary objective of this dissertation is to determine the role of microstructure in hydrogen-induced damage in austenitic stainless steels. Specific attention was focused on the interactions between hydrogen and the austenitic grain, twin boundaries and the matrix, and the associated phase transformations. An experimental program of research was conducted to determine the phase transformation and cracking path in hydrogen charged stainless steels. Normal-purity AISI 304 (Fe18CrYNi) and high-purity 305 (Fe18Cr12Ni) solution-annealet stainless steels were examined. The steels were cathodically charged with hydrogen at 1, 10 and 100 mA/sq cm at room temperature for 5 min. to 32 hours, inmore » an 1N H2SO4 solution with 0.25 g/l of NaAsO2 added as a hydrogen recombination poison. Resultant changes in microstructure and hydrogen damage due to charging and subsequent room temperature aging were studied by x-ray diffraction, optical microscope (in the Nomarski mode), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A new phase in 305 stainless steel was observed, and was identified as an epsilon(*) (hcp) hydride due to hydrogen charging. Two new phases in 304 stainless steel were found as gamma(*) (fcc) and epsilon(*) hydrides from hydrogen charging. The hydride formation mechanisms during charging were: (1) gamma yields gamma(*) hydride and (2) gamma yields epsilon yields epsilon(*) hydride. These hydrides are unstable and decomposed during room temperature aging in air. The decomposition mechanisms were: (1) epsilon(*) hydride (hcp) yields expanded epsilon (hcp) phase yields a (bcc) phase; (2) gamma(*) hydride yields gamma phase. The grain and twin boundary cracks were the results of charging and identified as the preferred cracking sites. Transgranular crack initiation and growth accompanied the decomposition of hydrides and were controlled by hydrogen outgassing during room temperature aging.« less

  15. Transuranic contamination of stainless steel in nitric acid

    NASA Astrophysics Data System (ADS)

    Kerry, Timothy; Banford, Anthony W.; Thompson, Olivia R.; Carey, Thomas; Schild, Dieter; Geist, Andreas; Sharrad, Clint A.

    2017-09-01

    Stainless steels coupons have been exposed to transuranic species in conditions representative of those found in a spent nuclear fuel reprocessing plant. Stainless steel was prepared to different surface finishes and exposed to nitric acid of varying concentrations containing 237Np, 239Pu or 243Am for one month at 50 °C. Contamination by these transuranics has been observed on all surfaces exposed to the solution through the use of autoradiography. This technique showed that samples held in 4 M HNO3 bind 2-3 times as much radionuclide as those held in 10.5 M HNO3. It was also found that the polished steel surfaces generally took up more transuranic contamination than the etched and "as received" steel finishes. The extent of corrosion on the steel surfaces was found, by scanning electron microscopy, to be greater in solutions containing Np and Pu in comparison to that observed from contact with Am containing solutions, indicating that redox activity of transuranics can influence the mechanism of stainless steel corrosion.

  16. Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating

    NASA Astrophysics Data System (ADS)

    Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong

    2017-03-01

    The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating < the stainless steel with Al-Si coating < the stainless steel without any coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.

  17. Stress Relaxation in Tensile Deformation of 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Li, Jiaojiao; Ding, Wei; Zhao, Shuangjun; Chen, Jun

    2017-02-01

    Improved ductility by stress relaxation has been reported in different kinds of steels. The influence of stress relaxation and its parameters on the ductility of 304 stainless steel has not been established so far. Stress relaxation behavior during tensile tests at different strain rates is studied in 304 stainless steel. It is observed that stress relaxation can obviously increase the elongation of 304 stainless steel in all cases. The elongation improvement of interrupted tension reaches to 14.9% compared with monotonic tension at 0.05 s-1. Contradicting with the published results, stress drop during stress relaxation increases with strain at all strain rates. It is related with dislocation motion velocity variation and martensitic transformation.

  18. Hardness analysis of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  19. Disposable stainless steel vs plastic laryngoscope blades among paramedics.

    PubMed

    Dos Santos, Frank D; Schnakofsky, Roberto; Cascio, Anthony; Liu, Junfeng; Merlin, Mark A

    2011-07-01

    Several studies have been published in the literature about intubation methods, but little is available on intubation equipment used in this setting. This is the first prehospital comparison of disposable plastic vs disposable stainless steel laryngoscope blades used by paramedics. The objective of this study was to compare prehospital intubation success rates on first attempt and overall number of attempts to obtain intubations using disposable plastic laryngoscopes blades vs disposable stainless steel laryngoscope blades. A retrospective prehospital cohort study was conducted during two 3-year periods. Two-way contingency table and χ(2) test were conducted to determine if there was a difference between the 2 types of blades. A proportional odds model with calculated 95% confidence interval (CI) and odd ratios were then calculated. A total of 2472 paramedic intubations were recorded over the 6-year period. The stainless steel single-use blades had a first attempt success rate of 88.9% vs 78.5% with plastic blades (P = .01; odds ratio, 1.94; 95% CI, 1.17-3.41). The stainless steel single-use laryngoscope blade had a lower number of attempts to successful intubation than the plastic blade (88.8% vs 74.3%, respectively) (P < .01; odds ratio, 1.64; 95% CI, 1.34-2.00). In the prehospital setting, stainless steel disposable blades were superior to plastic disposable blades in first attempt and overall number of attempts to intubation. Until further research is done, we recommend use of stainless steel blades for intubations in the prehospital setting by paramedics. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Preliminary Comparison of Properties between Ni-electroplated Stainless Steel Parts Fabricated with Laser Additive Manufacturing and Conventional Machining

    NASA Astrophysics Data System (ADS)

    Mäkinen, Mika; Jauhiainen, Eeva; Matilainen, Ville-Pekka; Riihimäki, Jaakko; Ritvanen, Jussi; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing (LAM) is a fabrication technology, which enables production of complex parts from metallic materials with mechanical properties comparable to those of conventionally machined parts. These LAM parts are manufactured via melting metallic powder layer by layer with laser beam. Aim of this study is to define preliminarily the possibilities of using electroplating to supreme surface properties. Electrodeposited nickel and chromium as well as electroless (autocatalytic) deposited nickel was used to enhance laser additive manufactured and machined parts properties, like corrosion resistance, friction and wearing. All test pieces in this study were manufactured with a modified research AM equipment, equal to commercial EOS M series. The laser system used for tests was IPG 200 W CW fiber laser. The material used in this study for additive manufacturing was commercial stainless steel powder grade named SS316L. This SS316L is not equal to AISI 316L grade, but commercial name of this kind of powder is widely known in additive manufacturing as SS316L. Material used for fabrication of comparison test pieces (i.e. conventionally manufactured) was AISI 316L stainless steel bar. Electroplating was done in matrix cell and electroless was done in plastic sink properties of plated parts were tested within acetic acid salt spray corrosion chamber (AASS, SFS-EN-ISO 9227 standard). Adhesion of coating, friction and wearing properties were tested with Pin-On-Rod machine. Results show that in these preliminary tests, LAM parts and machined parts have certain differences due to manufacturing route and surface conditions. These have an effect on electroplated and electroless parts features on adhesion, corrosion, wearing and friction. However, further and more detailed studies are needed to fully understand these phenomena.

  1. Bactericidal behavior of Cu-containing stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Huang, Xiaobo; Ma, Yong; Lin, Naiming; Fan, Ailan; Tang, Bin

    2012-10-01

    Stainless steels are one of the most common materials used in health care environments. However, the lack of antibacterial advantage has limited their use in practical application. In this paper, antibacterial stainless steel surfaces with different Cu contents have been prepared by plasma surface alloying technology (PSAT). The steel surface with Cu content 90 wt.% (Cu-SS) exhibits strong bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 3 h. Although the Cu-containing surface with Cu content 2.5 wt.% (CuNi-SS) can also kill all tested bacteria, this process needs 12 h. SEM observation of the bacterial morphology and an agarose gel electrophoresis were performed to study the antibacterial mechanism of Cu-containing stainless steel surfaces against E. coli. The results indicated that Cu ions are released when the Cu-containing surfaces are in contact with bacterial and disrupt the cell membranes, killing the bacteria. The toxicity of Cu-alloyed surfaces does not cause damage to the bacterial DNA. These results provide a scientific explanation for the antimicrobial applications of Cu-containing stainless steel. The surfaces with different antibacterial abilities could be used as hygienic surfaces in healthcare-associated settings according to the diverse requirement of bactericidal activities.

  2. Optimization of the A-TIG welding for stainless steels

    NASA Astrophysics Data System (ADS)

    Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.

    2018-03-01

    The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.

  3. Antibacterial effect of silver nanofilm modified stainless steel surface

    NASA Astrophysics Data System (ADS)

    Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.

    2015-03-01

    Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.

  4. Long-range effect in nitrogen ion-implanted AISI 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Budzynski, P.

    2015-01-01

    The effect of nitrogen ion implantation on AISI 316L stainless steel was investigated. The microstructure and composition of an N implanted layer were studied by RBS, GIXRD, SEM, and EDX measurements. Friction and wear tests were also performed. The discrepancy between the measured and calculated stopped ion maximum range does not exceed 0.03 μm. After nitrogen implantation with a fluence of 5 × 1017 ion/cm2, additional phases of expanded austenite were detected. At a 5-fold larger depth than the maximum ion range, improvement in the coefficient of friction and wear was detected. We have shown, for the first time, the long-range effect in tribological investigations. The long-range effect is caused by movement of not only defects along the depth of the sample, as assumed so far, but also nitrogen atoms.

  5. Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications.

    PubMed

    Shim, Kyudae; Abdellatif, Mohamed; Choi, Eunsoo; Kim, Dongkyun

    2017-04-01

    The safety and effectiveness of antimicrobial ZnO films must be established for general applications. In this study, the antimicrobial activity, skin irritation, elution behavior, and mechanical properties of nanostructured ZnO films on stainless steel were evaluated. ZnO nanoparticle (NP) and ZnO nanowall (NW) structures were prepared with different surface roughnesses, wettability, and concentrations using an RF magnetron sputtering system. The thicknesses of ZnO NP and ZnO NW were approximately 300 and 620 nm, respectively, and ZnO NW had two diffraction directions of [0002] and [01-10] based on high-resolution transmission electron microscopy. The ZnO NW structure demonstrated 99.9% antimicrobial inhibition against Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum, and no skin irritation was detected using experimental rabbits. Approximately 27.2 ± 3.0 μg L -1 Zn ions were eluted from the ZnO NW film at 100 °C for 24 h, which satisfies the WHO guidelines for drinking water quality. Furthermore, the Vickers hardness and fracture toughness of ZnO NW films on stainless steel were enhanced by 11 and 14% compared to those of the parent stainless steel. Based on these results, ZnO NW films on STS316L sheets are useful for household supplies, such as water pipes, faucets, and stainless steel containers.

  6. Mechanical Behavior and Fractography of 304 Stainless Steel with High Hydrogen Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Au, M.

    2003-02-05

    Hydrogen embrittlement of 304 stainless steel with different hydrogen concentrations has been investigated. An electrochemical technique was used to effectively charge the high level of hydrogen into 304 stainless steel in a short period of time. At 25 ppm of hydrogen, 304 stainless steel loses 10 percent of its original mechanical strength and 20 percent plasticity. Although the ductile feature dominates the fractography, the brittle crown area near the outer surface shows the intergranular rupture effected by hydrogen. At 60 ppm of hydrogen, 304 stainless steel loses 23 percent of its strength and 38 percent plasticity, where the brittle modemore » dominates the fracture of the materials. Experimental results show that hydrogen damage to the performance of 304 stainless steel is significant even at very low levels. The fractograph analysis indicates the high penetration ability of hydrogen in 304 stainless steel. This work also demonstrates the advantages of the electrochemical charging technique in the study of hydrogen embrittlement.« less

  7. Effect of fluoride mouthwash on tensile strength of stainless steel orthodontic archwires

    NASA Astrophysics Data System (ADS)

    Fatimah, D. I.; Anggani, H. S.; Ismah, N.

    2017-08-01

    Patients with orthodontic treatment are commonly recommended to use a fluoride mouthwash for maintaining their oral hygiene and preventing dental caries. However, fluoride may affect the characteristics of stainless steel orthodontic archwires used during treatment. The effect of fluoride mouthwash on the tensile strength of stainless steel orthodontic archwires is still unknown. The purpose of this study is to know the effect of fluoride mouthwash on the tensile strength of stainless steel orthodontic archwires. Examine the tensile strength of 0.016 inch stainless steel orthodontic archwires after immersion in 0.05%, 100 ml fluoride mouthwash for 30, 60, and 90 min. There is no statistically significant difference in the tensile strength of stainless steel orthodontic archwires after immersed in fluoride mouthwash. The p-values on immersion fluoride mouthwash for 30, 60, and 90 min consecutively are 0.790; 0.742; and 0.085 (p > 0.05). The use of fluoride mouthwash did not have an effect on the tensile strength of stainless Steel orthodontic archwires.

  8. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    PubMed Central

    Matsushita, Masafumi

    2011-01-01

    Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride. PMID:28824144

  9. Biocompatibility of 17-4 PH stainless steel foam for implant applications.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2011-01-01

    In this study, biocompatibility of 17-4 PH stainless steel foam for biomedical implant applications was investigated. 17-4 PH stainless steel foams having porosities in the range of 40-82% with an average pore size of around 600 μm were produced by space holder-sintering technique. Sintered foams were precipitation hardened for times of 1-6 h at temperatures between 450-570 °C. Compressive yield strength and Young's modulus of aged stainless steel foams were observed to vary between 80-130 MPa and 0.73-1.54 GPa, respectively. Pore morphology, pore size and the mechanical properties of the 17-4 PH stainless steel foams were close to cancellous bone. In vitro evaluations of cytotoxicity of the foams were investigated by XTT and MTT assays and showed sufficient biocompatibility. Surface roughness parameters of the stainless steel foams were also determined to characterize the foams.

  10. Scale-Dependent Manganese Leaching from Stainless Steel Impacts Terminal Galactosylation in Monoclonal Antibodies.

    PubMed

    Williamson, Jenna; Miller, Jennifer; McLaughlin, Joseph; Combs, Rodney; Chu, Chia

    2018-06-08

    N-linked glycosylation profiles are routinely characterized on mammalian-derived protein therapeutic products and achieving consistency in the product-associated glycan attributes is an important indicator that the manufacturing process is under control. More importantly, meeting target glycan profile is a common criterion for ensuring product efficacy. During laboratory process development and subsequent scale up for pilot demonstration for a monoclonal antibody program, discrepancies in the molecule's terminal galactosylation level at 2-L, 100-L, and 6000-L scales were observed. Results from extensive investigations revealed the root cause as manganese leaching from the stainless steel components and that this leaching is dependent on exposed surface area and cultivation time. Although this metal impurity is only present at nanomolar concentrations and difficult to detect, a spike-in study demonstrated that this low level was sufficient to impact the protein glycosylation profiles. Surprisingly, the 2-L glass bioreactor setup exhibited the highest amount of exposure to stainless steel and resulted in both a greater degree of variability and higher overall levels of terminal galactosylation. The use of disposable vessels to minimize stainless steel surface exposure to the cell culture resulted in comparable terminal galactosylation levels to those measured in pilot and commercial bioreactors. The discovery of this leachable effect on the cell culture production process was an essential step in implementing appropriate process control. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  11. Comparative shock response of additively manufactured versus conventionally wrought 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.; Palmer, T. A.

    2017-01-01

    Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens that were machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology permits direct fabrication of net- or near-net-shape metal parts. For the present investigation, velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response for one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.0 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. The possible contributions of various factors, such as composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and/or sample axis orientation relative to the additive manufacturing deposition trajectory, are considered to explain differences between the AM and baseline 304L dynamic material results.

  12. 76 FR 76437 - Certain Welded Stainless Steel Pipe From Korea and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Welded Stainless Steel Pipe From Korea and Taiwan Determination On the basis of the record \\1\\ developed... antidumping duty orders on certain welded stainless steel pipe from Korea and Taiwan would be likely to lead... 2011), entitled Certain Welded Stainless Steel Pipe from Korea and Taiwan, Investigation Nos. 731-TA...

  13. Withdrawal Strength and Bending Yield Strength of Stainless Steel Nails

    Treesearch

    Douglas R. Rammer; Samuel L. Zelinka

    2015-01-01

    It has been well established that stainless steel nails have superior corrosion performance compared to carbon steel or galvanized nails in treated wood; however, their mechanical fastening behavior is unknown. In this paper, the performance of stainless steel nails is examined with respect to two important properties used in wood connection design: withdrawal strength...

  14. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    PubMed Central

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2015-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O-and N-contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH3/O2 plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electro-chemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  15. Influence of hydrogen on the corrosion behavior of stainless steels in lithium

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.

    2008-02-01

    Corrosion behavior of several stainless steels in lithium and lithium with 0.05%H has been examined. Corrosion tests were performed under static conditions at 600 and 700 °C in the austenitic stainless steel of the type AISI 304 containers. Intensive formation of σ-phase of the composition Fe 50Cr 43Mo 3Ni 4 on the surface of austenitic stainless steels of the type AISI 316 at 700 °C for 1000 h was established as a result of isothermal mass transfer. Addition of 0.05%H in the form of LiH to lithium resulted in an increase in the quantity of the σ-phase. After corrosion tests of ferritic/martensitic steel in lithium at 700 °C for 1000 h the formation of the γ-phase was observed. In Li + 0.05%H besides the γ-phase was also formed the σ-phase. The features of decarburization of investigated stainless steels were examined using the direct method of activation autoradiography on carbon. Addition of 0.05%H in lithium significantly decreased the carbon content in the decarburization zone of austenitic stainless steel Fe-18Cr-15Ni-0.15C-0.23B without a noticeable change in the thickness of the decarburization zone. Decarburization of ferritic/martensitic stainless steel was less than of austenitic stainless steel using the same corrosion tests.

  16. Forming "dynamic" membranes on stainless steel

    NASA Technical Reports Server (NTRS)

    Brandon, C. A.; Gaddis, J. L.

    1979-01-01

    "Dynamic" zirconium polyacrylic membrane is formed directly on stainless steel substrate without excessive corrosion of steel. Membrane is potentially useful in removal of contaminated chemicals from solution through reversed osmosis. Application includes use in filtration and desalination equipment, and in textile industry for separation of dyes from aqueous solvents.

  17. Homogenous photocatalytic decontamination of prion infected stainless steel and titanium surfaces.

    PubMed

    Berberidou, Chrysanthi; Xanthopoulos, Konstantinos; Paspaltsis, Ioannis; Lourbopoulos, Athanasios; Polyzoidou, Eleni; Sklaviadis, Theodoros; Poulios, Ioannis

    2013-01-01

    Prions are notorious for their extraordinary resistance to traditional methods of decontamination, rendering their transmission a public health risk. Iatrogenic Creutzfeldt-Jakob disease (iCJD) via contaminated surgical instruments and medical devices has been verified both experimentally and clinically. Standard methods for prion inactivation by sodium hydroxide or sodium hypochlorite have failed, in some cases, to fully remove prion infectivity, while they are often impractical for routine applications. Prion accumulation in peripheral tissues and indications of human-to-human bloodborne prion transmission, highlight the need for novel, efficient, yet user-friendly methods of prion inactivation. Here we show both in vitro and in vivo that homogenous photocatalytic oxidation, mediated by the photo-Fenton reagent, has the potential to inactivate the pathological prion isoform adsorbed on metal substrates. Photocatalytic oxidation with 224 μg mL(-1) Fe (3+), 500 μg mL(-1) h(-1) H 2O 2, UV-A for 480 min lead to 100% survival in golden Syrian hamsters after intracranial implantation of stainless steel wires infected with the 263K prion strain. Interestingly, photocatalytic treatment of 263K infected titanium wires, under the same experimental conditions, prolonged the survival interval significantly, but failed to eliminate infectivity, a result that we correlate with the increased adsorption of PrP(Sc) on titanium, in comparison to stainless steel. Our findings strongly indicate that our, user--and environmentally--friendly protocol can be safely applied to the decontamination of prion infected stainless steel surfaces.

  18. Nickel: makes stainless steel strong

    USGS Publications Warehouse

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  19. Crevice Corrosion Behavior of 45 Molybdenum-Containing Stainless Steels in Seawater.

    DTIC Science & Technology

    1981-12-01

    Armco, Avesta Jernverks, Cabot, Carpenter Technology, Crucible, Eastern, Firth-Brown, Huntington, Jessup, Langley Alloys, and Uddeholm. 16...Department of Energy, Report ANL/OTEC-BCM-022. 7. Wallen, B., and M. Liljas, " Avesta 254 SMO - A New, High Molybdenum Stainless Steel," presented at NKM8...1977).; 11. Wallen, B., " Avesta 254 SMO - A Stainless Steel for Seawater Service," presented at the Advanced Stainless Steels for Turbine Condensors

  20. Paraequilibrium Carburization of Duplex and Ferritic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Michal, G. M.; Gu, X.; Jennings, W. D.; Kahn, H.; Ernst, F.; Heuer, A. H.

    2009-08-01

    AISI 301 and E-BRITE stainless steels were subjected to low-temperature (743 K) carburization experiments using a commercial technology developed for carburization of 316 austenitic stainless steels. The AISI 301 steel contained ~40 vol pct ferrite before carburization but had a fully austenitic hardened case, ~20- μm thick, and a surface carbon concentration of ~8 at. pct after treatment; this “colossal” paraequilibrium carbon supersaturation caused an increase in lattice parameter of ~3 pct. The E-BRITE also developed a hardened case, 12- to 18- μm thick, but underwent a more modest (~0.3 pct) increase in lattice parameter; the surface carbon concentration was ~10 at. pct. While the hardened case on the AISI 301 stainless steel appeared to be single-phase austenite, evidence for carbide formation was apparent in X-ray diffractometer (XRD) scans of the E-BRITE. Paraequilibrium phase diagrams were calculated for both AISI 301 and E-BRITE stainless steels using a CALPHAD compound energy-based interstitial solid solution model. In the low-temperature regime of interest, and based upon measured paraequilibrium carbon solubilities, more negative Cr-carbon interaction parameters for austenite than those in the current CALPHAD data base may be appropriate. A sensitivity analysis involving Cr-carbon interaction parameters for ferrite found a strong dependence of carbon solubility on relatively small changes in the magnitude of these parameters.

  1. Microstructure, Hardness, and Corrosion Behavior of TiC-Duplex Stainless Steel Composites Fabricated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Han, Ying; Zhang, Wei; Sun, Shicheng; Chen, Hua; Ran, Xu

    2017-08-01

    Duplex stainless steel composites with various weight fractions of TiC particles are prepared by spark plasma sintering. Ferritic 434L and austenitic 316L stainless steel powders are premixed in a 50:50 weight ratio and added with 3-9 wt.% TiC. The compacts are sintered in the solid state under vacuum conditions at 1223 K for 5 min. The effects of TiC content on the microstructure, hardness, and corrosion resistance of duplex stainless steel composites fabricated by powder metallurgy are evaluated. The results indicate that the TiC particulates as reinforcements can be distributed homogeneously in the steel matrix. Densification of sintered composites decreases with increasing TiC content. M23C6 carbide precipitates along grain boundary, and its neighboring Cr-Mo-depleted region is formed in the sintered microstructure, which can be eliminated subsequently with appropriate heat treatment. With the addition of TiC, the hardness of duplex stainless steel fabricated by powder metallurgy can be markedly enhanced despite increased porosity in the composites. However, TiC particles increase the corrosion rate and degrade the passivation capability, particularly for the composite with TiC content higher than 6 wt.%. Weakened metallurgical bonding in the composite with high TiC content provides the preferred sites for pitting nucleation and/or dissolution.

  2. An in vitro Evaluation of Friction Characteristics of Conventional Stainless Steel and Self-ligating Stainless Steel Brackets with different Dimensions of Archwires in Various Bracket-archwire Combination.

    PubMed

    Sridharan, K; Sandbhor, Shailesh; Rajasekaran, U B; Sam, George; Ramees, M Mohamed; Abraham, Esther A

    2017-08-01

    The purpose of this research is to compare the frictional attributes of stainless steel conventional brackets and self-ligating stainless steel brackets with different dimensions of archwires. The test was carried with two sets of maxillary brackets: (1) Conventional stainless steel (Victory Series), (2) stainless steel self-ligating (SmartClip) without first premolar brackets. Stainless steel, nickel-titanium (NiTi), and beta-Ti which are the types of orthodontic wire alloys were tested in this study. To monitor the frictional force, a universal testing machine (Instron 33R 4467) that comprises 10 kg tension load cell was assigned on a range of 1 kg and determined from 0 to 2 kg, which allows moving of an archwire along the brackets. One-way analysis of variance was used to test the difference between groups. To analyze the statistical difference between the two groups, Student's t-test was used. For Victory Series in static friction, p-value was 0.946 and for kinetic friction it was 0.944; at the same time for SmartClip, the p value for static and kinetic frictional resistance was 0.497 and 0.518 respectively. Hence, there was no statistically significant difference between the NiTi and stainless steel archwires. It is concluded that when compared with conventional brackets with stainless steel ligatures, self-ligating brackets can produce significantly less friction during sliding. Beta-Ti archwires expressed high amount of frictional resistance and the stainless steel archwires comprise low frictional resistance among all the archwire materials. In orthodontics, frictional resistance has always had a major role. Its ability to impair tooth movement leads to the need for higher forces to move the teeth and it extends the treatment time which results in loss of posterior anchorage. Friction in orthodontics is related with sliding mechanics when a wire is moving through one or a series of bracket slots.

  3. Development of strontium and magnesium substituted porous hydroxyapatite/poly(3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells.

    PubMed

    Gopi, D; Ramya, S; Rajeswari, D; Surendiran, M; Kavitha, L

    2014-02-01

    The present study deals with the successful development of bilayer coatings by electropolymerisation of poly(3,4-ethylenedioxythiophene) (PEDOT) on surgical grade stainless steel (316L SS) followed by the electrodeposition of strontium (Sr) and magnesium (Mg) substituted porous hydroxyapatite (Sr, Mg-HA). The bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM). Corrosion resistance of the obtained coatings was investigated in Ringer's solution by electrochemical techniques and the results were in good agreement with those obtained from chemical analysis, namely inductively coupled plasma atomic emission spectrometry (ICP-AES). Also, the mechanical and biological properties of the bilayer coatings were analyzed. From the obtained results it was evident that the PEDOT/Sr, Mg-HA bilayer exhibited greater adhesion strength than the Sr, Mg-HA coated 316L SS. In vitro cell adhesion test of the Sr, Mg-HA coating on PEDOT coated specimen is found to be more bioactive compared to that of the single substituted hydroxyapatite (Sr or Mg-HA) on the PEDOT coated 316L SS. Thus, the PEDOT/Sr, Mg-HA bilayer coated 316L SS can serve as a prospective implant material for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Corrosion-induced release of the main alloying constituents of manganese-chromium stainless steels in different media.

    PubMed

    Herting, Gunilla; Wallinder, Inger Odnevall; Leygraf, Christofer

    2008-09-01

    The main focus of this paper is the assessment of release rates of chromium, nickel, iron and manganese from manganese-chromium stainless steel grades of low nickel content. The manganese content varied between 9.7 and 1.5 wt% and the corresponding nickel content between 1 and 5 wt%. All grades were exposed to artificial rain and two were immersed in a synthetic body fluid of similar pH but of different composition and exposure conditions. Surface compositional studies were performed using X-ray photoelectron spectroscopy (XPS) in parallel to correlate the metal release process with changes in surface oxide properties. All grades, independent of media, revealed a time-dependent metal release process with a preferential low release of iron and manganese compared to nickel and chromium while the chromium content of the surface oxide increased slightly. Manganese was detected in the surface oxide of all grades, except the grade of the lowest manganese bulk content. No nickel was observed in the outermost surface oxide. Stainless steel grades of the lowest chromium content (approximately 16 wt%) and highest manganese content (approximately 7-9 wt%), released the highest quantity of alloy constituents in total, and vice versa. No correlation was observed between the release rate of manganese and the alloy composition. Released main alloy constituents were neither proportional to the bulk alloy composition nor to the surface oxide composition.

  5. Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design

    DTIC Science & Technology

    2013-08-23

    REPORT Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design 14. ABSTRACT 16. SECURITY...15. SUBJECT TERMS materials design, stainless steels , plastic deformation by twinning, computational materials science, experimental characterization...Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 30-Jun-2013 Stablization of Nanotwinned Microstructures in Stainless Steels Through

  6. Particle Impact Ignition Test Data on a Stainless Steel Hand Valve

    NASA Technical Reports Server (NTRS)

    Peralta, Stephen

    2010-01-01

    This slide presentation reviews the particle impact ignition test of a stainless steel hand valve. The impact of particles is a real fire hazard with stainless steel hand valves, however 100 mg of particulate can be tolerated. Since it is unlikely that 100 mg of stainless steel contaminant particles can be simultaneously released into this type of valve in the WSTF configuration, this is acceptable and within statistical confidence as demonstrated by testing.

  7. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.

    PubMed

    Le, M K; Zhu, X M

    2001-04-01

    Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and alloy. In this work, a single high nitrogen face-centered-cubic (f.c.c.) phase (gammaN) formed on the 1Cr18Ni9Ti and AISI 316L austenitic stainless steels with a high nitrogen concentration of about 32 at % was characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. The corrosion resistance of the gammaN-phase layer was studied by the electrochemical cyclic polarization measurement in Ringer's solutions buffered to pH from 3.5 to 7.2 at a temperature of 37 degrees C. No pitting corrosion in the Ringer's solutions with pH = 7.2 and 5.5 was detected for the gammaN-phase layers on the two stainless steels. The high pitting potential for the gammaN-phase layers is higher, about 500 and 600 mV, above that of the two original stainless steels, respectively, in the Ringer's solution with pH = 3.5. The corroded surface morphologies of the gammaN-phase layers observed by scanning electron microscopy are consistent with the results of the electrochemical polarization measurement.

  8. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, whichmore » is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk

  9. Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels

    NASA Astrophysics Data System (ADS)

    Park, Seung Hwan C.; Sato, Yutaka S.; Kokawa, Hiroyuki; Okamoto, Kazutaka; Hirano, Satoshi; Inagaki, Masahisa

    2009-03-01

    The wear of polycrystalline cubic boron nitride (pcBN) tool and its effect on second phase formation were investigated in stainless steel friction-stir (FS) welds. The nitrogen content and the flow stress were analyzed in these welds to examine pcBN tool wear. The nitrogen content in stir zone (SZ) was found to be higher in the austenitic stainless steel FS welds than in the ferritic and duplex stainless steel welds. The flow stress of austenitic stainless steels was almost 1.5 times larger than that of ferritic and duplex stainless steels. These results suggest that the higher flow stress causes the severe tool wear in austenitic stainless steels, which results in greater nitrogen pickup in austenitic stainless steel FS welds. From the microstructural observation, a possibility was suggested that Cr-rich borides with a crystallographic structure of Cr2B and Cr5B3 formed through the reaction between the increased boron and nitrogen and the matrix during FS welding (FSW).

  10. Reporting the Fatigue Life of 316L Stainless Steel Locking Compression Plate Implants: The Role of the Femoral and Tibial Biomechanics During the Gait.

    PubMed

    Rice, Devyn; Shaat, Mohamed

    2017-10-01

    In this study, the fatigue characteristics of femoral and tibial locking compression plate (LCP) implants are determined accounting for the knee biomechanics during the gait. A biomechanical model for the kinematics and kinetics of the knee joint during the complete gait cycle is proposed. The rotations of the femur, tibia, and patella about the knee joint during the gait are determined. Moreover, the patellar-tendon force (PT), quadriceps-tendon force (QT), the tibiofemoral joint force (TFJ), and the patellofemoral joint force (PFJ) through the standard gait cycle are obtained as functions of the body weight (BW). On the basis of the derived biomechanics of the knee joint, the fatigue factors of safety along with the fatigue life of 316L stainless steel femoral and tibial LCP implants are reported as functions of the BW and bone fracture location, for the first time. The reported results reveal that 316L stainless steel LCP implants for femoral surgeries are preferred for conditions in which the bone fracture is close to the knee joint and the BW is less than 80 kg. For tibial surgeries, 316L stainless steel LCP implants can be used for conditions in which the bone fracture is close to the knee joint and the BW is less than 100 kg. This study presents a critical guide for the determination of the fatigue characteristics of LCP implants. The obtained results reveal that the fatigue analyses should be performed on the basis of the body biomechanics to guarantee accurate designs of LCP implants for femoral and tibial orthopedic surgeries.

  11. 76 FR 28809 - Stainless Steel Plate From Belgium; Termination of Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 701-TA-376 (Second Review)] Stainless Steel... countervailing duty order on stainless steel plate from Belgium (75 FR 30777 and 75 FR 30434). On May 5, 2011... countervailing duty order concerning stainless steel plate from Belgium, finding that revocation of the...

  12. Procedure for flaw detection in cast stainless steel

    DOEpatents

    Kupperman, David S.

    1988-01-01

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  13. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    NASA Astrophysics Data System (ADS)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  14. Electrochemical Micromachining with Fiber Laser Masking for 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han

    2017-10-01

    In order to fabricate micro structure, the combined machining of electrochemical micro machining (EMM) and laser masking for 304 stainless steel was studied. A device of composite machining of EMM with laser masking was developed, and the experiments of EMM with laser masking were carried out. First, by marking pattern with fiber laser on the surface of 304 stainless steel, the special masking layer can be formed. Through X ray photoelectron spectroscopy (XPS), the corrosion resistance of laser masking layer was analyzed. It is proved by XPS that the iron oxide and chromium oxide on the surface of stainless steel generates due to air oxidation when laser scanning heats. Second, the localization and precision of EMM are improved, since the marking patterns forming on the surface of stainless steel by laser masking play a protective role in the process of subsequent EMM when the appropriate parameters of EMM are selected. At last, the shape and the roughness of the machined samples were measured by SEM and optical profilometer and analyzed. The results show that the rapid fabrication of micro structures on the 304 stainless steel surface can be achieved by EMM with fiber laser masking, which has a good prospect in the field of micro machining.

  15. Development of nano/sub-micron grain structures in metastable austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Rajasekhara, Shreyas

    2007-12-01

    This dissertation is a part of a collaborative work between the University of Texas, Austin-Texas, the University of Oulu, Oulu-Finland, and Outokumpu Stainless Oy, Tornio-Finland, to develop commercial austenitic stainless steels with high strength and ductility. The idea behind this work involves cold-rolling a commercial metastable austenitic stainless steel - AISI 301LN stainless steel to produce strain-induced martensite, followed by an annealing treatment to generate nano/sub-micron grained austenite. AISI 301LN stainless steel sheets are cold-rolled to 63% reduction and subsequently annealed at 600°C, 700°C, 800°C, 900°C and 1000°C for 1, 10 and 100 seconds. The samples are analyzed by X-Ray diffraction, SQUID, transmission electron microscopy, and tensile testing to fundamentally understand the microstructural evolution, the mechanism for the martensite → austenite reversion, the formation of nano/sub-micron austenite grains, and the relationship between the microstructure and the strength obtained in this stainless steel. The results show that cold-rolled AISI 301LN stainless steel consist of dislocation-cell martensite, heavily deformed lath-martensite and austenite shear bands. Subsequent annealing at 600°C for short durations of 1 and 10 seconds leads to negligible martensite to austenite reversion. These 600°C samples exhibit a similar microstructure to the cold-rolled sample. However, for samples annealed at 600°C for 100 seconds and those annealed at higher temperatures (700°C, 800°C, 900°C and 1000°C) exhibit equiaxed austenitic grains of sizes 0.2mum-10mum and secondary phase precipitates. The microstructural analysis also reveals that the martensite → austenite reversion occurs via a diffusion-type reversion mechanism. In this regard, a generalized form of Avrami's equation is used to model the kinetics of martensite → austenite phase reversion. The results from the model agree reasonably well with the experiments. Furthermore

  16. Adipose tissue-derived stem cell response to the differently processed 316L stainless steel substrates.

    PubMed

    Faghihi, Shahab; Zia, Sonia; Taha, Masoumeh Fakhr

    2012-12-01

    Stainless steel (SS) is one of the most applicable materials in fabrication of cardiac implants. The aim of this study is to investigate the effect of atomic structure of polycrystalline stainless steel on the response of adipose tissue-derived stem cells (ADSCs). Samples are prepared from differently processed extruded rod and rolled sheet of 316L SS having different crystallographic structure. X-ray diffraction analysis indicated (200) and (111) orientations with distinct volume fractions in the specimens. Morphology and ADSCs behavior including adhesion, proliferation and differentiation are assessed. The expression of cardiac specific protein (cardiac troponin I) and genes of differentiating cardiomyocytes is analyzed by immunofluorescence and RT-PCR. The number of attached and grown cells on the rod sample is higher than the sheet sample also the scanning electron microscopy (SEM) analysis of ADSCs grown on the samples demonstrates higher cell density and spreading pattern on the surface of rod sample. In differentiated ADSCs on the rod sample the expression of all genes except ANF are detectable, while on the sheet sample only the MEF2C and β-MHC are expressed. This study shows that the cellular response is influenced by the crystal structure of the substrate therefore; the skill to alter the structure of substrate may lend itself to engineer a biomaterial which could be suitable for differentiation of stem cells into a definite lineage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. 2017 Accomplishments – Tritium Aging Studies on Stainless Steel Weldments and Heat-Affected Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Michael J.; Hitchcock, Dale; Krentz, Tim

    In this study, the combined effects tritium and decay helium in forged and welded Types 304L and 21-6-9 stainless steels were studied. To measure these effects, fracture mechanic specimens were thermally precharged with tritium and aged for approximately 17 years to build in decay helium from tritium decay prior to testing. The results are compared to earlier measurements on the same alloys and weldments (4-5, 8-9). In support of Enhanced Surveillance, “Tritium Effects on Materials”, the fracture toughness properties of long-aged tritium-charged stainless-steel base metals and weldments were measured and compared to earlier measurements. The fracture-toughness data were measured bymore » thermally precharging as-forged and as-welded specimens with tritium gas at 34.5 MPa and 350°C and aging for approximately 17 years to build-in decay helium prior to testing. These data result from the longest aged specimens ever tested in the history of the tritium effects programs at Savannah River and the fracture toughness values measured were the lowest ever recorded for tritium-exposed stainless steel. For Type 21-6-9 stainless steel, fracture toughness values were reduced to less than 2-4% of the as-forged values to 41 lbs / in specimens that contained more than 1300 appm helium from tritium decay. The fracture toughness properties of long-aged weldments were also measured. The fracture toughness reductions were not as severe because the specimens did not retain as much tritium from the charging and aging as did the base metals. For Type 304L weldments, the specimens in this study contained approximately 600 appm helium and their fracture toughness values averaged 750 lbs / in. The results for other steels and weldments are reported and additional tests will be conducted during FY18.« less

  18. A dual-electrochemical cell to study the biocorrosion of stainless steel.

    PubMed

    Lopes, F A; Perrin, S; Féron, D

    2007-01-01

    The presence of microorganisms on metal surfaces can alter the local physical/chemical conditions and lead to microbiologically influenced corrosion (MIC). The goal of the present work was to study the effect of a mixed aerobic-anaerobic biofilm on the behaviour of stainless steel (316 L) in underground conditions. Rather than testing different bacteria or consortia, investigations were based on the mechanisms of MIC. Mixed biofilms were simulated by the addition of glucose oxidase to reproduce the aerobic conditions and by sulphide or sulphate-reducing bacteria (SRB) for the anaerobic conditions. A double thermostated electrochemical cell has been developed to study the coupling between aerobic and anaerobic conditions. Results suggested a transfer of electrons from the stainless steel sample of the anaerobic cell to the stainless steel sample of the aerobic one. Inorganic sulphide was replaced by SRB in the anaerobic cell revealing an increase of the galvanic current which may be explained by an effect of lactate and/or acetate on the anodic reaction or by a high sulphide concentration in the biofilm. The results of this study underline that the dual-electrochemical cell system is representative of phenomena present in natural environments and should be considered as an option when studying MIC.

  19. Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel.

    PubMed

    Schober, M; Schnitzer, R; Leitner, H

    2009-04-01

    Stainless maraging steels have a Cr content higher than 12wt% and show a excellent combination of high strength and ductility, which make them attractive for use in machinery fields and aircraft applications. The massive increase of strength during ageing treatment of maraging steels is related to a precipitation sequence of various nm-scaled intermetallic phases. The peak hardness especially in Ti-containing maraging steels can be reached after short-time ageing at temperatures around 500 degrees C. However, precipitation reactions in different stainless maraging steels are not fully understood, especially the evolution from clustering over growing to coarsening. In the present work a commercial maraging steel and a Ti-containing model alloy are investigated and compared to each other. The steels were isothermally heat treated at 525 degrees C for a range of times. Special emphasis was laid on the correlation of hardness to the formation and presence of different kinds of precipitates. The isothermal aged samples were investigated by using two advanced three-dimensional energy compensated atom probes (LEAP and 3DAP) both in voltage mode and in laser mode. The atom probe data were correlated to standard hardness measurements. The results show that the partial substitution of Al by Ti results in a different precipitation behaviour. While the Ti-free maraging steel exhibit only one type of precipitate, the Ti-containing grade shows a change in the type of precipitates during ageing. However, this change leads to an accelerated coarsening and thus to a faster drop in hardness.

  20. A SURVEY OF THE CORROSION OF MARTENSITIC AND FERRITIC STAINLESS STEELS IN PRESSURIZED WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaver, R.J.; Leitten, C.F. Jr.

    1963-07-16

    >The corrosion resistance of mantensitic and ferritic austenitic stainless steels and carbon steels in pressurized water at 500 to 600 deg F is compared. Included are specific out-of-pile data for austenitic stainless steels, AISI types types 410, 420, 431, and 440C; the ferritic AISI types 430, 442, and 446; the precipitation-hardening type 17-4PH; and carbon steels, ASTM 212 A and B. Available corrosion results obtained under irradiation at exposures in the range of 7 x 10/sup 16/ to 3 x 10/sup 19/ nvt are also included for types 304, types of martensitic and ferritic stainless steels which were evaluated domore » not contain nickel. For application where it is desirable to minimize Co/sup 58/ activity produced from nickel, selection of a martensitic or ferritic stainless steel may be more appropriate than choosing the more popular nickel-bearing austenitic stainless steel or a fuel-element cladding material. Interpretation of the data indicates that, on the average, martensitic and ferritic stainless steels corrode more rapidly than austenitic alloys but more slowly than carbon and low-alloy steels. Under selected controlled water conditions or under irradiation, the corrosion of the nickel-free stainless steels appears to differ little from the austenitics. The corrosion of martensitic and ferritic stainless steels in pressurized-water systems therefore does not appear of such magnitude as to rule out development of these materials as the cladding fuel elements for specific applications. (auth)« less

  1. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  2. SRS stainless steel beneficial reuse program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other typesmore » of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.« less

  3. Corrosion Behavior of Aqua-Blasted and Laser-Engraved Type 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Krawczyk, B.; Cook, P.; Hobbs, J.; Engelberg, D. L.

    2017-12-01

    The effect of aqua blasting and laser engraving on surface microstructure development, residual stress and corrosion resistance of type 316L stainless steel has been investigated. Aqua blasting resulted in a deformed near-surface microstructure containing compressive residual stresses. Subsequent laser engraving produced a surface layer with tensile residual stresses reaching to a depth of 200 microns. Changes of surface roughness topography were accompanied by the development of a thick oxide/hydroxide film after laser engraving. The atmospheric corrosion behavior of all surfaces with MgCl2-laden droplets was compared to their electrochemical response in 1M NaCl and 0.7 M HCl aqueous solutions. The measured total volume loss after atmospheric corrosion testing was similar for all investigated surface conditions. Laser-engraved surface exhibited the smallest number of corrosion sites, but the largest mean corrosion depth.

  4. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Castermore » for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems.« less

  5. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    NASA Astrophysics Data System (ADS)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel

  6. The fracture and fragmentation behaviour of additively manufactured stainless steel 316L

    NASA Astrophysics Data System (ADS)

    Amott, R.; Harris, E. J.; Winter, R. E.; Stirk, S. M.; Chapman, D. J.; Eakins, D. E.

    2017-01-01

    Expanding cylinder experiments using a gas gun technique allow investigations into the ductility of metals and the fracture and fragmentation mechanisms that occur during rapid tensile failure. These experiments allow the radial strain-rate of the expansion to be varied in the range 102 to 104 s-1. Presented here is a comparative study of the fracture and fragmentation behaviour of rapidly expanded stainless steel 316L cylinders manufactured from either a wrought bar or additive manufacturing techniques. The results show that in the strain-rate regime studied, an additively manufactured cylinder failed at a higher strain and produced larger fragment widths when compared to cylinders manufactured from a wrought bar. In addition, an investigation into the role of macroscopic elongated voids that were introduced into the cylinder wall, at an angle of 45° to the cylinder radius, was undertaken. A comparison between experimental and simulated results (using the Eulerian hydrocode CTH) was also completed.

  7. Durable nonslip stainless-steel drivebelts

    NASA Technical Reports Server (NTRS)

    Bahiman, H.

    1979-01-01

    Two toothed stainless-steel drive belt retains its strength and flexibility in extreme heat or cold, intense radiation, or under high loading. Belt does not stretch or slip and is particularly suited to machinery for which replacement is difficult or impossible.

  8. Fabrication of stainless steel clad tubing. [gas pressure bonding

    NASA Technical Reports Server (NTRS)

    Kovach, C. W.

    1978-01-01

    The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.

  9. Impact of Defects in Powder Feedstock Materials on Microstructure of 304L and 316L Stainless Steel Produced by Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; Lienert, Thomas J.; Knapp, Cameron M.; Sutton, Jacob O.; Brand, Michael J.; Pacheco, Robin M.; Livescu, Veronica; Carpenter, John S.; Gray, George T.

    2018-05-01

    Recent work in both 304L and 316L stainless steel produced by additive manufacturing (AM) has shown that in addition to the unique, characteristic microstructures formed during the process, a fine dispersion of sub-micron particles, with a chemistry different from either the powder feedstock or the expected final material, are evident in the final microstructure. Such fine-scale features can only be resolved using transmission electron microscopy (TEM) or similar techniques. The present work uses electron microscopy to study both the initial powder feedstock and microstructures in final AM parts. Special attention is paid to the chemistry and origin of these nanoscale particles in several different metal alloys, and their impact on the final build. Comparisons to traditional, wrought material will be made.

  10. Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes.

    PubMed

    Arslan-Alaton, Idil; Kabdaşli, Işik; Vardar, Burcu; Tünay, Olcay

    2009-05-30

    Reactive dyebath effluents are ideal candidates for electrocoagulation due to their intensive color, medium strength, recalcitrant COD and high electrolyte (NaCl) content. The present study focused on the treatability of simulated reactive dyebath effluent (COD(o)=300 mg/L; color in terms of absorbance values A(o,436)=0.532 cm(-1), A(o,525)=0.693 cm(-1) and A(o,620)=0.808 cm(-1)) employing electrocoagulation with aluminum and stainless steel electrodes. Optimization of critical operating parameters such as initial pH (pH(o) 3-11), applied current density (J(c)=22-87 mA/cm(2)) and electrolyte type (NaCl or Na(2)SO(4)) improved the overall treatment efficiencies resulting in effective decolorization (99% using stainless steel electrodes after 60 min, 95% using aluminum electrodes after 90 min electrocoagulation) and COD abatement (93% with stainless steel electrodes after 60 min, 86% with aluminum electrodes after 90 min of reaction time). Optimum electrocoagulation conditions were established as pH(o) 5 and J(c)=22 mA/cm(2) for both electrode materials. The COD and color removal efficiencies also depended on the electrolyte type. No in situ, surplus adsorbable organically bound halogens (AOX) formation associated with the use of NaCl as the electrolyte during electrocoagulation was detected. An economical evaluation was also carried out within the frame of the study. It was demonstrated that electrocoagulation of reactive dyebath effluent with aluminum and stainless steel electrodes was a considerably less electrical energy-intensive, alternative treatment method as compared with advanced chemical oxidation techniques.

  11. Immobilization of mesoporous silica particles on stainless steel plates

    NASA Astrophysics Data System (ADS)

    Pasqua, Luigi; Morra, Marco

    2017-03-01

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  12. Attachment of Salmonella serovars and Listeria monocytogenes to stainless steel and plastic conveyor belts.

    PubMed

    Veluz, G A; Pitchiah, S; Alvarado, C Z

    2012-08-01

    In poultry industry, cross-contamination due to processing equipment and contact surfaces is very common. This study examined the extent of bacterial attachment to 6 different types and design of conveyor belts: stainless steel-single loop, stainless steel-balance weave, polyurethane with mono-polyester fabric, acetal, polypropylene mesh top, and polypropylene. Clean conveyor belts were immersed separately in either a cocktail of Salmonella serovars (Salmonella Typhimurium and Salmonella Enteritidis) or Listeria monocytogenes strains (Scott A, Brie 1, ATCC 6744) for 1 h at room temperature. Soiled conveyor chips were dipped in poultry rinses contaminated with Salmonella or Listeria cocktail and incubated at 10°C for 48 h. The polyurethane with mono-polyester fabric conveyor belt and chip exhibited a higher (P<0.05) mean number of attached Salmonella serovars (clean: 1.6 to 3.6 cfu/cm2; soiled: 0.8 to 2.4 cfu/cm2) and L. monocytogenes (clean: 4.0 to 4.3 cfu/cm2; soiled: 0.3 to 2.1 cfu/cm2) in both clean and soiled conditions. The stainless steel conveyor belt attached a lower (P<0.05) number of Salmonella serovars (clean: 0 to 2.6 cfu/cm2; soiled: 0.4 to 1.3 cfu/cm2) and L. monocytogenes (clean: 0.4 to 2.9 cfu/cm2; soiled: 0 to 0.7 cfu/cm2) than the polymeric materials, indicating weaker adhesion properties. Plastic conveyor belts exhibited stronger bacterial adhesion compared with stainless steel. The result suggests the importance of selecting the design and finishes of conveyor belt materials that are most resistant to bacterial attachment.

  13. Densification behavior and mechanical properties of nanocrystalline TiC reinforced 316L stainless steel composite parts fabricated by selective laser melting

    NASA Astrophysics Data System (ADS)

    Zhao, Shuming; Shen, Xianfeng; Yang, Jialin; Teng, Wenhua; Wang, Yingying

    2018-07-01

    Metal matrix composite parts produced using selective laser melting have superior mechanical properties to those produced using traditional powder metallurgy. In this study, nanocrystalline TiC reinforced 316L stainless steel composite parts were fabricated using selective laser melting, and the effects of the TiC mass fraction, particle size, and processing parameters on the relative density, microhardness, and mechanical properties of the TiC/316L composites were investigated. The results show that the relative density of the fabricated parts is related to the laser power and exposure time, and increases when these parameters are increased. The greater the mass fraction of nano-TiC added, the more severe the degree of spheroidization and the lower the density of the resulting material. The microhardness of the 316L stainless steel parts is enhanced by the nano-TiC particles, and increases with increasing nano-TiC mass fraction. The tensile strength is improved with longer exposure time and with the addition of 2 wt% nano-TiC particles. Compared with pure 316L, the microhardness of the TiC/316L composite parts fabricated with 2 wt% 40 nm TiC enhanced from HV0.3 = 219.1 to 277.6, and the ultimate tensile strength significantly increased from 627.5 to 748.6 MPa. The strengthening mechanism of TiC particles is the refinement of the grain size of the 316L matrix, and the greater amount of TiC particles added, the better the grain refinement of 316L.

  14. Corrosive Metabolic Activity of Desulfovibrio sp. on 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Arkan, Simge; Ilhan-Sungur, Esra; Cansever, Nurhan

    2016-12-01

    The present study investigated the effects of chemical parameters (SO4 2-, PO4 3-, Cl-, pH) and the contents of extracellular polymeric substances (EPS) regarding the growth of Desulfovibrio sp. on the microbiologically induced corrosion of 316L stainless steel (SS). The experiments were carried out in laboratory-scaled test and control systems. 316L SS coupons were exposed to Desulfovibrio sp. culture over 720 h. The test coupons were removed at specific sampling times for enumeration of Desulfovibrio sp., determination of the corrosion rate by the weight loss measurement method and also for analysis of carbohydrate and protein in the EPS. The chemical parameters of the culture were also established. Biofilm/film formation and corrosion products on the 316L SS surfaces were investigated by scanning electron microscopy and energy-dispersive x-ray spectrometry analyses in the laboratory-scaled systems. It was found that Desulfovibrio sp. led to the corrosion of 316L SS. Both the amount of extracellular protein and chemical parameters (SO4 2- and PO4 3-) of the culture caused an increase in the corrosion of metal. There was a significantly positive relationship between the sessile and planktonic Desulfovibrio sp. counts ( p < 0.01). It was detected that the growth phases of the sessile and planktonic Desulfovibrio sp. were different from each other and the growth phases of the sessile Desulfovibrio sp. vary depending on the subspecies of Desulfovibrio sp. and the type of metal when compared with the other published studies.

  15. 6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL FABRICATION. STAINLESS STEEL WAS MACHINED IN SIDE A OF THE BUILDING, BEGINNING IN 1957. (4/24/78) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  16. Application of lap laser welding technology on stainless steel railway vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  17. Development of Chromium-Free Welding Consumables for Stainless Steels

    DTIC Science & Technology

    2009-02-01

    FINAL REPORT Development of Chromium -Free Welding Consumables for Stainless Steels SERDP Project WP-1415 FEBRUARY 2009 J.C. Lippold...NUMBER 4. TITLE AND SUBTITLE Development of Chromium -Free Welding Consumables for Stainless Steels 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Energy dispersive spectroscopy FGR Fume generation rate GMAW Gas metal arc welding GTAW Gas tungsten arc welding HAZ Heat affected zone LTE Long

  18. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puli, Ramesh, E-mail: rameshpuli2000@gmail.com; Janaki Ram, G.D.

    2012-12-15

    Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

  19. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats.

    PubMed

    Antonini, James M; Roberts, Jenny R; Stone, Samuel; Chen, Bean T; Schwegler-Berry, Diane; Chapman, Rebecca; Zeidler-Erdely, Patti C; Andrews, Ronnee N; Frazer, David G

    2011-05-01

    Welding generates complex metal fumes that vary in composition. The objectives of this study were to compare the persistence of deposited metals and the inflammatory potential of stainless and mild steel welding fumes, the two most common fumes used in US industry. Sprague-Dawley rats were exposed to 40 mg/m(3) of stainless or mild steel welding fumes for 3 h/day for 3 days. Controls were exposed to filtered air. Generated fume was collected, and particle size and elemental composition were determined. Bronchoalveolar lavage was done on days 0, 8, 21, and 42 after the last exposure to assess lung injury/inflammation and to recover lung phagocytes. Non-lavaged lung samples were analyzed for total and specific metal content as a measure of metal persistence. Both welding fumes were similar in particle morphology and size. Following was the chemical composition of the fumes-stainless steel: 57% Fe, 20% Cr, 14% Mn, and 9% Ni; mild steel: 83% Fe and 15% Mn. There was no effect of the mild steel fume on lung injury/inflammation at any time point compared to air control. Lung injury and inflammation were significantly elevated at 8 and 21 days after exposure to the stainless steel fume compared to control. Stainless steel fume exposure was associated with greater recovery of welding fume-laden macrophages from the lungs at all time points compared with the mild steel fume. A higher concentration of total metal was observed in the lungs of the stainless steel welding fume at all time points compared with the mild steel fume. The specific metals present in the two fumes were cleared from the lungs at different rates. The potentially more toxic metals (e.g., Mn, Cr) present in the stainless steel fume were cleared from the lungs more quickly than Fe, likely increasing their translocation from the respiratory system to other organs.

  20. Occupational asthma due to manual metal-arc welding of special stainless steels.

    PubMed

    Hannu, T; Piipari, R; Kasurinen, H; Keskinen, H; Tuppurainen, M; Tuomi, T

    2005-10-01

    Occupational asthma (OA) can be induced by fumes of manual metal-arc welding on stainless steel. In recent years, the use of special stainless steels (SSS) with high chromium content has increased. This study presents two cases of OA caused by manual metal-arc welding on SSS. In both cases, the diagnosis of OA was based on respiratory symptoms, occupational exposure and positive findings in the specific challenge tests. In the first case, a 46-yr-old welder had experienced severe dyspnoea while welding SSS (SMO steel), but not in other situations. Challenge tests with both mild steel and stainless steel using a common electrode were negative. Welding SSS with a special electrode caused a delayed 37% drop in forced expiratory volume in one second (FEV1). In the second case, a 34-yr-old male had started to experience dyspnoea during the past few years, while welding especially SSS (Duplex steel). The workplace peak expiratory flow monitoring was suggestive of OA. Challenge tests with both mild steel and stainless steel using a common electrode did not cause bronchial obstruction. Welding SSS with a special electrode caused a delayed 31% drop in FEV1. In conclusion, exposure to manual metal-arc welding fumes of special stainless steel should be considered as a new cause of occupational asthma.

  1. Radiative and convective properties of 316L Stainless Steel fabricated using the Laser Engineered Net Shaping process

    NASA Astrophysics Data System (ADS)

    Knopp, Jonathan

    Temperature evolution of metallic materials during the additive manufacturing process has direct influence in determining the materials microstructure and resultant characteristics. Through the power of Infrared (IR) thermography it is now possible to monitor thermal trends in a build structure, giving the power to adjust building parameters in real time. The IR camera views radiation in the IR wavelengths and determines temperature of an object by the amount of radiation emitted from the object in those wavelengths. Determining the amount of radiation emitted from the material, known as a materials emissivity, can be difficult in that emissivity is affected by both temperature and surface finish. It has been shown that the use of a micro-blackbody cavity can be used as an accurate reference temperature when the sample is held at thermal equilibrium. A micro-blackbody cavity was created in a sample of 316L Stainless Steel after being fabricated during using the Laser Engineered Net Shaping (LENS) process. Holding the sample at thermal equilibrium and using the micro-blackbody cavity as a reference and thermocouple as a second reference emissivity values were able to be obtained. IR thermography was also used to observe the manufacturing of these samples. When observing the IR thermography, patterns in the thermal history of the build were shown to be present as well as distinct cooling rates of the material. This information can be used to find true temperatures of 316L Stainless Steel during the LENS process for better control of desired material properties as well as future work in determining complete energy balance.

  2. DETECTION OF BACTERIAL BIOFILM ON STAINLESS STEEL BY HYPERSPECTRAL FLUORESCENCE IMAGING

    USDA-ARS?s Scientific Manuscript database

    In this study, hyperspectral fluorescence imaging techniques were investigated for detection of microbial biofilm on stainless steel plates typically used to manufacture food processing equipment. Stainless steel coupons were immersed in bacterium cultures consisting of nonpathogenic E. coli, Pseudo...

  3. Processing of fine grained AISI 304L austenitic stainless steel by cold rolling and high-temperature short-term annealing

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-05-01

    An advanced thermomechanical process based on the formation and reversion of deformation-induced martensite was used to refine the grain size and enhance the hardness of an AISI 304L austenitic stainless steel. Both low and high reversion annealing temperatures and also the repetition of the whole thermomechanical cycle were considered. While a microstructure with average austenite grain size of a few micrometers was achieved based on cold rolling and high-temperature short-term annealing, an extreme grain refinement up to submicrometer regime was obtained by cold rolling followed by low-temperature long-term annealing. However, the required annealing time was found to be much longer, which negates its appropriateness for industrial production. While a magnificent grain refinement was achieved by one pass of the high-temperature thermomechanical process, the reduction in grain size was negligible by the repetition of the whole cycle. It was found that the hardness of the thermomechanically processed material is much higher than that of the as-received material. The results of the present work were shown to be compatible with the general trend of grain size dependence of hardness for AISI 304L stainless steel based on the Hall-Petch relationship. The results were also discussed based on the X-ray evaluation of dislocation density by modified Williamson-Hall plots.

  4. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part I: screening of doping oxidants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steve Xunhu

    Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reductionmore » of P2O5 in the glass-ceramic where the P 2O 5 is to form Li 3PO 4 nuclei for growth of high expansion crystalline SiO 2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.« less

  5. Primary incisor restoration using resin-veneered stainless steel crowns.

    PubMed

    Croll, T P

    1998-01-01

    The restoration of primary incisors with extensive caries lesions is a clinical challenge of severe dimensions. Not only are these teeth difficult to restore, but the patient's behavior can affect the treatment negatively. Requirements for an acceptable restoration include natural color; durability; adhesive cementation that is biocompatible with the pulp; easily and rapidly placed; requires only one treatment visit. Compared to other options, stainless steel crowns are the easiest to place. The most attractive restoration for these cases today is the adhesively bonded resin-composite crown, made by using acetate crown-form matrices, but this is being surpassed by the stainless steel crown forms (3M Unitek) that can be preveneered. This article describes a step-by-step method of placing preveneered stainless steel crowns for primary incisors.

  6. Optimization of BI test parameters to investigate mechanical properties of Grade 92 steel

    NASA Astrophysics Data System (ADS)

    Barbadikar, Dipika R.; Vincent, S.; Ballal, Atul R.; Peshwe, Dilip R.; Mathew, M. D.

    2018-04-01

    The ball indentation (BI) testing is used to evaluate the tensile properties of materials namely yield strength, strength coefficient, ultimate tensile strength, and strain hardening exponent. The properties evaluated depend on a number of BI test parameters. These parameters include the material constants like yield slope (YS), constraint factor (CF), yield offset parameter (YOP). Number of loading/unloading cycles, preload, indenter size and depth of penetration of indenter also affects the properties. In present investigation the effect of these parameters on the stress-strain curve of normalized and tempered Grade 92 steel is evaluated. Grade 92 is a candidate material for power plant application over austenitic stainless steel and derives its strength from M23C6, MX precipitates and high dislocation density. CF, YS and YOP changed the strength properties considerably. Indenter size effect resulted in higher strength for smaller indenter. It is suggested to use larger indenter diameter and higher number of loading cycles for GRADE 92 steel to get best results using BI technique.

  7. Development of a chromium-free consumable for joining stainless steels

    NASA Astrophysics Data System (ADS)

    Sowards, Jeffrey William

    Government regulations in the United States (OSHA Standards: 1910; 1915; 1917; 1918; 1926) and abroad are decreasing allowable exposure levels of hexavalent chromium to welding related personnel. The latest OSHA ruling in 2006 reduced the permissible exposure limit of airborne hexavalent chromium from 52 to 5 mug m-3. Achieving the new level may not be practical from an engineering controls standpoint during the fabrication of tightly enclosed stainless steel components such as the inside of ship hulls and boiler vessels. One method of addressing this problem is to implement a chromium-free welding consumable that provides equivalent mechanical performance and corrosion characteristics to current stainless steel welding consumables. This project was aimed at developing such a consumable and evaluating its suitability for replacement of current stainless steel consumables such as E308L-16. A new shielded metal arc welding (SMAW) consumable based on the Ni-Cu-Ru system was developed for austenitic stainless steel welding. The focus of this work was evaluating the mechanical properties, weldability, and fume formation characteristics of the various iterations of consumables developed. Welds deposited on Type 304 stainless steel were evaluated with weldability tests including: mechanical testing, hot ductility testing, Strain-to-fracture testing, Transverse Varestraint testing, and button melting. Mechanical properties of weld deposits of each consumable were found to exceed minimum values of Type 304 stainless steel based on tensile testing. Guide bend testing showed that weld deposits met minimum weld ductility requirements for stainless steel consumables, such as E308-16. Hot ductility testing revealed a narrow crack susceptible region (33 to 54°C) indicating a low susceptibility to weld metal liquation cracking. GTA welds exhibited superior ductility when compared to SMA welds. This was attributed to a lack of slag inclusions in the weld deposit, which are

  8. 75 FR 81309 - Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... (Second Review)] Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan AGENCY: United... countervailing duty orders on stainless steel plate from Belgium and South Africa and the antidumping duty orders on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan. SUMMARY: The...

  9. 76 FR 8773 - Forged Stainless Steel Flanges From India and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-639 and 640 (Third Review)] Forged Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade Commission. ACTION... determine whether revocation of the antidumping duty orders on forged stainless steel flanges from India and...

  10. Assessment of bacterial biofilm on stainless steel by hyperspectral fluorescence imaging

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral fluorescence imaging techniques were investigated for detection of two genera of microbial biofilms on stainless steel material which is commonly used to manufacture food processing equipment. Stainless steel coupons were deposited in nonpathogenic E. coli O157:H7 and Salmonella cultu...

  11. Semen quality and sex hormones among mild steel and stainless steel welders: a cross sectional study.

    PubMed Central

    Bonde, J P

    1990-01-01

    Welding may be detrimental to the male reproductive system. To test this hypothesis, semen quality was examined in 35 stainless steel welders, 46 mild steel welders, and 54 non-welding metal workers and electricians. These figures represent a participation rate of 37.1% in welders and 36.7% in non-welding subjects. The mean exposure to welding fume particulates was 1.3 mg/m3 (SD 0.8) in stainless steel welders using tungsten inert gas, 3.2 mg/m3 (SD 1.0) in low exposed mild steel welders using manual metal arc or metal active gas (n = 31), and 4.7 mg/m3 (SD 2.1) in high exposed mild steel welders (n = 15). The semen quality of each participant was defined in terms of the mean values of the particular semen parameters in three semen samples delivered at monthly intervals in a period with occupational exposure in a steady state. The sperm concentration was not reduced in either mild steel or stainless steel welders. The sperm count per ejaculate, the proportion of normal sperm forms, the degree of sperm motility, and the linear penetration rate of the sperm were significantly decreased and the sperm concentration of follicle stimulating hormone (FSH) was non-significantly increased in mild steel welders. A dose response relation between exposure to welding fumes and these semen parameters (sperm count excepted) was found. Semen quality decreased and FSH concentrations increased with increasing exposure. Significant deteriorations in some semen parameters were also observed in stainless steel welders. An analysis of information from questionnaires obtained from the whole population including subjects who declined to participate indicated an underestimation of effects due to selection bias. Potential confounding was treated by restriction and statistical analysis. The results support the hypothesis that mild steel welding and to a lesser extent stainless steel welding with tungsten inert gas is associated with reduced semen quality at exposure in the range of the

  12. Semen quality and sex hormones among mild steel and stainless steel welders: a cross sectional study.

    PubMed

    Bonde, J P

    1990-08-01

    Welding may be detrimental to the male reproductive system. To test this hypothesis, semen quality was examined in 35 stainless steel welders, 46 mild steel welders, and 54 non-welding metal workers and electricians. These figures represent a participation rate of 37.1% in welders and 36.7% in non-welding subjects. The mean exposure to welding fume particulates was 1.3 mg/m3 (SD 0.8) in stainless steel welders using tungsten inert gas, 3.2 mg/m3 (SD 1.0) in low exposed mild steel welders using manual metal arc or metal active gas (n = 31), and 4.7 mg/m3 (SD 2.1) in high exposed mild steel welders (n = 15). The semen quality of each participant was defined in terms of the mean values of the particular semen parameters in three semen samples delivered at monthly intervals in a period with occupational exposure in a steady state. The sperm concentration was not reduced in either mild steel or stainless steel welders. The sperm count per ejaculate, the proportion of normal sperm forms, the degree of sperm motility, and the linear penetration rate of the sperm were significantly decreased and the sperm concentration of follicle stimulating hormone (FSH) was non-significantly increased in mild steel welders. A dose response relation between exposure to welding fumes and these semen parameters (sperm count excepted) was found. Semen quality decreased and FSH concentrations increased with increasing exposure. Significant deteriorations in some semen parameters were also observed in stainless steel welders. An analysis of information from questionnaires obtained from the whole population including subjects who declined to participate indicated an underestimation of effects due to selection bias. Potential confounding was treated by restriction and statistical analysis. The results support the hypothesis that mild steel welding and to a lesser extent stainless steel welding with tungsten inert gas is associated with reduced semen quality at exposure in the range of the

  13. A Stainless-Steel Mandrel for Slumping Glass X-ray Mirrors

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; O'Dell, Stephen L.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2009-01-01

    We have fabricated a precision full-cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm diameter primary (paraboloid) mirror of an 840-cm focal-length Wolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C.of glass mirror segments at Goddard Space Flight Center, in support of NASA's participation in the International X-ray Observatory (IXO). Precision turning of stainless-steel mandrels may offer a low-cost alternative to conventional figuring of fused-silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  14. A Stainless-Steel Mandrel for Slumping Glass X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Gubarev, Mikhail V.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2008-01-01

    We have fabricated a precision full -cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm-diameter primary (paraboloid) mirror of an 840-cm focal-lengthWolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C-of glass mirror segments at Goddard Space Flight Center, in support of NASA fs participation in the International X -ray Observatory (IXO). Precision turning of stainless ]steel mandrels may offer a lowcost alternative to conventional figuring of fused -silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  15. 75 FR 59744 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... (Second Review)] Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan AGENCY: United... Africa and the antidumping duty orders on stainless steel plate from Belgium, Italy, Korea, South Africa... revocation of the countervailing duty orders on stainless steel plate from Belgium and South Africa and the...

  16. 75 FR 32503 - Stainless Steel Wire Rod From Italy, Japan, Korea, Spain, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ...)] Stainless Steel Wire Rod From Italy, Japan, Korea, Spain, and Taiwan Determinations On the basis of the... revocation of the antidumping duty orders on stainless steel wire rod from Italy, Japan, Korea, Spain, and... USITC Publication 4154 (May 2010), entitled Stainless Steel Wire Rod from Italy, Japan, Korea, Spain...

  17. Inhalation toxicity of 316L stainless steel powder in relation to bioaccessibility.

    PubMed

    Stockmann-Juvala, H; Hedberg, Y; Dhinsa, N K; Griffiths, D R; Brooks, P N; Zitting, A; Wallinder, I Odnevall; Santonen, T

    2013-11-01

    The Globally Harmonized System for Classification and Labelling of Chemicals (GHS) considers metallic alloys, such as nickel (Ni)-containing stainless steel (SS), as mixtures of substances, without considering that alloys behave differently compared to their constituent metals. This study presents an approach using metal release, explained by surface compositional data, for the prediction of inhalation toxicity of SS AISI 316L. The release of Ni into synthetic biological fluids is >1000-fold lower from the SS powder than from Ni metal, due to the chromium(III)-rich surface oxide of SS. Thus, it was hypothesized that the inhalation toxicity of SS is significantly lower than what could be predicted based on Ni metal content. A 28-day inhalation study with rats exposed to SS 316L powder (<4 µm, mass median aerodynamic diameter 2.5-3.0 µm) at concentrations up to 1.0 mg/L showed accumulation of metal particles in the lung lobes, but no signs of inflammation, although Ni metal caused lung toxicity in a similar published study at significantly lower concentrations. It was concluded that the bioaccessible (released) fraction, rather than the elemental nominal composition, predicts the toxicity of SS powder. The study provides a basis for an approach for future validation, standardization and risk assessment of metal alloys.

  18. Cause-specific mortality in Finnish ferrochromium and stainless steel production workers.

    PubMed

    Huvinen, M; Pukkala, E

    2016-04-01

    Although stainless steel has been produced for more than a hundred years, exposure-related mortality data for production workers are limited. To describe cause-specific mortality in Finnish ferrochromium and stainless steel workers. We studied Finnish stainless steel production chain workers employed between 1967 and 2004, from chromite mining to cold rolling of stainless steel, divided into sub-cohorts by production units with specific exposure patterns. We obtained causes of death for the years 1971-2012 from Statistics Finland. We calculated standardized mortality ratios (SMRs) as ratios of observed and expected numbers of deaths based on population mortality rates of the same region. Among 8088 workers studied, overall mortality was significantly decreased (SMR 0.77; 95% confidence interval [CI] 0.70-0.84), largely due to low mortality from diseases of the circulatory system (SMR 0.71; 95% CI 0.61-0.81). In chromite mine, stainless steel melting shop and metallurgical laboratory workers, the SMR for circulatory disease was below 0.4 (SMR 0.33; 95% CI 0.07-0.95, SMR 0.22; 95% CI 0.05-0.65 and SMR 0.16; 95% CI 0.00-0.90, respectively). Mortality from accidents (SMR 0.84; 95% CI 0.67-1.04) and suicides (SMR 0.72; 95% CI 0.56-0.91) was also lower than in the reference population. Working in the Finnish ferrochromium and stainless steel industry appears not to be associated with increased mortality. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine.

  19. Oxidation of stainless steel 316 and Nitronic 50 in supercritical and ultrasupercritical water

    NASA Astrophysics Data System (ADS)

    Rodriguez, David; Chidambaram, Dev

    2015-08-01

    Corrosion of stainless steel 316 and Nitronic 50 exposed to supercritical and ultrasupercritical water was studied as a function of temperature and exposure time. Post-exposure surface analysis was performed using Raman and X-ray photoelectron spectroscopies to determine the chemistry of the oxides formed as a result of the exposure. When exposed to supercritical water, Nitronic 50 and stainless steel 316 were observed to have similar weight gains; however, stainless steel 316 was found to gain less weight than Nitronic 50 in exposure tests performed in ultrasupercritical water. Stainless steel 316 developed surface films primarily composed of iron oxides, while the surface of Nitronic 50 contained a mixture of iron, chromium and manganese oxides. Based on these analyses, the differences in weight gain and oxidation characteristics of the two materials are attributed to the higher concentration of Cr and Mn in Nitronic 50 compared to stainless steel 316.

  20. Chemical coloring on stainless steel by ultrasonic irradiation.

    PubMed

    Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin

    2018-01-01

    To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration

    NASA Astrophysics Data System (ADS)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca

    2017-02-01

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.

  2. Nanoparticle treated stainless steel filters for metal vapor sequestration

    DOE PAGES

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; ...

    2016-12-07

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less

  3. Nanoparticle treated stainless steel filters for metal vapor sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less

  4. Sol-Gel Prepared Niobium Oxide and Silicon Oxide Coatings on 316L Stainless Steel for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Pradhan, Dimple

    Medical implants have become an important component in the preventative and reconstructive treatment of patients for a variety of health problems. However, lack of biocompatibility, failure of implant due to corrosion and risk of postoperative infection pose as major challenges for their clinical applications. In order to counteract the above problems sol gel prepared niobium oxide and silicon oxide coatings were deposited on 316L stainless steel by spin coating. The preliminary work consisted of morphology, structure and composition analyses of these coatings by FESEM, XPS and GIXRD. Bioactivity was determined through (1) the analysis of calcium phosphate formation at the surface of coatings as a function of simulated body fluid (SBF) reaction time, (2) viability of osteoblast cells using MTT assay (3) osteoblast cell adhesion and proliferation using FESEM for coated and uncoated 316L stainless steel. Deposition of calcium phosphate layer was confirmed by EDS and SEM analysis. Corrosion resistances of coated and uncoated stainless steel were evaluated in three different physiological environments such as SBF (pH 7.4), water (pH 7) and SGF (pH 1.2) for different time periods. The reaction of samples was observed in the form of cracking and peeling of coatings, formation of corrosion product, passivation of metallic substrate. The changes in morphology and surface chemistry with time of immersion were evaluated through FESEM along with XPS analysis. Since electrochemical analysis such as open circuit potential (OCP) and linear polarization resistance (Rp) strongly depended on the surface condition of the metallic implant these measurements were performed on an externally corroded sample without disturbing the surface. The results obtained by LPR could give information about the influence of corrosive media on the metallic implant and instantaneous corrosion rate with time of immersion. A very large portion of implant related infection is caused by Staphylococcus

  5. Surface modification of superaustenitic and maraging stainless steels by low-temperature gas-phase carburization

    NASA Astrophysics Data System (ADS)

    Gentil, Johannes

    Low-temperature gas-phase carburization of 316L austenitic stainless steel was developed in recent years by the Swagelok company. This process generates great mechanical and electrochemical surface properties. Hardness, wear resistance, fatigue behavior, and corrosion resistance are dramatically improved, while the formation of carbides is effectively suppressed. This new technique is of technical, economical, but especially of scientific interest because the surface properties of common stainless steel can be enhanced to a level of more sophisticated and more expensive superalloys. The consequential continuation of previous research is the application of the carburization process to other steel grades. Differences in chemical composition, microstructure, and passivity between the various alloys may cause technical problems and it is expected that the initial process needs to be optimized for every specific material. This study presents results of low-temperature carburization of AL-6XN (superaustenitic stainless steel) and PH13-8Mo (precipitation-hardened martensitic stainless steel). Both alloys have been treated successfully in terms of creating a hardened surface by introducing high amounts of interstitially dissolved carbon. The surface hardness of AL-6XN was increased to 12GPa and is correlated with a colossal carbon supersaturation at the surface of up to 20 at.%. The hardened case develops a carburization time-dependent thickness between 10mum after one carburization cycle and up to 35mum after four treatments and remains highly ductile. Substantial broadening of X-ray diffraction peaks in low-temperature carburized superaustenitic stainless steels are attributed to the generation of very large compressive biaxial residual stresses. Those large stresses presumably cause relaxations of the surface, so-called undulations. Heavily expanded regions of carburized AL-6XN turn ferromagnetic. Non-carburized AL-6XN is known for its outstanding corrosion resistance

  6. Adhesion of a fluorinated poly(amic acid) with stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Jung, Youngsuk; Song, Sunjin; Kim, Sangmo; Yang, Yooseong; Chae, Jungha; Park, Tai-Gyoo; Dong Cho, Myung

    2013-01-01

    The authors elucidate an origin and probable mechanism of adhesion strength change at an interface of fluorinated poly(amic acid) and stainless steel. Fluorination provides favorable delamination with release strength weaker than 0.08 N/mm from a metal surface, once the amount of residual solvent becomes less than 35 wt. %. However, the release strength critically depends on film drying temperature. Characterization on stainless steel surfaces and thermodynamic analyses on wet films reveal a drying temperature of 80 °C fosters interaction between the metal oxides at stainless steel surface and the free electron donating groups in poly(amic acid).

  7. Elucidating the Relations Between Monotonic and Fatigue Properties of Laser Powder Bed Fusion Stainless Steel 316L

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Chen-Nan; Zhang, Xiang; Goh, Phoi Chin; Wei, Jun; Li, Hua; Hardacre, David

    2018-03-01

    The laser powder bed fusion (L-PBF) technique builds parts with higher static strength than the conventional manufacturing processes through the formation of ultrafine grains. However, its fatigue endurance strength σ f does not match the increased monotonic tensile strength σ b. This work examines the monotonic and fatigue properties of as-built and heat-treated L-PBF stainless steel 316L. It was found that the general linear relation σ f = mσ b for describing conventional ferrous materials is not applicable to L-PBF parts because of the influence of porosity. Instead, the ductility parameter correlated linearly with fatigue strength and was proposed as the new fatigue assessment criterion for porous L-PBF parts. Annealed parts conformed to the strength-ductility trade-off. Fatigue resistance was reduced at short lives, but the effect was partially offset by the higher ductility such that comparing with an as-built part of equivalent monotonic strength, the heat-treated parts were more fatigue resistant.

  8. Additively manufactured hierarchical stainless steels with high strength and ductility.

    PubMed

    Wang, Y Morris; Voisin, Thomas; McKeown, Joseph T; Ye, Jianchao; Calta, Nicholas P; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T; Santala, Melissa K; Depond, Philip J; Matthews, Manyalibo J; Hamza, Alex V; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  9. Additively manufactured hierarchical stainless steels with high strength and ductility

    NASA Astrophysics Data System (ADS)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  10. Additively manufactured hierarchical stainless steels with high strength and ductility

    DOE PAGES

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; ...

    2017-10-30

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearlymore » six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.« less

  11. Additively manufactured hierarchical stainless steels with high strength and ductility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearlymore » six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.« less

  12. Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Zheng, W.; Guzonas, D. A.; Cook, W. G.; Kish, J. R.

    2015-09-01

    There are still unknown aspects about the growth mechanism of oxide scales formed on candidate stainless steel fuel cladding materials during exposure in supercritical water (SCW) under the conditions relevant to the Canadian supercritical water-cooled reactor (SCWR). The tendency for intermetallic precipitates to form within the grains and on grain boundaries during prolonged exposure at high temperatures represents an unknown factor to corrosion resistance, since they tend to bind alloyed Cr. The objective of this study was to better understand the extent to which intermetallic precipitates affects the mode and extent of corrosion in SCW. Type 316L stainless steel, used as a model Fe-Cr-Ni-Mo alloy, was exposed to 25 MPa SCW at 550 °C for 500 h in a static autoclave for this purpose. Mechanically-abraded samples were tested in the mill-annealed (MA) and a thermally-treated (TT) condition. The thermal treatment was conducted at 815 °C for 1000 h to precipitate the carbide (M23C6), chi (χ), laves (η) and sigma (σ) phases. It was found that although relatively large intermetallic precipitates formed at the scale/alloy interface locally affected the oxide scale formation, their discontinuous formation did not affect the short-term overall apparent corrosion resistance.

  13. Is cell viability always directly related to corrosion resistance of stainless steels?

    PubMed

    Salahinejad, E; Ghaffari, M; Vashaee, D; Tayebi, L

    2016-05-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn-Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn-Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Xu, Hong-feng; Fu, Jie; Tian, Ying

    2016-07-01

    Ni-Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L-1 H2SO4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.

  15. Aluminum and stainless steel tubes joined by simple ring and welding process

    NASA Technical Reports Server (NTRS)

    Townhill, A.

    1967-01-01

    Duranel ring is used to join aluminum and stainless steel tubing. Duranel is a bimetal made up of roll-bonded aluminum and stainless steel. This method of joining the tubing requires only two welding operations.

  16. Mechanical Behavior of Stainless Steel Fiber-Reinforced Composites Exposed to Accelerated Corrosion

    PubMed Central

    O’Brien, Caitlin; McBride, Amanda; E. Zaghi, Arash; Burke, Kelly A.; Hill, Alex

    2017-01-01

    Recent advancements in metal fibers have introduced a promising new type of stainless steel fiber with high stiffness, high failure strain, and a thickness < 100 μm (<0.00394 in.) that can be utilized in a steel fiber-reinforced polymer. However, stainless steel is known to be susceptible to pitting corrosion. The main goal of this study is to compare the impact of corrosion on the mechanical properties of steel fiber-reinforced composites with those of conventional types of stainless steel. By providing experimental evidences, this study may promote the application of steel fiber-reinforced composite as a viable alternative to conventional metals. Samples of steel fiber-reinforced polymer and four different types of stainless steel were subjected to 144 and 288 h of corrosion in ferric chloride solution to simulate accelerated corrosion conditions. The weight losses due to corrosion were recorded. The corroded and control samples were tested under monotonic tensile loading to measure the ultimate stresses and strains. The effect of corrosion on the mechanical properties of the different materials was evaluated. The digital image correlation (DIC) technique was used to investigate the failure mechanism of the corrosion-damaged specimens. Overall, steel fiber-reinforced composites had the greatest corrosion resistance. PMID:28773132

  17. Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.

    2015-04-01

    The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.

  18. Influences of passivating elements on the corrosion and biocompatibility of super stainless steels.

    PubMed

    Yoo, Young-Ran; Jang, Soon-Geun; Oh, Keun-Taek; Kim, Jung-Gu; Kim, Young-Sik

    2008-08-01

    Biometals need high corrosion resistance since metallic implants in the body should be biocompatible and metal ion release should be minimized. In this work, we designed three kinds of super stainless steel and adjusted the alloying elements to obtain different microstructures. Super stainless steels contain larger amounts of Cr, Mo, W, and N than commercial alloys. These elements play a very important role in localized corrosion and, thus, their effects can be represented by the "pitting resistance equivalent number (PREN)." This work focused on the behavior which can arise when the bare surface of an implant in the body is exposed during walking, heavy exercise, and so on. Among the experimental alloys examined herein, Alloy Al and 316L stainless steels were mildly cytotoxic, whereas the other super austenitic, duplex, and ferritic stainless steels were noncytotoxic. This behavior is primarily related to the passive current and pitting resistance of the alloys. When the PREN value was increased, the passivation behavior in simulated body solution was totally different from that in acidic chloride solution and, thus, the Cr(2)O(3)/Cr(OH)(3) and [Metal oxide]/[Metal + Metal oxide] ratios of the passive film in the simulated body solution were larger than those in acidic chloride solution. Also, the critical current density in simulated body solution increased and, thus, active dissolution may induce metal ion release into the body when the PREN value and Ni content are increased. This behavior was closely related to the presence of EDTA in the simulated body solution. (c) 2007 Wiley Periodicals, Inc.

  19. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones

    NASA Astrophysics Data System (ADS)

    Auzoux, Q.; Allais, L.; Caës, C.; Monnet, I.; Gourgues, A. F.; Pineau, A.

    2010-05-01

    Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 °C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.

  20. Hydrothermal calcium modification of 316L stainless steel and its apatite forming ability in simulated body fluid.

    PubMed

    Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki

    2011-01-01

    To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.

  1. Weldment for austenitic stainless steel and method

    DOEpatents

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  2. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Corrosion Behavior of Stainless Steel 316L in Novel Quaternary Eutectic Molten Salt System

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Mantha, Divakar; Reddy, Ramana G.

    2017-03-01

    In this article, the corrosion behavior of stainless steel 316L in a low melting point novel LiNO3-NaNO3-KNO3-NaNO2 eutectic salt mixture was investigated at 695 K which is considered as thermally stable temperature using electrochemical and isothermal dipping methods. The passive region in the anodic polarization curve indicates the formation of protective oxides layer on the sample surface. After isothermal dipping corrosion experiments, samples were analyzed using SEM and XRD to determine the topography, corrosion products, and scale growth mechanisms. It was found that after long-term immersion in the LiNO3-NaNO3-KNO3-NaNO2 molten salt, LiFeO2, LiFe5O8, Fe3O4, (Fe, Cr)3O4 and (Fe, Ni)3O4 oxides were formed. Among these corrosion products, LiFeO2 formed a dense and protective layer which prevents the SS 316L from severe corrosion.

  4. 77 FR 27815 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and... Guidance (LR-ISG), LR-ISG-2011-01, ``Aging Management of Stainless Steel Structures and Components in...) Report for the aging management of stainless steel structures and components exposed to treated borated...

  5. 76 FR 69292 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and... Stainless Steel Structures and Components in Treated Borated Water.'' This LR-ISG revises the guidance in...) and Generic Aging Lessons Learned (GALL) Report for the aging management of stainless steel structures...

  6. Alternative to Nitric Acid for Passivation of Stainless Steel Alloys

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L.; Kolody, Mark; Curran, Jerry

    2013-01-01

    Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.

  7. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.

    PubMed

    Assis, S L; Rogero, S O; Antunes, R A; Padilha, A F; Costa, I

    2005-04-01

    In this study, the in vitro corrosion resistance of a superferritic stainless steel in naturally aerated Hank's solution at 37 degrees C has been determined to evaluate the steel for use as a biomaterial. The potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) were used to determine the corrosion resistance. The polarization results showed very low current densities at the corrosion potential and electrochemical behavior typical of passive metals. At potentials above 0.75 V (SCE), and up to that of the oxygen evolution reaction, the superferritic steel exhibited transpassive behavior followed by secondary passivation. The superferritic stainless steel exhibited high pitting resistance in Hank's solution. This steel did not reveal pits even after polarization to 3000 mV (SCE). The EIS results indicated high impedance values at low frequencies, supporting the results obtained from the polarization measurements. The results obtained for the superferritic steel have been compared with those of the Ti-13Nb-13Zr alloy and an austenitic stainless steel, as Ti alloys are well known for their high corrosion resistance and biocompatibility, and the austenitic stainless steel is widely used as an implant material. The cytotoxicity tests indicated that the superferritic steel, the austenitic steel, and the Ti-13Nb-13Zr alloy were not toxic. Based on corrosion resistance and cytotoxicity results, the superferritic stainless steel can be considered as a potential biomaterial. (c) 2005 Wiley Periodicals, Inc.

  8. Effect of Plasma Nitriding and Nitrocarburizing on HVOF-Sprayed Stainless Steel Coatings

    NASA Astrophysics Data System (ADS)

    Park, Gayoung; Bae, Gyuyeol; Moon, Kyungil; Lee, Changhee

    2013-12-01

    In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.

  9. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  10. The effect of hold-times on the fatigue life of 20% cold-worked Type 316L stainless steel under deuteron irradiation

    NASA Astrophysics Data System (ADS)

    Scholz, R.

    1995-09-01

    Strain-controlled fatigue tests have been performed in torsion on 20% cold-worked Type 316L stainless steel specimens during irradiation with 19 MeV deuterons. A hold-time was imposed at the minimum strain value in the loading cycle. The irradiation creep induced stress relaxation led to the buildup of a mean stress. The number of cycles to failure may be significantly reduced in comparison to analogous continuous cycling tests under thermal conditions.

  11. The fracture and fragmentation behaviour of additively manufactured stainless steel 316L

    NASA Astrophysics Data System (ADS)

    Amott, Russell; Harris, Ernest; Winter, Ron; Stirk, Stewart; Chapman, David; Eakins, Daniel

    2015-06-01

    Expanding cylinder experiments using a gas gun technique allow investigations into the ductility of metals and the fracture and fragmentation mechanisms that occur during rapid tensile failure. These experiments allow the radial strain-rate of the expansion to be varied in the range 102 to 104 s-1. Presented here is a comparative study of the fracture and fragmentation behaviour of rapidly expanded stainless steel 316L cylinders manufactured from either wrought bar or by additive manufacturing techniques. The results show that in the strain-rate regime studied, an additively manufactured cylinder failed at a higher strain and produced larger fragment widths compared to cylinders manufactured from wrought bar. In addition, an investigation into the role of deliberate equispaced macroscopic voids introduced into a cylinder wall has been undertaken. Using the unique properties of additive manufacture, elongated voids were introduced to the cylinder wall at an angle of 45° to the cylinder radius, and the resulting fragment patterns will be discussed. A comparison of the expanding cylinder profiles with simulations using CTH will also be presented.

  12. Measured Biaxial Residual Stress Maps in a Stainless Steel Weld

    DOE PAGES

    Olson, Mitchell D.; Hill, Michael R.; Patel, Vipul I.; ...

    2015-09-16

    Here, this paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a stainless steel weld. A long stainless steel (316L) plate with an eight-pass groove weld (308L filler) was used. The biaxial stress measurements follow a recently developed approach, comprising a combination of contour method and slitting measurements, with a computation to determine the effects of out-of-plane stress on a thin slice. The measured longitudinal stress is highly tensile in the weld- and heat-affected zone, with a maximum around 450 MPa, and compressive stress toward the transverse edges around ₋250more » MPa. The total transverse stress has a banded profile in the weld with highly tensile stress at the bottom of the plate (y = 0) of 400 MPa, rapidly changing to compressive stress (at y = 5 mm) of ₋200 MPa, then tensile stress at the weld root (y = 17 mm) and in the weld around 200 MPa, followed by compressive stress at the top of the weld at around ₋150 MPa. Finally, the results of the biaxial map compare well with the results of neutron diffraction measurements and output from a computational weld simulation.« less

  13. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    NASA Astrophysics Data System (ADS)

    Renault Laborne, Alexandra; Gavoille, Pierre; Malaplate, Joël; Pokor, Cédric; Tanguy, Benoît

    2015-05-01

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381-394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M6C and M23C6-type carbides, and γ'- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power.

  14. In situ evaluation of supersolidus liquid phase sintering phenomena of stainless steel 316L: Densification and distortion

    NASA Astrophysics Data System (ADS)

    Bollina, Ravi

    Supersolidus liquid phase sintering (SLPS) is a variant of liquid phase sintering. In SLPS, prealloyed powders are heated between the solidus and liquidus temperature of the alloy. This thesis focuses on processing of stainless steel 316L via SLPS by adding boron. Various amounts of boron were added to study the effect of boron on densification and distortion. The sintering window for water atomized 316L with 0.2% boron ranges from 1430 to 1435°C and 1225 to 1245°C for water atomized 316L with 0.8% boron. The rate of change of liquid content with temperature dVL/dt decreases from 1.5%/°C to 0.1%/°C for in increase in boron content from 0 to 0.8%, giving a wider range and better control during sintering. Further; effect of boron on mechanical properties and corrosion properties was researched. It was possible to achieve tensile strength of 476+/-21 MPa and an yield strength of 250+/-5 MPa with an elongation of 15+/-2 % in water atomized 316L with 0.8% boron. Fracture analysis indicates the presence of a brittle boride phase along the grain boundary causing intergranular fracture resulting in poor ductility. The crux of this thesis discusses the evolution of apparent viscosity and its relation to the microstructure. Beam bending viscometry was successfully used to evaluate the in situ apparent viscosity evolution of water atomized 316L with 0.2 and 0.8% boron additions. The apparent viscosity drops from 174 GPa.s at 1200°C to 4 GPa.s at 1275°C with increasing fractional liquid coverage in the water atomized 316L with 0.8% boron. The apparent viscosity calculated from bending beam and was used as an input into a finite element model (FEM) derived from constitutive equations and gives an excellent, fit between simulation and experiment. The densification behavior of boron doped stainless steel was modelled using Master Sintering Curve (MSC) (based on work of sintering) for the first time. It is proven that MSC can be used to identify change in densification rate

  15. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R, Shashanka, E-mail: shashankaic@gmail.com; Chaira, D., E-mail: chaira.debasis@gmail.com

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argonmore » atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness.« less

  16. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    NASA Astrophysics Data System (ADS)

    Cheng, Feng; Jiang, Shuyun

    2014-02-01

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (-200 V/80 A, labeled DLC-1, and -100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  17. 77 FR 3231 - Certain Stainless Steel Wire Rods From India: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-533-808] Certain Stainless Steel Wire... antidumping duty order on certain stainless steel wire rods from India would likely lead to continuation or... reviews of the antidumping duty order on certain stainless steel wire rods (``wire rods'') from India,\\1...

  18. Properties of HIPed stainless steel powder

    NASA Astrophysics Data System (ADS)

    Dellis, Ch.; Le Marois, G.; Gentzbittel, J. M.; Robert, G.; Moret, F.

    1996-10-01

    In the current design of ITER primary wall, 316LN stainless steel is the reference structural material. Austenitic stainless steel is used for water-cooling channels and structures. As material data on hot isostatic pressed (HIP) 316LN were not available in open literature and from powder producers, the main properties of unirradiated samples have been measured in CEA/CEREM. Fully dense material without any porosity is obtained when appropriate HIP parameters are applied. Microstructural examination and mechanical properties are confirmed that the HIPed 316LN material is equivalent to a very good fine-grain, isotropic and uniformly forged 316LN. Moreover, ultrasonic inspection showed that this fine and uniform microstructure produced a remarkably low noise, which allow the use of transverse waves at very high frequencies (4 MHz). Defects undetectable in forged material will be easily detected in HIPed material.

  19. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOEpatents

    Mott, Gerry; Attaar, Mustan; Rishel, Rick D.

    1989-08-08

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  20. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com; Idury, K.S.N. Satish, E-mail: satishidury@gmail.com; Ismail, T.P., E-mail: tpisma@gmail.com

    Austenitic stainless steels are widely used in high performance pressure vessels, nuclear, chemical, process and medical industry due to their very good corrosion resistance and superior mechanical properties. However, austenitic stainless steels are prone to sensitization when subjected to higher temperatures (673 K to 1173 K) during the manufacturing process (e.g. welding) and/or certain applications (e.g. pressure vessels). During sensitization, chromium in the matrix precipitates out as carbides and intermetallic compounds (sigma, chi and Laves phases) decreasing the corrosion resistance and mechanical properties. In the present investigation, 304L austenitic stainless steel was subjected to different heat inputs by shielded metalmore » arc welding process using a standard 308L electrode. The microstructural developments were characterized by using optical microscopy and electron backscattered diffraction, while the residual stresses were measured by X-ray diffraction using the sin{sup 2}ψ method. It was observed that even at the highest heat input, shielded metal arc welding process does not result in significant precipitation of carbides or intermetallic phases. The ferrite content and grain size increased with increase in heat input. The grain size variation in the fusion zone/heat affected zone was not effectively captured by optical microscopy. This study shows that electron backscattered diffraction is necessary to bring out changes in the grain size quantitatively in the fusion zone/heat affected zone as it can consider twin boundaries as a part of grain in the calculation of grain size. The residual stresses were compressive in nature for the lowest heat input, while they were tensile at the highest heat input near the weld bead. The significant feature of the welded region and the base metal was the presence of a very strong texture. The texture in the heat affected zone was almost random. - Highlights: • Effect of heat input on microstructure

  1. Focal osteolysis at the junctions of a modular stainless-steel femoral intramedullary nail.

    PubMed

    Jones, D M; Marsh, J L; Nepola, J V; Jacobs, J J; Skipor, A K; Urban, R M; Gilbert, J L; Buckwalter, J A

    2001-04-01

    (mean, 1.27 ng/ mL; range, 0.34 to 3.12 ng/mL) were twice as high as those in group 2 (mean, 0.53 ng/mL; range, 0.12 to 1.26 ng/mL). However, this difference did not reach significance with the numbers available. The differences in serum chromium levels between group 1 and the control group with a one-piece nail (mean, 0.26 ng/mL; range, 0.015 to 1.25 ng/mL) (p<0.01) and a control group without an implant (mean, 0.05 ng/mL; range, 0.015 to 0.25 ng/ mL) (p<0.01) were significant. The level of thigh pain recorded on the visual analog scale was also significantly different between group 1 and the control group with a one-piece implant (p = 0.03). Retrieved modular nails had signs of fretting corrosion as well as stainless-steel corrosion products adherent to the junction where the osteolysis occurred. Histologic and spectrographic analysis revealed two types of corrosion products that were consistent with stainless-steel within the peri-implant tissue and were associated with a foreign-body granulomatous response. The presence of corrosion products at the taper junctions suggests that particulate debris was a major factor in the etiology of the radiographic findings of osteolysis, periosteal reaction, and cortical thickening. Serum chromium levels were substantially elevated in the patients with a modular femoral nail, and such levels may serve as a marker of fretting corrosion of these devices.

  2. Application of dynamic milling in stainless steel processing

    NASA Astrophysics Data System (ADS)

    Shan, Wenju

    2017-09-01

    This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.

  3. Nano-composite stainless steel

    DOEpatents

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  4. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaman, Ibrahim; Arroyave, Raymundo

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanicalmore » response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina

  5. Risk of lung cancer according to mild steel and stainless steel welding.

    PubMed

    Sørensen, Anita Rath; Thulstrup, Ane Marie; Hansen, Johnni; Ramlau-Hansen, Cecilia Høst; Meersohn, Andrea; Skytthe, Axel; Bonde, Jens Peter

    2007-10-01

    Whether the elevated risk of lung cancer observed among welders is caused by welding emissions or by confounding from smoking or asbestos exposure is still not resolved. This question was addressed in a cohort with a long follow-up and quantified estimates of individual exposure to welding fume particulates. Male metal workers employed at least 1 year at one or more Danish stainless or mild steel industrial companies from 1964 through 1984 were enrolled in a cohort. Data on occupational and smoking history were obtained by questionnaire in 1986. Welders in the cohort who started welding in 1960 or later (N=4539) were followed from April 1968 until December 2003, when information on cancer diagnosis was obtained from the Danish Cancer Registry. During the follow-up, 75 cases of primary lung cancer were identified. Lifetime accumulated exposure to welding fume particulates was estimated by combining questionnaire information and more than 1000 welding-process-specific measurements of fume particulates in the Danish welding industry. The standardized incidence ratio (SIR) for lung cancer was increased among the welders [SIR 1.35, 95% confidence interval (95% CI) 1.06-1.70)]. Among the stainless steel welders, the risk increased significantly with increasing accumulative welding particulate exposure, while no exposure-response relation was found for mild steel welders, even after adjustment for tobacco smoking and asbestos exposure. The study corroborates earlier findings that welders have an increased risk of lung cancer. While exposure-response relations indicate carcinogenic effects related to stainless steel welding, it is still unresolved whether the mild steel welding process carries a carcinogenic risk.

  6. Surface buffing and its effect on chloride induced SCC of 304L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    kumar, Pandu Sunil; Ghosh Acharyya, Swati; Ramana Rao, S. V.; Kapoor, Komal

    2018-02-01

    The study focuses on the impact of buffing operation on the stress corrosion cracking (SCC) susceptibility of 304L austenitic stainless steel (SS). The SCC susceptibility of the buffed surfaces were determined by testing in boiling magnesium chloride (MgCl2) environment as per ASTM G 36. Test was conducted for 3hr, 9hr and 72hr to study the SCC susceptibility. Buffed surfaces were resistant to SCC even after 72hr of exposure to boiling MgCl2. The surface and cross section of the samples were examined for both before and after exposure to boiling MgCl2 and was characterized using optical microscopy. The study revealed that buffing operation induces compressive residual stresses on the surface, which helps in protecting the surface from SCC.

  7. Cryogenic thermal emittance measurements on small-diameter stainless steel tubing

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.; Tuttle, James G.; Canavan, Edgar R.

    2017-12-01

    The Mid Infrared Instrument aboard the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of ~2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by running a warm gas through the lines to sublimate the frozen water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the absorptance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 280 K. These values lead to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.

  8. Cryogenic Thermal Emittance Measurements on Small-Diameter Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Jahromi, Amir E.; Tuttle, James G.; Canavan, Edgar R.

    2017-01-01

    The Mid Infrared Instrument aboard the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of 2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by running a warm gas through the lines to sublimate the frozen water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the absorptance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 280 K. These values lead to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.

  9. Cryogenic Thermal Emittance Measurements on Small-Diameter Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Jahromi, A. E.; Tuttle, J. G.; Canavan, E. R.

    2017-01-01

    The Mid Infrared Instrument aboard the James Webb Space Telescoep includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of approximately 2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by a running a warm gas through the lines to sublimate the water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the abosprtance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 300 K. This value leads to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.

  10. Effect of post weld heat treatment on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel weldments

    NASA Astrophysics Data System (ADS)

    Xin, Jijun; Fang, Chao; Song, Yuntao; Wei, Jing; Xu, Shen; Wu, Jiefeng

    2017-04-01

    The effect of postweld heat treatment (PWHT) on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel joints with ER316LMn filler material was investigated. PWHT aging was performed for 1 h at four different temperatures of 600 °C, 760 °C, 870 °C and 920 °C, respectively. The microstructure revealed the sigma phase precipitation occurred in the weld metals heat-treated at the temperature of 870 °C and 920 °C. The PWHT temperatures have the less effect on the tensile strength, and the maximum tensile strength of the joints is about 630 MPa, reaching the 95% of the base metal, whereas the elongation is enhanced with the rise of PWHT temperatures. Meanwhile, the sigma phase precipitation in the weld metals reduces the impact toughness.

  11. Spreading of lithium on a stainless steel surface at room temperature

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2016-01-01

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium-lithium bonding.

  12. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir; Karimzadeh, F.; Enayati, M.H.

    In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties ofmore » the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the

  13. An Evaluation of the Corrosion and Mechanical Performance of Interstitially Surface Hardened Stainless Steel

    DTIC Science & Technology

    2013-05-10

    Performance of Interstitially Surface Hardened Stainless Steel 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jones, Jennifer Lynn...interstitial carbon atoms into stainless steel surfaces without the formation of carbides. Surface hardening of machine elements such as impellors or...the corrosion resistance of the stainless steel is retained, rather than degraded, is of particular interest for marine applications. This project

  14. Evaluation of rolling contact fatigue of induction heated 13Cr-2Ni-2Mo Stainless steel bar with Si3N4-ball

    NASA Astrophysics Data System (ADS)

    Yadoiwa, Ariyasu; Mizobe, Koshiro; Kida, Katsuyuki

    2018-03-01

    13Cr % martensitic stainless steels were used in various industry, because they have excellent corrosion resistance and high hardness among other stainless steels. They are also expected as a bearing material, however, the research on rolling contact fatigue (RCF) is not enough. In this study, 13Cr-2Ni-2Mo stainless steels were quenched by induction heating and their RCF lives were evaluated. A Si3N4-ball was used in order to apply higher stress (Pmax = 5.6 GPa) than our previous tests (Pmax=5.3 GPa), in a single-ball RCF testing machine. It was found that the basic life (L10) was 2.20×106 cycles and Median life (L50) was 6.04×106 cycles. In addition, Weibull modulus became higher than the previous tests.

  15. A mortality study among mild steel and stainless steel welders.

    PubMed Central

    Moulin, J J; Wild, P; Haguenoer, J M; Faucon, D; De Gaudemaris, R; Mur, J M; Mereau, M; Gary, Y; Toamain, J P; Birembaut, Y

    1993-01-01

    A mortality study was carried out in conjunction with the European mortality study among welders coordinated by the International Agency for Research on Cancer (IARC). The study was aimed at assessing risks for lung cancer in relation to exposure to asbestos, welding fumes containing chromium and nickel, and tobacco smoke. The study included a cohort of 2721 welders and an internal comparison group of 6683 manual workers employed in 13 factories in France. The mortality of the two cohorts was studied from 1975 to 1988 by the historical prospective method. Job histories of welders were traced including welding processes used, metals welded, and proportion of worktime spent in welding. Data on smoking habits were collected from medical records. The observed number of deaths were compared with those expected (standardised mortality ratio (SMR)) based on national rates with adjustments for age, sex, and calendar time. The smoking habits of 87% of the whole study population were known. The distribution of welders and controls according to smoking was not statistically different. The overall mortality was slightly higher for welders (SMR = 1.02, 95% confidence interval (95% CI) 0.89-1.18) than for controls (SMR = 0.91, 95% CI 0.84-0.99). For lung cancer, the SMR was 1.24 (95% CI 0.75-1.94) for welders, whereas the corresponding value was lower for controls (SMR = 0.94, 95% CI 0.68-1.26). The SMR for lung cancer was 1.59 among non-shipyard mild steel welders (95% CI 0.73-3.02). This contrasted with the results for all stainless steel welders (SMR = 0.92, 95% CI 0.19-2.69), and for stainless steel welders predominantly exposed to chromium VI (SMR = 1.03, 95% CI 0.12-3.71). Moreover, SMRs for lung cancer for mild steel welders tended to increase with duration of exposure and time since first exposure, leading to significant excesses for duration > or = 20 years and latency > or = 20 years. Such a pattern was not found for stainless steel welders. PMID:8457490

  16. Inhibitory activity of Paenibacillus polymyxa on the biofilm formation of Cronobacter spp. on stainless steel surfaces.

    PubMed

    Yang, Soonwook; Kim, Seonhwa; Ryu, Jee-Hoon; Kim, Hoikyung

    2013-07-01

    The objective of this study was to control the survival or biofilm formation of Cronobacter spp. on stainless steel surfaces using Paenibacillus polymyxa. The antibacterial activity of a cell-free culture supernatant (CFCS) of P. polymyxa against Cronobacter spp. was found to vary with P. polymyxa incubation time. Maximum activity occurred when P. polymyxa was incubated at 25 or 30 °C for 96 h. When the CFCS was introduced to Cronobacter spp. adhered to stainless steel strips at 25 °C for up to 72 h, the CFCS successfully inhibited Cronobacter biofilm formation. Additionally, stainless steel surfaces with a preformed P. polymyxa biofilm were exposed to Cronobacter spp. suspensions in PBS or 0.1% peptone water at 3, 5, or 7 log CFU/mL to facilitate its attachment. The Cronobacter population significantly decreased on this surface, regardless of inoculum level or carrier, when the P. polymyxa biofilm was present. However, the microbial population decreased within 6 h and remained unchanged thereafter when the surface was immersed in an inoculum suspended in 0.1% peptone water at 5 or 7 log CFU/mL. These results indicate that P. polymyxa is able to use a promising candidate competitive-exclusion microorganism to control Cronobacter spp. © 2013 Institute of Food Technologists®

  17. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel.

    PubMed

    Qi, Litao; Nishii, Kazuhiro; Namba, Yoshiharu

    2009-06-15

    In this research, we studied the formation of laser-induced periodic surface structures on the stainless steel surface using femtosecond laser pulses. A 780 nm wavelength femtosecond laser, through a 0.2 mm pinhole aperture for truncating fluence distribution, was focused onto the stainless steel surface. Under different experimental condition, low-spatial-frequency laser-induced periodic surface structures with a period of 526 nm and high-spatial-frequency laser-induced periodic surface structures with a period of 310 nm were obtained. The mechanism of the formation of laser-induced periodic surface structures on the stainless steel surface is discussed.

  18. Precipitation-hardening stainless steels with a shape-memory effect

    NASA Astrophysics Data System (ADS)

    Sagaradze, V. V.; Afanasiev, S. V.; Volkova, E. G.; Zavalishin, V. A.

    2016-02-01

    The possibility of obtaining the shape-memory effect as a result of the γ → ɛ → γ transformations in aging stainless steels strengthened by VC carbides has been investigated. Regimes are given for strengthening aging (at 650 and 720°C) for stainless steels that predominantly contain (in wt %) 0.06-0.45C, 1-2V, 2-5Si, 9 and 13-14Cr. The values of reversible deformation e (amount of shape-memory effect) determined after heating to 400°C in samples preliminarily deformed to 3.5-4% vary from 0.15 to 2.7%, depending on the composition of the steels and regimes of stabilizing and destabilizing aging.

  19. Precise carbon control of fabricated stainless steel

    DOEpatents

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  20. Filler metal selection for welding a high nitrogen stainless steel

    NASA Astrophysics Data System (ADS)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  1. 77 FR 27437 - Drawn Stainless Steel Sinks From the People's Republic of China: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-984] Drawn Stainless Steel Sinks...'') initiated an investigation of drawn stainless steel sink from the People's Republic of China (``PRC''). See Drawn Stainless Steel Sinks from the People's Republic of China: Initiation of Countervailing Duty...

  2. Effect of chloride ion on corrosion behavior of SUS316L-grade stainless steel in nitric acid solutions containing seawater components under γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Ambai, H.; Takeuchi, M.; Iijima, S.; Uchida, N.

    2017-09-01

    Concerning the Fukushima Daiichi nuclear power plant accident, we investigated the effect of chloride ion on the corrosion behavior of SUS316L stainless steel, which is a typical material for the equipment used in reprocessing, in HNO3 solution containing seawater components, including under γ-ray irradiation condition. Electrochemical and immersion tests were carried out using a mixture of HNO3 and artificial seawater (ASW). In the HNO3 solution containing high amounts of ASW, the cathodic current densities increased and uniform corrosion progressed. This might be caused by strong oxidants, such as Cl2 and NOCl, generated in the reaction between HNO3 and Cl- ions. The corrosion rate decreased with the immersion time at low concentrations of HNO3, while it increased at high concentrations. Under γ-ray irradiation condition, the corrosion rate decreased due to the suppression of the cathodic reactions by the reaction between the above oxidants and HNO2 generated by radiolysis.

  3. Thermo-mechanical behavior of stainless steel knitted structures

    NASA Astrophysics Data System (ADS)

    Hamdani, Syed Talha Ali; Fernando, Anura; Maqsood, Muhammad

    2016-09-01

    Heating fabric is an advanced textile material that is extensively researched by the industrialists and the scientists alike. Ability to create highly flexible and drapeable heating fabrics has many applications in everyday life. This paper presents a study conducted on the comparison of heatability of knitted fabric made of stainless steel yarn. The purpose of the study is to find a suitable material for protective clothing against cold environments. In the current research the ampacity of stainless steel yarn is observed in order to prevent the overheating of the heating fabrics. The behavior of the knitted structure is studied for different levels of supply voltage. Infrared temperature sensing is used to measure the heat generated from the fabrics in order to measure the temperature of the fabrics without physical contact. It is concluded that interlock structure is one of the most suited structures for knitted heating fabrics. As learnt through this research, fabrics made of stainless steel yarn are capable of producing a higher level of heating compared to that of knitted fabric made using silver coated polymeric yarn at the same supply voltage.

  4. Design and construction of precast piles with stainless reinforcing steel.

    DOT National Transportation Integrated Search

    2014-02-01

    The service life of prestressed concrete piles is, in part, dictated by the time required to corrode the steel once : chloride ions are at the surface of the steel. Stainless steel materials, although limited in availability in strand : form, have a ...

  5. Hydroxyapatite-TiO2-SiO2-Coated 316L Stainless Steel for Biomedical Application

    NASA Astrophysics Data System (ADS)

    Sidane, Djahida; Khireddine, Hafit; Bir, Fatima; Yala, Sabeha; Montagne, Alex; Chicot, Didier

    2017-07-01

    This study investigated the effectiveness of titania (TiO2) as a reinforcing phase in the hydroxyapatite (HAP) coating and silica (SiO2) single layer as a bond coat between the TiO2-reinforced hydroxyapatite (TiO2/HAP) top layer and 316L stainless steel (316L SS) substrate on the corrosion resistance and mechanical properties of the underlying 316L SS metallic implant. Single layer of SiO2 film was first deposited on 316L SS substrate and studied separately. Water contact angle measurements, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrophotometer analysis were used to evaluate the hydroxyl group reactivity at the SiO2 outer surface. The microstructural and morphological results showed that the reinforcement of HAP coating with TiO2 and SiO2 reduced the crystallite size and the roughness surface. Indeed, the deposition of 50 vol pct TiO2-reinforced hydroxyapatite layer enhanced the hardness and the elastic modulus of the HAP coating, and the introduction of SiO2 inner layer on the surface of the 316L SS allowed the improvement of the bonding strength and the corrosion resistance as confirmed by scratch studies, nanoindentation, and cyclic voltammetry tests.

  6. Cast CF8C-Plus Stainless Steel for Turbocharger Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maziasz, P.J.; Shyam, A.; Evans, N.D.

    2010-06-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) project is to provide the critical test data needed to qualify CF8C-Plus cast stainless steel for commercial production and use for turbocharger housings with upgraded performance and durability relative to standard commercial cast irons or stainless steels. The turbocharger technologies include, but are not limited to, heavy-duty highway diesel engines, and passenger vehicle diesel and gasoline engines. This CRADA provides additional critical high-temperature mechanical properties testing and data analysis needed to quality the new CF8C-Plus steels for turbocharger housing applications.

  7. Stainless-steel elbows formed by spin forging

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Large seamless austenitic stainless steel elbows are fabricated by spin forging /rotary shear forming/. A specially designed spin forging tool for mounting on a hydrospin machine has been built for this purpose.

  8. Comparative Shock Response of Additively Manufactured Versus Conventionally Wrought 304L Stainless Steel*

    NASA Astrophysics Data System (ADS)

    Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.

    2015-06-01

    Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology allows direct fabrication of metal parts. For the present study, a velocity interferometer (VISAR) measured the time-resolved motion of samples subjected to one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.5 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. Observed differences in shock loading and unloading characteristics for the two 304L source variants have been correlated to complementary Kolsky bar results for compressive and tensile testing at lower strain rates. The effects of composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and sample axis orientation relative to the additive manufacturing deposition trajectory have been assessed to explain differences between the AM and baseline 304L dynamic mechanical properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  9. 78 FR 14270 - Stainless Steel Sheet and Strip in Coils From Mexico: Notice of Settlement of NAFTA Proceedings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-822] Stainless Steel Sheet and... stainless steel sheet and strip in coils from Mexico (SSSS from Mexico). See Stainless Steel Sheet and Strip..., 2010, as a result of a sunset review. See Stainless Steel Sheet and Strip in Coils from Germany, Italy...

  10. 77 FR 24459 - Stainless Steel Butt-Weld Pipe Fittings From Italy: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... CR, of wrought austenitic stainless steel fittings of seamless and welded construction covered by the... DEPARTMENT OF COMMERCE International Trade Administration [A-475-828] Stainless Steel Butt-Weld... administrative review of the antidumping duty order on stainless steel butt-weld pipe fittings (SSBW pipe...

  11. 77 FR 42697 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Continuation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ...] Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Continuation of.... International Trade Commission that revocation of the antidumping duty orders on stainless steel butt-weld pipe... from Italy, Malaysia, and the Philippines.\\2\\ \\1\\ See Antidumping Duty Orders: Stainless Steel Butt...

  12. 77 FR 58355 - Drawn Stainless Steel Sinks From the People's Republic of China: Countervailing Duty Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-984] Drawn Stainless Steel Sinks... investigations of drawn stainless steel sinks from the People's Republic of China.\\1\\ On August 6, 2012, the Department published its preliminary countervailing duty determination.\\2\\ \\1\\ See Drawn Stainless Steel...

  13. Application Electrochemical Impedance Spectroscopy Methods to Evaluation Corrosion Behavior of Stainless steels 304 in Nanofluids Media

    NASA Astrophysics Data System (ADS)

    Hadi Prajitno, Djoko; Umar, Efrizon; Gustaman Syarif, Dani

    2017-01-01

    Corrosion is a common problem in many engineering metals and alloys. Electrochemical methods are commonly instrument to use as tool to study the corrosion behavior of the metals and alloy. This method was examined interaction between a surface of the metals and alloys in corrosive media. The present paper, the effects of nano particle ZrO2 as an additive to aqua de mineralized on the corrosion behavior of stainless steel were investigated. Electrochemical impedance spectroscopy (EIS) testing was performed in both de mineralized water and demineralized water contain nano particle 0,01% ZrO2 as Nano fluid. Surface morphology examination of the specimens showed that microstructure of stainless steel 304 alloys relatively unchanged after corrosion and EIS testing. According to the corrosion potential examination of the stainless steel 304 in nanofluid media, it showed that stainless steel 304 actively corroded in nanofluida media. The value of anodic Tafel slope stainless steel 304 in nanofluid higher compare with in demineralized water. Tafel polarization examination show that corrosion rate of stainless steel 304 in nanofluid higher compare with corrosin rate in demineralized media.EIS technique show that impedance of stainless steel 304 in nanofluid lower compare with in demineralized media, resulting in an increase in the corrosion rates of these stainless steel 304 specimens in nano fluids

  14. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadegan, M.; State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin; Feng, A.H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure withmore » some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.« less

  15. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    PubMed Central

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A

    2013-01-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 hours, respectively. PMID:23498233

  16. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers.

    PubMed

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an "active" antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian

    2016-03-01

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.

  18. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders: a nationwide follow-up study.

    PubMed

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni; Bonde, Jens Peter

    2015-08-01

    The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. A Danish national company-based historical cohort of 5,303 male ever-welders was followed from 1995 to 2011 in the Danish Medicinal Product Registry to identify the first-time redemption of asthma pharmaceuticals including beta-2-adrenoreceptor agonists, adrenergic drugs for obstructive airway diseases and inhalable glucocorticoids. Lifetime exposure to welding fume particulates was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated using a Cox proportional hazards model adjusting for potential confounders and taking modifying effects of smoking into account. The average incidence of redemption of asthma pharmaceuticals in the cohort was 16 per 1,000 person year (95% CI 10-23 per 1,000 person year). A moderate nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95% CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95% CI 1.06-2.02). Mild steel welding was not associated with increased risk of use asthma pharmaceuticals. The present study indicates that long-term exposure to stainless steel welding is related to increased risk of asthma in non-smokers.

  19. Additive Manufacturing of High-Performance 316L Stainless Steel Nanocomposites via Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    AlMangour, Bandar Abdulaziz

    Austenitic 316L stainless steel alloy is an attractive industrial material combining outstanding corrosion resistance, ductility, and biocompatibility, with promising structural applications and biomedical uses. However, 316L has low strength and wear resistance, limiting its high-performance applicability. Adding secondary hard nanoscale reinforcements to steel matrices, thereby forming steel-matrix nanocomposites (SMCs), can overcome these problems, improving the performance and thereby the applicability of 316L. However, SMC parts with complex-geometry cannot be easily achieved limiting its application. This can be avoided through additive manufacturing (AM) by generating layer-by-layer deposition using computer-aided design data. Expanding the range of AM-applicable materials is necessary to fulfill industrial demand. This dissertation presents the characteristics of new AM-processed high-performance 316L-matrix nanocomposites with nanoscale TiC or TiB2 reinforcements, addressing specific aspects of material design, process control and optimization, and physical metallurgy theory. The nanocomposites were prepared by high-energy ball-milling and consolidated by AM selective laser melting (SLM). Continuous and refined ring-like network structures were obtained with homogenously distributed reinforcements. Additional grain refinement occurred with reinforcement addition, attributed to nanoparticles acting as nuclei for heterogeneous nucleation. The influence of reinforcement content was first investigated; mechanical and tribological behaviors improved with increased reinforcement contents. The compressive yield strengths of composites with TiB2 or TiC reinforcements were approximately five or two times those of 316L respectively. Hot isostatic pressing post-treatment effectively eliminated major cracks and pores in SLM-fabricated components. The effects of the SLM processing parameters on the microstructure and mechanical performance were also investigated. Laser

  20. Materials data handbooks on stainless steels

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1973-01-01

    Two handbooks which summarize latest available data have been published. Two types of stainless steels, alloy A-286 and Type 301, are described. Each handbook is divided into twelve chapters. Scope of information presented includes physical- and mechanical-property data at cryogenic, ambient, and elevated temperatures.

  1. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ...)] Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY: United States... duty orders on stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan... stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan would be likely to...

  2. Spreading of lithium on a stainless steel surface at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less

  3. Spreading of lithium on a stainless steel surface at room temperature

    DOE PAGES

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; ...

    2015-11-10

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less

  4. Grafting of ionic liquids on stainless steel surface for antibacterial application.

    PubMed

    Pang, Li Qing; Zhong, Li Juan; Zhou, Hui Fang; Wu, Xue E; Chen, Xiao Dong

    2015-02-01

    Stainless steel (SS) is favored for many uses due to its excellent chemical resistance, thermal stability and mechanical properties. Biofilms can be formed on stainless steel and may lead to serious hygiene problems and economic losses in many areas, e.g. food processing, public infrastructure and healthcare. For the first time, our work endeavored to make SS having antibacterial properties, ionic liquids (ILs) were grafted on SS surface via silane treatment followed by thiol-ene click reaction. The chemical structure and composition of the ILs grafted stainless-steel coupon surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The antibacterial activity has been investigated, and the results showed that the ILs grafted SS surface exhibited significant antibacterial effects against Gram-negative Escherichia coli. Additionally, the results obtained here indicated that the ILs used here having bromide anion showed much better antibacterial activity against E. coli than the corresponding ILs with tetrafluoroborate and hexafluorophosphate as anions. These results obtained here can help to design novel and more efficient stainless steel having antibacterial surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Stainless steel corrosion scale formed in reclaimed water: Characteristics, model for scale growth and metal element release.

    PubMed

    Cui, Yong; Liu, Shuming; Smith, Kate; Hu, Hongying; Tang, Fusheng; Li, Yuhong; Yu, Kanghua

    2016-10-01

    Stainless steels generally have extremely good corrosion resistance, but are still susceptible to pitting corrosion. As a result, corrosion scales can form on the surface of stainless steel after extended exposure to aggressive aqueous environments. Corrosion scales play an important role in affecting water quality. These research results showed that interior regions of stainless steel corrosion scales have a high percentage of chromium phases. We reveal the morphology, micro-structure and physicochemical characteristics of stainless steel corrosion scales. Stainless steel corrosion scale is identified as a podiform chromite deposit according to these characteristics, which is unlike deposit formed during iron corrosion. A conceptual model to explain the formation and growth of stainless steel corrosion scale is proposed based on its composition and structure. The scale growth process involves pitting corrosion on the stainless steel surface and the consecutive generation and homogeneous deposition of corrosion products, which is governed by a series of chemical and electrochemical reactions. This model shows the role of corrosion scales in the mechanism of iron and chromium release from pitting corroded stainless steel materials. The formation of corrosion scale is strongly related to water quality parameters. The presence of HClO results in higher ferric content inside the scales. Cl - and SO 4 2- ions in reclaimed water play an important role in corrosion pitting of stainless steel and promote the formation of scales. Copyright © 2016. Published by Elsevier B.V.

  6. 76 FR 46323 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ...)] Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan Determination On the... antidumping duty orders on stainless steel sheet and strip from Japan, Korea, and Taiwan \\3\\ would be likely... Commissioner Daniel R. Pearson dissenting with respect to stainless steel sheet and strip from Japan, Korea...

  7. Reduced graphene oxide growth on 316L stainless steel for medical applications

    NASA Astrophysics Data System (ADS)

    Cardenas, L.; MacLeod, J.; Lipton-Duffin, J.; Seifu, D. G.; Popescu, F.; Siaj, M.; Mantovani, D.; Rosei, F.

    2014-07-01

    We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm-1 and 1350 cm-1, respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.

  8. Corrosion of austenitic and martensitic stainless steels in flowing 17Li83Pb alloy

    NASA Astrophysics Data System (ADS)

    Broc, M.; Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    With regard to the behaviour of 316 L stainless steel at 400°C in flowing anisothermal 17Li83Pb the mass transfer suffered by this steel appears to be quite important without noticeable influence of constant or cyclic stress. Evaluation made from solution-annealed specimens leads to a corrosion rate of approximately 30 μm yr -1 at steady state to which a depth of 25 μm has to be added to take into account the initial period phenomena. On the other hand, with semi-stagnant 17Li83Pb at 400° C, the mass transfer of 316 L steel appears to be lower and more acceptable after a 3000-h exposure; but long-time kinetics data have to be achieved in order to see if that better behaviour is persistent and does not correspond to a longer incubation period. As for the martensitic steels their corrosion rate at 450°C in the thermal convection loop TULIP is constant up to 3000 h and five times lower than that observed for 316 L steel in the same conditions.

  9. Characteristic of Low Temperature Carburized Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Istiroyah; Pamungkas, M. A.; Saroja, G.; Ghufron, M.; Juwono, A. M.

    2018-01-01

    Low temperature carburizing process has been carried out on austenitic stainless steel (ASS) type AISI 316L, that contain chromium in above 12 at%. Therefore, conventional heat treatment processes that are usually carried out at high temperatures are not applicable. The sensitization process due to chromium migration from the grain boundary will lead to stress corrosion crack and decrease the corrosion resistance of the steel. In this study, the carburizing process was carried out at low temperatures below 500 °C. Surface morphology and mechanical properties of carburized specimens were investigated using optical microscopy, non destructive profilometer, and Vicker microhardness. The surface roughness analysis show the carburising process improves the roughness of ASS surface. This improvement is due to the adsorption of carbon atoms on the surface of the specimen. Likewise, the hardness test results indicate the carburising process increases the hardness of ASS.

  10. Nanotribological behavior of deep cryogenically treated martensitic stainless steel

    PubMed Central

    Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban

    2017-01-01

    Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally. PMID:28904837

  11. Nanotribological behavior of deep cryogenically treated martensitic stainless steel.

    PubMed

    Prieto, Germán; Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban

    2017-01-01

    Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic-plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.

  12. From flint to stainless steel: observations on surgical instrument composition.

    PubMed Central

    Kirkup, J.

    1993-01-01

    Man's failure to extract deeply embedded thorns and arrowheads, with bare hands and teeth, stimulated 'instrument substitutes' mimicking these appendages. Evidence from primitive communities suggest animal, plant and mineral items were employed, both before and after metal became the standard material of today's armamentarium. Changing surgical instrument composition has mirrored concurrent technology and manufacturing methods both of which are reviewed. Particular significance is accorded flint, bronze, crucible steel, thermal sterilisation, nickel-plate, stainless steel and disposable plastics. The paper is based on an exhibition From Flint to Stainless Steel on display at the College. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8215156

  13. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    NASA Technical Reports Server (NTRS)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  14. Osteoblast and monocyte responses to 444 ferritic stainless steel intended for a magneto-mechanically actuated fibrous scaffold.

    PubMed

    Malheiro, Vera N; Spear, Rose L; Brooks, Roger A; Markaki, Athina E

    2011-10-01

    The rationale behind this work is to design an implant device, based on a ferromagnetic material, with the potential to deform in vivo promoting osseointegration through the growth of a healthy periprosthetic bone structure. One of the primary requirements for such a device is that the material should be non-inflammatory and non-cytotoxic. In the study described here, we assessed the short-term cellular response to 444 ferritic stainless steel; a steel, with a very low interstitial content and a small amount of strong carbide-forming elements to enhance intergranular corrosion resistance. Two different human cell types were used: (i) foetal osteoblasts and (ii) monocytes. Austenitic stainless steel 316L, currently utilised in many commercially available implant designs, and tissue culture plastic were used as the control surfaces. Cell viability, proliferation and alkaline phosphatase activity were measured. In addition, cells were stained with alizarin red and fluorescently-labelled phalloidin and examined using light, fluorescence and scanning electron microscopy. Results showed that the osteoblast cells exhibited a very similar degree of attachment, growth and osteogenic differentiation on all surfaces. Measurement of lactate dehydrogenase activity and tumour necrosis factor alpha protein released from human monocytes indicated that 444 stainless steel did not cause cytotoxic effects or any significant inflammatory response. Collectively, the results suggest that 444 ferritic stainless steel has the potential to be used in advanced bone implant designs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Phase transition of AISI type 304L stainless steel induced by severe plastic deformation via cryo-rolling

    NASA Astrophysics Data System (ADS)

    Shit, Gopinath; Bhaskar, Pragna; Ningshen, S.; Dasgupta, A.; Mudali, U. Kamachi; Bhaduri, A. Kumar

    2017-05-01

    The phase transition induced by Severe Plastic Deformation (SPD) was confirmed in metastable AISI type 304L austenitic stainless steel (SS). SPD via cryo-rolling in liquid nitrogen (L-N2) temperature is the adopted route for correlating the phase transition and corrosion resistance. The thickness of the annealed AISI type 304L SS at 1050°C sheet was reduced step by step from 15% to 50% of its initial thickness. The phase changes and phase transformation are qualitatively analyzed by X-Ray Diffraction (XRD) method. During the process, the XRD of each Cryo-Rolled and annealed sample was analyzed and different phases and phase transitions are measured. The investigated AISI type 304L SS by SPD reveals a microstructure of γ-austenite; α'-marternsite and ɛ-martensite formation depending on the percentage of cryo-rolling. The Vickers hardness (HV) of the samples is also measured. The corrosion rate of the annealed sheet and cryo rolled sample was estimated in boiling nitric acid as per ASTM A-262 practice-C test.

  16. Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel.

    PubMed

    Thanh, Dinh Thi Mai; Nam, Pham Thi; Phuong, Nguyen Thu; Que, Le Xuan; Anh, Nguyen Van; Hoang, Thai; Lam, Tran Dai

    2013-05-01

    Hydroxyapatite (HAp) coatings were prepared on 316L stainless steel (316LSS) substrates by electrochemical deposition in the solutions containing Ca(NO3)2·4H2O and NH4H2PO4 at different electrolyte concentrations. Along with the effect of precursor concentration, the influence of temperature and H2O2 content on the morphology, structure and composition of the coating was thoroughly discussed with the help of X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra. The in vitro tests in simulated body fluids (SBF) were carried out and then the morphological and structural changes were estimated by SEM and electrochemical techniques (open circuit potential, polarization curves, Nyquist and Bode spectra measurements). Being simple and cost-effective, this method is advantageous for producing HAp implant materials with good properties/characteristics, aiming towards in vivo biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Aggregation of a Monoclonal Antibody Induced by Adsorption to Stainless Steel

    PubMed Central

    Bee, Jared S.; Davis, Michele; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.

    2014-01-01

    Stainless steel is a ubiquitous surface in therapeutic protein production equipment and is also present as the needle in some pre-filled syringe biopharmaceutical products. Stainless steel microparticles can cause of aggregation of a monoclonal antibody (mAb). The initial rate of mAb aggregation was second-order in steel surface area and zero-order in mAb concentration, generally consistent with a bimolecular surface aggregation being the rate-limiting step. Polysorbate 20 (PS20) suppressed the aggregation yet was unable to desorb the firmly bound first layer of protein that adsorbs to the stainless steel surface. Also, there was no exchange of mAb from the first adsorbed layer to the bulk phase, suggesting that the aggregation process actually occurs on subsequent adsorption layers. No oxidized Met residues were detected in the mass spectrum of a digest of a highly aggregated mAb, although there was five-fold increase in carbonyl groups due to protein oxidation. PMID:19725039

  18. 77 FR 60673 - Drawn Stainless Steel Sinks From the People's Republic of China: Antidumping Duty Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... countertop). Stainless steel sinks with multiple drawn bowls that are joined through a welding operation to... the stainless steel, and then welding and finishing the vertical corners to form the bowls. Stainless...

  19. Microbiological test results using three urine pretreatment regimes with 316L stainless steel

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    1993-01-01

    Three urine pretreatments, (1) Oxone (Dupont) and sulfuric acid, (2) sodium hypochlorite and sulfuric acid, (3) and ozone, were studied for their ability to reduce microbial levels in urine and minimize surface attachment to 316L stainless steel coupons. Urine samples inoculated with Bacillus insolitus and a filamentous mold, organisms previously recovered from the vapor compression distillation subsystem of NASA Space Station Freedom water recovery test were tested in glass corrosion cells containing base or weld metal coupons. Microbial levels, changes in pH, color, turbidity, and odor of the fluid were monitored over the course of the 21-day test. Specimen surfaces were examined by scanning electron microscopy at completion of the test for microbial attachment. Ozonated urine samples were less turbid and had lower microbial levels than controls or samples receiving other pretreatments. Base metal coupons receiving pretreatment were relatively free of attached bacteria. However, well-developed biofilms were found in the heat-affected regions of welded coupons receiving Oxone and hypochlorite pretreatments. Few bacteria were observed in the same regions of the ozone pretreatment sample.

  20. Characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment.

    PubMed

    Cui, Yong; Liu, Shuming; Smith, Kate; Yu, Kanghua; Hu, Hongying; Jiang, Wei; Li, Yuhong

    2016-01-01

    To reveal corrosion behavior of stainless steel delivery pipe used in reclaimed water treatment, this research focused on the morphological, mineralogical and chemical characteristics of stainless steel corrosion scale and corroded passive film. Corrosion scale and coupon samples were taken from a type 304 pipe delivering reclaimed water to a clear well in service for more than 12 years. Stainless steel corrosion scales and four representative pipe coupons were investigated using mineralogy and material science research methods. The results showed corrosion scale was predominantly composed of goethite, lepidocrocite, hematite, magnetite, ferrous oxide, siderite, chrome green and chromite, the same as that of corroded pipe coupons. Hence, corrosion scale can be identified as podiform chromite deposit. The loss of chromium in passive film is a critical phenomenon when stainless steel passive film is damaged by localized corrosion. This may provide key insights toward improving a better comprehension of the formation of stainless steel corrosion scale and the process of localized corrosion. The localized corrosion behavior of stainless steel is directly connected with reclaimed water quality parameters such as residual chlorine, DO, Cl(-) and SO4(2-). In particular, when a certain amount of residual chlorine in reclaimed water is present as an oxidant, ferric iron is the main chemical state of iron minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. 77 FR 74883 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water; Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and..., ``Aging Management of Stainless Steel Structures and Components in Treated Borated Water,'' which was... Staff Guidance LR-ISG-2011-01, ``Aging Management of Stainless Steel Structures and Components in...

  2. Analysis of the Enameled AISI 316LVM Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bukovec, Mitja; Xhanari, Klodian; Lešer, Tadej; Petovar, Barbara; Finšgar, Matjaž

    2018-03-01

    In this work, four different enamels were coated on AISI 316LVM stainless steel and the corrosion resistance of these samples was tested in 5 wt.% NaCl solution at room temperature. The preparation procedure of the enamels was optimized in terms of firing temperature, time and composition. First the thermal expansion was measured using dilatometry followed by electrochemical analysis using chronopotentiometry, electrochemical impedance spectroscopy and cyclic polarization. The topography of the most resistant sample was obtained by 3D-profilometry. All samples coated with enamel showed significantly higher corrosion and dilatation resistance compared with the uncoated stainless steel material.

  3. Stress corrosion cracking of duplex stainless steels in caustic solutions

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC

  4. Investigating electrochemical removal of bacterial biofilms from stainless steel substrates.

    PubMed

    Dargahi, Mahdi; Hosseinidoust, Zeinab; Tufenkji, Nathalie; Omanovic, Sasha

    2014-05-01

    Electrochemical removal of biofilms deserves attention because of its ease of use and environmentally friendly nature. We investigated the influence of electrode potential and treatment time on the removal of a 10-day old Pseudomonas aeruginosa biofilm formed on stainless steel 316 L substrates. At electrode potentials more positive than -1.5 V vs. Ag/AgCl, lower removal rates were observed and only partial removal of the biofilm was achieved during a 1-min time interval. Electrostatic repulsion between the film and electrode surface is believed to drive biofilm detachment under these conditions. However, when the biofilm-coated substrates were treated at potentials negative of -1.5 V vs. Ag/AgCl, complete removal of a biofilm was achieved within seconds. Under these conditions, vigorous evolution of hydrogen gas is believed to be responsible for the film removal, mechanically detaching the bacteria and extracellular polymeric matrix from the substrate. Stainless steel substrates were also subjected to repeated cycles of biofilm formation and electrochemical removal. High removal efficiencies were maintained throughout this process suggesting the potential of the proposed technology for application on conductive surfaces in various industrial settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. 78 FR 45271 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam Determination On the basis of the record... reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel pressure pipe, provided... pipe from Malaysia, Thailand, and Vietnam. Accordingly, effective May 16, 2013, the Commission...

  6. Super-hydrophobic multi-walled carbon nanotube coatings for stainless steel.

    PubMed

    De Nicola, Francesco; Castrucci, Paola; Scarselli, Manuela; Nanni, Francesca; Cacciotti, Ilaria; De Crescenzi, Maurizio

    2015-04-10

    We have taken advantage of the native surface roughness and the iron content of AISI 316 stainless steel to directly grow multi-walled carbon nanotube (MWCNT) random networks by chemical vapor deposition (CVD) at low-temperature (1000°C) without the addition of any external catalysts or time-consuming pre-treatments. In this way, super-hydrophobic MWCNT films on stainless steel sheets were obtained, exhibiting high contact angle values (154°C) and high adhesion force (high contact angle hysteresis). Furthermore, the investigation of MWCNT films with scanning electron microscopy (SEM) reveals a two-fold hierarchical morphology of the MWCNT random networks made of hydrophilic carbonaceous nanostructures on the tip of hydrophobic MWCNTs. Owing to the Salvinia effect, the hydrophobic and hydrophilic composite surface of the MWCNT films supplies a stationary super-hydrophobic coating for conductive stainless steel. This biomimetical inspired surface not only may prevent corrosion and fouling, but also could provide low friction and drag reduction.

  7. Stainless-steel wires exclude gulls from a wastewater treatment plant

    USGS Publications Warehouse

    Clark, Daniel E.; Koenen, Kiana K. G.; MacKenzie, Kenneth G.; Pereira, Jillian W.; DeStefano, Stephen

    2013-01-01

    There is growing concern about the prevalence of pathogens and antibiotic-resistant bacteria in the environment and the role wildlife plays in their transmission and dissemination. Gulls feeding at wastewater treatment plants may provide a route for transmission of pathogens and bacteria to public water supplies or other critical areas. The authors identified gulls routinely feeding at a wastewater treatment plant in Millbury, Mass., and tested the effectiveness of overhead stainless-steel wires in excluding gulls from the plant. The number of gulls in certainstructures was compared before and after wiring and during an experimental approach using simultaneous treatments and controls. Stainless-steel wires spaced at 0.9-3.3 m (3-10 ft) effectively prevented gulls from using treatment structures (p < 0.0001) and were effective for > 24 months. Materials costs to wire all structures was about $5,700, and labor costs were $4,020. Overhead stainless-steel wires can provide a long-term, cost-efficient method of excluding ring-billed gulls from wastewater treatment plants.

  8. Ultrasonic Corrosion Fatigue Behavior of High Strength Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Ebara, R.; Yamaguchi, Y.; Kanei, D.; Yamamoto, Y.

    Ultrasonic corrosion fatigue tests were conducted for high strength austenitic stainless steels such as YUS270 and SUS304N2 in 3%NaCl aqueous solution. The reduction of giga-cycle corrosion fatigue strength of YUS270 and SUS304N2 was not observed at all, while the reduction of corrosion fatigue life was observed at higher stress amplitude. Corrosion pit was observed on corrosion fatigue crack initiation area. Striation was predominantly observed on crack propagation area in air and in 3% NaCl aqueous solution. The reduction of corrosion fatigue strength of high strength austenitic stainless steels such as YUS270 and SUS304N2 is due to the corrosion pit formation at corrosion fatigue crack initiation area. It can be concluded that the higher the ultimate tensile strength of austenitic stainless steels the higher the giga-cycle corrosion fatigue strength in 3%NaCl aqueous solution is.

  9. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers

    NASA Astrophysics Data System (ADS)

    Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.

    2016-03-01

    Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.

  10. MC3T3-E1 cell response to stainless steel 316L with different surface treatments.

    PubMed

    Zhang, Hongyu; Han, Jianmin; Sun, Yulong; Huang, Yongling; Zhou, Ming

    2015-11-01

    In the present study, stainless steel 316L samples with polishing, aluminum oxide blasting, and hydroxyapatite (HA) coating were prepared and characterized through a scanning electron microscope (SEM), optical interferometer (surface roughness, Sq), contact angle, surface composition and phase composition analyses. Osteoblast-like MC3T3-E1 cell adhesion on the samples was investigated by cell morphology using a SEM (4h, 1d, 3d, 7d), and cell proliferation was assessed by MTT method at 1d, 3d, and 7d. In addition, adsorption of bovine serum albumin on the samples was evaluated at 1h. The polished sample was smooth (Sq: 1.8nm), and the blasted and HA coated samples were much rougher (Sq: 3.2μm and 7.8μm). Within 1d of incubation, the HA coated samples showed the best cell morphology (e.g., flattened shape and complete spread), but there was no significant difference after 3d and 7d of incubation for all the samples. The absorbance value for the HA coated samples was the highest after 1d and 3d of incubation, indicating better cell viability. However, it reduced to the lowest value at 7d. Protein adsorption on the HA coated samples was the highest at 1h. The results indicate that rough stainless steel surface improves cell adhesion and morphology, and HA coating contributes to superior cell adhesion, but inhibits cell proliferation. Copyright © 2015. Published by Elsevier B.V.

  11. 77 FR 23752 - Drawn Stainless Steel Sinks From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in the subject... imports from China of drawn stainless sinks, provided for in subheading 7324.10.00 of the Harmonized... value (LTFV) and subsidized by the Government of China. \\1\\ The record is defined in sec. 207.2(f) of...

  12. CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization

    NASA Astrophysics Data System (ADS)

    Jiao, Junke; Xu, Zifa; Wang, Qiang; Sheng, Liyuan; Zhang, Wenwu

    2018-07-01

    Experiments with different joining parameters were carried out on fiber laser welding system to explore the mechanism of CFRTP/stainless steel joining and the influence of the parameters on the joining quality. The thermal defect and the microstructure of the joint was tested by SEM, EDS. The joint strength and the thermal defect zone width was measured by the tensile tester and the laser confocal microscope, respectively. The influence of parameters such as the laser power, the joining speed and the clamper pressure on the stainless steel surface thermal defect and the joint strength was analyzed. The result showed that the thermal defect on the stainless steel surface would change metal's mechanical properties and reduce its service life. A chemical bonding was found between the CFRTP and the stainless steel besides the physical bonding and the mechanical bonding. The highest shear stress was obtained as the laser power, the joining speed and the clamper pressure is 280 W, 4 mm/s and 0.15 MPa, respectively.

  13. Study on micro fabricated stainless steel surface to anti-biofouling using electrochemical fabrication

    NASA Astrophysics Data System (ADS)

    Hwang, Byeong Jun; Lee, Sung Ho

    2017-12-01

    Biofilm formed on the surface of the object by the microorganism resulting in fouling organisms. This has led to many problems in daily life, medicine, health and industrial community. In this study, we tried to prevent biofilm formation on the stainless steel (SS304) sheet surface with micro fabricated structure. After then forming the microscale colloid patterns on the surface of stainless steel by using an electrochemical etching forming a pattern by using a FeCl3 etching was further increase the surface roughness. Culturing the Pseudomonas aeruginosa on the stainless steel fabricated with a micro structure on the surface was observed a relationship between the surface roughness and the biological fouling of the micro structure. As a result, the stainless steel surface with a micro structure was confirmed to be the biological fouling occurs less. We expect to be able to solve the problems caused by biological fouling in various fields such as medicine, engineering, using this research.

  14. Simulation and experiment for the inspection of stainless steel bolts in servicing using an ultrasonic phased array

    NASA Astrophysics Data System (ADS)

    Chen, Jinzhong; He, Renyang; Kang, Xiaowei; Yang, Xuyun

    2015-10-01

    The non-destructive testing of small-sized (M12-M20) stainless steel bolts in servicing is always a technical problem. This article focuses on the simulation and experimental research of stainless steel bolts with an artificial defect reflector using ultrasonic phased array inspection. Based on the observation of the sound field distribution of stainless steel bolts in ultrasonic phased array as well as simulation modelling and analysis of the phased array probes' detection effects with various defect sizes, different artificial defect reflectors of M16 stainless steel bolts are machined in reference to the simulation results. Next, those bolts are tested using a 10-wafer phased array probe with 5 MHz. The test results finally prove that ultrasonic phased array can detect 1-mm cracks in diameter with different depths of M16 stainless steel bolts and a metal loss of Φ1 mm of through-hole bolts, which provides technical support for future non-destructive testing of stainless steel bolts in servicing.

  15. The Use of Austenitic Stainless Steel versus Monel (Ni-Cu) Alloy in Pressurized Gaseous Oxygen (GOX) Life Support Systems.

    DTIC Science & Technology

    1985-03-01

    Carbon Steel AISI 1025 2. AISI 4140 3. Ductile Iron 4. 304 Stainless Steel 5. 17-4 PH Stainless Steel 6. 410 Stainless Steel 7. Lead Babbit 8. Tin Babbit...9. Inconel 718 i0. Aluminum 1100 30 6- AISI 4140 steel, all the results were negative (no ignitions). The single exception was with a sample of 4140 ...rates for austenitic stainless steel ( AISI 316), Monel (63% Ni - 34% Cu) and carbon steel (AMS 5050) tubing in this environment. 12 - 14-660 A 7

  16. 3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW OF SMOKEHOUSE UNIT; NOTE STAINLESS STEEL NOZZLES THAT INTRODUCED SMOKE INTO UNIT; FLOOR IS UNPAINTED STEEL - Rath Packing Company, Smokehouse-Hog Chilling Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  17. A historical prospective study of European stainless steel, mild steel, and shipyard welders.

    PubMed Central

    Simonato, L; Fletcher, A C; Andersen, A; Anderson, K; Becker, N; Chang-Claude, J; Ferro, G; Gérin, M; Gray, C N; Hansen, K S

    1991-01-01

    A multicentre cohort of 11,092 male welders from 135 companies located in nine European countries has been assembled with the aim of investigating the relation of potential cancer risk, lung cancer in particular, with occupational exposure. The observation period and the criteria for inclusion of welders varied from country to country. Follow up was successful for 96.9% of the cohort and observed numbers of deaths (and for some countries incident cancer cases) were compared with expected numbers calculated from national reference rates. Mortality and cancer incidence ratios were analysed by cause category, time since first exposure, duration of employment, and estimated cumulative dose to total fumes, chromium (Cr), Cr VI, and nickel (Ni). Overall a statistically significant excess was reported for mortality from lung cancer (116 observed v 86.81 expected deaths, SMR = 134). When analysed by type of welding an increasing pattern with time since first exposure was present for both mild steel and stainless steel welders, which was more noticeable for the subcohort of predominantly stainless steel welders. No clear relation was apparent between mortality from lung cancer and duration of exposure to or estimated cumulative dose of Ni or Cr. Whereas the patterns of lung cancer mortality in these results suggest that the risk of lung cancer is higher for stainless steel than mild steel welders the different level of risk for these two categories of welding exposure cannot be quantified with precision. The report of five deaths from pleural mesothelioma unrelated to the type of welding draws attention to the risk of exposure to asbestos in welding activities. PMID:2015204

  18. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    NASA Astrophysics Data System (ADS)

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-07-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  19. Peptide-based biocoatings for corrosion protection of stainless steel biomaterial in a chloride solution.

    PubMed

    Muruve, Noah G G; Cheng, Y Frank; Feng, Yuanchao; Liu, Tao; Muruve, Daniel A; Hassett, Daniel J; Irvin, Randall T

    2016-11-01

    In this work, PEGylated D-amino acid K122-4 peptide (D-K122-4-PEG), derived from the type IV pilin of Pseudomonas aeruginosa, coated on 304 stainless steel was investigated for its corrosion resistant properties in a sodium chloride solution by various electrochemical measurements, surface characterization and molecular dynamics simulation. As a comparison, stainless steel electrodes coated with non-PEGylated D-amino acid retroinverso peptide (RI-K122-4) and D-amino acid K122-4 peptide (D-K122-4) were used as control variables during electrochemical tests. It was found that the D-K122-4-PEG coating is able to protect the stainless steel from corrosion in the solution. The RI-K122-4 coating shows corrosion resistant property and should be investigated further, while the D-K122-4 peptide coating, in contrast, shows little to no effect on corrosion. The morphological characterizations support the corrosion resistance of D-K122-4-PEG on stainless steel. The adsorption of D-K122-4 molecules occurs preferentially on Fe2O3, rather than Cr2O3, present on the stainless steel surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Galvanic corrosion of ferritic stainless steels used for dental magnetic attachments in contact with an iron-platinum magnet.

    PubMed

    Nakamura, Keisuke; Takada, Yukyo; Yoda, Masanobu; Kimura, Kohei; Okuno, Osamu

    2008-03-01

    This study was an examination of the galvanic corrosion of ferritic stainless steels, namely SUS 444, SUS XM27, and SUS 447J1, in contact with a Fe-Pt magnet. The surface area ratio of each stainless steel to the Fe-Pt magnet was set at 1/1 or 1/10. Galvanic corrosion between the stainless steels and the magnet was evaluated by the amount of released ions and the electrochemical properties in 0.9% NaCl solution. Although each stainless steel showed sufficient corrosion resistance for clinical use, the amount of ions released from each tended to increase when the stainless steel was in contact with the magnet. When the surface area ratio was reduced to 1/10, the amount of Fe ions released from the stainless steels increased significantly more than when there was no contact. Since contact with the magnet which possessed an extremely noble potential created a very corrosive environment for the stainless steels, 447J1 was thus the recommended choice against a corrosion exposure as such.

  1. Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications

    NASA Astrophysics Data System (ADS)

    Finšgar, Matjaž; Uzunalić, Amra Perva; Stergar, Janja; Gradišnik, Lidija; Maver, Uroš

    2016-05-01

    Corrosion resistance, biocompatibility, improved osteointegration, as well the prevention of inflammation and pain are the most desired characteristics of hip replacement implants. In this study we introduce a novel multi-layered coating on AISI 316LVM stainless steel that shows promise with regard to all mentioned characteristics. The coating is prepared from alternating layers of the biocompatible polysaccharide chitosan and the non-steroid anti-inflammatory drug (NSAID), diclofenac. Electrochemical methods were employed to characterize the corrosion behavior of coated and uncoated samples in physiological solution. It is shown that these coatings improve corrosion resistance. It was also found that these coatings release the incorporated drug in controlled, multi-mechanism manner. Adding additional layers on top of the as-prepared samples, has potential for further tailoring of the release profile and increasing the drug dose. Biocompatibility was proven on human-derived osteoblasts in several experiments. Only viable cells were found on the sample surface after incubation of the samples with the same cell line. This novel coating could prove important for prolongation of the application potential of steel-based hip replacements, which are these days often replaced by more expensive ceramic or other metal alloys.

  2. Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications

    PubMed Central

    Finšgar, Matjaž; Uzunalić, Amra Perva; Stergar, Janja; Gradišnik, Lidija; Maver, Uroš

    2016-01-01

    Corrosion resistance, biocompatibility, improved osteointegration, as well the prevention of inflammation and pain are the most desired characteristics of hip replacement implants. In this study we introduce a novel multi-layered coating on AISI 316LVM stainless steel that shows promise with regard to all mentioned characteristics. The coating is prepared from alternating layers of the biocompatible polysaccharide chitosan and the non-steroid anti-inflammatory drug (NSAID), diclofenac. Electrochemical methods were employed to characterize the corrosion behavior of coated and uncoated samples in physiological solution. It is shown that these coatings improve corrosion resistance. It was also found that these coatings release the incorporated drug in controlled, multi-mechanism manner. Adding additional layers on top of the as-prepared samples, has potential for further tailoring of the release profile and increasing the drug dose. Biocompatibility was proven on human-derived osteoblasts in several experiments. Only viable cells were found on the sample surface after incubation of the samples with the same cell line. This novel coating could prove important for prolongation of the application potential of steel-based hip replacements, which are these days often replaced by more expensive ceramic or other metal alloys. PMID:27215333

  3. Method for reducing formation of electrically resistive layer on ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2013-09-10

    A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.

  4. Mechanical properties of low-nickel stainless steel

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1978-01-01

    Demand for improved corrosion-resistant steels, coupled with increased emphasis on conserving strategic metals, has led to development of family of stainless steels in which manganese and nitrogen are substituted for portion of usual nickel content. Advantages are approximately-doubled yield strength in annealed condition, better resistance to stress-corrosion cracking, retention of low magnetic permeability even after severe cold working, excellent strength and ductility at cryogenic temperatures, superior resistance to wear and galling, and excellent high-temperature properties.

  5. Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels

    NASA Astrophysics Data System (ADS)

    Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.

    2014-04-01

    The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.

  6. Improving the oxidation resistance of 316L stainless steel in simulated pressurized water reactor primary water by electropolishing treatment

    NASA Astrophysics Data System (ADS)

    Han, Guangdong; Lu, Zhanpeng; Ru, Xiangkun; Chen, Junjie; Xiao, Qian; Tian, Yongwu

    2015-12-01

    The oxidation behavior of 316L stainless steel specimens after emery paper grounding, mechanical polishing, and electropolishing were investigated in simulated pressurized water reactor primary water at 310 °C for 120 and 500 h. Electropolishing afforded improved oxidation resistance especially during the early immersion stages. Duplex oxide films comprising a coarse Fe-rich outer layer and a fine Cr-rich inner layer formed on all specimens after 500 h of immersion. Only a compact layer was observed on the electropolished specimen after 120 h of immersion. The enrichment of chromium in the electropolished layer contributed to the passivity and protectiveness of the specimen.

  7. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, M.; Kondo, M.; Noda, N.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel ismore » limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)« less

  8. 77 FR 41969 - Stainless Steel Bar From Japan: Rescission of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-833] Stainless Steel Bar From Japan: Rescission of Antidumping Duty Administrative Review AGENCY: Import Administration, International... order on stainless steel bar from Japan (the Order) covering the period February 1, 2010, through...

  9. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    NASA Astrophysics Data System (ADS)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  10. Stainless steel valves with enhanced performance through microstructure optimization

    NASA Astrophysics Data System (ADS)

    Barani, A. A.; Boukhattam, M.; Haggeney, M.; Güler, S.

    2017-08-01

    Compressor valves are made of hardened and tempered martensitic steels. The main design criterion for the material selection is the fatigue performance of the material under bending loads. In some cases impact loads and corrosive atmospheres additionally act on the part. For the first time, the microstructure of the most commonly used stainless steel and its influence on the properties relevant for flapper valves is presented and described in this paper. It is demonstrated how the tensile properties of a martensitic stainless steel can be enhanced by tailoring the microstructure. Electron back scatter diffraction method is carried out to explain the changes in monotonic mechanical properties. Through a modified heat treatment the martensite microstructure is refined resulting in an increase of yield and ultimate tensile strength and at the same time a significant increase of elongation.

  11. Structural Characterization and Corrosion Behavior of Stainless Steel Coated With Sol-Gel Titania

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Daniela C. L.; Nunes, Eduardo H. M.; Sabioni, Antônio Claret S.; da Costa, João C. Diniz; Vasconcelos, Wander L.

    2012-03-01

    Sol-gel titania films were prepared from hydrolysis and condensation of titanium (IV) isopropoxide. Diethanolamine was used as chelant agent in titania synthesis. 316L stainless steel substrates were dip-coated at three different withdrawal speeds (6, 30, and 60 mm/min) and heated up to 400 °C. Thermogravimetry and differential thermal analyses of the titania gel solution evinced a continuous mass loss for temperatures up to 800 °C. The transition of anatase to the rutile phase begins at 610-650 °C, being the rutile transformation completed at 900 °C. The thicknesses of the films were determined as a function of the heat treatment and withdrawal speed. It was observed that their thicknesses varied from 130 to 770 nm. Scanning electron microscopy images of the composites revealed the glass-like microstructure of the films. The obtained sol-gel films were also characterized by energy dispersive spectroscopy. The chemical evolution of the films as a function of the heating temperature was evaluated by Fourier transform infrared spectroscopy (specular reflectance method). After performing the adhesion tests, the adherence of the titania films to the stainless steel substrate was excellent, rated 5B according to ASTM 3359. The hardness of the ceramic films obtained was measured by the Knoop microindentation hardness test with a 10 g load. We observed that the titania film became harder than the steel substrate when it was heated above 400 °C. The corrosion rates of the titania/steel composites, determined from potentiodynamic curves, were two orders of magnitude lower than that of the bare stainless steel. The presence of the sol-gel titania film contributed to the increase of the corrosion potential in ca. 650 mV and the passivation potential in ca. 720 mV.

  12. 75 FR 34424 - Stainless Steel Wire Rod from Italy, Japan, the Republic of Korea, Spain, and Taiwan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ...-807, A-583-828] Stainless Steel Wire Rod from Italy, Japan, the Republic of Korea, Spain, and Taiwan... stainless steel wire rod (SSWR) from Italy, Japan, the Republic of Korea (Korea), Spain, and Taiwan would... magnitude of the margins likely to prevail should the orders be revoked. See Stainless Steel Wire Rod From...

  13. Molecular carbon nitride ion beams for enhanced corrosion resistance of stainless steel

    NASA Astrophysics Data System (ADS)

    Markwitz, A.; Kennedy, J.

    2017-10-01

    A novel approach is presented for molecular carbon nitride beams to coat stainless surfaces steel using conventional safe feeder gases and electrically conductive sputter targets for surface engineering with ion implantation technology. GNS Science's Penning type ion sources take advantage of the breaking up of ion species in the plasma to assemble novel combinations of ion species. To test this phenomenon for carbon nitride, mixtures of gases and sputter targets were used to probe for CN+ ions for simultaneous implantation into stainless steel. Results from mass analysed ion beams show that CN+ and a variety of other ion species such as CNH+ can be produced successfully. Preliminary measurements show that the corrosion resistance of stainless steel surfaces increased sharply when implanting CN+ at 30 keV compared to reference samples, which is interesting from an application point of view in which improved corrosion resistance, surface engineering and short processing time of stainless steel is required. The results are also interesting for novel research in carbon-based mesoporous materials for energy storage applications and as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost.

  14. Laser-assisted electrochemical micromachining of mould cavity on the stainless steel surface

    NASA Astrophysics Data System (ADS)

    Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han

    2018-02-01

    In order to fabricate the micro mould cavities with complex structures on 304 stainless steel, laser-assisted electrochemical micromachining (EMM) based on surface modification by fiber laser masking was studied,and a new device of laser-assisted EMM was developed. Laser marking on the surface of 304 stainless steel can first be realized by fiber laser heating scanning. Through analysis of X ray diffraction analysis (XRD), metal oxide layer with predefined pattern can be formed by laser marking, and phase transformation can also occur on the 304 stainless steel surface, which produce the laser masking layer with corrosion resistance. The stainless steel surface with laser masking layer is subsequently etched by EMM, the laser masking layer severs as the temporary protective layer without relying on lithography mask, the fabrication of formed electrodes is also avoided, so micro pattern cavities can fast be fabricated. The impacts on machining accuracy during EMM with laser masking were discussed to optimize machining parameters, such as machining voltage, electrolyte concentration, duty cycle of pulse power supply and electrode gap size, the typical mould cavities 23μm deep were fabricated under the optimized parameters.

  15. Effect of molybdenum additions on the microstructures and corrosion behaviours of 316L stainless steel-based alloys

    DOE PAGES

    Rahman, T.; Ebert, W. L.; Indacochea, J. E.

    2018-02-28

    Alloys were made by alloying 5, 10, 15, 17.5, and 20 wt % Mo with Type 316L stainless steel. Sigma phases containing 21–29 wt % Mo formed along the austenite grain boundaries with the addition of 5 wt % Mo and increased with additions up to 15 wt % Mo, but they decreased with further additions. Laves phases containing 33–40 wt % Mo co-precipitated at additions of 10 wt % Mo which increased with further Mo increases. The corrosion resistance, assessed by potentiodynamic polarisation in a 10 mM NaCl solution adjusted to pH 4, increased relative to Type 316L formore » alloys made with 5 and 10 wt % added Mo, but decreased with further additions due to preferential corrosion of the Laves phase. The alloy made with 10 wt % added Mo had the highest corrosion resistance due primarily to the high Mo content of the austenite.« less

  16. Effect of molybdenum additions on the microstructures and corrosion behaviours of 316L stainless steel-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, T.; Ebert, W. L.; Indacochea, J. E.

    Alloys were made by alloying 5, 10, 15, 17.5, and 20 wt % Mo with Type 316L stainless steel. Sigma phases containing 21–29 wt % Mo formed along the austenite grain boundaries with the addition of 5 wt % Mo and increased with additions up to 15 wt % Mo, but they decreased with further additions. Laves phases containing 33–40 wt % Mo co-precipitated at additions of 10 wt % Mo which increased with further Mo increases. The corrosion resistance, assessed by potentiodynamic polarisation in a 10 mM NaCl solution adjusted to pH 4, increased relative to Type 316L formore » alloys made with 5 and 10 wt % added Mo, but decreased with further additions due to preferential corrosion of the Laves phase. The alloy made with 10 wt % added Mo had the highest corrosion resistance due primarily to the high Mo content of the austenite.« less

  17. Comparative Study of Hardening Mechanisms During Aging of a 304 Stainless Steel Containing α'-Martensite

    NASA Astrophysics Data System (ADS)

    Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.

    2012-09-01

    Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.

  18. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-11-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  19. 76 FR 64105 - Stainless Steel Wire Rod From India; Scheduling of an Expedited Five-Year Review Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-638 (Third Review)] Stainless Steel Wire... Stainless Steel Wire Rod From India AGENCY: United States International Trade Commission. ACTION: Notice... of the antidumping duty order on stainless steel wire rod from India would be likely to lead to...

  20. 78 FR 72864 - Drawn Stainless Steel Sinks From the People's Republic of China: Initiation of New Shipper Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-983] Drawn Stainless Steel Sinks... review of the antidumping duty order on drawn stainless steel sinks (``drawn sinks'') from the People's... merchandise. \\1\\ See Drawn Stainless Steel Sinks from the People's Republic of China: Amended Final...

  1. Effect of tensile pre-strain at different orientation on martensitic transformation and mechanical properties of 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wibowo, F.; Zulfi, F. R.; Korda, A. A.

    2017-01-01

    Deformation induced martensite was studied in 316L stainless steel through tensile pre-strain deformation in the rolling direction (RD) and perpendicular to the rolling direction (LT) at various %pre-strain. The experiment was carried out at various given %pre-strain, which were 0%, 4.6%, 12%, 17.4%, and 25.2% for the RD, whereas for LT were 0%, 4.6%, 12%, 18%, and 26% for LT. Changes in the microstructure and mechanical properties were observed using optical microscope, tensile testing, hardness testing, and X-ray diffraction (XRD) analysis. The experimental results showed that the volume fraction of martensite was increased as the %pre-strain increased. In the same level of deformation by tensile pre-strain, the volume of martensite for RD was higher than that with LT direction. The ultimate tensile strength (UTS), yield strength (YS), and hardness of the steel were increased proportionally with the increases in %pre-strain, while the value of elongation and toughness were decreased with the increases in %pre-strain.

  2. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  3. Environmental resistance of oxide tags fabricated on 304L stainless steel via nanosecond pulsed laser irradiation

    DOE PAGES

    Lawrence, Samantha Kay; Adams, David P.; Bahr, David F.; ...

    2015-11-14

    Nanosecond pulsed laser irradiation was used to fabricate colored, mechanically robust oxide “tags” on 304L stainless steel. Immersion in simulated seawater solution, salt fog exposure, and anodic polarization in a 3.5% NaCl solution were employed to evaluate the environmental resistance of these oxide tags. Single layer oxides outside a narrow thickness range (~ 100–150 nm) are susceptible to dissolution in chloride containing environments. The 304L substrates immediately beneath the oxides corrode severely—attributed to Cr-depletion in the melt zone during laser processing. For the first time, multilayered oxides were fabricated with pulsed laser irradiation in an effort to expand the protectivemore » thickness range while also increasing the variety of film colors attainable in this range. Layered films grown using a laser scan rate of 475 mm/s are more resistant to both localized and general corrosion than oxides fabricated at 550 mm/s. Furthermore, in the absence of pre-processing to mitigate Cr-depletion, layered films can enhance environmental stability of the system.« less

  4. TEM Studies of Boron-Modified 17Cr-7Ni Precipitation-Hardenable Stainless Steel via Rapid Solidification Route

    NASA Astrophysics Data System (ADS)

    Gupta, Ankur; Bhargava, A. K.; Tewari, R.; Tiwari, A. N.

    2013-09-01

    Commercial grade 17Cr-7Ni precipitation-hardenable stainless steel has been modified by adding boron in the range 0.45 to 1.8 wt pct and using the chill block melt-spinning technique of rapid solidification (RS). Application of RS has been found to increase the solid solubility of boron and hardness of 17Cr-7Ni precipitation-hardenable stainless steel. The hardness of the boron-modified rapidly solidified alloys has been found to increase up to ~280 pct after isochronal aging to peak hardness. A TEM study has been carried out to understand the aging behavior. The presence of M23(B,C)6 and M2(B,C) borocarbides and epsilon-carbide in the matrix of austenite and ferrite with a change in heat treatment temperature has been observed. A new equation for Creq is also developed which includes the boron factor on ferrite phase stability. The study also emphasizes that aluminum only takes part in ferrite phase stabilization and remains in the solution.

  5. Constitutive flow behaviour of austenitic stainless steels under hot deformation: artificial neural network modelling to understand, evaluate and predict

    NASA Astrophysics Data System (ADS)

    Mandal, Sumantra; Sivaprasad, P. V.; Venugopal, S.; Murthy, K. P. N.

    2006-09-01

    An artificial neural network (ANN) model is developed to predict the constitutive flow behaviour of austenitic stainless steels during hot deformation. The input parameters are alloy composition and process variables whereas flow stress is the output. The model is based on a three-layer feed-forward ANN with a back-propagation learning algorithm. The neural network is trained with an in-house database obtained from hot compression tests on various grades of austenitic stainless steels. The performance of the model is evaluated using a wide variety of statistical indices. Good agreement between experimental and predicted data is obtained. The correlation between individual alloying elements and high temperature flow behaviour is investigated by employing the ANN model. The results are found to be consistent with the physical phenomena. The model can be used as a guideline for new alloy development.

  6. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    PubMed Central

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  7. The Otto Aufranc Award: enhanced biocompatibility of stainless steel implants by titanium coating and microarc oxidation.

    PubMed

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon; Kim, Yong Sik

    2011-02-01

    Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility, thus allowing a broad range of materials to be used for cementless implants.

  8. Method for reducing formation of electrically resistive layer on ferritic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakowski, James M.

    A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surfacemore » region that has been depleted of silicon relative to a remainder of the steel.« less

  9. The effect of tempering temperature on pitting corrosion resistance of 420 stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anwar, Moch Syaiful, E-mail: moch026@lipi.go.id; Prifiharni, Siska, E-mail: sisk002@lipi.go.id; Mabruri, Efendi, E-mail: effe004@lipi.go.id

    2016-04-19

    The AISI Type 420 stainless steels are commonly used to steam generators, mixer blades, etc. These stainless steels are most prone to pitting in dissolved Cl{sup −} containing environments. In this paper, the effect of tempering temperature on pitting corrosion resistance of AISI Type 420 stainless steels was studied. The AISI Type 420 stainless steels specimens were heat treated at the temperature of 1050°C for 1 hour to reach austenite stabilization and then quench in the oil. After that, the specimens were tempered at the temperature of 150, 250, 350 and 450°C for 30 minutes and then air cooled tomore » the room temperature. The electrochemical potentiodynamic polarization test was conducted at 3.5% sodium chloride solution to evaluate corrosion rate and pitting corrosion behaviour. The Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) were used to evaluate the pitting corrosion product. The result have shown that highest pitting potential was found in the sample tempered at 250°C and corrosion pits were found to initiate preferentially around chromium carbides.« less

  10. Mechanical evaluation of quad-helix appliance made of low-nickel stainless steel wire.

    PubMed

    dos Santos, Rogério Lacerda; Pithon, Matheus Melo

    2013-01-01

    The objective of this study was to test the hypothesis that there is no difference between stainless steel and low-nickel stainless steel wires as regards mechanical behavior. Force, resilience, and elastic modulus produced by Quad-helix appliances made of 0.032-inch and 0.036-inch wires were evaluated. Sixty Quad-helix appliances were made, thirty for each type of alloy, being fifteen for each wire thickness, 0.032-in and 0.036-in. All the archwires were submitted to mechanical compression test using an EMIC DL-10000 machine simulating activations of 4, 6, 9, and 12 mm. Analysis of variance (ANOVA) with multiple comparisons and Tukey's test were used (p < 0.05) to assess force, resilience, and elastic modulus. Statistically significant difference in the forces generated, resilience and elastic modulus were found between the 0.032-in and 0.036-in thicknesses (p < 0.05). Appliances made of low-nickel stainless steel alloy had force, resilience, and elastic modulus similar to those made of stainless steel alloy.

  11. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model

    NASA Astrophysics Data System (ADS)

    Hemmer, H.; Grong, Ø.

    1999-11-01

    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  12. Partitioning of tritium between surface and bulk of 316 stainless steel at room temperature

    DOE PAGES

    Sharpe, M. D.; Fagan, C.; Shmayda, W. T.; ...

    2018-03-28

    The distribution of tritium between the near surface and the bulk of 316 stainless steel has been measured using two independent techniques: pulsed-plasma exposures and a zinc-chloride wash. Between 17% and 20% of the total inventory absorbed into a stainless-steel sample during a 24-h exposure to DT gas at room temperature resides in the water layers present on the metal surface. Redistribution of tritium between the surface and the bulk of stainless steel, if it occurs, is very slow. Finally, tritium does not appear to enter into the bulk at a rate defined solely by lattice diffusivity.

  13. Partitioning of tritium between surface and bulk of 316 stainless steel at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, M. D.; Fagan, C.; Shmayda, W. T.

    The distribution of tritium between the near surface and the bulk of 316 stainless steel has been measured using two independent techniques: pulsed-plasma exposures and a zinc-chloride wash. Between 17% and 20% of the total inventory absorbed into a stainless-steel sample during a 24-h exposure to DT gas at room temperature resides in the water layers present on the metal surface. Redistribution of tritium between the surface and the bulk of stainless steel, if it occurs, is very slow. Finally, tritium does not appear to enter into the bulk at a rate defined solely by lattice diffusivity.

  14. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jung Kil, E-mail: jkkang@email.kings.ac.kr; Hah, Chang Joo, E-mail: changhah@kings.ac.kr; Cho, Sung Ju, E-mail: sungju@knfc.co.kr

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4∼5 years, rated power of 180 MWth and enrichment less than 5more » w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO{sub 2} fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.« less

  15. Friction behavior of 304 stainless steel of varying hardness lubricated with benzene and some benzyl structures

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1974-01-01

    The lubricating properties of some benzyl and benzene structures were determined by using 304 stainless steel surfaces strained to various hardness. Friction coefficients and wear track widths were measured with a Bowden-Leben type friction apparatus by using a pin-on-disk specimen configuration. Results obtained indicate that benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol resulted in the lowest friction coefficients for 304 stainless steel, while benzyl ether provided the least surface protection and gave the highest friction. Strainhardening of the 304 stainless steel prior to sliding resulted in reduced friction in dry sliding. With benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol changes in 304 stainless steel hardness had no effect upon friction behavior.

  16. Melt layer formation in stainless steel under transient thermal loads

    NASA Astrophysics Data System (ADS)

    Steudel, I.; Klimov, N. S.; Linke, J.; Loewenhoff, Th.; Pintsuk, G.; Pitts, R. A.; Wirtz, M.

    2015-08-01

    To investigate the performance of stainless steel under transient thermal events, such as photon pulses caused by disruptions mitigated by massive gas injection (MGI), the material has been exposed to electron beam loads with ITER relevant power densities slightly above the melting threshold (245 MW/m2) and a pulse duration of 3 ms (Sugihara et al., 2012; Klimov et al., 2013; Pitts et al., 2013). The samples were manufactured from different steel grades with slightly modified chemical composition. To investigate the effect of repetitive surface heat loads on the melting process and the melt motion, identical heat pulses in the range of 100-3000 were applied. All tested materials showed intense melt-induced surface roughening, driven by repeated shallow surface melting up to several ten micrometre and fast re-solidification with epitaxial grain growth. During the liquid phase, melt motion induced by cohesive forces results in the formation of a wavy surface structure with apexes. Further experiments have been performed to study the effects of non-perpendicular surfaces or leading edges.

  17. Investigation of the antibiofilm capacity of peptide-modified stainless steel

    PubMed Central

    Cao, Pan; Li, Wen-Wu; Morris, Andrew R.; Horrocks, Paul D.; Yuan, Cheng-Qing

    2018-01-01

    Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml−1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research. PMID:29657809

  18. Investigation of the antibiofilm capacity of peptide-modified stainless steel.

    PubMed

    Cao, Pan; Li, Wen-Wu; Morris, Andrew R; Horrocks, Paul D; Yuan, Cheng-Qing; Yang, Ying

    2018-03-01

    Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml -1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research.

  19. Materials data handbook: Stainless steel type 301

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel type 301 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  20. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO₂ Composite Coatings on Stainless Steel (316L) Substrates.

    PubMed

    Raddaha, Namir S; Cordero-Arias, Luis; Cabanas-Polo, Sandra; Virtanen, Sannakaisa; Roether, Judith A; Boccaccini, Aldo R

    2014-03-04

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO₂) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO₂ in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO₂ particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO₂ and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO₂ and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  1. Effect of martensitic transformation on springback behavior of 304L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Fathi, H.; Mohammadian Semnani, H. R.; Emadoddin, E.; Sadeghi, B. Mohammad

    2017-09-01

    The present paper studies the effect of martensitic transformation on the springback behavior of 304L austenitic stainless steel. Martensite volume fraction was determined at the bent portion under various strain rates after bending test. Martensitic transformation has a significant effect on the springback behavior of this material. The findings of this study indicated that the amount of springback was reduced under a situation of low strain rate, while a higher amount of springback was obtained with a higher strain rate. The reason for this phenomenon is that higher work hardening occurs during the forming process with the low strain rate due to the higher martensite volume fraction, therefore the formability of the sheet is enhanced and it leads to a decreased amount of springback after the bending test. Dependency of the springback on the martensite volume fraction and strain rate was expressed as formulas from the results of the experimental tests and simulation method. Bending tests were simulated using LS-DYNA software and utilizing MAT_TRIP to determine the martensite volume fraction and strain under various strain rates. Experimental result reveals good agreement with the simulation method.

  2. Portable hyperspectral fluorescence imaging system for detection of biofilms on stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Jun, Won; Lee, Kangjin; Millner, Patricia; Sharma, Manan; Chao, Kuanglin; Kim, Moon S.

    2008-04-01

    A rapid nondestructive technology is needed to detect bacterial contamination on the surfaces of food processing equipment to reduce public health risks. A portable hyperspectral fluorescence imaging system was used to evaluate potential detection of microbial biofilm on stainless steel typically used in the manufacture of food processing equipment. Stainless steel coupons were immersed in bacterium cultures, such as E. coli, Pseudomonas pertucinogena, Erwinia chrysanthemi, and Listeria innocula. Following a 1-week exposure, biofilm formations were assessed using fluorescence imaging. In addition, the effects on biofilm formation from both tryptic soy broth (TSB) and M9 medium with casamino acids (M9C) were examined. TSB grown cells enhance biofilm production compared with M9C-grown cells. Hyperspectral fluorescence images of the biofilm samples, in response to ultraviolet-A (320 to 400 nm) excitation, were acquired from approximately 416 to 700 nm. Visual evaluation of individual images at emission peak wavelengths in the blue revealed the most contrast between biofilms and stainless steel coupons. Two-band ratios compared with the single-band images increased the contrast between the biofilm forming area and stainless steel coupon surfaces. The 444/588 nm ratio images exhibited the greatest contrast between the biofilm formations and stainless coupon surfaces.

  3. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to Regulatory Guide (RG) 1.31, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the guide to remove references to outdated standards and to remove an appendix that has been incorporated into relevant specifications.

  4. Study of wettability and cell viability of H implanted stainless steel

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur

    2018-03-01

    In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.

  5. Antimicrobial Particulate Silver Coatings on Stainless Steel Implants for Fracture Management.

    PubMed

    Devasconcellos, Paul; Bose, Susmita; Beyenal, Haluk; Bandyopadhyay, Amit; Zirkle, Lewis G

    2012-07-01

    We have used particulate silver coating on stainless steel to prevent in vivo bacterial infection. Stainless steel is commonly used as an implant material for fracture management. The antimicrobial use of silver has been well documented and studied, therefore the novelty of this research is the use of a particulate coating as well as facing the real world challenges of a fracture repair implant. The variable parameters for applying the coating were time of deposition, silver solution concentration, voltage applied, heat treatment temperature between 400 to 500 °C and time. The resultant coating is shown to be non-toxic to human osteoblasts using an MTT assay for proliferation and SEM images for morphology. In vitro silver release studies of various treatments were done using simulated body fluid. The bactericidal effects were tested by challenging the coatings with P. aeruginosa in a bioreactor and compared against uncoated stainless steel. A 13-fold reduction in bacteria was observed at 24 hours and proved to be statistically significant.

  6. Corrosion behavior of a superduplex stainless steel in chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Dabalà, Manuele; Calliari, Irene; Variola, Alessandra

    2004-04-01

    Super duplex stainless steels (SDSS) have been widely used as structural materials for chemical plants (especially in those engaged in phosphoric acid production), in the hydrometallurgy industries, and as materials for offshore applications due to their excellent corrosion resistance in chloride environments, compared with other commercial types of ferritic stainless steels. These alloys also possess superior weldability and better mechanical properties than austenitic stainless steels. However, due to their two-phase structure, the nature of which is very dependent on their composition and thermal history, the behavior of SDSS regarding localized corrosion appears difficult to predict, especially in chloride environments. To improve their final properties, the effect of the partition of the alloying elements between the two phases, and the composition and microstructure of each phase are the key to understanding the localized corrosion phenomena of SDSS. This paper concerns the effects of the SDSS microstructure and heat treatment on the SDSS corrosion resistance in aqueous solutions, containing different amounts of NaCl at room temperature.

  7. Disinfection of preexisting contamination of bacillus cereus on stainless steel when using glycoconjugate solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavan, Casey; Tarasenko, Olga

    Stainless steel is ubiquitous in our modern world, however it can become contaminated. This can endanger our health. The aim of our study is to disinfect stainless steel using Bacillus cereus as a model organism. Bacillus cereus is a microbe that is ubiquitous in nature, specifically soil. B. cereus is known to cause illness in humans. To prevent this, we propose to use a glycoconjugate solution (GS) for disinfection of stainless steel after it is contamination by B. cereus spores. In this study, two GS (9, 10) were tested for disinfection effectiveness on B. cereus spores on the surface ofmore » stainless steel foil (AISI-Series 200/300/400, THERMA-FOIL, Dayville, CT 0241). The disinfection rate of each GS was assessed by exposing the steel surface to B. cereus spores first and allowing them to settle for 24 hours. GS was used to treat the contaminated surface. The steel is washed and the resulting solution is plated on tryptic soy agar (TSA) plates. The GS with the fewest colony forming unit (CFU) formed on TSA is determined to be the most efficient during disinfection. Results show that both GS demonstrate a strong ability to disinfect B. cereus spores. Between the two, GS 9 shows the highest disinfection efficacy by killing approximately 99.5% of spores. This is a drastic improvement over the 0-20% disinfection of the control. Based on this we find that studied GS do have the capacity to act as a disinfectant on stainless steel.« less

  8. Experimental and numerical study on optimization of the single point incremental forming of AINSI 304L stainless steel sheet

    NASA Astrophysics Data System (ADS)

    Saidi, B.; Giraud-Moreau, L.; Cherouat, A.; Nasri, R.

    2017-09-01

    AINSI 304L stainless steel sheets are commonly formed into a variety of shapes for applications in the industrial, architectural, transportation and automobile fields, it’s also used for manufacturing of denture base. In the field of dentistry, there is a need for personalized devises that are custom made for the patient. The single point incremental forming process is highly promising in this area for manufacturing of denture base. The single point incremental forming process (ISF) is an emerging process based on the use of a spherical tool, which is moved along CNC controlled tool path. One of the major advantages of this process is the ability to program several punch trajectories on the same machine in order to obtain different shapes. Several applications of this process exist in the medical field for the manufacturing of personalized titanium prosthesis (cranial plate, knee prosthesis...) due to the need of product customization to each patient. The objective of this paper is to study the incremental forming of AISI 304L stainless steel sheets for future applications in the dentistry field. During the incremental forming process, considerable forces can occur. The control of the forming force is particularly important to ensure the safe use of the CNC milling machine and preserve the tooling and machinery. In this paper, the effect of four different process parameters on the maximum force is studied. The proposed approach consists in using an experimental design based on experimental results. An analysis of variance was conducted with ANOVA to find the input parameters allowing to minimize the maximum forming force. A numerical simulation of the incremental forming process is performed with the optimal input process parameters. Numerical results are compared with the experimental ones.

  9. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    PubMed

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Antiadherent and antibacterial properties of stainless steel and NiTi orthodontic wires coated with silver against Lactobacillus acidophilus--an in vitro study.

    PubMed

    Mhaske, Arun Rameshwar; Shetty, Pradeep Chandra; Bhat, N Sham; Ramachandra, C S; Laxmikanth, S M; Nagarahalli, Kiran; Tekale, Pawankumar Dnyandeo

    2015-01-01

    The purpose of the study is to assess the antiadherent and antibacterial properties of surface-modified stainless steel and NiTi orthodontic wires with silver against Lactobacillus acidophilus. This study was done on 80 specimens of stainless steel and NiTi orthodontic wires. The specimens were divided into eight test groups. Each group consisted of 10 specimens. Groups containing uncoated wires acted as a control group for their respective experimental group containing coated wires. Surface modification of wires was carried out by the thermal vacuum evaporation method with silver. Wires were then subjected to microbiological tests for assessment of the antiadherent and antibacterial properties of silver coating against L. acidophilus. Mann-Whitney U test was used to analyze the colony-forming units (CFUs) in control and test groups; and Student's t test (two-tailed, dependent) was used to find the significance of study parameters on a continuous scale within each group. Orthodontic wires coated with silver showed an antiadherent effect against L. acidophilus compared with uncoated wires. Uncoated stainless steel and NiTi wires respectively showed 35.4 and 20.5 % increase in weight which was statistically significant (P < 0.001), whereas surface-modified wires showed only 4.08 and 4.4 % increase in weight (statistically insignificant P > 0.001). The groups containing surface-modified wires showed statistically significant decrease in the survival rate of L. acidophilus expressed as CFU and as log of colony count when compared to groups containing uncoated wires. It was 836.60 ± 48.97 CFU in the case of uncoated stainless steel whereas it was 220.90 ± 30.73 CFU for silver-modified stainless steel, 748.90 ± 35.64 CFU for uncoated NiTi, and 203.20 ± 41.94 CFU for surface-modified NiTi. Surface modification of orthodontic wires with silver can be used to prevent the accumulation of dental plaque and the development of dental caries

  11. 76 FR 50495 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... Review] Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan Determinations On the.... 1675(c)), that revocation of the countervailing duty order on stainless steel plate from South Africa... Africa, and Taiwan would be likely to lead to continuation or recurrence of material injury to an...

  12. Corrosion of Type 316L stainless steel in Pb-17Li

    NASA Astrophysics Data System (ADS)

    Barker, M. G.; Lees, J. A.; Sample, T.; Hubberstey, P.

    1991-03-01

    Corrosion tests carried out in Pb-17Li in both capsules and a convection loop (hot leg temperature 768 K, cold leg temperature 748 K, flow rate 10 mm/s) have shown that Type 316 stainless steel undergoes almost complete loss of Ni and Mn, and extensive loss of Cr to form a porous ferritic zone. Ferritic zone depths measured on the loop samples exposed between 1000 and 4000 h were in good agreement with previous data. Some evidence was found for the interaction of chromium with oxygen dissolved in Pb-17Li. Examination of the cold leg samples revealed deposition products of iron and chromium but no deposits containing nickels were observed. These observations were rationalised in terms of recent measurements of the solubilities of metals in Pb-17Li.

  13. 78 FR 31574 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-1210-1212 (Preliminary)] Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam; Institution of Antidumping Duty..., by reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel pressure pipe...

  14. Localized corrosion of 316L stainless steel in tritiated water containing aggressive radiolytic and decomposition products at different temperatures

    NASA Astrophysics Data System (ADS)

    Bellanger, G.

    2008-02-01

    Tritium is one of the more important radionuclides used in nuclear industry as plutonium and uranium. The tritium in tritiated water always causes difficulties in nuclear installations, including equipment corrosion. Moreover, with tritiated water there are, in addition, the radiolytic and decomposition products such as hydrogen peroxide formed during decay, chloride ions produced by degradation of organic seals and oils used for tightness and pumping, and acid pH produced by excitation of nitrogen in air by the β - particle. Highly concentrated tritiated water releases energy and its temperature is about 80 °C, moreover heating is necessary in the tritium processes. These conditions highly facilitate the corrosion of stainless steels by pitting and crevice attack. Corrosion tests were performed by electrochemical analysis methods and by visual inspection of the surface of stainless steel.

  15. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE PAGES

    Byun, T. S.; Yang, Y.; Overman, N. R.; ...

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to providemore » an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  16. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, T. S.; Yang, Y.; Overman, N. R.

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr–rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This articlemore » intends to provide an introductory overview on the thermal aging phenomena in LWR relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  17. Formation of microstructural features in hot-dip aluminized AISI 321 stainless steel

    NASA Astrophysics Data System (ADS)

    Huilgol, Prashant; Rajendra Udupa, K.; Udaya Bhat, K.

    2018-02-01

    Hot-dip aluminizing (HDA) is a proven surface coating technique for improving the oxidation and corrosion resistance of ferrous substrates. Although extensive studies on the HDA of plain carbon steels have been reported, studies on the HDA of stainless steels are limited. Because of the technological importance of stainless steels in high-temperature applications, studies of their microstructural development during HDA are needed. In the present investigation, the HDA of AISI 321 stainless steel was carried out in a pure Al bath. The microstructural features of the coating were studied using scanning electron microscopy and transmission electron microscopy. These studies revealed that the coating consists of two regions: an Al top coat and an aluminide layer at the interface between the steel and Al. The Al top coat was found to consist of intermetallic phases such as Al7Cr and Al3Fe dispersed in an Al matrix. Twinning was observed in both the Al7Cr and the Al3Fe phases. Furthermore, the aluminide layer comprised a mixture of nanocrystalline Fe2Al5, Al7Cr, and Al. Details of the microstructural features are presented, and their formation mechanisms are discussed.

  18. Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces.

    PubMed

    Daneshvar Alavi, Hessam Edin; Truelstrup Hansen, Lisbeth

    2013-01-01

    This study investigated the dynamics of static biofilm formation (100% RH, 15 °C, 48-72 h) and desiccation survival (43% RH, 15 °C, 21 days) of Listeria monocytogenes, in dual species biofilms with the common spoilage bacteria, Pseudomonas fluorescens, Serratia proteamaculans and Shewanella baltica, on the surface of food grade stainless steel. The Gram-negative bacteria reduced the maximum biofilm population of L. monocytogenes in dual species biofilms and increased its inactivation during desiccation. However, due to the higher desiccation resistance of Listeria relative to P. fluorescens and S. baltica, the pathogen survived in greater final numbers. In contrast, S. proteamaculans outcompeted the pathogen during the biofilm formation and exhibited similar desiccation survival, causing the N21 days of Serratia to be ca 3 Log10(CFU cm(-2)) greater than that of Listeria in the dual species biofilm. Microscopy revealed biofilm morphologies with variable amounts of exopolymeric substance and the presence of separate microcolonies. Under these simulated food plant conditions, the fate of L. monocytogenes during formation of mixed biofilms and desiccation depended on the implicit characteristics of the co-cultured bacterium.

  19. An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel

    NASA Astrophysics Data System (ADS)

    Sun, Da; Xu, Dake; Yang, Chunguang; Shahzad, M. Babar; Sun, Ziqing; Xia, Jin; Zhao, Jinlong; Gu, Tingyue; Yang, Ke; Wang, Guixue

    2016-07-01

    In order to solve the challenging problem of microbial infections caused by microorganisms on medical implants, it is imperative to develop novel antimicrobial biomaterials. This work demonstrated that 317L-Cu stainless steel (SS), created by adding copper through a solution and aging heat treatment process, exhibited good antibacterial properties against staphylococcus aureus, achieving 2 log reduction of planktonic cells after 5 days of incubation. In this study, the antibacterial test was performed using the plate count method, the fluorescence cell staining method and the quantitative polymerase chain reaction (qPCR) method. It is well known that a high concentration of copper ion can lead to cytotoxicity. This work explored the cytotoxicity of 317L-Cu SS through real-time cell analysis (RTCA). Experimental results demonstrated that the 317L-Cu SS possessed a satisfactory antibacterial ability against S. aureus, and the antibacterial rate based on the reduction of sessile cell count reached 98.3% after 24-hour treatment. The bacterial adhesion and the biofilm thickness were considerably reduced by the 317L-Cu SS. The results of RTCA suggested that 317L-Cu SS did not introduce cytotoxicity to mouse cells, indicating its suitability as a medical implant material.

  20. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing for public comment draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates the guide to remove references to outdated standards and to remove an appendix that has been incorporated into relevant specifications.